

FACULTY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

A prototype system for Context Sensitive Communication
in hospitals based on an Ascom/trixbox experimental

platform

Lorenzo Gironi

INF - 3981

Master's Thesis in Computer Science
June,2011

Preface

Hospital’s communication infrastructure suffers from different types of common
problems. Currently, this infrastructure relies mainly on the use of pagers which
are devices particularly interruptive for the daily work of hospital’s workers,
and moreover they do not support context-awareness communication. Wireless
phones are supposed to be a valid alternative to pagers and they can also be
used to efficiently increase awareness between workers. Unfortunately, wireless
phone can become more interruptive than pagers due to the synchronous com-
munication channel they provide.

The aim of this thesis is to propose an implementation of a context-aware so-
lution, based on an Ascom/trixbox communication platform, which tries to
overcome this problem. In particular it is specifically designed to balance avail-
ability and interruptions gained by using the Ascom wireless phones considering
contextual information relating to the users carrying these devices, and it pro-
vides several features useful to increase awareness.

This work, intended for researchers and developers who are working in the
field of context-sensitive communication for hospitals, is based on an on-going
research project at the Norwegian Centre for Integrated Care and Telemedicine
(NST), in collaboration with the University Hospital of Northern Norway (UNN)
and Telenor. The focus of this project, named Context sensitive systems for mo-
bile communication in hospitals is to design and develop context-sensitive in-
terfaces, middleware and new interaction forms for mobile devices that support
multi-modal communication. These solutions have been identified as a valuable
way to enhance the quality of patient care in the long run [18].

First of all I want to thank my parents. They have always supported me during
this thesis and without their efforts this experience would not have been possi-
ble. This thesis is dedicated to them.

A special thanks to my supervisors, Prof. Gunnar Hartvigsen and Terje Solvol
who gave me the opportunity to be a member of this project and to work at NST
during these months. Their advices, the time they dedicated to me, and their
guidance have been really important for my thesis. I also want to thank my
supervisors from my home university, Prof. Francesca Arcelli and Prof. Claudia
Raibulet who also gave me several feedback about this work.

Abstract

Purpose The aim of this report is to present a context-aware solution based
on an Ascom/trixbox platform, targeted at reducing interruptions caused by
wireless phones and improving awareness between users carrying these devices.
The application, specifically thought to be used within hospital environment,
reduces interruptions considering contextual information related to users such
as location, availability status and personal committments.

Motivation Hospitals are working environment where a large amount of infor-
mation is constantly exchanged between workers over a complex communication
infrastructure. In order to support the needs of hospital professionals, this in-
frastructure should provide the possibility to exchange important information
as quickly as possible and at the same time contact colleagues without inter-
rupting their working activities. Interruptions are unpleasant situations and
are source of stress and distraction that may increase the probability of taking
wrong decisions. Currently, hospital communication infrastructure relies on the
use of pagers which create a large amount of unnecessary interruptions. Wire-
less phones are less utilized, mainly because can become more interruptive than
pagers, but they provide text services and vocal services in the same device
which, with a suitable context-aware system able to balance interruption, can
be used to provide solutions able to efficiently support the work of hospital pro-
fessionals.

Methods The application has been developed by using the iterative software
engineering approach Unified Process.

Results The developed context-aware application is able to block the calls
directed to a phone located inside a critical area (e.g operating room), offers the
possibility to route such calls to the current on-call person on duty with a shift
scheduled inside Zimbra calendar, is able to block the calls directed to a device
switched to ‘visiting’ mode or calls directed to a recipient involved in a meeting
recorded inside the calendar. It sends to the callers informative messages con-
taining the location or availability status of an unreachable recipient and sends
pending call messages collected during the unreachable status when users leave
a critical area or switch the phone back to ‘available’ mode. It also provides a
feature which model the behavior of a phone as a pager: with this functionality
users can be paged on the phone through an interactive message which can be
used to directly call back the person who put the page. Finally, it provides a
user interface from where it is possible to look at the status and location of all
the users enrolled in the system from a single panel.

Conclusion A number of tests carried out after the develpment highlighted
that the application must fill a large amount of gaps before being deployed in a
real hospital. Some of them can be easily fixed but others, due to limits of the
phone devices, not. Moreover, an analysis of performance highlighted that the
system is not highly scalable and that however some strategies can be under-
taken in order to improve this aspect.

Keywords context-aware, interruptions, hospitals, Ascom.

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Who is in this area? . 2
1.3 The problem . 3

1.3.1 Problem statement . 3
1.3.2 Sub-Problems . 3

1.4 Method and Materials . 4
1.5 Major results . 4
1.6 Organization of the thesis . 5

2 Theoretical framework 7
2.1 Context and Context-aware computing 7

2.1.1 Context . 7
2.1.2 Context aware computing 8
2.1.3 Context information . 8

2.2 Context-aware architectures . 9
2.2.1 Main architectures . 9
2.2.2 Sensing infrastructure . 10
2.2.3 Context modelling . 11
2.2.4 Reasoning methods . 11
2.2.5 Historical Data . 12
2.2.6 Quality and efficiency problems 12
2.2.7 Open problems . 13

2.3 Application domains for context-aware systems 13
2.4 Application domain: hospitals . 14

2.4.1 Contextual information 15
2.4.2 Role based communication 16
2.4.3 Interruptions . 16
2.4.4 Communication technologies in hospitals 16
2.4.5 Context aware systems benefits 17

2.5 Existing context-aware solutions for hospitals 17
2.5.1 Aware Media . 18
2.5.2 Personal Digital Assistants (PDAs) 18
2.5.3 Mobile WARD . 18
2.5.4 Context-Aware communication in hospital 19
2.5.5 Intelligent Hospital, QoS Dream Platform 19

2.6 A Context-Sensitive Mobile Phone: SenSay 20

3 Methods and Materials 21
3.1 Overall working framework . 21
3.2 Ascom Unite System . 22

3.2.1 Enhanced System Services - ESS 23
3.2.2 Integrated Message Server - IMS 24
3.2.3 Open Java Server - OJS-GSM 24
3.2.4 IP-DECT Base Station 25
3.2.5 Handsets . 26
3.2.6 Location devices . 26
3.2.7 Data and call flow within the Ascom system 26

3.3 trixbox . 27
3.4 Zimbra . 28
3.5 Hardware/software versions . 29
3.6 Engineering approach . 29
3.7 Tests . 30

4 Software Requirements Specification 31
4.1 Description . 31
4.2 Assumptions . 31
4.3 Functional Requirements . 31

4.3.1 Use case 1: manage call (location based) 32
4.3.2 Use case 2: manage call (availability status based) 33
4.3.3 Use case 3: manage call (pager mode) 33
4.3.4 Use case 4: manage call (calendar commitment) 34
4.3.5 Use case 5: manage call (routing a call to the on-call person) 35
4.3.6 Use case 6: pending calls 37

5 Construction 39
5.1 Data flow and Call flow . 39
5.2 Software architecture . 40
5.3 Class diagrams . 42

5.3.1 Context-aware application 42
5.3.2 Open Java Server: client 45

5.4 Implementation . 47
5.4.1 Data Structures . 47
5.4.2 Change of location . 48
5.4.3 Change of availability status 50
5.4.4 Pager mode . 51
5.4.5 Use case 1 . 52
5.4.6 Use case 2 . 54
5.4.7 Use case 3 . 56
5.4.8 Use case 4 . 58
5.4.9 Use case 5 . 60
5.4.10 Use case 6 . 62
5.4.11 User Interface . 64
5.4.12 Historical data . 66
5.4.13 Elegant code . 67

6 Tests 71

7 Discussion 77
7.1 Motivations for the chosen architecture 77
7.2 Quality and efficiency considerations 78

7.2.1 Efficiency . 78
7.2.2 Quality . 81

7.3 General considerations . 82
7.4 Considerations about tests . 83

8 Conclusion 87

1 Introduction

1.1 Background and Motivation

Hospitals are working environment where a large amount of information, used

to provide reliable and high quality services to patients, is constantly exchanged

between workers over a complex communication infrastructure. There are two

key factors that this infrastructure should satisfy in order to efficiently sup-

port the needs of hospital professionals. The first relates to timing constraints:

information must be exchanged as fast as possible because any delay between

the decision made and the action taken could cause unacceptable medical er-

rors [32]. The second concerns the possibility to contact colleagues in a safe

way, without interrupting their activities. When doctors are in the middle of

a surgery inside an operating theatre or visiting a patient in a ward they do

not expect to be continuously interrupted by messages or calls. This is because

a large amount of interruptions can become a source of distraction that may

increase the probability of taking wrong decisions during their daily activities.

Satisfying these two factors is a challenging problem to face, it requires a suitable

communication infrastructure that takes in consideration timing constraints,

availability status and mobility of clinicians.

Currently, hospital’s communication infrastructure relies on the use of pagers

which are the most common devices used to contact staff’s members. The

spread of pagers is such that many hospital’s workers carry several of them ac-

cording to the roles they have been assigned [76]. These devices even if cheap

and small present limitations, due to their simplicity. They do not support

context-awareness communication and create a large amount of unnecessary in-

terruptions because when a page is placed, the recipient has to stop what he or

she is doing, find a telephone and call the number on the pager. By the time

this has been done, the caller my not be available any more [74, 76].

Different studies have shown that wireless phones can overcome most of the

limits of pagers and facilitate the communication within hospital setting [76].

Thanks to their underlying technology are also capable to simplify information

access, increase the quality of patient care in the long run and increase avail-

ability through a synchronous communication channel not provided by pagers

[2, 14, 74, 76]. Unfortunately, even wireless phones are interruptive too and po-

tentially can become more interruptive than pagers. According to T. Solvoll and

J. Scholl [78]: when the phone rings, the persons carrying it may feel obliged to

answer and explain that they will call back, if they are busy. Despite this some

researchers discovered a number of benefits achievable by using in combina-

tion voice and text services, mainly because toghether are capable to support

context-aware solutions. Since most of the wireless phones currently available

provide voice and text services in the same device, the believe is that with an

1

appropriate context-aware system able to also manage interruptions, they can

be the first candidate to substitute the pager-based communication infrastructure

in hospitals.

1.2 Who is in this area?

In the last years several authors working in the field of context-aware computing

proposed a number of solutions aimed at improving awareness within hospital

setting. These solutions are characterized by a common denominator: exploit

functionalities of displays, palm phones, wireless phones in order to improve

communications and information gathering between clinicians. Even if the final

purpose is similar, the developed systems show many differences especially on

the kind of information provided and on the way they display it. In the follow-

ing a brief list of solutions already developed is given.

Bardram, Hansen and Soegaard proposed in the Aware Media project [4] a

solution to support close coordination and communication between clinicians.

It uses displays scattered throughout the hospital to show information about

what kind of operation is going on in a ward, its progress status and name of

the doctors involved in the surgery.

A more nurse-oriented solution, proposed by Skov and Hoeg in the project

Mobile WARD [73], uses mobile phones to provide nurses information about

patients considering their daily task, time constraints and location.

Aziz et al.[1] explored the capabilities of Palm Tungsten PDAs, with built in

mobile phones and web-browsers, in order to evaluate if they could be a valid

alternative to traditional pagers. The Palm devices used during the study were

also integrated with electronic versions of medical reference text-books, drug

interactions compendium and anatomy atlases. After the study an on site as-

sessment phase has been conducted to gather feedbacks from participants.

In the Follow Me application [50], Mitchell proposed a system that allows a

user to request a video call from a terminal, e.g for asking a consultation, with-

out knowing where the recipient is located. The system is able to automatically

redirect the call to the terminal nearest to the recipient by tracking the users

position using Active Badges technology.

The Context-Aware Communication system proposed by Munoz [51] uses hand-

held devices that allow users to send messages or data specifying when and where

to deliver such information. For instance, with these devices clinicians can send

a lab test to the first nurse who will enter a specific room in the next morning,

after the test has been carried out on a patient.

2

1.3 The problem

1.3.1 Problem statement

How can a context-aware system that uses the Ascom/trixbox communication

platform be built? Can it be developed to specifically balance interruptions and

communication availability gained by using the Ascom wireless phones?

The Ascom system is one of the most common communication platform used

within hospitals. Developing a context-aware application based on this system

means providing a solution which can be easily implemented inside hospitals

that does not require specific hardware to run. Therefore, in order to properly

answer the question above, first of all it is important to determine which are

the contextual information needed to achieve the goal and how they can be

extracted from the Ascom wireless phones. In particular, since the main objec-

tive is to balance interruption and availability, the most important information

that needs to be extracted are location of the devices and availability status of

the users. Then, once discovered how to obtain them, find a software solution

which by taking in consideration the information previously extracted, is able to

control the reachability of phones by using the third party PBX trixbox system.

1.3.2 Sub-Problems

The following sub problems are aimed at refining and extending the basic ca-

pabilities of the context-aware system with more advanced functionalities.

• Which are the context-aware solutions achievable by the integration of the

Ascom/trixbox platform with Zimbra Collaboration Suite?

Zimbra Collaboration Suite has a calendar tool that can be used to easily

store working shift schedules and meetings. The integration of this source

of information with a context-aware system could provide intresting pos-

sibilities to further reduce interruptions. For example, by looking at the

entries inside the calendar it is possible to block a call when the recipient

is in the middle of a meeting or route a call directed to a person located

inside a critical area (e.g operating room) to the on-call person on duty,

according to the stored shift schedule. Moreover, calendar’s entries are

valuable information that can be used to give more feedback about the

current status of a recipient, increasing awareness between workers.

• Can the Ascom wireless phones be used to preserve the behavior of pagers?

One of the major limitations affecting pagers is the impossibility to directly

reply to a page because they do not support call functionality. A solution

that allows a wireless phone to behave as a pager could be a useful feature.

With it users can benefit from the advantages offered by the traditional

pager-based interaction and at the same time call back a person who put

a page without the need to search a phone nearby.

3

1.4 Method and Materials

A brief description about the materials/method used during the development

of the context-aware application is now given.

• Ascom Unite System: is an integrated mobile communication platform

made up of different modules and a set of wireless phones specifically

thought to be used within hospital environment [26]. It provides a number

of services including standard/interactive messages, alarm handling, user

data handling and a number of tools to control calls and messages routing.

• trixbox: is an open source Private Branch eXchange system based on

Asterisk. It is capable to intercept calls between two end points and

provides the possibility to change their behaviour by programming the

associated dialplan.

• Zimbra Collaboration Suite: is an email exchange server with advanced

functionalities to manage tasks, contacts and personal commitments thanks

to a powerful calendar tool. It exposes services to external applications

through the SOAP protocol which can be used to gather user’s information

stored inside the server.

The software engineering methodology used to develop the application is based

on the Unified Process, an iterative and incremental approach that splits the

development process into a series of mini-projects, called iterations. In each

iteration requirement analysis, design, implementation and testing are carried

out. At the end of each cycle if the identified requirements are all satisfied then

the process stops otherwise a new iteration begins.

The tests have been carried out by simulating with several testers typical sce-

narios where the features provided by the application can be involved. After

each scenario we asked them what they thought about the features just used,

without guiding too much their evaluation.

1.5 Major results

The developed application is a context-aware solution that integrates the As-

com/trixbox platform with Zimbra Collaboration Suite. It provides a number

of features capable to balance interruptions and communication availability of

the Ascom wireless phones and send feedback messages to the users. The major

results are listed below:

• According to the location of a phone the system is able to stop an incoming

call if the device is inside a critical area, such as an operating room.

• When a user tries to contact another user located inside a critical area

the system is able to route the call to the current ‘on-call’ person on duty,

according to the shift schedule stored inside Zimbra’s calendar.

4

• By checking the Zimbra’s calendar the system can block a call if the re-

cipient is in the middle of a meeting.

• The system can stop or allow communications according to the user’s

status configured from the phone. For example, if the status of a user is

‘visiting’, all his/her incoming calls are blocked.

• When a previously unavailable user become available, by quitting a crit-

ical area or switching back to ‘availability’ status, the application sends

messages containing names and numbers of the persons who tried to call

during the unavailability status (pending calls).

• When a called phone is not available for one of the reasons mentioned

above, feedback messages containing contextual information about the

status/activity/location of the recipient such as ‘the user X is in a meet-

ing’, ‘the user Y is in the Operating room’ or ‘the user Z is visiting a

patient’, are sent to the caller.

• The ‘pager mode’ feature, model the behaviour of the wireless phones as

pagers. A call directed to a ‘pager mode’ phone is blocked and then, if

specified by the user, can be converted into a ‘page message’, directly

usable by the recipient to call back the caller.

• In order to control the status of all the users enrolled in the system from

a single panel, a minimal user interface has been developed. From the

GUI it is possible to check the current availability status of the users,

their location and change some options which determine the behaviour of

the context-aware system such as enable/disable the reception of feedback

messages or enable/disable the reception of pending calls.

• The tests highlighted that the application have to fill several gaps before

being implemented in a real hospital. In particular, some features pro-

posed by the testers are simple extension of the functionalities already

provided, some can be easily implemented, but others, due to the weak-

nesses of the phone devices on which the application relies, not.

1.6 Organization of the thesis

Chapter 2: in this chapter, after the definitions of context and context-aware

computing, a description of the most common context-aware architectures found

in literature is presented. Then, a description of the major application domains

with a particular focus on hospitals is given. Finally, some solution already

developed are reported.

Chapter 3: an overview about the overall framework in which the context-

aware application operates and a deep description of the software/hardware

materials used during the project is given. Then, the software engineering ap-

proach chosen for the development is described.

5

Chapter 4: this chapter provides an introduction about the scope of the ap-

plication and the assumptions made during its development, then the use cases

describing the functional requirements of the system are illustrated.

Chapter 5: describes the construction of the application. In particular, the

information flow, the overall design of the application, the classes composing

the system and finally the implementation of the use cases illustrated in the

previous chapter will be described.

Chapter 6: the results of the tests carried out after the development are dis-

cussed focusing the attention on the weaknesses of the system.

Chapter 7: a deep discussion of the context-aware application is reported.

Here we discuss the motivation for the chosen software architecture, quality and

efficiency considerations, general considerations and finally considerations about

the tests.

Chapter 8: this chapter concludes the report summarizing the major points

characterizing the context-aware application.

6

2 Theoretical framework

In the following, after giving the formal definition of the concepts context,

context-aware computing and contextual information, a discussion about the

main architectures found in literature is provided. In the rest of the chapter a

description of the major application domains with the most interesting applica-

tions/prototypes already developed in the field are illustrated.

2.1 Context and Context-aware computing

2.1.1 Context

The research community tried over the years to better refine the meaning of

‘context’ caracterizing it in terms of mutual relationships existing between ac-

tors, events and objects within a given situation. As explained in [3] the two first

interpretations were based on the focus of the problem considered which could

be user oriented or system oriented. The user oriented interpretation put in the

center the role of users and their relationships with different things within an

environment. Its first formalization was given by Schilit and Theimer as follows:

‘three important aspects of context are: where you are, who you are with, and

what resources are nearby’ [72]

The drawback of this definition is that in many common situations there are

factors relevant for a context-aware application that can not be obtained by

considering only information closely related to the users.

Lieberman and Selker proposed a new definition that relies on a more system

centric point of view:

‘context are all the informations that are required for the computation

excluding input and outputs provided to the system’ [47]

With this definition authors suggest that a system should take decision accord-

ing to any information sensed from the environment which have a direct effect

on its state. For example, an application that uses a GUI should not only

change displayed data in response to events generated by the users, but also

change data considering other kinds of information not strictly related to them.

Years later Dey and Abowd gave a definition that takes into account both pre-

vious points of view, abstracting the concept to a higher level. Their definition

of ‘context’ was the following:

‘Context is any information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered relevant for the

interaction between a user and an application, including the user and

applications themselves.’ [19]

In this definition there is not distinction between user and application: the

attention is targeted on the relevant information which allows interactions be-

tween different entities. By considering this point of view, developers can focus

7

their efforts only on the information relevant for the design of the application,

ignoring from wich side of the interaction the identified information comes from.

2.1.2 Context aware computing

According to Dey and Abowd, old definitions of context-aware computing can

be divided in two categories [19]:

• Using context: context-aware computing is the ability of computing de-

vices to detect and sense, interpret and respond to aspects of a user’s local

environment and the computing devices themselves [59, 60].

• Adapting to context: context-aware computing is the ability of applications

to dinamically change or adapt their behaviour based on the context of the

application and the user [59].

Unfortunately, neither of these definition are suited to precisely define the con-

cept of context-aware computing because there are context-aware applications

that dinamically change their behaviour without sending information to the

users and context-aware applications that do not adapt to the context but send

information to the users. For example, an application that displays the context

of the user’s environment to a user does not modify its behaviour, but it is

certainly a context-aware application [19]: this is a typical example where the

second definition doesn’t fit.

A more general definition has been introduced by Dey and Abowd [19]. They

gave an interpretation that join together the previous categories:

A system is context-aware if it uses context to provide relevant information

and/or services to the user, where relevancy depends on the user’s task. [19]

It embraces both the previous point of view because first it uses context to

provide relevant information and/or services to the user and at the same time

provide the information according to the user’s task, satisfying context adapta-

tion.

2.1.3 Context information

What are the most common types of contextual information used by context-

aware applications? How are them classified? In [48] Mizzaro, Nazzi and

Vassena identified the following common types of information:

• spatial

• temporal

• social situation

• resources that are nearby

• physiological measurements

8

• schedules and agendas

• activities

• identity

Most of the applications already developed use only a small number of them.

In particular, only the information that satisfy the requirements of the targeted

project, technology available and environmental constraints are used. Despite

this, in the last years the trend is to force the aggregation of much information

as possible in order to provide more sofisticated and useful services to the users.

Bardram, Hansen and Soegaard, during their preliminary research study on

the Aware Media project [4], suggested a classification that splits the types of

information listed above along three main axes:

• Social awareness: ‘where a person is’, ‘activity in which a person is engaged

on’, ‘self-reported status’.

• Spatial awareness: ’what kind of operation is taking place in a ward’, ’level

of activity’, ’status of operation and people present in the room’.

• Temporal awareness: ’past activities’, ’present and future activities’ that

are significant for a person.

This classification group together different kind of data inside classes that de-

scribe social aspects regarding knowledge about a person, spatial aspects re-

garding information about a specific place and temporal aspects describing in-

formation about history and future plans of a subject.

2.2 Context-aware architectures

In this section is given an overview about different architectures, sensing in-

frastructures, approaches for modeling context, reasoning methods, quality and

efficiency problems.

2.2.1 Main architectures

The three main architectures which guide the prototyping of a context-aware

system suggested by Winograd [88] are: widget based, client-server and black-

board model.

The widget architecture [19] relies on the use of context-widgets which are

sensor’s interfaces used to retrieve in an easy way context data into applications.

The interaction between applications and sensors goes through widgets by send-

ing messages and receiving callback as soon as an information changes. Widgets

can be thought as extensions of the sensor’s drivers that provide a way to hide

the implementation complexity required to communicate with them. The major

advantage of this approach is that an application built on the top of the wid-

get is completely decoupled with the specific implementation needed to interact

9

with a sensor. This means that even if the underlying technology used to sense

the environment data changes, for example using Active Badges technology in-

stead of floor sensors to retrieve location information, the result will not affect

the whole application. Widgets can also provide an abstraction mechanism to

provide data in a way that best suit the requirements of the application using

it. For example a widget that provides information about the location of a

user within a building, in most of the cases should not notify the application

for any single location variation in the same room, but only notify it when the

user move from one room to another. Moreover, widgets provide reusable and

customizable piece of software. For instance, a widget used to track the location

inside an application X which provides help during tour guides can also be used

by an application Y which implements a car navigation system [26, 37].

The client-server architecture is usually used to enable communication be-

tween high-level components (e.g different applications) within a network. This

model has been widely adopted for the development of internet based applica-

tions, using as communication protocol TCP/IP. Typically, in a client-server

architecture a client finds the location of a service using a resource discovery

component and then tries to connect to it in order to retrieve information needed

(e.g the location of a user). The discovery component is one of the major draw-

back of this architecture because it has to route all the requests coming from the

clients to the host that provides the requested service. Other problems affecting

this architecture are network latency and available bandwidth which are criti-

cal factors for some context-aware applications due to their timing constraints

[26, 37].

Unlike the previous approaches, the black board architecture is a data-

centric model where all the components involved in the system post messages

to a common shared message board in order to subscribe for receiving messages

that match a predefined pattern (e.g change of location). All the communi-

cations pass through a centralized server (the blackboard) and the routing of

messages is implicitly executed by the pattern matching between the message’s

content and the pattern specified inside the subscription. The major drawback

of this approach is related to the communication efficiency because each piece

of information requires two hops in order to reach the final application: the first

one from the sensor to the blackboard and the second one from the blackboard

to the application [26, 37].

2.2.2 Sensing infrastructure

The sensing infrastructure is one of the most important element of a context-

aware system. In the last years due to the discovery of new materials, minia-

turization techniques and increasing market demand, sensor technology has sig-

nificantly improved making sensors more reliable, accurate and cheaper.

Indulska and Sutton [38] classified sensors in three main groups, according to

10

the way they capture context data:

• Physical sensors: hardware based sensor that retrieve phyisical data. Nowa-

days they are the most common devices used to gather information like

motion of the body, location of a person, temperature level, sound level

and human’s body functions (biosensor) [37].

• Virtual sensors: are source of information coming from other applications

and services. For example, the location of a user can be retrieved by

looking at the emails or at the entries recorded inside electronic calendars

[37].

• Logical sensors: these sensors combine information from virtual, phys-

ical sensors and databases in order to provide high-level information.

For example, the location of a user can be inferred considering which

is the computer used to log in and then combine it with the location

of the machine within an office by looking into a database containing

〈machine ID, position of machine〉 pairs [37].

2.2.3 Context modelling

In order to retrieve in a meaningful way contextual information, a data model

is often required to represent data. The most common modelling approaches

are based on the data structures they use [37]:

• Key-Value model: this is the most simple data structure. It represents in-

formation using key-value pair, for example < location, name of location >.

• Markup scheme models: use hierarchical data structure consisting of markup

tags that describe for each content its attributes.

• Graphical models: in this case contextual information is modelled by using

a graphical model, such as UML or ORM (Object-Role Modelling).

• Logic based models: is one of the most formal approach available and it

describes context using facts, expressions and rules. The inference process,

which allow to infer new facts according to the rule previously defined, is

performed by suitable reasoners.

• Ontology based models: this approach uses ontology description languages

such as OWL or the less expressive RDF to describe concepts and data

relationships. Due to the high expression capabilies, this approach is one

of the most promising for future applications.

2.2.4 Reasoning methods

In order to infer new information from contextual data, a number of different

reasoning methods are commonly used by some context-aware systems [43]:

11

• Artificial Neural Networks: are computational models capable to infer

new information according to the network’s structure trained during the

learning phase. The output of a neural network try to approach as much

as possible a particular pattern, hidden inside the contextual variables

provided in input.

• Bayesian Networks: extract information using the probabilistic relation-

ship existing between two or more different contextual variables linked

toghether. The probabilistic model is able to provide the posterior prob-

ability of a variable, given the state of its linked parents.

• Hidden Markov Models: probabilistic model where contextual variables

are assumed to behave as a markov process. This model gives the like-

lihood of a state considering the evolution of linked variables during the

time. This kind of inference process requires a training phase that usu-

ally needs a large amount of data in order to build a reliable set of initial

probability values.

2.2.5 Historical Data

For a context-aware application keeping historical data can be particularly use-

ful. This is because the behaviour of the application could be adjusted during

the time in order to provide more flexible services to users, according to the col-

lected past values. Historical data can be used by computational models such

as Artifical Neural Networks or Support Vector Machines to discover hidden

patterns characterizing user habits. For example, if a user frequently follows a

path inside a building, could mean that he is more interested to things located

along such path and this information could be used to personalize the displayed

information or provide detailed suggestions about related things around that

area. Moreover, historical data can be used to analyze and extract statistics

about the level of satisfacion of the provided services.

2.2.6 Quality and efficiency problems

During the design of a a context-aware application, designers need to consider

a number of factors that could influence the quality of a system, both at per-

formance and functionality level. The most important are [37]:

• Efficiency: for context-aware applications efficiency is a critical factor be-

cause they are often affected by tought timing-constraints. Although some

architecture make possible to communicate in a fast way, other architec-

tures are less efficient because due to their distribution of components, are

forced to use different communication layers which could lead to a loss of

efficiency. Therefore, during the design phase is important to choose the

right architecture to best fulfull the timing requirements of the application

to develop.

• Configurability: after the deployment, the system should be easily con-

figurable and the job of adding and modifying compontents should be

12

achievable in a simple way, without compromising the stability of the sys-

tem.

• Robustness: regards the level of difficulty in coping with breakdowns of

the system. Programming languages provide several error handling mech-

anisms but they are only thought to cope expected and predefined errors.

They do not consider errors that can be raised by the interaction be-

tween different components within the system, especially when they are

distributed inside a network. A robust system should keep running also

in case of malfunction, jam and unexpected data received.

• Simplicity: this is an important property that should be guaranteed by

a well thought context-aware system. Programmers and maintainers do

not have to struggle with huge implementation complexity in order to

understand functionalities and keep the system working.

2.2.7 Open problems

Context-aware computing is still an open research area where models and archi-

tectures supposed to support context-aware applications have not been defined

yet. As explained in [13] it is clear that the most difficult problem in develop-

ing such applications is not the access to technologies (sensors, handheld, etc)

as they exist, but find the best way to model context data and architectures

to support their use [13]. The two main challenges faced in the last years by

researches are:

• Development of a taxonomy to uniform and standardize the representation

of context types.

• Development of an infrastructure to promote the design, implementation

and evolution of context-aware applications in an efficient way.

Other problems still unsolved are linked to security, reliability and privacy of

data, especially in the medical domain (e.g identification, authentication, avail-

ability, integrity, confidentiality). For all these reasons different research path

have been undertaken in the past and are still under investigation.

2.3 Application domains for context-aware systems

The availability of new technologies and devices providing new forms of interac-

tion led the adoption of context-aware services in a growing variety of domains,

some of them are [37]:

• Smart homes: the aim of context-aware applications is to provide useful

services to home abitants in order to increase their quality of life and help

disabled or elderly people to be more independent. The most common

functions provided are: security functions to supervise the environment

and send alerts detection in case of gas leakage, open tap, fire, flooding. If

13

needed these applications can also report critical information to the appro-

priate institution (eg. police or fire department). Appliances functions to

provide control of appliances such as turning on/off the light, open/close

window, turning on/off air conditioner or heater. Supervising healthcare

functions to monitor the person’s biomedical functions: glucose levels,

blood pressure, heartbeats or provide reminders about daily medication

[37].

• Airports: context-aware solutions are used to identify possible threats or

emergency conditions providing automatic mechanisms aimed at deliver-

ing immediate security notification to the appropriate department such

as maintenance, fire department or police. Services linked to passengers’s

behaviour have been developed as well. Most of them are able to send to

the passenger’s mobile device informations about shopping zones, exits,

gates, arrivals and departures delay according to their location [37].

• Leisure/Entertainment: information provided, typically on mobile phone,

is about nearby restaurants, theatres, festivals, events, shops and other

data related to the area where the user is located [37].

• Museum: context aware applications are often used to detect user’s po-

sition within a building in order to guide visitors through a predefined

path. Typically, these applications are developed on suitable portable

devices able to sense the location and capable to provide video/audio in-

formation relating paintings, statues and other object within a museum

[37].

• Offices: services provided by context-aware systems are usually aimed at

monitoring the status of the equipment and providing better allocation

of human resources changing the shift schedules considering location and

activity performed by workers [37].

2.4 Application domain: hospitals

One of the most promising application domain for context aware systems are

hospitals. Hospitals are characterized by a strong communication infrastructure

used to exchange a number of different kind of data such as patient reports, lab

tests and working shifts. The management of this information is one of the most

difficult challenges to face because it requires to take in consideration a wide

variety of problems that should be avoided in order to properly meet the needs

of hospital’s professionals. Context-aware applications seem to be a valid so-

lution which can also be used to shift part of the worker’s activities to computers.

In the following sections different aspects characterizing communications within

hospital’s environment will be analyzed.

14

2.4.1 Contextual information

There are several information that clinicians need to know in order to carry out

visits, lab exams, surgery and coordinate their activities [78]. This information

however, is not often easily accessible because it is scattered in different places

and known by different persons who are not always available and located in the

same place. This tells us that in order to gain data access, physicians need to

know something else: contextual information which allow them to know when

and where a resource can be accessed.

Availability status is an example of contextual information. It enables a non-

intrusive communication interaction and allows doctors to know when a col-

league can be contacted for asking an information without interrupting his/her

activity. Another important contextual information is location. Hospitals are

higly dynamic environment where professionals working in different areas are

always moving in different places [76]. Without a suitable mechanism able to

trace their location, doctors are often difficult to find and in most of the cases

the only way to get in contact with them is to use phones/pagers for asking

where they are located.

It is worth to observe that availability and location are information strongly

connected. Infact, when physicians are inside a patient room or inside an op-

erating room they will be more likely performing a visit or an operation: in

both cases the status will be clearly ‘unavailable’ and they do not expect to be

disturbed.

Another interesting contextual information characterizing data access is the

role covered by a person: hospital’s professionals need different types of data,

according to this information. When a physician goes near a patient’s bed, for

example, he will probably want to see the relating EHR record or the last lab

test available for a patient; on the other hand a nurse near a patient’s bed will

be more interested to see the last medication procedure to be made.

Currently, some contextual information are shared on whiteboards where work-

ers usually record their working shift, covered role and status information. An

example of whiteboard is shown in Figure 1.

Figure 1: An example of whiteboard

15

2.4.2 Role based communication

It has been shown [51] that clinicians are often interested to send information or

contact colleagues who covers a particular role, regardless the specific identity

of the person to be contacted. For example, they may need to send a patient’s

test result to ‘the doctor of the next shift’ or ’to the first nurse who is going to

enter a specific room in the next morning’.

Furthermore, some research studies [76] revealed that clinicians are frequently

interested to contact the ‘on-call person’ who is responsible to receive all the

calls directed inside a particular area (e.g operating room) or department. Even

in this case they are not interested to the specific identity, but only on the

person who cover this role.

2.4.3 Interruptions

One of the major drawback of the current hospital’s communication infrastruc-

ture, discovered in different studies conducted on site [76], concerns potential

interruptions raised by pagers or mobile phones.

Pagers are devices particularly interruptive because when a page is placed, the

recipient has to stop what he or she is doing, find a telephone and call the num-

ber on the pager. Moreover by the time this has been done, the caller my not be

available any more [74, 76].

Mobile phones are interruptive too and potentially can become more interrup-

tive than pagers. According to T. Solvoll and J. Scholl [78]: when the phone

rings, the persons carrying it may feel obliged to answer and explain that they

will call back, if they are busy.

Interruptions are unwanted situation between clinicians because can cause lack

of concentration in the activity performed and they should be minimized in

order to avoid distraction that can lead to intolerable action or decision.

2.4.4 Communication technologies in hospitals

The most common comunication devices used in hospitals are pagers. Most of

the hospital’s workers use them to cover both personal and role based communi-

cation [78]. The spread of these devices is such that many workers carry several

of them according to the roles they have been assigned [18, 76]. Pagers are simple

personal telecommunication devices used to send short messages containing the

caller’s phone number that the recipient is then expected to call. Despite their

simplicity and low cost, their asynchronous based interaction is often cause of

delays between communication. As already said this happens because once a

page has been placed, the recipient has to interrupt his/her activity, search a

phone nearby and then call back the person who sent the page [78].

16

In the last years another communication device growing popularity in hospital

setting are phones based on the Digital Enhanced Cordless Telecommunications

standard (DECT). Some studies showed that thanks to their underlying tech-

nology are capable to simplify information access, increase the quality of patient

care in the long run and increase availability through a synchronous communi-

cation channel not provided by pagers [2, 14, 74, 76]. They often offer a number

of features such as programmable services, location tracking, alarms and the

possibility to exchange user data not generally possible with standard phones.

Despite their widespread use in every day life, in hospital environment are less

utilized. The main reason is probably connected to the possible electromagnetic

interferences with medical equipment [26]. However, researches demonstrated

that in some situations the advantages seem to outweigh the risks [6, 42, 52]

and mobile wireless phones are now more accepted [76]. For example, among

others, the St. Olavs hospital (in Norway) uses a Cisco Imatis system which is

a communication platform specifically thought for hospital environment based

on wireless phones communicating over a VoIP network [94].

2.4.5 Context aware systems benefits

All the factors previously listed suggest that modern hospitals need an imme-

diate requirement for systems able to enhance information and communication

management. Context-aware applications can help to achieve this target intro-

ducing a number of benefits, some of them are:

• Reduce the efforts to gather information: applications can provide solu-

tions to automatically send relevant information such as patient’s report,

working shifts and laboratory results when needed.

• Reduce the numbers of interruptions from mobile phones/pagers: accord-

ing to a number of different contextual information such as availability

and location, these applications are capable to manage when a particular

device can be reached or not.

• Improve collaboration and coordination between workers: context-aware

applications can increase awareness providing information about activities

performed by colleagues and future plans.

• Provide a real solution for substituting the current hospital’s pager-based

communication infrastructure: context-aware applications can be used to

join the functionalities of distinct role-based pagers in a single phone device

which behave as a pager, eliminating the need to carry several of them

simultaneously.

2.5 Existing context-aware solutions for hospitals

There are different context-sensitive solutions for hospital environment that have

been developed in the last years, most of them are the result of a long research

work conducted on site. Below, some of the main project carried out in this

area are described.

17

2.5.1 Aware Media

The Aware-Media system [4], developed in the centre for Pervasive Healthcare

at the University of Aarhus in Denmark, is a pervasive application thought to

support close coordination and communication between clinicians. The sys-

tem shows information on a number of large interactive touch screen displays

scattered throughout the hospital. The information it provides is what kind

of operation is currently executed in a specific ward, status of the operation,

kind of doctors present in the room, stage of the operation through dynamic

coloured bars and status of the work schedule (e.g delays or cancellations) pro-

vided displaying visual signs and text messages. Moreover, inside a little area

of the display the application shows cues about what other people are doing,

their location, status and future plans.

2.5.2 Personal Digital Assistants (PDAs)

The purpose of this study [1], carried out at the Academic Surgical Unit at

St. Mary’s Hospital (London), was aimed at verify whether PDAs with built-

in mobile telephone could be an efficient solution to improve communication

between hospital workers and compare them with pagers. These devices were

also provided with electronic versions of commonly used UK medical reference

text-books, drug interactions compendium, anatomy atlases, international clas-

sification of disease guidelines and medical calculators. During the assessment

phase some Palm Tungsten PDA were given to a surgical team. The informa-

tion used to evaluate the communication efficiency gained with these devices

was the length of time clinicians needed to respond to a call. After 6 weeks of

tests and questionnaire filled by people involved in the study, the results were

encouraging because they showed a general benefit in replacing pagers with the

new advanced PDA devices.

2.5.3 Mobile WARD

The aim of this study [73] was to evaluate a context-aware solution based on

mobile phones capable to give nurses information about patients. The provided

information considered daily tasks nurses had to deliver, timing constraints and

position. Moreover, the mobile devices could also be used to insert collected

data during daily work and look at previously stored patient’s information in

order to monitor changes. After the development, an assessment phase has

been conducted. The problems identified concerned mainly the complexity of

the automatic update mechanism of the devices: some subjects did not under-

stand how to navigate between the different interfaces and they felt forced to

undergo to the information displayed on the phone [73]. Others felt confused

when suddenly the system changed the interface layout while they were reading

information displayed [73]. Finally, some nurses expressed uncertainties about

the validity of the data previously entered into the system and they wandered

if the information had been saved correctly [73].

18

2.5.4 Context-Aware communication in hospital

This solution [51], carried out at IMSS General Hospital in Ensenada Mexico,

uses handheld devices that allow users to specify when and where they want

to send messages/data to other colleagues. For example, doctors can specify

who will be the recipient of a patient’s lab test result and automatically send it

when ready. Moreover, with this system doctors can also send messages without

knowing the names of the recipients by sending lab tests to any physician on

duty for the next shift or to the first doctor who will enter a specified room in

the next day. Fig. 2 (from [51]), shows a screenshot of the user interface from

where users can select the location of the recipient required for the delivery of

a message.

Figure 2: GUI from where the location of the recipient can be chosen, from [51].

2.5.5 Intelligent Hospital, QoS Dream Platform

This application, proposed by Mitchell [50], is based on touch-sensitive termi-

nals ubiquitously scattered throughout the hospital. By using these terminals

clinicians can, after an authentication process, request a video call to a colleague

without knowing where the person they want to contact is located. The call is

routed to the nearest terminal of the recipient who can choose to take the call or

refuse it. The user’s location is tracked by the application thanks to an Active

Badge tracking system able to detect positions through badges worn by clini-

cians. The main application scenarios of this solution are: remote consultation

between doctors (e.g discussions regarding patients and their treatments) and

consultation of patient’s data enabled by an event notification infrastructure

that allows to push clinical data directly into the terminal’s display.

Intelligent Hospital has been built to demonstrate a real application of the

QoS Dream middleware platform. This platform supports context-aware, event

driven applications and solutions based on multimedia contents where user mo-

bility is a predominant factor [50]. The framework is composed by four main

conceptual components: an operating system that offers resource management

and overall control functionality, a dynamic multimedia streaming component

based on the DJINN platform used to re-route video streaming contents ac-

19

cording to the movement of participants, an event-based infrastructure that

uses HERALD architecture and a set of APIs for building applications using

the technologies of the system [50].

2.6 A Context-Sensitive Mobile Phone: SenSay

In the following we are going to present an interesting prototype that even if it

is not specifically thought for hospital environment, it is strictly related to the

context-aware application discussed in this thesis.

SenSay is a context-aware mobile phone that adapts to dynamically chang-

ing environmental and physiological states [79]. It is capable to change the

ringer volume, vibration, provide to callers feedback about the current context

of the user’s phone and make call suggestion to users when they are idle [79].

Contextual information is gathered by using the following sensors, mounted on

different part of the body:

• 3-Axis accelerometers

• Bluetooth and Ambient microphone

• Light sensor

A central hub mounted on the waist, acts as a central component which receives

and distributes data coming from the sensors to the decision logic module. The

decision module analyze the collected data and determine the new state of the

phone that should enter [79]. The four states provided by SenSay are the follow-

ing: Uninterruptible, Idle, Active and Normal state. When the phone switches

from one status to another, a number of settings are automatically changed.

The Uninterruptible state turn off the ringer and turn on the vibrate only if

the light level is below a certain threshold. This state is entered when the user

is involved in a conversation (recognized by the environmental microphone) or

is involved in a meeting recorded inside the electronic calendar on the device.

When a phone is in this state, all the incoming calls are blocked and feedback

messages are sent to the callers. The callers have an option which allows to force

the call in case of emergency. The active state is entered when high physical

activity or high ambient noise level are detected by the accelerometer and by the

microphones. In this case the ringer is set to high and the vibration is turned

on. The idle state is activated when there is little movement and the detected

sounds of the sorrounding environment are very low. When the phone is in this

state, it reminds the user pending calls. In the normal state, the ringer and

vibrate are configured to the default values.

20

3 Methods and Materials

The aim of this chapter is to provide the reader with a description of the ma-

terials and methods used for developing the context-aware application. After a

description of the overall working framework, will be described the Ascom plat-

form on which the application is built on, trixbox and Zimbra exchange server.

The chapter ends describing the adopted software development methodology

and how the tests of the application have been carried out.

3.1 Overall working framework

The overall framework on which the application relies is shown in Fig. 3. It

is made up by different components communicating between them over a local

area network. The blue squares represent the modules costituting the Ascom

Unite System, the red square represents the IP-DECT wireless interface of the

Ascom technology along with wireless phones and location sensors, the green

square represents the PBX trixbox and the orange square Zimbra Collaboration

Suite exchange server.

Figure 3: Framework architecture

Ascom Unite is an integrated mobile communication platform specifically thought

to be used within hospital environment [26]. The modules constituting this sys-

tem are seven: all toghether make it possible to manage information received by

the IP-DECT base stations such as voice and data coming from the phones, over

VoIP technology. In the picture above are only illustrated the three modules

21

needed (or replaced) by the context-aware application: the Integrated Message

Server (IMS), the Open Java Server (OJS-GSM) and the Enhanced System Ser-

vices (ESS).

trixbox is one of the most important component of the framework because it

provides functionalities useful to manage calls. In particular, it is capable to

intercept all the calls passing over an IP network and it allows to customize

their behaviour by simply programming the associated dialplan.

Zimbra Collaboration suite is an exchange mail server that provides a number

of advanced features to manage emails, contacts, tasks and personal commit-

ments. It exposes services to external applications through a SOAP interface

[96] that can be used to gather information stored by the users.

In the following we are going to discuss in details these components, starting

with the Ascom system.

3.2 Ascom Unite System

The Ascom Unite system provides a series of modules connected to each other

containing applications used to deliver services over an IP network. Its main

purpose is to provide a reliable and a flexible architecture independent from the

adopted radio carrier technology: in this way it is possible to integrate wireless

phones, pagers, GSM phones in the same system and provide them common

functionalities.

All the available modules are tightly integrated and they exchange data us-

ing the proprietary Unite protocol built on the top of the TCP/IP stack. Each

module runs on an hardware platform called ELISE (Fig. 4) and contains: a

host router which handles all the communication to, from and internally in the

module, a UNS (Unite Name Server) used to translate the call IDs into inter-

nal addresses, a Web Server that provides a web-based user interface for the

module’s configuration, a Linux based operating system and a Host Attendant

which handles the basic configuration and supervision of the installed software

[26]. Each module contains specific software, marked with X and Y in Fig. 4,

required to carry out specific functionalities.

All toghether, the modules constituting the Ascom Unite System, provide the

following services [26]:

• Messaging: enables external applications to send text messages to a spe-

cific destination (e.g a wireless phone or a GSM phone).

• Interactive messaging: enables external applications to send particular

messages containing different response options.

22

Figure 4: ELISE hardware, [TD 92243GB] pg. 7

• Personal alarm handling: enables the reception of alarm events from porta-

bles.

• User data: enables external applications to receive user data from porta-

bles.

• Remote management: it allows the management of all the modules of the

Ascom system over an IP network.

• ESS centralized services: number planning, message routing, group han-

dling, system supervision, fault and activity logging.

In the following will be given a brief description of the modules used (or replaced)

by the context-aware application, the wireless phones, the IP-DECT station and

the location sensors.

3.2.1 Enhanced System Services - ESS

The ESS module represents the central unit of the Ascom Unite System: it

manages all the calls between phones. This component will be replaced by the

context-aware application with the PBX trixbox in order to override the stan-

dard call management. It is worth, however, to take a look at the functionalities

it provides [26]:

• Number Planning: by using the web-based interface provided it is possible

to manage the centralized number planning and handle phones and pagers

regardless the carrier system on which they are connected to.

• System Supervision: enables the supervision and control of all the modules

installed in the system.

23

• Group Handling: portables from different carrier systems can be grouped

together within the same category. This functionality is useful to apply

the same policy/rule for a whole group of phones.

• Fault Handling: faults from other Unite modules can be collected and

stored inside a dedicated log file.

• Activity Logging: collects inside a log file events, alarm data, messages

and location data sent by the phones.

3.2.2 Integrated Message Server - IMS

This is a middleware between the IP-DECT base stations and the other modules

of the Ascom Unite system. It handles all the data coming/directed to the

phones and supports the following services [26]:

• Message distribution: it allows to specify where information coming from

the phones has to be distributed. For example, location or user data can

be distributed to the Open Java Server.

• Central Phonebook: a central phonebook accessible from all the phones

can be stored inside the module.

• IMS Messaging Tool: is a web-based tool for sending messages to the

handsets.

3.2.3 Open Java Server - OJS-GSM

Open Java Server is a programming server directly interfaced with the IMS.

This module allows to mount a Java program on it implementing customized

features not covered by the standard Ascom Unite System. The different kind

Figure 5: OJS interactions with the IMS Messaging System, [TD 92230GB] pg.
1

of data (shown in Fig. 5) that this server can receive/send from/to the IMS are:

• Standard Messages

24

• Interactive Messages (IM) with multiple response options.

• User Data (e.g sent by the phones when one of the three soft keys is

pressed)

• Location

• Alarms

In order to communicate with the IMS messaging system, each program mounted

on this server must use the OAJUtil Java package provided by the module. OA-

JUtil is an API containing specific libraries that can be used to manage all the

information listed above.

3.2.4 IP-DECT Base Station

The IP-DECT Base Station, shown in Fig. 6, works as a bridge for data ex-

changed between the Ascom wireless phones and the Ascom Unite wired net-

work. Its main characteristics are the following [26]:

• DECT GAP/CAP radio interface

• Supports H.323 or SIP protocol over IP

• On-air synchronization

• Web interface for configuration and software upgrade

• Roaming and handover

• handling of 8 simultaneous calls

Figure 6: Ascom IP-DECT Base station, [TD 92370GB] pg. 1

Therefore, all the communications between handsets and the Base station are

carried out over the DECT protocol.

25

3.2.5 Handsets

The two models of phones provided by the Ascom equipment at our disposal

are the 9d24 MkII and d62, shown in Fig. 7. The d62 differs primarily for its

intuitive and coloured display not available on the 9d24 MkII. Both provide a

Figure 7: Ascom’s wireless phones: the 9d24 MkII on the left and the d62 on
the right, [92380GB] pg. 1

number of advanced functionalities such as built in alarms, SIM card for identity

and personal settings, advanced messaging functions, up to 10 profile mode with

customizable settings and 3 programmable soft keys for each profile which can be

used to push user data to the Ascom Unite system, highlighted with red squares

in Fig. 7.

3.2.6 Location devices

The Ascom equipment is also provided with location devices used to track hand-

set’s positions. Every time the position of a phone changes and fall into an area

covered by a specific location device, the ID code of the sensor is sent by the

phone to the base station.

3.2.7 Data and call flow within the Ascom system

Before continuing with the description of the other framework’s components, in

order to make clear to the reader which components of the Ascom Unite System

are involved in a typical communication scenario during the sending of data or

the execution of a call between phones without considering the context-aware

application, a brief explanation will be now given.

• The data flow is shown in Fig. 8. When a new message containing location

or user data is sent from a device, it is first received by the IP-DECT

base station. Then, the base station routes data towards the Integrated

Message Server (IMS) which finally distributes the information to the

26

Figure 8: Data flow

Open Java Server GSM. In order to route the data in this way, the Ascom

system has been specifically configured. Its configuration is given in the

Appendix B.

• The flow followed by calls is slightly different from the previous one and it

is illustrated in Fig. 9. All the incoming calls are routed by the IP-DECT

Figure 9: Call flow

base station to the Enhanced System Services component. ESS checks if

there are routing policies to be applied and then, according to the out-

come, deliver the call to the right recipient. The call flow just described

will be completely modified by the context-aware application in order to

properly manage the control of the phone calls.

3.3 trixbox

trixbox is an IP PBX system based on Asterisk. A Private Branch eXchange

(PBX) is a middleman between the phone company and the extensions within

an office [30]. Basically, trixbox provides web-based interfaces and a number

of tools to easily maintain and configure the underlying Asterisk engine. It is

made up by the following components [26]:

27

• CentOS 5.2: the core operating system. It is a community supported

version of the Red Hat Enterprise Linux distribution.

• Asterisk 1.4: the Private Branch eXchange engine with full customization

capabilities.

• Free PBX 2.5: a graphical user interface which allows an easy management

of the configuration files on Asterisk.

• Flash Operator Panel (FOP): a graphical user interface designed to help

call management. From this panel, a user (tipically a receptionist) can look

at the status of all the extensions subscribed in the system and manage

them if necessary.

One of the most important element of trixbox is the Asterisk’s dialplan be-

cause it defines how to handle inbound and outbound calls. It consists of a

list of command/instruction that Asterisk executes during a call directed to an

extension, where an extension is a numeric identifier given to a line ringing a

particular phone. The Aterisk’s dialplan is specified inside a configuration file

named extensions.conf and the four main sections characterizing it are context,

priorities and applications. Contexts are named group of extensions containing

several instructions. The instruction’s execution order is estabilished by the

priority and the action performed depends on the application called from each

instruction. Some examples of applications are answer, hangup, park a call, hold

a call and say a predefined message.

Asterisk Gateway Interface (AGI) is a programming interface for Perl, PHP,

C and Pascal that allows a third party application to dinamically change the

dialplan when a new call is made. A program that uses this interface (stored

in the same Asterisk’s host) can be directly called from the dialplan through

suitable instructions.

FastAGI [95] is a Java implementation of the Asterisk Gateway Interface (AGI)

that uses TCP sockets to communicate over TCP-IP with Asterisk. By using

the FastAGI API within a Java program it is possible to remotely control the

dialplan (and therefore the call’s behaviour), over TCP-IP protocol.

3.4 Zimbra

Zimbra Collaboration Suite is an enterprise open source email server running on

Linux Ubuntu Server 64 bit. The features it provides are: rich email, contact

management, document sharing, document management, integration with com-

mon mobile phones such as iPhone, BlackBerry, Android and a calendar tool

shareable between users accessible through a standard web browser.

Zimbra exposes services throught its SOAP [96] interface. SOAP requests, car-

ried out over a TCP-IP connection, can be used to extract data stored inside the

server by the users. For example, by using suitable SOAP requests it is possible

to extract emails, contacts and appointments records for a specified user.

28

3.5 Hardware/software versions

The application relies on the following hardware and software versions:

• Ascom Unite platform hardware: IP-DECT Base Station v3.1.23, Hand-

sets models: 9d24 MKII v3.71 and d62 v2.8.22, IMS2 v2.36, OJS v3.0.

• Machine running the application: Primergy TX100 S1 server, dual proces-

sor Intel Xeon CPU X3220 @ 2.40 Ghz, 2.39 Ghz, 4 GB RAM. Operating

System: Microsoft Windows Server 2003 Standard x64 edition provided

with VMWare-Server v2.0.2.

• trixbox v2.8.0.3.

• Ubuntu Server 10.04 LTS 64 bit.

• Zimbra Collaboration suite version 7.0.0 installed on Ubuntu Server.

3.6 Engineering approach

The software engineering approach used to develop the context-aware system is

based on the Unified Process, an iterative and incremental development method-

ology (also known as spiral development or evolutionary development) based on

the ideas of Boehm [9] and Gilb [29]. This approach split the development

process into a series of short mini-project, called iterations. The purpose of

an iterative approach is to increasingly enlarge and refine a system at each

iteration in order to gradually approach the requirements of the targeted ap-

plication. Usually, an iterative model does not start with a full specification

of the requirements but begins specifying and implementing only the most im-

portant features that are subsequently imporoved and adjusted to cope missing

requirements during the next iterations. The steps composing an iteration are

the following:

• Requirements: the requirements are identified, collected and analyzed.

• Design: a software solution is designed by using Use Cases diagrams to

capture the functional requirements, Interaction diagrams to define the

interactions between software components and other graphical UML no-

tation models to better define the overall architecture of the software to

develop. The result of this phase is an architectural model describing the

implementation goals for the current iteration.

• Implementation: the aim of this phase is to code the software described

in the previous step, improving the system already developed.

• Testing: the new developed features are tested in order to verify if they

are consistent and do not present errors.

After these steps, if the requirements are not satisfied a new iteration takes

place.

29

3.7 Tests

The tests have been carried out by simulating typical scenarios where the func-

tionalities offered by the application can be involved. After each scenario we

asked testers what they thought about the features just used, without guiding

too much their evaluation. With this simple approach we hope to have obtained

sincere considerations and more useful feedback.

30

4 Software Requirements Specification

The purpose of the following specification is to present a description of the

application, the assumptions under which it operates and its external behaviour

through an illustration of the functional requirements.

4.1 Description

The context-aware solution, based on an Ascom/trixbox communication plat-

form, is aimed at managing the balance between increased availability and

increased interruptions gained with the Ascom wireless phones. Interruption

management is performed by applying to calls a number of rules that take in

consideration status, location and personal commitments of the users carry-

ing the devices. Moreover, the application implements a feature that allows a

phone to behave as a pager, it is capable to send feedback messages explaining

the unavailability cause of an unreachable phone and send ‘pending call’ mes-

sages containing the name of the persons who tried to call a user during the

unreachable status.

4.2 Assumptions

The application relies on the following assumptions related to behaviors that

users are expected to follow in order to ensure that the system will work prop-

erly:

• Users always carry their phones with them: without this assumption would

be impossible to trace their location because the phone’s location could

not reflect their real position.

• Users always update their availability status from the phone, when it

changes: as in the previous point, if users do not change their status from

the phone it is not possible to know their real availability.

• Users use Zimbra’s calendar to register their appointments and on-call

shift schedules: if meetings or shifts are not correctly registered inside the

calendar it is not possible to properly manage reachability of phones and

diversions of calls.

4.3 Functional Requirements

Here are reported the use case describing the functional requirements of the

application. For each use case are given: actors involved, brief description,

preconditions, main flow, alternative flow and a priority measure from 1 to

3 which describes the importance of the use case in meeting the goal of the

application.

31

4.3.1 Use case 1: manage call (location based)

This is a high priority use case because it partially covers one of the most impor-

tant points of the problem statement: avoid an interruption when the recipient

of a call is inside a critical area 1.

Use Case Name Priority Description Actors
UC1 1 describes the process for

managing a call consider-
ing the location of the re-
cipient

caller, recipi-
ent

UC1 Preconditions: A new call has been started by the caller.

UC1 Main Flow:

• If the recipient is not inside a critical area the call goes through.

• If the recipient is inside a critical area (e.g surgical room) the call is blocked

and the caller is prompted to press the button number 1 to let the call go

through:

1. If button 1 is pressed within 4 seconds:

(a) The call goes through.

2. If the pressed button is different from 1:

(a) hang up.

(b) The caller receives a message containing the location of the re-

cipient.

(c) The pending call is stored inside the recipient’s profile.

3. After 4 seconds of user inactivity:

(a) hangup.

(b) The caller receives a message containing the location of the re-

cipient.

(c) The pending call is stored inside the recipient’s profile.

UC1 Alternative Flow:

• If the caller hangup before the prompt message:

1. The caller receives a message containing the location of the recipient.

2. The pending call is stored inside the recipient’s profile.

1Critical areas are places within the hospital defined ‘critical’ such as surgical theater,
conversational rooms, examination rooms.

32

4.3.2 Use case 2: manage call (availability status based)

This is another high priority use case: avoid an interruption according to the

availability status of the recipient.

Use Case Name Priority Description Actors
UC2 1 describes the process for

managing a call consider-
ing the availability status
of the recipient

caller, recipient

UC2 Preconditions: A new call has been started by the caller.

UC2 Main Flow:

• If the recipient is available the call goes through.

• If the recipient is not available the call is blocked and the caller is prompted

to press the button number 1 to let the call go through:

1. If button 1 is pressed within 4 seconds:

(a) The call goes through.

2. If the pressed button is different from 1:

(a) hang up.

(b) The caller receives a message containing the availability status

of the recipient.

(c) The pending call is stored inside the recipient’s profile.

3. After 4 seconds of user inactivity:

(a) hangup.

(b) The caller receives a message containing the availability status

of the recipient.

(c) The pending call is stored inside the recipient’s profile.

UC2 Alternative Flow:

• If the caller hangup before the prompt message:

1. The caller receives a message containing the availability status of the

recipient.

2. The pending call is stored inside the recipient’s profile.

4.3.3 Use case 3: manage call (pager mode)

The assigned priority for this use case is 1. This is because it has a great impact

on the application’s goal: it describes how to model the behaviour of a pager

inside a phone. The benefit of this functionality is that once a page has been

placed, the phone can be directly used to call back the person who put the page

33

without the need to search a phone nearby.

Use Case Name Priority Description Actors
UC3 1 describes the process for

managing the behaviour
of a phone as a pager

caller, recipient

UC3 Preconditions: A new call has been started by the caller.

UC3 Main Flow:

• If the recipient’s phone is not switched to ‘pager mode’ the call goes

through.

• If the recipient’s phone is switched to the pager mode the call is blocked

and the caller is prompted to press the button number 3 to page the

recipient:

1. If button 3 is pressed within 4 seconds:

(a) The recipient receives a message containing a page.

2. If the pressed button is different from 1:

(a) hang up.

3. After 4 seconds of inactivity:

(a) hangup.

UC3 Alternative Flow:

• If the caller hangup before the prompt message:

1. hangup.

4.3.4 Use case 4: manage call (calendar commitment)

This use case describes the process for managing an interruption according to

the user’s commitments stored inside Zimbra’s calendar. The selected priority

is 2. The rationale uderlying this choice is that the time spent by physicians in

meetings is less than the time spent inside critical areas or for visiting. The im-

pact of this feature on the application’s goal is therefore lower than the previous.

Use Case Name Priority Description Actors
UC4 2 describes the process for

managing a call consider-
ing the calendar committ-
ments of the recipient

caller, recipient

34

UC4 Preconditions: A new call has been started by the caller.

UC4 Main Flow:

• If the recipient is not involved in a meeting recorded inside Zimbra’s cal-

endar the call goes through.

• If the recipient is involved in a meeting recorded inside Zimbra’s calendar

the call is blocked and the user is prompted to press the button 1 to let

the call go through:

1. If button 1 is pressed within 4 seconds:

(a) the call goes through.

2. If the pressed button is different from 1:

(a) hang up.

(b) The caller receives a message explaining that the recipient is in

the middle of a meeting.

(c) The pending call is stored inside the recipient’s profile.

3. After 4 seconds of inactivity:

(a) hangup.

(b) The caller receives a message explaining that the recipient is in

the middle of a meeting.

(c) The pending call is stored inside the recipient’s profile.

UC4 Alternative Flow:

• If the caller hangup before the prompt message:

1. The caller receives a message explaining that the recipient is in the

middle of a meeting.

2. The pending call is stored inside the recipient’s profile.

4.3.5 Use case 5: manage call (routing a call to the on-call person)

This use case is an extension of the use case UC1. Since it is a feature higly

recommended because it reflects the on-role based communication between clin-

icians, but it is not essential for reducing interruptions, the assigned priority is 2.

35

Use Case Name Priority Description Actors
UC5 2 describes the process for

managing a call allowing
the caller to route the call
to the on-call person, if
the recipient is located in-
side a critical area

caller, recip-
ient, on-call
person

UC5 Preconditions: A new call has been started by the caller.

UC5 Main Flow:

• If the recipient is not inside a critical area the call goes through.

• If the recipient is inside a critical area (e.g surgical room) the call is blocked

and the caller is prompted to press the button 2 to route the call to the

on-call person:

1. If button 2 is pressed within 4 seconds:

(a) The call is routed to the on-call person with a current shift

stored inside Zimbra’s calendar.

2. If the pressed button is different from 2 and 1 (because if 1 the call

is forced according to the UC1):

(a) hang up.

(b) The caller receives a message containing the location of the

recipient.

(c) The pending call is stored inside the recipient’s profile.

3. After 4 seconds of user inactivity:

(a) hangup.

(b) The caller receives a message containing the location of the

recipient.

(c) The pending call is stored inside the recipient’s profile.

UC5 Alternative Flow:

• If the caller hangup before the prompt message:

1. The caller receives a message containing the location of the recipient.

2. The pending call is stored inside the recipient’s profile.

36

4.3.6 Use case 6: pending calls

This use case define the conditions under which the collected pending calls have

to be delivered to a user. Even if this is a useful feature to improve collabora-

tion between users, it doesn’t have a great impact in reducing interruptions or

improving role based communication. This is a priority 3 use case.

Use Case Name Priority Description Actors
UC6 3 describes the process for

sending pending call mes-
sages when user loca-
tion or availability status
changes

user

UC6 Preconditions: A phone changed its location or a user changed the

availability status from the device.

UC6 Main Flow:

• If the new location is not a critical area or the new status is ‘available’:

1. The user receives messages containing pending calls collected when

he was inside a critical area or not available.

37

38

5 Construction

This chapter starts describing the data flow and the call flow characterizing the

system, then describes the design of the software architecture, the classes that

make up the application and finally the implementation of the features specified

in the requirement specification.

5.1 Data flow and Call flow

The two main flows of information involving the context-aware application are

illustrated in Fig. 10: the red line describes the path followed by calls, the black

line describes the path followed by data and the coloured stations represent the

hardware components of the architecture.

Figure 10: Information flows

The data flow from the phones up to the Open Java Server is the same as that

one previously illustrated during the general description of the Ascom Unite

System (section 3.2.7): when a new message containing location or user data

is sent from a phone it is first received by the base station, then is propagated

to the IMS and then to the Open Java Server. A customized Java program

mounted on the latter that we will call ‘client’ in the rest of the discussion,

enables the final communication path towards the context-aware application. It

routes data received by the OJS from the IMS and implements specific methods

exploiting the functionalities offered by the underlying Java server that allow to

39

send messages and data back to the phones. All the communications between

the client and the application are handled through TCP-IP sockets.

The data flow between Zimbra and the context-aware application is carried out

using suitable SOAP requests sent over TCP-IP protocol. When some infor-

mation is needed from the Zimbra server, the application estabilishes a new

TCP-IP connection with it, send an XML-formatted request (the SOAP mes-

sage) and wait for the response. Once the XML-response has been received, the

XML is parsed in order to extract the information previously requested.

The call flow, highlighted with a red line in Fig. 10, is quite different compared

to the path followed by calls inside the Ascom Unite system already described

(section 3.2.7). This is because trixbox completely replaces the functionalities

of the ESS module. When a new call starts from a phone it is immediately

sniffed by trixbox as soon as it goes out from the base station, its control is left

to the context-aware application which manage the call’s behaviour by using

the FastAGI interface.

5.2 Software architecture

Fig. 11 shows the overall software architecture of the system: on the left it is

illustrated the Java client mounted on the OJS and on the right the software

components constituting the context-aware application. In the following, a de-

scription of each component will be provided.

• Java client : is an event-driven component running on the Open Java

Server which acts as a bridge between the server itself and the context-

aware application. Every time new data coming from the phones reaches

the OJS, it opens a new socket connection with the Event Listener in

order to push the information just received. It also provides functionalities

exploiting the API libraries offered by the underlying OJS (the OAJUtil

package), used to send messages and data back to the phones.

• Event listener : is a listener which manage all the incoming connections

coming from the Java client. According to the message received during

each connection it interacts with the Context Manager in order to execute

suitable operations.

• Message Service: is a component directly interfaced with the Java client.

It allows the other components of the context-aware application to send

messages and data directed to the phones.

• Store Service: it is responsible to save all the data that needs to be stored

inside the application’s database.

• Retrieve Service: the main task of this component is to retrieve informa-

tion from the Zimbra server and from the application’s database.

• Context-manager : is one of the most important part of the context-aware

application. It represents the core of the system and acts as a middleware

40

Figure 11: Software architecture

between all the other components. It communicates with the message

service to send messages to the phones, with the event listener to receive

data from the phones, with the store service to save different kind of

data, with the retrieve service to gather stored data and with AgiScript

to provide information about location and availability status of the users.

In addition, it applies policies and rules when its functionalities are called

by the other components. Policies are conditions which determine the

behaviour of the context-aware application that can be configured from

the user interface. Example of policies are enable/disable the reception of

feedback messages and enable/disable the reception of pending calls for a

specific user. Rules are variables which describe if a specific location is a

critical area or not.

• User Interface: represents the user interface of the application. It is di-

rectly interfaced with the context manager which provides to it informa-

tion to be displayed such as location and availability status of the users.

• AgiScript : this is the piece of software called by trixbox every time a new

call takes place. It implements the logic necessary to remotely manage

phone calls by using the FastAGI library. It also communicates with the

context manager in order to collect information about availability status

41

of the users, their location and (when necessary) send messages to the

phones.

Summing up, all the components composing the architecture are matched to-

gether by the context manager. It acts as intermediary between the Event

Listener and the User Interface when location or status availability received

from the former needs to be updated on the GUI and inside the application’s

database. It also acts as a middleware between AgiScript and the other compo-

nents in order to provide data retrieve and messaging services.

5.3 Class diagrams

5.3.1 Context-aware application

In the following we are going to discuss the classes composing the context-aware

application, illustrated in Fig. 12. The lines represent the relationships and the

numbers at the ends of each line represent the cardinalities of the association.

Even if the structure of the software is much more complicated than that shown

in Fig. 12, only the most important methods of each class will be discussed. The

other methods, though important, are not strictly necessary to understand how

the application works. For further consultation, the full code is reported in the

attached CD.

Run class:

This is the entry point of the program which initializes the main classes of the

application. The only method belonging to it is main(): it creates instances of

the ContextManager, GUI and EventsListener when the application starts.

EventsListener & ClientWorker classes:

These two classes implement the functionalities of the EventListener compo-

nent, illustrated in the previous section. The run() method belonging to the

EventListener class implements a socket server always listening for incoming

connection from the Java client. When a new connection is estabilished with

the socket, it creates a new thread ClientWorker in order to leave the control of

the connection. According to the information received from the client, Client-

Worker calls suitable methods from the ContextManager for executing specific

operations (e.g if the message received contains the updated location of a phone,

it calls the method newLocation()).

ContextManager class:

This is the central class of the whole application. As illustrated in Fig. 12, it

contains a number of private and public methods. statusChange() and newLoca-

tion() are public methods called by ClientWorker in order to trigger all the op-

erations needed to do when the availability status or location of a user changes.

The method checkNextPendingCall() is called when a message containing a

pending call has to be sent to a specific phone. isLocationOk() and isStatu-

sOk() are called by AgiScript in order to know if the availability status of a user

42

is ‘available’ or if the location of a user is not a critical area. These methods

return a boolean value that is true if the location (or the status) is not critical

(available), false otherwise. It is interesting to analyze how they work: first they

retreive location or availability status of a user from the retrieve service using

the private methods getLocation(), getStatus() and getZimbraCalendarStatus(),

then they apply rules in order to check if the information just gathered is ‘crit-

ical’ or not.

Figure 12: Classes of the context-aware application

For example, if the retrieved location (the ID-code) for a user X is ‘0101’, the

43

method isLocationOk() first checks if ‘0101’ is associated with a critical area

and then returns true or false according to the outcome of the check.

sendNormalMessage(), sendPageIMessage(), sendCallBackIMessage() are used

by AgiScript to send different kind of messages to the phones. The implemen-

tation of these methods is similar to the one previously described: first they

check the policy values associated with the recipient in order to estabilish if a

message can be sent or not and then they proceed (or not) with the sending of

the message by calling suitable methods from the MessagesService class.

The method getOnCallNumber() is called by AgiScript in order to discover who

is the current on-call person to whom a call must be routed when the recipient

of a call is located inside a critical area. By using the RetieveService class, this

method returns the current person responsible to receive routed calls, according

to the on-call shift schedule stored inside Zimbra’s calendar.

GUI class:

The most important methods of this class are changeLocation() and changeS-

tatus(): when called they change the icon and the text string containing the

location or availability status of a user listed inside the GUI.

AgiScript class:

This is the class called via remote connection every time a new call is sniffed

by trixbox. The service() method is its starting point and contains all the in-

structions needed to manage calls and needed to handle exceptions that can be

raised by unexpected conditions (e.g early hang up of a call).

RetrieveService class:

It contains three main methods: getPolicyValue() which searches inside the

database of the application a policy entry associated to a user and returns its

corresponding value, getInfo() is a method that retrieves both location and

status availability of a user according to the arguments passed in input and get-

PendingCalls() which returns a string containing all the pending calls associated

to a user.

MessagesService class:

It implements four methods used to give instruction to the client (through suit-

able text strings) in order to send different kind of messages directed to the

phones. Each method contains the code required to open a socket connection

and send strings like the following:

< MSG >

< TY PE > Type of message < /TY PE >

< HDR > Subject of the message < /HDR >

< BODY >body of the message< /BODY >

< DEST >recipient of the message< /DEST >

< /MSG >

44

In this way, according to the text string inside the < TY PE > field, the client

is able to determine which kind of message has to be pushed to the phones,

the subject, the body and the recipient’s number, all specified inside the tags

< HDR >, < BODY > and < DEST >.

The method sendMessage() is used to send a normal message, sendCallBackIMes-

sage() to send an interactive message containing multiple option responses, send-

PageIMessage() to send a page and finally sendChgProfileMsg() to change the

profile mode on a phone.

StoreService class:

The are two methods belonging to this class: storePolicy() and updateInfo().

storePolicy() is called to store inside the application’s database the policies

values changed from the GUI of the application and updateInfo() is called to

update location and availability status of the users.

5.3.2 Open Java Server: client

In this section will be described the classes composing the client mounted on

the OJS, illustrated in Fig. 13.

Figure 13: Client classes

45

Client class:

It creates all the instances of the classes needed by the client application. In

particular, the main() method inizializes the listeners used to receive data com-

ing from the phones and from the context-aware application, which are: My-

JatXMLHandler, MyJatIMRespHandler, MyJatUserDataHandler and MsgLis-

tener.

MsgListener class:

It implements inside the run() method a server socket always listening for in-

coming connections coming from the MessagesService belonging to the context-

aware application. According to the content of the text string received during

each connection (described in the previous section), it calls suitable methods

from the MessageDelivery in order to deliver messages matching the type spec-

ified inside the field < TY PE >.

MessageDelivery class:

By exploiting the API library provided by the OJS (OAJUtil) it implements

specific methods for sending messages to the phones. deliverPageIM() is used

to send interactive messages for notifying a page, deliverInfoMsg() to send nor-

mal messages containing feedback about unreachable recipients, deliverIMcall-

BackMsg() to send interactive messages containing pending calls with multiple

option responses and deliverChangeProfMsg() to send XML messages for chang-

ing the profile mode on a phone.

MyJatXMLHandler class:

The only method belonging to this class is onXML(), called every time the new

location of a phone is received by the OJS. The location is included inside an

XML string passed to the argument of this method. Each time onXML() starts

its execution, it opens a new connection with the EventListener in order to send

the piece of XML just received.

MyJatIMRespHandler class:

Is a listener which receives the responses sent when a user select an option from

an Interactive Message. The customized text strings associated with each option

can be set during the creation of the message, by using suitable methods from

the API library provided by the OJS server. All the responses are passed to

the argument of the method onIMResponse() which implements a client socket

used to subsequently route response data to the EventListener.

MyJatUserDataHandler class:

This is another listener which receives user data sent by a phone when a user

press one of the three soft key present on the device. When received by the

OJS, the text string associated with the soft key is passed to the argument of

the method onUserData(). Even in this case, when this method is called, it

46

opens a new connection with the EventListener in order to route the received

information.

5.4 Implementation

This section describes the implementation of the use cases specified in the re-

quirements specification. It starts by illustrating which are the data structures

used by the context-aware application and how they are organized.

5.4.1 Data Structures

All the information are stored inside two XML files: context data.xml and pol-

icy data.xml. The first contains information about location, status availability

and pending calls for each user enrolled in the system. Its structure is shown in

the snippet below:

1 : <?xml v e r s i on =”1.0” encoding=”UTF−8” standa lone=”no”?>
2 : <context data>
3 : <user ID=”11”>
4 : <Status data>v i s i t i n g </Status data>
5 : <Location Data >0101</Location Data>
6 : <t oCa l lL i s t >10−15−14</ toCa l lL i s t>
7 : </user>

8 : <user ID=”15”>
9 : <Status data>a v a i l a b l e </Status data>

10 : <Location Data >0202</Location Data>
11 : <t oCa l lL i s t >14−10−11</ toCa l lL i s t>
12 : </user>
13 : </context data>

The root node, labelled < context data > contains a number of user nodes

uniquely indentified by an ID attribute. For each user node availability status

(line 4), the ID-code of the last location device sensed by the user’s phone

(line 5) and pending calls (line 6) are listed. This file is used both by the

StoreService and by the RetrieveService to store/retrieve data when requested

by the ContextManager.

The second file, illustrated in the following snippet, contains policy data. Its

structure is slightly different from the previous one:

1 : <?xml v e r s i on =”1.0” encoding=”UTF−8” standa lone=”no”?>
2 : <po l i cy data>
3 : <user ID=”11”>
4 : <recContextMsg>1</recContextMsg><recPendCal ls>0</recPendCal ls>
5 : <t rackHis tory >1</trackHis tory>
6 : </user>

7 : <user ID=”15”>
8 : <recContextMsg>0</recContextMsg><recPendCal ls>1</recPendCal ls>
9 : <t rackHis tory >1</trackHis tory>

47

10 : </user>
11 : </po l i cy data>

The root node is named < policy data >. Each user node belonging to it con-

tains three childs describing the policy values that can be configured within the

system. The < recContextMsg > node stands for ‘receive context messages’, its

value is used to enable or disable the reception of feedback messages containing

location and status availability of an unreachable recipient. < recPendCalls >

stands for ‘receive pending call messages’, its value is used to allow or deny

the reception of pending call messages on a phone when a user switches from

‘unavailable’ to ‘available’ status or when a user moves from a critical area to a

non critical area. The last node, labelled < trackHistory >, is used to enable

or disable the tracking of historical data.

Each policy can take 2 value: 0 or 1. 1 means that the corresponding pol-

icy is enabled, 0 is disabled. If we consider the snipped provided above, the

user with ID number 11 has the tracking of historical data enabled, is allowed

to receive context messages and is not allowed to receive pending calls messages.

Before describing the single implementation of each use case, it is worth to

look at how information about location and availability status of a user are col-

lected inside the context-aware application and how they affect the layout on

the phone’s display.

5.4.2 Change of location

Fig. 14 illustrates the scenario where a phone changes its position: there are two

areas containing location sensors placed on the left/right bottom corner. When

the phone inside the Area1 moves to Area2 it detects the ID-code of the new

nearest sensor and sends the value 0202 to the base station. Then, according

to the data flow previously described, the station propagates this information

to the OJS which in turn passes the ID-code to a suitable method of the Java

client application.

Figure 14: Change Location scenario

Every time a new ID-code reaches the client, the information is sent to the

context-aware application and stored inside the context data.xml file. The classes

48

needed to perform this task are five, illustrated inside the interaction diagram

in Fig. 15: as soon as a new location data reaches the client, the first method

being called is onXML(). The argument locationData passed to this method is

an XML string containing the updated ID-code sensed by a device. This piece

of XML is subsequently sent through a socket conneciton to the EventListener

which parses it in order to extract the updated location of the device. Then,

EventListener calls newLocation() from the ContextManager which in turn up-

dates the information inside the application’s database through updateInfo(),

updates the user interface by calling changeLocation() and then updates the

phone’s display by calling sendChgProfileMsg() (only if the new location is a

critical area).

Figure 15: Change Location interaction diagram

Since the application is able to change the display configuration according to

the location of the devices, the users are always aware of being inside a critical

area (e.g Operating Room), and therefore they are also aware about their un-

Figure 16: ‘Standard’ and ‘Critical area’ display configuration.

49

reachability status. Fig. 16 illustrates the display layout when a phone is inside

a safe area on the left and the display layout when a phone is inside a critical

area on the right.

5.4.3 Change of availability status

In the standard display configuration, the leftmost soft key button labelled

‘Visit’ can be used to change the availability status of the user carrying the

device. By pressing it, the string ‘visiting’ is sent to the base station and then

routed to the client on the OJS server. The case scenario is illustrated in the

picture below:

Figure 17: Change Status scenario

The classes needed to save this string inside the context-aware application are

similar to those previously described for storing the location information, except

for MyJatUserDataHandler that is the one used by the client to manage data

coming from the soft keys. The interaction diagram for this case is shown in

Fig. 18: when the ‘Visit’ button is pressed from a phone, the string ‘visiting’ is

passed to the argument of the method onUserData(). onUserData() opens a new

socket connection with the EventsListener and pushes data to it. When the in-

formaiton is received, EventListener calls the method statusChange() from the

ContextManager which saves the new status information inside the application’s

database by calling updateInfo(), updates the user interface through changeS-

tatus() and finally updates the display layout by calling sendChgProfileMsg()

(this step is not shown in the interaction diagram).

Therefore, even in this case, when the availability status of a user changes

the phone is able to change its display configuration providing a visual feedback

about the new reachability condition. The display layout during ‘visiting’ status

50

is shown on the right side of the Fig. 17. As it can be seen, in this configuration

the leftmost soft key (labelled ‘Avail’) can be used to switch back to ‘available’

status and the rightmost to list pending calls.

When the soft key labelled ‘Avail’ is pressed, the string available associated

to this button is stored inside the application’s database in the same way as

described above.

Figure 18: Change status interaction diagram

5.4.4 Pager mode

The pager mode, which allows a phone to behave as a pager, can be activated

by pressing the central soft key from the standard display configuration. Fig. 19

Figure 19: Change to Pager mode

51

illustrates the standard display configuration on the left and the Pager Mode

layout on the right. When the display is configured in the ‘Pager Mode’, the

leftmost button can be used to switch back to the normal mode. Since the classes

needed to store the string ‘pagerMode’ sent when a user presses the central soft

key are the same as those previously described for storing the ‘visiting’ status,

the interaction diagram for this case will not be illustrated.

5.4.5 Use case 1

The aim of this use case is to manage a call interruption considering the recip-

ient’s location. The scenario is illustrated in Fig. 20: when the user ‘Gunnar’

(with ID 10) tries to call ‘Terje’ (with ID 11) located inside a critical area, the

call is blocked (Step 1), the pending call is saved inside the recipient’s profile

(Step 2) and a message containing the location of the recipient is sent to the

caller’s phone (Step 3).

Figure 20: Use Case 1 scenario

Fig. 21 shows the interaction diagram for this use case. When a new call starts

from the caller’s phone, its control is left by trixbox to the AgiScript. By

using the method isLocationOk(), AgiScript asks to the ContextManager if

the current recipient’s location is inside a critical area or not. In order to

give a response, isLocationOk() first extracts the current recipient’s location

through the method getInfo() from the RetrieveService and then checks if the

returned ID-code corresponds to a critical area by looking inside a table contain-

ing < ID − code, is critical/not critical > pairs. If locationResponse is false,

the call is stopped and a vocal message is sent to the caller for asking if he/she

52

wants to force the call. After the message, if the caller press the digit number 1

the script uses the call() method to force the call, otherwise (the [else] block in

Figure 21: Interaction diagram use case 1

the interaction diagram) executes storePendingCall() to store the pending call

inside the recipient’s profile and sendNormalMessage() to send a feedback mes-

sage containing the current recipient’s position to the caller. In order to deliver

this message, ContextManager uses sendMessage() from the MessagesService.

This method opens a socket connection with the MsgListener on the client and

pushes to it a string similar to the following:

<MSG>
<TYPE> NO <TYPE>
<HDR> Context−i n fo rmat ion <HDR>
<BODY>Terje i s in the opera t ing room.<BODY>

53

<DEST >10<DEST>
<MSG>

By parsing it, MsgListener understand that a ‘Normal Message’ has to be sent

to the caller’s phone (because inside the < TY PE > tag, NO stands for Normal

Message), knows the header of the message (specified by the < HDR > tag),

the body containing the current location (< BODY > tag) and the destination

number (< DEST > tag). According to all these information, it calls the

method deliverInfoMessage() from the MessageDelivery class to finally deliver

the ‘Normal Message‘ to the caller’s phone containing the current location of the

recipient (the last step is not shown in the interaction diagram for space reasons).

If the recipient’s location is not a critical area, all the previous instructions are

not executed and the caller gets immediately in contact with the recipient.

5.4.6 Use case 2

The purpose of this use case is to manage a call interruption considering the

availability status of the recipient. The scenario is shown in Fig. 22: on the left

the user ‘Terje’ (with ID 11) tries to call ‘Gunnar’ (with ID 10), but the call is

stopped because the latter is visiting a patient 2 (Step 1). The system stores

the number of the caller inside the recipient’s profile (Step 2) and then send a

feedback message to the caller containing the current availability status of the

called person (Step 3).

Figure 22: Use case 2 scenario

2The ‘visiting’ status intended here is just an example and can be used in any other
circumstance where doctors do not want to be disturbed.

54

The interaction diagram for this use case is shown in Fig. 23. Basically, the

classes involved are the same as those described for the previous case. When a

new call starts, AgiScript takes its control and asks to the ContextManager if the

recipient’s status is ‘available’ through the method isStatusOk(). isStatusOk()

Figure 23: Interaction diagram use case 2

extracts the current recipient’s status by calling getInfo() from the RetrieveSer-

vice and then returns true or false according to the information just retrieved.

If statusResponse is false means that the recipient is ‘visiting’ and the call is

blocked. A vocal message asking if the call has to be forced is sent to the caller

through the method message(). If the caller presses the digit 1, the method call()

is executed and the caller gets in contact with the recipient’s phone, otherwise

the pending call is stored inside the recipient’s profile and a normal message

containing the current availability status is sent to the caller. Even in this case,

55

in order to deliver the message, ContextManager calls the method sendMes-

sage() (from the MessagesService) which in turn opens a new connection with

the MsgListener on the client to send a string similar to the one previously

described for the use case 1:

<MSG>
<TYPE> NO <TYPE>
<HDR> Context−i n fo rmat ion <HDR>
<BODY>Gunnar i s v i s i t i n g .<BODY>
<DEST >11<DEST>
<MSG>

By parsing it, the MsgListener extracts the type of message, header, body

and the destination number. Then, it calls the method deliverInfoMessage()

from the MessageDelivery class to finally send a Normal Message containing

the current recipient’s availability status to the caller (this step is not shown in

the interaction diagram for space reasons).

5.4.7 Use case 3

The scenario for this use case is illustrated in Fig. 24. On the left the user ‘Terje’

tries to call ‘Gunnar’ who has the phone switched to pager mode.

Figure 24: Use case 3 scenario

56

Since the pager mode does not allow the reception of incoming calls, the call is

blocked (Step 1) and the caller decides to press the digit 3 in order to page the

recipient (Step 2). A message which notifies a page from ‘Terje’ is immediately

sent to the Gunnar’s phone (Step 3).

In this use case, the type of messages used to notify a page are quite different

from the previous ones used to send feedback about location and availability

status of the recipient. With these messages (called Interactive Messages) it is

possible to personalize the functionality of the three soft keys, when they are

displayed on the screen. This opportunity has been exploited by the application

in order to program the leftmost soft key in a way that it can be used to call

back the person who put the page, directly from the page message. In Fig. 24,

the Step 4 highlights the soft key labelled ‘Call’ which can be used to call back

the user who put the page in the example: ‘Terje’. An interesting advantage

gained by using Interactive Messages is that even if the recipient does not want

to immediately call back, the received message can be fetched in a second time

from the phone’s memory, in order to call back who put the page only when it

is most convenient.

Figure 25: Interaction diagram use case 3

57

The interaction diagram for this use case is shown in Fig. 25. When a new call

starts, AgiScript gathers the status value of the recipient’s phone by calling

getStatusValue() from the ContextManager. If the returned statusValue equals

the string ‘pagerMode’, then the call is stopped and a vocal message is sent to

the caller for asking if he/she wants to send a page message to the recipient. If

the user press the digit number 3, AgiScript sends a page message by calling

the method sendPageIMessage() from the ContextManager. This method routes

the request to the method sendPageIMessage() from the MessagesService which

opens a new socket connection with the MsgListener on the client in order to

push the following:

<MSG>
<TYPE> PageIM <TYPE>
<HDR> New page from : Ter je <HDR>
<SENDER> 11 </SENDER>
<DEST> 10 <DEST>
<MSG>

By parsing it, MsgListener understand that an interactive page message (speci-

fied inside the < TY PE > tag through the PageIM string) has to be sent to the

destination (< DEST > tag) and that the call back number to be configured in

the leftmost soft key needed to respond to the page is the one specified inside the

tag < SENDER >. Since this time the type is PageIM, MsgListener calls the

method deliverPageIM() from the MessageDelivery class which finally delivers

the interactive message to the recipient’s phone (the last step is not reported

inside the interaction diagram for space reasons).

5.4.8 Use case 4

The purpose of this use case is to manage an interruption considering user’s com-

mitments stored inside Zimbra calendar. The scenario is illustrated in Fig. 26.

When the user ‘Gunnar’ tries to call ‘Terje’ who is in the middle of a meeting

recorded inside the calendar, the call is blocked (Step 1), the pending call is

stored inside the application’s database (Step 2) and a message explaining that

the recipient is involved in a meeting is sent to the caller (Step 3).

Since the interaction diagram for this use case is similar to that described for

the use case 2, it is not reported. However it is interesting to look at how the

application determines if the recipient of a call is involved in a meeting.

As always, when a new call starts its control is taken by AgiScript which im-

mediately checks the recipient’s status throught the method isStatusOk(). This

method, after performing the instructions already explained in the use case 2,

calls getAppointments() from the RetrieveService. getAppointments() sends a

SOAP request to Zimbra in order to extract all the appointments recorded inside

the recipient’s account and then sends them back to isStatusOk(). An example

of SOAP response is reported in the following XML snippet:

<appt uid =”99132b3” name=”Meeting” dur=”11700000”>
<or a=”terje@mydomain . com” u r l=”terje@mydomain . com” />

58

Figure 26: Use case 4 scenario

< i n s t r idZ =”20110301T103000Z” />

<appt uid =”99132b3” name=”Meeting” dur=”11700000”>
<or a=”terje@mydomain . com” u r l=”terje@mydomain . com” />
< i n s t r idZ =”20110301T103000Z” />

Each meeting is described by an appt node containing a number of information

such as name, durate in milliseconds (dur attribute), user name of the creator,

date and time of start (identified by the ridZ attribute belonging to the inst

node).

All the meetings just returned are parsed in order to extract date, start time

and durate of each record. For each record the durate is added to the start time

and a check against the current system time is carried out in order to see if

exists an appointment currently in progress. According to the outcome of this

comparison, isStatusOk() returns true or false to AgiScript : if false, the call

is blocked and a vocal message is sent to the caller in order to ask if he/she

wants to force the call. If the user press the digit number 1 the script executes

the call() method to let the caller get in contact with the recipient, otherwise

a feedback message explaining that the recipient is in a meeting is sent to the

caller by using the procedure already explained for the use case 1 and 2.

59

Unfortunately, the implementation of this use case does not support a mech-

anism able to change the display configuration of a phone when a meeting

recorded inside the calendar starts. This is because Zimbra does not provide a

functionality able to notify external applications when events inside the calendar

occur. The result is that even if during a meeting the display configuration looks

like in the standard mode, the application block all the incoming calls directed

to the device.

5.4.9 Use case 5

This feature allows a user who tries to contact another user located inside a

critical area, to route the call to the on-call person on duty chosen according to

the shift schedule stored inside Zimbra calendar. The case scenario is illustrated

in Fig. 27: ‘Gunnar’ tries to call ‘Terje’ but the call is blocked because the re-

cipient is located inside a critical area (Step 1). The caller decides to press the

digit number 2 in order to route the call to the on-call person (Step 2) and the

call is subsequently routed to ‘Stefano’ who is currently on duty according to

the shift schedule stored inside the calendar (Step 3).

Figure 27: Use case 5 scenario

The interaction diagram for this use case is reported in Fig. 28. The first part

of the implementation is the same as that described for the use case 1: when

60

a new call starts, AgiScript takes its control and checks the recipient’s loca-

tion through the method isLocationOk(). If this method returns false the call

Figure 28: Interaction diagram use case 5

is stopped because the recipient is currently located inside a critical area and

a vocal message asking to the caller if he/she wants to route the call to the

on-call person is sent by using message(). If the caller press the digit num-

ber 2, AgiScript executes the method getOnCallNumber() which extracts from

Zimbra server the on-call shift schedule corresponding to the critical area, by

calling getAppointments(roleManager). The argument roleManager passed to

this method means that the appointments (representing working shifts in this

case) must be retrieved from a special account where the on-call shift schedule

must be recorded. After the response, extractOnCallPerson() sums for each re-

turned appointment the start time with the durate and perform a check against

61

the system time and date in order to find the current on-call person on duty.

The corresponding onCallNumber of the discovered on-call person is returned

to AgiScript which in turn executes the call() method with argument onCall-

Number to finally put in contact the caller with the on-call doctor.

In order to get this feature working each meeting has to be named with the

string OnCall ‘Name of the on-call person’. In this way, the system is able

to parse the title of an appointments (contained inside the tag labelled name)

for extracting the name of the person on duty. For example, suppose that the

meetings returned after a request made by getAppointments(roleManager) are

the following:

<appt uid =”99132b3” name=”OnCall Ter je ” dur=”1200000”>
<or a=”roleManager@mydomain . com” u r l=”roleManager@mydomain . com” />
< i n s t r idZ =”20110301T103000Z” />

<appt uid =”92172a3” name=”OnCall Ste fano ” dur=”13700000”>
<or a=”roleManager@mydomain . com” u r l=”roleManager@mydomain . com” />
< i n s t r idZ =”20110301T103000Z” />

and suppose that the second appointment is taking place during a call. Then the

name of the on-call person extracted by extractOnCallPerson() will be ‘Stefano’

because the substring after ‘OnCall’ is ‘Stefano’. After identifying the on-call

person, the recipient’s number is determined by looking inside a table containing

< userName, phoneNumber > pairs.

5.4.10 Use case 6

This functionality allows users to receive messages listing pending calls when

they change the status from ‘visiting’ to ‘available’ or when they move the

phone from a critical area to a normal area. The case scenario for the former

is illustrated in Fig. 29. When the soft key labelled ‘Avail’ is pressed from

the ‘Visiting’ display configuration (Step 1), the phone changes its layout and

it switches to the normal ‘Phone Mode’ configuration (Step 2). After a few

seconds, the phone starts receiving messages containing pending calls collected

during the unavailability status (Step 3). As it can be seen from the picture,

these messages contain three different options:

• Call: by choosing this option the user can call back the person who tried

to call during the ‘Visiting’ status.

• Send availability message: with this option a message explaining that the

recipient of the call previously made is now available, is sent to the caller.

• Erase the message: the pending call message is deleted from the phone’s

memory.

The interaction diagram for this use case is illustrated in Fig. 30: when a user

changes its status from a phone, the new status is received by the method

onUserData(). This information is sent through a socket connection to the

EventsListener which calls statusChange(newStatus) from the ContextManager.

62

Figure 29: Use case 6 scenario

If the argument newStatus equals the string ‘available’, getPendingCalls() is

called in order to extract from the application’s database the calls collected

during the ‘visiting ’ status. For each pending call, an Interactive Message is

sent to the user’s device through the method sendCallBackIMessage(). This

method send to the MsgListener a string similar to the following:

<MSG>
<TYPE> IM <TYPE>
<HDR> Terje c a l l e d you : <HDR>
<SENDER> 11 </SENDER>
<DEST> 10 <DEST>
<MSG>

By interpreting it, MsgListener understand that an Interactive Message with

subject specified inside the < HDR > tag has to be sent to the recipient’s

number (< DEST > tag) and that the number to be associated with the

‘Call ’ option selectable from the message is the one specified inside the field

< SENDER >. According to these information, MsgListener executes deliv-

erIMcallBackMsg() from the MessageDelivery class in order to finally send the

interactive message to the phone (the last steps are not shown in the interaction

diagram).

It should be pointed out that, as it can be seen from the picture in Fig. 29 (Step

1), the display configuration during the ‘Visiting’ status allows always users to

list the pending calls collected up to now, by pressing the rightmost button la-

63

Figure 30: Interaction diagram use case 6

belled ‘List’. Thanks to this possibility it is also possible to check pending calls

even while keeping the ‘Visiting’ status.

The reception of pending calls when a user moves from a critical area to a

non critical area has been implemented in the same way as explained above.

The only difference is that getPendingCalls() and sendCallBackIMessage() are

called from the method newLocation() every time a phone sends a new location

not belonging to a critical area.

It remains to discuss how users can check pending calls when they are in the

middle of a meeting. As previously explained, it was not possible to find a

clean solution able to change the display configuration when a meeting starts,

because Zimbra does not provide a mechanism able to notify the beginning of

calendar events to external application. Therefore has been decided to dedicate

the rightmost soft key of the standard display configuration for this task. This

button, labelled ‘List’, can be used anytime to list the pending calls collected

up to now during a meeting (Fig. 29, Step 2).

5.4.11 User Interface

The purpose of the developed user interface is to provide a tool from where

it is possible to look at the reachability status of all the users enrolled in the

system. A screenshot of the GUI is shown in Fig. 31. Each user has a dedicated

panel containing information about status availability and location. As it can

be seen from the picture, the first panel on the top shows information about

‘Terje’ who is currently inside the operating room. Since this is a critical area,

the orange icon on the left side of the text label highlight that his phone is

64

Figure 31: User Interface

currently not reachable. The second panel shows information about ‘Stefano’

who is performing a visit and therefore he is unreachable too. The third shows

information about ‘Gunnar’ who has the device switched to pager mode. The

last panel in the bottom of the picture contains three checkboxes from where it

is possible to enable/disable the reception of pending calls, enable/disable the

reception of feedback messages and enable/disable the tracking of historical data

(for space reasons only the checkboxes for the user ‘Gunnar’ are illustrated).

Every time a phone’s location changes or a user switches the status from the

phone, the application immediately refresh the user interface providing always

an updated overview of all the users registered in the system.

Unfortunately, for the reason mentioned in the previous section, it is not possible

to see if a user is currently involved in a meeting directly from the user interface.

Therefore, the GUI does not reflect all the possible unavailability status where

users can be involved.

65

5.4.12 Historical data

The application provides the possibility to track historical data of all the users

enrolled in the system. The information are stored inside a specific file named

‘history data.xml ’. Its structure is shown in the snippet below:

<?xml v e r s i o n =”1.0” encoding=”UTF−8” standa lone=”no” ?>
<h i s to ry data>

<user ID=”11”>
<Locat ion data>

<loc>
<date>2011−04−27 16:05:08</ date>
<ID dev>0202</ID dev>

</loc>
<loc>

<date>2011−04−27 16:07:12</ date>
<ID dev>0101</ID dev>

</loc>
</Locat ion data>

<Status data>
<s tatus>

<date>2011−04−27 16:08:30</ date>
<s t a t u s i n f o >v i s i t i n g </s t a t u s i n f o >

</status>
<s tatus>

<date>2011−04−27 16:08:52</ date>
<s t a t u s i n f o >a v a i l a b l e </s t a t u s i n f o >

</status>
<s tatus>

<date>2011−04−27 16:09:56</ date>
<s t a t u s i n f o >pagerMode</s t a t u s i n f o >

</status>
</Status data>

</user>

</h i s to ry data>

It is composed by a root node called < history data > containing a number of

childs equals to the number of users. In the snippet provided above are listed

the historical information for the user with ID 11. This user node contains two

childs: the first, labelled < Location data >, lists a number of ID-code collected

by the system every time the user’s device moved from one area to another. The

second, labelled < Status data >, contains the history of availability statuses

collected when the user switched from one status to another. < Location data >

contains a number of < loc > childs listing time, date (< date > tag) and the

ID-code of each location device sensed by the user’s phone (< ID dev > tag).

The structure of < Status data > node is similar to the previous one: each

new status sent by a phone is stored inside a < status > node containing the

66

date, reception time (< date > node) and the text string describing the status,

received by the application (< status info > tag).

This file could be used in the future to discover patterns and make statistics in

order to answer questions such as ‘how long a user spent time inside a particular

area’ or ‘how long a user is switched to visiting mode during a day’.

Since historical data is an information that not everyone is willing to provide,

users can always switch off their tracking from the user interface, as described

in the previous subsection.

5.4.13 Elegant code

In this section we are going to discuss some pieces of developed code particulary

interesting to analyze.

First we will take a look at how communications between the client and the

EventListener are managed. The snippet provided below shows the implemen-

tation of the method run(), belonging to the EventListener. The purpose of this

method is to accept new incoming connections coming from the client and leave

their management to the ClientWorker. These connections take place every

time location or availability status are sent by the OJS to the main application.

1 : pub l i c c l a s s EventsL i s t ener extends Thread{

2 : pub l i c void run (){
3 : t ry {
4 : s e r v e r = new ServerSocket (1 0 2 4) ;
5 : } catch (IOException e) {
6 : System . e x i t (−1);
7 : }

8 : // wait f o r new connect ions
9 : whi l e (t rue){

10 : ClientWorker c l i e n t ;
11 : t ry {
12 : c l i e n t = new ClientWorker (s e r v e r . accept () , conManager) ;
13 : Thread t = new Thread (c l i e n t) ;
14 : t . s t a r t () ;
15 : } catch (IOException e){
16 : // Handler f o r the except ion
17 : }

18 : }
19 : }
20 : }

The instruction on line 4 creates a new ServerSocket listening on port 1024.

The main cycle (line 9) loop continuously for waiting new connections. When

67

the client connects to the socket, the connection is accepted (line 12) and is

passed to the argument of a new ClientWorker ’s instance. The instruction on

line 13 creates a new thread of the instance just created which is then started

on line 14. From now on, this thread has the the full control over the connection

and completely takes care of the communication management with the client.

Once left the connection to the worker, the main cycle is ready to receive a new

connection without waiting the end of communication between the client and

the ClientWorker. Thanks to this solution, EventListener is capable to accept

a greater number of connections in a short period of time, improving the speed

of communication required to manage information sent by the client.

The second piece of code we are going to look belongs to the MsgListener class,

part of the client application. This code interprets the instructions sent from

the MessagesService when different kind of messages needs to be sent by the

context-aware application to the phones. As illustrated during the discussion

about the implementation of the use cases, according to the message to be sent,

the methods belonging to the MessagesService send strings formatted in this

way:

<MSG>
<TYPE> PageIM | NO | IM <TYPE>
<HDR> Subject o f the message <HDR>
<BODY> Body o f the message <BODY>
<SENDER> sender number <SENDER>
<DEST> d e s t i n a t i o n number <DEST>
<MSG>

Where the tag < TY PE > contains the type of message to be sent (page

message, normal message and interactive message), < HDR > the subject, <

BODY > the body, < SENDER > the number of the sender and < DEST >

the destination number. The snippet below illustrates how the MsgListener in-

terprets these strings:

1 : c l a s s MsgListener extends Thread{

2 : pub l i c void run (){
3 : s e rve rSocke t = new ServerSocket (12 666) ;

4 : // accept new connect ions
5 : c l i e n t S o c k e t = se rve rSocke t . accept () ;
6 : in = new BufferedReader (. . .) ;
7 : i f (in . readLine () . s tartsWith (”<MSG>”)){
8 : do{
9 : r e c e i v e = in . readLine () ;

10 : //Type o f message : I n t e r a c t i v e or Normal
11 : i f (r e c e i v e . s tartsWith (”<TYPE>”))
12 : msgType = par s eS t r i ng (r e c e i v e , 6) ;

68

13 : i f (r e c e i v e . s tartsWith (”<HDR>”))
14 : s ub j e c t = par s eS t r i ng (r e c e i v e , 5) ;

15 : i f (r e c e i v e . s tartsWith (”<BODY>”))
16 : body = par s eS t r i ng (r e c e i v e , 6) ;

17 : i f (r e c e i v e . s tartsWith (”<DEST>”))
18 : destAdd = par s eS t r i ng (r e c e i v e , 6) ;

19 : i f (r e c e i v e . s tartsWith (”<SENDER>”))
20 : IDsender = par s eS t r i ng (r e c e i v e , 8) ;

21 : }whi le (! r e c e i v e . s tartsWith (”</MSG>”)) ;

22 : i f (msgType . equa l s (”IM”))
23 : MessageDel ivery . de l iverIMcal lBackMsg (subjec t , body , . . .) ;

24 : i f (msgType . equa l s (”NO”))
25 : MessageDel ivery . de l i ve r In foMsg (subjec t , body , destAdd) ;

26 : i f (msgType . equa l s (”PageIM ”))
27 : MessageDel ivery . del iverPageIM (subject , body , destAdd , IDsender) ;
28 : / /

The method run() implements a socket server listening on port 12666 (line 3).

Every time the MessagesService opens a new connection with the socket, the

connection is accepted on the line 5. The instruction on line 7 checks if the first

piece of string received is a request of message and if this is the case, means that

the MessagesService wants to send a new message to the phones. In this case

the string is parsed starting from the < TY PE > field (line 11) and then the

same is done for the header (line 13), the body (line 15), the destination (line

17) and the sender number (line 19). Every time a new field is parsed its value is

stored inside a variable. The parsing is carried out by the method parseString()

which extracts the text string between the beginning and the end of a tag. For

example, if the string passed to this method is < DEST > 10 < /DEST > the

number 10 will be extracted.

After having extracted all the field’s values a number of checks against the vari-

able msgType are performed. It is first compared with the string ‘IM’: if it

is equal then the method deliverIMcallBackMsg() from the MessageDelivery is

called, otherwise a check with the string ‘NO’ is performed. If the two strings

are equal then deliverInfoMsg() is called, otherwise the comparison continues.

Every time a method from the MessageDelivery is called, all the variables re-

quired to send a message such as subject, body, destination address and sender

ID are passed as well.

69

70

6 Tests

After the development, the application has been tested by six medical doctors.

The tests were structured by simulating typical scenarios where the functionali-

ties of the system could be involved. Before each test was explained the purpose

of the application, how to interact with the devices and the user interface. Af-

ter each test was asked testers what they thought about the feature just tried

without guiding too much their evaluation. With this approach we hope to have

obtained sincere consideration and useful suggestions. The scenarios (grouped

by use case) proposed during the test sessions are reported below:

Use Case 1 & 5 (manage a call considering location): number of users 3.

Before the following scenarios was explained that one of the two location devices

placed in one corner of the test room represented our hypothetical safe area and

the second, placed in the opposite corner, represented our hypothetical operat-

ing room.

• Scenario 1 : all the users are outside the critical area. User 1 tries to call

the user 2 (the aim of this scenario was to help testers to familiarize with

the equipment).

• Scenario 2 : user 2 moves inside the critical area and user 3 is on-call (with

a shift recorded inside Zimbra calendar). User 1 calls the user 2. Iterate

the call for each possible alternative that can be chosen after the vocal

message: digit 1 to force the call, digit 2 to route the call to the on-call

person and hang up.

• Scenario 3 : user 2 moves back to the safe area (in order to show how the

phone receives pending calls messages).

Use Case 2 (manage a call considering availability status): number of users 2.

• Scenario 1 : user 1 switches to ‘visiting’ status. User 2 tries to call user 1.

Iterate the call for each possible alternative that can be chosen after the

vocal message: digit 1 to force the call and hang up.

• Scenario 2 : user 1 switches back to ‘available’ status (in order to show

how the phone receives pending calls).

Use Case 3 (pager mode): number of users 2.

• Scenario1 : user 1 switches to pager mode. User 2 calls user 1. Ask user 2

to page the recipient (by pressing the number 3 after the vocal message).

Use Case 4 (manage a call considering meetings): number of users 2.

• Scenario 1 : user 1 calls user 2 currently involved in a meeting scheduled

inside Zimbra’s calendar. Iterate the call for each possible alternative that

can be chosen after the vocal message (considering also the possibility of

hang up).

71

The tests were not performed by strictly following the order described above

because since sometimes testers suggested features already implemented in the

application, we chose to anticipate some scenario in order to immediately il-

lustrate them the concerned feature. In the following, the feedback gathered

during this phase are discussed. For each new proposed functionality a brief

explanation of why it is needed in hospitals is given.

During the tests of the scenarios belonging to the use case 1, a number of

new features have been proposed. The first came out when a tester was trying

to force a call to a user located inside the operating room. He explained that

when doctors are in this room they often wear sterilized clothes and would be

particularly useful to allow them to hear the caller through a speaker on the

device, automatically turned on after some seconds from the beginning of the

forced call. In this way doctors can use the phone without necessarily touching

the device and talk without stopping their activity. Currently, when doctors

wear sterile suit, other people have to pick up the phone for them. These per-

sons are typically nurses, present in the operating room specifically for doing

this task.

Another suggestion strictly related to the previous one, is aimed at avoiding the

necessity to touch the phones when a new message is received on the phone.

The solution proposed by a tester is a software running on the phone able to

read messages as soon as they are received on the device. By hearing the mes-

sages’ content, doctors who are sterile inside the operating room can evaluate

their importance and act according to the information received. For example

they could decide to immediately interrupt their current activity in order to call

back or delay the task when it is more convenient, if a message is not important.

With the current implementation of the system, added a tester, the forced calls

could be easily ignored: the problem is that some of them could be emergencies

and therefore must be answered. In order to cope these situations, the tester

suggested that could be particularly useful a feature which enables the caller

to send emergency messages ringing until when the recipient reacts. When re-

ceived, these messages should also provide a couple of options which can be used

to reply back a short text string such as yes/not, allowing the caller to know if

the emergency just sent can be handled or not by the recipient.

It also turned out that the feature which allows to route the calls to the on-

call person is not complete. In fact, sometimes there could be three different

persons on-call for the same area: the primary doctor (the junior doctor), the

intermediate doctor and the senior consultant. The suggestion proposed by a

tester is the following: when a person located inside a critical area is called,

the system should provide the caller with the possibility to choose one of these

three persons from the numeric buttons on the device, for instance:

• digit 2: junior doctor

• digit 3: intermediate doctor

72

• digit 4: senior consultant

Moreover, after the vocal message explaining that the recipient is not available,

could also be useful to hear the name of the on-call doctor associated to each

numeric button. For example: ‘press digit 2 to contact Dr. Hansen, digit 3

to contact Dr. Gunnar or digit 4 to contact Dr. Fredrik ’. The necessity of

this feature is motivated by the fact that the person to whom a call could be

routed depends on the problem to be solved. In order to highlight this fact,

the tester said: ‘If the problem concerns a patient in intensive care unit, I am

not interested to the first person on-call and I need to move up the competence

level ’, moreover: ‘it is not a good solution if the system says that I can’t find

another person’ referring to the secondary and the tertiary on-call.

Despite the previous points, the possibility to route the calls to the on-call

person has been recognized as a useful solution which avoid doctors to search

every time the on-call number to contact on the whiteboard, leaving them more

time to focus on their activities and reduce their workload.

One tester pointed out that when the on-call doctors are very busy, it may

happen that they ask another colleague to answer the incoming calls for them.

Currently, in order to leave the on-call role to someone else, they simply give

the pager to the chosen colleague, who become the new responsible to receive

incoming calls. Since the phones on which the system relies are supposed to be

personal, it is not recommended to directly leave the device to someone else,

mainly because the calls not directed to the role could be lost. Therefore, since

in these situations leave the on-call role should be done ‘on the fly’ and when

unexpected conditions occur, the tester suggested that there should exists a

feature which allows to do this task directly from the devices, and not (as the

current solution proposes) by changing every time the on-call schedule inside

Zimbra’s calendar through a web browser.

Concerning the messages listing pending calls collected when a recipient of a

call is not available, a tester said: ‘Sometimes I would like the recipient to call

me back but others not and therefore if he is not reachable maybe there should

be an option leave a message or not ’. The tester suggested that leave a pending

call message should be an option and not an imposition as it happens with the

current implementation of the system. In fact, the application send a message

by default either when the caller hang up or press a digit different from one or

two. Therefore, when a call directed to a recipient located inside a critical area

(or not available) is made, the system should provide the caller with two alter-

natives: hang up without living a message and hang up by leaving a message.

He also made an important observation about this feature: ‘If a person doesn’t

want to leave a message, the application could raise an unnecessary interrup-

tion’. Here the interruption could be serious because if the recipient receives

a message of a person who tried to call for asking help one hour before, the

problem may be already fixed at the reception time, making useless the sending

73

of such message.

Another unpleasant consequence of this solution is that if for instance fifteen

persons try to call a phone located inside a critical area (or switched to ‘visiting’

status), the recipient’s phone will get fifteen messages when it quits a critical

area (or when it switches back to ‘available’ status). This is clearly not a good

solution because a large amount of messages, as in the previous case, could be

irrelevant when received.

One tester added that ‘would also be particularly useful to have the possibility

to specify the priority of a pending call message, according to the significance

of the information to be communicated ’. In this way, he explained, when the

recipient receives the message can judge the importance of the missed call and

decide if it is worth to immediately call back or postpone the task. The tester

added that when a phone become available, it should list pending call messages

according to the priority specified inside them. For example, it should present

a list with the most important messages on the top and the less important on

the bottom.

Pending call messages have been highly appreciated, especially the option which

allows to directly call back the sender of a pending call. It avoids the need to

search every time the number to be called inside the address book of the phone,

simplifying the interaction with the devices.

Another problem discovered during the tests, which has not been considered

during the development of the application, is that with the current implemen-

tation it is not possible to send an alarm when the recipient of a call is busy on

the phone. The tester added that there should exists a way to send an alarm

for an emergency, even if the recipient is on the phone with someone else. The

tester highlighted that doctors should always be contactable for emergencies

and this is one of the main reason which still force hospital workers to reply

every time they are paged. Therefore, this possibility should be supported by

the application, especially if one of its main purposes is to replace pagers.

During a test session, it turned out that when a doctor answers the phone, one

of the most common question made by the caller is: ‘when are you available? ’.

This is an important information which helps hospital’s staff to coordinate their

daily work. Typically, according to the outcome of this question ‘the caller plans

the next task to do’, explained a tester. In order to satisfy this need the sugges-

tion is a feature which allows an unreachable recipient to immediately receive a

pending call message from where it could be possible to reply back with several

options, containing information about ‘until when the person will be occupied ’.

For example, an interactive message saying ‘please indicate when you will be able

to call me back ’ containing a number of predefined choices listing time periods

should be sent to the unreachable recipient as soon as a new call is made. These

choices should provide temporal frames covering the next two or three hours,

like:

74

• option 1: I will be available in 10 minutes

• option 2: I will be available in 20 minutes

• option 3: I will be available in 30 minutes

• . . .

The drawback of the current solution, said the tester, ‘is that the caller knows

that you are in a surgery, but he/she don’t know when you will be ready. If you

are not available in 30 minutes, the caller will find another person or if it is less

important he could wait the end of the surgery ’. Therefore, it is clear that some

kind of indication about how long a person will be engaged in an activity could

be a very useful information.

Speaking about the feature which allows to reduce interruption when a user

is involved in a meeting, more than one tester suggested that in this situa-

tion would be more useful to immediately receive pending call messages when

the calls are made, without necessarily pressing every time the button labelled

‘list’ on the device. Some of them would like to have the phone automatically

switched to pager mode, with the ringer switched off. This is because during a

meeting the most disturbing thing is the sound of the ringer and not the calls

or the messages themselves.

Several testers expressed different needs when page messages are displayed on

the device. Currently, the system send page messages containing always the

name of the person who put the page, however there are situations where doc-

tors prefer to read the role covered by the person instead of the name. For

example, if a nurse paged a doctor, the doctor would like to receive a message

containing that a nurse put the page and not the name of the nurse. On the

other hand if the person who paged the doctor is another doctor they prefer to

read the name instead of the role.

A number of testers highlighted that the system should give the possibility

to adjust its behaviour according to the specific needs of the different depart-

ment where the application is supposed to be deployed. Moreover, it should be

flexible enough in order to support the needs of different categories of workers.

For example, one tester expressed serious concerns about the reduction of in-

terruption provided by the system especially for some persons who are reliant

on others hospital’s workers such as nurses and interns. People who are not

fully functional on their own, said the tester, need constantly other colleagues

in order to carry out their work and therefore they could be hardly penalized

by the strong reduction of interruption. Therefore, the system should also cope

this aspect providing a fully customizable behaviour in order to meet the needs

of different group of workers.

Several testers really appreciated the concept of the application and the easy

75

interaction with the phone devices. One of them said that ‘this is what we re-

ally need ’ and that ‘all the functionalities are very simple to learn and can be

activated by just pressing a button on the phone without the need to navigate

every time inside the menu of the device’. They also appreciated the automatic

control of reachability when they are inside critical areas because ‘since we are

always moving, we do not have to worry to switch on and off the ringer every

time we leave or enter these areas’, said a tester. They also expressed approval

for the possibility to manually manage their reachability through the visiting

and the pager mode.

76

7 Discussion

Before going further with the discussion it must be reminded that the context-

aware solution is based on an Ascom Unite platform which is one of the most

common communication system used within hospitals. Moreover, the applica-

tion uses the PBX trixbox and Zimbra exchange server which are both open

source softwares. As a consequence, it does not require proprietary software or

specific hardware in order to run and can be deployed with a very low cost.

7.1 Motivations for the chosen architecture

All the choices are aimed at decoupling as much as possible the software com-

ponents of the architecture, in order to separate the different functionalities

provided by each of them.

The first design choice we are going to discuss is about AgiScript. As described

in the construction chapter, even if during its execution this component requires

the MessageService to send messages to the phones, in order to send them it

must call specific methods provided by the context manager. The advantage of

this approach is that it is possible to implement the logic needed to decide if a

message can be sent or not directly inside the latter, which acts as a middle-

ware between the policies customizable by the users and the messages requests

coming from AgiScript. In this way, when AgiScript has to send a message to

a phone it does not have to retrieve every time the policy value of the recipient

in order to determine if it can be sent or not, but simply call specific methods

provided by the manager which will take care of the delivery of the message.

The same motivation applies for the communication with the RetrieveService.

Even in this case, when the AgiScript needs to extract user’s data, it does

not have to interact with this component. An example of disadvantage that

can be obtained without using this approach is clear in the following scenario:

suppose that the location of a user is directly gathered by AgiScript from the

RetrieveService. In order to know if the retrieved location is a critical area or

not, the script should keep inside its code a table listing for each location device

the place (i.e the room) where every single sensor is located. Clearly, this is

not a good solution because the logic required to control the call’s behaviour

implemented inside this component has nothing to do with the logic required to

estabilish if some area is critical or not.

The necessity to provide the application with a central component which com-

municates with the other (the manager), is also motivated by the fact that the

information about location and status availability coming from the phones must

be propagated to the database and the user interface nearly at the same time.

This solution helps to keep the code needed to perform these related operations

within a single component. The alternative was to implement the code required

to update the user interface inside the StoreService or inside the EventListener,

which it is not a clean solution especially if the main purpose of the architecture

77

is to maintain separated the different functionalities provided by each software

component.

This modularity results in an additional advantage in terms of fexibility of the

system because in this way it is possible to easily change the implementation of

distinct components without affecting the rest of the application. For example, if

the technology used for tracking the location of the phones needs to be replaced,

the only component of the architecture to be modified is the EventListener ; or

moreover, if the current database based on XML files needs to be replaced with

a new more powerful solution based on a relational database, the components to

be modified are the store and retrieve services, without touching other parts of

the application. Therefore, thanks to these design choices the core functionali-

ties of the system are preserved, even if the underlying technology should change.

7.2 Quality and efficiency considerations

7.2.1 Efficiency

The efficiency of the system is severely limited by its distribution over the net-

work. In particular, one of the major bottleneck is caused by the communication

channel between the client running on the OJS and the core application. This is

because every time some information has to be exchanged between them, a new

socket connection must be set up, which is widely known to be a time consum-

ing process. The application tries to limitate this problem by managing each

connection coming from the OJS inside a new thread, as described during the

illustration of the elegant code. In order measure the communication efficiency,

a program able to simulate the interaction between these two critical compo-

nents has been developed and subsequently used for testing the performance.

The aim of this program, running on the OJS, is to create a predefined amount

of socket connections in order to discover how many of them can be efficiently

(i.e with a reasonable amount of time) handled by the context-aware application.

The picture in Fig. 32 illustrates the components involved during a typical test:

the blue square represents the Test Program mounted on the OJS, the red square

the context-aware application and the gray square the XML file used to store

timing data collected during each test. Test Program consists of two classes

named Client and Phone. The first implements a loop which creates every 3

milliseconds a new thread of the class Phone. The cycle iterates n times ac-

cording to the number of connections that have to be simulated. Each Phone’s

thread contains a piece of code needed to establish a new socket connection with

the application, used to subsequently send the timestamp of the OJS (simulat-

ing the information sent by the OJS when new status or location data comes

from the phones). As it can be seen from the picture in Fig. 32, every time

the timestamp of the OJS is sent by the Test Program to the application, is

stored inside an XML file (named Tests Data) together with the application

time (App-Time). The structure of this XML is shown in the snipped below:

78

Figure 32: Components involved in the performance test.

<i n fo>
<o j s t ime >2011−04−29 16:49:34</ o j s t ime>
<s e rve r t ime >2011−04−29 16:49:38</ se rve r t ime>

</in fo>
<i n fo>

<o j s t ime >2011−04−29 16:49:36</ o j s t ime>
<s e rve r t ime >2011−04−29 16:49:38</ se rve r t ime>

</in fo>

Each < info > node has two childs: the first, labelled < ojs time > and the

second labelled < server time > containing the application time grabbed be-

fore storing the data inside the XML file.

In order to analyze the timing pairs collected as described above, a program

which scans the XML file has been developed as well. It is very simple: for each

< info > node it extracts the ojs time and the server time and computes their

difference. In order to compute the mean time spent to send the information,

the program sums the resulting differences and then divides the result for the

number of pairs analyzed. Then, by using the mean just computed, it extracts

the variance of the dataset.

It must be highlighted that since location and availability status are strings

consisting only by a few characters, the tests were not focused to specifically

measure the time required to send a large amount of information, but simply

focused to see how the system scale when the number of connections needed to

send such little information grows up. This is why we chose to directly send

from the Test Program the timestamp of the OJS, which approximately contains

the same number of characters of the strings describing location and availability

status.

The tests have been carried out by gradually increasing the number of threads

79

created with Test Program, starting from 30 up to 3000 and then analyzing the

collected timing values. The results of the analysis are reported in the following

table:

Mean Variance
30 threads 2 sec 1.12
500 threads 1 sec 0.89
1000 threads 1 sec 0.93
2000 threads 1 sec 0.93
3000 threads 1 sec 0.95

As it can be seen, when the number of thread is low the mean time required

to send the information is about 2 seconds, with a variance of 1.58. When the

number of thread increases, the mean decreases to 1 second and the variance

remains constant between 0.89 and 0.95. The motivation of these non-intuitive

results comes from the fact that the server machine on which the application

runs switches to multithread mode when a large amount of thread is opened,

increasing the computational performance. Since the Test Program creates a

new thread every 3 milliseconds, this means that the application is capable to

manage about 300 connection in about 1 second, even when the number of

threads grows up.

It must be pointed out that when the tests have been performed by creating

new threads in less than 3 milliseconds, some communication error appeared.

This is a limitation, and means that in order to guarantee correctness in the

transmission, the maximum number of thread manageable by the application is

at most 300 for each second.

If we consider that a new socket connection is opened every time a phone changes

its location or availability status, 300 is not a very big number especially if we

take in consideration the application scenario of the system: hospitals. As al-

ready said, hospital’s workers are always moving between different areas (chang-

ing very often the coverage area between different sensor) or involved in critical

activities and therefore this number could be easily reachable. However, it is

possible to overcome this problem by sending the data about location on a

server and status availability to another, distributing the work load on different

machines. Therefore, the scalability of the system can be further improved.

In order to understand the overall picture of the system efficiency, another

component that must be analyzed is trixbox. This is a critical component of

the architecture because is responsible to manage all the calls between phones.

According to the software wiki [92], trixbox is mainly oriented for small offices

and 1 server is recommended for about 100 simultaneous calls (this is only a

guidance and the exact number of simultaneous calls depends on the character-

istics of the machine running the system). If we again consider that the system

is targeted to operate inside hospital environment, where a large amount of

information is constantly exchanged, even 100 simultaneous calls is not a big

number. However, the PRO version of trixbox is capable to handle a greater

amount of calls and it is more suitable for the purposes of the application.

80

Another aspect to be considered concerns the performance of the Ascom Unite

system. During the performance evaluation of the platform [77], has been found

that there is a bottleneck located between the base station and the phones, due

to the limitations of the DECT protocol. In particular, the evaluation high-

lighed that the time spent to send messages from a phone to another grows up

significantly when the total number of messages exchanged over the network

raises [77]. The following table (from [77]) reports the time spent to send mes-

sages between phones, in relation to the quantity of messages sent at the same

time. The messages used during the experiment contained 50 characters.

Num of messages Time Spent
5 4/5 sec
10 7/8 sec
20 12/13 sec
40 22/23 sec
80 43/44 sec

As it can be seen, when the number of exchanged messages grows, the time

spent to send them increases very fast. Since the context-aware application

relies on the use of messages in order to send feedback containing availability

and location of unreachable recipients and to communicate pending calls, if we

sum these messages plus the normal amount of messages that are typically ex-

changed between users, the performances could be easily drop down.

Summing up, the context aware application can be deployed only in small de-

partment, with a reduced number of users. The main motivation is that the

application increases significantly the number of messages exchanged inside the

Ascom network which, as explained above, is seriously affected by this number.

Since feedback messages and pending calls have to be received very quiclky, this

aspect could seriously affect the purpose of the application, making pointless

the sending of these messages.

7.2.2 Quality

Regarding the simplicity of the application, there are some piece of code partic-

ularly difficult to understand especially on the instructions which allow the core

application to send messages to the phones. As explained in the implementation

chapter, each message request goes through a number of different components

and could not be understood at first sight. However, this implementation is

strictly necessary in order to guarantee a correct separation of the functionali-

ties and, for example, keep critical parts of the application (such as the policy

management) isolated inside the context manager.

The complexity of this part of code is also justified by the necessity to fre-

quently interact with the client, which is the key component for enabling mes-

saging between the context-aware application and the phones. Since the client

is distributed over the network, it was not possible to directly call methods

81

from it and a simple communication protocol based on text strings containing

meaningful tags, has been specifically designed to overcome this difficulty. By

interpreting these strings, the client running on the OJS is always able to send

the right type of message to the phones with the the subject, body and desti-

nation number completely specifiable from the core application.

Concerning robustness, the application is able to manage a number of different

errors by using specific handlers which allow to capture unexpected conditions.

In order to discover potential errors that could occur during the execution of

the program, several tests have been carried out. All the discovered problems

have been fixed and the stability and robustness of the system has significantly

improved. Since the application is only a prototype these tests have not been

exhaustively performed, mainly because the system is going to be changed and

integrated with new technological solutions in order to add more complex func-

tionalities (e.g the integration with phones based on Android).

7.3 General considerations

As explained during the implementation chapter, Zimbra does not provide an

event notification mechanism able to inform the application when a new meeting

starts/ends. For this reason, the application is not able to change the display

configuration of a device when the owner is involved in such situations. In order

to solve this problem, one solution could be to implement a piece of software

which every minute contacts Zimbra server to get all the appointments of the

users in order to check one by one if a new meeting has begun. This is clearly

not a good solution because it consumes time and network resources, especially

if we consider that the users enrolled in the system in a real scenario could be

hundreds. Another solution could be to develop from scratch a calendar tool

tightly integrated with the application. In this way it could be possible to imple-

ment a more clean solution able to notify the application only when necessary

(i.e when a new meeting is going to start), avoiding the necessity to download

every time the appointments from the Zimbra server to constantly look for the

beginning of calendar events.

Another important consideration that must be made concerns the limited in-

teraction possibilities offered by the Ascom phones. These devices are not fully

programmable and provide only limited possibilities of customization. In addi-

tion, they have a small display which can not be used to provide rich informa-

tion to the users. In [75] authors proposed a redesign of these devices suggesting

adjustments aimed at improving the information shown to the users and sim-

plifying their usability.

By using more advanced phones (e.g smart phones) provided with large, cus-

tomizable and programmable display it could be useful, for example, to develop

directly inside them a panel listing availability status and location of all the

users enrolled in the system, like the one provided by the user interface of the

82

application. With this feature, all these information would be accessible directly

from the devices and not only from the computer hosting the application. More-

over, such panel could be further enriched in order to provide a kind of ‘digital

whiteboards’ from where it would be possible to view several information related

to colleagues tipically recorded inside physical whiteboards (e.g on-role shifts).

Another interesting feature that can be implemented by using smart phones, is

an interface from where users can change the settings of the application in order

to personalize the behaviour of the system according to their specific needs.

It must be pointed out that the Ascom phones, along with the Ascom Unite

platform, have not been specifically built to support context aware applications.

Therefore all the observation previously made are not aimed at highlighting that

the Ascom system is a bad product, but for the purpose of the application these

limitations affected the final result.

7.4 Considerations about tests

The tests highlighted a number of weaknesses that the context-aware applica-

tion should fill before being deployed in hospital setting. By using the same

hardware and software configuration on which it currently relies, some of the

identified problem can be solved, but others not. In the following we are going

to discuss some feedback gathered during the test sessions explaining the pos-

sible solutions and the major drawback that could be caused by implementing

such solutions.

The system can be easily modified to support the routing of a call to three

different on-call persons, as proposed by one tester. The implementation of

this feature would be straightforward: use the remaining numeric buttons on

the phones to let the caller choosing the most appropriate specialist on-call to

whom a call must be routed (junior, intermediate doctor or senior consultant).

After the user choice, in order to discover the current on-call person, the appli-

cation will just have to look inside Zimbra the suitable calendar containing the

shift schedule for the type of specialist requested by the user. Therefore, this

functionality is a simple extension of the use case 5.

It must be highlighted that in this case the shift management could become

really complicated: it would require to have for each critical area three distinct

calendars each of which containing the shift schedule for a single type of special-

ist on-call. The alternative to this solution could be to store all the on-call shifts

grouped inside one single calendar. However, the drawback of this approach is

that since Zimbra has not been specifically thought for this purpose, its calen-

dar does not provide a clear view when it comes to display many working shifts

overlapped in time. This is because we adapted the main functionality of this

tool (which is store meetings of a single user) for our purposes: store working

schedules. If we want to provide a more clean solution able to also support this

level of complexity, the schedule management should be redesigned in order to

provide users with a more suitable interface which first would be able to pro-

83

vide an easy way to insert several on-call shifts for the same area with entries

overlapped in time, and second able to provide a clear and intuitive view when

such on-call shifts are displayed to the users.

Concerning the possibility to leave ‘on the fly’ the on-call responsibility to

someone else directly from the phones, this feature is hardly achievable with

the current devices, basically because they do not provide browsing function-

ality required to access Zimbra. In order to enable the access of the calendar

even from the phones, a solution could be to use more technologically advanced

devices (e.g palm phones based on Android) provided with a browser.

Speaking about the possibility to choose leaving a pending call message or not

to an unreachable recipient, the tester who raised this point was right: the auto-

matic sending of a message when the caller hang up (as currently implemented

in the system) could effectively be a source of interruption, mainly because it

causes the reception of a large number of messages that could not be relevant

anymore when received by the recipient. Therefore, since this feature increases

the number of unnecessary interruptions, it must be fixed. The problem can be

solved by using the remaining numeric buttons on the devices in order to pro-

vide the caller with the following alternatives: hang up without living a message

or hang up by living a message.

The use of several numeric buttons on the devices required to implement the

suggested features, presents a severe drawback. Consider the scenario where a

caller calls a recipient located inside a critical area: if we sum the three numeric

buttons required to route the call to the on-call persons, plus the two digits

required to send or not a pending call message after a call, plus the digit to

force the calls, then the interaction with the phones could become really diffi-

cult. Here, the major problem is that when a user calls an unreachable recipient

has to listen a very long vocal message explaining the functionality associated to

each numeric button. This is clearly not a good solution because users would be

forced to hear such vocal message every time an unreachable recipient is called,

causing an unpleasant waste of time.

A proposed feature that can be easily implemented without using additional

buttons, is the one which allows to send back to the caller a message containing

information about until when an unreachable user will be busy. In this case we

can again use Interactive Messages in order to program inside them a number of

options selectable by the recipient, listing time frames describing the ‘busy time’.

Moreover, the feature which allows to view the name or the role of a person

who put a page inside page messages, could be easy implementable too. In this

case the application will just have to insert inside the body of the page message

the name or the role of the person who put the page, by taking in consideration

the preferences of the recipient.

84

There are two suggested feature that cannot be implemented in the system,

due to the hardware equipment on which the application relies. The first one is

about the possibility to send alerts when a recipient is busy on the phone with

another person. Although the Ascom Unite platform provides the possibility to

send alerts to the phones from the OJS, this feature could not be implemented

due to the substitution of trixbox with the ESS component for managing calls.

The second one is related to the possibility to speak with a caller who forced

a call through a speaker on the device. Even this feature can not be imple-

mented because the Ascom phones do not provide a speaker integrated inside

the devices, mandatory for the implementation of this feature.

85

86

8 Conclusion

The presented context-aware application, based on an Ascom Unite communi-

cation platform, is aimed at reducing interruptions caused by wireless phones

and improving awareness between users carrying these devices. It is specifically

thought to support activities of hospital workers and manages interruptions

considering contextual information related to users such as location, availability

status and personal commitments.

Since clinicians are always moving in different areas, visiting patients and in-

volved in several meetings, with the proposed context-aware solution they do not

have to switch off the ringer of their phone every time they are in such critical

situations. The system is able to automatically manage the reachabiliy of their

devices reducing the number of interruptions and helping them to better focus

on their daily activities. Moreover, the system is able to increase awareness

sending feedback messages explaining the cause of an unreachable recipient and

sending pending call messages collected during the unavailability status only

when a critical area or status is left.

The feature which allows to route the calls to the on-call person according

to the shift schedule recorded inside Zimbra calendar, provides a useful way to

easily get in contact with the on-call doctor on duty, avoiding the need to search

every time the number of the person to contact on the whiteboards.

The pager mode, model the behaviour of a phone as a pager. It overcomes

one of the major drawback of these devices: the call functionality. With this

feature users can be paged on the phone and at the same time call back the

person who put the page without the need to search a phone nearby, task wich

usually requires an unuseful waste of time.

In order to evaluate the application, a number of tests with some medical doc-

tors have been carried out. The tests highlighted that the application must fill

several gaps before being deployed in a real hospital: some of them can be fixed,

but others not.

The performance analysis pointed out that the system can be deployed only

in small department because it is not highly scalable. The main reason is that

it uses a large amount of messages in order to provide awareness to the user,

which could cause a loss of performance inside the Ascom platform. However,

some strategies have been proposed to improve this aspect.

Future works could be aimed at filling the gaps raised during the tests, integrate

the system with different kind of devices providing advanced functionalities and

find better strategies to effectively improve the performances in order to deploy

the application even in large hospital department.

87

88

Appendix A: Ascom Documentation

TD 91026GB Mailgate Function Description

TD 92040GB Open Access Toolkit Programming Guide

TD 92161GB Integrated Message Server Installation & Operation Manual

TD 92185GB Open Java Server Installation & Operation Manual

TD 92187GB GSM/SMS application on OJS Function Description

TD 92198GB Netpage Installation & Operation Manual

TD 92204GB Open Access Server Installation & Operation Manual

TD 92215GB Open Access Protocol Function Description

TD 92230GB Open Java Server Programming Guide

TD 92232GB ELISE2 Installation Guide

TD 92243GB UNITE System Description

TD 92253GB Enhanced System Services Installation & Operation Manual

TD 92258GB UNITE System Planning

TD 92324GB Portable Device Manager Data Sheet

TD 92325GB Portable Device Manager Installation & Operation Manual

TD 92333GB 9d24 User Manual

TD 92341GB Activity Logging in Unite Function Description

TD 92365GB 9dLD Installation Guide

TD 92370GB IP-DECT Base Station (IPBS) Data Sheet

TD 92375GB IP-DECT System Description

TD 92421GB Unite Log Analyzer Installation & Operation Manual

TD 92481GB DC4 Installation & Operation Manual

TD 92579GB IP-DECT Base Station and IP-DECT Gateway Inst. & Op. Man.

TD 92584GB d62 Quick Reference Guide

TD 92585GB IMS2 Data sheet

TD 92586GB IMS2 Installation & Operation Manual

TD 92622GB d62 Protector Data Sheet

TD 92629GB DECT Location Function Description

TD 92639GB d62 Configuration Manual

89

90

Appendix B: Configuration of the Ascom system

In the following will be described the steps required to configure the IMS module

in order to route data coming from the phones connected to the DECT protocol,

to the OJS-GSM module.

1. Open a browser and insert as URL the IP-Address of the IMS (in our case

http://193.157.81.62).

2. Open the advanced configuration panel of the module.

3. Under the DECT interface section (Step 1), select ‘Message Distribution’

(Step 2): the displayed page should be the same as that one illustrated in

the figure below:

Figure 33: IMS configuration

91

4. Since we are interested to route both location of the devices and data sent

when the soft key buttons are pushed, we have to configure the entries

‘Mobile Data’ and ‘Location’ (Step 3). By selecting the ‘Mobile Data’

link, the page illustrated in Fig. 34 should appear.

5. Insert inside the Destinations list the IP-Address of the OJS-GSM server

followed by the name of the service responsible to handle incoming data

coming from external modules: in this case the service is named OAJ, by

default. Fig. 34 illustrates this step.

6. After this, come back to the Message Distribution list in the previous page

and repeat the point 5 for the ‘Location’ link.

Figure 34: IMS configuration

From now on, all the information about location and user data coming from the

phones will be routed by the IMS to the OJS-GSM module.

92

References

[1] Aziz O., Panesar S. S., Netuveli G, et al. Computers and the 21st century

surgical team: A pilot study. BMC Med Inform Decision Making 2005;5:28.

[2] Ammenwerth E., Buchauer A., Bludau B., Haux R. Mobile information and

communication tools in the hospital. Int J Med Inf 2000; 57: 21−40.

[3] Bisgaard J.J., Heise M. and Steffensen C., How is Context and Context-

awareness Defined and Applied? A Survey of Context-awareness. 2004, De-

partment of Computer Science, Aalborg University.

[4] Bardram JE, Hansen TR, Soegaard M, AwareMedia - A Shared Interac-

tive Display Supporting Social, Temporal and Spatial Awareness in Surgery,

Proceedings CSCW 2006, pp 109−118.

[5] Bisgaard J.J, Heise M. and Steffensen C., How is Context and Context-

awareness Defined and Applied? A Survey of Context-awareness. 2004, De-

partment of Computer Science, Aalborg University.

[6] Bardram J.E. Applications of ContextAware Computing in Hospital Work

Examples and Design Principles. In Proceedings of the 2004 ACM Sympo-

sium on Applied Computing, pages 1574−1579. ACM Press, 2004.

[7] Bradner E., Kellog, W. A., And Erickson, T. 1999. The adoption and use of

Babble: A field study of chat in the workplace. In Proceedings of the 6th Eu-

ropean Conference on Computer-Supported Cooperative Work (ECSCW 99,

Copenhagen, Denmark, Sept.12−16), Kluwer Academic, Dordrecht, Nether-

lands, 139−158.

[8] Botsis T., et al. Context-Aware Systems for Mobile Communication in

Healthcare - A User Oriented Approach. in Proceedings of the 7th WSEAS

International Conference on Applied Informatics and Communications. 2007.

Athens, Greece.

[9] Boehm B.W, A Spiral Model of Software Development and Enhancement,

1985, TRW Technical Report 21−371−85, TRW, Inc., 1 Space Park, Re-

dondo Beach, Calif. 90278.

[10] Bardram J, Kjr TAK, Nielsen C (2003) Supporting local mobility in health-

care by application roaming among heterogeneous devices. In: Proceedings

of the 5th conference of mobile human-computer interaction. Springer, Berlin

Heidelberg New york, LNCS 2795, pp 161−176.

[11] Bardram JE (2000) Temporal coordination. Comput Support Coop Work

9:157−187.

[12] Brown B., Randell R., Building a context sensitive telephone: some hopes

and pitfalls for context sensitive computing, in Proceedings of the Joint

Colloquia: Building Bridges Interdisciplinary Context Sensitive Computing

and Mobile Computing in Medical Context, Glasgow, September 910,2002.

93

[13] Bricon-Souf N., Newman C.R., Context awareness in healthcare: a review,

Int. J. Med. Inf., in press, accessed online on April 2006.

[14] Coiera E, Tombs V. Communication behaviours in a hospital setting: an

observational study. Br Med J 1998;316:673−676.

[15] Cheverst K., Mitchell K. , Davies N., and Smith G. Exploiting Context

to Support Social Awareness and Social Navigation. SIGGROUP Bull.,

21(3):43−48, 2000.

[16] Cugola G., DiNitto E., and Fugetta A., Exploiting an event-based in-

frastructure to develop complex distributed systems, Proc. ICSE98, pages

261−270, 1998.

[17] Chen G., Kotz D. A survey of context-aware mobile research. Technical

Report TR2000381, Department of Computer Science, Dartmouth College

(2000)

[18] Context sensitive systems for mobile communication in hospitals, project

description.

[19] Dey AK, Abowd GD. Towards a better understanding of context and

context-awareness. CHI2000 Workshop on the What, Who, Where, When,

and How of ContextAwareness, 2000.

[20] Dourish P., Seeking a foundation for context aware computing, Hum. Com-

put. Interact. 16 (2) (2001) 229−241.

[21] Eisenstadt SA, Wagner MM, Hogan WR, Prankaskie MC, Tsui FC, Will-

bright W. Mobile workers in healthcare and their information needs: are

2-way pagers the answer? Proc AMIA Symp 1998:135−9.

[22] ETSI, Radio Equipment and Systems Digital European Cordless Telecom-

munications (DECT). 1992.

[23] Favela J., Rodriguez M., Preciado A., and Gonzalez V. M. Integrating

context-aware public displays into a mobile hospital information system. In-

formation Technology in Biomedicine, IEEE Transactions on, 8(3):279−286,

Sept. 2004.

[24] Favela J., Tentori M., Castro L.A., Gonzalez V.M., Moran E.B., Martinez

Garcia A.I.: Activity recognition for context-aware hospital applications:

issues and opportunities for the deployment of pervasive networks. Mob.

Netw. Appl. 12(2−3), 155−171 (2007).

[25] Fogarty J. , Lai J., Christensen J., Presence versus availability: the de-

sign and evaluation of a context-aware communication client, Int. J. Hum.

Comput. Stud. 61 (3) (2004) 299−317.

[26] Fasani S. Evaluation of the Ascom/trixbox System for Context Sensitive

Communication in Hospitals, Norwegian Centre for Integrated Care and

Telemedicine, Internal Report.

94

[27] Garlan D., Siewiorek D. P., Smailagic A., and P. Steenkiste. Project Aura:

Toward Distraction-Free Pervasive Computing. IEEE Pervasive Computing,

1(2):22−31, Apr. 2002.

[28] Gamma E., Helm R., Johnson R., and Vlissides J., Design Patterns: El-

ements of Reusable Object-Oriented Software, Addison Wesley, Reading

(MA), 1994.

[29] Gilb, T. 1988. Principles of Software Engineering Management. Reading,

MA.: Addison-Wesley.

[30] Garrison K., trixbox CE 2.6.2009: Packt Publishing. pag. 7-28.

[31] Helal S., Giraldo C., Kaddoura Y., C. LEE, H. El Zabadani, W. Mann,

Smart phone based cognitive assistant, in: Ubihealth,12 international jour-

nal of medical informatics 76(2007) 2−12. 2003.

[32] Hersh W, Helfand M, Wallace J, et al. A systematic review of the efficacy

of telemedicine for making diagnostic and management decisions. J Telemed

Tele ca re 2002; 8: 197−209.

[33] Hoegh RT, Skov MB (2004b) Exploring context-awareness as mean for

supporting mobile work at a hospital ward. In: CDProceedings of the 7th

international conference on work with computing systems (WWCS 2004).

[34] Heath C., Vom Lehn D., Hindmarsh J., Svensson M., Sanchez, and P.

Luff. Configuring Awareness. Computer Supported Cooperative Work. An

International Journal, 11(3-4):317−347, 2002.

[35] Huang E. M., D. M. Russell, and A. E. Sue. Im here: public instant mes-

saging on large, shared displays for workgroup interactions. In CHI 04: Pro-

ceedings of the SIGCHI conference on Human factors in computing systems,

pages 279−286, New York, NY, USA, 2004. ACM Press.

[36] Hansen T. R., J. E. Bardram, and M. Soegaard. Moving Out of the Lab:

Deploying Pervasive Technologies in a Hospital. IEEE Pervasive Computing,

5(3):24−31, July-September 2006.

[37] Hristova A., Conceptualization and Design of a Context-aware platform for

user-centric Applications, Master’s thesis in Security and Mobile Computing,

Norwegian University of Science and Technology, 2008.

[38] Indulska, J., Sutton, P. (2003). Location management in pervasive systems.

In Proceedings of the Australasian information security workshop conference

on ACSW frontiers (Vol. 21, pp. 143−151).

[39] Intille S.S., Rondoni J., Kukla C., Iacono I., Bao L., A context-aware expe-

rience sampling tool, in: Proceedings of the Conference on Human Factors

and Computing Systems, 2003.

95

[40] Intille S.S., Bao L., Munguia Tapia E., Rondoni J., Acquiring in situ train-

ing data for context aware ubiquitous computing applications, in: Proceed-

ings of CHI 2004 Connect: Conference on Human Factors in Computing

Systems, ACM Press, April 2004.

[41] Jones G. J. F. and Brown P. J. Context-aware retrieval for ubiquitous com-

puting environments. In Mobile HCI Workshop on Mobile and Ubiquitous

Information Access, pages 227−243, 2003.

[42] Kidd, A.G., Sharratt, C. and Coleman, J. Mobile communication regula-

tions updated: how safely are doctors telephones used? Quality and Safety

in Healthcare, 13, 6 (2004), 478.

[43] Korel, B.T., Kao, S.: Addressing context awareness techniques in body

sensor networks. In: 21st International Conference on Advanced Information

Networking and Applications Workshops 2007, pp. 798−803 (2007).

[44] Korhonen, I., Paavilainen, P., Srela, A.: Application of ubiquitous comput-

ing technologies for support of independent living of the elderly in real life

settings. Proc. UbiHealth 2003, The 2nd International Workshop on Ubiq-

uituos Computing for Pervasive Healthcare Applications (2003).

[45] Korkea-aho M. Context-aware applications survey. Technical Report Inter-

networking Seminar (Tik-110.551), Helsinki University of Technology, 2000.

[46] Kjeldskov J, Skov MB, Als BS, Hegh RT (2004) Is it worth the hassle?

Exploring the added value of evaluating the usability of context-aware mobile

systems in the field. In Proceedings of the 6th international conference on

human computer interaction with mobile devices and services (MobileHCI

2004), Springer, Berlin Heidelberg New york, LNCS 3160, pp 61−73.

[47] Lieberman H., Selker T., Out of context: Computer systems that adapt to,

and learn from, context, IBM Systems Journal; 2000, 39 3/4, pg. 617.

[48] Mizzaro S., Nazzi E., Vassena L., Retrieval of context-aware applications on

mobile devices: How to evaluate?, Proceedings of the second international

symposium on Information interaction in context, USA, 2008.

[49] Matthias Baldauf, A survey on context-aware systems, Int. J. Ad Hoc and

Ubiquitous Computing, Vol. 2, No. 4, 2007, pp. 263−277.

[50] Mitchell S., Spiteri Mark D., Bates J., Coulouris G., Context-aware mul-

timedia computing in the intelligent hospital, Proceeding 9th workshop on

ACM SIGOPS, ACM New York.

[51] Munoz M. A., Rodriguez M., Center J. F., A. I. Martinez-Garcia, and

V. M. Gonzalez. Context-Aware Mobile Communication in Hospitals. IEEE

Computer, 36(9):38−46, 2003.

[52] Myerson SG, Mitchell AR. Mobile phone in hospitals. British Medical Jour-

nal 2003;326:460−1.

96

[53] Mihailidis A., Carmichael B., Boger J., Fernie G., An intelligent environ-

ment to support aging-in-place, safety, and independence of older adults with

dementia, in: Proceedings of the Second International Workshop on Ubiq-

uitous Computing for Pervasive Healthcare Applications (UbiHealth2003),

Seattle, 2003.

[54] MacIntyre B., Mynatt E. D., Vodia S., Hansen K. M., Tullio J., and Corso

G. M. Support for Multitasking and Background Awareness Using Interac-

tive Peripheral Displays. In Proceeding of ACM User Interface Software and

Technology 2001 (UIST01), pages 1114, Orlando, Florida, USA, Nov. 2001.

[55] Moran T, Dourish P (2001) Introduction to this special issue on context-

aware computing. Hum Comput Interact 16:87−97.

[56] Meggelen J.V., L. Madsen, J. Smith, Asterisk: The future of telephony,

Second edition, O’Reilly Media.

[57] Nardi B., Whittaker, S., and Bradner, E.. Interaction and Outeraction:

Instant Messaging in Action. Proceedings CSCW 2000. (December, 2000),

79−88. New York: ACM Press.

[58] Pascoe, J., Ryan, N., and Morse, D. Using while moving: HCI issues in

fieldwork environments. ACM Transactions on Human-Computer Interac-

tion 7, 3 (Sept. 2000), 417−437.

[59] Pascoe J. Adding generic contextual capabilities to wearable computers.

In: Proceedings of 2nd International Symposium on Wearable Computers,

1998; 92−99.

[60] Pascoe, J., Ryan, N.S., Morse, D.R. Human-Computer-Giraffe Interaction

HCI in the Field. Workshop on Human Computer Interaction with Mobile

Devices (1998).

[61] Patrice A. Spurck, Mary L.Mobr, Martha Stoner, The Impact of a Wireless

Telecommunication System on Time Efficiency, Vol.25, No.6 JONA,1995.

[62] Prekop P., Burnett M., Activities, context and ubiquitous computing, Com-

put. Commun. 26 (2003) 1168−1176.

[63] Rouncefield M., Viller S., Hughes J., and Rodden T. Working with con-

stant Interruption: CSCW and the Small Office. The Information Society,

11(4):173−188, 1995.

[64] Rodriguez M., Favela J., Martinez E. A., and Muoz M. A., Location aware

access to hospital information and services, IEEE Trans. Inform. Technol.

Biomed., vol. 8, no. 4, pp. 448−455, Dec. 2004.

[65] Row Want and Andy Hopper. Active badges and personal interactive com-

puting objects. IEEE Transactions on Consumer Electronics, 38(1):10−20,

Feb 1992.

97

[66] Reddy M., Pratt W., Dourish P., Shabot M., Sociotechnical requirements

analysis for clinical system methods, Inf. Med.4 (2003) 437−444.

[67] Reddy M., Dourish P., and Pratt W. Coordinating heterogeneous work:

Information and representation in medical care. In Prinz et al. [15], pages

239−258.

[68] Rodden T., Cheverst K., Davies N., Dix A (1998) Exploiting context in HCI

design for mobile systems. In: Proceedings of the 1st workshop on human

computer interaction with mobile devices.

[69] Rodrguez M. and Favela J., Autonomous Agents to Support Interoperabil-

ity and Physical Integration in Pervasive Environments, Proc. Atlantic Web

Intelligence Conf., Springer-Verlag, 2003, pp. 278−287.

[70] Rindfleish TC (1997) Privacy, information technology, and health care.

Commun ACM 40(8):93−100.

[71] Schilit B. and Theimer M., Disseminating Active Map Information to Mo-

bile Hosts. IEEE Network, 1994.

[72] Schilit B., Adams N. and Want R., Context-Aware Computing Applica-

tions, in 1st International Workshop on Mobile Computing Systems and

Applications. 1994.

[73] Skov M, Hoegh R (2006) Supporting information access in a hospital ward

by a context-aware mobile electronic patient record. Journal of Perv. and

Ubiq. Computing 10:205−214.

[74] Spurck PA, Mohr ML, Seroka AM, Stoner M. The impact of a wireless

telecommunication system on time efficiency. Journal of Nursing Adminis-

tration 1995 Jun, 25(6):21−6.

[75] Solvoll T., Hartvigsen G., Tiemersma A., Kerbage E., Fasani S., Ravuri A.

B., Context-sensitive Communication in hospitals: a user interface evalua-

tion and redesign of Ascom wireless IP-DECT phones, eTELEMED 2011:

37−46.

[76] Solvoll T., Scholl J.: Strategies to reduce interruptions from mobile commu-

nication systems in surgical wards. J Telemed Telecare 2008, 14(7):389−92.

[77] Solvoll T, S. Fasani, A. B. Ravuri, A. Tiemersma, G. Hartvigsen, Evalu-

ation of an Ascom/trixbox system for context sensitive communication in

hospitals, in Scandinavian Conference on Health Informatics, 2010: 49−53.

[78] Scholl J., Hasvold P., Henriksen E., Ellingsen G., Managing Communica-

tion Availability and Interruptions: A Study of Mobile Communication in

an Oncology Department, in: A. LaMarca, M. Langheinrich, K.N. Truong

(Eds.), Pervasive Computing, Springer, Berlin, 2007, Heidelberg.

98

[79] Siewiorek D., et al. SenSay: A Context-Aware Mobile Phone. in Proceed-

ings of the 7th IEEE International Symposium on Wearable Computers.

2003.

[80] Swanson E., Galvao A., Sato K., A framework for understanding contexts

in interactive systems development, in: 7th World Multi-Conference on Sys-

temics, Cybernetics and Informatics, Orlando, FL, July 2003.

[81] Spreitzer M. and Theimer M. Scalable, secure, mobile computing with lo-

cation information. CACM, 36(7):27, July 1993. In Special Issue, Computer-

Augmented Environments.

[82] Sohn T., K. A. Li, W. G. Griswold, and J. D. Hollan. A diary study of

mobile information needs. In CHI 2008 Proceedings, pages 433442, Florence,

Italy, Apr. 2008.

[83] Schmidt K, Heath C, Rodden T (2002) Preface to special issue on aware-

ness. Comput Support Coop Work 11:iii-iv.

[84] Sousa J. P. and D. Garlan. Aura: an Architectural Framework for User

Mobility in Ubiquitous Computing Environments. In Proceeding of the 3rd

Working IEEE/IFIP Conference on Software Architecture, Montreal, 2002.

[85] Van Lieshout EJ, van der Veer SN, Hensbroek R, et al. Interference by

new-generation mobile phones on critical care medical equipment. Crit Care.

2007;11(5):165.

[86] Van Bemmel JH, Musen MA (1997) Handbook of medical informatics.

Springer, Berlin Heidelberg New york.

[87] Whittaker, S., Frohlich, D. Daly-Jones, W. (1994). Informal Workplace

Communication: What is it Like and How Might We Support It? Pro-

ceedings of CHI94 Conference on Human Factors in Computing Systems,

131−137, ACM Press: New York.

[88] Winograd, Terry, Architectures for Context, Human-Computer Interaction,

16:2−3, 2001.

[89] wirelesscommunication.nl, Digital Enhanced Cord-

less Telecommunications (DECT), [Accessed 10/12/2009]:

http://www.wirelesscommunication.nl/reference/chaptr01/telephon/dect.htm.

[90] Xiao Y., C. Lasome, J. Moss, C. Mackenzie, and S. Faraj. Cognitive prop-

erties of a whiteboard: A case study in a trauma centre. In Prinz et al. [24],

pages 259−278.

[91] Yee S. and K. S. Park. Studiobridge: using group, location, and event

information to bridge online and offline encounters for co-located learning

groups. In CHI 05: Proceedings of the SIGCHI conference on Human factors

in computing systems, pages 551−560, New York, NY, USA, 2005. ACM

Press.

99

[92] http://fonality.com/trixbox/wiki/how-big [Accessed 02 may 2011]

[93] http://en.wikipedia.org/wiki/Private branch exchange#Private branch exchange

[Accessed 02 may 2011]

[94] http://www.cisco.com/web/DK/assets/docs/StOlavsHospitalCiscocasestudy.pdf

[Accessed 24 may 2011]

[95] http://asterisk-java.org/ [Accessed 24 may 2011]

[96] http://en.wikipedia.org/wiki/SOAP [Accessed 24 may 2011]

100

