
 1

Increased levels of BAFF in patients with Systemic Lupus Erythematosus are associated with 

acute phase reactants, independent of BAFF genetics: a case control study 

 

MD Gro Østli Eilertsen¹, PhD Marijke Van Ghelue², Harald Strand³ and MD PhD Johannes Cornelis 

Nossent¹.  

 

¹Department of Rheumatology, Institute of Clinical Medicine, Medical School, University of 

Tromsø, Norway.  

²Department of Medical Genetics, University Hospital North Norway, Tromsø, Norway. 

³Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway. 

 

Correspondence to: G. Ø. Eilertsen, Faculty of Health Sciences, Institute of Clinical Medicine, 

Department of Rheumatology, University of Tromsø, 9037 Tromsø, Norway. 

E-mail: gro.ostli.eilertsen@unn.no 

 

Running header: s-BAFF in SLE correlates with acute phase reactants 

 

 

 

 

 

 

 

 

 



 2

Abstract 

Objectives: To determine whether increased levels of B cell activating factor (BAFF) in patients with 

Systemic Lupus Erythematosus (SLE) are due to disease activity or genetic variations in the promoter 

region of the BAFF gene and BAFF gene expression. 

Methods:  The case control study included 101 SLE patients and 111 healthy controls. Five single 

nucleotide polymorphisms (SNPs) in the BAFF promoter region were investigated by melting point 

analysis; c.-2841 (T>C), c.-2704 (T>C), c.-2701 (A>T), c.-871 (C>T) and c.-514 (A>G). BAFF mRNA 

levels were determined by real time PCR (BAFF-RQ) and serum BAFF (s-BAFF) levels were measured 

by ELISA. Independent predictors that might be correlated with increased s-BAFF in SLE patients were 

analysed by multivariate regression methods. 

Results: Although s-BAFF levels were increased in SLE patients (1.73 vs. 0.98 ng/μl, p<0.001), no 

specific BAFF genotype was found to associate with SLE. The different genotypes defined by the 

investigated SNPs were identified both in SLE patients and healthy controls with similar frequencies. 

No association was found between BAFF genotype and BAFF-RQ. S-BAFF was independently of 

other factors, correlated with CRP (β 0.40, p<0.001), physicians visual analogue score (Rs 0.21 

p=0.046) and inversely with haemoglobin (β -0.32, p<0.001) and IgA (β -0.33, p=0.001).   

Conclusions: Increased s-BAFF levels in SLE patients are associated with the acute phase responses 

CRP and haemoglobin, but probably not dependent on BAFF genotype or expression. This indicates 

that s-BAFF production occurs at sites of inflammation. 

 

Key words: B-lymphocyte activating factor, Systemic Lupus Erythematosus, acute phase reactants, 

genetics 
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Introduction  

B-cell activating factor belonging to the tumor necrosis factor (TNF) superfamily (TNFSF13, 

BAFF or BLyS) is an important stimulatory factor for B-cell development and homeostasis (1). 

BAFF synthesis occurs in a range of immune cells (2) and can be enhanced through stimulation by 

inflammatory cytokines like IL-2 and INF-γ (3;4). Depending of the different receptor on mature B 

cells (BAFF-R, TACI and BCMA), the binding of BAFF with receptors induces Ig class switching, 

cell proliferation and increased survival of B cells (5). These aspects of B cell functioning are all 

relevant in the pathogenesis of human SLE, but most of our knowledge on BAFF originates from 

experimental models. Transgenic mice over expressing BAFF develop B-cell hyperplasia and 

hypergammaglobulinemia, a striking increase in circulating autoantibodies and immune complex 

mediated disease with features of SLE and primary Sjögren’s syndrome (pSS) (6-8). In lupus prone 

mice, s-BAFF levels are increased at disease onset and blocking BAFF-dependent signals with 

soluble receptor prolongs their survival (9). In SLE patients, s-BAFF levels are frequently elevated 

and associated with disease activity including anti-dsDNA antibodies (Ab) levels (10-13). While 

these findings suggests that BAFF may be involved in the selective loss of B-cell tolerance in human 

SLE, the mechanisms responsible for increased s-BAFF levels in SLE remain unclear (5).  

Genetic predisposition is an important factor in the development and expression of systemic 

autoimmune disease in general and characteristic B cell hyperactivity in SLE patients may be related 

to specific polymorphisms in B cell signalling genes (14-16). The only report on BAFF genetics is in 

Japanese SLE patients, and no associations between disease susceptibility and single nucleotide 

polymorphisms (SNPs) in the 5 'regulatory region of the BAFF gene (13q32-34) were shown (17). 

BAFF genotype data of non Asian SLE patients are currently lacking. However, in a study of 

Caucasian patients with primary Sjögren's syndrome (pSS) an association between anti-Ro/La 

positive patients and a specific BAFF haplotype (CTAT) was shown (18). Furthermore, the BAFF c.-

871 T allele in the regulatory region of the BAFF gene was associated with increased s-BAFF in pSS 
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patients (18;19). Accordingly, this SNP may be involved in increased BAFF expression. In a cross 

sectional study on Chinese SLE patients, BAFF gene expression in peripheral blood mononuclear 

cells (PBMCs) was shown to be correlated with disease activity and anti-dsDNA Ab levels (20), 

whereas in a longitudinal North American study, BAFF mRNA was not associated with s-BAFF 

levels in 60% of patients (12). The discrepancy between s-BAFF levels and BAFF mRNA 

expression in PBMCs could indicate that in vivo BAFF production also occurs in other cells/tissue. 

As there are no data that combine BAFF genotype, BAFF gene expression and s-BAFF with 

clinical data in SLE patients, we investigated if any associations exist in vivo, between regulatory 

genetic polymorphisms, BAFF gene expression and/or s-BAFF levels with regard to disease 

susceptibility and disease phenotype.  

 

Materials and methods 

1. Study participants 

Hundred and one SLE patients (>15 years) were investigated. The patients were mainly (99%) of 

Caucasian descent; 87% were female, the median age was 47 years and the median disease duration 

was 10 years. All patients fulfilled the revised and/or updated American College of Rheumatology 

(ACR) criteria for the classification of SLE (21;22). Patients attended an extended clinic visit, where 

clinical data and biological material were taken simultaneously. Healthy volunteers (all Caucasian, 

71% females and median age 48 years) were used as controls for serological investigations, gene 

expression studies and genotype analyses. The study protocol was approved by the local ethical 

committee, the national privacy agency and the Ministry of Health (ref. no 12420) and all 

participants gave written informed consent for the anonymous use of their data in compliance with 

the Helsinki Declaration.  
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2. Clinical categorization of patients 

Lupus Nephritis (LN) designates patients with proteinuria (>0.5 g/24 hours) and/or the presence of 

>5 red blood cells and/or heme-granular or red blood cells casts (23).  Secondary Sjögren’s 

syndrome was defined as chronic sicca complaints with evidence of reduced tear and/or saliva 

production. Skin disease was defined as the presence of oral ulcers, malar or discoid rash as defined 

in SLEDAI. The disease activity and organ damage were scored according to SLE Disease Activity 

Index (SLEDAI) and Systemic Lupus International Collaborating Clinics/ACR Damage Index (SDI) 

(23;24). Patient and physician estimates for global disease activity were score on a visual analog 

scale (VAS; range 0-100mm) (25) 

 

3. Serology  

Serum BAFF levels were measured in duplex using a Quantikine Human BAFF/BLyS/TNFSF13B 

Immunoassay (R&D Systems, Minneapolis, USA) and results were averaged. Anti-nuclear 

antibodies (ANA) positive sera were routinely tested by enzyme immunoassays EIiA (VarELISA 

Phadia, Freiburg, Germany) for the presence of IgG subclass antibodies against double stranded 

DNA (anti-dsDNA),  Ro (anti-SSA), La (anti-SSB), Smith (anti-Sm) anti-U1 small nuclear 

ribonucleoparticle (anti-U1-snRNP) and  cardiolipin (aCL-G and aCL-M; normal levels <16IU/mL).  

 

4. SNP analysis  

4.1 Haplotype 

We identified five common haplotypes in the 5' regulatory region within 5kb of the first exon of the 

BAFF gene (chromosome 13, 107715-107725K) with the use of Caucasian (CEU) family data from 

the HapMap project (www.hapmap.org) or SNP database (www.ncbi.nlm.nih.gov/snp). These 

haplotypes were tagged by SNP rs9514827 (c.-2841 T>C), rs3759467 (c.-2704 T>C), rs1041569 (c.-
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2701 A>T), rs9514828 (c.-871 C>T) and rs3759465 (c.-514 A>G) (Figure1). Genotype and 

haplotype analyses were performed with SNPStats software (26). 

 

4.2 Primers and probes 

Genomic DNA was extracted from PBMCs and purified according to the instructions provided 

(Puregene Genomic DNA purification Kit, Gentra systems, Minneapolis, USA). Primers were 

designed for regions flanking each SNP. For specific detection of SNPs we used fluorescence 

resonance energy transfer (FRET) probes labelled with fluorescein and LC-Red 640 or LC-Red 705 

(TIB Molbiol, Berlin, Germany). Primers and probes were designed using the LightCycler Probe 

Design Software (Roche Diagnostics, Mannheim, Germany) and the sequences are specified in the 

supplemental Table.   

 

4.3 PCR and melting curve analysis 

All PCR assays for SNP analysis were performed on a LightCycler1.2 (Roche Diagnostics, 

Mannheim, Germany) under the following conditions: 2μl DNA Master HybProbe solution (Roche 

Diagnostics, Mannheim, Germany), 3mM MgCl2, 1μM of each primer, 0.15µM of each probe and 2μl 

templates in a final volume of 20μl. The SNPs c.-2841, c.-2704 and c.-2701 were analysed in a single 

tube using the following temperature program: Amplifications with initial denaturation at 94°C for 

30sec followed by 35 cycles at 55ºC for 15sec and 72 ºC for 19sec. Directly after amplification, 

melting curve analysis was performed by continuous measurement of the emitted light at temperatures 

increasing from 35° to 80°C. The two other SNPs (c.-871 and c.-514) were analysed in separate tubes, 

using the same temperature program except that elongation time at 72°C was 15sec. The SNP assay 

findings were confirmed by sequencing of different genotypes using BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, CA, USA).  
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5. BAFF gene expression.   

5.1 Design of primers and probes 

Primers and probes were designed using the BAFF encoding gene TNFSF13B (NC_000013.10) and 

B2M gene encoding β2-microglobulin (β2M) (NC_000015.9) as templates. Primers were designed 

using Enhanced Avian HS RT-PCR software (Sigma-Aldrich, Saint Quentin Fallavier, France) and 

probes were selected using Universal ProbeLibrary Human Gene Assay (Roche Diagnostics, 

Mannheim, Germany) (supplemental Table). 

 

5.2 RNA extraction and cDNA synthesis  

Total RNA from frozen PBMCs was extracted using RNeasy Mini Kit (Qiagen, Hilden, Germany), 

following manufacturer’s instructions. RNA was DNaseI treated (RNA-free), and stored at -80ºC. 

Total RNA (2μg) was used to synthesize cDNA in a total volume of 20μL using SuperScript VILO 

cDNA Synthesis Kit (Invitrogen, CA, USA) with regard of investigation full-length BAFF mRNA, 

according to the protocol. The quality of cDNA was then confirmed by PCR using cDNA (0.5μl), 

adenine phosphoribosyltransferase gene (APRT) primers (5pM) and Jumpstart ready mix Red Taq 

DNA polymerase (Sigma-Aldrich, Saint Quentin Fallavier, France). Thermal conditions were 

denaturation at 94ºC for 2min., 35 cycles at 94ºC for 10sec. 65ºC for 10sec., and 72 ºC for 15sec. and 

a final extension at 72ºC for 5min. Agarose gel electrophoresis were run to ensure quality of cDNA, 

which was stored at  −20°C. 

 

5.3 RT-PCR 

Real-time PCR analysis was performed to determine the levels of BAFF mRNA in PBMCs using an 

ABI PRISM 7900HT, (version 2.3, Applied Biosystems, CA, USA). PCR reaction mixture contained 

4μl cDNA, 10μl TaqMan MasterMix (TaqMan® Fast Universal PCR Master Mix (2x), No 

AmpErase® UNG, (Applied Biosystems), 5μM of each primer and probe in a final volume of 20μl. 



 8

Each analysis was performed with initial incubation at 95ºC for 20sec., followed by 40 cycles at 

95ºC for 1sec. and 60ºC for 20sec. PCR reactions were done in triplicates. A range of primer 

concentrations was tested to ensure optimal amplification efficiency. Relative concentrations of 

cDNA present during the exponential phase of the reaction were determined by plotting fluorescence 

against cycle number on a logarithmic scale. A threshold for detection of fluorescence above 

background was determined. The BAFF transcript quantification was standardized using β2M as 

internal control. BAFF-RQ are calculated as the ratios of BAFF mRNA to β2M mRNA using the 

following formula: 2 exp(Ctβ2M – CtBAFF). Cut-off levels were determined by the geometric mean 

+2 S.D. for healthy controls (n=31). The amplification was verified by melting curve analysis and 

crossing point. No amplification of non-specific products was observed. 

 

6. Statistics  

As most data had a skewed distribution, numbers reported are median values unless indicated 

otherwise and nonparametric test methods were used in statistical analyses. Continuous data were 

analyzed by Mann-Whitney U test, and categorical data by Poisson distribution contingency tables or 

Fishers’ exact test. Correlations were analyzed by Spearman rank correlation coefficients. Factors 

that were significant associated with s-BAFF and BAFF-RQ after univariate analyses were then 

entered into multiple regression models (p<0.2 to enter, p>0.05 to stay) to determine the 

independence of potential correlations. Statistical analyses were performed with SPSS v17.0. 

 

Results 

BAFF promoter genotype and association with SLE 

In the currently studied Caucasian population the allele frequencies for the investigated SNPs in the 

BAFF gene promoter region were comparable with those reported in the HapMap database. 

Furthermore, the allele frequencies were similar for SLE patients and healthy controls (p>0.2) (Table 
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1). In addition, when comparing SLE patients and controls, no significant difference in genotype 

frequencies was found (p>0.1) (Table 1). As all but one individual expressed genotype AA for SNP 

rs3759465 (c.-514 A>G), this SNP was excluded from the haplotype analyses. The remaining four 

SNPs were in strong linkage disequilibrium (p<0.00001) and formed four common haplotypes 

(frequency >0.5%). No specific haplotype could be correlated with SLE and four common haplotype 

were found with similar frequencies in our studied SLE population and the normal controls (global 

haplotype association p-value=0.59) (Table 2).  

 

BAFF promoter variation and association with BAFF gene expression 

In SLE patients an increased BAFF mRNA levels was found compared to controls (RQ 1.8 ±0.63 

S.D. vs. 1.1 ±0.64 S.D. p<0.001). However, the increased BAFF-RQ was not associated with the 

presence of a particular investigated SNP. In addition, increased BAFF-RQ were not associated with 

a specific haplotype in our investigated SLE population (p-value=0.21). 

 

Serum-BAFF and association with BAFF promoter variation and BAFF gene expression 

The measured s-BAFF levels were nearly doubled in the SLE patients (1.73ng/μl.±1.10 S.D.) 

compared to controls (0.98ng/μl ±0.27 S.D. p<0.001) (Figure 2). Single allele-, genotype- and 

haplotype association analyses showed however no significant association with s-BAFF values in 

SLE patients (data not shown). In SLE patients, no correlation was found between s-BAFF and full-

length BAFF mRNA levels in PBMCs (R²; 0.007, p=0.4) (Figure 3). 

 

Clinical features and BAFF expression 

Demographics There was no association between increased s-BAFF levels and the patients age 

(p=0.9) or gender (p=0.2) in the SLE cohort compared with healthy controls. SLE patients that were 
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daily smokers (n=34) produced significantly increased s-BAFF than non-smokers patients, (2.23 

ng/μl ±1.10 S.D. vs. 1.83 ±1.10 S.D. p=0.025). 

Disease activity The investigated SLE population presented with a SLEDAI 2K scores of 6 (range 0-

39), while the patients VAS scores were 3 (range 0-9) and physician VAS scores were 2 (range 0-8).  

Physicians VAS scores correlated with s-BAFF levels (Rs 0.21, p=0.05). Single disease 

manifestations registered in SLEDAI and global activity scores (SLEDAI-2K, SDI) showed no 

significant correlation with s-BAFF or BAFF-RQ levels. The s-BAFF levels were not significantly 

different in patients with active renal (n=9; s-BAFF 1.86 ng/μl vs. 1.73, p=0.9), skin disease (n=21; 

s-BAFF 1.75 ng/μl vs. 1.73, p=0.9) or secondary Sjögren’s Syndrome (n= 33; s-BAFF 1.69 ng/μl vs. 

1.76, p= 0.6) compared to patients without these organ manifestation. Similarly, BAFF-RQ levels 

did not differ between patients with or without these organ involvements (data not shown, all p 

values>0.3). 

Autoantibodies  SLE patients with positive test of anti-dsDNA Ab (n=31) had increased levels of s-

BAFF compared with patients without anti-dsDNA Ab (2.2 ng/μl vs. 1.6, p=0.009), but similar 

findings of increased BAFF-RQ was not found in PBMCs (1.8 vs. 1.9, p>0.4) (data not shown). 

Increased s-BAFF and BAFF-RQ were rather not associated with the presence of anti-Sm, anti-SSA, 

anti-SSB or anti-RNP Ab (data not shown). In addition, neither correlations between anti-dsDNA 

Ab, ELISA (OD ratio 2.0, range 0-5.8) nor anti-dsDNA Ab, ELIA (2.3 IU/mL, range 0-450) and s-

BAFF levels or BAFF gene expression were found.  Other autoantibodies with quantitative levels 

like anti-Cardiolipin Ab and Rheumatoid factor showed neither correlation, (Table 3). 

Immune cells and other laboratory findings  In patients with SLE, several assays in serum were 

measured such as CRP (4 mg/L, range 1-21), haemoglobin (Hb) (13.2 g/dL, range 8,3-17) and IgA 

(2.4 g/L, range 0.4-9.2). We found that s-BAFF concentrations had a strong and independent positive 

correlation with CRP levels (: 0.40, p<0.001) and a negative correlation with Hb (: -0.32, 

p<0.001) and IgA levels (: -0.33, p=0.001) (Table 3). Furthermore, BAFF-RQ correlated inversely 
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with CD4+cells (: -0.27, p<0.012) and IgG levels (: -0.25, p=0.023), where median serum levels 

of CD4+cells were 0.55 x 109/L (range 0.1-1.6) and IgG 13.1 g/L, (range 5.0-27). Neither absolute 

complement levels of C3 and C4 nor hypocomplementemia associated with s-BAFF or BAFF-RQ 

levels. 

 

Discussion  

In this cross sectional study we investigated several aspects of BAFF to increase our 

understanding of the regulation and contribution of BAFF in human SLE. We found that genetic 

variation in the promoter region of the BAFF gene was not associated with SLE susceptibility, BAFF 

gene expression or s-BAFF.  Furthermore, no linear correlation was observed between increased 

BAFF gene expression and increased s-BAFF levels. This observation together with the correlation 

found between s-BAFF levels and markers of the acute phase response suggest that s-BAFF 

production in SLE occurs mainly at local sites of inflammation. 

The role of polymorphisms of the BAFF encoding gene has been rarely investigated in human 

SLE, possibly because this gene seems to be highly conserved (19;27). However, there are data 

suggesting that the c.-871 C>T SNP in the 5’ promoter region of the BAFF gene increases disease 

susceptibility and circulating BAFF levels in patients with Sjögren’s syndrome (18;19). In our study, 

neither this SNP nor other single or combined variations in the 5’ promoter region of the BAFF gene, 

demonstrated disease association with SLE, which is in agreement with the only other study on this 

subject in a Japanese SLE cohort (17). The fact that BAFF gene polymorphisms were not reported 

with the main risk factors for SLE in genome wide association studies also indicates that BAFF 

polymorphisms have little impact on disease susceptibility (15;28-30).  

BAFF gene expression in PBMCs was increased in SLE patients, but this was not related to 

the presence of distinct disease manifestations. This is in accordance with the lack of association 

between BAFF expression and renal disease observed in lupus prone mice that strongly express anti-
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nucleosome and anti-dsDNA Ab (31). Up regulation of BAFF-mRNA has also been observed in the 

salivary glands of patients with primary Sjögren’s syndrome. However, we were unable to confirm 

such association in PBMCs of SLE patients. This discrepancy may be due to difference in used 

biological material (blood vs. salivary cells) where mRNA was isolated from or to the fact that 

secondary Sjögren’s syndrome developed from  SLE does not lead to germinal centre formation 

and/or BAFF expression in the salivary glands (6;32). We did find a strong inverse correlation of 

BAFF gene expression with numbers of CD4+T-cells and IgG levels, which both are considered to 

be immunological signs of disease activity in SLE (33;34). This is inconsistent with Morimoto and 

colleagues who suggested that autoantibody production is driven by BAFF produced by T-cells and 

may accordingly play a pathological role in SLE (35). However, their results are based on the 

expression of BAFF mRNA in isolated T-cells of SLE patients which was absent in T-cells from 

normal controls. Since neither s-BAFF levels nor their relation with BAFF gene expression in SLE 

patients were reported in that study, it is not possible to determine the extent to which the 

contribution of BAFF production by CD4+T-cells affects the s-BAFF levels. The significant 

discrepancy between the BAFF gene expression and s-BAFF levels reported here have also been 

reported elsewhere (12) and suggest that the origin of s-BAFF is more complex. Our data underscore 

the hypothesis that a negative regulatory feedback mechanisms may exist between s-BAFF levels 

and BAFF mRNA expression in PBMCs (19). This may also be the case in a specific transgenic 

mouse model where it was established that BAFF exerts an anti-inflammatory effect through B cell 

dependent up regulation of regulatory CD4+CD25+T-cells (36). 

In agreement with earlier reports, we found that almost two-thirds of studied SLE patients 

had increased s-BAFF levels (10;12;37). However, s-BAFF levels were neither associated with 

specific genotypes nor with mRNA expression levels in PBMCs and this could indicate that s-BAFF 

does not derive exclusively from circulating cells. The most striking findings in this study were 

prominent correlation between s-BAFF levels and features of the acute phase response (increased 
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CRP, lower albumen and Hb levels). Different inflammatory tissues have been shown to express 

BAFF locally (38-41), that accordingly also contributes to higher s-BAFF levels. Our data, in 

agreement with other studies, indicated that increased s-BAFF are closely related to systemic signs 

of inflammation and may not play a primary role in the autoimmune pathway of SLE (10;42).  

Given the diverse nature of SLE, we stratified patients by distinct clinical features, but were 

unable to detect whether patients with elevated s-BAFF were more likely to have active renal- or 

skin disease or secondary Sjögren’s syndrome. The only significant clinical correlation we found 

was that s-BAFF was increased in current smokers. These results support the observation that smoke 

inhalation may stimulate BAFF expression in epithelial airway cells (41;43;44) and emphasize the 

role for BAFF as a marker of inflammation. In contrast, we did not show an association between s-

BAFF levels and SLEDAI scores (Rs -0.2; p>0.8); which is in accordance with some but not all 

reports (10-12;20) and may partly reflect the rather crude nature of disease activity scoring systems 

(45). While we could not detect which particular type of organ inflammation was associated to the 

increased s-BAFF levels, the close correlation between s-BAFF and anti-dsDNA Ab suggested that 

there is a disease specific inflammatory process involving autoantibodies triggering the increased s-

BAFF levels.  

 There are several limitations to these results. The phenotype of SLE may vary in different 

populations, which implies that the findings in this Caucasian cohort can not be directly transferred 

to cohorts of different ethnicity. While our results do not demonstrate an influence of polymorphisms 

on gene expression nor on s-BAFF levels, such a role for these polymorphisms cannot be wholly 

excluded because of sample sizes and the possibility of a type II error. Therefore, further studies that 

include more patients and controls are required before a final conclusion can be made. Similar 

restrictions apply to our subgroup analyses, especially for patients with active renal disease. Finally, 

SLE is a chronic disease with intermittent disease activity and our cross sectional study design does 
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not allow any conclusions about variations of BAFF expression levels over time, although s-BAFF 

level variation seem to be limited (10;12).  

In conclusion, polymorphisms in the regulatory region of the BAFF gene do in all probability 

neither contribute to the increased BAFF gene expression or increased s-BAFF levels nor to the 

susceptibility to SLE in Caucasian patients. There is no linear correlation between increased BAFF 

gene expression measured in PBMCs and increased s-BAFF levels. As s-BAFF levels are strongly 

correlated with markers of inflammation, most of the produced s-BAFF may originate from local 

inflamed tissues.  

 

Key messages: 

1. Serum-BAFF levels correlate strongly with acute phase reactants. 

2. There is no linear correlation between BAFF gene expression in PBMCs and serum-BAFF levels. 

3. BAFF gene promoter polymorphisms do not contribute to SLE disease susceptibility. 

 

Acknowledgements We thank Kirsten Nilsen for excellent technical help and Andrea Becker-

Merok, for help in ascertaining and examining the patients.  

 

Declaration of interests The authors report no conflicts of interests.  

 

Funding statement This work was supported by grants of Norsk Revmatikerforbund, Oslo 

Sanitetsforening and the Scandinavian Rheumatology Research Foundation. 

 

 

 

 



 15

 
Reference List 

 
 (1)  Ryan MC, Grewal IS. Targeting of BAFF and APRIL for Autoimmunity and Oncology. Adv 

Exp Med Biol 2009;647:52-63.:52-63. 

 (2)  Mackay F, Silveira PA, Brink R. B cells and the BAFF/APRIL axis: fast-forward on 
autoimmunity and signaling. Curr Opin Immunol 2007 Jun;19(3):327-36. 

 (3)  Harigai M, Kawamoto M, Hara M, Kubota T, Kamatani N, Miyasaka N. Excessive 
production of IFN-gamma in patients with systemic lupus erythematosus and its contribution 
to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-
13B. J Immunol 2008 Aug 1;181(3):2211-9. 

 (4)  Suzuki K, Setoyama Y, Yoshimoto K, Tsuzaka K, Abe T, Takeuchi T. Effect of interleukin-2 
on synthesis of B cell activating factor belonging to the tumor necrosis factor family (BAFF) 
in human peripheral blood mononuclear cells. Cytokine 2008 Oct;44(1):44-8. 

 (5)  Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol 2009 Jul;9(7):491-502. 

 (6)  Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P, et al. Association of 
BAFF/BLyS overexpression and altered B cell differentiation with Sjogren's syndrome. J 
Clin Invest 2002 Jan;109(1):59-68. 

 (7)  Khare SD, Sarosi I, Xia XZ, McCabe S, Miner K, Solovyev I, et al. Severe B cell hyperplasia 
and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci U S A 2000 Mar 
28;97(7):3370-5. 

 (8)  Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, et al. Mice 
transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J 
Exp Med 1999 Dec 6;190(11):1697-710. 

 (9)  Ramanujam M, Bethunaickan R, Huang W, Tao H, Madaio MP, Davidson A. Selective 
blockade of BAFF for the prevention and treatment of systemic lupus erythematosus 
nephritis in NZM2410 mice. Arthritis Rheum 2010 May;62(5):1457-68. 

 (10)  Becker-Merok A, Nikolaisen C, Nossent HC. B-lymphocyte activating factor in systemic 
lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease 
measures and time. Lupus 2006;15(9):570-6. 

 (11)  Petri M, Stohl W, Chatham W, McCune WJ, Chevrier M, Ryel J, et al. Association of plasma 
B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. 
Arthritis Rheum 2008 Aug;58(8):2453-9. 

 (12)  Stohl W, Metyas S, Tan SM, Cheema GS, Oamar B, Xu D, et al. B lymphocyte stimulator 
overexpression in patients with systemic lupus erythematosus: longitudinal observations. 
Arthritis Rheum 2003 Dec;48(12):3475-86. 

 (13)  Zhang J, Roschke V, Baker KP, Wang Z, Alarcon GS, Fessler BJ, et al. Cutting edge: a role 
for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 2001 Jan 
1;166(1):6-10. 



 16

 (14)  Criswell LA. The genetic contribution to systemic lupus erythematosus. Bull NYU Hosp Jt 
Dis 2008;66(3):176-83. 

 (15)  Moser KL, Kelly JA, Lessard CJ, Harley JB. Recent insights into the genetic basis of 
systemic lupus erythematosus. Genes Immun 2009 Jul;10(5):373-9. 

 (16)  Sanz I, Lee FE. B cells as therapeutic targets in SLE. Nat Rev Rheumatol 2010 Jun;6(6):326-
37. 

 (17)  Kawasaki A, Tsuchiya N, Fukazawa T, Hashimoto H, Tokunaga K. Analysis on the 
association of human BLYS (BAFF, TNFSF13B) polymorphisms with systemic lupus 
erythematosus and rheumatoid arthritis. Genes Immun 2002 Nov;3(7):424-9. 

 (18)  Nossent JC, Lester S, Zahra D, Mackay CR, Rischmueller M. Polymorphism in the 5' 
regulatory region of the B-lymphocyte activating factor gene is associated with the Ro/La 
autoantibody response and serum BAFF levels in primary Sjogren's syndrome. 
Rheumatology (Oxford) 2008 Sep;47(9):1311-6. 

 (19)  Gottenberg JE, Sellam J, Ittah M, Lavie F, Proust A, Zouali H, et al. No evidence for an 
association between the -871 T/C promoter polymorphism in the B-cell-activating factor gene 
and primary Sjogren's syndrome. Arthritis Res Ther 2006;8(1):R30. 

 (20)  Ju S, Zhang D, Wang Y, Ni H, Kong X, Zhong R. Correlation of the expression levels of 
BLyS and its receptors mRNA in patients with systemic lupus erythematosus. Clin Biochem 
2006 Dec;39(12):1131-7. 

 (21)  Hochberg MC. Updating the American Collage of Rheumatology revised criteria for the 
classification of systemic lupus erythematosus. Arthritis Rheum 1997;40(9):1725. 

 (22)  Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised 
criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982 
Nov;25(11):1271-7. 

 (23)  Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. 
A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. 
Arthritis Rheum 1992 Jun;35:630-40. 

 (24)  Bernatsky S, Clarke A, Abrahamowicz M, Neville C, Karp I, Pineau CA. A comparison of 
prospective and retrospective evaluations of the Systemic Lupus International Collaborating 
Clinics/American College of Rheumatology Damage Index for systemic lupus 
erythematosus. J Rheumatol 2005 May;32(5):820-3. 

 (25)  Petri M, Hellmann D, Hochberg M. Validity and reliability of lupus activity measures in the 
routine clinic setting. J Rheumatol 1992 Jan;19(1):53-9. 

 (26)  Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of 
association studies. Bioinformatics 2006 Aug 1;22(15):1928-9. 

 (27)  Losi CG, Salzer U, Gatta R, Lougaris V, Cattaneo G, Meini A, et al. Mutational analysis of 
human BLyS in patients with common variable immunodeficiency. J Clin Immunol 2006 
Jul;26(4):396-9. 



 17

 (28)  Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. 
Nat Rev Rheumatol 2010 Dec;6(12):683-92. 

 (29)  Kaiser R, Criswell LA. Genetics research in systemic lupus erythematosus for clinicians: 
methodology, progress, and controversies. Curr Opin Rheumatol 2010 Mar;22(2):119-25. 

 (30)  Morel L. Genetics of SLE: evidence from mouse models. Nat Rev Rheumatol 2010 
Jun;6(6):348-57. 

 (31)  Jacob CO, Pricop L, Putterman C, Koss MN, Liu Y, Kollaros M, et al. Paucity of clinical 
disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand 
mixed 2328 mice deficient in BAFF. J Immunol 2006 Aug 15;177(4):2671-80. 

 (32)  Szodoray P, Jonsson R. The BAFF/APRIL system in systemic autoimmune diseases with a 
special emphasis on Sjogren's syndrome. Scand J Immunol 2005 Nov;62(5):421-8. 

 (33)  Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, et al. 
Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N 
Engl J Med 2003 Oct 16;349(16):1526-33. 

 (34)  Shah K, Lee WW, Lee SH, Kim SH, Kang SW, Craft J, et al. Dysregulated balance of Th17 
and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther 2010;12(2):R53. 

 (35)  Morimoto S, Nakano S, Watanabe T, Tamayama Y, Mitsuo A, Nakiri Y, et al. Expression of 
B-cell activating factor of the tumour necrosis factor family (BAFF) in T cells in active 
systemic lupus erythematosus: the role of BAFF in T cell-dependent B cell pathogenic 
autoantibody production. Rheumatology (Oxford) 2007 Jul;46(7):1083-6. 

 (36)  Walters S, Webster KE, Sutherland A, Gardam S, Groom J, Liuwantara D, et al. Increased 
CD4+Foxp3+ T cells in BAFF-transgenic mice suppress T cell effector responses. J Immunol 
2009 Jan 15;182(2):793-801. 

 (37)  Cheema GS, Roschke V, Hilbert DM, Stohl W. Elevated serum B lymphocyte stimulator 
levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 2001 
Jun;44(6):1313-9. 

 (38)  Krumbholz M, Theil D, Derfuss T, Rosenwald A, Schrader F, Monoranu CM, et al. BAFF is 
produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central 
nervous system lymphoma. J Exp Med 2005 Jan 17;201(2):195-200. 

 (39)  Ohata J, Zvaifler NJ, Nishio M, Boyle DL, Kalled SL, Carson DA, et al. Fibroblast-like 
synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF 
family in response to proinflammatory cytokines. J Immunol 2005 Jan 15;174(2):864-70. 

 (40)  Ittah M, Miceli-Richard C, Eric GJ, Lavie F, Lazure T, Ba N, et al. B cell-activating factor of 
the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in 
salivary gland epithelial cells in primary Sjogren's syndrome. Arthritis Res Ther 
2006;8(2):R51. 

 (41)  Kato A, Truong-Tran AQ, Scott AL, Matsumoto K, Schleimer RP. Airway epithelial cells 
produce B cell-activating factor of TNF family by an IFN-beta-dependent mechanism. J 
Immunol 2006 Nov 15;177(10):7164-72. 



 18

 (42)  Stohl W, Jacob N, Guo S, Morel L. Constitutive overexpression of BAFF in autoimmune-
resistant mice drives only some aspects of systemic lupus erythematosus-like autoimmunity. 
Arthritis Rheum 2010 Aug;62(8):2432-42. 

 (43)  Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and 
autoimmunity. J Autoimmun 2010 May;34(3):J258-J265. 

 (44)  Schiffer L, Bethunaickan R, Ramanujam M, Huang W, Schiffer M, Tao H, et al. Activated 
renal macrophages are markers of disease onset and disease remission in lupus nephritis. J 
Immunol 2008 Feb 1;180(3):1938-47. 

 (45)  Bruce IN. Re-evaluation of biologic therapies in systemic lupus erythematosus. Curr Opin 
Rheumatol 2010 May;22(3):273-7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 19

Table 1  Allele- and genotype frequency in SLE patients and controls in a Caucasian population.   

    

SLE 

n=100 

Controls

n=110 

HapMap/ 

SNPdatabase*   

SLE 

 n=100 

Controls

n=110    

SNP Allele % % % Genotypes n (%) n (%) p-value

          
Rs9514827 T 61 63 70 TT 37 (37) 43 (39)  

 C 39 37 30 CT 49 (49) 53 (48) 0.89 

     CC 15 (15) 14 (13)  

          
Rs3759467* T 83 85 81 TT 69 (69) 80 (73)  

 C 17 15 19 CT 30 (30) 27 (25) 0.68 

     CC 2 (2) 3 (3)  

Rs1041569*  A 85 79 77 AA 76 (75) 70 (64)  

 T 15 21 23 AT 19 (19) 34 (31) 0.13 

     TT 6 (6) 6 (6)  

          
Rs9514828 T 51 56 47 TT 24 (24) 33 (30)  

 C 49 44 53 CT 55 (55) 56 (51) 0.59 

     CC 22 (22) 21 (19)  

          

Rs3759465 A 99 100 96 AA 100 (99) 

110 

(100) 0.97 

 G 1 0 4 AG 1 (1) 0  
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Table 2  Haplotype frequencies for BAFF promoter region in SLE patients and controls. 
       
   SLE Controls OR  

 Haplotypeª Total n=101 n=110 (95% CI) p-value 

              
(1) CTAT 0.37 0.38 0.36 1  

(2) TTAC 0.28 0.29 0.27 1.02 (0.62 - 1.69) 0.93 

(3) TTTT 0.16 0.12 0.19 0.65 (0.37 - 1.14) 0.14 

(4) TCAC 0.16 0.17 0.15 1.10 (0.62 - 1.97) 0.74 

 rare pool 0.03 0.04 0.02 1.37 (0.36 - 5.18) 0.64 

       
Global haplotype association p-value: 0.59 

ªHaplotype order rs9514827 (c.-2841 T>C), rs3759467 (c.-2704 T>C), rs1041569  

(c.-2701 A>T) and rs9514828 (c.-871 C>T)  
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Table 3 Linear regression analysis (95% CI.) of BAFF-RQ or s-BAFF and laboratory findings in SLE (n=101). 

   BAFF-RQ s-BAFF 

 Univariate  Multivariate  Univariate  Multivariate  

Feature β p-value β p-value β p-value  β p-value 

Anti-dsDNA ELISA -0.16 0.57   0.10 0.66   

Anti-dsDNA ELIA -0.30 0.18   -0.21 0.28   

aCL IgG, U/mL 0.36 0.10   0.00 0.99   

aCL IgM, U/mL -0.45 0.08 -0.130 0.390 -0.28 0.22   

RF, IU/mL 0.24 0.19   0.21 0.20   

C3, g/L 0.19 0.33   0.19 0.26   

C4, g/L 0.08 0.69   0.01 0.98   

ESR, mm/hour -0.31 0.25   -0.29 0.22   

CRP, mg/L 0.29 0.15   0.53 <0.001 0.398 <0.001 

Hb, g/dL -0.19 0.48   -0.37 0.10 -0.324 <0.001 

Leukocyte,109/L 0.02 0.90   -0.26 0.10 -0.118 0.274 

Tot. Lymph., 109/L  -0.19 0.41   0.04 0.85   

      B-cells, 109/L 0.22 0.25   -0.08 0.63   

      NK-cells, 109/L -0.08 0.72   0.26 0.15 0.181 0.117 

CD4+ cells, 109/L -0.53 0.01 -0.271 0.012 -0.07 0.73   

CD8+ cells, 109/L 0.39 0.09   -0.05 0.81   

IgA, g/L -0.23 0.22   -0.33 0.04 -0.333 0.001 

IgM, g/L 0.52 0.04 0.142 0.365 0.10 0.67   

IgG, g/L -0.45 0.03 -0.254 0.023 -0.04 0.83   

Albumen, g/L -0.59 0.02 -0.149 0.169 -0.22 0.34   

anti-dsDNA; ELISA (OD ratio), ELIA (IU/mL), RF; Rheumatoid Factor. β; Standardized coefficients.   
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Supplemental Table  Primers and probes used in this study. Bold capital letters; Examined SNPs 

Primers and probes, name Sequence (5' -3') Fluorescence  label 

Primers and probes used for SNPs analysis  

forward primer: rs9514827, rs3759467, rs1041569 gaggggaacgactcac  

reverse primer: rs9514827, rs3759467, rs1041569 ttatcctggcccccaa  

anchor, c.-2841 agagaaattgctttctagcactgcgt 3' fluorescein 

sensor, c.-2841 catcctttcatttcCgcatgtat 5' LC red 705 

anchor, c.-2704,c.-2701 atggcaaggttactccgtatg 3' fluorescein 

sensor, c.-2704,c.-2701 tcaccctaaTtgTtctggaac 5' LC red 640 

forward primer: rs9514828 caacatgggagttgtagac  

reverse primer: rs9514828 ccttctgggactcatcac  

anchor, c.-871 aggcaaggctgattctcctca 3' fluorescein 

sensor, c.-871 tagtatcatattgagCggggact 5' LC red 640 

forward primer: rs3759465 ccctccgattggattgc  

reverse primer: rs3759465 actgttaataaatcactctctagc  

anchor, c.-514 ttatttttatgacagcagcaggaactt 3' fluorescein 

sensor, c.-514 agctCatctgaccttcacatt 5' LC red 705 

Primers and probes used for BAFF gene expression analysis, RT-PCR 

Probe 2*, BAFF caggagaa 5'TAMRA 

BAFF forward primer actgaaaatctttgaaccaccag  

BAFF reverse primer ttgcaagcagtcttgagtgac  

Probe 42*, β2M catccage 3'FAM 

β2M forward primer ttctggcctggaggctatc  

β2M reverse primer tcaggaaatttgactttccattc  

*Universial probeLibary, human gene assays (Roche). β2M; β2-microglobulin.  
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Figure 1.  SNPs in the 5’ regulatory region of the BAFF gene used in the study.   

rs9514827 (c.-2841 T>C), rs3759467 (c.-2704 T>C), rs1041569 (c.-2701 A>T), rs9514828 (c.-871 

C>T) and rs3759465 (c.-514   A>G), (www.hapmap.org and www.ncbi.nlm.nih.gov/snp) 
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Figure 2. Serum BAFF levels in SLE patients compared with healthy controls. The results are shown 

in box plots. The line inside the boxes indicates the medians; the outer borders of the boxes indicate 

the 25th and 75th percentiles; and the bars extending from the boxes indicate the 10th and 90th 

percentiles. 
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Figure 3.  Low concordance between BAFF mRNA gene expression and serum BAFF in SLE 

patients. R²; Correlation coefficient. 
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