
0

FACULTY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

Summarizing image collections

David Sundby

Inf-3981

Master's Thesis in Computer Science
June, 2011

i

ii

Abstract

The widespread use of digital cameras and mobile phones, along with a

rapidly growth of image sharing, challenges current image retrieval

techniques. It is difficult for image retrieval system to find the semantic

meaning of images based on human‟s subjectivity and the size of current

image databases makes it difficult to organize and search images.

This thesis shows that information retrieval techniques can be used to

reduce the search space of existing image collections, by creating collection

summaries that holds only the most representative metadata from existing

image collections. The representative metadata are metadata that are most

distinguishing for the specific image collection. The system take advantage

of the metadata available for images, which includes user provided tags,

date/time, GPS coordinates, and metadata augmented by the system using

already available metadata. Higher level representations of user provided

terms are located and ensures that the system captures the most descriptive

properties of the image collections.

The system designed is able to produce collection summaries that capture

properties of an image collection that support human‟s natural perception as

long as enough metadata are available. Also, the system increase the

contextual understanding of images as long as date/time (of capture) and

GPS coordinates is available for all or some of the images in the collection.

The evaluation of the system indicates that grouping user provided terms

into higher level representations is very useful for capturing the most

important properties of an image collection. Also the evaluation expresses

the usefulness of augmenting images with additional metadata and

converting numeric metadata into readable terms. The comparisons made in

the evaluation indicates that not only are the collection summaries similar to

individual test users perception of image collections, but the summaries also

includes more descriptive information of relevance.

iii

iv

Acknowledgements

To start with I would like to express gratitude to my supervisor, associate

professor Randi Karlsen, for giving me the idea of this work and helping me

along the way. Your guidance, constructive criticism, motivation and

availability have been above all expectations and are greatly appreciated.

I would also like to express gratitude to my girlfriend, Lillann Sofie

Thorstensen, for giving me great support and taking care of our son, Theo,

through the hardworking month‟s laid down in this work. Your support,

motivation, presence and loving words along the way are much appreciated.

I love you.

Finally, I would like to express gratitude to my fellow student, Martin H.

Evertsen, for making all these years of study unforgettable, both at

University of Tromsø and at Lund University. We have collaborated,

argued, struggled, supported and helped each other, laughed, partied, and

had some interesting discussions of life through these years. Your friendship

is highly appreciated.

v

vi

Contents

1. Introduction ... 1

1.1. Motivation .. 1

1.2. Goal .. 2

1.3. Approach .. 3

1.4. Contribution .. 4

1.5. Organization ... 4

2. Background .. 7

2.1. Image retrieval .. 7

2.1.1. Concept and content based .. 7

2.1.2. Summarizing image collections .. 8

2.2. Information retrieval ... 10

2.2.1. Index construction ... 10

2.2.2. Term Frequency- Inverse Document Frequency (TF-IDF) ... 11

2.2.3. Inverted Files Indexing ... 12

2.3. Metadata and auto-annotation .. 13

2.3.1. EXchangeable Image Format (EXIF) .. 13

2.3.2. Context .. 14

2.3.3. Collaborated tagging ... 15

2.3.4. Auto- annotation ... 16

2.3.5. Semantic gap ... 16

2.3.6. Ontologies ... 17

2.4. Database theory .. 17

2.4.1. Entity- relation approach ... 17

2.4.2. From Conceptual model to relational database schemas ... 18

2.4.3. Normalization theory .. 19

3. Related work .. 21

3.1. Context in image retrieval .. 21

3.2. Summarizing Image collections ... 24

4. Approach and design .. 27

4.1. Terminology ... 27

4.2. Overview .. 27

4.3. System Architecture ... 28

4.4. Definition and requirement specification ... 31

4.5. Gathering image collections from Flickr .. 32

4.6. Collecting contextual information through auto- annotations 33

4.6.1. Location .. 34

4.6.2. Atmospheric conditions .. 35

vii

4.6.3. Converting date/time ... 35

4.7. Cleansing and strengthening of data... 36

4.7.1. Generate unique metadata list ... 36

4.7.2. Removing white spaces and character symbols .. 36

4.7.3. Remove non roman characters .. 36

4.7.4. Removing stop-words and non-informative terms .. 37

4.7.5. Removing oversized tags .. 37

4.7.6. Hypernyms .. 39

4.8. Finding representative terms .. 40

4.8.1. Defining an representative .. 40

4.8.2. Selection Threshold ... 41

4.8.3. Metadata weighting ... 43

4.8.4. Collection summary partitioning ... 45

5. Implementation ... 47

5.1. Hardware .. 47

5.2. Summarizing system .. 47

5.3. Flickr API ... 48

5.3.1. Flickr Groups search ... 48

5.3.2. Flickr photos search .. 49

5.3.3. Return Format ... 49

5.4. Google Maps API ... 50

5.5. Wunderground historic ... 51

5.6. WordNet API .. 54

5.7. Storing collection summary data for later use .. 55

5.7.1. Environment specifics ... 55

5.7.2. E-R Diagram ... 56

5.7.3. Representation of the Entities and Relations ... 56

5.7.4. From E-R diagram to relational database schema ... 58

5.8. XLWT Library.. 61

5.9. Other ... 61

6. Results and Evaluation ... 63

6.1. Experiment ... 63

6.2. Results .. 65

6.3. Table layouts .. 75

6.4. Selection threshold ... 75

6.5. Discussion and evaluation .. 76

6.5.1. Experiment 1 ... 78

6.5.2. Experiment 2 ... 79

6.5.3. Experiment 3 ... 81

6.5.4. Experiment 4 ... 81

6.5.5. Experiment 5 ... 82

viii

6.5.6. Experiment 6 ... 84

6.5.7. Experiment 7 ... 85

6.6. Hit distribution.. 86

7. Future work ... 89

8. Conclusion .. 93

9. References .. 95

Appendix A: List of image collections ... 99

Appendix B: Implementation ... 101

B-1: Gather collections from Flickr (Menu) .. 101

B-2: Augmentation... 106

B-2.1: Augmentation of locational data ... 106

B-2.2: Augmentation of weather data .. 108

B-3: Cleansing of metadata .. 112

B-4: Converting of metadata .. 114

B-5: Unique Term handler ... 116

B-6: Hierarchical level handler (Hypernym grouping) .. 120

B-7: calculate term frequencies ... 123

B-8: Find representatives ... 124

B-9: Creation of excel file .. 128

B-10: Communicate with database (mysql) ... 129

0

List of figures and tables

FIGURE 2-1: INVERTED FILES STRUCTURE, SEARCH.. 13
FIGURE 4-1: HIGH LEVEL SYSTEM ARCHITECTURE ... 28
FIGURE 4-2: DETAILED SYSTEM ARCHITECTURE ... 29
FIGURE 4-3: SELECTION THRESHOLD ... 42
FIGURE 4-4: COLLECTION SUMMARY PARTITIONS .. 46
FIGURE 5-1: EXAMPLE ELEMENT TREE ... 50
FIGURE 5-2 : ELEMENT TREE AUGMENTED WITH LOCATIONAL DATA .. 51
FIGURE 5-3: ELEMENT TREE AUGMENTED WITH ATMOSPHERIC CONDITIONS ... 53
FIGURE 5-4: WORDNET “CAR” QUERY RETURN ... 54
FIGURE 5-5: E-R DIAGRAM FOR STORAGE OF COLLECTION SUMMARY DATA .. 56
FIGURE 6-1: HIT RATE ALL USERS, ALL EXPERIMENTS .. 86
FIGURE 6-2: AVERAGE OF HIT DISTRIBUTION FOR ALL THREE USERS IN THE 7 DIFFERENT EXPERIMENTS 86
FIGURE 6-3: AVERAGE DISTRIBUTION OF ALL USERS IN ALL EXPERIMENTS .. 87

TABLE 5-1: TEMPERATURE TRANSLATION SCALE .. 53
TABLE 5-2: WIND STRENGTH- BEAUFORT TRANSLATION SCALE ... 54
TABLE 6-1: EXPERIMENT 1- TABLE A SHOWS KEYWORD RESULTS COLLECTED FROM TEST USERS, B SHOWS THE

COLLECTION SUMMARY’S TAGS AND AUTO ANNOTATIONS AND C SHOWS THE CATEGORIZATIONS OF

HYPERNYMS FROM THE COLLECTION SUMMARY .. 66
TABLE 6-2: EXPERIMENT 2- TABLE A SHOWS KEYWORD RESULTS COLLECTED FROM TEST USERS, B SHOWS THE

COLLECTION SUMMARY’S TAGS AND AUTO ANNOTATIONS AND C SHOWS THE CATEGORIZATIONS OF

HYPERNYMS FROM THE COLLECTION SUMMARY .. 67
TABLE 6-3: EXPERIMENT 3- TABLE A SHOWS KEYWORD RESULTS COLLECTED FROM TEST USERS, B SHOWS THE

COLLECTION SUMMARY’S TAGS AND AUTO ANNOTATIONS AND C SHOWS THE CATEGORIZATIONS OF

HYPERNYMS FROM THE COLLECTION SUMMARY .. 68
TABLE 6-4: EXPERIMENT 4- TABLE A SHOWS KEYWORD RESULTS COLLECTED FROM TEST USERS, B SHOWS THE

COLLECTION SUMMARY’S TAGS AND AUTO ANNOTATIONS AND C SHOWS THE CATEGORIZATIONS OF

HYPERNYMS FROM THE COLLECTION SUMMARY .. 70
TABLE 6-5: EXPERIMENT 5- TABLE A SHOWS KEYWORD RESULTS COLLECTED FROM TEST USERS, B SHOWS THE

COLLECTION SUMMARY’S TAGS AND AUTO ANNOTATIONS AND C SHOWS THE CATEGORIZATIONS OF

HYPERNYMS FROM THE COLLECTION SUMMARY .. 72
TABLE 6-6: EXPERIMENT 6- TABLE A SHOWS KEYWORD RESULTS COLLECTED FROM TEST USERS, B SHOWS THE

COLLECTION SUMMARY’S TAGS AND AUTO ANNOTATIONS AND C SHOWS THE CATEGORIZATIONS OF

HYPERNYMS FROM THE COLLECTION SUMMARY .. 73
TABLE 6-7: EXPERIMENT 7- TABLE A SHOWS KEYWORD RESULTS COLLECTED FROM TEST USERS, B SHOWS THE

COLLECTION SUMMARY’S TAGS AND AUTO ANNOTATIONS AND C SHOWS THE CATEGORIZATIONS OF

HYPERNYMS FROM THE COLLECTION SUMMARY .. 74
TABLE 6-8: LOWEST HIT FREQUENCY FROM TEST EXPERIMENTS .. 76
TABLE 6-9: COLLECTION 1 SPECIFICS ... 78
TABLE 6-10: COLLECTION 2 SPECIFICS ... 79
TABLE 6-11: COLLECTION 3 SPECIFICS ... 81
TABLE 6-12: COLLECTION 3 SPECIFICS ... 81
TABLE 6-13: COLLECTION 5 SPECIFICS ... 82
TABLE 6-14: COLLECTION 6 SPECIFICS ... 84
TABLE 6-15: COLLECTION 7 SPECIFICS ... 85

ix

1

Chapter 1

1. Introduction

1.1. Motivation
The widespread use of digital cameras has facilitated a rapidly increasing

number of images in privately and publicly owned collections. Numerous

images are currently available over the Internet for searching and browsing

and the number of users and application areas are increasing. The huge

amount of digital images challenges the current techniques used for

organizing and retrieving images. There is a demand for new and more

efficient technologies for image searching and browsing.

Users have a very abstract idea of what they are looking for when searching

for images. Current image retrieval systems have tried to solve this problem

by allowing image retrieval based on e.g. semantic concepts. Current

techniques are still not sufficient to automatically comprehend the semantic

meaning of images on the basis of human perception. This problem is

known as the semantic gap problem and usually arises when human

activities are transferred into a computational representation [1].

Many different approaches are used within image retrieval; the main

approaches are content based (CBIR) and text based image retrieval (TBIR)

[2].

Text based image retrieval (TBIR) will be the focus of this thesis. TBIR are

focused on text connected with the images or in relation with the images.

For text based image retrieval one typically uses metadata to describe

images. Metadata can be defined as data about data [3]. Image metadata

can be of different kinds, e.g. tags, keywords and descriptors of relevance

for the image. This includes data added by the capturing device, e.g.

time/date and GPS coordinates, keywords manually added by individual

users to describe the image (tags) or automatic image annotations added by

the image retrieval system to simplify search and indexing. The latter is

usually referred to as auto- annotations or linguistic indexing [4].

Also efforts have been made by adding semantics to image tags by mapping

them to ontologies. An ontology is a higher level description of terms and

captures the semantic meaning of the specific word [5].

Text based image retrieval are much more suitable than CBIR techniques

for the increasing number of images current image retrieval techniques are

faced with. TBIR require less computer resources and are far more natural

in supporting humans conceptual refined search queries than CBIR

techniques.

Recent trends in text based image retrieval are to combine different context

metadata to augment images with additional metadata from various sources

[6-9].

2

Context is any information that can be used to characterize the situation of

an entity [10]. In most image retrieval systems the entity is usually the

capturing device. Context types that can help characterize the situation of

the image are e.g. GPS location (i.e. latitude and longitude) and date/time.

Augmenting images with additional metadata, can increase the knowledge

about the images and may also help in closing the semantic gap in a more

reliable and efficient manner. Locational information can alone sometimes

suggest the semantic content of images [11, 12].

Manually added tags can be very helpful for the retrieval system, if

available. Manually added tags are keywords added to the image by

individual users. In theory they represent the individuals‟ natural perception

of the image. One concern that remains in dealing with manually added tags

is that the tagging patterns of humans are subjective, which means that

individual users have different perceptions, and use different tags to

describe the images [13]. The motivation for this can include factors such as

social, contextual, time, cultural and so on. Also collaborative tagging has

recently grown in popularity on community based image sharing sites [14],

which helps researchers to great extents in understanding humans perception

or adapting tagging patterns to other images [6, 15].

As modern technology has made capturing devices, i.e. cameras and mobile

phones, more affordable, more portable and more accessible, the usage of

photo capturing devices has increased exponentially. Also people share

more images with each other through public image sites than ever before.

Even if text based image retrieval are more suitable for the numerous

amounts of images available, still the task of searching them, browsing

through tags or features found in the individual images, looking for the best

matches are very time and resource consuming. Also because of noisy, user

specific and inconsistent metadata for the images in large image collections,

search queries can lead to results in sizes that are colossal. Hence, it is

important to scale down the search space, focusing on only the most

relevant ones. Text based retrieval techniques are well established in the

field of Information Retrieval (IR). The techniques have matured for

decades with the goal of filtering out the most important textual documents

in relation with specific user queries. Therefore, text based image retrieval

has great potential in adapting the techniques and approaches used within

IR.

1.2. Goal
The specific goal of this project is to design, implement and test a system

that automatically generates a description of an image collection based on

available image metadata. A collection are viewed as pre-existing, e.g. in

the form of hierarchically structured images on personal computers, images

on certain online domain specific image collections, blogs, online sharing

sites etc.

To be able to handle the huge amount of images the system will analyse the

metadata for all images in the collection with the intention of finding key

characteristics. The key characteristics are viewed as representatives for the

3

image collection, with properties that stand out from others and work as a

reduced search space for the image collection.

The representatives of an image collection are together used to create a

summarized description of the image collection. The descriptive collection

summary can later be used to efficiently filter out irrelevant collections and

select the relevant ones (during an image search). The idea is that within the

huge amount of image collection currently available there are always some

that are more relevant for a specific search query than others; the trick is to

be able to locate them in an effective way. This will also help streamline the

system to a much greater extent. Collections that are found to be relevant

can be further investigated to decrease the search space until a set of images

as relevant as possible for the search query are the only ones left.

The aim of this project is to produce image collection summaries and make

them available for efficient image retrieval. As current Image retrieval

techniques are challenged to succeed with the ever increasing growth of

images, I will in in this project purely focus on information directly

concerned with the image through metadata. Further already available

metadata will be used to accumulate additional semantic metadata for the

images. This project is limited to the analysis of metadata and production of

the reduced search space and not on the actual image retrieval itself.

1.3. Approach
The system designed and implemented in this thesis is used to find

dominating metadata for collections analysed, i.e. properties that stand out

from others. The system developed will use text based image retrieval

techniques and adopt common approaches used within Information retrieval

(IR). Important adoptions include ways to cleanse data and dropping

metadata that provides little value for the retrieval system, selection and

weighting of the metadata and embracing efficient indexing techniques.

Manually added tags will be grouped together into categories. The

categories represents a higher level representation of terms (ontologies)

connected with the images (e.g. the terms car, suv, motorcycle, has a the

higher level representation “motor vehicle” in common, the higher level

representation of “motor vehicle” are “self-propelled vehicle” and so on).

Categories are used to strengthen terms through its category members, and

used to find hierarchical thresholds which reflect the terms at their highest

level.

Images will also take advantage of available metadata, such as Global

position system (GPS), i.e. location (of the capturing device) and date/time

(of when the image are taken) to augment the images with additional

contextual metadata. This can enhance our knowledge of the images and

may contribute to closing the semantic gap and improving effectiveness of

image retrieval.

Also numeric metadata will be converted into more searchable terms such as

day of the month (e.g. Saturday), season (e.g. summer), and month (e.g.

January) etc.

4

Notably, the images analysed by the system do not require that all images

within a collection have manually added tags, GPS coordinates and

date/time stamps included, but take advantage of them if they are available.

Nevertheless, to perceive the full potential of the system, the majority of the

images used in the evaluation of this system are provided with all of these

metadata fields. The image collections used are community based,

collaborative tagged image collections provided with GPS coordinates

gathered from Flickr
1
.

Finally, after cleansing and removal, categorizing of terms, augmenting of

contextual metadata and converting of metadata has been performed, the

finalized metadata will be analysed and representatives will be located

before the collection summary is produced.

1.4. Contribution
A number of systems have been developed for reducing the search space of

large sets of images. I will discuss this further in section 3.2. Nevertheless, I

have not found any previous work that use a combination of augmentation,

categorization and finding higher level representations of metadata before

locating and summarizing the most important properties of existing image

collections. Therefore, the contribution of this thesis is to explore the

possibility of reducing the search space for existing image collections, while

at the same time capturing the most important properties of them. A reduced

search space is captured in a collection summary which holds the most

representative metadata of the images within the image collection. Further

important aspects of this work will be to evaluate if the system developed

will be beneficial for more efficient retrieval, both in terms of resources and

results returned.

This master thesis is part of the Context-Aware Image Management
2

(CAIM) project. The CAIM project is focused on research and the

development of tools and methods supporting context-aware image

management, both in distributed and mobile environments. The research of

the CAIM project is built on previous research at University of Tromsø,

University of Bergen, Munich University of Technology, University of

Hawaii and Telenor R&D.

1.5. Organization
The rest of this thesis is organized as follows. Some important background

information is presented in chapter 2, followed by previous relevant work in

chapter 3. The approach and design used in the developed solution is

presented in chapter 4. Further some implementation specifics are presented

in chapter 5, before the results and evaluation of the system developed are

presented in chapter 6. Some potential future work is presented in chapter 7,

before finally concluding in chapter 8. The location of the images used in

1
 http://www.flickr.com/

2
 http://caim.uib.no/

http://www.flickr.com/
http://caim.uib.no/

5

the evaluation is listed in appendix A, and the source code of the system in

appendix B.

6

7

Chapter 2

2. Background
In this chapter I will present theory that is relevant for the further work of

my project. I will start by introducing image retrieval and current

approaches to the field (section 2.1). As the system developed in this thesis

is focused on text based image retrieval, Information retrieval is highly

relevant and presented in section 2.2.2. Further metadata, auto annotations,

context and semantics are presented in section 2.3. Dealing with huge

amount of data are easier to handle and work with when putting them into a

database, some theory highly representative for databases are finally

presented in section 2.4.

2.1. Image retrieval
Image retrieval is a system that is used for searching, browsing and

retrieving images from a large repository of images [16].

2.1.1. Concept and content based
Current image retrieval systems are usually either text based (concept

based) or content- based.

Image search engines such as Google Image
3
 and Microsoft‟s Bing Image

search
4
 rely almost only on the text surrounding the Image. [17] In such

systems, the surrounding text is analysed and the words or descriptions that

for the system appear to be relevant, or semantically meaningful for the

image, are included with the image in the image retrieval system. In current

document retrieval systems analysing and indexing text documents for

search has reached great heights. However using the same principles for

image retrieval systems, depending on the surrounding text of the images, is

not as successful often leading to noisy results. Within text based retrieval

several forms of metadata can be seen as textual information important for

the retrieval system. E.g. manually annotated tags can be very helpful.

Manually added tags are keywords added for the image by individual users

and in theory represent the individual‟s natural perception of the image.

This metadata should be taken advantage of by the retrieval system if

available. Anyhow the perception of humans are subjective, which in this

setting means that individual users have different perceptions, hence use

different tags to describe the images [13] depending on different factors

such as, social, contextual, time, cultural and so on. Also collaborative

tagging has recently grown in popularity on community based shared image

sites [14], which can also be viewed as relevant for text based image

retrieval.

3
 http://images.google.com/

4
 http://www.bing.com/?scope=images

http://images.google.com/
http://www.bing.com/?scope=images

8

In Content- based image retrieval systems (CBIR) images are usually

retrieved using an example image as a query. The content of the query

image is used to find similar images with respect to visual similarities, i.e.

shape, texture and colours [1]. While this works well for certain domains,

e.g. face recognition and fingerprint lookup, it is not convenient for large

and complex image collections where advanced texture and shapes can

make the system potentially faulty.

Pham [18] suggest that current CBIR techniques can mostly extract low-

level features from images, while humans tend to associate images with

high level concepts used in everyday life. Vailaya et. al. [19] shares a

similar view. Also Enser [13] supports this claim noting that people‟s

perception can mean different things at different times and at different

contexts, and that no existing CBIR system can precisely classify categories

in cases where the user- needs are not well defined and well understood.

Further Pu [20] studies failed queries for online image retrieval and address

the shortcomings in current image retrieval techniques. His main points are

that user queries often does not include information included in the image

itself and that there are gaps between user queries and current Image

retrieval techniques. The work done by Pu is useful to be used as a

conceptual model, when investigating the gaps between image queries and

current image retrieval techniques. For example he notes that using CBIR

techniques alone, which focus on perceptual image attributes, cannot satisfy

requests for unique names, e.g. a person such as „Arnold Schwarzenegger‟,

or locational names such as „France‟. Further Pu refines that the study of

failed queries suggests that users query images with far more conceptual

than perceptual refined types. The latter, i.e. perceptual is the focus of CBIR

techniques. These claims also suggest the gaps between human and

computer perception that are left in CBIR systems and that image retrieval

are in need of using different more conceptual approaches. Quite a great

deal of CBIR techniques has been developed, and great results have been

produced, still no universally acceptable image retrieval techniques has been

developed [21].

More recent trends [6-9] use techniques for augmenting images with

additional metadata using metadata already available for the images.

Several user studies suggest the importance of textual information in image

retrieval [22, 23]. The solution presented in this thesis does not use any

CBIR techniques, but are focused on metadata connected with the image.

This means that the system practice concept/ text based image retrieval,

which makes Information retrieval techniques and approaches highly

relevant. Information retrieval will be further presented in section 2.2.

2.1.2. Summarizing image collections
As current image collections grow enormous, both on people‟s personal

computers and on Internet, challenges are introduced for current Image

retrieval techniques. Large collections of images are often unstructured, and

also the huge amounts of images which are daily rapidly increasing makes

the task of organizing and searching them very difficult, not to mention very

time and resource consuming.

9

It is difficult to find techniques and methods with direct focus of

summarizing image collections, although some can be seen as relevant.

Vailaya et. al [19] presents a CBIR system that use techniques for filtering

out partitions of image collections. Conferring to Vailaya et. Al. within

CBIR, categorization has been used to improve the performance of image

retrieval systems, by filtering out the irrelevant classes and indexing on high

level visual features in an image such as objects, e.g. trees, sky, people,

water etc.

Nevertheless, in this thesis the main focus is on the metadata connected with

the image, i.e. text based image retrieval, and not on the visual content of

the images as in CBIR. For these reasons information retrieval (IR)

techniques, methods and approaches will be used when scaling down and

reducing the search space in an efficient manner. The motivation for this is

not only to increase the speed of image retrieval systems but also to increase

the relevancy of images returned.

Text based retrieval techniques are well established in the field of IR, and as

more textual information are available for an image, IR can be seen as

closely related and highly relevant for text based image retrieval. I will

present Information retrieval and some relevant theory from the field in

section 2.2, but first I will present some theory relevant for the selection of

representative features as candidates for the collection summary.

2.1.2.1. Feature selection
In information theory, techniques for reduction of the search space are well

established. E.g. Principal component analysis (PCA) reduces the space by

analysing, say a sequence such as a text document, revealing the internal

structure of the data in it and describe the data from its most informative

view. PCA is an instance of the class of analysis algorithms called common

factor analysis, which seeks the least number of dimensions [24].

Features or properties may be chosen important for several reasons, e.g.

domain specific, discrimination specific (e.g. in face recognition, partition

out images with certain hair colours), user relevance, location relevance, and

so on [1]. The simplest form of reducing the search space is by term

frequency. In information theory, this approach is usually used to count each

word in a document to decide which words that are most frequently used

and weight the documents to keyword searches according to the word

frequency in the documents [1] (described further in section 2.2.2).

Weighting metadata in this way is also very relevant for text based image

retrieval and may be used to locate the highly weighted and highly

representative features, i.e. terms, to be part of the collection summary. One

concern with the term frequency approach is that it does not capture the

semantic meaning of the document as in PCA. Even though we have

efficient techniques for reduction and description of data in information

theory, it is difficult to transfer these techniques to image retrieval, simply

because we usually do not have enough descriptive and continuous textual

information connected with an image. Without enough textual information it

is difficult to capture the semantic meaning or distinguished features

10

through analysis as in information theory, so other approaches have to be

used. In the following section I will give a better introduction to information

retrieval before presenting some theory relevant to semantics and

augmenting images with additional textual information in section 2.3.

2.2. Information retrieval
The meaning of the term information retrieval are very wide ranging, but in

relation to computer science a general definition provided by Manning et.

Al. [25] is:

Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need

from within large collections (usually stored on computers).

In information retrieval, one usually wants to collect the documents to be

indexed, tokenize the words or terms within them, cleanse the tokenized

words and index them for efficient retrieval. In the next sub section I will

present the major steps in the preparation of documents with goal to

construct an index as presented by Manning et. Al.

2.2.1. Index construction
1. Obtain the documents to be Indexed:

When obtaining the actual text from the documents, translations have to be

made. The documents can be in several different formats, e.g. .doc, .pdf,

.odf and so on, which are represented as a byte sequence. Such byte

sequences have to be transformed into a linear sequence of characters. Not

only document type, i.e. byte sequence translation of the actual text, are

important in this step, but also determination of encoding, e.g. ASCII or

Unicode UTF-8. When the text has been transformed defining the document

unit is the next phase, e.g. store each file in a folder as a document or

separate it into several documents to be indexed.

2. Tokenize the text

Given a sequence of characters and a document unit the next step is to

tokenize. The tokenization is the task of chopping the text into several

tokens, discarding certain characters such as punctuations. Tokens are the

terms or words within the document. For example:

3. Dropping common terms. (stop words)

In this step common terms are dropped. These are terms that provide little

value in helping the user get a match on search queries, and are often

Input: The man walked down the street.

Output: The man walked down the street

11

referred to as stop words. These can either be located by filtering out the

most common terms through term frequencies (how frequent words are used

within a document) or manually providing a common term list of terms to

be removed. Examples of stop words that are desired for removal by an IR

system are:

a, an, and, are, as, at, be, by, for, in and so on.

4. Normalization (equivalent classes of terms)

In many situations tokens (words) are not identical, but still a match is

desired to occur. E.g. if you search for the term pre-processing you would

like a match to occur on both documents containing preprocessing and pre-

processing, or if you search for USA you want matches on both USA and

U.S.A. Token normalization is the process of converting tokens so that such

matches occur, despite the difference in the character sequence.

Another way of normalization is translating accents, e.g. creating mappings

between cliché and cliche, or mappings between languages Malaysie

(French for Malaysia) and Malaysia.

Also capitalizing / case folding character sequences can be viewed as highly

relevant for normalization, e.g. lowercasing all tokens so that matches

between e.g. France and france are made.

5. Stemming and lemmatization

Documents will contain different forms of a word, e.g. organize, organizes

and organizing. Also there are grammatical different words with similar

meaning e.g. democracy, democratic and democratization. The goal of both

stemming and lemmatization is to reduce inflectional forms and words that

are similar to a common form, such a reduction can be exampled as:

1. Man, men, boy, boys  Male

2. Car, cars, car‟s, cars‟  car

6. Index the documents that each term occurs in

The documents are indexed to make the process of finding documents best

matching a search query more effective. A common approach to weighting

the importance of tokens is presented in the next sub section (2.2.2). Also I

will present a common index structure in section 2.2.3.

2.2.2. Term Frequency- Inverse Document Frequency (TF-IDF)
When step 1 to 5 from the process described above is performed, i.e. when

the documents are ready for indexing, the document is usually weighted

according to their relevance to different search queries. Term frequency-

inverse document frequency (TF-IDF) is one such approach. TF-IDF is a

method used in information retrieval and text mining [1]. The term

12

frequency is used to weight a document according to how frequently a

specific word is used in relation to how many words there are within the

document totally. E.g. if a document contains 100 words and the word car

appears 5 times in the text, the term frequency for car in this document is:

(1) TF(car) = 5/100 = 0.05.

The Inverse document frequency (IDF) is used to weight the word in

relation with all documents available. If few of the documents available

contain the specific word, the IDF are higher than if many documents

contain the word. The inverse document frequency is calculated with a

logarithmic equation taking into consideration the number of documents

available and how many of them contain the specific word. E.g. say that 100

documents are available and 5 of these contain the word car, then the IDF

for the term car is:

(2) IDF(car) = log(100 / 5) = 2.996.

The TF-IDF is the product of the term frequency and the inverse document

frequency, i.e:

(3) TF-IDF = TF * IDF.

In the case of the term car for the given documents, the term frequency –

inverse document frequency is:

(4) TF-IDF = (1) * (2) = 0.05 * 2.996 = 0.15.

2.2.3. Inverted Files Indexing
An inverted files index is a search structure usually used in information

retrieval, but it is has also become a popular way of indexing in recent large

scale image retrieval systems [9]. The inverted file structure is good

candidate for large scale image retrieval system because of its superiority in

efficiency. The search structure holds mappings between terms in a database

and the location of the document(s) containing the specific term(s). The

inverted index structure is structured as follows: [1]

 A term directory keeps track of all words that are present in a

database. Each word holds a pointer to its corresponding inverted

list. Also the number of documents containing the word is

maintained in the directory.

 The inverted lists are usually held in a postings file which holds the

actual pointers to the documents. Inverted lists are usually stored

continuously in the postings file to reduce disk access.

 Also a search structure is usually used to efficiently access the

directory of inverted files, and match them against query terms.

Commonly used search structures are hash files for exact matches,

B+ trees, tries and suffix automata. [1]

13

Figure 2.1 shows an example taken from Candan et. al‟s book, Data

management for information retrieval [1]. The figure shows an example

search query using an inverted files structure.

Figure 2-1: Inverted files structure, search

example from Candan et. al. [1]

2.3. Metadata and auto-annotation
The relaxed definition of metadata is data about data. In image retrieval,

image metadata can be tags, keywords or descriptions of relevance for the

image. This can be data that has been added by the capturing device, i.e.

date/time and GPS coordinate, keywords manually added by a person to

describe e.g. contextual information related to the image or automatic Image

annotations collected by the Image retrieval system to improve search and

indexing. The latter is usually referred to as auto-annotation or linguistic

indexing [4].

The most widely used standard for storing metadata for images today is

Exchangeable image file format (EXIF). I will describe EXIF briefly in the

next sub section (2.3.1).

2.3.1. EXchangeable Image Format (EXIF)
The EXIF tag structure is similar to that of TIFF files; it uses the existing

JPEG file format for compressed files and the TIFF rev 6.0 format for

uncompressed files, with the addition of metadata tags. In JPEG files the

EXIF data is stored in one of JPEG‟s defined application marker segments,

defined APP1. Standard Metadata tags defined in EXIF include, date and

time information, camera information i.e. camera model and producer,

image specific information such as aperture, focal length, ISO speed etc.,

image thumbnail information for previewing the picture and descriptions

and copyright information. Also the EXIF holds standard tags for

Geographical information, i.e. GPS positions, altitude, image direction and

so on. [26]

14

2.3.2. Context
Recent trends in image retrieval have seen the importance of also including

contextual information as metadata for the images. Context is in many ways

a complex and difficult term. I will discuss context more thoroughly

throughout this sub section to provide a more solid understanding of it.

2.3.2.1. Definition and history
It can be difficult to agree to a global definition of context in computing, but

one wide-ranging definition provided by Dey [10] is:

“Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an

application, including the user and application themselves.”

Specific to image retrieval the entity is usually the capturing device, e.g. a

camera or mobile phone.

Context awareness all started with and is one of the main subjects and

driven factors of ubiquitous computing (UbiComp) [27]. UbiComp was

presented by Weiser in 1991 [28]. Weiser‟s vision for UbiComp was

computers being part of everyday objects, everywhere. E.g. a coffee

machine automatically producing coffee as you go to the bathroom in the

morning, lights and television that automatically turns on when you enter

the living room and turns of when no one is present in the room, i.e. objects

being part of their surroundings. Only the imagination sets the limitations of

Weiser‟s vision. To make it possible for the everyday objects to be context

aware they have to be aware of its surroundings, they may have to

communicate among each other and share sensed information with other

objects [27].

UbiComp has been an important factor in the development of the concept of

context aware systems, also known as context aware pervasive systems.

According to Loke [29] the main functionalities of such a system are often

divided into three; sensing, thinking and acting. In the subsequent three sub

sections I will present these functionalities briefly.

2.3.2.2. Sensing
Sensing can be achieved by providing sensors that can help us acquire

information about the physical world that again can help us determine

physical actions most appropriate for the individual situations. Sensory

information can be collected using sensors that measure temperature,

pressure, light, motion and so on. Loke remarks that there are also other

devices that can be regarded as sensors, i.e. microphones, computer clocks,

radio frequency identifications (RFID), devices that measure movement and

acceleration, location and position (e.g. global position system (GPS)),

magnetic field and orientation, proximity etc. Sensory information can also

be combined to produce even more important observations.

15

Among these, date/time and location are the most used context types in

current research approaches in image retrieval, and can be used for

organizing images into collections, for answering time or location related

image requests, and for inferring additional image metadata. Global position

system (GPS) used in cameras and mobiles of today use satellites with

assistance from ground stations and gives accuracy within meters of the

physical location [29].

2.3.2.3. Thinking
It is hard if not impossible to reason about the surrounding environment

without having any knowledge about it. Context aware systems gather

knowledge about the environment, metaphorically speaking, in the same

way as humans, by sensing, as discussed in the previous sub section.

Once data about the environment has been collected through sensors, the

next step conferring to Loke is to make sense of it. The system must utilize

the sensory information in a way most relevant for the use of the system.

Situations must be recognized and context information must be prepared

using the sensed information. This is the thinking stage of context aware

systems. Much work has been done to utilize sensory data and to obtain

contexts in the real world, e.g. to estimate physical quantities such as

distances [30], observe patterns in human acting in the real world [31] and

building augmented worlds [32].

2.3.2.4. Acting
Once context information has been gathered or situations have been

recognized, actions can be taken. Actions to be taken are specific for each

application depending on what the system wants to achieve in taking the

specific actions, e.g. an action can be as easy as collecting more information

about the environment through sensing [29].

2.3.3. Collaborated tagging
Also textual information connected with the image can be metadata such as

manually added tags added specifically for an image. Manually annotating

images with tags are often referred to as annotation based image retrieval

(ABIR) within the field of image retrieval [18]. Tags are usually in the form

of keywords added by individual users to describe their perception of the

image. To cope with the large amount of images online, and the challenges

that comes with this, some internet services has made it possible for users to

share their images and manually tag them, to make the task of image

retrieval easier. E.g. Flickr
5
 lets users upload images and tag them with

information such as personal tags, location, time, and other context related

tags. When many users collaborate on adding metadata to images or other

content in the form keywords it is often referred to as collaborative tagging,

and has recently grown exponentially in popularity on the web [14].

5
 http://flickr.com

http://flickr.com/

16

Subjectivity:

Still manually added tags are subjective, which means that individual users

have individual perceptions of how to best tag certain images with certain

tags at certain times [13]. Subjectivity is the biggest concern when dealing

with metadata that represent individual‟s perception. Nevertheless, previous

work has been presented for how people manage their images for manual

tagging, with focus on building systems that group images into categories

that corresponds to the natural way people think about their images. [33, 34]

2.3.4. Auto- annotation
Automatic Image annotations or auto- annotation are often used within text

based image retrieval systems to augment the images with additional

metadata [4]. When more textual and contextual information are available

the bigger are the potential for getting more successful retrieval, i.e. of

course given that the metadata are reliable and relevant for the images.

Already available metadata can be used alone, or combined to supplement

the images with important contextual metadata. For example in MediaAssist

[7] a combination of locational metadata added by the capturing device (i.e.

latitude and longitude) and date/time stamp are used to augment images

with atmospheric conditions, e.g. temperature and weather condition

provided from local weather stations. Also MediAassist use the locational

data to augment images with metadata such as name of country, city and

street. Cheng et al. [9] use a combination of GPS coordinates and

orientation of the capturing device to decide whether subjects in certain

images are of specific Points Of Interest, e.g. famous attractions and the

like.

2.3.5. Semantic gap
Through metadata and auto- annotations image search can be facilitated

through keyword search, and can make the image search semantically more

meaningful. That is presumed that the metadata is reliable and that enough

contextual information about the image is gathered. When gathering

additional metadata for the image through auto- annotations it is hard to

exclude problems concerning semantics. One such concern is the semantic

gap problem. The semantic gap problem refers to the difference between

two descriptions of an object or feature, where one is abstract and one is

more specific and requires external knowledge. [1] The semantic gap

problem usually arises whenever ordinary human activities, observations,

and tasks are transferred into a computational representation. This refers to

the vast differences between the perception capacity of humans and

computers. In closing the semantic gap much work has been done, e.g.

search engines and online shops has shown big success using user relevance

feedback, looking at user patterns [35] and using CBIR techniques.

Recent trends in information retrieval and auto annotation has shown great

progress in closing the semantic gap. Research has involved auto-

annotating images with contextual location and time specific metadata. It

17

has been shown that a combination of metadata may be combined to

accumulate semantic understanding, e.g. a combination of time and location

can sometimes propose the semantic content of images. [11, 12]

Also in Information theory, many tools and methods are available for

achieving more semantic retrieval, such as context accumulating algorithms.

E.g. Singular value decomposition (SVD) identify patterns between terms

and concepts contained in an unstructured collection of text and Latent

semantic Analysis/Indexing (LSA/ LSI) use SVD to extract contextual

content of text, analysing it and finding its semantic meaning. [1]

2.3.6. Ontologies
Semantics can be captured by adding a higher level of descriptions to the

metadata or features of the image. E.g. semantics may concern specific

words, such that a term or word can have many different meanings, e.g. the

word tiger can have different meanings depending on in what context it is

used, i.e. the animal tiger, the golf player Tiger Woods or the airplane “de

Havilland DH 82 Tiger Moth”. We can capture the semantics of certain

words by mapping the words to ontologies. An ontology is a structured

representation of the knowledge within some area which holds a higher

level description of the terms and captures the semantic meaning of the

specific word [5]. However, the use of ontologies usually involves a

excessive amount of manual intervention [36]. E.g. in the situation of

manually annotating images with tags, the tags would usually be mapped to

ontologies at the time they are inserted. If not, e.g. if an image retrieval

system automatically add semantics to annotated tags through ontologies,

the system cannot be certain terms are mapped to its correct semantic

meaning. This is of course in situations where terms have several different

meanings, e.g. as for the term Tiger.

2.4. Database theory
When dealing with any large amounts of data, knowledge can more easily

be discovered by structuring it into a database. [37]

2.4.1. Entity- relation approach
When designing a database one usually start by making an entity relation

(ER) model. The E-R model is a conceptual representation of the entities,

relations and constraints that make up a given design and provides a

graphical summary of the database structure. The approach is very useful

for the designer, gives a visual representation that supports how humans

usually think and works as a good tool for validating the correctness of the

design. [38] The entities model the objects that can be uniquely identified,

e.g. in a student registration system, student and course would be entities.

Relationships model the connection between entities, e.g. student follows

course, where follows is the relation. Constraints are also an important

aspect of the ER-design as in a relational model, e.g. a student can only

follow one course at a given time on a given day.

18

2.4.2. From Conceptual model to relational database schemas
When a satisfactory ER- model has been produced, the next step is to

convert it into a relational schema and ultimately into SQL create

statements. According to Kifer et al. [38] there are a few basic step that can

be taken to produce the database schema. I will summarize them here:

For entities the following transformations are performed:

1. Each strong entity, i.e. an entity that is not dependent on others and can

exist on its own e.g. the student entity exampled above, can be

transformed with the following steps:

a) Each entity will become a relation.

b) Each attribute of the entity will become an attribute of the

relation.

c) One of the key attributes of the entity will become a primary key

for the table.

2. A weak entity is an entity that is dependent on one or more other

entities to exist, e.g. a child entity is weak entity since it is dependent

of its parent to exist. For each weak entities the following are

performed:

a) Create a table.

b) All attributes of entity is included as attributes of table.

c) Include all primary keys of parents as foreign keys in table.

d) The primary key of table is a combination of the parents’

primary keys.

For Relationships the following are performed

1. An M:N relation are in many ways similar to a weak entity, i.e. a table

has to be created which is dependent on one or more parents. Each

M:N relation are transformed with the following steps :

a) For each relationship type a table will be created

b) The primary keys from all entities participating in the relation

will be included as foreign key attributes of the table.

c) Also all attributes of the relation will become an attribute of the

table.

d) The combination of the foreign keys from b. and, if any, key

attributes from the relation will form the primary key of the table.

2. Each 1:N (one to many) relation will be translated with the following

criteria:

a) The table of each N-side of the relation will be included with the

1-side‟s primary key as a foreign key attribute.

b) Also all entity attributes on both side are included in the entities

table, this has hopefully already been done in step 1.b.

Also if there are multivalued attributes in any of the entities or relations

these has to be transformed as well. I.e. for each multivalued attribute A, the

translation is:

a) Create a table

19

b) The table will include an attribute corresponding to A,

c) Also a foreign key attribute is included, which references the table

representing the entity/ relationship type that has A as an attribute

d) Primary key is combination of all its attributes

2.4.3. Normalization theory
The ER approach does not guarantee good relational design alone.

Normalization is used to help database designers to evaluate the relation

schema so that it is in a certain normal form by looking at problems

concerning redundancy. According to Kifer et. al redundancy may concern

updates, insertions and deletions anomalies in a database. Decompositions

are used to deal with such problem. An example of a decomposition is in

situation where multivalued are present in the ER- diagram as described in

the end of the previous section. To get a more realistic view we can e.g.

decompose the table;

Person(SSN, Name, Address, Hobbies)

, which have the multivalued attribute hobbies into two tables:

Person1(SSN, Name, Address)

Hobby(SSN, Address)

Conferring to Kifer et. al. the central tool for decompositions are functional

dependencies, which generalizes the idea of key constraints. Further

functional dependencies are used to define normal forms, which is a set of

requirements desired in update intensive systems. This is why the theory of

decomposition also often is called normalization theory. The normal forms

are used to eliminate redundancy and potential update anomalies. Several

normal forms are identified within database theory, where each normal form

is characterized by a set of restrictions. Thus, if a database schema follows

these restrictions it has certain predictable properties. Originally three

normal forms namely 1NF, 2NF and 3NF where introduced by Codd [39],

where each success imposes more and more restrictions. Later on the

Boyce-Codd normal form (BCNF) where introduced to get rid of some

weaknesses found in 3NF. I will briefly present Codd‟s original normal

forms along with the BCNF.

The first normal form (1NF) defines that an attribute must be atomic, it must

not be anything that has structure, e.g. a record cannot have multiple fields

or a set of fields. The second normal form (2NF) defined that a schema must

not have any functional dependency, X  Y, where X is a subset of that

schema‟s key and Y has attributes that does not follow in any of the

schema‟s keys. An example of the table that does not follow 2NF is the

table person pictured above, splitting person into two, i.e. person1 and

hobby holds for the restrictions defined by the second normal form. The

third normal form (3NF) holds if it for every functional dependency X  Y

є (set of functional dependencies) the following conditions are true:

1. (i.e. this is a trivial functional dependency)

20

2. is a superkey of the relational schema

3. Each attribute in A є Y–X belongs to a candidate key of the

relational schema

BCNF is a relaxation of 3NF where only criteria 1 and 2 from 3NF defined

above need to be true.

21

Chapter 3

3. Related work
In this chapter I will present previous work that is related to my project. The

main characteristics for my solution are contextual information connected to

the image and summarization of large image collections. Therefore, I have

decided to separate relevant work into these two characteristics. In section

3.1 I will present previous work for context information in image retrieval

and relate it to my approach. In section 3.2 I will present previous work that

are similar to my approach of summarizing image collections for efficient

retrieval.

3.1. Context in image retrieval
Context is extremely wide ranging, but in this project I will mainly focus on

two contextual properties as a basis, i.e. location (of subject or capturing

device) and data/time (of when an image is taken). Hence, in this section

work that use location, time/date and auto- annotations as a baseline are

presented.

The Mobile Media Metadata system (MMM) presented by Davis et. al. [6],

gather media content based on the temporal, spatial and social context at the

time the image is taken. The system is developed for mobile phones, and

enables user verification of the most important media content gathered for

the image. The system is different from mine as the content is collected

analysing statistical patterns of prior annotations made for images that have

similar contextual data, e.g. similar time and location. My system does

automatically annotate images, but not with manually added tags from other

collections of images. Notably, my system also takes advantage of manually

added tags, but only focus on those already present for the images used.

Further the information is gathered from a database consisting of prior taken

images. Davies et. al make it clear that MMM uses locational information

for the subject in the image rather than the location of the camera taking the

image. An improved version of the system (MMM2) is presented in [15].

MMM is concerned of images that are taken far away from the subject in

the image, which is different of my system. My developed system sees the

capturing device as the entity and not a potential subject in the image. While

MMM‟s approach are very relevant for certain images I believe the fraction

of images taken of subjects from far distances are globally very small. Since

my system are made for a global domain, the majority of the images, which

is assumed having the camera location close to the subject, has to be

prioritized to make the system as less noisy as possible. Hence in my system

the majority wins, location of the camera is kept and subject location is not.

Naaman et. al [40] presents PhotoCompas which use time and location

metadata from private collections of images to organize photos into time

based and location based collections of data. The time and location metadata

is also used to create contextual information for the image, by gathering

additional metadata using a combination of time and location. Similar to my

22

system PhotoCompas use location and time metadata with the intention of

gathering additional metadata both through analysis and from online web-

services. The difference between the two is that Naaman et. al limits the

solution to personal use and not on online collections such as different

domain specific image collections.

Toyama et. al [41] presents an end-to-end system that lets users manually

tag their images with geographical location data and share these images with

other users across the world. The system has a visual interface, including a

map, where locations are selected by the user. The users can then look at

other images taken at the same location as his, or simply look at images

uploaded and tagged with locations of interest. All images are indexed by

location in The World Wide Media eXchange (WWMX) database. The

system only handles manual contextual information to be applied and does

not support collection of any additional contextual or content specific

metadata. My system assume that location specific metadata is collected and

included in advance by the capturing device and have totally different

intentions in how to use the location data further. When that has been

mentioned Toyama et. al presents a system that involves manually added

tags. Even though the solution of my system is developed to be fully

automated, manually added tags are used, if available, based on capturing

the natural perception of humans. This could be argued to be similar to

Toyama et. al intentions for their solution.

The MediaAssist project presented by O‟Hare et. al [7] enables organization

and searching personal archives of images based on contextual and content

information [42]. Some of the contextual information that is used is time

and location. These contextual metadata are used to gather additional

metadata, which is similar as in my approach. Also the images are analysed

using different CBIR techniques, e.g. for face recognition, light status (e.g.

day, night) and so on. My system strictly does not use any visual content

analysis, but focus on text based image retrieval. MediaAssist include semi-

automated annotation techniques which e.g. let‟s people add names to

unrecognized faces or correct automatic-annotations if they are incorrect,

which is a distinctive difference to my system. The location specific

metadata is used in a similar manner as in my system. The difference is that

in my system locational information (i.e. latitude and longitude) is assumed

to be an automatic process performed by the capturing device, which is

exploited to augment images with locational data. When it comes to the

GPS metadata, in MediaAssist this process is done manually and not

assumed being an automatic process by the capturing device. Another

similarity between mine and MediaAssist is that date and time stamps is

converted into keyword tags at different levels, e.g. month, day and season

so that images can be filtered out through keyword searches such as “ return

all images taken in the summer on Saturday”. MediaAssist also gather

weather conditions for the images using local weather stations. The features

mentioned above bear many similarities to my system, when it comes to

annotating, a difference between the two is that MediaAssist use a hybrid

approach, other than using ABIR and text based techniques the system also

annotate pictures using CBIR techniques and mine does not.

23

Jeon et. al [8] suggest a system that uses different CBIR techniques to

automatically annotate images based on a training set of images. The

approach use probabilistic models to decide similarities between features in

the image and features in images from the training set. Each image includes

a set of blobs and a set of words included in the caption of the image that

describe the blobs. The concept of a blob is actually a segment of the image,

either objects (i.e. humans, buildings, boats etc.) or regions such as water,

grass and sky. In the process of auto-annotating images, a set of images are

analysed, each image is segmented into blobs and clustered together

according to different similarity measures, e.g. shape, texture, colour. Then

the system analyses the clusters of segments (blobs) and use relevance

models to automatically annotate the images containing the blobs with

words using the training set. E.g. if an image from the training set have

similar blobs as the image being analysed the semantic descriptions are

copied. This approach analyses the physical image itself, which is assumed

to be unlabelled before the process of auto-annotating the images is started.

The difference between this approach and mine is that, even if this approach

can add relevant tags to the images, a small amount of contextual

information about the image is collected. It is also worth mentioning as

described in section 2.1 , using such CBIR techniques bring no assurance

that the regions are described correctly.

The CBSA system presented by Chang et. al [43] uses a semi- automated

approach to annotate unlabelled images with soft labels. As for Jeon et. als

system the CBSA also use a training set of manually labelled images,

consisting of 25000 images divided into 116 categories, to train an ensemble

using the statistical machine learning method Bayes Point Machine (BPM).

When training the ensemble the system uses a One Per Class (OPC) scheme,

which trains binary classifiers for classes. The classifier with the largest

output determines the class of each data point. The trained BPM-OPC

ensemble is applied to each image to predict label membership. Each image

is in this way described with a bag of words, where each word‟s relevance is

indicated using a probability value. Chang et. al.‟s approach is also

different from mine as they practice content based techniques in extracting

features from the images, use a test set to aggregate new metadata along

with involving users through user relevance feedback, hence changing the

initial labelling through manual intervention. The latter makes the process of

automatically gathering additional metadata semi- automated and not

automated as in my approach. The CBSA system is not mentioned using any

location, time and directional information in their labelling, but since this

system is content based and are meant for unlabelled images I assume this

aspect of the system also is different from mine.

Feng et. al [44] presents the Multiple-Bernoulli Relevance Model (MBRM).

As for the CBSA system and Jeon et. al‟s this system also practice auto-

annotation using a training set of images and CBIR techniques. The MBRM

model uses a generative approach to deciding annotations. Usually the

highest ranked words are included as an annotator for the image, and when

annotated the system focus on the presence or absence of the words rather

than there probabilistic importance. Feng et. als system is also different

24

from mine as annotation is done using a training set, they practice CBIR

techniques and probabilistic models.

As mentioned in section 2.1 image retrieval systems are usually text based

(concept) or content based, All systems described in this section involves

using content based techniques, i.e. they are focused on extracting features

such as shape, colour and texture out of the image and using similarity

measured, either probabilistic or machine learning techniques, in describing

them with words. To prevent confusion some of the systems described so far

involve using a combination of text based and content based techniques.

Anyhow Cheng et. al [9] suggest an annotation technique that is in many

aspects very similar to the one used in my project. The authors propose

using different mobile sensory data such as GPS location and directional

data (compass) to gather additional metadata for the image. The approach

suggests combining GPS coordinates and directional compass data to

correct the prediction of the location of the image. The authors are as in the

MMM system, presented earlier in this section, focused on using the

location of the subject in the image, e.g. a landmark, instead of focusing on

the location of the camera as my approach does. The system download geo-

tagged images from online image sharing websites and in an offline style

mine important information about them. The images are clustered based on

content similarities and location with intention to create clusters that include

frequent tags for a potential Point Of Interest (POI) in the area. The closer

an image added to the system are to a POI, while at the same time having a

direction that points at it, the higher the likelihood is that a certain POI is the

subject of the image. My system does not use any POI‟s, but potentially use

online image collections. Anyhow these are only used as candidates for

analysis and not for augmenting external images with tags. Cheng et. al use

a combination of the cameras sensory data and CBIR techniques to improve

assumptions of the image, as well as auto-annotating it with data gathered

from online image collections. Although my system is not interested in

semantically locating certain POI‟s using CBIR techniques the use of

context data in Cheng et. als approach are very similar.

3.2. Summarizing Image collections
As discussed in section 2.1.2.1 summarizing large collections of documents

has been addressed in the field of Information theory. Anyhow the same

approaches are difficult to transfer and have not been successfully adopted

by image retrieval systems. Roughly speaking the success in information

theory has to deal with the amounts of textual data that are available in text

documents, advanced algorithms for extracting semantic meanings from the

data and the small differences in individual people‟s perception of a

document in relation to search queries. Anyhow the recent trends in image

sharing, tagging of images and metadata automatically added by the

capturing devices have opened up new possibilities. Also converting

metadata and augmenting images with additional metadata can help us

understand the semantic meaning of collections of images to a greater

extent. Having more textual data for the collections of images can help in

describing large collections of images through their main characteristics,

25

and can be used to easily filter out large collections that are not relevant for

search queries.

Kennedy et. al [45] analyse community contributed large scale image

collections. The researchers use a collection of 20 000 000 images from

Flickr which include metadata such as location, time and manually added

keywords. The images are improved with precision for landmark and

location based queries and summaries for collections of images are made by

selection. The system analyse all images within a certain area, by assuming

that within this area important images will be frequently tagged by

photographers with important objects, events and landmarks. Following this

approach, representative tags for each area is extracted, the most frequently

used tags are reconsidered depending on how many photographers that have

used it, simply to filter out as many deviants as possible. In this way, having

e.g. a town say San Francisco, the images contained within the most

important areas of San Francisco are clustered together. For each important

area only the most representative tags are retained, and holds as a

summarized description for the area. Semantic data are also extracted in the

form of events and location, e.g. if a user searches for “golden gate bridge”

the system knows that the search refers to a landmark in san Francisco

instead of just am image holding the three tags, “golden”, “gate” and

“bridge”, which could refer to something completely different. Also the

representative cluster for an area are improved by using CBIR techniques,

locating visual features in the image, and finding how representative the

image are for certain descriptions or keywords, e.g. discarding similar

images or duplicates, removing landmark images with families in front of

the landmark and removing false positives. Kennedy et. al.‟s. system is

similar to mine as for a given set of images only the representative

properties are retained , the difference is that in my system the metadata is

separated for an existing image collection being analysed and it does not

group the images being analysed into locational regions.

Simon et. al [46] use techniques for summarizing geographical areas and

scenes by extracting the visual splendours from an certain area using large

community based image collections. Images that are tagged with locational

and other context relevant information are used to derive a one page

summary which describes the key interests for certain scenes and locations,

such as a city, a landmark etc. The images in such community based image

collections are often in the size of millions and usually only contain a few

tags each. This can lead to results for user queries in sizes that are extremely

large. The solution that the authors suggest is a system that extracts images

from several sites, focusing on a certain geographical area, analysing the set

of images using CBIR techniques and finding what seem to be the most

relevant scenes for the area. When the most relevant scenes are found, the

images are clustered together according to these scenes. The most relevant

images for each scene is located from the different sites and the most highly

weighted images are kept as representatives or summaries for the certain

scene. Again the scenes serves as summaries for the geographical area,

included with representative images for each scene. The system developed

serves as an interactive 3D browser which allows users to navigate huge

community based collections of images with greater efficiently, both in time

26

and relevance. As for Kennedy et. al.‟s approach Simon et. al. also focus on

clustering images according to locational regions, which as discussed

previously is different from mine. Also Simon et. al. practice CBIR

techniques which also is a vital difference between the two.

As for the two systems described above, also Kennedy & Naaman [45]

analyse community based collections of images and use Flickr as test data.

The researchers use a combination of context and content based tools for

gathering location and landmark representative sets of images. The

approach is very similar to the work of Simon et. al [46], the difference is

that they start by finding tags that represents landmarks, and generate views

that represent the landmark, and not just a scene as in Simon et. als

approach. Kennedy & Naaman only use tags and metadata when creating

the views themselves, and only use CBIR techniques to further strengthen or

weakening the assumptions of the views. Kennedy & Naaman proves that

this approach speeds up the process of the management of the system

compared to Simon et al‟s. approach, which focus on building clusters and

summaries almost entirely on the visual content of the images. Finally,

when the views has been analysed and improved by visual content analysis

a summary for the view is made describing the main characteristics of the

images in it. This approach is very similar as the previous to systems

presented, and the difference in comparison with mine is obvious. The

similarity is that the system focuses on locating representatives and reducing

the retained amount of metadata for a given set of images.

27

Chapter 4

4. Approach and design

4.1. Terminology
Before I present the design and approach of the developed solution of this

thesis I will present some common terminology that is used throughout this

chapter.

Term – A term or metadata term is a keyword which is part of one of the

images, usually in the EXIF header. A term can be of different kinds, e.g.

user provided terms (tags and title terms), date/time specific terms,

locational terms, weather specific terms etc. All terms with exception of

user provided terms are terms that are either augmented to the images from

external sources or converted from numeric metadata (e.g. date/time)

Hypernyms – user provided terms are grouped into a higher level

representation of the terms. E.g. the higher level representation of the term

car is motor vehicle. The ontology used in this system refers to such higher

level representations as a Hypernym. Therefore, I will also use this

definition.

Selection threshold – The weighting threshold used to decide whether or not

a metadata term is representative for the collection.

Term frequency – The weighting value calculated for all metadata terms. If a

term has a term frequency above the selection threshold the term is viewed

as representative for the collection.

Inverse document frequency – The value used to weight a term in relation

with all image collections available.

4.2. Overview
In this project I will process image collections with the goal of locating and

extracting representative terms. Representatives are terms that describe the

image collection as a whole from its most informative view. Further a

representative is a term that should stand out from other terms in the

collection. This means that in extreme scenarios where no terms or features

of an image collection are prominent from the rest, no terms are viewed as

representative for the collection.

Representatives are found by analysing textual metadata of the images

located within an image collection and locating dominant terms that stands

out from other. Textual metadata can be manually added terms in the form

of tags, terms extracted from the title of the image or contextual information

gathered by augmenting the images with additional metadata terms. In this

project the latter involves supplementing images with additional metadata

28

using locational information (i.e. latitude and longitude) and date/time. That

is of course if this information is available for the images.

When images within the collection have been augmented with additional

metadata all terms will be cleansed and user provided terms will be grouped

together into higher level representations (Hypernyms, definition in section

4.1). The hypernyms represents a higher level representation of terms

connected with the images (e.g. the terms car, SUV, motorcycle, have a

higher level representation motor vehicle in common, the higher level

representation of motor vehicle is self-propelled vehicle and so on).

Hypernyms are used to strengthen terms through its hypernym members,

and used to find a hierarchical threshold which reflects the terms of the

collection in the best manner as possible. Finally, when data has been

cleansed and strengthened the resulting metadata terms are analysed and

representatives are located before a collections summary is created.

4.3. System Architecture
On a high level, the architecture of the system can be divided into three

main mechanisms, one that augment the images with additional metadata

terms, the second which cleanse, strengthens and calculate term frequencies

for the all metadata terms and the third which analyse the final metadata

terms and locates the representatives for the image collection summary. The

mechanisms are pictured in figure 4.1.

Figure 4-1: High level system architecture

From the high level architecture, the system takes an image collection as

input and transforms the metadata within it to a collection summary that

describes the collection through its representative terms, if there is any.

Within the main components of the system there are several sub components

or processes which help in producing the different outputs of the main

components. A detailed description of the system is pictured in Figure 4.2.

Image

collection

Metadata

augmentation

Cleansing,

strengthening and

frequency calculation

of metadata

Find representatives

Augmented image

collection

Metadata

Frequencies

Image collection

Summary

29

Figure 4-2: Detailed System architecture

From the detailed representation of the system the main components

pictured in Figure 4-1 are represented by the grey boxes, while the sub

components within them are represented by the blue component boxes.

Image collections come as input and a collection summary as output. The

Image collection

Metadata augmentation GPS coordinate
Date / time

Next

image

All images

processed? No

Yes

Augmented image

collection

All metadata
terms

Generate unique
metadata term list

Cleanse terms

Calculate term

frequency

Unique term list

Cleansed
unique
terms

Collection summary:
Tags:

…

Date /time

…

Weather info

…

Location info

…

Term Hypernyms (tags)

…

Process metadata

Group terms
into hypernyms

Term
frequencies

Representative
Metadata

Cleansing, strengthening and frequency calculation

Find representatives

Metadata augmentation

Cleansed unique
terms

w/ term hypernyms

DB

All metadata

terms and
hypernyms w/

term

frequencies

30

user requesting a specific image collection is also pictured, with purpose to

make the representation of the workflow described below more complete.

The different components of the system are described through the rest of

this chapter. Metadata augmentation are described in section 4.6, general

cleansing and strengthening of metadata terms are described in section 4.7,

selection and calculation of term frequencies are described in section 4.8.2

and 4.8.3, while production of the representatives for the collection is

described in section 4.8.4.

To get a more realistic view of the architecture I will present the workflow

of the system in the scenario of producing a collection summary for a given

image collection. The workflow gives us a top down approach to which

processes the metadata goes through before the representative terms are

listed in the final collection summary. Notably the workflow depictured is

tailored an image collection gathered from Flickr.

1. The user of the system selects a collection to be gathered from Flickr

from a predefined list of geo referenced image collections.

2. The system requests Flickr to return the given image collection,

specifying that only geo-tagged images are returned and that each

image should come with its title, tags and GPS coordinate metadata.

3. Each image is augmented with additional metadata using the image‟s

GPS coordinates and date/time stamp. Additional contextual

metadata gathered from external sources are; Locational data (i.e.

name of country, region, city, street) and atmospheric conditions

(e.g. temperature, weather condition, wind strength etc.). Also date

/time stamps are converted into month (i.e. January, February etc.),

weekday (i.e. Monday, Tuesday etc.), season (i.e. summer, winter

etc.) and a combination of year month (e.g. 2009 January, 2008 Mars

etc.).

4. When all images have been augmented with additional available

metadata a unique list of metadata terms is created, i.e. no duplicates

of terms are expressed in the unique list.

5. The unique metadata terms are then cleansed for whitespaces,

character symbols, stop words, non-roman characters, conjunctions,

prepositions, determiners, non-informative words and oversized tags.

6. Also term hypernyms is located, grouping words of similar meaning

together, the terms used are those located in the tags and title

metadata field of the image.

7. For all cleansed data, including the term hypernyms, term

frequencies are calculated for each unique metadata term.

8. All term frequencies are compared against their selection thresholds

to locate the representative terms of the collection.

9. The representatives from the different metadata (i.e. user provided

terms, date/time terms, weather terms, locational terms, term

hypernyms) are used to create the collection summary. The

collection summary describes the image collection as a whole

through its most representative terms.

10. Data gathered through the analysis is stored and structured in a

database (described further in chapter 5).

31

Before digging deeper into the description of the architecture I will in the

next section define the requirement specification for an image collection

used as input by the system. In section 4.5 I will describe the specific image

collections that I will use in the testing of the system implementation.

4.4. Definition and requirement specification
From the perspective of this project a collection can be viewed as pre-

existing in difference ways. From one perspective a collection of images

may be existing on a web page, which prioritize and provide images on a

certain field or area (e.g. image collection of cars, planes, towers, boats),

theme or event (e.g. vacation, camp, study trip, boat trip etc.), location

specific images such as pictures of Italy, France and so on. Another scenario

is providing collections of images hierarchically structured in folders on a

personal computer.

In the first phase of this project the goal was to find a set of image

collections where the following two requirements are met.

Desired specification list:

1. Part of existing image collection: The images that I will work

with have to be existing as a collection correspondingly to one of

the forms described above

2. Metadata: One or more metadata fields have to be present for an

image. The different kinds of metadata desired are:

a. Tags: Tags field consists of terms of information related

to the image manually inserted by individual users

b. Title: A manually inserted string of words, usually

describing the picture through location, time and event.

c. Coordinates: Locational data, i.e. latitude and longitude

usually inserted by the capturing device. Coordinates

and timestamp can be used to augment the image with

additional metadata through auto- annotations

d. Date/time: date and time stamp of when the Image is

taken. All modern cameras provide this information at

the time of capture.

As can be seen from the requirements list, I have decided to not include all

metadata properties as absolutely necessary for the system to function. One

vital property is that all images have to be part of an existing image

collection of some kind. Other than that it is also necessary that at least one

of the four metadata properties, tags, title, locational data and date/time

stamp are included or part of the image. This means that three of the four

may be absent as a maximum, but not all four.

These design choices has been made to make the system as tolerant and

close to the reality of current and futuristic image collections as possible.

Even if including tags, title and coordinates for an image are trends that are

32

more and more being used today on online collaborative tagging sites, most

probably there will always be images with locational, title, tags and

date/time metadata missing, or at least one of them absent. At least in

private image collections I believe that this is a concern, where people

simply do not bother or find time to manually tag their images.

Nevertheless, when only tags are available these can have great usability for

the image retrieval systems, where locational data are mainly used to

augment the images with additional metadata. Even if the latter are used to

increase the semantic understanding of images and helps give better

descriptions of the images described, providing tags and/or title can also be

very helpful alone and vice versa. Date/time is converted into time specific

terms which also increase the semantic understanding of images. Hence

requiring only one of the four specifications to be present is sufficient for

good image retrieval in my opinion. At least if one of them is missing in

only parts of the image collection.

For example, the system can tolerate some of the images to have images

with all metadata absent, but if the majority of the image follows the desired

specification the collection is viewed as proper for further analysis. The

threshold is set to 90 per cent, which means that at least 90 per cent of the

images within an analysed collection have to have one of the desired

metadata fields present for the collection to be accepted by the system.

In the next section I will present the image collections that I will use in the

development of my solution, before presenting how these image collections

are augmented with additional metadata to increase the textual information

connected with it to help create more accurate and semantically more

meaningful summaries. Further, I will explain how data are cleansed and

improved before finally representatives for the collections is gathered to

create summaries that describe the image collection from its most

informative view.

4.5. Gathering image collections from Flickr
In the first phase of this project the goal was to find a source for images that

where both manually annotated with tags and could be identified as a

collection. The most obvious approach and my first suggestion were to

manually structure a set of image collections. Even if not part of the

requirement specification (section 4.4), to see the full potential of the

developed system all images are also desired to contain date/time and GPS

coordinate in the evaluation. Test users are assigned to manually augment

the images with additional metadata in the form of user provided terms. I

found out that this approach would first of all be very time consuming, but

also it would be difficult to get the desired amount of data to work with.

An alternative had to be found and I started browsing for test collections of

images, and found quite a few, but they were either too domain specific, did

not contain tags, title, date/time or GPS coordinates and did not fit my

desired specifications as described in section 4.4. The test collections

available for download are mostly provided to use within the field of

Content Based Image Retrieval, i.e. meant for extracting features such as

33

shape, texture and colours from the physical image itself through analysis

(section 2.1). Therefore providing user provided terms connected with such

image collections are usually not viewed as necessary.

The next suggestion was using image collections found on community

contributed online image sharing sites. Such community based sharing sites

have been more and more widespread during the last years. I found several

sites available for this specific purpose, including Google‟s PicasaWeb
6
,

Flickr
7
, smugmug

8
, locr

9
 and everytrail

10
.

I found Flickr to be the most suitable for my experiment. Flickr has over 5

billion images, many of which are geo tagged, which is good to evaluate the

full potential of my system. Also Flickr has made it available for their users

to create groups. A group is a place where different users can contribute

with images by following certain criteria‟s from the group description. E.g.

groups are usually meant for images from a specific location, year, relevant

for different themes etc. There are also a huge amount of groups which are

intended only for geo-tagged images, which is perfect for my experiment. I

have 17 groups to be used in the development of my system. Each of the

chosen groups consists of 300 to 7500 geo-tagged images, and is

individually viewed as an existing collection of images.

Flickr has a very functionality rich API
11

 available which allows users to

search for all images on their servers, specifying a great amount of

criteria‟s. The resulting queries are returned as an element tree where each

element represents an image. An element holds the most basic information

for each image, such as owner, date taken, which server it is located on,

title, tags etc.

It is also possible to specify additional metadata that you want to be returned

for each image or element, if available. I have specified for the groups I

have chosen, I only want images that are geo-tagged. I want the tags field,

date, and the coordinates for the images to be returned, all specified to see

the full potential of the developed system. Each returned element tree is

stored on disk and then ready to be augmented with additional metadata,

cleansed and analysed before a summarized description of the most

representative terms of the collection is created. These steps will be

described throughout the sections of this chapter.

4.6. Collecting contextual information through auto-
annotations

IR is focused on finding material (usually documents) of an unstructured

nature (usually text) that satisfies an information need from within large

collections (usually stored on computers) [25]. A distinguishing reason for

6
 http://picasaweb.google.com

7
 http://www.flickr.com/

8
 http://www.smugmug.com/

9
 http://www.locr.com/

10
 http://www.everytrail.com/

11
 http://www.flickr.com/services/api/

http://picasaweb.google.com/
http://www.flickr.com/
http://www.smugmug.com/
http://www.locr.com/
http://www.everytrail.com/
http://www.flickr.com/services/api/

34

the success in IR is that the material are textual which are of conceptual

nature and easier to analyse and semantically understand in relation with

user queries.

Even though we have efficient techniques for reduction and description of

data in information theory, it is difficult to transfer these techniques to

image retrieval. One reason for this is because we usually do not have

enough descriptive and continuous textual information connected with an

image. Without enough textual information it is difficult to capture the

semantic meaning or distinguished features through analysis as in

information theory, so other complementary approaches have to be used.

The developed solution in this thesis will therefore use available metadata,

such as Global position system (GPS) location (of the capturing device) and

date/time (of when the image are taken) to augment the images with

additional contextual metadata. This can enhance our knowledge of the

images and may thus contribute to closing the semantic gap and improving

effectiveness of image retrieval.

Notably the system developed in this project is meant for different kinds of

collections, i.e. multiuser or single user collections and collections with only

some of the desired specifications available. This means that user provided

terms, date/time and locational data are not all necessary required making

images valid for the system, even if the majority of the images used in the

test experiment include all these metadata fields. The motivation for this is

to see the full potential of the system.

4.6.1. Location
Google provides application developers with different web services. I will

use Google Maps API Service
12

 in my implementation. Other than

providing all search functionality which is included in the online version of

Google maps
13

, the Google maps API also includes great functionality for

geocoding. In the system developed in this project the geocoding

functionality is used to gather location specific information on different

levels, i.e. name of country, region (e.g. district, area and state) city and

street. This locational information is returned for each image in the

collection by providing the GPS coordinates (latitude and longitude) to the

Google Maps API. When the locational information is gathered for an

image it is stored as its own attribute in the image element described in the

previous section (4.5). Usually this kind of information are stored in the

EXIF header of the image (see section 2.3.1), but since the image metadata

used in this experiment are returned (by Flickr) as element trees containing

several attributes for each element, augmented metadata are stored here.

Notably all information gathered and augmented to the images in the

collection are stored in the element tree. When all auto annotations are

complete a new augmented image collection represented by the element tree

are stored on disk and ready for further analysis.

12

 http://code.google.com/intl/no/apis/maps/documentation/webservices/index.html
13

 http://maps.google.com/

http://code.google.com/intl/no/apis/maps/documentation/webservices/index.html
http://maps.google.com/

35

4.6.2. Atmospheric conditions
As part of the auto- annotations also weather condition will be collected

using a combination of timestamp and location. This is achieved using a

weather service provided by Weather Underground
14

. Weather underground

allows users to access historic data from local location specific weather

stations when providing a weather station ID. Weather Underground also

supports searching a location providing GPS coordinates. A list of the

closest weather stations are returned in sorted order, i.e. the closer the

weather station is to the specific coordinate, the higher up the station ID is

located in the list. Weather underground gathers weather information

regularly from the local weather stations and provides users with historic

information for specific locations, including temperature, humidity,

visibility, wind direction, wind speed and weather condition (e.g. snow,

rain, haze and clear). In the system developed temperature, wind strength

and weather condition will be used.

Data represented by digits, will be translated into searchable terms to help

create more accurate summaries for the image collection. E.g. wind speeds

will be translated into searchable information by using Tropical Cyclone

Classifications
15

 and the Beaufort scale
16

. Examples would be translating

wind speed into terms such as calm, light breeze, windy, storm, hurricane

etc.

4.6.3. Converting date/time
The date and time of which the image is taken will be converted into several

searchable terms which will be used to more easily see the diffusion of data.

The date/time field is converted into month (e.g. January, February etc), day

of week (e.g. Monday, Tuesday etc) season (e.g. summer, winter etc) and a

combination of year and month (e.g. 2009 January). The motivation for

these conversions is to increase the completeness of the collection summary

and gather semantic information that is more efficient and natural for human

requested search queries. Also it is much easier and lucid to locate

representatives within certain time periods (e.g. Summer) instead of using

certain dates which are less descriptive (e.g. 12. January).

14

 http://www.wunderground.com/
15

 http://cawcr.gov.au/bmrc/pubs/tcguide/ch1/ch1_3.htm
16

 http://www.stormfax.com/beaufort.htm

http://www.wunderground.com/
http://cawcr.gov.au/bmrc/pubs/tcguide/ch1/ch1_3.htm
http://www.stormfax.com/beaufort.htm

36

4.7. Cleansing and strengthening of data
After the image collections have been gathered from Flickr (section 4.5) and

descriptive information has been added by augmenting images with

additional metadata through auto- annotations (section 4.6) the image

collections are almost prepared for the creation of the collection summaries.

Before the representatives of the collection are selected for the collection

summary (section 4.8), some cleansing and strengthening of the data are

performed. I will describe this in the preceding subsections.

4.7.1. Generate unique metadata list
Before all metadata are cleansed the metadata are grouped together as a

unique list of metadata to prevent redundancy in the data and to save

runtime memory. All metadata hold the specific term, a term counter,

number of users that have used this term within the collection and the

images they are tagged in. This information will be used later on when

calculating term frequencies, when updating database and so on.

4.7.2. Removing white spaces and character symbols
Since the user provided terms found in the images that are gathered from

Flickr are manually inserted by individual users, many of the terms included

in the tags or title field potentially include wrongly inserted words.

Examples are misspelled words, words with symbols (e.g. “word#”,

“word_” or “word-“), punctuations (e.g. “word!”, “word.” or “word;”) and

white spaces (e.g. “word ”, “ word”) that are not part of the word itself.

This can interrupt the true reflection of the word frequency for the collection

and it is therefore necessary to remove such characters to be able to define

the correct term frequency for the collection. E.g. a tag added by a user can

include a comma, an exclamation mark or other symbols and punctuations

that can make similar words being separated into individual words, i.e.

being viewed by the system as separate words with no relation to each other.

When it comes to white spaces this can concern the same aspects as for

symbols and punctuations, i.e. that white spaces are included in the front or

in the end of a word, but also simply by standing alone, being viewed by the

system as an individual word. By inspection, the latter is the most frequent

concern from the data that I am working with. Anyhow experimenting with

vs. without removal of white spaces, punctuations and symbols suggests that

cleaning the data increases the effectiveness of the term frequency analysis

significantly.

4.7.3. Remove non roman characters
This project aims at finding representative features or properties that best

describe the image collection as a whole. The image collections that I am

working with are community contributed by users from all over the world.

This means that potentially some of the images are provided with user

provided terms in languages that are non- roman character based. Russian,

37

Chinese and Japanese are examples of languages that use non- roman

character based symbols. Since these non- roman words are mixed with the

roman words, the distribution of the words may seem confusing. Because of

these actualities, along with that this project is limited to roman character

based languages; I found it most useful to remove the non- roman character

based language words from the collections that are used in the experiments

of this project.

4.7.4. Removing stop-words and non-informative terms
Some of the most frequent terms, at least those provided by the users, are

conjunctions, prepositions and determiners. Recall from section 2.2.1 that

these are referred to as stop-words within IR. These are terms that do not

have any specific meaning other than combining, helping or determining the

gender of other words. In the context of image retrieval these are not helpful

and irrelevant for retrieval and not helpful for describing a collection. The

system removes conjunctions such as e.g. and and or, prepositions such as

e.g. until, from and to and determiners such as e.g. the, my and that.

In the category of non- informative words are words such as camera model

and the specific label “geo-tagged”. It seems that many cameras tag images

it takes by adding the camera name and model number to all images, e.g.

“Canon Eos 350D”.

Also a large percentage of the geo tagged images on Flickr are tagged with

the specific label “geo-tagged”. I am uncertain if this is a tag added by

Flickr automatically as it locates location data in images or if it‟s manually

added by users to mark the image as geo- tagged. I believe that the latter is

the most logic explanation as I have seen small variations in the use of the

term, e.g. “geo-tagged”, “geo- tagged” and “geo tagged”. Removing such

words, which in some cases can be the most frequent terms throughout the

image collection, increases the usefulness and importance of the most

representative properties of a collection summary. Also the image collection

summary becomes more informative when it is taken into consideration that

it will be used with basis for efficient image retrieval.

4.7.5. Removing oversized tags
Some user provided terms can be very specific for an individual user, either

by personal terms in the form of family or friends names, URL‟s to personal

blogs or home pages, or simply chronically misspelled words as a product of

wrong spelling instincts for individual users. I will refer to these kinds of

tags as special tags throughout this section.

As explained earlier the system developed in this project is designed for

analysing image collections of different kinds, i.e. not only for multi user

collections, but also for personal image collections or collections of images

added by few or by an individual user.

38

When experimenting with different approaches to calculate term frequencies

one of the first approaches that I used was calculating term frequencies

using frequency of term divided by number of terms available, instead of

images available. With the first approach the more terms available the lower

frequencies for given terms are, hence removal of as many useless tags such

as special tags are desired when present. In this way frequencies of the tags

that are left and potentially representative are strengthened. The weakness of

this approach is that the more special tags that are not located for removal,

the lower the ones left are weighted. The latter involves removing of less

frequented tags, such as special tags and gives the more relevant tags an

overall of higher frequencies.

This is one of the reasons why I chose to calculate term frequencies only

taking into consideration the number of images without taking into account

the total number of tags used (described in detail in section 4.8.3). When

only taking into consideration the number of images within the collection,

the precaution of removing useless tags such as special tags are not

necessary since poorly weighted tags does not influence the outcome on

others in a negative direction, actually the opposite has been observed. As I

will describe later on user provided terms are grouped together into higher

level representations (hypernyms). Hypernym members are potential

synonyms to each other, which means that a hypernym can be strengthened

by poorly frequent words, such as advanced less frequently used words, if

they have similar meaning. In this way if many synonymic terms are present

they can together become part of the collection summary if they together are

representative enough.

For this reason removal of special tags are limited, the ones that are left for

removal are simply those that are in conflict with the database constraints on

variable lengths. Tags and terms that consist of strings of more than 35

characters are removed and assumed to be a special tag. The most highly

frequent cases of such special tags are manually inserted tags that for some

reason are not separated with white spaces, i.e. a combination of words

merged together, e.g. “word1word2word3”. Another example are URL‟s to

individual users blogs, referenced online sites etc. Anyhow the removal of

such tags does not affect the weighting of others and are only removed to

prevent database constraint conflicts.

It can be argued that misspelled words added either unintentionally or

intentionally through e.g. expressions, abbreviations or code words related

to figure of speech or strings of merged words could be located and

translated to its direct meaning. In this way a more semantic and complete

description for the collection are retained. However, because of the

complexity of locating and capturing the exact meaning of expressions,

abbreviations or code words, along with resulting in only a small increase in

effectiveness, I will not take this into consideration in this project.

39

4.7.6. Hypernyms
Hypernyms are for individual user provided terms located using the

Wordnet search
17

 Interface. WordNet is an English lexical database where

words and terms are represented as an ontology, which includes descriptions

that represent the semantic meaning of words. In WordNet, higher level

representations of terms are referred to as hypernyms. To prevent confusion

which includes confusion for those readers that are familiar with WordNets

terminology I will adopt this terminology.

Other than hypernyms, WordNet also allows gathering of synonyms.

Synonyms would increase the effectiveness of image retrieval, but does not

have any benefits in the production of collection summaries. Synonyms in

the available unique term list of the collection will anyhow be recognized in

the same hierarchical level through hypernyms described next.

The WordNet Interface allows easy manoeuvring through the hierarchical

structure of words, e.g. moving one level up in the hierarchical structure of

the word car returns the hypernym motor vehicle. The hypernym motor

vehicle also includes other motor vehicles such as motorcycle, SUV, sedan,

bus, coach, ambulance etc. These hypernyms are gathered by the system

with the intention to group together words that are found in the image

collection and help make the summaries of the image collection more

complete. The system uses the higher level representations of words to find

representative hypernyms that may be worthy to include in the image

collection summary. E.g. word hypernyms consisting of several words

which altogether reach a frequency above the selection threshold are

included as a word hypernym in the collection summary, with all its

members included, even if all of the words alone have frequencies below the

selection threshold. The idea behind this approach is to capture those words

that alone are not found to be representative for the collection and

strengthen them through their hypernym members.

Words within the same hypernym are in many cases so closely related to

each other that using the hypernym as a representative helps providing a

more complete and semantically meaningful summary. Say e.g. that a

collection includes the terms SUV, Sedan, Station Wagon, Ambulance,

Truck and Motorcycle, all of which have frequencies below the selection

threshold and are therefore not included as representatives for the image

collection. Members located within the collection that together are grouped

together into a hypernym are viewed as representative for the collection, if

they together form a term frequency above the selection threshold. In the

context of a user requesting a search query to the system it is not necessarily

a fact that he will specify the search on members of a hypernym, he may be

looking for a wider range of results, e.g. by a hypernym such as motor

vehicle. Hence, including hypernyms in the summary increase the usefulness

of the representatives, as well as making the description of the collection

more semantically meaningful.

17

 http://wordnetweb.princeton.edu/perl/webwn

http://wordnetweb.princeton.edu/perl/webwn

40

Also words that are grouped together can help increase the effectiveness of

the image retrieval system by giving alternative feedbacks to the user in

cases where a specific word are not found to be frequent. E.g. if a user

request a query for the word car, results under the hypernym “motor

vehicle”, i.e. SUV, Sedan, ambulance and so on may be viewed as relevant

alternatives.

Recall from section 2.2.1 that normalization, stemming and lemmatization

where introduced. Using the WordNet API, grouping terms into hypernyms

provides great ways for dealing with all of these.

In cases where hypernym members within a collection are not able to create

term frequencies above the given selection threshold, the system supports

further manoeuvring in the hierarchical structure. E.g. in the case of the term

car, the first level is recognized to be the hypernym motor vehicle. If all

members of motor vehicle together do not reach term frequencies above the

given selection threshold, the hypernym members are taken to the next

hierarchical level. In the case of motor vehicle the higher hierarchical level

are self-propelled vehicle, which includes more alternatives included

candidates located under motor vehicle. E.g. a self- propelled vehicle would

extend motor vehicles with vehicles such as tank, go-kart, steam locomotive

and so on. The system allows manoeuvring of up to three levels from its

basis, where in the case of the term car the hypernym motor vehicle is the

first level, self-propelled vehicle is the second level and so on.

4.8. Finding representative terms

4.8.1. Defining an representative
From the oxford dictionary [47] the definition of representative is the

following:

Adjective: containing typical examples of many or all types.

This definition is not far from how I use the term in this thesis. This means

that a representative term is an exemplification of the class or kind, a

representative for the collection summary. When summarizing image

collections I have to deal with some reduction of the search space, by

carefully choosing what terms to include in the summary of the Image

collection that I am working with. The image collection summary will

include e.g. user provided terms that are representative for the collection

and describes the image collection through its main representatives and

highly weighted terms. Representatives are terms that describe the image

collection from its most informative view, and should stand out from other

terms in the collection. This means that in extreme scenarios where no terms

of an image collection are prominent from the rest, no terms are viewed as

representative for the collection.

41

A term of an image can have different importance for different contexts.

One such example is in the contexts of a search query requesting members

of a defined hypernym instead of a specific term used in the image

collection, e.g. a request for the hypernym motor vehicle.

With exception of converting of date/time, other contextual terms are

metadata gathered during augmentation. I will start by describing how the

selection threshold is decided for different kinds of metadata terms and how

term frequencies are calculated to be compared against it.

4.8.2. Selection Threshold
When dealing with reduction of the search space it is important to find a

way to locate representatives for different types of terms other than just

through logic and semantic understanding. As mentioned in the previous

sections a selection threshold value is used to decide whether or not a

specific term is representative for the image collection. The selection

threshold is different depending on what is most natural for the metadata to

be compared against.

For metadata, such as user provided terms and locational terms, i.e. where

the total amount of outcomes are not fixed, the selection threshold will

simply be represented by a constant C. The selection threshold for metadata

without a fixed number of outcomes can be defined as;

() ()

The constant represents how many percentages of the images a specific term

has to be an instance of to be viewed as representative for the collection.

For metadata that have a fixed number of outcomes, the selection threshold

is set to one over total outcomes added with a constant C times one over

total outcome, that is;

() ()

(

) ((

))

E.g. for the time specific metadata month which have 12 different outcomes

where the constant C are set to ½, the selection threshold are;

 (())

 ((

))

 ((

) (

))

42

The selection threshold for the time specific metadata weekday, which has 7

different outcomes, would be;

 (())

 (

(

))

 ((

) (

))

Using a selection threshold for metadata that have a fixed total number of

outcomes (2) will always result in a selection threshold higher than the total

number of outcomes as a fraction. This means that in extreme scenarios

where images in a collection are equally distributed over e.g. the 12

different months, none is viewed by the system as representative. This

means that no one is viewed as representative instead of all, which is much

more logical when no terms stand out from the others and also helps in

sustaining the definition of representativeness defined in the previous

subsection (4.8.1). It is important to notice that a representative for the

collection is terms or properties that stand out in the collection, and if no

one stands out, none will be used as representatives for the collection either.

To get a more visual view of the selection threshold it has been pictured in

Figure 4-3. The green area are the tags chosen to be the representative tags of

a given image collection. Notably the whole scale has in advanced been

cleansed through removal of words. Cleansing from this area includes white

spaces, character symbols, non-roman characters, conjunctions,

prepositions, determiners, non-informative terms and oversized tags as

described in the previous section.

Figure 4-3: Selection threshold

43

4.8.3. Metadata weighting
To calculate the representativeness of terms I decided to use the Term

Frequency – Inverse Document Frequency (TF- IDF) approach from the

field of information theory (see section 2.1.2). I use this approach to

calculate term frequencies for user provided terms. Also I calculate TF- IDF

for contextual terms such as weather, location and date/time. All the

different kinds of metadata are calculated in the same way. The only

difference between them is that the selection threshold (section 4.8.2) varies

depending on what is most natural for the metadata it is being compared

against. In this section I will use the user defined terms as an example in

calculating the TF and IDF, before comparing it against the selection

threshold to decide whether or not it is viewed as a representative for the

collection.

All user provided terms from all the images in the collection are together

viewed as a single document, also all locational, date/time specific and

different weather specific terms are viewed as individual documents in the

eyes of the TF system. I call them documents as this approach is adopted

from Information retrieval (section 2.2). For each term within the document

in this sense, in this case user provided terms, a term frequency is calculated

by the following formula;

 ()

 .

Say that we have an image collection with 1000 images. Further say that

there is 40 instances of the word car in user provided term within the

collection, the term frequency for „car‟ is then:

(1) ()

 .

Total amounts of terms used within an image collection are not taken into

consideration when calculating the term frequency for metadata mainly

because we are only interested in metadata that stand out from the collection

as a whole, i.e. terms connected with a sufficient amount of images.

Calculating the frequency over total amounts of terms instead of total

amounts of images would work well for situations where the majority of the

images are tagged, but not if just a few of the images are tagged:

E.g. if we have a collection with 100 images, where user provided terms are

only present in 2 of the images. In these two images there are 2 unique

terms for each image, i.e. 4 unique terms in total. Taking into consideration

the total amounts of terms in this situation would result in all unique words

44

being 25 % of the collection, and would most probably be viewed as

representative, which is in conflict with the definition of representativeness

that I use in this project (see section 4.8.1). Calculating term frequencies

taking into consideration number of images within the collection gives much

more stable results when dealing with image collections with various

degrees of manually added textual terms and is therefore preferred.

Notably, the developed system only use one unique user provided term per

image. Say e.g. that a specific image A includes the title “trip to Italy”,

while the tags field includes the tags; summer, Italy, monument, family. This

means that Italy have are used in two occasions, nevertheless the system

only counts the term Italy once, to prevent duplicates in the term frequency.

The Inverse Document Frequency (IDF) is calculated taken into

consideration the number of image collections available and how many of

the collections that contain the specific term. The inverse document

frequency is calculated using the following formula;

 ()

 (

).

E.g. say that we have 50 image collections, where 9 of the documents

contain one or more instances of the term car in the any of the user provided

metadata fields, for this situation the IDF would be:

(2) () (

) .

The TF-IDF is the product of the term frequency (TF) and the inverse

document frequency (IDF). Using the two examples the TF-IDF for the term

car would be:

(3) () () () .

The idea behind the TF-IDF approach is that terms that are rarely used in

the available set of collections should be more appreciated in the few

collections they are. In this way it is a higher possibility that a specific

rarely used term is marked as representative in one of the few image

collections the term is an instance of.

E.g. say that the selection threshold in this case is set to 0.05, i.e. that at

least 5 per cent of the images has to have a certain term as an instance for

the term to be viewed by the system as representative for the collection.

Since the TF from (1) is below the selection threshold the word would not

be recognized as representative, but because of its uncommonness in the set

of image collections available, the IDF (2) helps increase the term frequency

45

above the selection threshold, reflected by the product of the two (3). Hence

the term is recognized as a representative for the collection.

It is worth mentioning that within the application area that this project aims

for it is not given that the number of image collections available is known.

This is an element of concern when dealing with dynamic online image

collections. In such circumstances it is more probable that a recursive

method scans different online domains before stopping at a given threshold.

When enough image data has been found to satisfy the search query, it

stops. In such cases the IDF is impossible to find, but also not needed.

Using the IDF to strengthen uncommon terms, which are close to a given

threshold, with intention to include it as a representative is strictly

applicable in stable and defined environments where number of available

collections can be defined. In cases where total number of collections are

not known, or useful, the term frequency TF are used alone to decide

whether or not a term is representative for the collection.

4.8.4. Collection summary partitioning
Because of the different kinds of metadata used by the summarizing system,

the collection summary itself is also represented in accordance with these

metadata fields. As mentioned, a specific metadata field is viewed as an

individual document in the TF- IDF system. Representative properties are

selected using the selection threshold which corresponds to the natural

representation of the specific metadata terms. The main sections of the

image collection summary are User provided terms, locational terms,

weather specific terms, date/time terms and hypernym terms.

Many of these main sections also have sub categories which are used to

keep better track of specific semantic information about the data which is

included within them. In Figure 4-4 the main categories along with their sub

categories are listed.

46

Figure 4-4: Collection summary partitions

From Figure 4-4 we can see that only the context related data have sub

categories. I have described the different partitions through this chapter, but

to get a brief overview; user provided terms are strictly information

gathered from the „tags‟ and „title‟ metadata fields from the images on

Flickr, locational terms is annotated metadata using Google‟s Maps API

(section 4.6.1), weather terms are weather information gathered using

Weather underground (4.6.2), date/time terms is annotated information

using time stamp conversions (4.6.3), and user term hypernyms are groups

of words belonging to a specific hypernym from WordNet (4.7.6). Real

outputs of the summarizing system will be presented and discussed in

chapter 6.

Collection summary:

User provided:
…

…

Date /time
 Weekday

…

 Month

…

 Season

…

 Year month

…

Weather
 Weather condition

…

 Temperature

…

 Wind strength

…

Locational

 Country
…

 Region
…

 City
…

 Street
…

User Term hypernyms
…

47

Chapter 5

5. Implementation
In this chapter implementation specifics will be described. The overall view

of the system has been presented in the previous chapter, so to prevent

repeating myself I will in this chapter mainly focus on implementations

choices that have had to be made using the libraries and API‟s included in

the implementation of the system. I will also describe the formats of the data

used. I will start by presenting the hardware on which the system has been

developed, before presenting the API‟s and library packages included in the

development of the system and how they have been used.

5.1. Hardware
The system is developed and tested on a Intel® Core™ i5-450M Processor

(3M L3 cache, 2.40 GHz), having 4GB - DDR3 RAM, a SATA 5400 rpm

hard drive running on a 64 bit version of Microsoft Windows 7 (Home

Premium) SP1.

5.2. Summarizing system
The summarizing system is developed using python version 2.6.6 for win32.

The system is far from optimized. E.g. the task of augmenting images with

additional metadata is very time consuming because of the restrictions laid

by the providers of locational and weather data, I will discuss the bottle

necks for these in section 5.4 and 5.5. Anyhow great amounts of work have

not been laid down into optimizing the system for runtime performance

since that is not of importance in achieving the goal of this project. Anyhow

the analysis and production of the collection summaries are quite fast. To

mention some specifics that could easily be optimized is using indexes for

all lists holding the data used during runtime, i.e. all data analysed for the

collection. The sudo code for the summarizing system is located in

Appendix B, the main of the system in appendix B-1.

Image collections used in this project is gathered from Flickr. The Flickr

API is described in the next section (5.3). Images are augmented with

locational data using the Google maps API, described in section 5.4. Also

images are augmented with atmospheric conditions using historic data from

Wunderground, which are described in section 5.5. Further manually added

tags are grouped together as hypernyms (higher level representations) and

synonyms are located for each tag if available using the WordNet API,

described in section 5.6. MySQL database server is used to store the data

used by the summarizing system and the python MySQL server interphase

is used for communicating with the database. This is described in section

5.7.1. Finally, the representatives of the collection summary of the analysed

image collection are stored to an Excel file (.xls) for simplifying the further

analysis of the data. The XWLT Library used for this purpose is described

in section 5.7.

48

5.3. Flickr API
The image collections used in the testing of this system are gathered from

Flickr. To communicate and gather information from Flickr I have used the

FlickrAPI package
18

, version 1.4.2 compatible for python 2.6.*. The Flickr

API allows developers to use all search functionality, and access all images

in the same manner as the online version of Flickr. To get access to the

Flickr‟s database an API key is required, which can be accesses for

developers when registering as a Flickr user. The API key allows boundless

access to Flickr‟s database. The documentation for the Flickr API is located

on Flickr‟s API pages
19

The implementation of the authorization and communication with Flickr are

found in Appendix B-1.

The Flickr API is a very powerful and functional rich API, nevertheless in

the implementation of my system I simply use the following two methods:

1. flickr.groups.search
20

2. flickr.photos.search
21

5.3.1. Flickr Groups search
In the testing of my system I use Flickr groups as image data, as they easily

can be viewed as an existing collection of images. I have located 17 groups

which I will use in my experiment, all of which are geo-tagged, included

with tags, date/ time stamp and a title. 7 of these image collections are used

in the evaluation of the system, presented in chapter 6.

Notably as presented in section 4.4 the requirement specification defines

that not all images in a collection analysed by the system have to have all

the defined metadata fields available. Nevertheless, in the experiments

performed the majority of the images include all of these metadata fields. To

prevent confusion with the requirement specification (section 4.4), this is

mainly to see the full potential of the system.

User provided terms are desired for the experiment since this make the

collection more natural to human perception as these fields are manually

added by individual users. Geo-location is included in the images in the

form of latitude and longitude values and is used for several purposes. Geo-

location are alone used to auto-annotate the images with locational terms,

i.e. name of country, city, region and street, while a combination of date/

time stamp and geo-location are used to augment the images with weather

specific terms.

18

 http://pypi.python.org/pypi/flickrapi
19

 http://www.flickr.com/services/api/
20

 http://www.flickr.com/services/api/flickr.groups.search.html
21

 http://www.flickr.com/services/api/flickr.photos.search.html

http://pypi.python.org/pypi/flickrapi
http://www.flickr.com/services/api/
http://www.flickr.com/services/api/flickr.groups.search.html
http://www.flickr.com/services/api/flickr.photos.search.html

49

To get access to images from a specific group through the photos search

method, the group id has to be specified. The groups search method takes a

search query as input and returns information about a group, including the

group id. When the group id is located the images from the corresponding

group are ready to be collected by the summarizing system.

5.3.2. Flickr photos search
When the given group id has been provided by the groups search method,

the images from the group are gathered using the photo search method. The

photo search method allows a wide range of criteria‟s to be specified. Other

than specifying the group id of the images to be returned I also specify that

only geo-tagged images should be returned and that, the metadata fields,

“tags”, “title” and “GPS coordinates” should be included when returned.

5.3.3. Return Format
The image metadata returned from Flickr are returned in XML format. The

XML data returned can be difficult to handle and difficult to grasp because

of the huge amounts of data that I am working with. To make the data a bit

more lucid, I have decided to handle the XML data returned by Flickr in the

form of an element tree. For this I have used the element tree package
22

,

version 1.2.7_20070827. This library package is a light weight XML object

model for python 2.6.*. The element tree gives the image metadata gathered

from Flickr a basic tree structure which I found easier to visualize when

handling and processing the data. Flickr returns a partition of the image

results at a time in a so called page. A page may include from one to a

maximum of 500 image elements per page. Using the element tree I insert

all images from all pages into one, a single level in the element tree. The

element tree only consists of two levels, the first node represents the photos

node, and all image elements are a sub node of the main node.

In Figure 5-1 an element tree with metadata as returned from Flickr are

shown. Notably the return element tree, where each element represents an

image, includes much more information related to an image than

represented in the example. To prevent confusion I have only listed the ones

that are vital for this part of the system.

The <photos> tag is the defined beginning of the element tree, whereas the

<photo> tags represent the elements, i.e. the images in the collection. The

red fields are the attributes of a photo element whereas the black fields are

the values of the corresponding attribute.

22

 http://packages.pardus.org.tr/contrib/binary/ElementTree.html

http://packages.pardus.org.tr/contrib/binary/ElementTree.html

50

Figure 5-1: Example element Tree

5.4. Google Maps API
Locational terms are gathered using the Google maps API

23
 (version 1.0.2)

which works with all versions of python. The Google maps API requires the

JSON (JavaScript Object Notation) package to work. Python 2.6.6 comes

included with JSON version 1.9 which seems to work flawlessly for the

used version of Google maps API.

The implementation for the gathering of locational information is found in

Appendix B-2.1.

Pythons Google maps API is a simple, yet powerful tool, which not only

allows access to all functionality which is found in the online version of the

service, but also comes with great functionality for geocoding. The

geocoding functionality is the part of the package that I use in my

implementation.

Google maps Geocoder takes the GPS coordinates from each photo element

as arguments and returns the coordinate‟s locational data, i.e. name of

country, region, city and street. When locational terms have been collected,

the system adds the collected metadata as a new attribute to the

corresponding photo element. The result after augmenting the images in the

element tree with locational metadata terms is presented in Figure 5-2. The

greyed out area with the attribute “location-augmented” is the augmented

metadata using the Google maps API‟s geocode functionality.

23

 http://pypi.python.org/pypi/googlemaps/1.0.2#downloads

<rsp>

<photos total="313">

<photo datetaken="2008-07-22 09:47:45" latitude="2.819289"

longitude="104.159408" tags="sea sky mer storm island vent boat

Asia wind” title="Electric sky" ….. </photo>

<photo datetaken="2008-06-05 11:19:29" latitude="6.112392"

longitude="100.364999" tags="tower Malaysia Kedah alorstar

park" title="Alor Star - Kedah"….. </photo>

 ….

 ….

</photos>

</rsp>

http://pypi.python.org/pypi/googlemaps/1.0.2#downloads

51

Figure 5-2 : Element tree augmented with locational data

The Google maps API requires an API key. The API key has restrictions to

how many lookups that can be performed daily and how regularly lookups

can be performed. I believe that the daily lookup limit is set to 15000 on a

24 hour basis. When it comes to lookup regularity I have implemented a

function call which sleeps for 0.2 seconds between each lookup which

seems to work like a charm. Leaving it out does not and may result in the

API key being blocked for 48 hours conferring to Google support.

The rate limits set by Google has restricted the size of the data that I am

working on, since it takes some time to augment image collections with

additional metadata. Nevertheless, it only took two to three days to augment

35-45000 images gathered from Flickr which seems to be sufficient for my

experiment. To prevent unnecessary lookups during my experiment, all

element trees gathered, both clean returns from Flickr and trees augmented

with additional metadata are stored to disk for further usage.

Notably it is possible to get a Premium API key from Google, which allows

up to 100 000 geocode lookups every 24 hour. Presumably this is licensed;

anyhow I didn‟t find this necessary for this project.

5.5. Wunderground historic
Weather information is collected using weather underground. Weather

underground does not come with an API built for python, but historic

information can be gathered using an online API
24

 provided. Also

24

 http://api.wunderground.com

<rsp>

<photos total="313">

<photo datetaken="2008-07-22 09:47:45" latitude="2.819289"

longitude="104.159408" tags="sea sky storm island vent boat Asia

wind” title="Electric sky" location-augmented="street:tioman

island, city:mersing, region:, country:malaysia"….. </photo>

<photo datetaken="2008-06-05 11:19:29" latitude="6.112392"

longitude="100.364999" tags="tower Malaysia Kedah alorstar

park" title="Alor Star - Kedah" location-

augmented="street:lebuhraya sultan abdul halim, city:alor setar,

region:kedah, country:malaysia"….. </photo>

 ….

 ….

</photos>

</rsp>

http://api.wunderground.com/

52

documentation on how to use
25

 the API is available. The implementation for

the gathering of atmospheric conditions is found in Appendix B-2.2.

I found the online weather underground API to be very unstable, resulting in

server timeouts and complete hang ups. Consequently, I decided to gather

atmospheric conditions by parsing the pure HTML code returned by the

html version of weather underground historic
26

. To gather the html code in a

reasonable fashion I use the built in python library urllib
27

, which provides a

high level interface for fetching data across the World Wide Web.

Weather underground historic requires a weather station id to lookup

weather data for a given date on a specific location. Wunderground support

gathering of these Station id’s by providing a GPS coordinate, i.e. latitude

and longitude. Provided with the coordinates the closest weather station and

its ID is returned. The GPS coordinates within each image in the collection

are used for this purpose. URL vice the closest weather station is looked up

in the following manner:

http://wunderground.com/auto/wui/geo/WXCurrentObXML/ind
ex.xml?query=”Latitude, Longitude”

When the resulting html code has been returned and the closest weather

station has been located with its station id, the correct URL to the service is

built using the station id and the date/ time stamp located in the photo

element already provided. An historic lookup is URL vice performed in the

following manner.

http://www.wunderground.com/history/airport/stationId/year
/month/day/DailyHistory.html

The returned page contain hourly weather information, which includes

temperature, humidity, wind strength, weather condition (i.e. rain, snow,

clear etc.), wind direction and so on. The table containing the weather

information is parsed before the best match for the image being analysed.

This is located and stored as a new attribute for corresponding photo

element. The best match is of course the hourly weather data that

correspond to the time of which the images are taken. Notably the time

format of the weather data is in 12 hour format while the time format of

when the images are taken is in 24 hour format. For this reason the time

field from the weather data is translated to 24 hour format for comparison at

execution time.

The update of the element tree after atmospheric conditions has been

gathered are presented in Figure 5-3, again the greyed out area are the newly

added metadata for the images.

25

 http://wiki.wunderground.com/index.php/API_-_XML
26

 http://www.wunderground.com/history
27

 http://docs.python.org/release/2.6.6/library/urllib.html

http://wiki.wunderground.com/index.php/API_-_XML
http://www.wunderground.com/history
http://docs.python.org/release/2.6.6/library/urllib.html

53

Figure 5-3: Element tree augmented with atmospheric conditions

Notably not all weather information gathered for the images are used by the

summarizing system. The weather information used so far is temperature

(represented as “31.0” in lower element of Figure 5-3), wind strength

(represented as “1.9km/h/0.5m/s”) and weather condition (represented as

“mostly cloudy”).

The weather condition is used as it is, while temperature and wind strength

are translated into a more human readable and searchable format. I did not

locate a human readable translation of temperatures, for this reason I have

made my own scale represented as my personal perception of temperature,

the translation scale used by the summarizing system is as follows:

Scale: from - to (in °C) Translation (human readable)
 (-100.0) - (-15.0) Freezing

 (-14.9) - (-10.0) Ice cold

 (-9.9) - (0) Cold

 0.1 - 10.0 Chilly

 10.1 - 20.0 Moderate

 20.1 - 25.0 Hot

 25.1 - 35.0 Very hot

 35.1 - 100.0 Extremely hot

Table 5-1: Temperature translation scale

For the translation of wind strength I‟ve used the beaufort scale
16

. The wind

strength is represented by both km/h and m/s. Anyhow the summarizing

<rsp>

<photos total="313">

<photo datetaken="2008-07-22 09:17:45" latitude="2.819289"

longitude="104.159408" tags="sea sky storm island vent boat Asia

wind” title="Electric sky" location-augmented="street:tioman

island, city:mersing, region:, country:malaysia" weather="9:00

AM, 25.0, 24.0, 94%, 0hPa, 10.0kilometers, SW, 5.6km/h/1.5m/s,

-, N/A, , Mostly Cloudy" ….. </photo>

<photo datetaken="2008-06-05 11:19:29" latitude="6.112392"

longitude="100.364999" tags="tower Malaysia Kedah alorstar

park" title="Alor Star - Kedah" location-

augmented="street:lebuhraya sultan abdul halim, city:alor setar,

region:kedah, country:malaysia" weather="11:00 AM, 31.0, 26.0,

75%, 1010hPa, 10.0kilometers, NNW, 1.9km/h/0.5m/s, -, N/A, ,

Mostly Cloudy" ….. </photo>

 ….

 ….

</photos>

</rsp>

54

system only use the m/s format. For this reason the beaufort scale is also

translated. The scale used by the summarizing system is as follows:

Scale: from - to (in m/s) Translation (human readable)
 0.0 – 0.3 Calm

 0.3 – 1.5 Light air

 1.6 – 3.4 Light breeze

 3.4 – 5.4 Gentle breeze

 5.5 – 7.9 Moderate breeze

 8.0 – 10.7 Fresh breeze

 10.8 – 13.8 Strong breeze

 13.9 – 17.1 Moderate gale

 17.2 – 20.7 Gale

 20.8 – 24.4 Strong gale

 24.5 – 28.4 Storm

 28.5 – 32.6 Violent storm

 32.7 – 1000 Hurricane

Table 5-2: Wind strength- Beaufort translation scale

5.6. WordNet API
Hypernyms are gathered using the NLTK (natural language toolkit), version

2.0b9 usable for python 2.6.*. The NLTK package includes many tools and

corpuses used for language processing and computational linguistics. The

one that I use in my implementation is the WordNet Interface. Terms that

are an instance of either “title” or “tags” are looked up from the wordnet

database, with intentions to find hypernyms used to group words together.

The approach has been thoroughly described in section 4.7.6, so I do not go

deep into the specifics here. The implementation of the hypernym handler is

found in appendix B-6.

Nevertheless, some elements are still worth mentioning. When a word is

looked up a list of candidates is returned by WordNet, i.e. if the term looked

up have different semantic meanings. If several candidates are returned, the

first candidate is assumed to be the correct one. Nevertheless the candidates

returned are sorted in prevailing order, which means that the most common

used words are listed first and the more uncommon last. In Figure 5-4 the

returned candidates for the word car are listed.

Figure 5-4: WordNet “car” query return

 S: (n) car, auto, automobile, machine, motorcar (a motor vehicle with four wheels;

usually propelled by an internal combustion engine) "he needs a car to get to work"

 S: (n) car, railcar, railway car, railroad car (a wheeled vehicle adapted to the rails of

railroad) "three cars had jumped the rails"

 S: (n) car, gondola (the compartment that is suspended from an airship and that carries

personnel and the cargo and the power plant)

 S: (n) car, elevator car (where passengers ride up and down) "the car was on the top

floor"

 S: (n) cable car, car (a conveyance for passengers or freight on a cable railway) "they took
a cable car to the top of the mountain"

http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=car&i=0&h=00000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=auto
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=automobile
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=machine
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=motorcar
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=car&i=1&h=00000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=railcar
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=railway+car
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=railroad+car
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=car&i=2&h=00000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=gondola
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=car&i=3&h=00000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=elevator+car
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=car&i=4&h=00000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=cable+car

55

Figure 2-1 shows that the word car returns 5 candidates, where candidate one

is the most common. In this situation the semantic meaning that first come

up when thinking about car, seems to satisfy my demands. Since we do not

have any contextual information about the title and tags metadata fields, the

system can never be 100% certain that a term located using the WordNet

interface is correct.

After studying the hypernyms located for the test data, it seems reasonable

to consistently select the first candidate. By inspection, the results are rarely

placed in wrong hypernym groups. The only words that we are interested in,

is in the end highly used words which most likely are viewed by WordNet

as prevailing, hence returned as candidate number one.

As mentioned in the chapter 4, hypernyms are located for terms

manoeuvring in up to three levels in the hierarchical structure. In such

situations hypernyms, which are grouped as hypernyms are looked up in the

WordNet database in the same way as terms are in the first place, copying

the terms located under the previous level as members of the next.

5.7. Storing collection summary data for later use
The analysis of a given collection and the creation of the collection

summary may be costly in time and resources, at least for big collections

with a large amount of images and image metadata. This is not a concern in

general since the production and analysis of the data itself are quite fast.

This concern is mainly a concern in my implementation. I have not

developed any index structures for the lookups done in the unique term list

and other lists processed in memory at execution time. Adding some index

structures to these parts of the system would increase the effectiveness of

the system to a great extent. Also some bottle necks are introduces by the

limitations in the request per second set by the API provider used to

augment images with additional metadata, discussed in section 5.4 and 5.5.

Because of the limited time for this project these concerns are left unsolved,

or at least unimplemented. The implementation of the communication with

the database is found in appendix B-10.

Nevertheless further analysis on the produced data is more achievable if the

data is stored and structured in a reasonable manner. For these reasons the

data collected from the summarizing system are stored in a relational

database, using MySQL. In this way the data collected can more feasibly be

used in future projects without having to produce the outputs over again.

5.7.1. Environment specifics
For the purpose of storing the image collection data used by the

summarizing system, MySQL server version 5.1.56 for win32 are used. All

communication, insertion and updating of the database are performed

through the developed system using the MySQL database interface MySQL-

python (MySQLdb) package version 1.2.3. Available for win32 and python

2.3.* through python 2.7, The MySQLdb package are usable for MySQL

56

server version 3.23 through MySQL server version 5.0. The design of the

database is presented thoroughly in section 4.8, hence not discussed any

further here. The implementation of the communication with the database is

presented in appendix X.

5.7.2. E-R Diagram
The entity relation diagram for the database system developed is presented

in Figure 5-5.

Figure 5-5: E-R diagram for storage of collection summary data

The E-R diagram consists of four entities, i.e. collection, image, uniqueTerm

and hypernym, which together share five relations between them.

5.7.3. Representation of the Entities and Relations
The centre of attention is the uniqueTerm entity, which holds all different

types of metadata connected with an image, which include contextual auto-

annotated metadata and manually added metadata, i.e. user provided terms.

The term- type is identified through the entity attribute type in the includes

relation. UniqueTerm have three relations which makes its connections with

collection, hypernym and collection. Notable all unique terms are located in

Collection

collId
collName

ETreeLocation

ETreeName

Image

imageId

contains

UniqueTerm

utId

UtTf

utCount

UtIdf

UtTerm

UtType

hypernym

catId

hypName

TaggedWith

 MemberOf
includes

groupedInto

HierLevel

location

hypIdf
hierLevel hypTf

1

N

N

N

N

N

M

M

M

M

57

the database. Representatives are located through their term frequency and

inverse document frequency.

Terms are connected with a specific image collection through the collection

entity. The collection entity holds all image collections used in the test

experiment, i.e. 17 image collections gathered from Flickr consisting of 300

to 6000 images. To prevent redundancy in UniqueTerm the relation between

this entity and the collection entity includes the term frequency (ut_tf),

collection specific term counts (ut_count) and inverse document frequency

(ut_idf), i.e. all attributes that are not guaranteed unique for specific terms

across different image collections.

Further the terms used within a collection are connected with one or more

hypernyms The hypernym entity represents hypernyms gathered for terms

looked up using WordNet, as mentioned earlier hypernyms gathered from

WordNet is a higher level representation of a specific term, e.g. the

hypernym for the term car is “motor vehicle” at the first level. As for the

UniqueTerms redundancy is prevented based on that no duplicate

hypernyms are inserted into hypernym, for this reason the relation between

the two includes the attributes collection_id and hier_level which are the

only attributes between them that would result in redundant tuples. The first

attribute are introduced to separate the tuples from different collections and

the latter to separate a unique term from all its hierarchical levels (at the

most three). As discussed in section 4.7.6, hypernyms are gathered for a

specific term using WordNet up to three levels from its basis, therefore to

hold the normalization the uniqueTerms has to be included with its

hierarchical structure level.

The last relation for uniqueTerm is the mapping between terms located in a

specific collection and the images from the collection that includes these

terms. It could be argued that it is sufficient to connect the image entity to

the collection entity and since the collection entity are in relation with

uniqueTerms, e.g. collecting all images that relates to a certain collection.

But I found it also necessary to connect all images with the terms they are

tagged with. The main motive for this design choice was that I found an

inverted files index structure to be the most appropriate and well-suited

candidate in the context of this project. The inverted files index structure is

more thoroughly described in the theoretical background (section 2.2.3), but

the main disciplines that I have adopted when designing the E-R diagram

for the database are the following:

1. The data structure is consulted to identify whether the term is

located in the database. In the context of my system this lookup

would be on representative metadata for a given collections, i.e.

terms and hypernyms above a certain threshold.

2. If the term is found in the database, the corresponding inverted

files list which holds file pointers to the actual files that holds the

looked up term(s) are located. In my case the inverted files list is

the lookupData table while the image table are the file pointers

that point to a certain image in a certain image collection.

58

3. When pointers are found documents/ images are located by

following the located pointers. In my approach we would have to

gather the location information from the image table collecting the

image from where it is located, either on disk or on the internet.

We have addressed all entities from the E-R diagram including

UniqueTerm‟s three relations, but still we have two more relations within

the design, i.e. the relation between (1) collection and image and the relation

between (2) collection and hypernym. (1) is motivated simply since it seems

natural to have the images close to the collection entity, for purposes such as

gathering all images for a certain collection. (2) is motivated for more

database design specific purposes. Consider the relation between a

uniqueTerm and hypernym. This relation connects user provided terms to a

higher level of representation on different levels and its purpose is to

include hypernyms as representatives when several terms included within it

together form frequencies above the selection threshold.

For this reason a term frequency for the hypernym has to be included. If this

was included as an attribute in the relation between the two, each tuple for

each term in the relation would have to include the hypernym TF, count and

IDF which would leave the database redundant and include great update

anomalies. So instead of including duplicate information for each entry in

the relation between uniqueTerm and hypernym only one tuple for these

variables are included for each hypernym at a certain level in a certain

collection, i.e. in the relation between collection and hypernym. Each

collection have exactly one entry for a specific hypernym on a specific

level. As a result the relations from the uniqueTerm-hypernym and

collection-hypernym can easily be mapped to each other if desired.

5.7.4. From E-R diagram to relational database schema
In mapping and translating the E-R diagram to a relational diagram my

approach will be based on the theory from section 2.4. To summarize the

following is of relevance and will be performed step by step:

1. Each strong entity, i.e. an entity that is not dependent on others

to and can exist on its own, will be translated with the following

criteria:

a) Each entity will become a relation

b) Each attribute of the entity will become an attribute of the

relation

c) One of the key attributes of the entity will become a

primary key for the table

2. Each M:N relation will be translated with the following criteria:

a) For each relationship type a table will be created

b) The primary keys from all entities participating in the

relation will be included as foreign key attributes of the

table.

59

c) Also all attributes of the relation will become an attribute

of the table.

d) The combination of the foreign keys from b. and, if any,

key attributes from the relation will form the primary key

of the table.

3. Each 1:N relation will be translated with the following criteria:

a) The table of each N-side of the relation will be included

with the 1-side‟s primary key as a foreign key attribute.

b) Also all entity attributes on both side are included in the

entities table, this has hopefully already been done in step

1.b.

From step 1 the following tables will be created, collection, image,

uniqueTerm and hypernym. From step 1.b. all entity attributes will be

inserted into the table created, also one of the key attributes will be selected

as a primary key for the table from 1.c. above, since all entities in this case

each only have one key attribute the selection are easy. The following tables

are created.

 Collection table:

Coll_id Coll_name etreeLocation etreeName

 Image table:

Image_id Location

 uniqueTerm table:

ut_id ut_term

 Hypernym table:

cat_id hyp_name

Four of the five relations are a binary M:N relation see figure 4.3. Anyhow

these relations will be translated using the procedure from step 2, i.e. create

four new tables (2.a.) includes, taggedWith, groupedInto and memberOf and

contains, all tables are included with all participating entity‟s primary keys

as foreign keys (2.b.) all attributes of relations as attributes in table (2.c.)

and primary key are formed by the combination of foreign keys from 1.b.

and prospective entity attribute keys (2.d). The result are the following

tables:

includes table:

collectionId uniqueTId utType utCount utTf utIdf

Primary

keys

60

taggedWith table:

uniqueTId imageId

groupedInto table:

collectionId hypId hierLevel hypTf hypIdf

MemberOf table:

collectionId uniqueTId hypId hierLevel

contains table:

collectionId ImageId

Finnally step 3 is performed for the 1:N relation between the collection

entity and the image entity. The primary key from the collection entity is

included as a foreign key in the image table, the new table looks like:

 Images table: (NEW)

imageId Location collectionId

The finished relational tables are the following:

Collection table:

Coll_id Coll_name etreeLocation etreeName

 Image table:

imageId Location collectionId

 uniqueTerm table:

utId

 hypernym table:

hyperName

includes table:

collId utId utType utCount utTf utIdf

61

taggedWith table:

uniqueTId imageId

groupedInto table:

collId hypId hierLevel hypTf hypIdf

MemberOf table:

collId utId hypId hierLevel

contains table:

collectionId ImageId

When building the relational schema the goal was to reach the Boyce- Codd

Normal Form, see description of the different normal forms in section 2.4.3.

The finished relational schema is in Boyce- Codd normal form. That is for

the relational schema 1NF, 2NF and BCNF holds.

5.8. XLWT Library
The data obtained by the summarizing system are stored into a MySQL

database as described in the previous section. The design of the database is

presented in section 5.7. In the next chapter the summarized information is

presented in MS excel diagrams. For simplified purpose the summarizing

system stores the data from the collection summary into an excel file at the

execution path that more easily can be used to create the tables when

presenting them in the next chapter. The package used to create the excel

files are XLWT version 0.7.2 usable for python version 2.3.*- 2.6.*. XLWT

is a library for creating spread sheet files in .xls format. The implementation

for this functionality is found in appendix B-9.

5.9. Other
Other implemented functionality not discussed in this chapter are cleasning

of metadata (appendix B-3), converting of metadata (appendix B-4), unique

term handler (appendix B-5), calculation of term frequencies (appendix B-

7) and finding representatives for the collection summary (appendix B-8).

62

63

Chapter 6

6. Results and Evaluation
In the evaluation of the system developed in this thesis image collections

gathered from Flickr in the form of Flickr groups are used. In section 6.1 I

will introduce how the experiments for the evaluation of the system are

performed, in section 6.2 the results of the experiments performed are

presented and compared against the test user‟s data. The evaluation of the

system versus the experiment along with a discussion is finally presented in

section 6.3.

6.1. Experiment
In this project the implementation of the system developed has focused on

17 different Flickr groups with 300 – 6000 geo- referenced images. Each

group with all its images included are viewed by the system as predefined

collection as images. All images within a collection are processed, tags and

title manually added by users on Flickr are collected, geo- location data and

time/ date stamps are used to auto- annotate the images with additional

contextual metadata. Further data are converted, cleansed before

representatives for the collection is selected weighted on the metadata‟s

frequency within the collection (term frequency).

For the experiments performed only the Term Frequency is used in

weighing the terms within the collection, mainly because the experiments

are viewed as independent. This means that a specific collection has no

relation with the other image collections; hence the Inverse document

frequency is not necessary to include.

The system developed creates collections summaries for image collections

that reflect the representative terms of the images within it. The collection

summaries can be used for two purposes. The first, describing the image

collections through a textual document represented by the located

representatives. Secondly, used to efficiently filtering out irrelevant

collections in the process of image retrieval and locating only those that are.

Since the system developed in this project present functionality for the

production of the collection summaries and not on the actual image retrieval

itself, the latter are difficult to evaluate at this stage.

Anyhow the augmenting of contextual metadata is obviously useful when

requesting images using context related search queries such as, return

images- “from France”, “taken on a Saturday 2010”, “of Hurricanes in

USA”, “taken in the summer when the weather condition is clear” and so

on. In private collections search queries that would be more relevant for

individual users are contexts that are known to the individual user. E.g. say

that the user wants to locate all images taken in a specific summer vacation,

of which he knows the year, season and location, e.g. return images “taken

in summer in Paris 2009”.

64

Also if a retrieval system had been developed a typical test could be having

one system that views all images as one search space, and comparing this

system to mine. In the comparison system a query Q would be on all set of

images S. In my system the images would be separate the search space S

into 17 number of image collections, filtering out those not relevant for

search query Q using the collection summaries. Using this approach the

effectiveness in case of runtime would be much better, and hopefully also

the returned results would be better. Nevertheless at this point this claim is

difficult to confirm or decline.

Other than augmenting the images within the collections with additional

metadata, the system has also focused on reflecting the natural perception of

users by taking advantage of the user provided terms by individual users on

Flickr. The human perception of images is subjective, i.e. that different

users have different perceptions on the same images for different purposes

discussed earlier. The goal of the system developed is to find

representatives for the collections which describes the collection from its

most informative view, i.e. terms that stand out from other terms and

reflects the collection in the best manner as a whole. Using manually added

tags added by different users on Flickr this also involves finding properties

that reflects the focal point of these users‟ natural perceptions of the images.

From these motives I find it most useful to evaluate the system up against

individual‟s natural perception, focusing on the user provided terms in the

collection summary. The experiment is performed by carrying out tests with

external users on appropriate image collections used in the development of

the system. With appropriate image collections I mean using small image

collections in the experiment, consisting of 300-500 images. These sizes

seem appropriate to prevent users from having problems remembering the

majority of the images viewed when deducting the most representative

properties of them.

From the 17 collections experimented on in the implementation I found 7

collections to be good candidates for the evaluation of the system. The users

of the experiment are assigned to browse through all images in the image

collections and write down keywords that they feel are most descriptive for

the collection as a whole. Since all images used in the experiments are

available on Flickr‟s online pages, the experiments are performed there. The

images in the used collection are on Flickr divided over several pages

holding 30 images on each page. The image collections used in the

evaluation of the system are listed in appendix X. The experiment is

performed in the following manner:

 The test users are assigned to browse through the images, using

approximately a second on each image before moving on to the

next page.

 The test users are encouraged to prevent to get caught up in any

single images.

 When all images has been browsed through, the users are

assigned to write down keywords that they feel best describes

their perception of the images in the collection.

65

 When keywords are written down for the collection, the image

collection is again browsed through by the test user allowing

them to adjust the keywords to best reflect the user‟s individual

perception

Notably the test users has been given very limited instructions, examples or

advices on features to look for, preventing myself from influencing and

constructing the experiment at a minimum, causing the results to be as

subjective as possible.

When the keywords reflecting the individual test user‟s perception of the

collection are collected, the collection summary is compared against the

results from the user experiments. This is done manually in the manner of

looking for direct hits or terms that hold similarities between the two

representations. I will present and discuss the results in the preceding

section.

6.2. Results
The experiment has been performed using three test users. The test users

will be referred to as user 1, user 2 and user 3 as their results are presented.

Along with the results from the test experiments the produced output of the

summarizing system will also be presented, i.e. properties that are viewed

by the system as most representative for the image collections used in the

experiment. The latter will be referred to as the collection summary.

Direct hits between the collection summary and the test user‟s keywords

will be represented as green keywords, similar or relevant properties

between the collection summary and the user keywords will be represented

by blue and keywords with no obvious relation to the collection summary

will be represented by red. Green, i.e. direct hits are terms in the collection

summary that are exact matches to keywords provided by the users. Notably

a synonym word is also viewed as a direct hit. Blue, i.e. relevant, are

keywords that are not physically present in the collection summary, but are

viewed as relevant since many similarities or relevant terms are highly

weighted in the collection summary. Red represents keywords that are not

located in the collection summary and which have no obvious relation

between the two.

Seven experiments performed are presented in the rest of this sub section.

Each experiment is represented by its collection summery along with the

keywords provided by the test users.

66

A Test collection 1 : Geo Tagged – Malaysia Number of images: 313
User 1 User 2 User 3

 Keyword Description Keyword Description Keyword Description
 1.1. Ant No, but insects and bugs 2.1. Bugs Yes, under insects

3.1. Sky no, but panorama and clouds

 1.2. Bug Yes 2.2. Nature - Trees No, but park and green

high ranked

3.2. Lizards No

 1.3. Butterfly Yes butterfly and moth 2.3. Sunset Yes, under tags 3.3. Skyscrapers Yes, under building

 1.4. Nature No, but many related Sky, green,
insects, animals etc

2.4. Beach Yes, under tags 3.4. Insects Yes, category, many members

 1.5. Hot Yes, high temperature 2.5. Tower Yes, under structure 3.5. Birds No

 1.6. Beach Yes 2.6. Asia Yes, tags 3.6. Sun Yes, both sunset and sunrise high

ranked

 1.7. Summer Yes, highest (season) 3.7. Trees No, but park and green high ranked

 1.8. Sky No, but panorama and cloud 3.8. Roads No

 1.9. Ocean Yes, synonym sea 3.9. Clouds Yes, weather cond. and tags

 1.10. City No, but building', sky- scraper,

architecture, hotel

 3.10. Sea Yes, high ranked

 1.11. Park Yes, (category level 2) 3.11. Nature No, but much tags relevant. Such as

waterfall, park, green , animals,

insects, wind, storm,
 1.12. Boat No

 1.13. Tower Yes, (category - structure)

 1.14. Bridge Yes, (category - structure)

B
Type Data Term freq Count Type Data Term freq Count
location country:malaysia 1,0000 313 tags Penang 0,1757 55

location region:pulau pinang 0,3355 105 Tags penangflickrgroup 0,1725 54

 location region:johor 0,1374 43 Tags Asia (2.6) 0,1470 46

 location street:jalan teluk bahang 0,1086 34 Tags Asie (2.6) 0,1438 45

 location city:teluk bahang 0,1086 34 Tags Malaisie 0,1438 45

 location region:kedah 0,0990 31 Tags Johor 0,1182 37

 location city:butterworth 0,0863 27 Tags penangbutterflyfarm 0,0990 31

 location city:kuala lumpur 0,0831 26 Tags kualalumpur 0,0958 30

 location city:johor bahru 0,0831 26 Tags Island 0,0863 27

 location region:pahang 0,0767 24 Tags Beach (1.6) (2.4) 0,0831 26

 location city:george town 0,0735 23 Tags Sea (1.9) (3.10) 0,0767 24

 location street:jalan chain ferry 0,0639 20 Tags Green (2.2) (3.7) 0,0767 24

 location region: kuala lumpur 0,0575 18 Tags Pulaupinang 0,0767 24

 weekday Saturday 0,2939 92 Tags Tanjung 0,0703 22

 month Oktober 0,2652 83 Tags Heritage 0,0639 20

 month July 0,2364 74 Tags Sunset (2.3) (3.6) 0,0639 20

 month November 0,1885 59 Tags Unesco 0,0607 19

 season Summer (1.7) 0,4089 128 Tags Worldheritage 0,0607 19

 season Fall 0,3738 117 Tags Klcc 0,0607 19

 dateHuman 2008 july 0,2364 74 Tags Kedah 0,0607 19

 dateHuman 2008 oktober 0,1757 55 Tags Hijau 0,0607 19

 dateHuman 2008 november 0,1693 53 Tags Panorama (1.8) (3.1) 0,0575 18

 dateHuman 2008 june 0,0927 29 Tags Pulaumutiara 0,0543 17

 dateHuman 2007 oktober 0,0831 26 Tags Bokeh 0,0511 16

 dateHuman 2008 may 0,0607 19 weather-cond mostly cloudy (1.8) (3.1) (3.9) 0,8435 264

 tags outdoorgraphy™ 0,6837 214 weather-wind light air 0,3706 116

 tags Sirmart 0,3898 122 weather-wind light breeze 0,3610 113

 tags Outdoorgraphy 0,3802 119 weather-wind gentle breeze 0,1629 51

 tags Macro 0,1917 60 weather-temp very hot (1.5) 0,8179 256

 tags Penangflickr 0,1789 56 weather-temp Hot (1.5) 0,1629 51

Table 6-1: Experiment 1- Table A shows keyword results collected from test users, B shows the

collection summary’s tags and auto annotations and C shows the categorizations of hypernyms

from the collection summary

C Type Level Hypernym name Term freq Count Hypernym members
hyp-tags 1 chromatic_color 0,1597 50 green, blue, red, yellow, pink,

hyp-tags 1 Digit 0,1342 42 1, 2, ii, 3, iii, 4, 5, 6, 7, eight, 8,

 hyp-tags 1 Hour 0,0927 29 sunset (3.6), sunrise (3.6), noon,

 hyp-tags 1 Land 0,0895 28 island, turf,

 hyp-tags 1 body_of_water 0,0799 25 sea, waterfall,

 hyp-tags 1 Structure (1.10) 0,0703 22 tower (1.13) (2.5), building, bridge (1.14), signboard, fountain, stadium,

 hyp-tags 1 Person 0,0543 17 white, scorpion, tiger, jumper, have, fighter, travellers,

 hyp-tags 1 Tract 0,0511 16 field, park (1.11) (2.2) (3.7), common,

 hyp-tags 1 time_period 0,0511 16 night, morning, stage, daytime,

hyp-tags 2 insect (1.1) (3.4) 0,1150 36

Butterfly (1.3), moth (1.3), insect (1.1), bugs (1.1) (1.2) (2.1), bug (1.1) (1.2)

(2.1), beetle, pupa,

 hyp-tags 2 Arthropod 0,0671 21 bugs, bug, beetle, pupa, insect,

 hyp-tags 2 Building 0,0799 25 temple, masjid, mosque, building, skyscraper (3.1), architecture, house, hotel,

 hyp-tags 2 atmospheric_phenomenon 0,0511 16 wind, storm,

 hyp-tags 2 physical_phenomenon 0,0575 18 storm, cloud (1.8) (3.1) (3.9), clouds (1.8) (3.1) (3.9),

 hyp-tags 2 geological_formation 0,1022 32 plage, beach,

67

A Test collection 2 : Ruins in Digital - Geo-tagged Number of images: 274
User 1 User 2 User 3

 Keyword Description Keyword Description Keyword Description
 1.1. Castle Yes, 2nd highest title 2.1. Rome No 3.1. Plains No

 1.2. Ruins Yes, 2nd highest tags 2.2. Italy No 3.2. Ruins Yes, high ranked

 1.3. Ancient No, but history ,old (cats) 2.3. Old houses Yes, old and houses (also

structures, ruins etc)

3.3. Old houses Yes, old, ancient and houses /

buildings /structures high ranked

 1.4. Old Yes, cats 2.4. Ruins Yes 3.4. Structures Yes, high ranked

 1.5. Building Yes (cats, 2nd level) 2.5. Architecture Yes, under building 3.5. Shadows No

 1.6. Construction Yes, structure 2.6. Roman No 3.6. Sky Yes

 1.7. Tower Yes, 2nd level cats 2.7. Street No, but urban 3.7. Street No, but urban

 1.8. Palace Yes, 1st level cats 2.8. Castles Yes, tags 3.8. Grass No

 1.9. Broken No, but ruin, devastation 2.9. Old Yes 3.9. Ceiling No, but very many structures with

ceiling i.e. tower, building

stadium, monument, church,

castle, palace, cathedral, abbey,

fortress, donjon

B
Type Data Term freq Count Type Data Term freq Count
location country:uk 0,3102 85 tags friche 0,2701 74

location country:france 0,2774 76 Tags Castle (1.1) (2.8) 0,2080 57

 location region:nord-pas-de-calais 0,2701 74 Tags Ruins (1.2) (2.4) (3.2) 0,1861 51

 location street:9 avenue marc sangnier 0,1861 51 Tags Textile 0,1861 51

 location city:59280 armentières 0,1861 51 Tags Armentieres 0,1861 51

 location country:usa 0,1460 40 Tags England 0,1058 29

 location street:33b rue philippe lebon 0,0839 23 Tags 2008 0,0876 24

 location city:59100 roubaix 0,0839 23 Tags Roubaix 0,0839 23

 location country:sweden 0,0730 20 Tags Northwales 0,0766 21

 location city:flint 0,0693 19 Tags Sky (3.6) 0,0693 19

 location region:sc 0,0657 18 Tags Sweden 0,0693 19

 location street:castle dyke st 0,0511 14 Tags Old (1.4) (2.3) (2.9) (3.3) 0,0657 18

 weekday saturday 0,4161 114 Tags Church 0,0620 17

 month november 0,2482 68 Tags Abbey 0,0584 16

 month desember 0,1168 32 Tags Flint 0,0547 15

 dateHuman 1999 november 0,1861 51 Tags Hdr 0,0511 14

 dateHuman 1999 desember 0,0839 23 Tags västragötaland 0,0511 14

 dateHuman 2009 april 0,0803 22 Tags västergötland 0,0511 14

 dateHuman 2010 january 0,0620 17 weather-cond clear 0,3175 87

 dateHuman 2008 may 0,0511 14 weather-cond scattered clouds 0,1934 53

 tags winter 0,4818 132 weather-cond mostly cloudy 0,1898 52

 tags abandoned 0,3248 89 weather-cond partly cloudy 0,1825 50

 tags Urban (2.7) (3.7) 0,2847 78 weather-wind gentle breeze 0,3066 84

 tags Ruin 0,2810 77 weather-wind moderate breeze 0,1679 46

 tags Urbex 0,2810 77 weather-wind light breeze 0,1569 43

 tags abandonné 0,2810 77 weather-temp chilly 0,4745 130

 tags Usine 0,2701 74 weather-temp moderate 0,3175 87

 tags nord 0,2701 74

Table 6-2: Experiment 2- Table A shows keyword results collected from test users, B shows the

collection summary’s tags and auto annotations and C shows the categorizations of hypernyms

from the collection summary

C
Type Level Hypernym name Term freq Count Hypernym members
hyp-tags 1 season 0,50364964 138 winter, christmas, yuletide, autumn,

hyp-tags 1 Devastation (1.9) 0,46715328 128 ruin (1.9), ruins,

 hyp-tags 1 Mansion (1.8) 0,21167883 58 castle (1.1) (2.8) , palace (1.8),

 hyp-tags 1 Past (1.3) 0,10948905 30 old (1.3) , history (1.3),

 hyp-tags 1 digit 0,06934307 19 1, 3, 4, 2, 5, 8, 6, 9,

 hyp-tags 1 Church (3.9) 0,06569343 18 Abbey , cathedral,

 hyp-tags 1 structure (1.5) (1.6) (3.4) 0,0620438 17 tower (1.7) , building (1.5) , buildings (1.5), stadium, monument,

 hyp-tags 2 residence 0,06569343 18 monastery, priory, home,

 hyp-tags 2 Creation 0,05109489 14 excavation, classic,

 hyp-tags 2 defensive_structure 0,06934307 19 donjon, dungeon, dungeons, fortress, fortification, fortifications,

 hyp-tags 2 Building 0,08759124 24 Chapel , temple, house (2.3) (3.3) , architecture (2.5), building,

 hyp-tags 2 artifact 0,2044 56 bricks, brick, textile,

 hyp-tags 2 atmosphere 0,0730 20 low, sky,

 hyp-tags 3 vascular_plant 0,0620 17 tree, trees, herb, refinery, mill,

68

A Test collection 3 : Taken FROM a bridge Number of images: 279
User 1 User 2 User 3

 Keyword Description Keyword Description Keyword Description
 1.1. Bridge Yes, in tags and under structure 2.1. London eye London yes, eye no 3.1. Bridge Yes, under structure

 1.2. Water Yes, in tags. 2.2. Rivers Yes, tags and under stream 3.2. Canal No, but water, stream and river

 1.3. Ocean Yes, under body of water 2.3. Bridges Yes, in tags and under structure 3.3. Boat Yes, tags, under boat and vessel

 1.4. Blue Yes, under achromatic color 2.4. Water Yes, in tags. 3.4. Sea Yes, under body of water

 1.5. Construction Yes, synonym structure 2.5. Boats Yes, tags, under boat and vessel 3.5. Train Yes under public transport

 1.6. Railroad Yes, under line 2.6. Railroad Yes, under line 3.6. Rails Yes, synonym to rail-road/-ways

 1.7. Tower Yes, under structure 2.7. Rails Yes, synonym to rail-road/-ways 3.7. Dam No

B
Type Data Term freq Count Type Data Term freq Count
location country:usa 0,3297 92 tags Viewonabridge (1.1) (2.3) (3.1) 0,0968 27

location country:uk 0,2796 78 tags barco 0,0932 26

 location region: 0,2545 71 tags barcos 0,0932 26

 location country:sweden 0,1720 48 tags lake 0,0717 20

 location city:stockholm county 0,0932 26 tags onthebridgec (1.1) (2.3) (3.1) 0,0681 19

 location region:greater london (2.1) 0,0502 14 tags view 0,0609 17

 location street:västerbron 0,0502 14 tags people 0,0573 16

 weekday sunday 0,2258 63 tags europe 0,0573 16

 weekday saturday 0,2151 60 tags mälaren 0,0538 15

 month april 0,2652 74 tags boats (2.5) 0,0538 15

 month mars 0,1290 36 tags London (2.1) 0,0502 14

 season spring 0,4194 117 tags sunset 0,0502 14

 dateHuman 2011 april 0,2079 58 tags travel 0,0502 14

 dateHuman 2011 mars 0,0968 27 tags reflection 0,0502 14

 tags Bridge (1.1) (2.3) (3.1) 0,4265 119 tags malaren 0,0502 14

 tags River (3.2) 0,1971 55 weather-cond clear 0,3763 105

 tags Water (1.2) (2.4) (3.2) 0,1649 46 weather-cond scattered clouds 0,1326 37

 tags stockholm 0,1362 38 weather-cond mostly cloudy 0,1290 36

 tags sweden 0,1326 37 weather-cond partly cloudy 0,0968 27

 tags takenfromabridge (1.1) (2.3) (3.1) 0,1147 32 weather-cond overcast 0,0609 17

 tags scandinavia 0,1147 32 weather-wind gentle breeze 0,2867 80

 tags sthm 0,1111 31 weather-wind light breeze 0,2186 61

 tags stkhm 0,1111 31 weather-wind light air 0,1756 49

 tags Boat (2.5) (3.3) 0,1039 29 weather-wind moderate breeze 0,1183 33

 tags viewfromabridge (1.1) (2.3) (3.1) 0,0968 27 weather-temp moderate 0,4444 124

 tags Takenonabridge (1.1) (2.3) (3.1) 0,0968 27 weather-temp chilly 0,2832 79

Table 6-3: Experiment 3- Table A shows keyword results collected from test users, B shows the

collection summary’s tags and auto annotations and C shows the categorizations of hypernyms

from the collection summary

C
Type Level Hypernym name Term freq Count Hypernym members

hyp-tags 1 Structure (1.5) 0,4695 131

Bridge (1.1) (2.3) (3.1), tower (1.7), buildings, pattern, towers, patterns,

building,

hyp-tags 1 Stream (3.2) 0,2401 67 River (2.2) (3.2), rivers (2.2) (3.2), creek, brook,

 hyp-tags 1 vessel 0,1649 46 Boat (2.5) (3.3), boats (2.5) (3.3), ship,

hyp-tags 1 body_of_water 0,1577 44

lake, sea (3.4), stream, waterfall, waterfalls, ocean (1.3), bay, lakes,

streams,

hyp-tags 1 line 0,1147 32

railway (2.7) (3.6), railroad (1.6, 2.6, 3.6) (2.7) , tracks, track, curve, ropes,

row, route, railways (2.7) (3.6) , rope, watermark, curves,

 hyp-tags 1 hour 0,0896 25 sunset, dusk, sunrise, twilight, dawn, crepuscule,

 hyp-tags 1 consideration 0,0789 22 reflection, reflections,

 hyp-tags 1 painting 0,0717 20 waterscape, waterscapes,

 hyp-tags 1 orientation 0,0681 19 view, perspective,

 hyp-tags 1 time_period 0,0645 18 morning, night, week, stage,

 hyp-tags 1 digit 0,0645 18 1, 3, one, three, 2, two, ii, trinity, 7, 5, iii,

 hyp-tags 1 person 0,0609 17 amateur, national, straight, white, victorian, worker, have,

hyp-tags 1 Boat (2.5) 0,0609 17

ferry, kayaking, paddling, motorboat (2.5) (3.3), powerboats (2.5) (3.3),

powerboat (2.5) (3.3), motorboats (2.5) (3.3), tugboats (2.5) (3.3),

 hyp-tags 1 motion 0,0573 16 travel, posing, speeding,

 hyp-tags 1 sailing_vessel 0,0573 16 Sailboat (2.5) (3.3), sailboats (2.5) (3.3), sloop, barque,

 hyp-tags 1 chromatic_color 0,0502 14 green, yellow, blue (1.4), red, purple,

 hyp-tags 2 object 0,0896 25 island, ness, islands, archipelago, plain, location,

 hyp-tags 2 geological_formation 0,0538 15 mountains, mountain, beach, shore, foreshore,

 hyp-tags 2 platform 0,0538 15 quay, pier, deck,

 hyp-tags 2 travel 0,0717 20 near, travel, trekking, commuting, cruising,

 hyp-tags 2 movement 0,0538 15 ripples, waves, approaching, wave,

 hyp-tags 2 people 0,0681 19 british, irish, people, public,

 hyp-tags 2 location 0,0538 15 southland, top, location,

 hyp-tags 2 group 0,0645 18 traffic, pile, people,

 hyp-tags 2 building 0,0502 14 hospital, architecture, restaurant, house, skyscrapers, hotel, building, houses,

 hyp-tags 2 liquid 0,1685 47 chocolate, water,

 hyp-tags 3 artifact 0,0502 14 photo, picture, image, photograph, classic, art, surface,

 hyp-tags 3 restraint 0,0502 14 bow, lock, locks, floodgate,

 hyp-tags 3 public_transport 0,0502 14 commuters, train (3.5), trains (3.5), bus,

69

A
 Test collection 4 : NYC Chinatown Number of images: 380

User 1 User 2 User 3

 Keywords Description Keyword Description Keyword Description
 1.1. Asia Yes, high ranked tag 2.1. Chinatown Yes, highest ranked 3.1. Dragons No

 1.2.

Chinatown

Yes, very high rank tag 2.2. Chinese Yes, high ranked 3.2. Lamps No

 1.3. culture No, 2.3. Chinese new

year

Yes, tags. Chinesenewyear

high ranked

3.3. Skyscrapers No, but towers, buildings etc

 1.4. City Yes, city, metropolis,

municipality

2.4. People Yes, under category

person. Also inhabitant

and person of color

3.4. Store

windows

Yes, storefront under side

 1.5. Asian/
Chinese

people

Yes, both very high ranked, also
asiatic

2.5. Black and
white photos

No, 3.5. Fish No, but seafood

 1.6. People Yes, under category person. Also

inhabitant and person of color

2.6. Chinese

Marked

Yes, Chinese and marked,

also shopping, buying etc

3.6. Chinese Yes, high ranked

 3.7. Plastic bags Yes, high ranked tags. Bags,

container

 3.8. People Yes, person (category)

 3.9. statues No, but characters,

imaginary_being in category

B
Type Data Term freq Count Type Data Term freq Count
location country:usa 1,0000 380 tags urbanexploration 0,0895 34

location region:ny 0,9974 379 tags curbed 0,0895 34

 location city:manhattan 0,6553 249 tags urbanphotography 0,0895 34

 location city:new york 0,3447 131 tags cityphotography 0,0895 34

 location street:manhattan bridge 0,1105 42 tags chinatownnewyorkcity 0,0895 34

 weekday saturday 0,2368 90 tags streets 0,0868 33

 month september 0,1474 56 tags red 0,0816 31

 month february 0,1421 54 tags lowereastside 0,0816 31

 month august 0,1211 46 tags building 0,0763 29

 dateHuman 2009 september 0,1289 49 tags sidewalk 0,0763 29

 dateHuman 2009 august 0,0947 36 tags little 0,0737 28

 dateHuman 2010 oktober 0,0895 34 tags characters (3.9) 0,0684 26

 dateHuman 2010 april 0,0684 26 tags Bags (3.7) 0,0658 25

 dateHuman 2011 february 0,0526 20 tags usa 0,0632 24

 dateHuman 2010 february 0,0500 19 tags buildings 0,0632 24

 tags chinatown (1.2) (2.1) 0,9789 372 tags architecture 0,0605 23

 tags nyc 0,7763 295 tags rooftops 0,0605 23

 tags manhattan 0,6211 236 tags manhattanbridge 0,0605 23

 tags new 0,5474 208 tags graffiti 0,0605 23

 tags york 0,5395 205 tags young 0,0579 22

 tags gothamist 0,5316 202 tags view 0,0553 21

 tags City (1.4) 0,5132 195 tags skyline 0,0553 21

 tags street 0,4316 164 tags manhattanskyline 0,0553 21

 tags chinese (1.5) (2.2) (2.6) (3.6) 0,4316 164 tags newyorkcityarchitecture 0,0553 21

 tags asian (1.5) 0,3553 135 tags manhattanarchitecture 0,0553 21

 tags ny 0,3263 124 tags manhattanbridgeview 0,0553 21

 tags urban 0,2711 103 tags newyorkcitybuildings 0,0553 21

 tags newyorkcity 0,2658 101 tags chinatownrooftops 0,0553 21

 tags newyork 0,2579 98 tags manhattanbridgeviews 0,0553 21

 tags les 0,2342 89 tags back 0,0553 21

 tags east 0,1921 73 tags chinesenewyear (2.3) 0,0526 20

 tags candid 0,1895 72 tags white 0,0500 19

 tags china 0,1632 62 tags shopping (2.6) 0,0500 19

 tags side 0,1500 57 tags fuzhou 0,0500 19

 tags lower 0,1500 57 tags pretty 0,0500 19

 tags bridge 0,1342 51 weather-cond clear 0,6368 242

 tags asia (1.1) 0,1316 50 weather-cond overcast 0,1395 53

 tags broadway 0,1105 42 weather-cond partly cloudy 0,0789 30

 tags chinatownnyc 0,1079 41 weather-wind light breeze 0,3737 142

 tags man 0,0974 37 weather-wind gentle breeze 0,3132 119

 tags woman 0,0947 36 weather-temp chilly 0,3289 125

 tags lowermanhattan 0,0921 35 weather-temp moderate 0,1895 72

 tags wnyc 0,0921 35 weather-temp hot 0,1895 72

 tags girl 0,0895 34 weather-temp very hot 0,1842 70

70

Table 6-4: Experiment 4- Table A shows keyword results collected from test users, B shows the

collection summary’s tags and auto annotations and C shows the categorizations of hypernyms

from the collection summary

C
Type Level Hypernym name Term freq Count Hypernym members
hyp-tags 1 dynasty 0,5421 206 york, qings,

hyp-tags 1 municipality (1.4) 0,5421 206 City (1.4), metropolis (1.4), town (1.4)

 hyp-tags 1 thoroughfare 0,5184 197 street, streets,

 hyp-tags 1 inhabitant (1.6) (2.4) 0,3605 137 asian, asiatic, american,

 hyp-tags 1 person_of_color (1.6) (2.4) 0,3579 136 asian, asiatic,

hyp-tags 1 structure 0,2921 111

bridge, building (3.3), buildings (3.3), rete, pattern, housing, fountain,

cross, balcony, towers (3.3),

 hyp-tags 1 adult 0,2026 77 man, woman, women,

 hyp-tags 1 region 0,1553 59 side, outside, district,

 hyp-tags 1 chromatic_color 0,1526 58 red, yellow, pink, blue, green, purple,

 hyp-tags 1 woman 0,1368 52 girl, lady, vamp, ladies, girls,

 hyp-tags 1 male 0,1158 44 man, boy,

 hyp-tags 1 container (3.7) 0,1105 42 Bags (3.7), bag (3.7), basket, box, cup, can, purse,

 hyp-tags 1 female 0,1053 40 woman, women,

 hyp-tags 1 digit 0,1053 40 2, 1, 4, 3, two, 7, one, 6, 5, 9, triad, three, 8, four,

 hyp-tags 1 building 0,1026 39 architecture, restaurant, eatery, clubhouse,

 hyp-tags 1 walk 0,1000 38 sidewalk, mall, marching,

 hyp-tags 1 juvenile 0,1000 38 kid, preteen, teen, kids, child, teenager, children, teenagers,

 hyp-tags 1 top 0,0842 32 rooftops, rooftop,

 hyp-tags 1 imaginary_being (3.9) 0,0737 28 characters, character,

 hyp-tags 1 body_part 0,0684 26 back, shoulder, small, shoulders,

 hyp-tags 1 activity 0,0658 25 Market (2.6), games, work, solo, game, use, help,

 hyp-tags 1 animal 0,0632 24 young, giant,

 hyp-tags 1 mercantile_establishment 0,0632 24 shop, store,

 hyp-tags 1 time_period 0,0632 24 night, year, festival, times, nap, morning,

 hyp-tags 1 person (2.4) (3.8) 0,0605 23 white, worker, blonde, ethnic,

 hyp-tags 1 happening 0,0526 20 fire, break,

 hyp-tags 2 artifact 0,0789 30 graffiti, structure, toy, decoration, fabric,

 hyp-tags 2 purchase 0,0526 20 shopping (2.6), buy,

 hyp-tags 2 creation 0,0526 20 film, art, classic,

 hyp-tags 2 motion 0,0816 31 crossing, sitting, travel, rush,

 hyp-tags 2 time 0,0500 19 old, time, future,

 hyp-tags 2 act 0,0500 19 waiting, going, getting, activity,

 hyp-tags 2 food 0,0605 23 noodles, noodle, food, meat, produce, seafood (3.5),

 hyp-tags 2 travel 0,0632 24 trip, ride, outing, crossing, travel,

 hyp-tags 2 side 0,1684 64 storefront (3.4), facade, side, backside, front,

 hyp-tags 2 decoration 0,0684 26 jewelry, graffiti, decoration,

 hyp-tags 2 young 0,0605 23 piggy, young,

 hyp-tags 2 sinitic 0,4342 165 cantonese, chinese,

 hyp-tags 3 atmospheric_phenomenon 0,0579 22 snow, wind, storm,

 hyp-tags 3 action 0,0500 19 sitting, travel, rush, warm, preparing, taking,

 hyp-tags 3 garment 0,0632 24 jacket, coat, shirt, sweater, robes, shirts, laundry,

 hyp-tags 3 substance 0,0526 20 trash, garbage, paper, packing, waste, food, stuff,

71

A Test collection 5 : Geotagged: Delaware Number of images: 461

User 1 User 2 User 3

 Keywords Description Keyword Description Keyword Description
 1.1. Cops Yes, cop, cops, police 2.1. Fire truck Yes, both fire and truck 3.1. Boat Yes, boat, sailboat, ship,

 1.2. Fire Station Yes, both fire and station

high ranked, individual

2.2. USA Yes, highest ranked location

(country)

3.2. Police car Yes, both police and car high

ranked

 1.3. Fire truck Yes, trucks, fire 2.3. Birds Yes, under category vertebrate

(fowl, bird, wildfowl)

3.3. Fire truck Yes, fire and truck high ranked

 1.4. Car Yes, high ranked 2.4. Dirt road Yes, both dirt and road, high
ranked under category

3.4. Creeks Yes, under stream

 1.5. Nature No, but, high ranked, tree,
bush, ocean, beach, bay,

water, creek, river, park

2.5. Park Yes, high ranked tags 3.5. Sea Yes, sea, ocean, lake high ranked

 1.6. Bird Yes, fowl, bird, wildfowl 2.6. Military vehicle Yes, under force and vehicle 3.6. Bird Yes, bird, fowl, and wildfowl

 1.7. Animal Yes 3.7. Lighthouse Yes, in tags

 3.8. Trees Yes, in tags and under woody

plant

 3.9. Train cart Yes, train under instrumentality

B Type Data Term freq Count Type Data Term freq Count
location country:usa (2.2) 1,0000 461 tags rogers 0,0803 37

location region:de 0,9436 435 tags bethany 0,0759 35

 location city:wilmington 0,2299 106 tags bethanybeach 0,0738 34

 location city:bethany beach 0,0933 43 tags Ocean (1.5) (3.5) 0,0716 33

 location city:dover 0,0824 38 tags lancerogers 0,0716 33

 location street:coastal hwy 0,0759 35 tags brandywine 0,0694 32

 location city:lewes 0,0738 34 tags water (1.5) 0,0607 28

 location city:rehoboth beach 0,0586 27 tags 2011 0,0607 28

 location city:newark 0,0542 25 tags Sky 0,0607 28

 weekday saturday 0,3579 165 tags trees (1.5) (3.8) 0,0586 27

 weekday sunday 0,2560 118 tags Fire (1.2) (1.3) (2.1) (3.3) 0,0564 26

 month july 0,1497 69 tags sussexcounty 0,0564 26

 month mars 0,1323 61 tags police (1.1) (3.2) 0,0564 26

 season summer 0,3774 174 tags fenwick 0,0564 26

 dateHuman 2010 july 0,1215 56 tags photoshopelements 0,0564 26

 dateHuman 2011 mars 0,1041 48 tags Station (1.2) 0,0542 25

 dateHuman 2010 august 0,0976 45 tags lighthouse (3.7) 0,0542 25

 dateHuman 2011 april 0,0889 41 tags wilmingtondelaware 0,0521 24

 dateHuman 2011 february 0,0716 33 tags Island 0,0521 24

 dateHuman 2010 june 0,0586 27 weather-cond clear 0,6443 297

 dateHuman 2010 oktober 0,0521 24 weather-cond mostly cloudy 0,1215 56

 tags delaware 0,6421 296 weather-cond overcast 0,0803 37

 tags sussexcountyde 0,2039 94 weather-cond scattered clouds 0,0738 34

 tags beach 0,1735 80 weather-wind gentle breeze 0,3102 143

 tags delawareonline 0,1605 74 weather-wind moderate breeze 0,2603 120

 tags wilmington 0,1280 59 weather-wind light breeze 0,2495 115

 tags Park (1.5) (2.5) 0,1215 56 weather-temp very hot 0,3471 160

 tags resort 0,0889 41 weather-temp moderate 0,2169 100

 tags state 0,0868 40 weather-temp chilly 0,2017 93

 tags lance 0,0803 37 weather-temp hot 0,1605 74

C Type Level Hypernym

name

Term freq Count Hypernym members

hyp-tags 1 geological_formation 0,1974 91 beach (1.5), shore, oceanfront,

hyp-tags 1 body_of_water 0,1714 79

ocean (1.5) (3.5), bay, inlet, sea (3.5), stream, lake (3.5), waterfalls,

waterway,

 hyp-tags 1 tract 0,1562 72 park, field, midway,

 hyp-tags 1 chromatic_color 0,1085 50 blue, yellow, red, green, pink,

 hyp-tags 1 land 0,0976 45 island, cape, woodland, homestead, turf,

 hyp-tags 1 woody_plant 0,0933 43 trees (1.5) (3.8), tree (1.5) (3.8), bush (1.5),

hyp-tags 1

administrative_distric

t 0,0889 41 state, states,

 hyp-tags 1 weapon 0,0889 41 lance, gun,

hyp-tags 1 motor_vehicle 0,0868 40

car (1.4) (3.2), truck (1.3) (2.1) (3.3), cars (1.4) (3.2), bike, automobiles

(1.4), trucks (1.3) (2.1) (3.3), automobile (1.4), motorcycle,

hyp-tags 1 structure 0,0824 38

bridge, tower, building, balcony, pattern, cross, masonry, fountain, monument,

buildings,

 hyp-tags 1 force 0,0759 35 Police (3.2), military (2.6),

 hyp-tags 1 building 0,0672 31 house, restaurant, architecture, theater, theatre, hotel, houses,

 hyp-tags 1 policeman 0,0672 31 cop, cops,

 hyp-tags 1 liquid 0,0629 29 water, spill,

 hyp-tags 1 happening 0,0629 29 fire, case, break,

 hyp-tags 1 digit 0,0586 27 quint, 2, 9, 4, 6, ii, two, 8, 3, six,

 hyp-tags 1 facility 0,0586 27 station, airfield,

 hyp-tags 1 natural_object 0,0586 27 stone, rocks, rock,

 hyp-tags 1 tower 0,0564 26 lighthouse, watchtower,

72

Table 6-5: Experiment 5- Table A shows keyword results collected from test users, B shows the

collection summary’s tags and auto annotations and C shows the categorizations of hypernyms

from the collection summary

 hyp-tags 1 large_integer 0,0564 26 70, 13, 90, 28, 20,

 hyp-tags 1 stream 0,0564 26 Creek (3.3), river,

 hyp-tags 2 building 0,1627 75 resort, house, restaurant, building, architecture, theater, theatre, hotel, houses,

 hyp-tags 2 agency 0,0738 34 police, usaf,

 hyp-tags 2 environment 0,0586 27 preserve, surroundings,

 hyp-tags 2 earth 0,0564 26 sand, clay, dirt (2.4),

 hyp-tags 2 aircraft 0,0521 24 plane, airplane, airplanes, planes, aircraft,

 hyp-tags 2 artifact 0,0651 30 road (2.4), marker, structure,

hyp-tags 2 line 0,0781 36

trail, directions, trails, walkway, line, route, railroad, railway, curves, horizon,

heading, curve,

 hyp-tags 2 hotel 0,0954 44 motel, resort, hotel,

 hyp-tags 2 state 0,0976 45 peace, state, wild,

 hyp-tags 3 skilled_worker 0,0499 23 officer, volunteer, marine, fishers, hanger, shoveler,

 hyp-tags 3 worker 0,0542 25 officer, volunteer, marine, fishers, hanger, shoveler,

 hyp-tags 3 vehicle (2.6) 0,0759 35 Boat (3.1), boats (3.1), ship (3.1), aircraft, vehicle (2.6), rocket,

 hyp-tags 3 instrumentality 0,0564 26 train (3.9), trains (3.9), vehicle, container, equipment,

hyp-tags 3 organism 0,0542 25

indian, indians, white, fighter, straight, tiger, longer, juvenile, animal (1.7),

animals (1.7), fungus, someone,

 hyp-tags 3 way 0,0868 40 boardwalk, sidewalk, hiking, trail, path, directions, trails, walkway, road, way,

hyp-tags 3 vertebrate 0,0586 27

fowl (1.6) (2.3) (3.6), bird (1.6) (2.3) (3.6), wildfowl (1.6) (2.3) (3.6), raptor,

birds (1.6) (2.3) (3.6), mammal,

 hyp-tags 3 craft 0,0542 25 sailboat, sailboats, boat, boats, ship, aircraft,

73

A
 Test collection 6 : Geotagged mountain summits Number of images: 424

User 1 User 2 User 3

 Keyword Description Keyword Description Keyword Description
 1.1. Mountain Yes, mountains, hills, berg,

slopes, mount

2.1. Snow Yes, high ranked tags 3.1. Snow Yes, high ranked

 1.2. Snow Yes,very high 2.2. Mountain Yes, high ranked tags 3.2. Mountain Yes, high ranked

 1.3. Ice No 3.3. Sky No, but panorama, clouds

 1.4. Sky No, panorama, clouds 3.4. Cloud Yes, high ranked

 1.5. Blue No 3.5. Forest No

 1.6. Mountain range Yes, hills, ridge, alps 3.6. Grass No

 1.7. Nature Yes 3.7. Climbers Yes, climb, climbing, mountaineering,

alpinism 1.8. peak Yes, peak, summit, high, extreme

 1.9. Tree No

 1.10. Forest No

 1.11. Mountain
climbing

Yes, climb, climbing,
mountaineering, alpinism

B Type Data Term freq Count Type Data Term freq Count
location country:usa 0,3231 137 tags france 0,0825 35

location country:france 0,1509 64 tags germany 0,0778 33

 location region:ca 0,1203 51 tags montagne 0,0778 33

 location country:germany 0,0849 36 tags lake 0,0755 32

 location region:aquitaine 0,0849 36 tags california 0,0708 30

 location region:wa 0,0731 31 tags bavaria 0,0684 29

 location country:spain 0,0660 28 tags pyrenees 0,0660 28

 location city:64490 lescun 0,0660 28 tags nature (1.7) 0,0637 27

 location region:aragón 0,0566 24 tags pirineos 0,0637 27

 location region:bavaria 0,0542 23 tags travel 0,0637 27

 month september 0,1722 73 tags climb (1.11) (3.7) 0,0613 26

 month august 0,1250 53 tags lescun 0,0613 26

 month september 0,1722 73 tags sierranevada 0,0542 23

 dateHuman 2009 september 0,0755 32 tags climbing (1.11) (3.7) 0,0542 23

 dateHuman 2009 desember 0,0519 22 tags rock 0,0542 23

 tags Mountain (1.1) (2.2) (3.2) 0,2807 119 tags french 0,0542 23

 tags summit 0,1910 81 tags bayern 0,0519 22

 tags mountains (1.1) (2.2) (3.2) 0,1580 67 tags december2009 0,0519 22

 tags landscape 0,1509 64 weather-cond clear 0,2807 119

 tags Mount (1.1) (2.2) (3.2) 0,1415 60 weather-cond scattered clouds 0,0708 30

 tags Peak (1.8) 0,1203 51 weather-cond mostly cloudy 0,0637 27

 tags hike 0,1038 44 weather-cond partly cloudy 0,0542 23

 tags snow (1.2) (2.1) (3.1) 0,0991 42 weather-wind light breeze 0,1462 62

 tags panorama (1.4) (3.3) 0,0991 42 weather-wind calm 0,1274 54

 tags alps (1.6) 0,0943 40 weather-wind light air 0,1156 49

 tags hiking 0,0873 37 weather-temp moderate 0,1816 77

 tags view 0,0873 37 weather-temp chilly 0,1745 74

Table 6-6: Experiment 6- Table A shows keyword results collected from test users, B shows the

collection summary’s tags and auto annotations and C shows the categorizations of hypernyms

from the collection summary

C Type Level Hypernym name Term freq Count Hypernym members
hyp-tags 1 natural_elevation 0,4835 205 mountain, mountains, ridge (1.6), hill (1.6), hills (1.6), highland,

hyp-tags 1 degree 0,2005 85 summit (1.8), high (1.8), extreme (1.8),

 hyp-tags 1 walk 0,1910 81 hike, hiking,

 hyp-tags 1 limit 0,1250 53 peak, peaks,

 hyp-tags 1 natural_object 0,1179 50 rock, rocks, stone, world, nest, stones,

 hyp-tags 1 body_of_water 0,0943 40 lake, bay, lakes, stream, sea, waterfall,

 hyp-tags 1 travel 0,0896 38 trekking, treking, journey, descending,

 hyp-tags 1 quality 0,0660 28 nature, bad,

 hyp-tags 1 motion 0,0660 28 travel, ascending,

 hyp-tags 1 slope 0,0660 28 climb, ascent,

 hyp-tags 1 physical_phenomenon 0,0637 27 clouds (1.4) (3.3) (3.4), cloud (1.4) (3.3) (3.4),

 hyp-tags 1 representation 0,0566 24 photo, picture,

 hyp-tags 1 person 0,0542 23 white, national, tiger, straight,

 hyp-tags 2 equine 0,1439 61 mount, horse,

 hyp-tags 2 weather 0,1108 47 snow, wind, weather,

 hyp-tags 2 change_of_location 0,0590 25 climbing, rising, spread,

 hyp-tags 2 geological_formation 0,0896 38 glacier, berg (1.1), crater, scree, cliff, slopes (1.1),

 hyp-tags 2 object 0,0542 23 crater, scree, cliff, slopes, locations,

 hyp-tags 2 rise 0,0896 38 mountaineering (1.11) (3.7), climbing, rise,

 hyp-tags 2 climb 0,0967 41 alpinism (1.11) (3.7), climb, mountaineering,

 hyp-tags 2 journey 0,0708 30 safari, trek, journey, trip, tour, ride, excursion,

74

A Test collection 7 : Geotagged : France Number of images: 537

User 1 User 2 User 3

 Keyword Description Keyword Description Keyword Description
 1.1. Eiffel tower Eiffel no, tower yes 2.1. Paris Yes, under location (city) 3.1. Eiffel tower Tower yes, Eiffel no

 1.2. Tower Yes, (category) 2.2. Eiffel tower No, but tower high ranked tags 3.2. Palace Yes, tags

 1.3. France Yes, location, tags 2.3. Structure / buildings Yes, under structure 3.3. Cathedral Yes, category

 1.4. Paris Yes, location, tags 2.4. Notre dame No, but church and cathedral

high ranked

3.4. River No, but water

 1.5. Culture No 2.5. Vacation No 3.5. Farm No

 1.6. City No 2.6. Bridge Yes, under structure category 3.6. Street Yes, high ranked

tags

 1.7. Monument Yes, category 2.7. Architecture Yes structures and monument

high ranked

3.7. Statue Yes, statue,

sculpture under
“solid figure”

 1.8. Construction Yes, synonym structure 3.8. Plaques No

 1.9. Castle Yes

 1.10. Ocean No, but water

B Type Data Term freq Count Type Data Term freq Count
location country:france (1.3) 0,9870 530 tags nationalcapital 0,2793 150

location region:ile-de-france 0,6909 371 tags novembre 0,1397 75

 location city:75018 paris (1.4) (2.1) 0,1341 72 tags montmartre 0,1304 70

 location city:78000 versailles 0,1024 55 tags cepatri 0,1173 63

 location city:75004 paris (1.4) (2.1) 0,0838 45 tags cepatri55 0,1173 63

 location region:midi-pyrénées 0,0801 43 tags unesco 0,1061 57

 location city:75001 paris (1.4) (2.1) 0,0745 40 tags versailles 0,1024 55

 location street:4 rue de l'indépendance américaine 0,0670 36 tags parisgeotagged 0,0912 49

 location city:75007 paris (1.4) (2.1) 0,0615 33 tags Street (3.6) 0,0801 43

 location city:75008 paris (1.4) (2.1) 0,0559 30 tags rue 0,0764 41

 weekday friday 0,2346 126 tags palace (3.2) 0,0726 39

 weekday thursday 0,2142 115 tags du 0,0708 38

 month may 0,3613 194 tags yvelines 0,0670 36

 month november 0,3166 170 tags Church (2.4) 0,0633 34

 season winter 0,3836 206 tags water (1.10) (3.4) 0,0615 33

 season summer 0,3818 205 tags park 0,0596 32

 dateHuman 2002 may 0,3557 191 tags 2003 0,0559 30

 dateHuman 2009 november 0,3054 164 tags ottobre 0,0503 27

 dateHuman 2003 oktober 0,0559 30 weather-cond mostly cloudy 0,3259 175

 tags Paris (1.4) (2.1) 0,7002 376 weather-cond clear 0,1155 62

 tags France (1.3) 0,5009 269 weather-cond scattered clouds 0,0931 50

 tags Parigi (1.4) (2.1) 0,3631 195 weather-cond partly cloudy 0,0670 36

 tags îledefrance 0,3613 194 weather-cond light rain 0,0521 28

 tags europe 0,3594 193 weather-wind gentle breeze 0,3277 176

 tags 2002 0,3557 191 weather-wind moderate breeze 0,2179 117

 tags westerneurope 0,3501 188 weather-temp chilly 0,4171 224

 tags eurasia 0,3482 187 weather-temp moderate 0,2812 151

 tags 2009 0,3110 167

Table 6-7: Experiment 7- Table A shows keyword results collected from test users, B shows the

collection summary’s tags and auto annotations and C shows the categorizations of hypernyms

from the collection summary

C
Type Level Hypernym name Term freq Count Hypernym members
hyp-tags 1 structure (1.8) (2.3) (2.7) 0,1136 61 Tower (1.2) (1.1) (2.2) (3.1), monument (1.7) (2.7), bridge (2.6), fountain,

hyp-tags 1 large_integer 0,0931 50 27, 29, grand, 26, 28, 11, 25, xiv, 18, 24, xxiii, grands,

 hyp-tags 1 mansion 0,0857 46 palace, castle (1.9),

 hyp-tags 1 herb 0,0801 43 rue, alexander,

 hyp-tags 1 region 0,0782 42 exterior, interior,

 hyp-tags 1 church 0,0540 29 basilica, cathedral (2.4) (3.3),

 hyp-tags 1 stairway 0,0521 28 stairs, steps,

 hyp-tags 2 tract 0,1080 58 plaza, piazza, park,

 hyp-tags 2 solid_figure 0,0559 30 Statue (3.7), sculpture (3.7),

 hyp-tags 2 thoroughfare 0,0819 44 boulevard, street,

75

6.3. Table layouts
From the tables from the experiment the total amounts of images included

within the collection is provided in the header of table A. In table B the

metadata type are located in the column type, the metadata term in the

column data. Further the individual metadata term frequencies as described

in section 4.7.3 in the column term freq and the number of images which

includes this specific metadata in the column count. In table C the

hypernyms are presented, the hierarchical level of the hypernyms (see

section 4.6.7) are presented in the column level, the name of the hypernym

in hypernym name and the term frequency of all tags included in this

hypernym as hypernym members in the column term freq. Further the

number of images which includes either of the hypernym members is

located in the count column and all term found in the collection which is

located to be part of the hypernym at this hierarchical level in the column

hypernym members.

6.4. Selection threshold
The selection threshold used in the experiment is with small variations

different depending on the type of the nature of the metadata. Recall from

section 4.8.2 that for metadata with a fixed outcome, the selection threshold

is calculated to be:

 () (

) ((

))

In the experiments discussed in this chapter, the constant C is set to ½.

Further the selection threshold for metadata with an unfixed outcome, which

includes locational data, tags and hypernyms, the selection threshold is set

to a singular constant C. In the experiments performed here, the selection

threshold for metadata with unfixed outcome is set to 0.05. I.e. at a

minimum 5 per cent of the images must be included with the specific

metadata for that metadata to be viewed as representative for the collection.

As this selection threshold is manually set, it can be argued whether or not

the threshold selected is a good choice, as changing this value would affect

the whole experiment. Looking at the results from the section 6.2, most of

the direct hits are metadata with term frequencies far above the selection

threshold. Anyhow in all individual experiment some of the terms that are

relevant or a direct hit are located close to the selection threshold. This

means that setting the selection threshold any lower would exclude some of

the hits. I will list the lowest relevant or direct hit in each collection below:

76

Test collection nr. Lowest hit frequency

1 0.0575

2 0,0620

3 0,0502

4 0.0500

5 0.0542

6 0.0542

7 0,0540
Table 6-8: Lowest hit frequency from test experiments

Almost all collections have metadata hits/of relevance that is close to the

collection threshold, which concludes that the selection threshold chosen

seems like a sufficient choice. Collection 1 could be raised e.g. to 0.055, and

collection 2 to e.g. 0.065 to exclude some tags not relevant, but having a

consistent selection threshold prevents unnecessary confusion. On the other

side lowering the selection threshold would of course give more direct hits,

but give longer collection summaries. To conclude; for the experiments

carried out, the selection threshold chosen seems reasonable after

inspection.

6.5. Discussion and evaluation
In this section I will discuss the results from the experiments presented in

the previous section. This section is separated into 7 sub sections

corresponding to the seven different experiments performed on the three test

users of the system. Before I specifically discuss the individual experiments,

I will discuss the more general aspects between them.

As assumed, notice from the results presented in the section 6.2 that most of

the metadata from the collection summary that is found to be relevant or

direct hits compared to the user‟s keywords are located within the tags or

hyp-tags area. These represent the terms of the collection that are manually

provided by individual users on Flickr. The goal of the experiment was

mainly to focus on similarities between keywords from the experiment and

the user provided terms from the image collections used, as both represents

human perception and since contextual data such as location, weather data

and date/time data are difficult to get a perception of only looking at an

image.

Auto-annotations made by the system developed (e.g. location, weather data

and date/ time data) were prior to the experiment believed by the author to

mainly be interesting in the context of users requesting the retrieval system

with such contextual queries. Context related metadata usually requires

external knowledge about the images themselves, such as at which locations

they are taken, what personal impressions that relates to these images, when

they were taken or a combination of several contextual data (e.g. summer

vacation in Italy, July 2010). Nevertheless even though most of the

similarities between the collection summary and the user‟s keywords relates

to the user provided terms, some interesting elements were observed in the

77

comparison of the contextual data as well. I will present and discuss these

observations more specifically in the subsequent subsections of this chapter.

Notably the collection summary includes much more data than the keywords

added by the test users. The collection summary includes contextual data

such as location specific metadata (i.e. name of country, region, city and

street), date / time metadata (i.e. weekday, month, season and a combination

of year and month), weather metadata (i.e. weather condition, wind

conditions and temperature conditions) and user provided terms standing

alone or grouped together as categories through the hypernyms located on

WordNet.

What is interesting here is that observably the user provided terms from the

summary that are not addressed and directly compared with the keywords

collected from the test users, have features that bear similarities to those that

are. This means that in most situations the collection summaries describes

the collections with representative terms that are alike, relevant or bear

similarities to the perceptions of the individual test user‟s from the

experiment. Also in many cases where a keyword is not located in the

collection summary, it is obvious why the users decided to use these terms.

Often the misses are because the users provided a term that are very high

level, e.g. nature and culture. Observably in such situations the collection

summary hold similarities to the high level term, e.g. in the case of nature,

the collection summary holds lower level representations such as insects,

trees, mountains and many nature elements are present. This suggests that

the collection summary holds more descriptive terms and not so many high

level terms, such as culture and nature. In this sense the high level terms

can be argued to be relevant, but are simply too difficult to agree on in some

situations, hence viewed as a miss.

Some of the user provided terms are remarkably noisy and some are

redundant and describes certain properties of the collections that also are

located in the auto-annotated contextual metadata. E.g. in experiment 1 we

can see that much of the locational metadata are also found within the user

provided terms, e.g. locational data “country:Malaysia”, “region:pulau

pinang” and “region:kualu lumpur” are also found to be representative

terms in the form of “Malaisie” (French for Malaysia), “kualulumpur” and

“Pulaupinang”/ ”Penang”/ ”PenangFlickr”.

It is worth mentioning that if an image is tagged with a term that is also

located when auto-annotating the image with location data, the manually

added tag is not used by the summarizing system. The intention of this

design choice is to prevent duplicate metadata. However, in the situations

above such tags are not located since they bear small textual variations that

are not caught by the summarizing system, Nevertheless, duplicates of this

kind at least gives a confirmation that the contextual metadata that the

images are augmented with are correct.

Throughout the rest of this section I will discuss more thoroughly the

individual experiments corresponding to the individual collection results

presented.

78

6.5.1. Experiment 1
Collection name Geo Tagged – Malaysia

Number of images (geo-tagged) 313

number of contributors 16

Table 6-9: Collection 1 specifics

In experiment 1 one can conclude that the comparison between the

collection summary and the user‟s tests, is with small variations, quite good.

I will not discuss all keywords added by the test users, mainly since many of

them are either a direct hit in the form of exactly the same terms compared

against the keywords provided by the test users, or missed terms for no

discussable reason. Besides I will focus on the more interesting

observations.

User 1 has described the collection with 14 keywords, where 9 of them are

direct hit in the collection summary, 3 of them are related or similar and 2 of

them are not present or viewed as a miss. User 2 has described the collection

with 6 keywords where 5 are direct hits and 1 is viewed as relevant in the

collection summary. User 3 varies a little in the amount of direct hits and

relevant hits compared to the first two, where of a total of 11 keywords,

only 5 are viewed as direct hits in relation to the collection summary.

Further 2 are viewed as relevant and 4 are viewed as misses in the collection

summary.

From the direct hits notice that not all are textual exact hits, but synonyms

or words that has approximately the same meaning. These will be viewed as

hits if present in the collection summary. E.g. tag 1.9 reads ocean, which is

not physically present in the collection summary but is viewed as a direct hit

as its synonym sea is present. Another more complex direct hit is keyword

3.6, i.e. sun. Sun is also not directly present in the collection summary, but

is viewed as a direct hit as both sunset and sunrise are highly weighted

representatives in the summary. It can be argued that viewing sunsets and

sunrise as a hit is questionable, but think of viewing many images that are

taken of sunsets and sunrises. It is not difficult to see that sun is a key

element of these images. In this case I believe that it‟s such an important

element that it‟s worth a direct hit.

Keyword 1.1, 1.8 and 1.10, i.e. ant, sky and city are not present in the

collection summary, but the collection summary is viewed as related to the

keywords as representative terms of similarity is present. Ant is viewed as

related as the collection summary holds a great amount of similarities to this

keyword. In this example the similarity is with insects which in the

collection summary are included with butterfly, moth, bugs, beetle, pupa etc.

Even though none of these are a direct hits or synonyms of ant, all are

insects which have been highly weighted within the collection, hence are

viewed as a similarity to the user‟s keyword.

Similarly, in the situation for sky and city, where for sky highly weighted

similarities are clouds and panorama. The latter since sky is part of the

panoramic view. In the case of city, similarities in the collection summary

are that it holds many elements relevant to city, e.g. tower, fountain,

stadium, mosque, hotel and skyscraper. These elements are in my opinion

79

synonym to city in such a way that it would be too harsh viewing it as a

miss.

Also keyword 2.2, and 3.7, both represented with the keyword trees are

viewed as relevant in the collection summary as the metadata park and

green present in it. My perception of a park includes trees and green and in

my opinion is a typical perception of forest, trees, plants and so on.

As described in the introduction of this section, I assumed that most of the

metadata from the collection summary that would be most comparable to

the user‟s keywords for the collections were the user provided terms.

Anyhow some interesting elements in experiment 1 that concerns this, is the

direct hits 1.5 (i.e. hot), 1.7 (i.e. summer) and 3.9 (i.e. clouds). Hot is

located as a representative in the collection summary using temperatures

from the weather data of the images, i.e. “Very hot” and “hot” temperatures

are located in 98 per cent of the images. Summer is located under season

with its 41 percentile, which is found converting the time/ date stamp of the

images within the collection. Finally clouds get a hit on weather condition,

which is metadata also extracted from the weather data of the images, which

shows that 84 per cent of the images are taken under weather condition

mostly cloudy. This shows that augmenting images with additional

contextual data can increase the semantic understanding for the images, also

in relation with human‟s natural perception.

The keyword nature is used by both user 1 and user 2, i.e. keyword 1.4 and

3.11. As mentioned by the description of the two, it could be argued that

these could be viewed as relevant as many elements of nature are present in

the collection summary, e.g. waterfall, park, green, animals, insects, wind,

storm. However, I think that describing a complex and high level term as

nature is not enough for the terms mentioned above. Of course one could

get an impression of nature when viewing these together, but in my opinion

they can be related to much more than nature and are therefore not viewed

as a close relation to nature, hence nature is viewed as a miss by the

collection summary.

6.5.2. Experiment 2
Collection name Ruins in Digital - Geo-tagged

Number of images (geo-tagged) 274

number of contributors 48

Table 6-10: Collection 2 specifics

In experiment 2 all users came up with exactly 9 keywords for the

collection. The collection summary compared to user 1‟s keywords had 7

direct hits and 2 were viewed as relevant, i.e. none were viewed as a miss

from the collection summary‟s perspective. For user 2‟s keywords 5 where

viewed as direct hits, 1 relevant and 3 misses. For user 3‟s keywords 4

direct hits, 1 viewed as relevant and 4 viewed misses in the collection

summary.

Many of the characteristics described by the test users hold exact matches,

e.g. ruins (keywords 1.2, 2.4, 3.2), old houses (2.3, 3.3), castle (1.1, 2.8) and

80

old (1.4, 2.9), all of which are direct hits in the collection summary and

obviously are important characteristics for the image collection. Notice that

old houses (2.3, 3.3) are a combination of two words. In the image

collections used all tags are separated, i.e. it is no obvious way to know if

certain words are supposed to stand together to give meaning, e.g. “Eifel

tower”, “Big Ben” and “old houses”. This means that it is impossible to

know if “old” and “house” stood together when the users provided the

terms, i.e. if they were not added as a merged term, e.g. “oldhouses”.

Nevertheless in a context of image retrieval that would not matter, if the two

separated terms both is highly representative. Since both old and house/

houses are highly weighted in the collection summary, old houses are

viewed as a direct hit in this situation. Keyword 1.6, i.e. construction is also

viewed as a direct hit as its synonym structure is present in the collection

summary. All other direct hits within this experiment are exact direct hits

and are not worth discussing any further.

Keyword 1.3, i.e. ancient is viewed relevant since old and history is present,

and 1.9, i.e. broken since ruin and devastation are present in the collection

summary. Further street (keyword 2.7, 3.7) is also viewed as relevant as

urban is highly weighted, being present in 28 per cent of the images within

the collection. It can be argued that this is one of those relations that are

questionable. Anyhow I feel that urban which is synonym to city and highly

populated area is also synonym to street. Of course it is not so related that it

is referred to as a direct hit, but I believe that the collection summary

deserves being viewed as relevant to this term.

Ceiling (keyword 3.9) is one of those that easily can be seen in relation with

the collection summary as it holds a lot of relevant characteristics such as

structures “with” ceiling, i.e. tower, building, monument, church, castle,

cathedral, and palace etc. Anyhow these structures have an enormous

amount of other elements which also are essential for them to be called a

structure, which in my opinion blends out ceiling. Even though it is easy to

see why and how user 3 has chosen to use this keyword, ceiling is for the

purposes described viewed as a keyword with no direct relation for the

collection summary, hence viewed as a miss.

Finally, I would like to discuss user 2‟s three keywords viewed as misses

that draw my attention, i.e. Rome, Italy and Roman (2.1, 2.2 and 2.6), which

obviously all are closely related (to each other). Looking at the augmented

locational data none of the representative scenes were either in Italy or in

Rome. Due to my curiosity I asked the user why these keywords were

chosen for the collection. The user told me that she recognized that some of

the images were of ruins at “Foro Romano”, which is an ancient site and

tourist attraction to which the user has visited, located in Rome, Italy. Since

the attraction in modern times are in ruins, along with that most of the other

images within this collection also are of ruins in other locations in the

world, the user draw the conclusion that several similar sites located in the

images also probably were from “Foro Romano”, hence she viewed these

keywords as vital aspects for the collection.

81

Looking at all unique metadata for the collection, including what is not part

of the collection summary, I found two images tagged with “Romano”, with

locational data Rome, Italy. This highlights the concerns situated when

using CBIR techniques, i.e. the problem of locating wrong data when

analysing the images. If humans are confused and interrupted when making

up their mind on a perception which is somewhat vague in memory, this is

obviously a concern for a CBIR system which lacks sense and natural

intelligence.

6.5.3. Experiment 3
Collection name Taken FROM a bridge

Number of images (geo-tagged) 279

number of contributors 124

Table 6-11: Collection 3 specifics

From experiment 3 all users provided 7 tags. For user 1‟s the collection

summary had all 7 as direct hits. For user 2, 6 are direct hits and 1 is viewed

as relevant. For user 3‟s the collection summary had 5 direct hits, 1 viewed

as relevant and 1 miss.

As can be seen from the collection the user‟s keywords are very consistent,

i.e. they are very similar. E.g. all users provide keywords for bridge

(keyword 1.1, 2.3, 3.1), railroad / rails (1.6, 2.6, 2.7, 3.6) and body of

water, i.e. water (1.2, 2.4), ocean/sea (1.3, 3.4) or river (2.2).

Canal (keyword 3.2) is viewed as relevant as the collection summary holds a

tremendous amount of relevant tags, to mention a few water, stream and

river are viewed as relevant in the collection summary. Other than that there

are not much to discuss other than the possible relations between the good

results in this experiment and the main features of this collection, which

together with experiment 5 will be discussed later on in section 6.5.5.

6.5.4. Experiment 4
Collection name NYC Chinatown

Number of images (geo-tagged) 380

number of contributors 127

Table 6-12: Collection 3 specifics

In test experiment 4 user 1 and user 2 have each come up with 6 tags, where

also for both the collection summary had 5 are direct hits and 1 miss. For

user 3‟s keywords the collection summary had 4 direct hits, 3 relevant and 2

misses.

The results from this experiment give a majority of exact direct hits and are

not much to discuss. Some aspects can be mentioned; the keyword culture

(1.3) can probably be argued for being relevant, but I feel that culture as for

nature (discussed in section 6.5.1) is such a complex and high level terms

that such a discussion could keep going on for ever.

82

Nevertheless, because of the complexity and the difficulties in locating what

is relevant and not for this term, it is viewed as a miss in relation with the

collection summary as it is not an exact, direct hit. The collection summary

is viewed as relevant for skyscrapers (3.3) since many similar structures are

highly weighted within it, e.g. tower and buildings. Also the collection

summary are viewed as relevant for fish (3.5) since it is not a direct

synonym, but rather relevant for seafood which is a part of the collection

summary. Finally, statues (3.7) are viewed as relevant since characters and

imaginary beings are highly weighted within the collection summary.

As can be seen from the collections summary of test collection 4, this

summary consists of a much bigger amount of data than the other collection

summaries viewed so far. One reason for this may be that in average all

images within this collection is provided with twenty user provided terms

each after all cleansing and removal has been performed, that is excluding

the auto-annotated metadata. Also the collection is included with many

different kinds of images, added by 127 different individual users.

6.5.5. Experiment 5
Collection name Geotagged: Delaware

Number of images (geo-tagged) 461

number of contributors 42

Table 6-13: Collection 5 specifics

The results gathered from test collection 5 are the best results given in the

evaluation of the system, i.e. the experiment with the highest direct hit score

compared to the users keywords. User 1 has provided 7 keywords for the

collection, where the collection summary has 6 direct hits and 1 is viewed as

relevant. User 2 has provided 6 keywords of which all 6 are direct hits in the

collection summary, and user 3 has provided 9 keywords where the

collection summary has 8 direct hits and 1 is viewed as relevant.

The high scores within this collection may be due to its consistencies in the

images that are part of the collection itself. With this I mean that the images

provided within it are of similar things and contexts, which make it easier

for users to describe their perception of it with keywords that are synonym

to the collection summary. To highlight this aspect, I would like to present a

comment expressed by one of the test users of the experiment:

 “I think that describing some of the image collections with a few

keywords is a bit difficult, as many of the collections include many groups of

different images. For this reason, I found it hard to decide which of these

groups that is dominating the image collection, and describing them

through keywords that represent my perception of them”.

One collection that in my opinion reflects the aspect highlighted by the test

user here, is the collection provided in the previous experiment, i.e.

experiment 4. In this collection a lot of quite different user provided terms

83

and hypernyms are located to be representative for the collection by the

summarizing system as the collection are provided with images with many

different kinds of subjects. This is also an element present in experiment 6

and 1. Obviously this may frustrate the users, being fed with an overflow of

different perceptions, making it difficult to filter them out in a reasonable

manner. For experiment 5, presented here, it seems to be the opposite, i.e.

that the image collection are consistent, hence it is easier for the collection

summary to present direct hits with the users keywords.

Another aspect that may be playing a role in the good results from this

experiment is that not only are the images consistent, but also the perception

of the users tagging them. It could be that for the amount of images in the

collection the amount of contributors tagging these images may be at a focal

point. In this collection there are 461 images contributed by 42 users on

Flickr. In the other collections there are some that has much fewer images

per user (e.g. experiment 2 and 4) and some with more images per user (e.g.

experiment 1 and 7), notably these gives variable results in comparison with

the keywords from the test users. It could be that having a reasonable

amount of images per contributor in the collection, gives a much more

mediated perception represented by the collection summary, and prevent

perceptions of individual users being too dominating. Also of course the

images must be consistent and without to many dominating famous and

known (by the user) attractions. In relation with these claims, the results

from this experiment, along with those from experiment 3, suggest that

having a reasonable amount of users under these circumstances, gives an

average of more direct hits. Of course this would have to be specifically

experimented on at a much larger scale to give any concrete evidence, but

can be viewed as a possibly outcome.

As discussed in the results of experiment 2, strings of terms meant to stand

together are usually separated in the collections that are used in the

experimentation for this project. This means that e.g. “big ben” and “old

houses” etc. are each separated into two words, i.e. “big” and “ben” and

“old” and “houses” in advance by Flickr. For this reason keywords

represented by a set of words are viewed as a direct hit if all terms within

the set are highly weighted and part of the collection summary.

In experiment 5 many of these situations are present. “Fire station”

(keyword 1.2) is viewed as a direct hit as both fire and truck is highly

weighted in the collection summary, similarly is the case for “fire truck”

(keyword 1.3, 2.1, 3.3), “dirt road” (keyword 2.4), “military vehicle”

(keyword 2.6) and “police car” (keyword 3.2). One example of a situation

that does not fall into this category is in the case of the keyword “train cart”

provided by user 3 (keyword 3.9). In this situation only train is part of the

collection summary and cart is not. Even though the most highly weighted

term here are train, it is not representative to view the keyword provided by

the user (i.e. “train cart”) as a direct hit as only one of the two terms is

present within the collection summary. Hence the collection summary are

only viewed as relevant for keyword 3.9.

84

6.5.6. Experiment 6
Collection name Geotagged mountain summits

Number of images (geo-tagged) 424

number of contributors 93

Table 6-14: Collection 6 specifics

From the 6
th

 experiment user 1 provided 11 keywords, where the collection

summary had 6 direct hits, 1 was relevant and 4 misses. User two provided

only two keywords where both 2 were direct hits, and user 3 provided 7

where 4 were direct hits, 1 relevant and 2 misses. Also in this collection the

test users had a majority of keywords that hold similarities. For instance all

users provided the keywords snow (keyword 1.2, 2.1 and 3.1) and mountain

(keyword 1.1, 2.2, and 3.2). Other similarities between the test user‟s

keywords are mountain range (keyword 1.6), nature (keyword 1.7), peak

(1.8), mountain climbing (1.11) and climbers (keyword 3.7), which

obviously holds similarities in the description of the collection. Also the

user provided terms from the collection summary are closely related in some

kind to these keywords, along with some contextual data that are not

properly cleansed as discussed in the introduction of this section 6.3.

Examples of similar terms found representative in the collection summary

which is not directly connected to the users keywords are, landscape, hike,

view, travel etc, which obviously holds similarities to the keywords

mentioned above.

The collection summary has three misses, i.e tree (1.9), forest (1.10 and 3.5)

and grass (3.6). I‟ve chosen to view these as not directly relevant since not

only are there no direct hits, but actually no obvious relations, such as other

woody plant or other outgrowths or plants.

Nevertheless in relation with the collections summary, it is not hard to see

that specific users get different perceptions of these aspects, perception is

subjective and different users notice different features as more important

than others. E.g. nature, view and panorama are features found

representative within the collection summary and are perceptions that most

probably are in relation with views that include perceptions such as forest,

grass and trees of some kind. Other than that these keywords (i.e. tree,

forest and grass) are close to the selection threshold looking at the unique

word list, but not above, hence not part of the summary. Anyhow even if

some relations can be seen between the keywords and the collection

summary, I cannot say these are close enough, viewed as a miss by the

collection summary.

85

6.5.7. Experiment 7
Collection name Geotagged : France

Number of images (geo-tagged) 537

number of contributors 11

Table 6-15: Collection 7 specifics

From the last and 7
th

 experiment user 1 provided 10 keywords, where the

collection summary has 6 direct hits, 2 are relevant and 2 is not relevant.

User two provided 7 keywords where the collection summary has 4 direct

hits, 2 are viewed as relevant and 1 miss. Finally, user 3 provided 8 where

the collection summary has 4 direct hit, 2 are relevant and 2 misses.

From the last experiment there is not much that not already has been

highlighted and discussed in the previous experiments, but one element that

are interesting, is that obviously a famous attraction is part of this collection.

All users have used the keyword Eiffel Tower (keyword 1.1, 2.2, 3.1) in one

of the first two keywords of their keywords list. The collection summary

does not include the tag Eiffel, but only the tag tower; hence the collection

summary is only relevant for the keyword “Eiffel Tower”. Looking at the

unique term list produced by the system Eiffel are provided as a tag in

several images, but not so frequently that it is viewed as representative for

the image collection. What is interesting here is that the Eiffel Tower is so

highly famous that all users could identify it in the image collection, but

most probably this gave such a distinguishing impression for the users that

they just could not get it out of their mind. As a result the famous, and

highly noticeable attraction located in some of the images gave the users

such a distinguished impression that they viewed it as highly representative

for the collection, which is different to the opinion of the summarizing

system.

In my opinion what can be learned from this is that the users can easily get

distracted when viewing something that is known to the individuals. This

leaves the user with a subjective perception which influences their

judgement. What is positive in this specific situation is that some of the

users observably also could put the images on the map, i.e. Paris, France.

Two of the users have provided the keyword Paris (keywords 1.4 and 2.1)

and one of the users provided the keyword France (keyword 1.3). Most

probably these locational keywords were provided by the influence of the

recognized famous attraction, i.e. Eiffel tower. Both France and Paris are

highly representative in the collection summary, France are recognized by

the locational metadata in the collection summary in 99 per cent of the

images, and Paris in approximately 40 per cent of the images.

86

6.6. Hit distribution
Below is the hit distributions of the classifications of the collection

summary in relation with the keywords provided by the test users are

presented, i.e. direct hit, relevant, miss. In Figure 6-1 hit distributions

compared to the results from the individual users in each experiment are

presented. In Figure 6-2 the average scores for all keywords provided by the

test users in each experiment is presented, before finally, the overall average

for all users in all experiments is presented in Figure 6-3. The hit scores

varies to some extent for the individual users, nevertheless the overall hit

rate is quite good. The average hit score in all experiments are as can be

seen in table 6.5 is 69 per cent; overall relevance score is 14 per cent while

overall score for keywords viewed as misses is only 17 per cent.

Figure 6-1: Hit rate all users, all experiments

Figure 6-2: Average of hit distribution for all three users in the 7 different experiments

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7

Experiment

Average all users

direct hit Relevant Not relevant

87

Figure 6-3: Average distribution of all users in all experiments

69 %

14 %

17 %

Average distribution all experiments

Direct hit

Relevant

miss

88

89

Chapter 7

7. Future work
In this chapter I will discuss some future work that is relevant for the

project.

The system developed has been validated using different collaborative

tagged image collections from Flickr. The results produced from these have

shown to be a descent support for human‟s natural perception with an

average of 69 % direct hit rate and 14 % relevant hit rate from all test

experiments. An interesting enhancement of the system would be to take

advantage of the images located on Flickr, using the available data as a

training set for automatically annotating other images e.g. located in a

private image collection. The Flickr API supports retrieval of images within

a defined radius of a specific coordinate, these images could be analysed,

representative tags located and automatically annotated to other images

taken at the same location. A solution to this has been developed by

Evertsen [48]. Inducing similar functionality as Evertesen‟s solution would

be interesting to test in the system. This would at least be highly relevant for

privately, untagged collections of images. Other interesting elements related

with the retrieval system are reducing the search space based on scenarios

and contextual aspects such as location and time depending on the

contextual need for the user of the system.

The solution has not been tested with functionality for searching and

retrieving images based on user queries. This makes it difficult to validate

the usefulness of the contextual data that the images within the collection

are auto-annotated with. The results from keyword 1.5, 1.7, 3.9 etc in

section 6.5.1 (experiment 1), suggests that also human perception can be

supported by the contextual data gathered from the images in the collection.

Building a retrieval system, validating results returned for specific

contextual search queries are desired, so that these constraints can be

strengthened. This could be an option in a future project.

As discussed in chapter 4, the manually added tags from the image

collections include potentially user misspelled words.. This can be

misspellings, expressions, abbreviations or code words related to spoken

language or strings of words that has not been separated at the time of

insertion. An interesting expansion of this project could be to translate such

occurrences by using an advanced language processing algorithm. This

could increase the level of understanding of the metadata connected with the

images and also has potential for resulting in a more meaningful collection

summary.

Another interesting enhancement of the system is finding a more mature

way of handling term selection. The developed system is limited to weight

metadata by calculating term frequencies. In stable and defined

environments the method adjusts the term frequency using the inverse

document frequency. The features are then selected using a selection

threshold varying on what is most natural for the specific metadata type.

90

This approach favours the most frequent terms, and cannot be said to be an

advanced approach to term selection. Although categorization of terms

raises the amount of important features included in the collection summary,

a more mature approach to term selection are desired for the system as a

future enhancement.

As discussed in chapter 2 several advanced algorithms are used within the

field of information theory, as Principal Component Analysis (PCA) and

sematic accumulating algorithms such as Singular Value Decomposition

(SVD) and Latent Semantic Analysis / Indexing (LSA / LSI). These

techniques are developed for analysing large amounts of textual documents.

Using such techniques could help in carefully selecting features that are

tailored for the image collections, taking into consideration more

parameters. Interesting parameters would be to take into consideration the

different contributors or users on Flickr, looking at user patterns,

establishing machine learning techniques and user relevance feedback.

CBIR techniques, also discussed in chapter 2, have not been proven to be a

stable solution; nevertheless they have shown great potential within image

retrieval. Augmenting the images with additional metadata, or just

strengthening available metadata using CBIR techniques would be of

interest in an expansion of the project. Using advanced CBIR techniques

would help in closing the semantic gap and provide deeper and more

specific collection summaries. CBIR techniques are on the other side

demanding for use of machine resources. Nevertheless, a potential

enhancement for the system would be to test with variant advanced CBIR

techniques.

The system developed is tailored the experiments performed in the testing

and evaluation of the system as presented in this thesis. The system tested is

of limited use. No built in connectors to private collections is implemented

and no advanced and user friendly graphical interface is developed for the

system. Built in connectors to private collections have to include

functionality for reading the EXIF header of the images, as this is the most

highly used format for connecting metadata with images. Functionality that

supports easy accumulation of new image collections are also desired, either

from the internet or private computers. Together these functionalities are

highly desired as future enhancements of the system.

The system developed has been focused on analysing image collections and

producing a collection summary represented by the most representative

terms of the collection. As an effect of this, the system has not been fully

optimized in terms of execution time. It should be taken into consideration

for all methods used to enhance or optimize execution time. Enhancements

of this kind would include solutions for more efficient auto-annotation

which is related to the restrictions of the locational and atmospheric

conditions that the images are augmented with. Solutions will include

acquiring a premium API key from Google and using alternative weather

data providers, since Wunderground only supports pure HTML returns. A

91

solution for the latter would be getting access to the API that should be

available as a payable service
28

 by the service provider AccuWeather
29

.

Other improvements in terms of execution time, is optimizing the inverse

document frequency calculation. A great amount of data is held in memory

at execution time, the majority in array lists. These lists are not indexed

which means that lookups on these exponentially raises in terms of time the

bigger the collections being analysed are. Nevertheless, the collections used

in the evaluation of the system are so small that collections summaries are

produced in an average of around 11.5 seconds, hence indexing the array

lists of metadata has not been prioritized when testing the system.

Optimization in terms of indexing includes more efficient creation of unique

term files, more efficient cleansing of data and more efficient allocation of

term categories (hypernyms). All of these relates to acquiring efficient

indexing techniques. Notably the data are not fed into the database until the

collection summaries has been fully produced. The database is though

optimized for updates and insertions performed by the summarizing system.

28

 http://www.programmableweb.com/api/accuweather
29

 http://www.accuweather.com/

http://www.programmableweb.com/api/accuweather
http://www.accuweather.com/

92

93

Chapter 8

8. Conclusion
In this thesis a system that annotate, convert data, categorized manually

added terms, locates representative metadata and creates a summarized

description for the collection that can be used for efficient image retrieval

has been developed and tested.

The evaluation of the system is carried out comparing the resulting

collection summaries to keywords added by the test users from the

experiment. About 83 % of the of the keywords provided for the image

collections by the test users are captured in the collection summaries, either

viewed as a direct hits or relevant hits. The selection threshold chosen

seems like a sufficient choice in relation with the size of the collection

summary and the number of hits located. The evaluation clearly concludes

that the collection summary captures the perception of the users.

The collection summaries increase in cases where the image collections are

included with a higher number of terms per user, or if the collection

includes several groups of similar images. Nevertheless, by inspections

bigger collections (up to 7500 images) does not provide any significantly

longer summaries, which indicates that this approach will not grow out of

proportions as larger image collections are included within it.

As expected the majority of the direct and relevance hits are captured by the

user provided terms, as these are most natural to human perception.

Nevertheless, the evaluation shows that also some of the hits are captured by

the contextual metadata terms, e.g. hot, summer, mostly cloudy etc. The

contextual metadata terms are the most useful for requesting contextual

queries to a retrieval system. However, as suggested by the evaluation, this

metadata also supports humans‟ perception, which includes weather specific

terms, locational terms and the high level periodic (seasonal) terms.

As discussed in section 2.1.1 humans tend to associate images with more

high level terms than low level terms. The evaluation suggests that this

claim is two sided. The users has provided low level keywords such as tree,

ant, butterfly while other provide more high level terms such as forest,

nature, bug. For a high level term such as nature it can be difficult to claim

that the collection summary is relevant if it is not a direct hit. By inspection,

in most such situations the collection summary includes lower level terms

that can be viewed as relevant. This indicates that the collection summary

provides more descriptive terms for the image collection, which is positive.

Recall from section 4.7.6, that the system group terms into higher level

representations, referred to by WordNet as a Hypernym. Grouping user

94

provided terms into hypernyms shows great support for lower level terms

provided by the test users. Hypernyms both provides a higher level

description of common terms, through the hypernym names, as well as

keeping track of the lower level terms grouped together. Notably, a great

amount of the direct hits of the low level terms provided by the test users are

recognized by the representative hypernym members from the collection

summary.

Some of the misses observed in the evaluation of the system indicates that

users tend to get confused when recognizing well known attractions in the

image collections. In such situations the users tend to recognize the

attraction as representative for the collection even if only present in a few of

the images, hence not recognized as a representative by the summarizing

system.

In favour of the collection summary, what has shown positive in such

situations is that also the locational terms comes into use. The evaluation

has shown by inspection that test users have localized famous attractions

down to city and country level. This is positive in collections where images

with less distinguishing subjects are taken in the same area. Also this

suggests that the collection summary is much more trustworthy than

individual user‟s perception, where the users can easily lose focus while the

collection summary allocates representatives without a subjective meaning.

The goal was to produce collection summaries for image collection using

available metadata. This included making them available for more efficient

image retrieval and supporting selection of the most relevant image

collections based on the collection summaries during an image search. The

system developed and evaluated in this thesis suggests that the collection

summaries produced captures the most important aspects (terms) of the

image collections analysed. At the same time the collection summary has a

significantly reduced search space and is more semantically meaningful.

The latter is a consequence of augmenting the images with additional

metadata and grouping terms into hierarchical representations. The work

done indicates that using this approach considerably increases the

effectiveness of an image search, both in terms of time and resources, and at

the same time returning more relevant images. Of course, producing

collection summaries is of no use if it does not give good and trustworthy

results. However, the developed system and the evaluation carried out

suggests that the approach is successful, although there might exist systems

that produce similar or better results.

95

9. References

[1] K. S. Candan and M. L. Sapino, Data Management for Multimedia

Retrieval: Cambridge Univ Pr, 2010.

[2] Y. Rui, et al., "Image Retrieval: Current Techniques, Promising

Directions, and Open Issues," Journal of Visual Communication and

Image Representation, vol. 10, pp. 39-62, 1999.

[3] O. Lassila, "Web metadata: a matter of semantics," Internet

Computing, IEEE, vol. 2, pp. 30-37, 1998.

[4] R. Datta, et al., "Image retrieval: Ideas, influences, and trends of the

new age," ACM Computing Surveys (CSUR), vol. 40, p. 5, 2008.

[5] J. T. Pollock and R. Hodgson, Adaptive information: Improving

business through semantic interoperability, grid computing, and

enterprise integration: Wiley-Blackwell, 2004.

[6] M. Davis, et al., "From context to content: leveraging context to

infer media metadata," 2004, pp. 188-195.

[7] N. O'Hare, et al., "Combination of content analysis and context

features for digital photograph retrieval," 2005, pp. 323-328.

[8] J. Jeon, et al., "Automatic image annotation and retrieval using

cross-media relevance models," 2003, pp. 119-126.

[9] A. J. Cheng, et al., "GPS, compass, or camera?: investigating

effective mobile sensors for automatic search-based image

annotation," 2010, pp. 815-818.

[10] A. K. Dey, "Providing architectural support for building context-

aware applications," Citeseer, 2000.

[11] M. Naaman, et al., "From where to what: Metadata sharing for

digital photographs with geographic coordinates," On The Move to

Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, pp.

196-217, 2003.

[12] R. Sarvas, et al., "Metadata creation system for mobile images,"

2004, pp. 36-48.

[13] P. Enser, "The evolution of visual information retrieval," Journal of

Information Science, vol. 34, p. 531, 2008.

[14] S. A. Golder and B. A. Huberman, "Usage patterns of collaborative

tagging systems," Journal of Information Science, vol. 32, p. 198,

2006.

[15] M. Davis, et al., "MMM2: mobile media metadata for media

sharing," 2005, pp. 1335-1338.

[16] S. P. Mathew and P. Samuel, "A novel Image Retrieval System

using an effective region based shape representation technique,"

International Journal of Image Processing (IJIP), vol. 4, p. 509,

2010.

[17] J. Cui, et al., "Real time google and live image search re-ranking,"

2008, pp. 729-732.

[18] T.-T. Pham, et al., "Latent semantic fusion model for image retrieval

and annotation," presented at the Proceedings of the sixteenth ACM

conference on Conference on information and knowledge

management, Lisbon, Portugal, 2007.

96

[19] A. Vailaya, et al., "Image classification for content-based indexing,"

Image Processing, IEEE Transactions on, vol. 10, pp. 117-130,

2001.

[20] H. T. Pu, "An analysis of failed queries for web image retrieval,"

Journal of Information Science, vol. 34, p. 275, 2008.

[21] S. Deb and Y. Zhang, "An overview of content-based image retrieval

techniques," in Advanced Information Networking and Applications,

AINA. 18th International Conference, 2004, pp. 59-64 Vol. 1.

[22] A. Hughes, et al., "Text or pictures? An eyetracking study of how

people view digital video surrogates," Image and Video Retrieval,

pp. 1-6, 2003.

[23] Y. Choi and E. M. Rasmussen, "Users' relevance criteria in image

retrieval in American history," Information Processing &

Management, vol. 38, pp. 695-726, 2002.

[24] I. Jolliffe, "Principal component analysis," Encyclopedia of Statistics

in Behavioral Science, vol. 3, pp. 1580-1584, 2002.

[25] C. D. Manning, et al., Introduction to information retrieval vol. 1:

Cambridge University Press Cambridge, UK, 2008.

[26] (2003). Exchangeable image file format for digital still cameras:

Exif Version 2.2 (2.2 ed.). Available: http://www.exif.org/Exif2-

2.PDF

[27] G. D. Abowd and E. D. Mynatt, "Charting past, present, and future

research in ubiquitous computing," ACM Transactions on Computer-

Human Interaction (TOCHI), vol. 7, pp. 29-58, 2000.

[28] M. Weiser, "The computer for the 21st century," Scientific

American, vol. 265, pp. 94-104, 1991.

[29] S. Loke, Context-aware pervasive systems: architectures for a new

breed of applications: Auerbach Pub, 2006.

[30] D. L. Hall and J. Llinas, Handbook of multisensor data fusion: CRC,

2001.

[31] B. P. Clarkson, "Life Patterns: structure from wearable sensors,"

2003.

[32] D. Nicklas and B. Mitschang, "The nexus augmented world model:

An extensible approach for mobile, spatially-aware applications,"

2001.

[33] D. Frohlich, et al., "Requirements for photoware," presented at the

Proceedings of the 2002 ACM conference on Computer supported

cooperative work, New Orleans, Louisiana, USA, 2002.

[34] K. Rodden and K. R. Wood, "How do people manage their digital

photographs?," presented at the Proceedings of the SIGCHI

conference on Human factors in computing systems, Ft. Lauderdale,

Florida, USA, 2003.

[35] A. Spink, et al., "Use of query reformulation and relevance feedback

by Excite users," Internet research, vol. 10, pp. 317-328, 2000.

[36] J. Brank, et al., "A survey of ontology evaluation techniques," 2005,

pp. 166–170.

[37] C. Ming-Syan, et al., "Data mining: an overview from a database

perspective," Knowledge and Data Engineering, IEEE Transactions

on, vol. 8, pp. 866-883, 1996.

http://www.exif.org/Exif2-2.PDF
http://www.exif.org/Exif2-2.PDF

97

[38] M. Kifer, et al., Database Systems: An Application-Oriented

Approach, second edition, 2 ed.: Addison Wesley Publishing

Company, 2005.

[39] E. Codd, "A relational model of data for large shared data banks,"

Communications of the ACM, vol. 13, pp. 377-387, 1970.

[40] M. Naaman, et al., "Context data in geo-referenced digital photo

collections," 2004, pp. 196-203.

[41] K. Toyama, et al., "Geographic location tags on digital images,"

2003, pp. 156-166.

[42] N. O'Hare, et al., "Using text search for personal photo collections

with the MediAssist system," 2007, pp. 880-881.

[43] E. Chang, et al., "CBSA: content-based soft annotation for

multimodal image retrieval using Bayes point machines," Circuits

and Systems for Video Technology, IEEE Transactions on, vol. 13,

pp. 26-38, 2003.

[44] S. Feng, et al., "Multiple bernoulli relevance models for image and

video annotation," 2004.

[45] L. Kennedy, et al., "How flickr helps us make sense of the world:

context and content in community-contributed media collections,"

2007, pp. 631-640.

[46] I. Simon, et al., "Scene summarization for online image collections,"

2007.

[47] D. Oxford. (2011, 19.05.2011). Oxford dictionary. Available:

http://oxforddictionaries.com/view/entry/m_en_gb0702250#m_en_g

b0702250

[48] M. H. Evertsen, "Automatic Image Tagging based on Context

Information," Master Thesis, Computer Science, University of

tromsø, Tromsø, 2010.

http://oxforddictionaries.com/view/entry/m_en_gb0702250#m_en_gb0702250
http://oxforddictionaries.com/view/entry/m_en_gb0702250#m_en_gb0702250

98

99

Appendix A: List of image collections

In this appendix the image collections used in the evaluation of the system

are listed. The image collections used are gathered from Flickr groups.

OBS! Notably, the image metadata used in the evaluation was gathered by

the system 24.05.2011. This means that some of the groups may have

different amounts of images compared to the evaluation. Using the Flickr

API it is possible to specify the update date of images gathered, e.g.

specifying that you do not want images added after 24.05.2011, but this is

not possible when viewing images online.

The images in the Flickr groups used can be viewed at the following

addresses:

 Experiment 1: http://www.flickr.com/groups/geotag-malaysia/pool/

 Experiment 2: http://www.flickr.com/groups/ruinas/pool/

 Experiment 3: http://www.flickr.com/groups/takenfromabridge/pool/

 Experiment 4: http://www.flickr.com/groups/612535@N22/pool/

 Experiment 5: http://www.flickr.com/groups/geotagdel/pool/

 Experiment 6: http://www.flickr.com/groups/mountainsummit/pool/

 Experiment 7: http://www.flickr.com/groups/geotagged-france/pool/

The images are not owned by Flickr but by the users on Flickr.

Nevertheless, developers must follow the creative commons
30

 license

unless otherwise is agreed upon by the developers and individual users on

Flickr. Cotion

30

 www.flickr.com/creativecommons

http://www.flickr.com/groups/geotag-malaysia/pool/
http://www.flickr.com/groups/ruinas/pool/
http://www.flickr.com/groups/takenfromabridge/pool/
http://www.flickr.com/groups/612535@N22/pool/
http://www.flickr.com/groups/geotagdel/pool/
http://www.flickr.com/groups/mountainsummit/pool/
http://www.flickr.com/groups/geotagged-france/pool/
http://www.flickr.com/creativecommons

100

101

Appendix B: Implementation

B-1: Gather collections from Flickr (Menu)

Notably, menu, API keyw and large print procedures are removed from

appendix.

-*- coding: cp1252 -*-

import os

from time import strftime

import time

import sys

from pprint import pprint

from elementtree.ElementTree import Element, SubElement, ElementTree

import flickrapi

import datetime

from datetime import date

global api_key

global fullDocName

import codecs

import re

Repository files

import findRepresentatives

import augmentLocation

import wunderground

import converter

import cleanser

import uniqueTermHandler as utHandler

import py_compile

class tagForm:

 def __init__(self):

 self.type = ''

 self.tag = ''

 self.count = 0

 self.tf=0

 self.idf = 0

 self.categories = []

 self.wnLookupCount = 0

 self.users = []

 self.imageIds = []

 self.userCount = 0

Used to check if group name (or other search criterias) matches the

search query exactly

def findExactGroupName(groups, inName):

 query = re.sub(r'"','',inName)

 # for all groups returned

 for group in groups[0]:

 # If group name is exactly alike search 'query', get images for

 # group

 if group.attrib['name']==query:

 return group, True

 else:

 continue;

 return group, False

102

Prepare image collection data before finding representative "tags"

1. Separate tags into location, tags, title and date tags array

2. Sort all arrays on tag.count

3. Call findrepresentatives analyze function

def findBestCandidates(docPath, numOfImages, collectionName):

 uniqueLoc, uniqueDate, uniqueTag, uniqueTitle, uniqueWeather, uniqueWind, uniqueTemp =

[],[],[],[],[],[],[]

 # Get uniqueTerms from Unique term handler

 uniqueTags = utHandler.returnUniqueTags()

 # 1. Separate tags into location, tags, title and date tags array

 for i in uniqueTags:

 if i.type == 'location':

 uniqueLoc.append(i)

 elif i.type == 'tags':

 uniqueTag.append(i)

 elif i.type == 'title':

 uniqueTitle.append(i)

 elif (i.type == 'weekday') or (i.type == 'season') or (i.type == 'dateHuman')

or (i.type == 'month'):

 uniqueDate.append(i)

 elif (i.type == 'weather-cond'):

 uniqueWeather.append(i)

 elif (i.type == 'weather-wind'):

 uniqueWind.append(i)

 elif (i.type == 'weather-temp'):

 uniqueTemp.append(i)

 else:

 print 'DEBUG findBestCandidates()!!!'+ i.type

 # 2. Sort all arrays on tag.count

 temp = sorted(uniqueLoc, key=lambda tag: tag.count, reverse=True)

 uniqueLoc = temp

 temp = sorted(uniqueTag, key=lambda tag: tag.count, reverse=True)

 uniqueTag = temp

 temp = sorted(uniqueTitle, key=lambda tag: tag.count, reverse=True)

 uniqueTitle = temp

 temp = sorted(uniqueDate, key=lambda tag: tag.count, reverse=True)

 uniqueDate = temp

 temp = sorted(uniqueWeather, key=lambda tag: tag.count, reverse=True)

 uniqueWeather = temp

 temp = sorted(uniqueWind, key=lambda tag: tag.count, reverse=True)

 uniqueWind = temp

 temp = sorted(uniqueTemp, key=lambda tag: tag.count, reverse=True)

 uniqueTemp = temp

 # 3. Call findrepresentatives analyze function

 findRepresentatives.findReps(uniqueLoc, uniqueDate,uniqueTag,

 uniqueTitle,uniqueWeather, uniqueWind,

 uniqueTemp, docPath , numOfImages,

 collectionName)

 return 0

Analyze collection

Finds unique terms and count freqencies for them

def analyzeCollection(pages, locSet, dateSet, weatherSet):

 i=0;

 # Browse through all pages of images from the collection

 # collected from flickr in main()

 for page in pages:

 # For all images in page

 print 'Currently analyzing page: '+page.attrib['page']+' of ' +page.attrib['pages']

 for image in page:

 i+=1

 # If Location tag set

 if locSet == True:

 # Gather location from location augmenter, returns country, region city and street

103

 location = augmentLocation.gatherLocation(float(image.attrib['latitude'])

 ,float(image.attrib['longitude']))

 locations = location.split(', ')

 image.attrib['location-augmented'] = location

 if dateSet == True:

 # Convert date to human readable (e.g. "2008 january")

 humanReadable = converter.convertDateToHumanReadable(image.attrib['datetaken'])

 image.attrib['dateHuman-augmented'] = humanReadable[0]

 # Add month of year picture taken as human readable

 humanRdMonth = []

 humanRdMonth.append(humanReadable[0].split(' ')[1])

 image.attrib['month-augmented'] = humanRdMonth[0]

 # Get weekday from date, return human readable

 # weekday (monday, tuesday etc)

 weekday = converter.findWeekday(image.attrib['datetaken'])

 image.attrib['weekday-augmented'] = weekday[0]

 # Get season of year, i.e. summer, winter etc

 season = converter.findSeason(image.attrib['datetaken'].split(' ')[0])

 image.attrib['season-augmented'] = season[0]

 if weatherSet == True:

 wInfo = wunderground.getWeatherInfo(image.attrib['latitude'],

 image.attrib['longitude'],

 image.attrib['datetaken'])

 print wInfo

 if wInfo == 'exit':

 # Not found

 image.attrib['weather'] = "empty"

 else:

 image.attrib['weather'] = wInfo.lower()

 # Get all single words from 'title' field of image and insert

 # if unique

 tmp = image.attrib['title'].lower()

 wordsTitle = tmp.split(' ')

 # Get all single words from 'tags' field of image and insert

 # if unique

 tmp = image.attrib['tags'].lower()

 wordsTags = tmp.split(' ')

 if locSet == True:

 # Remove metadata from 'title' and 'tags' that are

 # allready found using locational info to prevent

 # duplicate frequncy count

 for loc in locations:

 if loc in wordsTitle:

 wordsTitle.remove(loc)

 if loc in wordsTags:

 wordsTags.remove(loc)

 # Remove weekday from 'Title' and 'Tags'

 if weekday[0] in wordsTitle:

 wordsTitle.remove(weekday[0])

 if weekday[0] in wordsTags:

 wordsTags.remove(weekday[0])

 # Remove month from 'Title' and 'Tags'

 if humanRdMonth[0] in wordsTitle:

 wordsTitle.remove(humanRdMonth[0])

 if humanRdMonth[0] in wordsTags:

 wordsTags.remove(humanRdMonth[0])

 # Remove season from 'Title' and 'Tags'

 if season[0] in wordsTitle:

 wordsTitle.remove(season[0])

 if season[0] in wordsTags:

 wordsTags.remove(season[0])

 # Sleep to prevent gmaps to overflow with convert queries

 time.sleep(0.10)

104

 return pages

Store xml page (elementtree) from flickr to file

args:

nameOfFile - Name of file to store to (remember path)

page - xml data to store:

example: page = flickr.photos_search(group_id=nsid, has_geo=True,

per_page=50, page=1, extras='geo, tags, date_taken,

owner_name, date_upload')

def storePageToFile(nameOfFile, pages):

 fileName = utHandler.changeCarBeforePrintOrWrite(nameOfFile)

 try:

 ElementTree(pages).write(re.sub(r'"','',fileName))

 return True

 except IOError:

 print 'OBS: '+ IOError.args

 return False

Get page from fileName to store it into elementTree

returns True and page elementTree if success

def readPageFromFile(fileName):

 fileName = utHandler.changeCarBeforePrintOrWrite(fileName)

 try:

 tree = ElementTree(file=re.sub(r'"','',fileName))

 pageElems = tree.getroot()

 return True, pageElems

 except IOError:

 print 'OBS: '+ IOError.args

 return False,

Get api key from file

def getApiKeyFromFile(keyName):

 f = codecs.open("./API_KEYS.txt", mode='r')

 retData="blank"

 for i in f:

 line = i.strip('\n')

 if len(line)!=0:

 data = line.split('=')

 if len(data)==2:

 if(data[0]==keyName) and (len(data[1])>1):

 f.close()

 return data[1].strip('"')

 print "Could Not find given API key: "+keyName

 print "Check that key correctly inserted in API_KEYS.txt"

 f.close()

 return "missing"

Locate given group from Flickr and gather all image metadata

def main(query, searchType):

 # get api key from file

 flickr_api_key = getApiKeyFromFile("Flickr_API_key")

 if (flickr_api_key=="missing"):

 return False

 # Create instance of the flickrapi client

 flickr = flickrapi.FlickrAPI(flickr_api_key, cache=True)

 groups = flickr.groups_search(text=query)

 group, found = findExactGroupName(groups, query)

 if found == False:

 print 'Sorry could not find any groups according to search query: '+query

 print 'Please try again'

 exit()

 # Collect nsid for group, required to get images using image_search

 nsid = group.attrib['nsid']

 # Get images from group

 # Variables set:

105

 # * Get images for group by nsid

 # * has_geo -> only return images that are geo tagged

 # * per_page -> images returned per page,

 # * page -> which page to return images from

 # getAll used to insert all pages in one elementtree

 if searchType == 'group':

 allPages = flickr.photos_search(group_id=nsid, has_geo=True, per_page=50, page=1,

 extras='geo, tags, date_taken, owner_name, date_upload,

description')

 print allPages[0].items()

 print

 print 'numbers returned per page: ' + str(allPages[0].__len__())

 print 'number of pages: '+ allPages[0].attrib['pages']

 print 'Total number of images: '+ allPages[0].attrib['total']

 print int(allPages[0].attrib['pages'])

 i=0

 pageCount = 1;

 pageTot = int(allPages[0].attrib['pages'])

 #Insert first page of images

 # clear, get ready to insert all pages

 allPages.clear()

 while pageCount <= pageTot:

 photos = flickr.photos_search(group_id=nsid, has_geo=True, per_page=50, page=pageCount,

 extras='geo, tags, date_taken,

owner_name,description,date_upload')

 print photos.items()

 # insert page into getAll (element tree)

 allPages.append(photos[0])

 print '--'

 print allPages[pageCount-1].items()

 print pageCount

 print '--'

 pageCount += 1;

 print 'finished collection, print to file'

 print

 print '--'

 storePageToFile(fullDocName, allPages)

if __name__=="__main__":

 utHandler.initUniqueTags()

 path = 'c:/Users/David/Documents/Skole/Master oppgave/Program/Collection Data/'

 menu = MenuChoices()

 # Menu removed from appendix

 # …….

106

B-2: Augmentation

This sub appendix holds two functionalities:

B-2.1: Augmentation of location data

B-2.2: Augmentation of weather data

B-2.1: Augmentation of locational data

LOCATION AUGMENTER

from googlemaps import GoogleMaps

#repository files

Import flickr_api_comm as comm

def gatherLocation(latitude, longitude):

 # Get API key

 gMaps_api_key= comm.getApiKeyFromFile("GMaps_API_key")

 if (gMaps_api_key=="missing"):

 return False

 gmaps = GoogleMaps(gMaps_api_key)

 # Get location data from lat, long using google maps API

 address = gmaps.latlng_to_address(latitude, longitude)

 time.sleep(0.10)

 # Get geographic information using full address, 'address'

 # will only be used if location information not found in

 # placemark

 try:

 ret = gmaps.geocode(address.encode('utf8'))

 placemark = ret['Placemark'][0]

 except:

 placemark=''

 if len(placemark) > 0:

 addresses = address.split(', ')

 try:

 region = 'region:'+

placemark['AddressDetails']['Country']['AdministrativeArea']

 ['AdministrativeAreaName'].lower()

 except:

 region = 'region:'

 try:

 city = 'city:'+

placemark['AddressDetails']['Country']['AdministrativeArea']['Locality']

 ['LocalityName'].lower()

 except:

 if len(addresses) > 2:

 city = 'city:'+addresses[1].lower()

 else:

 city = 'city:'

 try:

 street = 'street:'+

placemark['AddressDetails']['Country']['AdministrativeArea']

 ['Locality']['Thoroughfare']['ThoroughfareName'].lower()

 except:

 if len(addresses) > 1:

 street = 'street:'+addresses[0].lower()

 else:

107

 street = 'street:'

 addresses.reverse() # reverse list

 if len(addresses) >= 1:

 country = 'country:'+addresses[0].lower()

 else:

 country = 'country:'

 location = (street +', '

 + city +', '

 + region +', '+country)

 print (""+ country +

 ', '+region+

 ', '+ city+

 ', ' + street)

 else:

 print 'Adress NOT Found for coordinates'

 location = address

 return location

108

B-2.2: Augmentation of weather data

Augmenter – WunderGround

import urllib2

import urllib

from BeautifulSoup import BeautifulSoup

import datetime

import socket

OBS: MAYBE PUT THIS FUNCTION INTO "CONVERTER.PY"?

Convert 12 hour clock to 24 hour clock

Takes hour (AM/PM) as input and returns hour 24 hour format

def to24(hour12, isPm):

 return (hour12 % 12) + (12 if isPm else 0)

Get weather information given location (latitide, longitude) and

date/ time. Format has to be YYYY-MM-DD HH:MM:SS

Function does the following

1. Find year, month, day, hour, minute and second from argument

'lookupdate'

2. Find closest weather station and its station id using coordinate

3. Using the station id found in (2.) get daily history according to

date (lookUpDateTime)

4. Find all paragraphs (p) , table heads (theads) and table bodies

(tbody) from daily history html code

5. Check if daily history found

6. If found(5.), From last tbody (reversed earlier) get weather

information from table elements (td)(i.e last table lists weather

info), also clean data

7. Find table element that matches lookup date best, using time of day from weather table element

8. Return best match

def getWeatherInfo(lat, lon, lookUpDateTime):

 # 1. Find year, month, day, hour, minute and second from argument

 # 'lookupdate'

 inTimeSplit = lookUpDateTime.split(' ')

 year = int(inTimeSplit[0].split('-')[0])

 month = int(inTimeSplit[0].split('-')[1])

 day = int(inTimeSplit[0].split('-')[2])

 hour = int(inTimeSplit[1].split(':')[0])

 minute = int(inTimeSplit[1].split(':')[1])

 second = int(inTimeSplit[1].split(':')[2])

 if ((year==0) or (month == 0) or (day== 0)):

 return 'empty'

 # 2. Find closest weather station and its station id using coordinate

 # Try to connect to api a maximum of three times before preceeding

 connFail = 0

 url ="http://wunderground.com/auto/wui/geo/WXCurrentObXML/index.xml?query="+lat+","+lon

 while(1):

 try:

 page = urllib.urlopen(url)

 break

 # Catch URL ERRors

 except urllib2.URLError:

 connFail +=1

 if connFail >= 3:

 print 'Failed three times: exit'

 return 'exit'

 else:

 print "Failed contacting: "+url

 print 'Tries to reconnect: Attempt: '+str(connFail)

 # Catch connection timeout

 except socket.timeout:

 connFail +=1

 if connFail >= 3:

 print 'Failed three times: exit'

 return 'exit'

 else:

 print "Failed contacting: "+url

109

 print 'Tries to reconnect: Attempt: '+str(connFail)

 # Catch unknown failures

 except:

 connFail +=1

 if connFail >= 3:

 print 'Failed three times: exit'

 return 'exit'

 else:

 print "Failed contacting: "+url

 print 'Tries to reconnect: Attempt: '+str(connFail)

 soup = BeautifulSoup(page)

 # Get station Id from returned xml

 stationId = soup.find('station_id').text.encode('utf8')

 print "Station id located: " + stationId

 # 3. Using the station id found in (2.) get daily history using lookup date

 # Connect a maximum of three times if timed out before preceding to next image

 connFail = 0

 url = "http://www.wunderground.com/history/airport/"+stationId+"/"+str(year)+"/"+str(month)+"/"+str(day)+

"/DailyHistory.html"

 while(1):

 try:

 req = urllib2.Request(url)

 page = urllib2.urlopen(req)

 break

 except urllib2.URLError:

 connFail +=1

 if connFail >= 3:

 print 'Failed three times: exit'

 return 'exit'

 else:

 print "Failed contacting: "+url

 print 'Tries to reconnect: Attempt: '+str(connFail)

 except socket.timeout:

 connFail +=1

 if connFail >= 3:

 print 'Failed three times: exit'

 return 'exit'

 else:

 print "Failed contacting: "+url

 print 'Tries to reconnect: Attempt: '+str(connFail)

 except:

 connFail +=1

 if connFail >= 3:

 print 'Failed three times: exit'

 return 'exit'

 else:

 print "Failed contacting: "+url

 print 'Tries to reconnect: Attempt: '+str(connFail)

 print url

 # 4. Find all paragraphs (p), table heads (thead) and table bodies

 # (tbody) from daily history's html code

 soup = BeautifulSoup(page)

 Ps = soup.findAll('p')

 theads = soup.findAll('thead')

 tbodys = soup.findAll('tbody')

 if len(tbodys) ==0:

 print 'No tbodys!!!'

 return 'empty'

 # Reverse all lists (the last table is the one interesting for

 # us(weather information table))

 Ps.reverse()

 theads.reverse()

 # get last tbody, which is hourly weather condition

 tbodys.reverse()

 noData = False

 # 5. Check if daily history found

 # One of the paragrahps include the text 'No daily or hourly...'

 # if weather information not found

 for i in Ps:

110

 if i.text == 'No daily or hourly history data available':

 print i.text

 noData = True

 break

 # 6. If found(5.), From last tbody (reversed earlier) get weather

 # information from table elements (td)

 # (i.e last table lists weather info), also clean data

 lines = []

 line =''

 if noData == False:

 # Get Last table (tbodys reversed above)

 weather_conditions = tbodys[0]

 # From table get all weather inputs (weather elements)

 # during the day

 get_headers = weather_conditions.findAll('td')

 count = 0

 # For all weather elemets clean data and insert into array

 for i in get_headers:

 if (count==0) or (count==3) or (count==11):

 if (count ==11):

 line += (i.text.encode('utf8'))

 else:

 line += (i.text.encode('utf8')+', ')

 elif (count == 1) or (count==2):

 tmp = i.text.encode('utf8')

 tmp2 = tmp.replace(' °C','')

 line += (tmp2 + ', ')

 else:

 tmp = i.text.encode('utf8')

 tmp2 = tmp.replace(' ','')

 line += (tmp2 + ', ')

 if count ==11:

 line += '###'

 count =0

 else:

 count +=1

 else:

 print 'Weather Data not found! ' + i.text

 correctLine = 'empty'

 return correctLine

 lines = line.split('###')

 # Make lookup date, date/ time format

 #(used to compare with weather table elements)

 inDateTime = datetime.datetime(year, month,

 day,

 hour,

 minute,

 second)

 if len(lines) == 0:

 correctLine = 'empty'

 elif len(lines) == 1:

 correctLine = lines[0]

 # 7. Find table element that matches lookup date best, using time of

 # day from weather table element

 elif (len(lines) > 1):

 correctLine = ''

 prev = ''

 # For all weather table elements

 for i in lines:

 # Split element and gather time

 string = i.split(', ')

 tmAMPM = string[0].split(' ')

 tm=tmAMPM[0].split(':')

 try:

 hour24 = to24(int(tm[0]),

 True if tmAMPM[1]=='PM' else False)

 except:

111

 print lookUpDateTime

 return 'exit'

 # get compare time and insert it into same day year month as

 # lookupdate for easier comparison

 cmpDateTime = datetime.datetime(year, month,

 day,

 hour24,

 int(tm[1]))

 # If lookupdate higher that compare date (from weather table)

 # continue

 if cmpDateTime < inDateTime:

 prev = i

 continue

 # If not, insert match

 else:

 if prev =='':

 correctLine = i

 else:

 correctLine = prev

 break

 # 8. return best match

 return correctLine

112

B-3: Cleansing of metadata

CLEANSER

import findRepresentatives

import unicodedata as ud

import re

Check if uchr is in latin form

def is_latin(uchr):

 latin_letters= {}

 try: return latin_letters[uchr]

 except KeyError:

 return latin_letters.setdefault(uchr, 'LATIN' in ud.name(uchr))

Check that all characters in a string is roman

def only_roman_chars(unistr):

 return all(is_latin(uchr)

 for uchr in unistr

 if uchr.isalpha()) # isalpha suggested by John Machin

Remove and clean words form 'title' and 'tags' list

1. remove words from a defined list of words

2. Remove noisy words. I.e. words used by only one user

3. Remove all words that are not roman, i.e. not asian or russian characters

def removeWords(array):

 remList = ['the', 'and', 'is', 'a', 'de', 'la', 'this','in', 'on',

 'to', 'for', 'by', 'from','at','me','my', 'you','with',

 'canon', 'eos', 'geotagged', 'geotag', 'of', '400d',

 'cannoneos400d','from', 'over', '50d', 'leica', 'nikon',

 '1020mm', '90mm','photoshopalbum', '35mm', 'flickr',

 'fujifilmfinepixs8000fd','nikond60','d60', 'flickrmeetup']

 newAfterRemove = []

 # 1. Remove words from list

 for i in array:

 if i.tag not in remList:

 newAfterRemove.append(i)

 else:

 continue

 newAfterClean = []

 # 2. Remove noisy words, longer than 50 char

 for i in newAfterRemove:

 if (len(i.tag) >= 50): # Noisy words

 continue

 # If word used by more than one user

 else:

 newAfterClean.append(i)

 onlyRomanWords = []

 # 3. Remove all words that are not roman, i.e. not asian

 # or russian characters

 for i in newAfterClean:

 if only_roman_chars(i.tag)== True:

 onlyRomanWords.append(i)

 return onlyRomanWords

Removes special characters from manually added terms

def cleanData(array):

 count = 0

 temp =[]

 for i in array:

 # Remove special characters from element.tag

 new = re.sub(r'[,. ;:"#!/()^=+*&$?-]','',i)

 # If string empty after removal, remove element

 if len(i) != 0:

 temp.append(new)

 return temp

113

114

B-4: Converting of metadata

Convert numeric wind strength, wind strength represented by m/s

def beaufortScale(strength):

 scale = [['calm', 0.0, 0.3], ['light air', 0.3, 1.5],

 ['light breeze', 1.6, 3.4],['gentle breeze',3.4, 5.4],

 ['moderate breeze', 5.5,7.9],

 ['fresh breeze', 8.0, 10.7], ['strong breeze', 10.8, 13.8],

 ['moderate gale', 13.9, 17.1], ['gale', 17.2, 20.7],

 ['strong gale', 20.8, 24.4], ['storm', 24.5, 28.4],

 ['violent storm', 28.5, 32.6],['hurricane', 32.7, 1000]]

 for beaufort in scale:

 if (strength >= beaufort[1] and strength <= beaufort[2]):

 description = beaufort[0]

 break

 return description

Convert numeric temperature (Celsius)

def convertTemperature(temp):

 scale = [['freezing', -100.0, -15.0],['ice cold', -14.9, -10.0],

 ['cold', -9.9, 0.0], ['chilly',0.1, 10.0],

 ['moderate',10.1, 20.0], ['hot', 20.1, 25.0],

 ['very hot', 25.1, 35.0], ['extremely hot', 35.1, 100]]

 # If temperature not avaliable

 if temp == 'N/A':

 return 'N/A'

 for coldHot in scale:

 if temp >= coldHot[1] and temp <= coldHot[2]:

 desc = coldHot[0]

 break

 return desc

Convert numeric value, wind strength to beaufort scale

def convertWind(windString):

 # Windstring format '18.5km/h/5.1m/s'

 try:

 windStrengthString = windString.replace('km/h', '')

 windStrengthString = windStrengthString.replace('m/s', '')

 windList = windStrengthString.split('/')

 # wind strength represented by m/s

 windStrength = float(windList[1]);

 desc = beaufortScale(windStrength)

 except:

 return windString

 return desc

Convert wind strrength and temperature to human readable

Arguments:

weaterdata - weather data Array []

def convertWeatherData(weatherData):

 windStrengthString = weatherData[4]

 # Check if temperature avaliable

 try:

 temperatureFloat = float(weatherData[10])

 except: # if not avaliable

 temperatureFloat = 'N/A'

 return convertWind(windStrengthString), convertTemperature(temperatureFloat)

Returns a weekday of the form saturday, sunday etc

Arguments:

dateStr -> string date of the form 'YYYY-MM-DD HH:MM:SS'

def findWeekday(dateStr):

 dateTime = dateStr.split(' ')

 YMD = dateTime[0].split('-')

 try:

 date = datetime.date(int(YMD[0]), int(YMD[1]), int(YMD[2]))

 weekdayInt = date.weekday()

 weekday = []

 if weekdayInt == 0:

115

 weekday.append('monday')

 elif weekdayInt == 1:

 weekday.append('tuesday')

 elif weekdayInt == 2:

 weekday.append('wednesday')

 elif weekdayInt == 3:

 weekday.append('thursday')

 elif weekdayInt == 4:

 weekday.append('friday')

 elif weekdayInt == 5:

 weekday.append('saturday')

 elif weekdayInt == 6:

 weekday.append('sunday')

 # Throws exception if date format is wrongly tagged in image

 except:

 print YMD[0]+',' + YMD[1]+',' + YMD[2]

 weekday = []

 weekday.append('not found')

 return weekday

Find season from date, i.e. spring, summer, fall, winter

Date on the form of "YYYY-MM-DD"

def findSeason(inDate):

 date = inDate.split('-')

 season = []

 try:

 springStart = datetime.date(int(date[0]), 3, 1)

 summerStart = datetime.date(int(date[0]), 5, 1)

 fallStart = datetime.date(int(date[0]), 9, 1)

 winterStart = datetime.date(int(date[0]), 11, 1)

 cmpDate = datetime.date(int(date[0]), int(date[1]), int(date[2]))

 if (cmpDate >= springStart) and (cmpDate <= summerStart):

 season.append('spring')

 elif (cmpDate >= summerStart) and (cmpDate <= fallStart):

 season.append('summer')

 elif(cmpDate >= fallStart) and (cmpDate <= winterStart):

 season.append('fall')

 else:

 season.append('winter')

 # Throws exception if date format is wrongly tagged in image

 except:

 season.append('not found')

 return season

Handle converting of date/time

def convertDateToHumanReadable(date):

 # date is on the form e.g. "2008-07-22 09:48:05"

 monthTranslater = [[1,'january'],[2,'february'],[3,'mars'],

 [4,'april'],[5,'may'],[6,'june'],[7,'july'],

 [8,'august'],[9,'september'],[10,'oktober'],

 [11,'november'],[12,'desember']]

 # Split date and time

 dateTime = date.split(' ')

 # get date

 date = dateTime[0].split('-')

 month = 'not found' #only if not new value set below

 for monthData in monthTranslater:

 if monthData[0]==int(date[1]):

 month=monthData[1]

 break;

 # Convert year month in the form "YYYY month" e.g. "2008 january"

 # Rreturn as array because of the form of appendUnique()

 humanReadable = []

 humanReadable.append(date[0]+' '+ month)

 return humanReadable

116

B-5: Unique Term handler

import codecs

import re

Repository files

import flickr_api_comm as flick

import converter

import cleanser

global uniqueTags

Create unique term file

def initUniqueTags():

 global uniqueTags

 uniqueTags = []

def returnUniqueTags():

 global uniqueTags

 return uniqueTags

Handle insertion of unique terms to uniqueTerms list

def appendUniqueTags(words, tagType, userId, imageId):

 global uniqueTags

 # for all words

 for word in words:

 # Check if unique, insert word if True or increment frequency

 # counter for word if not

 check = checkUnique(word, tagType, userId, imageId)

 if check == False:

 a = flick.tagForm()

 a.type = tagType

 a.tag = word

 a.count = 1

 a.users.append(userId)

 a.imageIds.append(imageId)

 a.userCount=1

 uniqueTags.append(a)

 return uniqueTags

Check if unique, insert word to uniqueTags if True or increment

frequency counter for word if not

def checkUnique(word, tagType, userId, imageId):

 global uniqueTags

 for elem in uniqueTags:

 # Increment element counter

 if word == elem.tag:

 elem.count+=1

 elem.imageIds.append(imageId)

 if userId not in elem.users:

 elem.users.append(userId)

 elem.userCount +=1

 if (tagType == 'location') and (elem.type != 'location'):

 elem.type= tagType

 elif (tagType == 'weekday') and (elem.type != 'weekday'):

 elem.type= tagType

 return True

 return False

def printUnique(fullDocName):

 global uniqueTags

 temp2 = []

 temp = uniqueTags

 # Sort unique tags reverse on count element

 temp2 = sorted(temp, key=lambda tag: tag.count, reverse=True)

 uniqueTags = temp2

117

 # Write to file

 try:

 fullDocName = changeCarBeforePrintOrWrite(fullDocName)

 f = codecs.open(re.sub(r'"','',fullDocName)+'#freqTags.txt',

 encoding='utf-8', mode='w+')

 for elem in uniqueTags:

 i=0

 imagesStr = ''

 for img in elem.imageIds:

 if i==0:

 imagesStr += str(img)

 else:

 imagesStr += '--'+str(img)

 i+=1

 f.write(elem.type + ', ' + elem.tag + ', ' +

 str(elem.count)+', ' + str(elem.userCount)+', '

 + imagesStr+'\n')

 if elem.count > 0:

 print elem.type + ', ' + elem.tag + ', '+ str(elem.count)+', ' +

str(elem.userCount)

 f.close()

 except IOError:

 print 'Write Error: '+ IOError.args

 return uniqueTags, fullDocName

Handle all pages in order to produce uniqe term files

def createUniqueTagsFile(pages, fullDocName):

 global uniqueTags

 #uniqueTags = []

 i=0;

 # Browse through all pages of images from the collection

 # collected from flickr in main()

 for page in pages:

 # For all images in page

 print 'currently analyzing page: '+page.attrib['page']+' of ' +page.attrib['pages']

 # Process all images

 for image in page:

 i+=1

 location = image.attrib['location-augmented']

 imageId = int(image.attrib['id'])

 locations = location.split(', ')

 appendUniqueTags(locations, 'location',

 image.attrib['owner'], imageId)

 # Convert date to human readable (e.g. "2008 january")

 humanReadable = []

 humanReadable.append(image.attrib['dateHuman-augmented'])

 appendUniqueTags(humanReadable, 'dateHuman',

 image.attrib['owner'], imageId)

 # Add month of year picture taken as human readable

 humanRdMonth = []

 humanRdMonth.append(humanReadable[0].split(' ')[1])

 appendUniqueTags(humanRdMonth, 'month', image.attrib['owner'],

 imageId)

 # Get weekday from date, return human readable

 # weekday (monday, tuesday etc)

 weekday = []

 weekday.append(image.attrib['weekday-augmented'])

 appendUniqueTags(weekday, 'weekday', image.attrib['owner'],

 imageId)

 # Get season of year, i.e. summer, winter etc

 season = []

 season.append(image.attrib['season-augmented'])

 appendUniqueTags(season, 'season', image.attrib['owner'],

 imageId)

118

 # Get weather information (IF found)

 weatherString = image.attrib['weather']

 if (weatherString != 'empty') and (weatherString != 'exit'):

 weatherArray = weatherString.split(', ')

 weatherArray.reverse()

 weatherCond = []

 weatherCond.append(weatherArray[0].lower())

 # Add weather cond

 appendUniqueTags(weatherCond, 'weather-cond',

 image.attrib['owner'], imageId)

 # Add Wind strength, temperature

 windString, temperatureString = converter.convertWeatherData(weatherArray)

 wind, temperature = [], []

 wind.append(windString.lower())

 temperature.append(temperatureString.lower())

 appendUniqueTags(wind, 'weather-wind',

 image.attrib['owner'], imageId)

 appendUniqueTags(temperature, 'weather-temp',

 image.attrib['owner'], imageId)

 #

 # Get all single words from 'title' of image and insert

 # if unique

 tmpString = image.attrib['title'].lower()

 wordsTitle = tmpString.split(' ')

 # Get all single words from 'tags' of image and insert

 # if unique

 tmpString = image.attrib['tags'].lower()

 tempList = tmpString.split(' ')

 wordsTags = []

 # no duplicate terms in image, either in tags or title field

 for tag in tempList:

 if tag not in wordsTitle:

 wordsTags.append(tag)

 # Remove metadata from 'title' and 'tags' that are allready found

 # using locational info to prevent duplicate frequncy count

 for loc in locations:

 realLoc = loc.split(':')

 try:

 if loc[1] in wordsTitle:

 wordsTitle.remove(loc[1])

 if loc[1] in wordsTags:

 wordsTags.remove(loc[1])

 except:

 continue

 # Remove weekday from 'Title' and 'Tags'

 if weekday[0] in wordsTitle:

 wordsTitle.remove(weekday[0])

 if weekday[0] in wordsTags:

 wordsTags.remove(weekday[0])

 # Remove month from 'Title' and 'Tags'

 if humanRdMonth[0] in wordsTitle:

 wordsTitle.remove(humanRdMonth[0])

 if humanRdMonth[0] in wordsTags:

 wordsTags.remove(humanRdMonth[0])

 # Remove season from 'Title' and 'Tags'

 if season[0] in wordsTitle:

 wordsTitle.remove(season[0])

 if season[0] in wordsTags:

 wordsTags.remove(season[0])

 newWordsTitle = cleanser.cleanData(wordsTitle)

 # Argument 2 tags since tags field and title field merged

 uniqueTags = appendUniqueTags(newWordsTitle, 'tags', image.attrib['owner'],

 imageId)

119

 newWordsTags = cleanser.cleanData(wordsTags)

 appendUniqueTags(newWordsTags, 'tags', image.attrib['owner'],

 imageId)

 # Store unique terms to file

 printUnique(fullDocName)

Special cases where collection names includes the charachter

":", e.g. "Geotagged : France"

def changeCarBeforePrintOrWrite(string):

 sList = list(string)

 i=0 # counter to prevent ":" after hard drive letter removed

 for char in sList:

 if (char == ':' and i!=1):

 sList[i]="!"

 i+=1

 ret = "".join(sList)

 print ret

 return ret

Get unique terms from file and store to unique term list (in memory)

def testGetTags(fullDocName):

 global uniqueTags

 fullDocName = changeCarBeforePrintOrWrite(fullDocName)

 f = codecs.open(re.sub(r'"','',fullDocName)+'#freqTags.txt',encoding='utf-8', mode='r')

 for i in f:

 line = i.strip('\n')

 if len(line) != 0:

 words = line.split(', ')

 a = flick.tagForm()

 a.type = words[0]

 a.tag = words[1]

 a.count = int(words[2])

 a.userCount = int(words[3])

 #get all imageIds

 tmpStrArray = words[4].split('--')

 tmpIntArray = []

 for elem in tmpStrArray:

 tmpIntArray.append(int(elem))

 uniqueTags.append(a) # insert into list

 f.close()

 return uniqueTags

120

B-6: Hierarchical level handler (Hypernym grouping)

import findRepresentatives as findReps

from nltk.corpus import wordnet as wn

class catForm:

 def __init__(self):

 self.type = ''

 self.tag = ''

 self.synset = ''

 self.count = 0

 self.tf=0

 self.idf = 0

 self.subs = []

class catNewLevelForm(catForm):

 def __init__(self):

 catForm.__init__(self)

 self.rootTerm = ''

Check if found in array, returns true if found false if not

def checkUnique(word, array):

 for elem in array:

 if word == elem.tag:

 return True

 return False

Finds hypernyms for each words contained in array using wordnet api

def findCategories(array, typ):

 categories = []

 for i in array:

 word = wn.synsets(i.tag)

 # Always use first word

 if len(word) > 0:

 i.wnLookupCount = len(word)

 word1 = word[0]

 cats = word1.hypernyms()

 for cat in cats:

 temp = cat.name

 catName = cat.name.split('.')

 i.categories.append(catName[0])

 found = checkUnique(catName[0], categories)

 # If found insert hypernym into category list

 if found == False:

 s = catForm()

 s.type = 'cat-'+typ

 s.tag = catName[0]

 s.synset = cat

 categories.append(s)

 return array, categories

For all categories check if array has some elements that equal the

category if so increase count of category and include element from

array in category.subs

def checkCategories(array, catList):

 for cat in catList:

 for i in array:

 if cat.tag == i.tag:

 cat.subs.append(i.tag)

 cat.count += i.count

 elif cat.tag.replace('_',' ') == i.tag:

 cat.subs.append(i.tag)

 cat.count += i.count

 elif cat.tag.replace('_','') == i.tag:

 cat.subs.append(i.tag)

 cat.count += i.count

 return catList

121

Find all words from array that has a word from 'catList' (category list)

in its hypernym list 'elem.categories' and counts the categories from

catList as all related words from array

def reCreateCountFromCategories(array, catList):

 for i in array:

 for cat in i.categories:

 for j in catList:

 if cat == j.tag:

 j.subs.append(i.tag)

 j.count += i.count

 return catList

Move one step up in hierarchcal hypernym structure

def newLevelInTree(array, category, allreadyAbove, level):

 newCategory = catNewLevelForm()

 synset = category.synset

 if level == 2:

 newCategory.rootTerm = category.tag

 elif level == 3:

 newCategory.rootTerm = category.rootTerm

 syns = synset.hypernyms()

 if len(syns) == 0:

 return False, newCategory

 # initialize new hypernym (category) level

 newCategory.synset = syns[0]

 syn = syns[0]

 newCategory.subs = category.subs

 newCategory.count = category.count

 newCategory.tf = category.tf

 newCategory.idf = category.idf

 newCategory.type = category.type

 synName = syn.name.split('.')

 realName=(synName[0]) # realname of hypername

 # locate new hypernym members from metadata (terms)

 newCategory.tag = realName

 for i in array:

 if(i.tag == realName):

 if i.tag not in newCategory.subs:

 if i.tag not in allreadyAbove:

 newCategory.subs.append(i.tag)

 newCategory.count += i.count

 newCategory.tf += i.tf

 newCategory.idf += i.idf

 else:

 for j in i.categories:

 if j == realName:

 if i.tag not in newCategory.subs:

 if j not in allreadyAbove:

 newCategory.subs.append(i.tag)

 newCategory.count += i.count

 newCategory.tf += i.tf

 newCategory.idf += i.idf

 return True, newCategory

def produceNewCatLevels(array, catList, numOfImages, threshold, xlsFile):

 sortedList = []

 temp = catList

 # Sort unique tags reverse on count element

 sortedList = sorted(temp, key=lambda tag: tag.count, reverse=True)

 catList = sortedList

 allreadyAbove, secondLevel, finalLevel, nextRound = [],[],[],[]

 if(len(array)==0): return False

 print "-----------------------------------"

 print "second level " + array[0].type

 print "-----------------------------------"

 for elem in catList:

122

 tf = elem.tf

 # Prevent hypernyms with only one category member to be include,

 # Such occations are already above in tags

 if tf>= threshold and len(elem.subs)>1:

 allreadyAbove.append(elem.tag)

 # Append categories to new level above selection threshold

 else:

 before = elem.count

 found, newCat = newLevelInTree(array, elem, allreadyAbove, 2)

 after = newCat.count

 # If hypernym has been increased in size

 if after > before:

 tf = newCat.tf

 # If TF above selection threshold and more than one member

 if tf >= threshold and len (elem.subs) > 1:

 allreadyAbove.append(newCat.tag)

 print "%20s %5s %5s %20s %s" % (newCat.rootTerm,

 str(before),

 str(after),

 str(newCat.tag),

 str(newCat.subs),)

 # Add row to .xls file

 xlsFile.addRowCategory(newCat, 2)

 secondLevel.append(newCat)

 # If TF is NOT above selection or only one member

 else:

 nextRound.append(newCat)

 print "-----------------------------------"

 print "Third level " + array[0].type

 print "-----------------------------------"

 # Process hypernyms for level two

 for elem in nextRound:

 before = elem.count

 found, newCat = newLevelInTree(array, elem, allreadyAbove, 3)

 after = newCat.count

 # If hypernym has been increased in size

 if after > before:

 tf = newCat.tf

 # If TF above selection threshold and more than one member

 if tf >= threshold and len(elem.subs) > 1:

 allreadyAbove.append(newCat.tag)

 print "%20s %5s %5s %20s %s" % (newCat.rootTerm,

 str(before),

 str(after),

 str(newCat.tag),

 str(newCat.subs),)

 # Add row to .xls file

 xlsFile.addRowCategory(newCat, 3)

 finalLevel.append(newCat)

 return secondLevel, finalLevel, xlsFile

123

B-7: calculate term frequencies

-*- coding: cp1252 -*-

import math

import codecs

import flickr_api_comm as flick

class thresholdValues:

 def __init__(self):

 self.thresholdTags = 0.0

 self.thresholdTitle = 0.0

 slef.thresholdLocation = 0.0

 self.thresholdDateHuman = 0.0

return term frequency for array of terms

tf -idd: term-frequency-inverse document frequency

def tfArray(array, word, numOfImages):

 return (freq(array,word) / numOfImages)

return term frequency for single term

def tf(count, imagesCount):

 return count / float(imagesCount)

return counter of given term in array

def freq(array, word):

 for i in array:

 if i.tag == word:

 return int(i.count)

Return inverse document frequency

def idf(word, documentList, typ, docPath):

 return math.log(len(documentList) / numDocsContaining(word,documentList, typ, docPath))

Returns nymbers of documents containing a certain words,

only counts douments on certain path

def numDocsContaining(word, documentList, typ, docPath):

 docCount = 0

 for docName in documentList:

 f = codecs.open(docPath+docName,encoding='utf-8', mode='r')

 for i in f:

 line = i.strip('\n')

 if len(line) != 0:

 words = line.split(', ')

 a = flick.tagForm()

 a.type = words[0]

 a.tag = words[1]

 if (a.tag == word) and (a.type == typ):

 docCount += 1

 break

 f.close()

 return docCount

124

B-8: Find representatives

-*- coding: cp1252 -*-

import re

import os

import math

import codecs

Repository imports

import flickr_api_comm as flick

import DBHandler

import cleanser

import calculateFrequencies as calcFreq

import hierarchicalLevelHandler as hierHandler

import createXlsFile as xls

global thresholdTags

global thresholdTitle

global thresholdLocation

global thresholdDateHuman

global thresholdWeekday

global thresholdMonth

global thresholdSeason

global xlsFile

sorts array of unique words and prints it out

Arguments:

Array: list of unique words

typ: Type of list; categories list or ordinary

def printUnique(array, typ):

 sortedList = []

 temp = array

 # Sort unique tags reverse on count element

 sortedList = sorted(temp, key=lambda tag: tag.count, reverse=True)

 array = sortedList

 for elem in array:

 if elem.count > 0:

 if typ == 'cat':

 print elem.type + ', ' + elem.tag + ', ' + str(elem.count)

 + ' '+ str(elem.subs) + ', '+ str(elem.tf)

 elif typ == 'ord':

 print elem.type + ', ' + elem.tag + ', ' + str(elem.count)

 + ', '+ str(elem.tf)

Count total word count from array of word frequencies

def wordCount(array):

 count = 0

 for i in array:

 if i.count > 1:

 count += i.count

 return count

Print list of array

def printAllLists(array, typ, header, sortBy):

 # REMOVED FROM APPENDIX

 #......

Separted date list into one list for each type

def seperateDateList(dateArray):

 weekDay = []

 month = []

 season = []

 dateHuman = []

 for i in dateArray:

 if i.type == 'weekday':

 weekDay.append(i)

 elif i.type == 'month':

125

 month.append(i)

 elif i.type == 'season':

 season.append(i)

 elif i.type == 'dateHuman':

 dateHuman.append(i)

 return weekDay, month, season, dateHuman

Calculate TF and IDF for given List

def getTFandIDFforArray(array, docList, docPath, dataType, numOfImages):

 global thresholdTags

 global thresholdTitle

 global thresholdLocation

 global thresholdDateHuman

 # Calculate for all that is one third of threshold

 # (code word categories)

 if dataType == 'tags':

 threshold = (thresholdTags / float(3))

 elif dataType == 'title':

 threshold = (thresholdTags / float(3))

 elif dataType == 'location':

 threshold = (thresholdLocation / float(3))

 elif dataType == 'dateHuman':

 threshold = (thresholdDateHuman / float(3))

 else:

 threshold = 0.000000001

 # Calculate idf

 for i in array:

 termFreq = calcFreq.tf(i.count, numOfImages)

 i.tf = termFreq

 if i.tf >= threshold:

 i.idf = calcFreq.idf(i.tag, docList, i.type, docPath)

 if i.idf == float(0.0):

 i.idf = float(1.0)

Update database regular metadata

def updateDataBaseRegular(dataList, threshold, DBObj):

 DBObj.db.begin()

 DBObj.insertListOfVariablesRegularForm(dataList, threshold)

 DBObj.db.commit()

Update database hypernym metadata

def updateDataBaseHypernym(dataList, termList, level, DBObj):

 DBObj.db.begin()

 DBObj.insertListOfVariablesCategoryForm(dataList, termList, level)

 DBObj.db.commit()

Find representative description of image collection

def findReps(locList, dateList, tagsList, titleList, weatherList,

 windList, tempList, docPath, numOfImages, collectionName):

 global thresholdTags

 global thresholdTitle

 global thresholdLocation

 global thresholdDateHuman

 global thresholdWeekday

 global thresholdMonth

 global thresholdSeason

 global xlsFile

 time_k = 2/float(5)

 non_fixed_k = 0.05

 dbOK = False

 # Check if Database correctly set up

 try:

 # Initialize database

 DBComm = DBHandler.dataBaseCommunicator("localhost", "root", "password?",

 "database?", collectionName)

 DBComm.setCollectionId(collectionName)

 except:

print "Error locating Database. Will continue without inserting data in database"

 dbOK = False

 # Seperate dateList inte weekend, month, season, year, datehuman

 weekDayList, monthList, seasonList, dateHumanList = seperateDateList(dateList)

126

 numberOfTagsWords = float(wordCount(tagsList))

 numberOfTitleWords = float(wordCount(titleList))

 numberOfTitleWords = float(wordCount(titleList))

 numberOfLocWords = float(wordCount(locList))

 numberOfDateHumanWords = float(wordCount(dateHumanList))

 thresholdTags = non_fixed_k

 thresholdTitle = non_fixed_k

 thresholdLocation = non_fixed_k

 thresholdDateHuman = non_fixed_k

 thresholdWeekday = ((1/float(7)) + time_k*(1/float(7)))

 thresholdMonth = ((1/float(12)) + time_k*(1/float(12)))

 thresholdSeason = ((1/float(4)) + time_k*(1/float(4)))

 print "Cleansing data"

 titleList = cleanser.removeWords(titleList)

 tagsList = cleanser.removeWords(tagsList)

 # Update thresholds

 numberOfTagsWords = float(wordCount(tagsList))

 numberOfTitleWords = float(wordCount(titleList))

 thresholdTags = non_fixed_k

 thresholdTitle = non_fixed_k

 # Find categories/ "category of words" for Tags

 tagsList, catListTags = hierHandler.findCategories(tagsList, 'tags')

 print 'recreate count from categories and categorize terms'

 catListTags = hierHandler.reCreateCountFromCategories(tagsList, catListTags)

 print 'checking categories in word list'

 print 'done Tags'

 # get all frequency docs, used to calculate idf

 dirAll = os.listdir(docPath)

 docList = []

 for fname in dirAll:

 if 'freqTags' in fname:

 docList.append(fname)

 print 'Calculate tf and idf for Location'

 getTFandIDFforArray(locList, docList, docPath, 'location',

 numOfImages)

 print 'done'

 print ''

 print 'Calculate tf and idf for weekday'

 getTFandIDFforArray(weekDayList, docList, docPath, 'weekday',

 numOfImages)

 print 'done'

 print ''

 print 'Calculate tf and idf for month'

 getTFandIDFforArray(monthList, docList, docPath, 'month', numOfImages)

 print 'done'

 print ''

 print 'Calculate tf and idf for season'

 getTFandIDFforArray(seasonList, docList, docPath, 'season',

 numOfImages)

 print 'done'

 print ''

 print 'Calculate tf and idf for dateHuman'

 getTFandIDFforArray(dateHumanList, docList, docPath, 'dateHuman',

 numOfImages)

 print 'done'

 print ''

 print 'Calculate tf and idf for tags'

 getTFandIDFforArray(tagsList, docList, docPath, 'tags', numOfImages)

 print 'done'

 print ''

 print 'Calculate tf and idf for title'

 getTFandIDFforArray(titleList, docList, docPath, 'title', numOfImages)

 print 'done'

 print ''

127

 print 'Calculate tf and idf for weather'

 getTFandIDFforArray(weatherList, docList, docPath, 'weather', numOfImages)

 print 'done'

 print ''

 print 'Calculate tf and idf for wind'

 getTFandIDFforArray(windList, docList, docPath, 'wind', numOfImages)

 print 'done'

 print ''

 print 'Calculate tf and idf for temperature'

 getTFandIDFforArray(tempList, docList, docPath, 'temperature', numOfImages)

 print 'done'

 print ''

 print 'Calculate tf and idf for hyp tags'

 # Find tf for hypernym lists

 for i in catListTags:

 for sub in i.subs:

 for k in tagsList:

 if k.tag == sub:

 i.tf += k.tf

 i.idf += k.idf

 break

 print 'done'

 # Update database Regular metadata

 if dbOK == True:

 updateDataBaseRegular(locList, thresholdLocation, DBComm)

 updateDataBaseRegular(weekDayList, thresholdWeekday, DBComm)

 updateDataBaseRegular(monthList, thresholdMonth, DBComm)

 updateDataBaseRegular(seasonList, thresholdSeason, DBComm)

 updateDataBaseRegular(dateHumanList, thresholdDateHuman, DBComm)

 updateDataBaseRegular(tagsList, thresholdTags, DBComm)

 updateDataBaseRegular(weatherList, thresholdTags, DBComm)

 updateDataBaseRegular(windList, thresholdTags, DBComm)

 updateDataBaseRegular(tempList, thresholdTags, DBComm)

 # Update database Hypernym metadata level 1

 updateDataBaseHypernym(catListTags, tagsList, 1, DBComm)

 # initialize excel file object

 xlsFile = xls.xlsCreator(collectionName + ".xls")

 printAllLists(locList, 'ord', 'Location', sort)

 printAllLists(weekDayList, 'ord', '--Date: Weekday--', sort)

 printAllLists(monthList, 'ord', '--Date: month--', sort)

 printAllLists(seasonList, 'ord', '--Date: season--', sort)

 printAllLists(dateHumanList, 'ord', '--Date: year /month--', sort)

 printAllLists(tagsList, 'ord', '--Tags--', sort)

 printAllLists(titleList, 'ord', '--Title-', sort)

 printAllLists(weatherList, 'ord', '--Weather--',sort)

 printAllLists(windList, 'ord', '--Wind--',sort)

 printAllLists(tempList, 'ord', '--Temperature--',sort)

 printAllLists(catListTags, 'cat', 'cats Tags',sort)

 # Find new hypernym levels

 secondLevelCategories, finalLevelCategories, xlsFile = hierHandler.produceNewCatLevels(tagsList, catListTags,

numOfImages,

thresholdTags,

xlsFile)

 # Write data to xlsfile

 xlsFile.writeFile()

 # Update database Hypernym metadata level 2

 if dbOK == True:

 updateDataBaseHypernym(secondLevelCategories, tagsList, 2,DBComm)

 # Update database Hypernym metadata level 3

 updateDataBaseHypernym(finalLevelCategories, tagsList, 3,DBComm)

 DBComm.db.close()

128

B-9: Creation of excel file

CREATE XLS FILE

from xlwt import Workbook

Handles creation of .xls file containing representaitve metadata from

collection summary

class xlsCreator:

 def __init__(self, filename):

 self.filename = filename.replace('"', '') # if filename as full string with ""

 self.curRow = 0

 self.curCol = 0

 self.book = Workbook(encoding='utf-8')

 self.sheet1 = self.book.add_sheet('Sheet 1')

 # Add rows for ordinary metadata (not hypernyms)

 def addRowOrd(self, elem):

 self.sheet1.write(self.curRow, 0, elem.type.encode('utf8'))

 self.sheet1.write(self.curRow, 1, elem.tag.encode('utf8'))

 self.sheet1.write(self.curRow, 2, elem.tf)

 self.sheet1.write(self.curRow, 3, elem.count)

 self.curRow +=1

 # Add rows for hypernym metadata

 def addRowCategory(self, elem, level):

 self.sheet1.write(self.curRow, 0, elem.type.encode('utf8'))

 self.sheet1.write(self.curRow, 1, level)

 self.sheet1.write(self.curRow, 2, elem.tag.encode('utf8'))

 self.sheet1.write(self.curRow, 3, elem.tf)

 self.sheet1.write(self.curRow, 4, elem.count)

 subsString =''

 self.curCol = 5

 for sub in elem.subs:

 subsString +=sub + ', '

 self.curCol+=1

 self.curCol = 0

 self.sheet1.write(self.curRow, 5, subsString)

 self.curRow+=1

 # Create file in root folder of running application

 def writeFile(self):

 self.book.save(self.filename.replace(':','!'))

129

B-10: Communicate with database (mysql)

INSERT INTO DB

-*- coding: cp1252 -*-

import MySQLdb

Repository files

import flickr_api_comm as flick

import findRepresentatives

Handles communication (updates and insertions) to mysql database

metadata used by system are stored

class dataBaseCommunicator:

 # Initialize database object and local variables

 def __init__(self, host, user, passwd, database, collName):

 self.db = MySQLdb.connect(host=host, user=user, passwd=passwd,

 db=database, use_unicode=True,

 init_command='SET NAMES utf8')

 self.cursor = self.db.cursor()

 self.cursor.execute(""" SET CHARACTER SET utf8 """)

 self.cursor.execute(""" SET character_set_connection=utf8 """)

 self.host = host

 self.user = user

 self.passwd = passwd

 self.dbInUse = database

 self.collId = self.setCollectionId(collName)

 self.deleteCollectionInfoIfAllreadyInDB()

 # Gather collection id from table "collection"

 def setCollectionId(self, collectionName):

 self.cursor.execute("""SELECT collId FROM collection WHERE collName = %s""",

(collectionName,))

 retTuple = self.cursor.fetchone()

 return retTuple[0]

 # if data allready present in db for collection, make clean

 def deleteCollectionInfoIfAllreadyInDB(self):

 print "delete-----"

 self.db.begin()

 deleteCount=self.cursor.execute("""delete ut.*, i.* from uniqueTerm as ut, includes

as i where i.collId=%s""", self.collId)

 self.db.commit()

 print deleteCount

 # Handles insertions for all ordninary metadata (not hierarchcal

 # levels of hypernyms)

 def insertListOfVariablesRegularForm(self, array, threshold):

 # Process all elements (terms)

 for elem in array:

 utCount = int(self.cursor.execute("""select * from uniqueTerm where utId = %s""",

 (elem.tag.encode('utf8'),)))

 if utCount == 0:

 try:

 self.cursor.execute(""" INSERT INTO uniqueTerm (utId) VALUES (%s)""",

 (elem.tag.encode('utf8')))

 except:

 print "data to long for insertion: "+elem.tag + " TF: " +str(elem.tf)

 try:

 self.cursor.execute(""" INSERT INTO includes (collId, utId, utType, utCount,

 utTF, utIDF) VALUES (%s, %s, %s, %s, %s, %s)""",

 (self.collId, elem.tag.encode('utf8'), elem.type,

 elem.count, elem.tf, elem.idf))

 except:

 # some translation errors between utf8 in python and mysql

 # e.g. 'è' and 'e' are both converted to 'e'

 # before insertion

 print "error insert duplicate: " + elem.tag

130

 # Update database in acordance with images related to

 # specific element (term)

 for image in elem.imageIds:

 count = int(self.cursor.execute("""select * from image where imageId = %s""",

(str(image),)))

 if count == 0:

 self.cursor.execute(""" INSERT INTO image (imageId, location) VALUES

 (%s)""", (str(image), "not set"))

 self.cursor.execute(""" INSERT INTO contains (collectionId, imageId) VALUES

 (%s, %s)""", (int(self.collId), str(image),))

 self.cursor.execute(""" INSERT INTO TaggedWith (utId, imageId) VALUES

 (%s, %s)""", (elem.tag.encode('utf8'), str(image),))

 # Update database in acordance with hypernyms (level 1)

 # related to specific element (term)

 for category in elem.categories:

 # check if hypernym allready in db

 count = int(self.cursor.execute(""" select hyperName from hypernym

 where hyperName=%s""", (category,)))

 # Not in db (hypernym)

 if count == 0:

 self.cursor.execute(""" INSERT INTO hypernym (hyperName) values (%s)""",

 (category.encode('utf8'),))

 self.cursor.execute(""" INSERT INTO groupedInto (collId, hypId,

 hierLevel) VALUES (%s, %s, %s)""",

 (self.collId, category.encode('utf8'),1,))

 self.cursor.execute(""" INSERT INTO memberOf (collId, utId,

 hypId,hierLevel) VALUES (%s, %s, %s, %s)""",

 (self.collId,elem.tag.encode('utf8'),

 category.encode('utf8'),1,))

 catHandlerId = self.db.insert_id()

 # allready in db (hypernym)

 elif count == 1:

 countGroupedInto = int(self.cursor.execute(""" select hypId from

groupedInto where collId=%s and hypId=%s and

hierLevel=%s""", (self.collId, category,1,)))

 if countGroupedInto==0:

 self.cursor.execute(""" INSERT INTO groupedInto (collId, hypId,

 hierLevel) VALUES (%s, %s, %s)""",

 (self.collId, category.encode('utf8'),1,))

 self.cursor.execute(""" INSERT INTO memberOf (collId, utId,

 hypId,hierLevel) VALUES (%s, %s, %s, %s)""",

 (self.collId, elem.tag.encode('utf8'),

 category.encode('utf8'), 1,))

 catHandlerId = self.db.insert_id()

 # Handles insertions for all metadata for hierarchical levels

 # Hypernym

 def insertListOfVariablesCategoryForm(self, arrayCat, arrayAllTerms, level):

 # Level 1 only update database with TF and IDF

 if level == 1:

 for elem in arrayCat:

 self.cursor.execute(""" UPDATE groupedInto gi, hypernym h, memberOf mo,

 collection c set gi.hypTF=%s, gi.hypIDF=%s

 where gi.hypId=%s and gi.collId=%s and gi.hierLevel=%s

 and h.hyperName=gi.hypId and mo.hypId=h.hyperName

 and c.collId=gi.collId""",

(elem.tf, elem.idf, elem.tag.encode('utf8'), self.collId, level,))

 # For higher levels

 else:

 for elem in arrayCat:

 for term in elem.subs:

 # count for hypernyms returned from db

 count = int(self.cursor.execute(""" select hyperName from hypernym

 where hyperName=%s""", (elem.tag,)))

 # Not in db (hypernym)

 if count == 0:

 self.cursor.execute(""" INSERT INTO hypernym (hyperName) values

 (%s)""",(elem.tag.encode('utf8'),))

131

 self.cursor.execute(""" INSERT INTO groupedInto (collId, hypId,

 hierLevel, hypTF, hypIDF) VALUES

 (%s, %s, %s, %s, %s)""",

 (self.collId, elem.tag.encode('utf8'),

 level,elem.tf,elem.idf,))

 self.cursor.execute(""" INSERT INTO memberOf (collId, utId,

 hypId,hierLevel) VALUES (%s, %s, %s, %s)""",

 (self.collId, term.encode('utf8'),

 elem.tag.encode('utf8'),level,))

 # allready in db (hypernym)

 elif count == 1:

 countGroupedInto = int(self.cursor.execute(""" select hypId from

groupedInto where collId=%s and hypId=%s

and hierLevel=%s""",

(self.collId, elem.tag.encode('utf8'),

 level,)))

 if countGroupedInto==0:

 self.cursor.execute(""" INSERT INTO groupedInto (collId, hypId,

 hierLevel, hypTF, hypIDF) VALUES

(%s, %s, %s, %s, %s)""",

(self.collId, elem.tag.encode('utf8'),

 level,elem.tf, elem.idf,))

 self.cursor.execute(""" INSERT INTO memberOf (collId, utId,

 hypId,hierLevel) VALUES (%s, %s, %s, %s)""",

 (self.collId,term.encode('utf8'),

elem.tag.encode('utf8'), level,))

132

