

Faculty of Science and Technology
Department of Computer Science

Practical Fault-Tolerance for Mobile

Agents

Kjetil Jacobsen

A dissertation for the degree of
Philosophiae Doctor

October 2011

Abstract

The amount of computational resources available on the Internet is increasing.
Effectively using these resources for distributed computations is challenging. An
infrastructure called computational grids provides tools for structuring and deploying
large-scale distributed computations on the Internet. One of the key problems in
computational grids is managing the available computational resources; tools based
on mobile agents are being advocated to solve this problem. However, to be widely
adopted, such tools must be robust towards failures in the grid environment, and thus
require effective mechanisms for mobile agent fault-tolerance.

To gain insight on how grid applications perform on the Internet, this dissertation
investigates two master-worker algorithms, one based on group communication and one
based on message flooding. Both algorithms are executed in simulations using Internet
communication traces. The results from running and evaluating the algorithms are used
to infer requirements for our mobile agent fault-tolerance approach. This dissertation
then derives a fault-tolerant mobile agent protocol. The protocol is rooted in the
primary-backup approach, where a set of backups monitor the progress of the mobile
agent during the computation. The protocol allows the set of backups to be changed
during the computation to adapt to the current network topology. The dissertation then
describes an implementation of our protocol on top of a mobile agent platform, and
evaluates the performance of the protocol. The results show that explicit management
of backups can be beneficial to performance, and that our protocol is applicable outside
the scope of mobile agent computations.

i

ii

Acknowledgements

I would first like to thank my advisors Dag Johansen and Keith Marzullo. I am indebted
to Dag for fuelling me with inspiration, motivation, and ideas, and I’m very happy
with the results that have come from our collaboration so far. I am also thankful to
Dag for the possibility of working with Keith Marzullo. The work on the NAP and
WAMW protocols with Keith has been very rewarding and a great learning experience
for me. I would also like to thank Fred Schneider and Robbert van Renesse at Cornell
University for hosting numerous productive sessions on problems and solutions related
to the TACOMA project, and NAP in particular.

Some of the former TACOMA members and affiliates deserve significant credit: Nils
Sudmann for the fruitful discussions and inspiration during the entire course of the
TACOMA project. K̊are Jørgen Lauvset for all the lessons in practical software design.
Xianan Zhang for the collaboration on the WAMW paper. Krister Mikalsen and Sveinar
Rasmussen for geeking me up whenever I am getting outdated, and for the great times
both before and after April 2000. H̊akon Brug̊ard for the enjoyable collaboration on
the Extensible File System, DHash and numerous other projects. Steffen Viken Valv̊ag
for refining and implementing my half-baked ideas with POSH. Åge Kvalnes for all the
crazy projects we have worked on, and for all the great food. Alexander Wilkens for
all the interesting discussions throughout the years. H̊avard Johansen for his valuable
input and comments on this dissertation.

Thanks to all that in some way influenced the outcome of this dissertation without
knowing — friends, family, and colleagues at the University of Tromsø. Also a big thank
you to the Norwegian Research Council (NSF) who generously funded this work through
grant no. 112578/431 (the DITS program). The Department of Computer Science at
the University of Tromsø smoothly provided me with all the infrastructure required to
do the work on this dissertation. A particular thanks to Jon Ivar Kristiansen for helping
me with the test environment.

I would like to direct a special gratitude to my girlfriend Gøril and my sons Øystein
and Sverre for their faithful love, patience, and support.

iii

iv

Table of Contents

1 Introduction 1
1.1 Grid Computing . 2
1.2 Research Problems . 4

1.2.1 Robustness by Preventing Failures 4
1.2.2 Robustness by Tolerating Failures 5
1.2.3 Masking Failures . 6

1.3 Thesis Statement . 6
1.4 Methodology . 8

1.4.1 The Methodology in Practice . 9
1.4.2 Trace-based Simulations . 9

1.5 Context . 10
1.6 Summary of Contributions . 10
1.7 Dissertation Outline . 11

2 Mobile Agent Fault-Tolerance 13
2.1 Motivation . 13

2.1.1 Early Process Migration . 16
2.1.2 Worms . 20
2.1.3 Virtual Computers . 21
2.1.4 Observations . 22
2.1.5 Mobile Agent Systems . 22

2.2 Mobile Agent Computations and Failures 27
2.3 Replica Management . 27

2.3.1 Replicated State Machine Approach 27
2.3.2 Primary-Backup Approach . 29

2.4 Mobile Agent Fault-Tolerance . 29
2.4.1 Exactly-Once Properties and Blocking 30
2.4.2 Fault-Tolerant Mobile Agent Systems 31

2.5 Summary . 35

3 Characterizing Wide-Area Communication 37
3.1 Master-Worker . 37
3.2 Wide-Area Group Communication . 38

3.2.1 Group Communication Systems 39
3.2.2 Moshe . 41

v

3.2.3 Blocking . 43
3.3 Internet Packet Routing . 43

3.3.1 Internet Organization . 44
3.3.2 Border Gateway Protocol . 44
3.3.3 Routing Instability . 47
3.3.4 Asymmetric and Non-Transitive Communication 49

3.4 Wide-Area Group Communication in Practice 50
3.4.1 Trace Data . 51
3.4.2 Trace Analysis . 53

3.5 Summary . 55

4 Master-Worker Computations using Group Communication 57
4.1 The Algorithm . 57
4.2 Analysis of AX . 60

4.2.1 Simulation Results . 61
4.3 Summary . 63

5 Master-Worker Computations without Group Communication 65
5.1 Protocol Requirements . 65

5.1.1 Avoiding Blocking . 65
5.1.2 Avoiding Redundant Tasks . 66
5.1.3 Satisfying OMNI-DO . 66
5.1.4 Summary . 67

5.2 WAMW . 67
5.2.1 System Model . 67
5.2.2 Algorithm Structure . 67
5.2.3 Workers . 68
5.2.4 Masters . 69
5.2.5 Leases . 69
5.2.6 Task Allocation . 71
5.2.7 State Dissemination . 72

5.3 Worst-case Analysis of WAMW . 72
5.4 Assigning Leases . 73
5.5 Simulation . 74
5.6 Observations . 77
5.7 Mobile Agents and the Grid . 79
5.8 Summary . 79

6 NAP - Norwegian Army Protocol 81
6.1 Mobile Agent Computations . 81

6.1.1 System Model . 82
6.2 Derived Requirements . 83
6.3 Fault-Tolerant Mobile Agent Computations 83

6.3.1 Output Commit . 84
6.3.2 Example: License Checker . 85

vi

6.3.3 Backup Management . 86
6.4 Deriving a Specification of NAP . 88

6.4.1 Definitions . 88
6.4.2 SNAP: A Simple NAP . 90
6.4.3 Improving SNAP . 94
6.4.4 Termination of an Action . 96
6.4.5 NAP2 Specification . 98

6.5 From Specification to Implementation . 102
6.5.1 Fault-Tolerant Broadcast . 102
6.5.2 Fault-Tolerant Forwarding . 103
6.5.3 NAP2 Protocol . 107

6.6 Implementation . 111
6.6.1 TOS . 111
6.6.2 Agent Control Flow . 112
6.6.3 Specifying Actions . 113
6.6.4 State Management . 113
6.6.5 NAP2 Extensions . 115
6.6.6 Starting Agents . 117
6.6.7 Deterministic Failures . 118
6.6.8 Terminating Agents . 118

6.7 Network Failures . 119
6.7.1 Partitions . 119
6.7.2 Asymmetric Communication . 119
6.7.3 Non-Transitive Communication 120
6.7.4 Observations . 120

6.8 Summary . 121

7 NAP2 Performance Evaluation 123
7.1 Purpose . 123
7.2 Experiment Procedure . 124

7.2.1 Test Environment . 124
7.2.2 Samples . 125

7.3 NAP2 Latency . 125
7.3.1 TOS Performance . 126
7.3.2 Mobile Agent Performance . 129
7.3.3 Adding Places . 132
7.3.4 Checkpointing . 133
7.3.5 Removing Places . 137
7.3.6 Estimators Revisited . 138

7.4 Two Backup Management Strategies . 140
7.4.1 Transparent Backup Management 141
7.4.2 Network Aware Backup Management 141
7.4.3 Results . 142

7.5 Reducing Latency . 142
7.6 Summary . 145

vii

8 Discussion 147
8.1 Performance . 147

8.1.1 Broadcast Strategy . 147
8.1.2 The F1S Property . 148
8.1.3 State Optimizations . 149
8.1.4 Replica Placement . 150

8.2 Applicability . 152
8.2.1 Wide-Area Master Worker . 152

8.3 Other Issues . 154
8.3.1 Failure Detection . 155
8.3.2 Consensus . 156
8.3.3 Wide-Area Group Communication 158

8.4 Summary . 159

9 Conclusion 161
9.1 Results . 161
9.2 Limitations . 163
9.3 Future Work . 164

A Publications 181

viii

List of Figures

2.1 Comparison of RPC and mobile agents approaches to communication. . . 14
2.2 The model of mobile agent computations. 15
2.3 Execution flow of process migration. 16
2.4 Optimizations for process migration. 17
2.5 Replica management. 28
2.6 Mobile agent fault-tolerance with the replicated state machine approach. 30

2.7 Mobile agent fault-tolerance with Fatomas. 32
2.8 Mobile agent fault-tolerance with checkpoint managers. 34
2.9 Fault-tolerance in NetPebbles. 35

3.1 Partition with two components. 38
3.2 The application programming interface of group communication systems. 39
3.3 Moshe client-server interface for group membership. 42
3.4 Asymmetric and non-transitive communication example. 43
3.5 The organization of Autonomous Systems (ISPs) forming the Internet. . 45
3.6 Simplified BGP-4 session state machine. 46
3.7 AS1 announces its routes to AS2. 46

3.8 AS2 announces its routes to AS3. 46
3.9 AS3 routing tables after announcements from AS1 and AS2. 47
3.10 Asymmetric and non-transitive communication example. 50

5.1 WAMW spanning three subnets. 68
5.2 Difference between AX and WAMW execution times when there are no

partitions in the trace. The height of the bars depict the amount of time
AX uses in excess of WAMW for the same computation. 76

5.3 Comparison of WAMW and AX execution times when there are partitions
in the trace. 77

6.1 Stages of mobile agents x and y. 82
6.2 Fault-tolerant broadcast with a tree strategy. 102

6.3 Example mobile agent control flow with move operation. 114
6.4 NAP on TOS. 115
6.5 Message flow in NAP2. 117

7.1 Latency results of communicating a TOS message with and without
communication channel setup. 128

ix

7.2 Mean communication channel setup cost. 129
7.3 Cost of migrating an agent using move. 131
7.4 Latency of adding new places. 134
7.5 Latency of adding new places with 512 kilobyte payload. 135
7.6 Latency of updating state to existing place. 136
7.7 Latency of updating state of existing places for 512 kilobyte payload. . . 137
7.8 Latency of removing existing places. 139
7.9 Latency of removing existing places for 512 kilobyte payload. 140
7.10 Latency of transparent vs. network aware strategy for zero payload. . . . 143
7.11 Latency of transparent vs. network aware strategy for 64 kilobyte payload.144
7.12 Latency of transparent vs. network aware strategy for 512 kilobyte payload.144

x

List of Tables

3.1 Partitions in the four traces. Time values are given in seconds. 54

4.1 AX simulation results for traces with no partitions. Time values are given
in seconds. 62

4.2 The length of views. Time values are given in seconds. 62
4.3 Simulation with α = 0.5. Time values are given in seconds. 62
4.4 AX simulation results for traces with partitions. Time values are given

in seconds. 63

5.1 Maximum distance, where the time values in the first and second column
are given in seconds. 66

5.2 WAMW simulation results from traces with no partitions. Time values
are given in seconds. 75

5.3 WAMW simulation results from traces with partitions. Time values are
given in seconds. 75

6.1 Mobile agent operations modeled with the move operation. 113
6.2 Message attributes used by NAP2. 114

7.1 Latency results in milliseconds for established (E) and non-established
(N) channels. 127

7.2 The cost in milliseconds of executing move including the cost of setting
up communication channels. 130

7.3 The cost in milliseconds of adding new places, with the average value of
X in milliseconds for each payload. 133

7.4 The cost in milliseconds of updating places, with the average value of X
in milliseconds for each payload. 137

7.5 The cost in milliseconds of removing places, with the average value of X
in milliseconds for each payload. 138

7.6 The cost in milliseconds of executing transparent (T) and network aware
strategies (N). 143

xi

xii

Chapter 1

Introduction

The number of computers connected to the Internet with a broadband connection is
still growing rapidly [80]. Such computers provide a powerful foundation for new
distributed applications. As an early example of such an application, file-sharing
applications emerged with the infamous Napster in 1999 [70]. Napster is a client-server
application where the server maintains a centralized index that maps media files to the
user computers where the file is located. Users register the files they want to share in
this central index, allowing other users to search and download media. In contrast to
Napster, most file-sharing applications today act as both clients and servers in a so-called
peer-to-peer fashion. The main advantage of the peer-to-peer file-sharing applications
such as BitTorrent [75] and Gnutella [34], is that they operate without central servers.
The decentralized nature increases the availability of the service.

The success of file-sharing applications shows that the idea of resource sharing among
computers on the edge of the Internet has great potential for other kinds of distributed
application paradigms. One of the paradigms for sharing other resources than files is
applications for sharing CPU-cycles. In 1999, an alternative way of running massively
distributed computations on Internet computers emerged with the SETI@home project
[5]. The purpose of the SETI@home project is to detect intelligent life outside Earth
by analyzing radio signals from outer space using data from a telescope. The analysis
process requires a significant amount of digital processing, which can be performed as
a distributed computation. The approach for distributing the computation exploits the
fact that most computers connected to the Internet run a screen-saver program when the
machine is idle. Here, rather than running a regular graphical screen-saver, users can
share their CPU cycles for research by downloading and installing a specific SETI screen-
saver that participates in the distributed computation when the screen-saver program
normally runs. The concept of harvesting idle cycles this way has captured millions
of contributing users and has motivated numerous similar distributed applications,
for instance the protein folding research program called Folding@home [108], where
PlayStation3 owners can contribute cycles from their game console to help cure diseases
such as Alzheimer’s and Parkinson’s.

Although distributed computations like SETI@home and Folding@home have been
proven successful, they have limitations. Since the resources these computations employ
are centrally coordinated and maintained in research facilities or corporations [55],

1

users other than the initiators of the projects are unable to harvest from the farm of
contributed resources. Thus, this approach does not offer a general-purpose environment
for users that wish to run their own distributed computation. However, for such
requirements, an alternative resource sharing model exists in the more general approach
of grid computing [58].

1.1 Grid Computing

Grid computing is a computation model where users and organizations, called providers,
donate resources for the benefit of running distributed computations and applications
submitted by consumers. The resources together constitute what is known as the
grid. In some grids, providers cannot be consumers, but in most cases providers may
freely use grid resources. Unlike the resource requirements prevailed for instance by
file-sharing peer-to-peer networks, grid computation resources are not just related to
the requirements of file transfer. Rather, direct access to computers, the software
running them, storage, network and all other associated resources are assumed. The
main purpose of the grid technology is to facilitate access to these resources through
standardized protocols and interfaces.

The first grid computing applications emerged from scientific computing [72, 166],
large-scale distributed computing [19, 56], and collaborative environments [169]. Such
grid computing applications usually execute on computers located in several geograph-
ically dispersed organizations. Hence, grid computing applications are typically not
restricted to a single administrative domain. To handle this, grid consumers are
given the required credentials to access the grid resources through some sort of service
level agreement granted by the grid providers. The grid providers and consumers
which adhere to this agreement constitute so-called virtual organizations [58]. The
implementation of a virtual organization requires a means of secure authentication to
control which users are allowed to use the grid. Several approaches exist — some grid
computing system rely on existing authentication methods such as secure shells [16],
while others offer their own infrastructure [94]. As an example, consider the procedure
for providing to or consuming the resources available on the PlanetLab grid [137]. First,
the organization wanting to provide or consume resources appoints a person to join the
PlanetLab Consortium. A principal investigator is then appointed for the organization,
and is responsible for mediating PlanetLab resource access to the users within the
organization through secure shell credentials.

A commonly used approach to execute computations on the grid is themaster-worker
computation [162]. In a master-worker computation, a master process splits a program
into independent tasks, and distributes the tasks across a set of worker processes. The
parallelization gained from a master-worker computation may cause the time a program
takes to execute to be reduced significantly. However, since the same resources are shared
between several consumers, the performance improvement of this parallelization depends
on the ability of the grid to do resource management. In fact, global management of grid
resources is one of the key issues for scheduling an effective grid computation [96, 97].
The challenge stems from resource variation: grid computers may come and go, large

2

parts of the grid may become unavailable because of network failures, and the available
resources on a grid computer may vary.

A distributed computation paradigm called mobile agents, which emerged more than
a decade ago, has resurfaced in the context of grid computing [24, 57, 61, 62, 78]. In
essence, mobile agents are computer programs with the ability to explicitly move with
their state from one computer to another using the network as carrier. The ability
to move allows the mobile agent to adapt according to the available resources in its
environment. For instance, if the mobile agent requires more CPU than available on
the computer it is currently executing on, the agent may choose to move to another
computer. If the agent requires frequent data access across a long-haul network link,
the agent may choose to move itself closer to the data to avoid crossing the long-haul link
when accessing the data. The ability to adapt upon resource changes in the environment
makes mobile agents an attractive alternative to client-server interaction for finding,
aggregating and retrieving information on the Internet. With this in mind, there are
several properties of mobile agents that can be leveraged in grid environments, for
instance:

• Searching the grid for a particular type of resource during the computation or
before the computation starts [97, 178].

• Monitoring the progress of grid applications [78].

• Moving the grid computation executing at one computer to another computer
when there are lack of local resources [61].

• Upgrading and installing software required by the grid infrastructure or the grid
computation itself [178].

There are problems with deploying mobile agents on the Internet. One of the main
problems is how to establish a security model that satisfies both the requirements of the
users that will be hosting a mobile agent computation and the computation itself. For
instance, consider the security model offered by the Java Virtual Machine (JVM)1for
executing foreign code in web-browsers — although appropriate for applications in web-
clients, the default security model enforced for Java Applets is too restrictive for a
mobile agent application that needs to aggregate information from computers on the
grid. Nevertheless, from a security perspective, the deployment of mobile agents is less
of a problem in virtual organizations than on the Internet, since service level agreements
for resource access within the virtual organization already exist [137].

Security issues aside, another major challenge that faces the adoption of mobile
agents in grid environments, is how to make mobile agent computations robust enough
to sustain the life-cycle of potentially long-running grid applications [57].

1Java homepage: http://sun.java.com

3

1.2 Research Problems

Grid computing takes place on the Internet, and is thus subject to constant changes in
the available resources. If mobile agents are deployed in grid environments, they will be
subject to the same changes in available resources. Hence, to be robust, mobile agent
systems must implement mechanisms which enable them to tolerate failures that are
typical in grid environments, in particular:

• Crash failures, where a computer fails, or a program executing on a computer as
part of the computation fails or is forcibly pre-empted from the computer.

• Network failures, where the network link between two or more computers fails
because of problems in the network infrastructure.

Since mobile agents are subject to running within the contract of a virtual organization,
we assume that failures are not intended by the program or Byzantine [105]. There
are generally two approaches to implementing robustness towards failures in distributed
systems [9]: i) preventing failures by ensuring the integrity of the program and the host
environment where the program will be executing, and ii) tolerating failures by ensuring
that a computation is able to progress despite program failures.

1.2.1 Robustness by Preventing Failures

Crash failures can happen when the computer or the runtime environment where the
program executes fails. Mobile agents and grid computations are based on programs
submitted into the environment by users — if the program has a bug that causes it to
crash the host environment, the computation fails. Significant research efforts [129,181]
have been undertaken to ensure that programs such as mobile agents cannot compromise
the host computer and the environment they roam— in other words ensure host integrity
during execution of the program.

One approach to control whether a program will cause the runtime environment to
fail is to execute the program in a confined environment. Within this environment,
all resource access is governed by a set of security policies enforced by a reference
monitor in the runtime environment [6]. By doing so, an intentionally malicious or
bugged program cannot cause crashes that render the computer useless. One of the
software based approaches to confined environments is sandboxes [181], a mechanism for
trapping errors caused by illegal memory accesses. More recent examples of sandboxing
are programming language runtime environments like the JVM or the .Net Common
Language Runtime2, that ensure memory safety for programs using the runtime. In
addition to memory safety, these virtual machines allow high-level application-specific
security policies to be enforced, for instance that no network connection can be made
after a file has been read. Such policies are useful to restrict access to resources that
can cause the computer to crash upon misuse. Although they do not offer specific
interfaces for expressing security policies, virtualization of hardware through systems like

2.Net homepage: http://www.microsoft.com/net

4

VMWare [172] and Xen [15] allows programs to be run without being able to compromise
the host system.

A problem with too restrictive security mechanisms, like the ones used when
executing Java Applets, is that the policy may conflict with the resource requirements
of the programs running on the grid. Programs executing on the grid may require
unrestricted access to all resources on the grid computer. A security policy that denies
access to for instance stable storage may thus be in conflict with the requirements
of the grid program. Here, using virtualization through hardware or a memory safe
language environment would be more appropriate since it allows programs to execute
in an environment similar to the host environment with respect to resources. Given
appropriate vertical resource management across the virtualized computers running on
the same host, several computations would be able to coexist on the same host with
some notion of resource fairness.

An alternative to the use of sandboxing is to verify that the program is benign by
using techniques such as proof-carrying code [129]. The idea is that the environment for
executing a program has established a set of rules that guarantees safe execution of the
program. The author of the program gives a formal proof along with the program that
can be validated against the safety rules of the execution environment. The advantage
of this approach is that the execution environment can be made simple and fast. The
disadvantage is that expressing the formal proof is difficult and would in practice place
an unwanted burden upon the author of the program.

Regardless of whether a host integrity mechanism could be employed on a grid
environment, the mechanism would not be able to prevent network failures because
of problems in the network infrastructure. Network failures can cause the operation
of moving an agent from one computer to another to fail. In addition, although
virtualization and sandboxing may provide safe environments for executing programs,
they cannot prevent failures or security holes in the software or hardware that
implements the virtualization. Hence, given the inability to prevent network failures
and program crashes, we require a mechanism to tolerate the failure of a mobile agent.

1.2.2 Robustness by Tolerating Failures

If program failures cannot be prevented, we need to utilize mechanisms for tolerating
failures. In the field of fault-tolerance, such mechanisms require some means of
replication, which in the case of mobile agents means replicating the mobile agent
program to mask the effect of a failure. Replicating a service in a distributed system
requires consistency among the replicas. Consistency is ensured by a replication protocol
[73]. There are two major approaches to replication that ensure consistency:

• Replicated state machine approach, where identical instances of the program
execute in parallel [158].

• Primary-backup approach, where a single instance of the program is executed by
the primary and one or more identical instances, or backups, are ready to recover
the program if the primary fails [28].

5

In the context of this dissertation, a distributed computation is defined as fault-
tolerant if it tolerates crash failures and network failures, either through the use of a
replicated state machine approach or a primary-backup approach. We now outline how
crash and network failures are masked by a fault-tolerant system.

1.2.3 Masking Failures

Primary-backup approaches typically use a failure-detector [33] that periodically sends
probe messages to other programs to establish whether these have crashed. A program is
detected as crashed if it does not reply to probe messages in a timely manner. Recovery
of the crashed program is done by rolling the system back or forward to a consistent
state.

A problem with failure detectors is that they cannot reliably detect failures when
the environment they execute in is subject to asynchrony [33]. Asynchrony can occur
when a network failure causes parts of the network to be isolated, or when a program
executes too slowly to respond to probe messages from a failure detector in a timely
manner. This means that backups in a primary-backup system can falsely detect a
primary as crashed. A false detection of a crash can lead to a redundant invocation of
the recovery procedure, resulting in two primaries.

The replicated state machine approach executes multiple instances of the program
in parallel. As long as there is a majority of programs within a network of
connected computers, the computation makes progress even when some computers
cannot communicate with the rest. The fundamental problem with replicated state
machine approaches, however, is that they waste resources in failure-free runs because
of the execution of multiple program instances in parallel. In grid environments where
computations may execute for a long time and resources are shared among consumers,
replicated state machine approaches are undesirable and primary-backup approaches are
likely to consume less resources. This is one of the reasons why many grid environments
use primary-backup approaches with rollback recovery for fault-tolerance [42].

1.3 Thesis Statement

Mobile agent computations have several benefits that can be leveraged in grid
environments, for instance the ability to adapt upon changes in the network topology.
Operating in this environment, however, exposes mobile agent computations to failures
that must be tolerated. Thus, in this dissertation we investigate different approaches to
providing fault-tolerance for mobile agent computations executing in grid environments.

A number of mobile agent systems have addressed the issue of fault-tolerance in the
presence of crash and network failures [41, 126, 128, 140, 151, 164, 165]. An important
problem is striking a balance between blocking the computation to enforce exactly-
once [141] execution of computation and at the same time ensuring the computation
makes progress. Enforcing the exactly-once property in an environment where network
failures occur may require that the computation blocks for an unbound amount of time.
Some systems allow duplicate agents to ensure progress [132, 165], while other systems

6

block until the network stabilize [140] to avoid duplicate agents. An alternative approach
to enforce exactly-once behavior is to make all operations performed by the mobile agent
take the form of transactions. Doing so allows the effects of the operations to be rolled
back in case a network failure triggers the creation of a redundant agent [128,151,165].
A simpler technique to enforce exactly-once behavior in mobile agent computations is
to statically set up the replication strategy according to the network topology before
the computation starts [41,61]. The purpose of this approach is to reduce dependencies
on weak communication links.

One benefit of mobile agent computations compared to conventional distributed
computations is the ability to explicitly adapt the computation based on knowledge
of the network topology. By explicitly adapting to the network topology, a mobile
agent computation is network aware and can minimize exposure to weak communication
links. We conjecture that mobile agent fault-tolerance also benefits from being network
aware instead of having replicas being managed transparently to the computation. More
specifically, the thesis of this dissertation is that:

Network aware fault-tolerance provides similar benefits over transparent fault-tolerance
that mobile agents provide over conventional distributed computing.

To evaluate our thesis, we devise a protocol for mobile agent fault-tolerance. This
protocol provides network aware fault-tolerance. The strength of the thesis is determined
by the following properties:

Performance. Supporting network aware fault-tolerance requires a protocol that
allows the mobile agent to adapt fault-tolerance when required. However, the latency
overhead of executing such a protocol may outweigh the performance benefits compared
to a protocol that transparently manages fault-tolerance. Despite this, our hypothesis
is that our network aware fault-tolerance protocol allows adapting to changes in the
topology faster than a transparent fault-tolerance protocol. We will test the validity of
this hypothesis by comparing the performance of our protocol for network aware fault-
tolerance and a protocol for transparent fault-tolerance. Confirming this hypothesis will
strengthen the thesis.

Applicability. The applicability of a system is hard to quantify. However, we
have two requirements that must be satisfied for our thesis to be relevant. The
first requirement is to ensure that our solution to network aware fault-tolerance is
relevant. Doing so requires that we establish how communication behaves in grid
environments. Second, the applicability of our mobile agent fault-tolerance beyond
mobile agent computations indicates that our protocol is sufficiently general to be
applied in distributed computations without mobility. Thus, we must show that
our mobile agent fault-tolerance has applicability outside the field of mobile agent
computations and that existing distributed systems can be amended for and benefit
from applying our protocol.

Although this dissertation mainly focuses on the issues of adapting to the network
topology, we conjecture that our results can be generalized to adapting to other resources

7

exposed by the underlying system, such as CPUs, disks or software.

1.4 Methodology

While the debate whether or not computer science is a science has been long and
controversial, computer science is known to satisfy all requirements for scientific research
[44, 53].

In scientific research, there are several methods for testing theories and hypotheses.
One of the most applied methods in natural sciences is the hypothetical-deductive
method. The hypothetical-deductive method is the process of executing four steps:
i) identifying the hypothesis to test, ii) making predictions based on the hypothesis, iii)
checking the validity of the hypothesis with experiments, and iv) rejecting, modifying
or accepting the hypothesis.

Although not cited explicitly, the hypothetical-deductive method is fundamental to
the work of the ACM Education Board which defines an intellectual framework for the
discipline of computing [39]. This framework divides the methods of computer science
in three categories:

1. Theory, which is rooted in mathematics.

2. Abstraction, which is rooted in the experimental scientific method.

3. Design, which is rooted in the field of engineering.

The paradigm of theory consists of executing four steps for the purpose of establishing
a theory. First, the objects which are to be studied are identified, and form the basis of a
definition. Next, the relationship between the objects are posted as hypotheses, forming
the basis for theorems. Subsequent proofs then determine whether the relationships are
true, and finally the results are interpreted.

The paradigm of abstraction consists of executing four steps for the purpose of
investigating a phenomenon. First, a hypothesis is proposed. Next, a model is
constructed and predictions are made based on this model. An experiment is then
designed and data is collected based on the executing this experiment. Finally, the
results are analyzed. As with the hypothetical-deduction method, the scientist is
expected to iterate these steps if the experiments differ with the predictions of the
model.

The paradigm of design consists of executing four steps for the purpose of solving
specific problems during construction of a system. First, the requirements are
stated along with specifications for the system. Next, the system is designed. An
implementation is then created based on the design specification. Finally, the resulting
system is tested. As with abstraction, the steps are iterated if the system does not
match the specifications.

The following section elaborates on how we have applied the methodology in practice.

8

1.4.1 The Methodology in Practice

Theory, design and abstraction are intertwined and it is usually hard to separate them
from one another [39]. This is also the case in this dissertation.

In the category of theory we devise algorithms for master-worker computations and
mobile agent fault-tolerance. Both these algorithms must expose properties that are
advantageous for computations in grid environments. Thus, the process of devising the
algorithms involves logical reasoning based on satisfying properties that are realistic in
grid environments. Through mathematical and logical analysis of the algorithms we
evaluate that the requirements are satisfied.

In the category of abstraction we observe and analyze the behavior of executing
two algorithms for master-worker computations in a simulated environment that is
similar to the environment where the algorithms are assumed deployed. The purpose
is to investigate how communication behaves in grid computing environments and how
communication affects the performance of our algorithms. Simulations allow analysis
of a complex environment — a particular advantage is that deterministic algorithms
can be re-executed with completely reproducible results. Thus, we use simulations to
establish how our algorithms behave, and to evaluate whether the algorithms satisfy
predicted behavior.

In the category of design, we start by inferring initial requirements for our mobile
agent fault-tolerance by analyzing the requirements and results from existing mobile
agent systems in the literature. We then extend our initial requirements with the
requirements and results from running simulations of master-worker computations in
grid environments. The design step of the resulting system involves a number of
iterations, where different properties of the systems are balanced against each other. We
first devise and implement a protocol that provides mobile agent fault-tolerance, and
evaluate the performance of the resulting system. We then evaluate the applicability of
our fault-tolerance approach by extending a non-mobile application with our protocol
for the benefit of gaining fault-tolerance. Analysis of the result will either confirm, reject
or require the thesis of this dissertation to be modified.

1.4.2 Trace-based Simulations

Parts of the requirements for our mobile agent system are based on the results from
analysis of simulations of algorithms. Unfortunately, there are no accurate existing
models of network connectivity that would allow us to analyze network communication
behavior for complex algorithms such as the Moshe group communication system [95].
This makes it difficult to analyze the behavior of the proposed algorithms based on
implementing the algorithms and measuring their performance, as would be required to
satisfy the design category of computer science. Hence, we have followed other similar
work [4, 13] and resorted to using network traces.

We also considered using the traces from the All Pairs Pings project in the PlanetLab
environment [137]. However, since our analysis requires ping messages to be sent with
high frequency between all participants, the traces did not possess the required fidelity.
We considered creating our own version of the All Pairs Pings project to avoid this

9

problem, but discovered that more aggressive ping measurements than used in the All
Pairs Pings projects are discouraged by the PlanetLab service level agreement.

1.5 Context

This dissertation has been written as part of the Tromsø And COrnell Moving
Agents (TACOMA) project [88, 92] at the University of Tromsø. The purpose of the
TACOMA project has been the continuous development and refinement of a mobile
agent infrastructure to complement classic distributed communication paradigms such
as Remote Procedure Calls (RPC) [27] . The focus has been on how to structure the
agent and the agent support environment, providing security mechanisms to ensure
the integrity of the host that executes the agent, and providing appropriate fault-
tolerance mechanisms — in short, the system support required by an agent computing
environment.

The TACOMA project conjectured the need for mobile agent fault-tolerance from
the outset, and was one of the first mobile agent projects to publish algorithms for
mobile agent fault-tolerance in the research community [89, 92]. The problem domain
of this dissertation emerged directly from this focus.

1.6 Summary of Contributions

The following are the main contributions of this dissertation:

• We have evaluated a group communication system called Moshe [95] and a master-
worker algorithm called AX [66] and found that their performance depend heavily
on the amount of network instability.

• Based on our evaluation of Moshe and AX, we have devised WAMW, an
alternative master-worker algorithm. Although WAMW has a much higher
message complexity than AX, it completes the same computations significantly
faster.

• We have designed, implemented and evaluated NAP, a mobile agent fault-tolerance
algorithm. NAP is based on the primary-backup approach to fault-tolerance, but
allows backups to be rearranged during the computation to adapt to resource
changes in the execution environment.

• During development and evaluation of NAP, we refined and implemented a new
version of our mobile agent platform that hosts NAP. We performed a number
of scalability optimizations and present a performance evaluation of the resulting
system.

• For the evaluation of the applicability of NAP, we have devised a version of WAMW
that uses NAP to improve its fault-tolerance within a local area network.

10

The work of this dissertation has resulted in a novel mobile agent fault-tolerance protocol
that provides mobile agents with the ability to adapt to changes in the network topology,
and thus reduces exposure to weak communication links.

1.7 Dissertation Outline

This chapter has given the motivation for this dissertation, the research problems and
the thesis statement. We then examined our methods and summarized the contributions.
The rest of this dissertation is structured as follows:

• Chapter 2 gives the background for process migration, mobile agents, and fault-
tolerance. We identify the general tradeoffs in providing mobile agent fault-
tolerance.

• Chapter 3 investigates the execution environment which we assume for this
dissertation. We do so by evaluating two master-worker algorithms. We identify
what types of network failures happen on the Internet, why they occur, and their
performance impact.

• Chapter 4 evaluates the performance of a master-worker algorithm called AX that
is based on group communication.

• Chapter 5 presents an alternative master-worker algorithm called WAMW that
is based on flooding and leases. We evaluate the performance of WAMW and
compare the results with algorithm AX.

• Chapter 6 presents the design and implementation of our mobile agent fault-
tolerance protocol, called NAP.

• Chapter 7 evaluates the performance of NAP, and also gives estimators that can
be used to predict the performance of a mobile agent computation with NAP.

• Chapter 8 discusses our findings, where we start by describing alternative solutions
to replication. We then discuss our assumption on perfect failure-detectors and
end by discussing the applicability of our work.

• Chapter 9 concludes and suggests future work.

11

12

Chapter 2

Mobile Agent Fault-Tolerance

Investigation of prior work precedes the process of proposing new solutions. We divide
this investigation in two parts. The first part is formed by this chapter and characterizes
the concepts of mobile agents and mobile agent fault-tolerance. The second part is
given in the subsequent three chapters, where we analyze the behavior of a common
grid computation when deployed on the Internet. Together, these two parts provide the
background for devising a mechanism for mobile agent fault-tolerance.

In this chapter we start by presenting early works in process migration and continue
by investigating mobile agent systems. We then present the two approaches to replica
management in the field of fault-tolerance. Based on this, we continue with related work
on mobile agent fault-tolerance. The chapter ends by establishing initial requirements
for our mobile agent fault-tolerance mechanism based on the investigation of prior work.

The areas investigated in this chapter span a large amount of research, and several
excellent survey papers provide more in-depth information than space allows in this
dissertation. For process migration, consider [124], mobile agent fault-tolerance is
surveyed in [141], while [60] gives a thorough taxonomy for code mobility.

2.1 Motivation

Mobile agents emerged almost two decades ago as a novel way of structuring distributed
computations [182]. One of the key problems that motivated the introduction of
mobile agents was the performance problem with RPC [27] over weak communication
links. This problem was particularly strengthened by the introduction of ad-hoc
communication infrastructures in industrial domains where communication links are
fundamentally poor — for instance, fishing vessels in the Arctic sea where sea waves
and the curvature of the earth weaken signals, or vehicles located far away in
outer space where the distance itself makes the signal latency extremely long [86].
Such circumstances, coupled with the increasing Internet-wide communication, made
communication-intensive distributed computations with RPC challenging.

The classic difference between the RPC and mobile agent approaches to communi-
cation is depicted in Figure 2.1. On the left side we have a client that communicates
messages with a server as part of a distributed computation. The client issues a request

13

Client Server

A
gent

S
erverClient

RPC Approach Mobile Agent Approach

Figure 2.1: Comparison of RPC and mobile agents approaches to communication.

message, and the server sends a response message. There are two main performance
problems with this approach. First, if network communication between the client and
the server suffers from long message latency, then the interaction between the client
and the server may become significant to the total execution time of the computation.
Second, if network communications between the client and the server has low message
bandwidth, a request or response with a large message size may cause an increase in the
total execution time of the computation.

On the right side of Figure 2.1, we have a mobile agent that is sent from the client
to the server. The mobile agent implements the parts of the client that need to interact
with the server. This approach reduces the number of network interactions between
the client and the server to two, or one if the client does not require a result from the
computation. In addition, all subsequent interactions between the client and the server
are through local procedure calls and thus not subject to the performance of network
latency or available network bandwidth.

Besides reducing network load and overcoming network latency, mobile agents are
known for the following advantages [36, 106]:

• Protocol encapsulation. A mobile agent can implement and encapsulate legacy
communication protocols and interfaces between the server and the client, which
better facilitates subsequent protocol or interface upgrades.

• Asynchronous execution. Computations can be embedded in the mobile agent,
and then sent to a server (or set thereof) for execution. After being sent from the
client, the agent no longer depends on the client and can execute autonomously and
asynchronously, even if clients are intermittently disconnected. Later, the agent
may communicate with the client to exchange the result of the computation.

• Adaptivity. Mobile agents can be programmed to adapt to changes in the
execution environment if the environment is not suitable or lacks appropriate
resources.

• Heterogeneity. Mobile agents do not depend on the hardware or the software
platform where the mobile agent environment executes. Rather, this is abstracted
away by the mobile agent environment, which makes mobile agents suitable for
system integration tasks.

14

Place 1 Place 2 Place N-1 Place N.....

Stage 1 Stage 2 Stage M-1 Stage M

Migrate Migrate

.....

Figure 2.2: The model of mobile agent computations.

There are several factors that influence whether or not a mobile agent computation
will have better performance than the corresponding RPC computation. Although the
number of network interactions can be reduced, the cost of sending the agent from the
client to the server can still be high if the agent and its associated state are large.
The same applies for the result sent from the server to the client after the agent has
completed its execution. A more fundamental overhead with mobile agents compared
to RPC is the additional costs incurred by setting up and maintaining an execution
environment for the agent at the server. In one mobile agent system, the cost of sending
a minimal agent from the client to the server was found to be over 20 milliseconds [90],
where a corresponding minimal RPC call would take just over 5 milliseconds.

Computational Model

The mechanisms for capturing the state of the agent, sending the state over the network,
and resuming execution at the server (i.e., migrating the agent), is often the key
differentiator among mobile agent systems. While there are many approaches to the
implementation of migration in mobile agent systems, the migration itself is only one
part of the computational model for mobile agents.

From a logical point of view, a mobile agent computation consists of a sequence of
stages where each stage is executed by the mobile agent system, or place, running on
a computer. A place can execute several stages during the same computation. The
execution of each stage is terminated when the agent migrates to a place, which causes
the next stage to be started. When there are no stages left to execute, the computation
terminates. The sequence of places that the agent visits during the computation is called
the itinerary of the agent, which is why this model of computations is commonly known
as an itinerant computation. A mobile agent computation is depicted in Figure 2.2,
where M stages are executed on N places before the agent terminates.

Before investigating how various mobile agent systems are designed and implemented
with respect to this computational model, we give an overview on the mechanisms
that influenced the design rationale for many mobile agent systems, namely process
migration [124].

15

2)
 T

ra
ns

fe
r s

ta
te

Time

Destination

Source 1) Suspend execution

3) Resume execution

Figure 2.3: Execution flow of process migration.

2.1.1 Early Process Migration

The process in process migration systems originates from the process definition in
operating systems, and consists of data, stack, registers and other operating system
specific state related to open files, network connections and memory management. At
least one thread of control is associated with a process, where each thread has its own
stack and registers. Process migration is the procedure of transferring the process from
one computer to another computer and resuming execution without affecting the control
flow of the process (i.e., as transparently as possible). The main policy issues in process
migration include determining when to move, where to move, what to move, and who
decides to move. In this overview we focus on the issues of what to move, and how to
move.

Process migration emerged in the early eighties for some of the same reasons as mobile
agents: if a process lacks access to either a local resource or some remote resource must
be accessed locally, the process can be migrated to the computer where the resource
can be accessed. Another advantage is that long running processes can, if notified in
advance, be migrated to another computer if the current computer is to be shut down.
Migrating a process from one computer to another is also attractive for load-balancing
or resource sharing purposes. Figure 2.3 shows the execution flow of a process migration,
which consists of three main steps:

• Suspending execution. A process is executing at the source computer when
execution is suspended in step 1.

• State transfer. The state of the process is transferred to the destination computer
as step 2. The state typically consists of process related information such as the
memory image, program counters, and open descriptors (for files, sockets, etc.).

• Resuming execution. When the state has been transferred, execution is resumed
at the destination computer in step 3.

The execution flow depicted in Figure 2.3 shows the case where the process does
not resume execution before being completely transferred to the destination computer.
The benefit of the direct-copy approach in Figure 2.3 is that the resources occupied by
the process at the source computer can be relieved when transfer has completed. If we,

16

Time

Destination

Source
1)

2)

3)

4)

(a) Pre-copy

Time

Destination

Source
1)

2)

3)

(b) Lazy-copy

Figure 2.4: Optimizations for process migration.

however, allow the process to start execution at the destination before the entire state has
been transferred by using lazy-copy or copy-on-reference approaches, the performance
of the migration can be improved. Rather than copying state on demand, performance
can also be improved by copying state before the process is migrated, as in the pre-copy
approach. One of the fundamental problems in migrating a process is that sometimes
the complete process state cannot be migrated, leaving residual dependencies on the
source computer. Residual dependencies imply that operations on files or resources that
have not been migrated to the destination computer must be routed through a local
proxy that transparently communicates with the source.

Process migration can be implemented in a variety of ways, from first approaches
with message-passing in DEMOS/MP [143], with kernel support in the Sprite [130] and
V [35], to user-level libraries in Condor [114]. We now explain how DEMOS/MP, Sprite,
V and Condor solve the issues related to the migration procedure.

DEMOS/MP

DEMOS/MP [143] is a distributed system based on the use of message-passing, a
characteristic inherited from the earlier DEMOS operating system for the CRAY-1 [17].
Messages in DEMOS/MP are sent on links, and a link is associated with a process.
Processes that are willing to accept messages are responsible for creating the link. A
link can also be sent in a message to allow other processes to use it, but the link still
points back to the originating process.

The process migration mechanism in DEMOS/MP implements the direct-copy
approach where the process at the source is frozen and incoming messages on the links
associated with the process are buffered in the link queues. The destination is then
requested to migrate the process and allocates the necessary process state. All process
related state is then transferred to the destination. After this step has completed,
control is resumed to the source and buffered messages are then sent from the source
to the destination. All state at the source is cleaned up, and a forwarding address is
created and points to the last known computer where the process was executing. Finally,
execution of the process is resumed at the destination.

Since the use of message-passing is pervasive for both operating system services and
the kernel in the DEMOS system, the actual implementation of the process migration

17

mechanism is slightly simplified. The only extension of the original system to support
migration is the addition of forwarding addresses and mechanisms for updating links
to reflect the current location of the process. After a process has migrated, a message
is sent on every link to update the forwarding address to the current location, which
avoids long chains of forwarding addresses. The residual dependencies of a process in
DEMOS/MP are bound by the number of links the process has when migrated. A major
disadvantage is that this makes the migrated process induce load on the source after
being migrated. The migrated process is also vulnerable to failures both at the source
and the destination computer. Other systems like LOCUS [142] and Charlotte [8] use
the same direct-copy approach as DEMOS/MP.

The V System

The V kernel project aimed at providing network transparency for interprocess
communications while preserving high performance [35]. The motivation for introducing
process migration in V was the desire to use idle workstations as a pool of computers
that users could harvest upon demand. When users logged in on computers that host
migrated programs, these programs would then be pre-empted and migrated to another
computer as quickly as possible.

A requirement for V was that the migration procedure should cause minimal
interference and blocking of the process being migrated. This means that the time
that is spent on state transfer in Figure 2.3 should be made as small as possible. After
migration to the destination, there should be no residual dependencies to the source.
The argument here is that residual dependencies induce load on the source computer,
which defeats the purpose of migrating a process for performance reasons.

All processes in the V system are identified by a globally unique identifier (pid).
The pid is used in all interprocess communication calls as well as in the migration
primitives and makes the V system network transparent. Doing so helps keeping the
execution environment for processes transparent, since all references that are outside the
V address space use pids. Some references that are tied to local resources such as frame-
buffers and audio devices cannot be migrated, and applications using these resources
can thus not be migrated. The address space in V is identical across all computers in
the system, which aids keeping transparency within the address space of the process.
The process migration mechanism in V was the first to use a technique called pre-copy.
The mechanism involves the execution of four steps, as visualized in Figure 2.4a:

1. Initialize and prepare the destination for the incoming process.

2. Continuously copy the address space of the process at the source to the destination
until the number of dirty pages is sufficiently small.

3. Freeze the source computer and finish the migration by sending pending dirty
pages since step 2.

4. Resume the process at the destination, remove residual dependencies to the source
by rebinding all references outside the address space.

18

A predefined number indicates the amount of dirty pages that is sufficiently small to
terminate the algorithm. It has been shown that termination usually requires only two
or three rounds before the dirty set is small enough to start the freeze in step 3 [35].
This means that the freeze time of the process can be made very small, since it only
involves the transfer of a few dirty pages. All state that is not globally accessible in V
(e.g., local files) is part of the state that is migrated from the source. This means that
the actual pre-copy step could take considerable time if the process has opened large
files.

When pre-copy has completed and the source is frozen, the process at the destination
assumes the logical host id of the source computer to allow processes that communicated
with the migrating process to send messages to the process at the destination while the
source is frozen. After all state has been transferred, communication endpoints are
removed at the source, and the interprocess communication primitives in V ensure that
other processes re-establish communication endpoints at the destination.

Sprite

The Sprite [130] project is a network operating system whose main design goal is that
computers should be made available as a time-shared computer, but still retain the
performance of an individual computer. If a computer that hosts a migrated process is
occupied by a user, the migrated processes should be pre-empted from the computer.
The idea is based on the same principle as SETI@Home [5] and V: without local
autonomy of the computer, users would not run foreign processes in the first place. In
addition, a process should, regardless of migration, be unaware of its network location
during execution.

Migration in Sprite is transparent, and based on the concept of a home machine. The
home machine is the computer where a process originates from. If a process is migrated,
the Sprite operating system ensures location transparency by forwarding most system
calls to the home machine. A significant part of Sprite is a distributed file system that
allows all file related calls to be performed locally. If a migrated process executes on a
computer and a user returns to use that computer, the migrated process is evicted and
migrated back to its home machine. The migration mechanism in Sprite, involves the
execution of the following steps:

1. The source determines what constitutes the state of the local process, allocates a
buffer that holds the state, and flushes its virtual memory to the file-server.

2. The source sends the buffer to the destination through RPC, and upon receipt the
destination prepares the environment of the process, such as ensuring that open
files are transferred.

3. The source sends an RPC to the destination, telling it to resume execution of the
process, and cleans up the buffer allocated in step 3. The process at the destination
demand-pages the process image from the file-server.

19

All system calls that are executed on the home machine cause a residual dependency
in Sprite, which means that migrations still induces load on the home machine, as well
as the migrated process depending on the home machine not crashing.

The Sprite process migration technique is known as a variation of the copy-on-
reference, or lazy-copy approach introduced by Edward Zayas [185]. Lazy-copy was
first used by the Accent system [145] and later in Mach [125]. In Accent, the migration
procedure consists of the three steps visualized in Figure 2.4b: 1) all process state except
memory is sent to the destination, 2) the process starts execution at the destination,
and 3) process memory is demand-paged from the source to the destination. The main
advantage of the approach in Sprite compared to Accent is that there is no dependency
on the source keeping the process image after migration in Sprite. Sprite, however,
requires more communication since the process image is first flushed to the file server
and then paged in by the destination afterwards.

Condor

Condor [114] is a system that runs entirely in user space and supports checkpointing
and process migration for distributed computations [113,115]. Like many other process
migration systems, the main design goal for Condor was motivated by the needs to
harvest unused capacity for long-running computations.

When a process is migrated in Condor, a large part of the environment from the
source is transferred and reproduced at the destination. The migration is performed
by checkpointing the entire process state and is provided through a user level library
that all processes that use checkpointing must link to. The library provides system call
wrappers that allow Condor to track the state of the process, for instance open files.
The Condor checkpoint mechanism is expensive and requires the entire process image to
be written to disk (comparable to direct-copy), and is thus not suitable for short-lived
processes.

By default, Condor assumes that files are located at the same paths on the source
and destination computers. Condor also supports file systems that are not shared
through the use of shadow processes that execute on the source where the checkpoint
was performed. The Condor process at the destination communicates with the shadow
process at the source through RPC (e.g., for file access), after migration. Condor is not
as transparent as V and Sprite, and there are many limitations in addition to requiring
processes to link with a special library. For instance, Inter-Process Communication
(IPC) is not supported, nor are system calls like fork and exec.

2.1.2 Worms

The early process migration systems focused on providing support for transparent
process migration. Contemporarily, another approach, called “worms” [163], emerged
where the migration was cooperative. Instead of hiding migration from the process, the
process was instead programmed with migration in mind. The idea of a worm originates
from the nature of the reptile, where a computation moves through the network in a
crawling fashion. The computation being processed by the worm is distributed to several

20

segments, and each segment occupies at least one computer. If a segment fails, other
segments try locating an appropriate computer where the failed segment can be re-
instantiated. The code in the worm consists of three main parts. First, bootstrap code
that is executed on the first computer. Second, bootstrap code that is executed on
subsequent computers. Third, the computation the worm should do, including the code
for the mechanism that keeps the worm computation running. The mechanism that
maintains the lifecycle of the worm can be split into the following steps:

• Locate computers. This forms the basis for creating segments and is executed by
the bootstrap code by the first computer.

• Boot computers with the bootstrap code embedded in the worm. The environment
hosting the worm normally bootstraps computers from file servers, which is the
procedure the worm replaces.

• Maintain the worm through continuous communication between segments to detect
failed segments. Failed segments are re-instantiated on another computer.

• Terminating the computation by rebooting the worm computers.

The Worm is appropriate for distributed applications that require robustness, such
as distributed alarms or diagnostics tools.

Internet Worm

The classic Internet Worm [167] was written by Cornell student Robert Morris and
launched in 1988. The purpose of the worm was not intentionally malicious, but rather
an attempt at measuring the number of computers connected to the Internet. However,
the worm code had a problem that caused multiple instances of the worm program
to occupy each computer, ultimately slowing the computer down. The Internet Worm
migrated by exploiting weaknesses in Unix passwords, the sendmail program, rsh, and
finger. The number of computers that where affected by the Internet Worm is reported
to around 6000 [46], approximately 10% of the computers connected to the Internet at
the time.

The Internet Worm and the Worm [163] both share the same weakness since an error
in the worm program can cause it to execute without bounds and thus become difficult
to terminate.

2.1.3 Virtual Computers

Recently, the interest in computer virtualization as implemented by VMWare [172] and
Xen [15] has produced systems that support migration of virtual computers [38, 155].
The idea is that rather than supporting migration within the operation system, the
entire virtualized operating system and its state are migrated to the destination. This
is possible by piggybacking on the virtual monitor layer of the virtualization software.

The project described in [155] is built on top of the VMWare GSX virtualization
software for x86 processors. When running a virtualized operating system, the image

21

representing the virtualized system may occupy hundreds of megabytes. The motivation
for the project is how to migrate this system image, say from the work environment of
the user to the home environment, as fast as possible. The abstraction used for migration
is called a capsule, and represents the state of the virtualized system. The project uses
several optimizations for transferring capsules, such as tracking modified disk pages
for the capsule with a copy-on-write mechanism, demand-paging capsule pages at the
destination, using checksums on data to avoid redundant copies to be sent, and tracking
which memory pages are actually used by the virtualized operating system. These
optimizations allow a migration of a virtualized environment with 256 MB of memory
and 4 GB of disk in as little as 20 minutes on a 384 kB/s link.

The project described in [38] takes the idea of migrating a virtualized operating
system one step further by allowing migration while the system is running by using the
pre-copy technique from V. They run several experiments where the virtualized system
executes a web server and a game server for Quake 3, where the measure of success
is the amount of downtime due to migration. By carefully tuning when to freeze the
pre-copy stage, these servers both achieve downtime well under 1 second, which is close
to imperceptible in practice.

The problem with both these approaches is that the cost of migration is still high
and requires significant network resources, which makes them unattractive for migration
across communication links with limited bandwidth.

2.1.4 Observations

Transparent process migration, or strong mobility [60], as implemented in Sprite and V,
requires significant support from the operating system kernel. Most computers today
do not run a distributed operating system, and process migration is not supported in
operating system kernels like Linux1or Microsoft Windows2. Without kernel support,
determining the state that is to be migrated and reincarnating the state of the process
at the destination computer becomes difficult, which is evident from the complexity of
adding the limited checkpoint transparency in Condor [113, 115].

Another major problem was the focus on homogeneous environments within local
area networks. The work on virtual computers also share some of the problems of the
early process migration systems, and require homogeneous environments and significant
bandwidth to perform well. The Worm from Schoch and Hupp has a very specific
purpose, which is to use idle workstations for a parallel computation. While robust in
execution, the programming model is too constrained to be generally applied.

2.1.5 Mobile Agent Systems

When mobile agent systems emerged with Telescript in 1994, the deployment of the
World Wide Web was growing fast. Since agents were assumed to execute in the same
environment as the Web, mobile agent systems had to be built with hardware and

1Linux homepage: http://www.linux.org
2Windows homepage: http://www.microsoft.com/windows/

22

software heterogeneity in mind. Thus, rather than depending on direct kernel support
for migration, mobile agent systems are normally implemented as middleware between
the mobile agents and the operating system.

Another emerging technology at the time was the Java programming language and
the Java Runtime Environment. Java offers support for safe execution of programs,
suitable mechanisms for serializing program state and objects, as well as providing a
runtime environment running on most available operating systems today. These features
of Java make it attractive for implementing mobile agent systems, and caused numerous
systems to be based on it [18, 67, 107].

The complexity of supporting strong mobility is one of the main reasons why many
mobile agent systems only support weak mobility [60], where the state that is part of
the migration is explicitly managed by the agent itself. While requiring less from the
execution environment during migration, explicitly managing the state in the agent also
keeps the amount of state to be transferred during migration to a minimum. This is a
desirable feature when optimizing a computation for network performance.

We now investigate how the first mobile agent systems, Telescript [182], TACOMA
[91], Agent Tcl [69], and Mole [18] work. The Agent Tcl evolved from supporting
one language to supporting multiple programming languages with strong mobility.
TACOMA offers weak mobility and supports multiple programming languages. Mole
was an early approach to mobile agents running on the JVM.

Telescript

In 1994, the Telescript mobile agent system emerged from General Magic [182]. Coming
from industry, the emphasis in Telescript was on how mobile agents could be leveraged
in e-commerce settings. Although Telescript did not become commercially successful, it
founded the abstractions that most of the subsequent mobile agent systems were based
on.

There are two types of agents in Telescript. First, mobile agent programs that
can travel (i.e., migrate) from one place to another using the go language abstraction.
Second, stationary agents that implement the services offered by places to mobile agents.
When a mobile agent wants to utilize the service offered by a stationary agent, the mobile
agent uses the meet abstraction to exchange information.

Agents in Telescript are written in the Telescript programming language. The reason
for devising this language is the difficulty of supporting migration in programming
languages such as C and C++. The programming language is similar to Java, and
shares many features such as being object-oriented, allowing safe execution of programs,
providing orthogonal persistence through serialization, and abstracting the operating
system from the programmer. As a consequence of having such a complete infrastructure
in the programming language environment, the go abstraction in Telescript implements
strong mobility.

Telescript was assumed to be applied in large-scale networks such as the Internet.
This implies mechanisms to discern which agents are allowed to do what. Each agent
is represented by an authority, which is either an individual or an organization. Places
and stationary agents may choose to offer services only to agents of a certain authority.

23

Authorities provide the mechanism on which to base monetary transactions without the
need for human intervention. Once an agent is authorized by another agent or place,
a permit is given to the agent. Through granting capabilities to the agent, the permit
controls what actions the agent can perform within a place — for instance whether the
agent is allowed to create another agent or the amount of CPU-time granted to the agent
in the place. By the Principle of Least Privilege [154], permits help places guard against
buggy or intentionally malicious agents and are enforced by the runtime environment
for Telescript. Without permits, Telescript would easily be susceptible to problems like
the one caused by the Internet Worm [167] and render the places useless.

One of the fundamental problems with Telescript is the reliance on a proprietary
language and language environment, thereby limiting Telescript to only supporting
agents written in the Telescript language.

Agent Tcl

Agent Tcl was also one of the first mobile agent systems along with Telescript and
TACOMA [69]. The first version of Agent Tcl used a modified version of the
Tcl3language interpreter with added support for strong migration. The agent model
is similar to that of Telescript, with mobile agents migrating from place to place and
interacting with stationary agents that provide services to the mobile agents. The real
difference between Agent Tcl and systems like Mole and Telescript is that it eventually
evolved to supporting more than one programming language.

The requirement of strong migration forces interpreters to be altered with support
for state capturing during execution. However, Agent Tcl does not allow residual
dependencies, which means that open files or other shared resources outside the address
space of the interpreters are not part of the state that is migrated from a place. As an
example, migration in the Tcl interpreter is performed with the agent jump statement.
Upon invocation, the transport protocol for transferring the agent is determined. Next,
the state of the entire Tcl interpreter is captured and sent to the destination place, where
the agent is re-instantiated again and execution resumes to the statement following
agent jump.

Agent Tcl supports communication between agents with the agent meet and
agent accept statements. When an agent A wishes to communicate with agent B, agent
A invokes agent meet. Agent B then decides whether to accept the request by issuing
agent accept or reject the request. The security model in Agent Tcl depends on a public
key infrastructure for authenticating agents and providing encrypted communication.
Security is enforced by the server layer in the architecture. Similar to permits in
Telescript, a resource manager in the server layer checks all agent resource accesses
against a set of access permissions for the agent.

TACOMA

The Tromsø And COrnell Moving Agents (TACOMA) system [91] was started in
1993 as an approach to overcome the performance problems of RPC in the StormCast

3Tcl homepage: http://www.tcl.tk

24

weather system [86]. The first version was not a mobile agent system, but rather a
remote evaluation system inspired by the remote evaluation approach from Stamos et
al. [168]. This version was implemented through the remote shell facilities on Unix
systems, where procedures were shipped among computers for remote execution. At
the same time, mobile agent systems started emerging for many of the same reasons
that motivated the initial TACOMA system. Hence, in 1994 the TACOMA project was
formally started as a mobile agent activity, and the next version that supported the Tcl
programming language with weak mobility was released. By the subsequent release of
TACOMA version 1.2 [93], multiple programming languages were supported.

TACOMA relies on agents explicitly managing their state through the use of folders
and briefcases. A folder is an ordered list of strings, and a briefcase contains a mapping
from folder names to the folders contained in the briefcase. Some folders have a special
meaning and are maintained by the TACOMA runtime system. For instance, the host
folder always contains the name of the place that executes the agent.

The decision to use folders and weak mobility is driven by the goal of having the
runtime cost of migration controlled by the programmer, since the agent programmer is
aware of the state that is needed for the future actions of the agent as well as how this
state should best be stored. For instance, this allows the agent to drop folders that are
no longer needed. In addition, using weak mobility and folders simplifies adding support
for multiple programming languages. Abstractions similar to folders and briefcases are
also used in the Knowbot [84] and Mobile Ambients [30] systems.

The fundamental communication primitive in the TACOMA system is called meet.
When issued, it allows the local agent program to start a remote agent and passes a
briefcase as argument to it. The agent issuing the meet operation can choose to block
or execute in parallel with the remote agent. If blocking meet is chosen, the briefcase is
returned when the remote agent completes, similar to RPC-style communication. Like
other agent systems, TACOMA offers stationary service agents that implement services
offered to mobile agents. One of these services are programming language specific agents
that implement the execution environment for agents within TACOMA. As an example,
an agent would migrate to a place and execute a Java program there by storing the
program in the javacode folder and executing a meet operation naming the service
agent for Java. The advantage with folders and briefcases is that implementing support
for a new language only requires adapting folders and briefcases to the new language.
The disadvantage is that folders and briefcases are still a fairly low-level abstraction
compared to the offerings of the other mobile agent systems, but this can usually be
overcome by adding language-specific layers on top of the folder operations.

When an agent invokes the meet operation, the briefcase is sent from the local agent
to the destination place through a component in the TACOMA runtime called the
firewall. In addition to orchestrating meet, the firewall manages the agents within its
environment, including starting service agents when needed and checking whether the
incoming briefcases are allowed to enter the place. TACOMA supports access control for
agents through the use of digital certificates that are interpreted by the service agents.
Once authenticated, agents have unrestricted access to all local resources, which provides
less fine-grained access control than offered by permits in Telescript.

25

Later versions of TACOMA focused on alternative ways of structuring the agents
[110], the use of agents for remote system administration [110], runtime service
deployment, agent applicability in asymmetric network environments [85], in addition
to exploring non-functional aspects like fault-tolerance [89] and security [159]. Most of
these aspects are elaborated later in this dissertation.

Mole

Mole is one of the earliest mobile agent systems implemented in Java, where the first
version was released in 1995 with several subsequent versions following this release [18].
Agents in Mole can move from place to place, where places offer services to visiting
agents. Mole has service agents that implement the services offered to agents visiting a
place.

A major difference between Mole and Telescript is that Mole does not support strong
migration, since the JVM does not support capturing the state of a running thread [1].
Thus, to be able to run on unmodified JVMs, Mole instead implements weak mobility.
Migration works by having the agent call a method migrateTo(place) when it decides
to move to a particular place. The migrateTo method takes a transitive closure on the
objects referenced by the agent instance (except for threads, which cannot be serialized),
and serializes these into a byte sequence. The byte sequence is then submitted to the
destination place, where the agent is recreated. All agents implement a start method
that is the entry point for execution when the agent is started. If, however, an error
occurs during execution of the migrateTo method, control is resumed to the statement
after the migrateTo where error handling can be implemented. A problem with the
weak migration approach in Mole is that the start method is the entry point every time
the agent migrates to a new place, which implies that this method need to manually
dispatch the code to run unless the same code is supposed to be executed on each place.
In contrast, TACOMA uses the first element of the appropriate code folder as the entry
point, which avoids the need for dispatching within the agent code itself.

Mole offers extensive support for different approaches to communication between
agents through the use of sessions. Agents wishing to communicate create a session,
where message passing can be used for subsequent interaction. Sessions allow agents to
interact similar to themeet primitive in Telescript. Mole also supports anonymous group
communication between agents through the use of tuplespaces. Security is implemented
with a sandbox. Mobile agents have no access to the resources exposed by the underlying
system, but have to go through service agents. Service agents are immobile and provide
secure abstractions for resource access to mobile agents. Places can discern which mobile
agents are allowed to visit, similar to the authorities in Telescript.

One of the weaknesses in Mole, like in Telescript, is the assumption that all agent
code has to target a single language, which makes it harder for agent programs to
leverage utilities and libraries written in other languages.

26

2.2 Mobile Agent Computations and Failures

When the computational model in Figure 2.2 is deployed in an asynchronous environ-
ment such as the Internet, failures are likely to occur. The failures we consider in this
dissertation were identified in Section 1.2 as crash failures and network failures. For
mobile agent computations this means that at any place during the computation of a
stage, the place may fail because of the mobile agent crashing at the place, the place
crashing, or the network link connecting the place to other places has failed and cause
messages to be lost. Crash and network failures can stop the progress of the mobile
agent computation. Compared to RPC, masking such failures is harder since the agent
may be executing asynchronously at a place where the client is unable to recover the
agent.

Consider the weather alarm system described in [85] that allows users to submit
tiny agents written in a domain specific language with cellular phone text messages to a
TACOMA installation running on the Internet. The motivation for building this system
was the emerging ubiquity of cellular phones, which at the time had no applications for
communicating with Internet services. While the weather alarm system enabled users
to communicate with Internet services, the extremely low bandwidth offered by GSM
text messages [79] presented other problems. For instance, it was very difficult for users
to verify whether their weather alarms were still running or if the server on which they
executed had failed. Rather than having users periodically check the status of their
alarms with GSM text messages, providing the users with a fault-tolerant environment
for running their weather alarms seemed like a better approach.

The issues of tolerating failures in mobile agent systems have spawned numerous
systems based on replicating the mobile agent computation in some way. Before we
investigate how these systems work, we explain the two major fault-tolerance approaches
for replicating distributed services, the replicated state machine approach [158], and the
primary-backup approach [28], and how these approaches influence the computational
model of mobile agents.

2.3 Replica Management

In traditional client-server models, the replicated state machine and primary-backup
approaches are modeled through clients making requests to servers and servers
responding to client requests. A system consisting of n distinct servers is said to be
f fault-tolerant if it withstands f failures within a bounded time interval. Here, n > f ,
and the minimum value of n/f depends on the protocol and the failure model. As
specified in Section 1.2, clients and servers can fail by crashing, and network links can
fail and cause request and response messages to be lost but not corrupted.

2.3.1 Replicated State Machine Approach

A state machine consists of variables that encode the state, and commands that
transform the state and possibly generate responses. Commands are atomic with respect

27

Server 1 Server 2 Server 3

Replicated service

Client

(a) Replicated state machine

Primary Backup 1 Backup 2

Replicated service

Client

(b) Primary-backup

Figure 2.5: Replica management.

to other commands and are executed in a deterministic way: the outcome is solely a
function of the current state and the command. A client makes a request to a state
machine to execute a command. The state machine executes the command, and the
output of the command, if any, is returned to the client as a response. To simplify the
presentation, we assume that a response is always sent to the client.

Making a state machine f fault-tolerant involves replicating the state machine on
a set of servers. Assuming that each state machine replica starts in the same initial
state and all client requests are executed by the non-faulty replicas in the same order,
each replica will produce the same output. An illustration of state machine replication
is shown in Figure 2.5a. In this illustration, a client issues the same request to all the
servers, as depicted by the dashed arrows. Each replica executes the command referred
to by the request and the output produced is sent back to the client in the response, as
depicted by the solid arrows.

The client is not required to act as the sender of the request to all replicas. Instead,
the client can send the request to a single replica and have this replica send it to a
sufficient number of other replicas. However, this requires the client to ensure that the
request is not lost before the request has been sent to a sufficient number of non-failed
replicas. The protocol that ensures this property is called consensus [135].

A challenge with state machine replication is ensuring that replicas are kept in the
same state. This requires that a sufficient number of replicas agree on the ordering
of each client request and the output of each client request. An approach to ordering
client requests is to consider the sequencing of client requests as a sequence of consensus
problems [135]. It has been proved that consensus cannot be reached with asynchronous
communication [52]. However, by using an unreliable failure detector, 2f+1 replicas are
sufficient to reach consensus when f servers can fail even with very weak assumptions on
synchrony [33]. Crash failures and synchronous communication lead to a simpler model
for consensus (e.g., using atomic broadcast [158,160]), where f +1 replicas are sufficient
to tolerate f failures.

Agreement on the output of each client request is typically performed by voting,
either in the client itself or by use of a protocol between the servers before the output

28

is returned to the client. For fail-stop [157] crash failures, voting is not necessary since
a failed server will by definition not generate any output.

2.3.2 Primary-Backup Approach

Similar to the replicated state machine approach, the primary-backup approach
implements a fault-tolerant service through the use of multiple servers. One of the
servers is designated as the primary, where the others are designated as backups.

An illustration of a simple primary-backup protocol is shown in Figure 2.5b. The
client makes a request to the server that is designated as the primary, as depicted
by the solid arrow. The primary processes the command referred to by the request
and updates its state. The primary then sends information about the update to all the
servers designated as backups, as depicted by the solid arrows starting from the primary.
Finally, the primary sends the output of processing the command back to the client, as
depicted by the dashed arrow from the primary to the client. The state information sent
from the primary to the backups can be encoded in many ways: i) a snapshot of the
state of the primary after the client request was executed, ii) the state changes caused
by executing the client request, and iii) the client request itself and, if applicable, a trace
of the non-deterministic events that occurred at the primary during the invocation of
the command.

Backups monitor the primary to detect failures. If the primary fails, then one of the
backups takes over the role as the primary. Which backup takes over as the primary can
be determined statically or can be determined dynamically by a leader election protocol
(see [116] for examples). After the new primary has been chosen, clients are notified
and subsequent client requests sent to the new primary. Thus, in contrast to replicated
state machines, the failure of a server is not transparent to the client.

When servers (i.e., the primary and the backups) in a primary-backup protocol are
subject to network failures, f + 2 servers are required to survive f failures [28]. This
assumes that there are at least one non-faulty path between two non-failed servers, where
the path may include any number of intermediate servers. For fail-stop crash failures,
f + 1 servers are required to survive f failures [28]. This means that the number of
required servers are the same as for the replicated state machine approach for such
failures. The significant advantage of primary-backup compared to the replicated state
machine approach, however, is that it enables replication without redundant request
processing.

2.4 Mobile Agent Fault-Tolerance

There are mobile agent systems that implement fault-tolerance with either primary-
backup or the replicated state machine approach. One of the first systems to offer
support for mobile agent fault-tolerance was based on the replicated state machine
approach [126]. To implement a 1 fault-tolerant system that tolerates fail-stop crash

29

.....1

1

2

2

M-1

M-1

M

M.....

Figure 2.6: Mobile agent fault-tolerance with the replicated state machine approach.

failures, each stage is executed by 2 places4. When a stage has completed, the agent code
and the state resulting from executing at that stage are sent to the 2 places that execute
the next stage. Doing so allows masking a single crash per stage. The computational
model when executing M stages given a 2 fault-tolerant system tolerating crash failures
is shown in Figure 2.6. Circles depict agents, the number in the circle is the stage
number, and the arrows the agent state going from one place to the next.

Since only a single agent code and state result is required to progress to the next
stage, a single slow place for a stage will not delay the computation. If all places for a
stage are slow, adding a replica per stage may help if that replica is faster. However,
going from R to R + 1 replicas per stage increases the number of messages exchanged
between each stage from R2 to (R + 1)2, which may cause an increase in bandwidth
utilization.

The main drawback with this approach, and the replicated state machine approach
in general, is that each replica is executing the stage (i.e., state machine command). In
a grid environment where computational resources are shared among grid consumers,
redundant processing is not desirable. For this reason, we focus on approaches to mobile
agent fault-tolerance that use some variation of primary-backup.

2.4.1 Exactly-Once Properties and Blocking

The first mobile agent computations that were proposed involved electronic commerce,
where agents autonomously do hotel reservations or order plane tickets. A requirement
for such mobile agent computations is to satisfy exactly-once execution [141]. Exactly-
once execution implies that all stages in the mobile agent computation are executed
exactly once, regardless of stage failures. If exactly-once is not enforced, a failure can
cause the agent to execute a stage action more than once (e.g., resulting in reserving a
hotel room twice). Thus, in mobile agent computations involving electronic commerce,
enforcing exactly-once becomes a correctness concern.

Grid computations are typically composed of several smaller tasks where the
execution of a task is idempotent (i.e., executing a task multiple times produces the same
result for each execution). Mobile agent computations in grid environments, including
resource discovery [97, 178], computation surveillance [78], and installation of software
required by the grid computation [178], are dominated by idempotent computations.
This means that enforcing exactly-once is not a correctness concern for the mobile agent
computation. However, executing a mobile agent stage more than once is wasteful when

4While the paper describes the protocol in terms of Byzantine failures, the message flow is the same
for fail-stop crash failures.

30

resources are shared between grid consumers. Consequently, in this dissertation, the
exactly-once property is considered an efficiency concern and not a correctness concern.

Primary-backup protocols depend on the ability to detect failures of the primary
to implement failover. Failure detectors are defined by two properties: accuracy and
completeness [33]. Accuracy limits the number of false suspicions of failures while
completeness requires that a failure is eventually suspected. A perfect failure detector is
one that offers strong completeness and strong accuracy, and thus does not make false
suspicions [33]. In a grid environment where places are subject to variable computing
resources and periods of unstable network communication, perfect failure detectors are
impossible to implement.

An approach to overcome the problems of false suspicions caused by network
communication failures is to block the mobile agent computation until a period of
synchrony occurs or the suspected place recovers. Blocking, however, increases the
time the computations take to complete, and poses a liveness issue if the state of the
suspected place cannot be established. Thus, in practice, incorrect failure detections can
occur to avoid blocking, causing the primary failover protocol to be invoked when the
primary has not failed. As the next sections will elaborate, a primary failover resulting
from an incorrect failure detection can cause duplicate mobile agents.

2.4.2 Fault-Tolerant Mobile Agent Systems

We now investigate how mobile agent systems support fault-tolerance with primary-
backup approaches. Of particular interest is how various systems handle the tradeoff
between blocking the computation and enforcing the exactly-once property when there
are network failures.

Fatomas

The Fault-Tolerant Mobile Agent System (Fatomas) [140] has a strong focus on providing
exactly-once semantics. Like the approach in [126], Fatomas uses several places to
execute each stage, and is thus similar to state machine replication. However, instead
of all places actually executing each stage, Fatomas views the execution of a mobile
agent computation as a sequence of agreement problems. A consensus algorithm called
Deferred Initial Value (or DIV) [43] is used to choose a single place to execute a stage.
The flow of a Fatomas execution is given in Figure 2.7. Circles depict places and the
number in the circle the stage number. The asterix indicates which place is actually
executing the agent. The result of executing an agent at a place is sent using a reliable
broadcast protocol [76] (depicted by bc) to the places comprising the next stage.

A consensus algorithm starts with each place having an initial value. For a mobile
agent computation, the initial value for a stage is obtained by executing the agent.
However, having all places in a stage execute the agent breaks exactly-once properties
and wastes resources. DIV consensus allows deferring the execution of an initial value
until it is required. The advantage of the DIV consensus algorithm is that if the place
proposing the initial value does not fail, then the value will be chosen and no other
place chooses another value (i.e., executes the stage). If a place fails, the DIV consensus

31

1*

1

1

2*

2*

2

0

D
IV

 consensus

D
IV

 consensus

3*

3

3

D
IV

 consensus

4

bc

bc bc bc

Figure 2.7: Mobile agent fault-tolerance with Fatomas.

algorithm requires another place to propose a value. This is depicted in stage 2 of
Figure 2.7, where the place initially executing the agent for stage 2 fails, and another
place starts executing. A majority of non-failed places is required for DIV consensus to
succeed, in which case all places for the stage agree on which place executed the agent,
the result of the execution, and the next places for the stage. When execution of the
agent has completed, the result is forwarded to the next stage using reliable broadcast.
While reliable broadcast could be externalized, Fatomas has instead extended the DIV
consensus algorithm to send the results of its decision to the places in the next stage.
This avoids the complexity of having a separate implementation of reliable broadcast in
addition to the DIV consensus algorithm.

As mentioned, DIV consensus requires a majority of non-failed places within each
stage to agree on the proposed value. If not, the algorithm blocks. This means that
for certain communication failures and failures where the majority fails, the agent
computation will not make progress until failures recover.

A Transaction Approach

The approach from Rothermel and Strasser [151] uses a fundamentally different approach
than Fatomas to provide exactly-once semantics. The approach is based on transactional
message queues and the use of atomic commit protocols similar to established standards
like X/Open DTP or CORBA OTS.

Each stage in the computation is executed by a worker, where the progress of the
worker is monitored by a set of observers. All places participating within a stage are
assumed to fail independently of each other and implement a transactional message
queue using stable storage.

The protocol chooses a place to be the worker for the stage. The rest of the places
are observers. The worker and the observers retrieve the agent from the message queue.
The worker then executes a transaction that executes the agent, puts the resulting agent
into the message queues of the next stage, and tries to commit the transaction. If the
worker fails to execute the transaction, the observers restart the protocol by choosing a
new worker.

32

Multiple workers are detected by having the observers in stage i sending the identity
of the worker that they are monitoring to the places comprising the next stage i+1. The
observers in stage i + 1 then use majority voting to decide whether there are multiple
workers when the transaction is attempted committed. If there is more than one worker,
the observers in stage i + 1 abort the transaction, otherwise the worker commits the
results on the queues.

One of the problems with using an atomic commit protocol such as two-phase commit
(2PC) is that it is vulnerable to blocking [21], something which cannot be fully redeemed
even by the use of three-phase commit (3PC). The work of Assis Silva and Popescu-
Zeletin [164] improves the algorithm by using a different leader election protocol in
combination with 3PC. Their approach unfortunately breaks the exactly-once property,
although they suggest the use of a distributed context database to fix this. The problem
with the distributed context database is that it requires replication for fault-tolerance,
all adding up to a very complicated approach.

The protocol also only handles network failures when occurring among the members
of the places comprising a stage, which may be a problematic assumption if the approach
is deployed in Internet environments.

Checkpoint Approaches

The Mobile Agent Framework [41] makes a fundamental distinction between commu-
nication within a local area network and between local area networks. The idea is to
partition the network on the agent itinerary into domains, where each domain spans a
local area network. Each domain hosts a checkpoint manager (CM). The tasks of the
CM is to keep track of which agents belong to its domain, and to keep checkpointed
state for each agent. An agent may at any time during execution checkpoint its state to
the CM of the current domain. Agents periodically send ping messages to the CM they
belong to, to indicate that they are alive. There are three main interactions between
the CMs and the agents, all executed within the context of an atomic commit protocol
(e.g., 2PC) to ensure that they are performed in a consistent manner:

• Intra-domain migration. The agent is moved from one place to another place
within the domain, and the current location of the agent is updated to the CM.

• Inter-domain migration. The agent is moved from the place in the old domain to
the place in the new domain. A checkpoint of the agent is made at the CM of
the new domain, and the checkpoint of the agent at the CM in the old domain is
removed.

• Recovery of an agent. The last agent checkpoint is retrieved from the latest CM,
and the current place of the agent is updated in the CM.

This approach is visualized in Figure 2.8. Circles depict agent stages, and the
numbers denote the stage number. Circles with ’CM’ are content managers. Solid
arrows depict an agent migrating from one stage to another stage, and dashed arrows
communication from the agent to the CMs.

33

1

2

CM

3

4

CM

Domain 1
Domain 2

Figure 2.8: Mobile agent fault-tolerance with checkpoint managers.

Handling recovery upon failures is left to the agent program. The CM will not
attempt to recover the agent like a primary-backup approach would. The main
advantage of this protocol is that by the nature of the atomic commit protocol, exactly-
once semantics are preserved upon failures. The protocol assumes that the CM does
not crash, since this will cause all agents within the domain to be unable to make
progress. In addition, the actual atomic commit protocol is subject to blocking when
the coordinator fails during execution of the transaction [21].

A similar approach is the checkpoint based protocol in the Messengers system [64].
Rather than depending on a checkpoint manager, an agent performs local checkpoints
to stable storage coordinated by a single checkpoint coordinator. The checkpoints are
coordinated according to a distributed snapshot protocol that guarantees consistency.
Upon failure of an agent, one of the places undertakes the task of initiating the recovery
procedure. Recovery discovers which processes are still alive in the system and ask
them to roll back to the last consistent checkpoint. The place performing the recovery
procedure then retrieves the last checkpoint of the failed agent from stable storage and
restarts the computation. The protocol uses the Transmission Control Protocol (TCP)
for communication and failure detection, and is vulnerable to network failures with
respect to providing exactly-once semantics. The protocol is, however, non-blocking.

NetPebbles

The NetPebbles [128] environment offers a programming model where agents are
modeled as scripts that call a series of component interfaces. When calling a component,
the script and its state are migrated to the location where that component resides and
executes there. After all components have been invoked the script returns to the initial
place with the results.

During execution, scripts are subject to a variety of failures, such as a place failing,
network failures and component failures. Fault-tolerance is provided by using non-
determinism in choosing where to execute the script, and effectively routing the script
around failures instead of waiting for the failures to recover. More specifically, the fault-
tolerance algorithm works as follows: when an agent moves from one place p to the next
p′, place p keeps a copy of the agent and starts monitoring the agent at the place p′. If
place p detects that p′ has failed, the agent is routed to another place p′′ and the stage is

34

1 2 3

4 5

Figure 2.9: Fault-tolerance in NetPebbles.

re-executed. The scheme is depicted in Figure 2.9. Circles depict the script, arrows the
monitoring relations, and the number denotes the place identity. Here, a script executes
two places, and moves to the third. The second place finds that the third place has
crashed, and moves the script to place four instead. After successfully completing place
four, the script moves to place five before returning to the initiating place.

A problem here is that the concurrent failure of a place p and the next place p′

would block the script, since no place would be able to route the script to another place.
NetPebbles solves this by having all the places where the previous stages executed
monitor their successor places, where successor places send heartbeat messages back to
the preceding places. Heartbeats are sent with a frequency decreasing with the distance
between two places, where the distance is measured by the place number. A place p
only detects an agent as failed if it fails to receive a heartbeat message from all successor
places. Doing so makes NetPebbles tolerate as many concurrent failures as the distance
between places the script has visited.

The failure-detection mechanism in NetPebbles may cause a redundant script to be
executed upon false detections of failures. However, since a script is assumed to return to
the initial place upon completion, duplicate scripts eventually arrive at the initial place
where the actions they have performed can, if desired, be aborted. The fundamental
problem with this approach is that it requires the actions performed by a component
to support rollback, something which is not always possible to ensure if the component
makes use of an external tool that has side-effects.

2.5 Summary

We started this chapter by introducing the computational model for mobile agents, and
discovered that the performance of migrating the agent is important when competing
against the cost of RPCs. We then investigated how various systems implement
and optimize the procedure of migrating a process, which revealed two important
optimizations called pre-copy and lazy-copy.

The classic transparent migration approaches often require significant support
from the operating system, and depend on a homogeneous software and hardware
environment. For this reason, several mobile agent systems implement weak migration,
where the state of the computation is managed by the agent itself and does not require
support from the operating system.

35

One of the challenges shared by both process migration and mobile agent systems
is providing robustness when there are crash and network failures. In the field of fault-
tolerance, such robustness can be implemented by a variation of the replicated state
machine or primary-backup approach. We discovered that primary-backup is attractive
for mobile agent computations in grid environments, since the approach does not require
redundant computations in failure-free runs. We also established that mobile agent
computations for the grid do not require the exactly-once property for correctness, but
is instead an efficiency concern to avoid wasting resources. The various approaches
to mobile agent fault-tolerance differ slightly in how they handle the balance between
preserving exactly-once and blocking:

• In Fatomas, exactly-once properties are enforced but for certain failures such as
network failures computations may block for an unbound amount of time.

• In the transactional approach from Rothermel et al., the computations also block
to enforce exactly-once. This was fixed in subsequent extensions to the protocol,
but required an external context database to enforce exactly-once, leading to a
very complex system.

• Of the two checkpoint approaches, the first blocks to preserve the exactly-once
property, while the second allows duplicate agents to avoid blocking.

• In NetPebbles, exactly-once properties are not enforced during the computation,
but since all agents return back to the initial place, duplicate agents can be
detected and their effect on the environment rolled back.

The main contributor to the problem of balancing exactly-once and non-blocking
properties of a mobile agent computation is the impossibility of perfect failure detection
in an asynchronous environment. Thus, before we devise an algorithm for mobile agent
fault-tolerance, we need to gain insight in how communication breaks down in the
application domain we consider, grid computing.

36

Chapter 3

Characterizing Wide-Area
Communication

Before devising a mobile agent fault-tolerance protocol that is suitable for grid
environments, we need experience in the field of grid computations. In particular, we
need to study how grid computations behave when deployed in environments where they
are subject to crash and network failures. This chapter provides the background for the
analysis of the first grid computation algorithm that is presented in Chapter 4.

3.1 Master-Worker

Computational grids provide powerful environments for executing large-scale distributed
computations. As an example, consider GriPhyN1(Grid Physics Network) which is a
research project to implement a Petabyte-scale computational environment for data
intensive research projects. The project, whose requirements are being defined in the
context of four current large physics experiments, deploys computational environments
called Petascale Virtual Data Grids (PVDGs) to meet the data-intensive computational
needs of a diverse community of thousands of scientists spread across the globe.

One of the functions of a PVDG is the reconstruction of “virtual” data, which is data
that is derived from the raw or processed output of experiments. Some reconstructions
will be large enough to warrant utilizing the resources of several computation farms
spread across the Internet. Reconstruction is highly parallelizable, which makes a
master-worker computation [162] attractive for reconstruction.

In a master-worker computation, a master process splits the entire computation into
a set of N independent tasks. These tasks are then distributed by the master to a set
of worker processes that execute the tasks. When a worker has completed a task, the
result is sent back to the master process and a new task is distributed to the worker.
The computation completes when the master knows the result of all N tasks. The
master and worker processes are typically deployed on different computers to increase
task parallelism, so the master and worker processes often use network communication
to orchestrate the computation.

1GriPhyN homepage: http://www.usatlas.bnl.gov/computing/grid/griphyn/

37

A

B

C D

E

Figure 3.1: Partition with two components.

For network communication, we distinguish between communication across two types
of networks in this dissertation. A local area network is comprised of multiple computers,
or network nodes, typically connected by one or more network switches, where at least
one switch is connected to a network router for Internet access. Multiple connected
local area networks comprise a wide area network. Wide area networks are vulnerable
to network partitions. A network partition occurs when two sets of non-faulty processes
on two different network nodes are unable to communicate with each other due to
problems at the network communication layer. Two network nodes, where at least one
node can communicate with the other, are said to be in the same connected component
of the network. Hence, a partitioned network has more than one connected component.
Consider the example in Figure 3.1, which depicts a partition with two components.
Nodes A, B and C form one component, while nodes D and E form the other component.

There has been a large amount of work on the problem of master-worker com-
putations, for instance [20, 162, 180]. However, few have investigated protocols for
master-worker computations deployed in networks that can suffer from network failures
and thus, network partitions. The problem was identified as amenable to partition
aware solutions [12], which are applications that can make progress even if the network
is partitioned. It has been argued that group communication services provide a
convenient framework for writing such applications, although the exact details of group
communication may have a significant impact on the design [11, 173].

There has been recent work on the complexity of solving a variation of master-
worker computations. This work has produced an algorithm named AX that is based
on group communication services [66]. Before we go into detail on how AX works in
Chapter 4, we start by investigating how group communication behave when deployed
on the Internet. Given the general applicability of group communication systems for
implementing fault-tolerant systems, this investigation is also important for determining
whether group communication is an attractive abstraction for implementing mobile
agent fault-tolerance.

3.2 Wide-Area Group Communication

Prior to investigating the applicability of group communication for master-worker
computations, this section gives a background on group communication and approaches
to dealing with network failures. We then investigate the behavior of Internet packet

38

Application

Group communication system

view

deliver

send

join

leave

Figure 3.2: The application programming interface of group communication systems.

routing, and how packet routing impacts group communication systems. Finally, we
present our results from experiments on the performance of group communication.

3.2.1 Group Communication Systems

Group communication systems [25] typically provide two services to applications: i)
reliable multicast communication among processes that are organized into groups, ii)
membership information on processes in groups2.

The application programming interface that is exposed by most group communica-
tion systems is shown in Figure 3.2, where the arrows denote the direction of control
flow. A group is a set of processes that together comprise the members of the group.
Group communication systems offer applications two abstractions for membership
management: A process becomes a group member by requesting to join the group;
it can cease being a member by explicitly requesting to leave the group or, implicitly,
by failing.

Each group is associated with a name. Processes multicast to group members
by sending a message to the group name with the send operation. The group
communication service delivers the message to the group members through the deliver
operation (some systems allow applications to register callbacks for handling the deliver
operation). When the deliver operation is issued depends on the ability of the members
to communicate with other group members, which we elaborate below.

Group communication systems are view oriented, which means that they provide
membership information and deliver messages in a well-defined order among all
members. Group communication systems differ in the details on how they implement
such an ordering.

The task of a group membership service is to track the membership of the group as it
evolves over time. When the membership changes, the application processes are notified
at an appropriate point in the delivery sequence. The output of the membership service
is called a view, which consists of the list of the current members in the group and a
unique identifier that allows the application to distinguish the view from other views

2Some group communication systems do not provide i), but they always provide ii).

39

with the same list of members to order the sequence of views. Views are used in two
main ways:

1. Since the members agree on the content of the views, they can deterministically as-
sign roles to each other or do leader election without using further communication.
For example, the first process in the membership list can serve as a coordinator
for all the processes in the membership list.

2. Consider any two processes that are both in the membership of a view v when
they both install the same new view v′. The group communication system ensures
that both processes have delivered the same sequence of messages while in view v.

A challenge in group communication systems is how to provide appropriate view
semantics upon network partitions, and there are generally two approaches for handling
partitioned operations: primary partition (or component) group membership and
partitionable group membership.

Primary Partition Group Membership

Primary partition group membership services require that only one view exists within
the group. Thus, either all members of the group install the same view, or they block.
Consider the following scenario: a group membership service running at process p signals
to the other group members that it is ready to install a new view. However, before
installing the view, p detects that the rest of the group members are partitioned away.
Thus, p cannot install the new view. The rest of the group can, however, install the view
since it was signaled to do so by p (the resulting view in p is called a hidden view). When
this occurs, p enters a recovery protocol that has two outcomes: i) p is reconnected with
the primary partition, or ii) p blocks or terminates.

There are many group communication systems that implement primary partition
group membership. In Isis [149], a process that finds itself to be outside the primary
partition terminates to ensure that only the processes of the primary partition survive.
Other systems, such as Phoenix [120,121], block the process while the network partition
takes place. Thus, both Isis and Phoenix allow some progress to be made while the
partitions are occurring. Other group communication systems, such as Consul [127] and
xAMP [150], only ensure safety properties of views as long as there are no partitions.

Primary partition group membership is commonly used for applications that require
globally shared state to be updated in a consistent manner [50, 59] since a single view
ensures that data access can be serialized across the view members. However, this
comes at a cost of availability (and for some applications, scalability), since groups with
members across several local area networks will only harvest the resources of a single
connected component when there are network partitions.

Partitionable Group Membership

In contrast to primary partition approaches to group membership, a partitionable group
membership service [10, 95] is designed to operate in wide area networks. It supports

40

writing partition-aware applications, which are applications that can make progress
despite network partitions [11].

Partitionable group membership protocols monitor the network connectivity using
an unreliable failure detection service [33]. The reported failures are used to instigate
view changes. When the failure detection service stabilizes such that communication
is possible among all the processes in the connected component, a new view can be
delivered to the processes in the connected component. Different partitionable group
communication systems have different delivery rules associated with messages that are
sent while the failure detection service is stabilizing; The reference [173] contains a
summary of the rules of six different protocols. Some systems allow messages to
be sent during periods of unstable failure detection, while others do not allow such
communication.

3.2.2 Moshe

The algorithm we study in Chapter 4 requires group communication, and master-
worker has been advocated as an application that fits well with partitionable group
communication [12]. In this context, we study the Moshe [95] partitionable group
communication system. The reason for choosing Moshe is that it has been specifically
designed for scalability and performance in a wide area network. Moshe has been
subject to real-world testing by running it in a wide area network and measuring the
performance. Testing has confirmed that Moshe performs well [95].

There are three main design features in Moshe that set it apart from other
partitionable group membership systems. First, to ensure scalability, Moshe is
structured according to a client-server architecture. Second, to reduce the network
load during times when the network is unstable, Moshe avoids sending obsolete views.
Finally, Moshe is built to perform well in the common case where the network is stable,
and only requires one round of communication for this case.

The interface of the membership service is depicted in Figure 3.3. A Notification
Service (NS) implements an unreliable failure detector that is used to determine the
status of processes and network links. Clients use the NS when requesting to join

and leave groups. The NS sends an event to the Membership Servers (MS) for every
group join and leave, and piggybacks failure detection information onto these event
messages. This way the MS maintains the group membership information according
to the input from its NS. There is one NS per MS, and there may be several clients
connected to each MS, but a client is only connected to a single MS.

The MS sends two types of messages to its clients. The startchange message
indicates that a membership change is about to happen, and includes the suggested
group members for the new view. The view message informs the client of what has
been decided as the current view for the group, and also includes the group members of
the group in the message.

41

Membership ServerNotification Service

Client

join/leave

startchange

view

event
Membership Server

proposal

Figure 3.3: Moshe client-server interface for group membership.

The One-round Algorithm

The Moshe algorithm starts when the NS sends an event to the MS. When an MS
receives an event from its NS, it notifies all clients of the MS that a membership change
is taking place with a startchange message. Subsequently, the MS sends a proposal
message to all other MSes it knows about. The proposal message includes the same
suggested view as the clients receive in the startchange message. The MS then waits
for a proposal from all the other MSes, and if they agree on the view, a view message
is sent back to the clients with the same members of the group as in the previous
startchange message.

Agreement among the MSes on the state of the group members can thus be reached
with one round of communication. There are, however, scenarios that will cause the
one-round algorithm to block.

The Slow Algorithm

Since proposal messages may be submitted simultaneously by several MSes during
times when the network is unstable, there may be disagreement on the state of the
network. Moshe detects this condition by keeping track of the last proposal message
sent by each MS. If, during the one-round algorithm, an MS detects that another MS
has a different last proposal than itself, the one-round algorithm is declared as being
blocked, and Moshe enters the slow algorithm.

The slow algorithm works similar to the one-round algorithm by MSes exchanging
proposal messages. The major difference compared to the one-round algorithm is
that the submission of proposal messages is synchronized. Upon detecting a blocking
situation, the MS multicasts a proposal message tagged with marker that indicates
that the slow algorithm is being run. The message includes a proposal number that
is used in the following way: If a MS receives a proposal with a proposal number
larger than its recorded proposal number, the server records the proposal number in the
message and sends a new proposal with this number to the other MSes. If, however,
a NS sends an event to a MS, a new proposal message will be sent with a proposal
number greater than the highest known proposal number. This means that unless an
NS sends an event, every MS will eventually send a proposal with the same proposal

numbers and the same view members, in which case the algorithm terminates. The slow

42

C

A

B

A

B

Figure 3.4: Asymmetric and non-transitive communication example.

algorithm terminates similar to the one-round algorithm (i.e., when all MSes agree on
the state of the group).

3.2.3 Blocking

Requiring agreement on views among the group members in Moshe implies that all group
members agree on which group members are part of the view. Disagreement on the state
of the view is primarily due to non-transitive communication among three or more group
members or asymmetric communication among two or more group members. Consider
the graphs in Figure 3.4 that depict asymmetric and non-transitive communication.
Solid circles denote network nodes and arrows denote the communication links between
nodes. Arrow width indicate the level of connectivity.

Asymmetric Communication. In the graph on the left in Figure 3.4, network nodes
A and B try to communicate with each other. Node A can communicate with node
B with good connectivity and bandwidth. Communication from node B to node A,
however, is limited and thus causes packets sent from node B to A to get lost. This
failure scenario is an instance of asymmetric communication.

Non-transitive Communication. In the graph on the right in Figure 3.4, network
nodes A, B and C try to communicate with each other. Node A is able to communicate
with B but not with C, and node C is able to communicate with B but not with A.
Thus, node B is the only node that is able to symmetrically communicate with A and
C (although A and C can communicate through B). This failure scenario is an instance
of non-transitive communication.

To summarize, when a connected component’s communication ability relation lacks
symmetry or transitivity (i.e., it is not a clique), some blocking of communications
occurs until the component forms a clique again.

3.3 Internet Packet Routing

There are many reasons why asymmetric and non-transitive behavior occur. The main
reason is due to the way packets are routed on the Internet. Although a complete

43

background on Internet routing is beyond the scope of this dissertation, the following
section gives an overview on the Internet architecture and issues related to packet
routing.

3.3.1 Internet Organization

The Internet is organized as a graph of independently operating Autonomous Systems
(ASes) that communicate with each other. Typical ASes range from large Internet
Service Providers (ISP) to a university campus or corporate networks. An AS defines
its own administrative domain with respect to routers and routing policies, and
communicates routing information with other ASes.

The ASes forming the Internet are organized in a three-tier system as depicted in
Figure 3.5. Arrows denote communication paths between ASes. The ASes of the first
tier form the “backbone” of the Internet (also referred to as the Default Free Zone, or
DFZ) and consists of large national or international ISPs, for instance AT&T, C&W,
Qwest, and Sprint. Tier 1 ASes know about all other ASes within Tier 1, which makes
all possible communication paths between ASes within this Tier a fully formed mesh.
Unlike Tier 2 providers, Tier 1 providers do not buy connectivity from other providers.

Tier 2 providers are typically ASes covering large geographical regions, for instance
the southern part of Norway. Tier 2 providers buy upstream connectivity from one or
more Tier 1 providers. In theory, there exists a class of Tier 3 providers that are smaller
corporations, local ISPs or user networks which buy upstream connectivity from one or
more Tier 2 providers. However, separating Tier 2 and Tier 3 networks is becoming
increasingly hard because of the mesh-like organization of the Internet. For instance,
since the Internet is not organized in a hierarchy, a Tier 2 AS may connect to several
other Tier 2 ASes or several Tier 1 ASes, resulting in multiple communication paths
from one AS to another. ASes that are connected through more than one other AS are
referred to as a multi-homed AS. There are generally two reasons for multi-homing:

1. Backup. If the route to one AS is down, a provider still has a mean to reach the
Internet through another AS.

2. Load-balancing. Having route redundancy allows using more than one route for
sharing traffic across several backbones.

Due to the lack of structure in the Internet outside Tier 1, ASes in Tier 2 and
Tier 3 must provide each other with routing information that states what networks are
reachable from a particular AS. The process of exchanging such information is called
peering, and the protocol used for peering is called the Border Gateway Protocol (BGP-
4) [146].

3.3.2 Border Gateway Protocol

Routing information is typically maintained within an AS by a network service provider,
for instance owned by a University or an ISP. Routing information is shared between

44

Tier 1
Qwest

Tier 1
...

Tier 1
AT&T

Tier 1
...

Tier 2 Tier 2 Tier 2
Uninett

Tier 2

Tier 3 Tier 3 Tier 3 Tier 3

DFZ

Figure 3.5: The organization of Autonomous Systems (ISPs) forming the Internet.

ASes through BGP-4. BGP-4 uses TCP for communication with BGP-4 routers in
other ASes. Internally within an AS, several alternative IP-level protocols are used
for communication, such as Open Shortest Path First (OSPF) and Interior Gateway
Routing Protocol (IGRP) [81]. Since the internal protocols work across a limited set of
participants, complete topology knowledge within the AS is easy to attain. For instance,
OSPF periodically floods the network of internal routers with complete information
about link connectivity and the configuration of the local interface. This way, routers
running OSPF build a shortest path topology view to every other router within the AS.
Intradomain OSPF routing has been shown to achieve a stable network view in a few
hundred milliseconds [161]. Typically, routers within an AS form a full mesh. However,
the number of ASes (reported to 24,000 by the end of 2006 in [83]) prevents the same
level of connectivity and information sharing between ASes compared to intradomain
routing.

Given the current (and large) number of ASes, the scalability of the Internet
depends on how routing information is aggregated. BGP-4 is called a path-vector
protocol because it aggregates information about the path going from the source to
the destination. Routing information consists of Internet Protocol (IP) addresses in
contiguous blocks of 32 bits, called prefixes, and a mask length. For instance, the prefix
129.242.16.0/24 owned by the University of Tromsø refers to the 256 IP addresses in
the interval from 129.242.16.0 to 129.242.16.255.

A simplified version of the state machine for a BGP-4 session is depicted in Figure
3.6. To explain how the state machine works, consider the example on how a given BGP-
4 session works when three ASes use BGP-4 to exchange routing information. Assume
AS1 has established a session to AS2, AS2 to AS1 and AS3, and AS3 to AS2. Initially,
AS1 starts exchanging its active routes by announcing to its peers, in this case AS2,

45

Establish
TCP session

Announce all
routes

Exchange
route updates

Send route updates
while connection is up

Figure 3.6: Simplified BGP-4 session state machine.

AS1 AS2 AS3
AS1 129.242.16.0/24

Announce

Figure 3.7: AS1 announces its routes to AS2.

that it owns a given network. We use the network 129.242.16.0/24 as an example here
in Figure 3.7.

Upon receiving this information, AS2 includes its own routing information in the
announcement and relays it to AS3. When A3 receives the announcement, it knows
that it can reach the network 129.242.16.0/24 through AS2, as depicted by Figure
3.8. After the protocol has completed, the routing tables at AS3 will include information
that the network 129.242.16.0/24 is available from AS1 and AS2, as depicted by Figure
3.9.

Upon receiving a route advertisement, a router must determine whether to use the
advertised path or not, and if it is used, whether to propagate information about the
path to its peers through a route update.

Handling a route advertisement involves three actions:

• Which routes should be considered used (import policies).

• Which path should be used for routing (path selection).

• What information should be advertised to other routers (export policies).

Unlike the routing within an AS, BGP-4 does not use shortest-path analysis for
its routing decisions. Rather, BGP-4 supports a set of policy parameters used to
discriminate between multiple paths. A local preference can be set on a path to favor it
over another path to the same destination prefix. The multiple exit discriminator is set
on advertisements to neighbor ASes and determines how incoming traffic is preferably

AS1 AS3AS2
AS1 AS2 129.242.16.0/24

Announce

Figure 3.8: AS2 announces its routes to AS3.

46

AS1 AS3AS2 129.242.16.0/24 AS1 AS2

Figure 3.9: AS3 routing tables after announcements from AS1 and AS2.

routed. Many routers are configured to prefer the shortest path when there are multiple
paths to the same prefix. This feature is frequently exploited to limit the amount of
incoming traffic to a router. The technique is known as AS prepending, where an AS
prepends itself to a path and sends a route update, with the intent that neighbor ASes
disfavor the longer route with the prepended AS.

There are two types of route updates in BGP-4, i) route announcements, and ii) route
withdrawals. A route announcement means that a router has discovered or decided that
it prefers another path. A route withdrawal means that a router has decided that a
network prefix is no longer reachable and withdraws it from further communication.
Withdrawal can either be explicit, where the prefix is withdrawn by a withdrawal
message sent on the BGP-4 session, or implicit, where the current routing paths are
overridden by a new announcement message from a router.

For instance, if we assume that AS1 loses communication with A2, and then resumes
communication again, AS2 will view this as an implicit withdrawal since it gets a
new announcement from AS1 without a preceding explicit withdrawal message. AS3,
however, is notified with an explicit withdrawal of the prefixes owned by AS1 from AS2,
and is subsequently sent updates about the prefixes being reachable when AS1 resumes
communication.

3.3.3 Routing Instability

Routing instability between ASes happens when the network communication fails be-
tween ASes and causes route updates in BGP-4. The cause for network communication
failures is typically transient problems with (physical) communication links, router
software problems or misconfigured routers. Route updates during instability form three
categories, i) forwarding instability, ii) policy changes, and iii) pathological updates.

Based on these three categories, Labovitz et al. have established a well-known
taxonomy for analysis of BPG routing instabilities [99, 101]:

• WADiff: A route is explicitly withdrawn and no alternative routes to the
destination prefix exist. This is classified as a forwarding instability.

• AADiff: A route prefix is implicitly withdrawn and updated with routing
attributes indicating a different route. This is classified as either a pathological
update or a forwarding instability.

• WADup: A route prefix that has previously been known as failed is announced
as reachable again. This is classified as a forwarding instability.

47

• AADup: A route prefix is implicitly withdrawn and replaced with a duplicate of
the original route. This is classified as a policy fluctuation (when other attributes
than the route are updated) or a pathological update when only the route path is
updated (since BGP-4 should only send updates when there are actual changes in
the route).

• WWDup: A currently unreachable prefix causes repeated withdrawals or
duplicate announcements of routes. This is classified as a pathological update.

During route instability, the state of the routes is known as converging while routers
determine stable paths. During convergence, several router update messages may be
transmitted which in turn generates additional overhead on the Internet infrastructure
both in terms of bandwidth and router hardware. Experience with wide area network
backbones has shown that a router that gets overloaded during pathological updates
frequently causes a phenomenon termed route flapping to occur [101]. Route flapping
happens when an overloaded router is marked as unavailable by other routers, where the
other routers subsequently submit route updates to their neighbors. The unavailable
router eventually manages to respond, causing new route updates from the other routers
that have previously marked the router as unavailable. The redundant route updates
may propagate throughout the Internet and eventually cause significant outages for
millions of network nodes [99]. Besides pathological updates, route flapping can also be
caused by route policy changes. A study has shown that there exist policy configurations
that exhibit persistent route oscillations, where a route never converges even when there
are no changes in the actual network topology [177].

Countermeasures

A technique called route flap damping is used by most Internet routers today to decrease
the effect of route flapping [179]. It works by associating a penalty value with all
prefixes announced by a given neighbor. Whenever the state of the route changes,
the penalty is incremented by a fixed value. Over time, the penalty value is decayed
exponentially, making the penalty value a measure of the instability of a route. Routers
are typically configured with two threshold values related to the penalty value, i) the
suppress threshold where a route penalty exceeding this threshold is suppressed by the
routers, ii) the reuse threshold that determines when a previously suppressed route
should be reused again. Although route flap damping does not prevent BGP-4 route
oscillations, it makes them run slower, which improves the overall stability of the Internet
routing system. However, the work in [123] shows that route flap damping can increase
the convergence time to over an hour even on relatively stable routes.

Another solution for addressing route instability is using route aggregation. With
route aggregation a set of prefixes are combined and announced in a single route
announcement or “supernet” announcement. The idea is to reduce the number of
prefixes that are visible to increase the stability in the Internet. An AS will establish a
path to an aggregated prefix as long as one of the path components within that prefix
is stable. The problem with route aggregation is that orchestration of aggregation in an
Internet without hierarchy is hard in practice. Multiple backbones owned by different

48

ISPs require close cooperation, something which may be hard when routing policies
are governed by commercial contracts [82]. In addition, the growing number of multi-
homing ASes makes aggregation hard, since routers need to maintain an extra prefix for
each multi-homed AS [101].

Lixin Gao et al. have studied the problem of policy fluctuations that cause persistent
route oscillations in [63]. In their work, an abstract model of BGP-4 is used to formalize
a set of guidelines ASes should apply when configuring the import policies of routers.
They found that by confining the set of policies that can be used by routers, route
convergence is guaranteed without the need for global coordination.

In another work, the properties of BGP-4 route convergence were analyzed statically
in order to establish which routes were safe [71]. Among other questions asked in
this study are the questions of reachability, asymmetry, and solvability. The study
formalizes a model of BGP, and based on this model show that reachability, asymmetry
and solvability are all NP-complete or NP-hard. This study indicates that even given
complete knowledge of import policies in a BGP system, static analysis does not
guarantee global convergence, and that adaptive techniques such as route flap damping
or other heuristics are important practical solutions to the route convergence problem.

Packet Loss

During periods of network link oscillations caused by forwarding instabilities, studies
have shown that BGP-4 uses a significant amount of time (up to several minutes,
sometimes as long as 30 minutes [98, 100]) to establish which routes are up and down.
During this time of network route convergence, network packets routed on faulty paths
will be lost, and result in communication failures between two ASes. For communication
based on TCP, such packet loss can cause active connections between two network nodes
to time out and disconnect if one node is waiting for data acknowledgments.

It has been shown that the amount of packet loss during instabilities can be high
and cause dramatic performance degradations for communication over the Internet. For
instance, in a study on TCP bulk transfer throughput [131], the TCP response time
is shown to drop significantly once packet loss exceeds approximately 30%. This result
indicates that such packet loss is likely to cause similar performance impact on protocols
besides TCP that rely on point-to-point communication.

3.3.4 Asymmetric and Non-Transitive Communication

When routing is stable, filtering the amount of routing information provided by each
AS allows BGP-4 (and thus the Internet) to scale effectively. However, as the previous
section has shown, this filtering for scalability comes at a cost, since BGP-4 does
not maintain information that is important for routing failure resilience, and thus, for
preventing packet loss and communication failures.

What actually happens in terms of ASes may be as depicted in Figure 3.10. Solid
circles denote network nodes and dashed circles denote Autonomous Systems. Arrows
denote the communication path between nodes and ASes. In the right part of the figure
we have a non-transitive communication failure. Traffic between A and B is routed

49

A

B

AS1

AS2

A

B

AS1

AS2

C

AS3

Figure 3.10: Asymmetric and non-transitive communication example.

through AS2, traffic between B and C is routed through AS1, whereas traffic from C to
A is routed through AS3. Assume there is a route instability that causes the path from
AS3 to A to fail. During route convergence there is no is advertised route between AS3
and A so traffic does not get routed from C to A.

In the left part of the figure we have an asymmetric communication failure where
traffic from A to B is routed through AS2 and traffic from B to A is routed through
AS1, for instance due to policy configuration governed by a commercial contract stating
which routes B should use to A. The route from AS1 to A then fails and during route
convergence no packets go from B to A.

Experience from studies of large ISPs show that asymmetric routing is very common
on the Internet [133]. Sometimes as much as 50% of the routes are asymmetric [134].
Although unrelated to BGP-4 routing failures, asymmetric network connectivity is
frequently employed as a feature when connecting leaf nodes to ISPs with an Asymmetric
Digital Subscriber Line (ADSL). ADSL is based on the assumption that leaf nodes run
applications requiring very little upstream traffic compared to downstream traffic, and
is specifically tailored to web-browsing or other “download” applications. However, if
application protocols run on leaf nodes and assume that communication is symmetric,
problems may arise when the actual upstream bandwidth is orders of magnitude slower
than downstream.

3.4 Wide-Area Group Communication in Practice

We have so far established that the actual frequency and duration of route divergence in
BGP may be a major contributor to the amount of blocking because of the resulting non-
transitive or asymmetric communication. A study on Internet path faults has reported
that 90% faults last less than 15 minutes, and that 70% of faults last less than 5 minutes
[49]. Other studies show that BGP-4 routing convergence can take as long as 30 minutes
(e.g., [100] and [98]). However, work in analyzing BGP routing has revealed that most
routing instability stems from a small number of unpopular destinations and that the
majority of BGP routes among popular sites are reasonably stable [147]. Hence, it would

50

seem that the actual blocking due to BGP routing instability should be small enough
to be neglectable for wide-area group communication. In addition, previous research
in wide-area group communication showed that the blocking due to non-transitive and
asymmetric communication was over 20 seconds only in 1.5% of the measured cases in
one configuration and in 0.35% of the cases in another configuration [95].

Summarizing:

• The Moshe wide-area group communication system blocks upon non-transitive
and asymmetric communication.

• Non-transitive and asymmetric communication is caused by Internet routing
failures.

• Previous work on wide-area group communication indicate that the amount of
asymmetric and non-transitive communication is relatively low.

The master-worker algorithm we have chosen to study, AX, requires group commu-
nication. While AX is optimal in terms of the number of redundant task executions, it is
likely that the performance of this algorithm to some degree depends on the performance
of the underlying group communication system.

A problem with the results from wide-area group communication presented in [95]
is that they include only five participating networks. Restricting large scale master-
worker computations to less than six networks is undesirable, so we need to investigate
the impact of increasing the number of networks has on the amount of blocking for group
communication, as well on the number of partitions we encounter. Hence, in Chapter
4, before we investigate the actual performance of algorithm AX, we need to investigate
the following two properties of wide-area group communication given a larger number
of participating networks than in [95]:

1. The number of network partitions.

2. The amount of blocking due to asymmetric and non-transitive communication.

Given the lack of accurate existing models of network connectivity which would
allow us to analyze wide-area group communication behavior, our investigation and
performance measurements are based on analysis of network traces. Using trace data
means that it is difficult to generalize from our findings to other network configurations.
Hence, we also give a simple model for the expected behavior of the algorithm that uses
the group communication system given metrics that can be measured. We show via
simulation that the model has predictive value.

3.4.1 Trace Data

We used two different sources for trace data sets. The first data set comes from the
Resilient Overlay Networks (RON) project [4]. RON is an application-layer overlay on
top of the existing Internet routing substrate. The nodes that comprise RONmonitor the
function and quality of the Internet paths among themselves, and use this information

51

to decide whether to route packets directly over the Internet or by way of other RON
nodes. The RON project uses a testbed deployed at sites scattered across the Internet
to demonstrate the benefits of the architecture. Since the probing reported in the trace
data referred to in [4] is not frequent enough for our analysis, we used another trace
that was kindly collected and supplied to us by the RON group. In this trace, there are
sixteen nodes that are spread across the United States and Europe. Each pair of nodes
probe each other via User Datagram Protocol (UDP) packets once every 22.5 seconds
on average. To probe, each RON node independently picks a random node j, sends a
packet to j, records this fact in a log, records if there was a response, and then waits
for a random time interval between one and two seconds. The logs from each machine
are then collected and merged into a single trace.

All traces from the RON project are structured as multiple lines where each line has
the following format:

source dest ron send1_time rec1_time send2_time rec2_time

Here, source and dest denote the source and destination host, send1 time the time
right before data is sent from the source, rec1 time the time when the packet is received
at the destination. send2 time and rec2 time indicate the time when the packet was
sent from the destination and received at the source, respectively. The ron parameter is
used to specify whether the packet was routed by RON or sent directly on the Internet,
and is thus not used by our simulator.

From the RON trace, we generated a directed communication graph with the RON
nodes as the vertices in the graph. An edge is drawn from node i to node j if a process
at j can successfully receive messages from a process in i. A node i may be marked as
crashed, which indicates that the process at node i is crashed.

The graph is initially connected and all nodes are marked as not crashed. A node i
is marked as crashed if the log indicates that i did not send a probe for 5 minutes. We
chose the value of 5 minutes based on the result that 70% of routing faults last less than
5 minutes [49]. Once i subsequently sends a probe, the node i is marked as not crashed.
If the trace shows that the last three messages (either probes or responses) a node i sent
to j were not received by j, then the directed edge from i to j is erased. The edge from
i to j is added again when the trace records j having received a packet from i (either
a probe or a response). The trace contains continuous probing for the two week period
from August 2 through August 16, 2002.

Group communication services for wide area networks can be factored to run on
top of specialized failure detector services [95], and so it can be hard to come up with
a general connectivity model that would predict how group communication services
would behave in any given situation. One obvious model, however, is based on TCP
connectivity. UDP connectivity is clearly worse than TCP connectivity since packets
can be lost due to congestion and there is no retry (unlike TCP). We chose the method
of declaring a link down only when three packets are lost to make the connectivity graph
a more conservative estimator of how group communication services would perform.

The second set of Internet communication traces was collected by Omar Bakr and Idit
Keidar. They studied the running time of TCP-based distributed algorithms deployed in

52

a widely distributed setting over the Internet. They experimented with four algorithms
that implement a simple and typical pattern of message exchange that corresponds to a
communication round in which every host sends information to every other host. The
traces we analyzed are described in [13].

The information was collected from universities and commercial ISP hosts. The
machines were spread across the United States, Europe, and Asia. Each host sent a
ping packet (using the Internet Control Message Protocol, or ICMP) to each other host
once a minute. Each process records to a local log the ping packets it receives from
other processes.

Our simulator used the RON file format as the canonical network trace format since
this format has the least redundancy of information compared to what we needed in our
simulations. Since the ping traces from Keidar and Bakr were structured completely
differently, we wrote a simple converter from ping traces to the RON file format.

The communication graph is constructed in a similar way as was done for the RON
traces. The graph is initially connected. The edge from a process i to another process
j is removed when 3 minutes elapses without j having received a ping from i. The edge
is put back when j finally receives a ping from i. There is not enough information in
these traces for us to be able to mark a node as crashed, and no node is ever marked as
having crashed.

There were three traces generated in total: one with nine nodes, one with eight
nodes, and one with ten nodes. We denote these three traces as exp1, exp2 and exp3.
Each trace recorded more than three days’ worth of probing. In exp1, two links had high
loss rates: one from National Taiwan University to a commercial site in Utah sustained
a 37% loss rate, and another from National Taiwan University to a commercial site in
California sustained a 42% loss rate. In exp3, links from National Taiwan University
and from Cornell University had high loss rates. Because of these high loss rates, the
study by Bakr and Keidar [13] also considered the subset of exp1 with the process at
National Taiwan University removed (they did not analyze exp3 in their paper). We
did not remove the data concerning National Taiwan University and Cornell from our
traces because leaving it in represented a real-world situation for grid computations.

3.4.2 Trace Analysis

First, we would like to know how often partitions happen and what duration they have.
A partition occurs when the communication graph contains more than one component,
and all components contain non-crashed nodes (recall Figure 3.1).

The partition data from the traces is shown in Tables 3.1. Each partition is identified
by when it started in the trace and how long it endured. The percentage of time during
which there was a partition in each trace is reported in Table 3.1. Summarizing,

1. There are eleven partitions in the RON trace. Nine of the eleven endured for less
than 5 minutes, and the two others endured for over 5 hours. For over 96% of the
trace there was no partition.

2. There are two partitions in the exp1 trace. One lasted for 5 minutes and the other
lasted for over an hour. For over 99% of the trace there was no partition.

53

RON (16 nodes): F=18%, Pct Partition time = 3.9%
Non-partition Partition period

period Start time Duration Two-clique time
1st 60,843.5 60,843.5 2.4 100%
2nd 259,966.6 320,812.5 1.7 100%
3rd 290,407.9 611,222.1 56.4 100%
4th 41,421.3 652,699.8 27,639.6 98%
5th 224,965.6 905,365 70.6 0%
6th 16,591.4 922,027 27.9 0%
7th 149,180.1 1,071,235 98.2 100%
8th 7,995.6 1,079,328.8 22.4 100%
9th 912 10,80263.2 95.9 100%
10th 60,003.8 114,0362.9 92 100%
11th 49,995.9 1,190,450.8 19149 94%

exp1 (9 nodes): F=32%, Pct Partition time = 0.89%
Non-partition Partition period

period Start time Duration Two-clique time
1st 74,520 74,520 3,720 82%
2nd 21,360 99,600 300 100%
3rd 360,900 - - -

exp2 (8 nodes): F=5%, Pct Partition time = 0%

exp3 (10 nodes): F=46%, Pct Partition time = 0%

Table 3.1: Partitions in the four traces. Time values are given in seconds.

3. There were no partitions in the exp2 or exp3 traces.

Since there is no information in the three traces about crashes, the partitions time
reported for exp1 is only an upper bound.

All partitions that we found in the traces resulted in exactly two connected
components. In all but one of the partitions, one of the components contained exactly
one node; in the case, which is in the RON trace, the smaller component contained
two nodes (one of these two nodes subsequently crashed during the partition). This
two-node component was symmetrically and (by definition) transitively connected.

Second, we would like to know how often communication is not symmetric and
transitive. At any point in time, each process i is in a connected component of the
communication graph. For a process i, let c(i) be the fraction of time during a trace
in which its connected component is a clique, and P the number of nodes in the graph.
We then compute:

54

F = 1−
∑

i∈P
c(i)/P

F is the percentage of the time where a view is not transitive or symmetric. Thus,
larger values of F indicate that an algorithm using group communication will be less
likely to make progress (i.e., communicate) with the rest of the group, because of the
lack of a fully formed view. Table 3.1 reports the values of F for the four traces we
considered. The values in the duration and the period columns are given in seconds.
All traces record a significant value for F , and trace exp2 has the lowest value.

Recall that in all partitions, the smaller of the connected components contained either
one or two nodes and was both symmetrically and transitively connected. The larger
connected component was not always symmetrically and transitively connected. So, we
also list the fraction of time of each partition during which the larger component was
symmetrically and transitively connected. For the most part, the larger component’s
communication graph is a clique.

Looking at these values, we observe that:

• The periods of time during which there is no partitioning are usually quite long.
In the RON traces, the shortest such period was about 15 minutes and the longest
period was over three days, and in the exp2 and exp3 traces, both of which record
three days’ worth of probing, there were no partitions.

• When they happen, partitions can endure for a long time. In the RON trace, the
longest partition lasted for over 7 hours, and in the exp1 trace the longest partition
lasted for over an hour.

• The periods of time during which communications are not symmetric and transitive
is significant. It appears that such periods are often due to one troublesome node
or link. For example, from the RON traces during partitions, the larger connected
component is usually fully connected. Being able to predict which nodes will be
the troublemaker, though, may be hard. For example, Cornell participated in all
the traces but was troublesome only in trace exp3.

3.5 Summary

We started this chapter by choosing master-worker computations as a way of in-
vestigating issues related to grid computations. This led us to an algorithm called
AX, which requires group communication. In the following study of wide-area group
communication, we found that the performance of such systems typically depends on
the amount of asymmetric and non-transitive communication.

The reason for asymmetric and non-transitive communication is due to how packets
are routed on the Internet. Internet routing is designed for scalability and simplicity
at the cost of effectively handling link failures. Previous research on wide-area
group membership indicates that the amount of blocking is small. However, since
these results are based on a small number of participating networks, we investigate,

55

through simulation based on network traces, the impact that increasing the amount of
participants has on blocking, as well as on the number of partitions we encounter.

The results from these experiments show that, although partitions do not occur
frequently, they last long when they occur. Also, the amount of non-transitive and
asymmetric communication is quite significant compared to the results presented in
earlier research [95].

Based on our findings, the next chapter investigates how algorithm AX performs
when run through the same network traces in order to establish how it performs with
respect to blocking and whether it performs redundant tasks.

56

Chapter 4

Master-Worker Computations using
Group Communication

The previous chapter analyzed the behavior of wide-area group communication, which
is the fundamental building block of algorithm AX. This chapter first describes how AX
works. We then run a simulation of AX on the same traces we used for analyzing the
performance of wide-area group communication.

4.1 The Algorithm

Algorithm AX is a variation of the master-worker computation we specified in
Section 3.1, and considers the case where the amount of redundant task executions
is to be kept as small as possible [65, 118, 119]. Algorithm AX solves a problem called
OMNI-DO :

OMNI-DO Problem The problem of performing a set of N independent tasks on a
set of P message-passing processors, where each processor must learn the results
of all N tasks.

The difference between OMNI-DO and our previous specification of master-worker in
Section 3.1 is that all processors must know the results of all tasks, not just the master.
From a theoretical point of view, this variation is important. Consider a centralized
master-worker computation in which only the master needs to know the results of all
tasks:

• If the master fails by crashing, the execution of redundant tasks can be minimized
by using stable storage and a simple failover mechanism for recovering the failed
master.

• If a worker partitions away from the master, the result of the task that the worker
is currently computing may be unavailable from the master for an unbounded
time. In this case, termination can require redundant task executions.

57

From a practical point of view, it is also important for a master-worker computation
to complete in a timely manner. This motivates the use of a partition-aware approach.
Furthermore, a practical wide-area master-worker computation, similar to OMNI-DO,
would distribute the results among processors in several local area networks to increase
the availability of the results even in the face of a long-lived network partition.

AX employs a coordinator-based approach and uses a partitionable group member-
ship service to track changes in the group’s composition. There is a set of processes,
one for each processor in P , that are cooperating to solve the OMNI-DO problem, and
there is a set of tasks T known by all of the processes that are to be computed. All
tasks have the same duration.

During execution, each process i maintains the local sets Di, Ri, Ui and Gi:

Di – The set of tasks whose results process i knows.

Ri – The results of the tasks in Di.

Ui – The set of tasks whose results process i does not know: Ui = T −Di.

Gi – The set of processes in i’s view.

For each process i, rank(i, Gi) is the rank of i in Gi, when the process identifiers are
in some well-known order, such as the order they appear in the view membership list.
For a task u in Ui, rank(u, Ui) is the rank of u in Ui, when the task identifiers are sorted
in ascending order.

The task allocation rule for each processor i is:

• if rank(i, Gi) ≤ |Ui|, then processor i performs task u such that rank(u, Ui) =
rank(i, Gi).

• if rank(i, Gi) > |Ui|, then processor i does nothing.

AX structures its computation in terms of rounds. Each process executes at most
one task in each round. At the beginning of each round, each processor i knows Gi,
Di, Ui and Ri. Since all processors know Gi, each processor deterministically chooses a
group coordinator, which is the process with the highest ID in Gi. In each round, each
processor i reports Di and Ri to its coordinator. The coordinator receives and collates
these reports and sends the results to all the members of the group. After receiving this
message from the coordinator, each process i updates Di, Ri, and Ui, and then chooses
a new task to compute using the task allocation rule.

Initially, all processes are members of a single initial view that contains all the
processes. If a regrouping occurs, then the affected processes receive the new views from
the group membership service, complete any tasks that they are currently computing,
and report the results to the new coordinators. Each new coordinator will then start
the first round in the new view.

We can classify all the tasks into three types as follows. Given a view G:

Fully done tasks FD(G): the tasks {t ∈ T |∀i ∈ G : t ∈ Di}.

58

Partially done task PD(G): the tasks {t ∈ T |∃i, j ∈ G : t ∈ Di ∧ t ∈ Uj}.

Undone tasks UD(G): the tasks {t ∈ T |∀i ∈ G : t ∈ Ui}.

Consider the situation in which the view G partitions into two or more views. Clearly,
all the tasks in FD(G) will not be re-executed by any process in G. In any algorithm,
all of the tasks in UD(G) are at risk of being executed redundantly because of the need
for liveness: the network partition may last for an unbounded time, and so the tasks in
UD(G) may need to be computed by at least one process in each new view. Any task
u in PD(G) is also at risk of being executed redundantly in any new view that does
not know u’s result. By using a round structure, AX ensures that the size of PD(G)
is never larger than |G| − 1. No algorithm can ensure PD(G) is smaller unless it does
not allow all processes in G to be computing at the same time. Hence, using a round
structure is one way to reduce the number of redundant tasks executed.

There are other ways to ensure |PD(G)| < |G|. For example, each process i could
send its result of executing task u to all members of Gi rather than just sending it
to the coordinator. Process i would not allocate another task until it knew that all
other processes j in G had updated Dj, Rj and Uj . AX was not designed this way
because it would introduce many more messages [66], and given that the tasks in T all
have the same execution time, there would not be much to be gained if this additional
communication were used.1

Even though it is optimal (in terms of the worst-case number of tasks executed, as
a function of the number of views installed) and has a low message overhead, AX was
not meant to be a practical algorithm. It has some obvious problems that can be easily
addressed. For example, each processor sends Di and Ri to its coordinator at the end
of each round. Doing so makes the propagation of results when views merge trivial to
implement, but it could result in a huge message overhead. It would be simple for i
to limit the size of Di and Ri by having each process maintain a vector denoting the
results it knows. Such a vector could probably be kept small with a suitable encoding
technique. These vectors could be managed in a manner similar to logical clocks [102]
so that when i sends a result to its coordinator, it only sends the part of Di and Ri that
i does not know that the coordinator knows.

Another problem that could be easily addressed would reduce the number of tasks
executed redundantly in some runs (recall that AX is optimal only in terms of the worst-
case behavior). Consider what AX does if the processes partition into two or more views
in the initial state. The processes in each view will deterministically start executing the
same set of tasks. One could instead have a coordinator choose tasks randomly without
replacement for the processes in its view to compute. If T is large and the partition does
not last a long time (as measured in task computation time), then this would result in
a smaller expected number of redundant task executions.

A third problem arises from its use of coordinators. In a real system the tasks would
not have exactly the same execution time. Each round runs until the longest task in
that round has completed, and with a large number of workers, the longest task in each

1Note that the problem can be solved with no message communication, so trying to include
optimality in terms of message complexity is not an interesting exercise [119].

59

round could take significant time to complete compared to the shortest task. Despite
the larger number of messages, the variation of AX we gave above that does not use a
coordinator would probably be a better choice.

In the next section, we discuss a more important practical problem with AX which
arises from its use of group communication. This problem occurs even if all the changes
above are made to AX.

4.2 Analysis of AX

AX was designed with the idea of reducing the number of redundantly computed tasks.
Redundant task execution can occur when the network partitions. The exact number
of redundant tasks executed depends on many factors, including the length of time a
task executes, the number of processes, how the processes partition from each other, at
what point in the algorithm the partitions occur, and for how long each endures.

AX was not explicitly designed to compute the results of OMNI-DO quickly, but in
fact it would appear to do so. It is work conserving: if there is a task to be executed
and a process available to execute a task, then the task is executed. Since tasks have
the same computation time, blocking due to the round structure should be small and
the order that the tasks are executed is immaterial. Hence, since AX reduces the
number of redundant tasks, it would appear to be a fast algorithm as well. However,
as was discussed in Section 3.2.1, group communication services can perform poorly
when communication is not symmetric and transitive. The actual performance of AX
depends strongly on the frequency and duration of non-symmetric or non-transitive
communication. Furthermore, worst-case behavior is not necessarily the only important
metric to consider. In practice, the average execution time is probably of more interest
to grid computation consumers.

We can estimate the slowdown factor of AX with a simple model. Assume that
the network does not partition but suffers from periodic times of unstable connectivity:
for α seconds it is not a clique, for β seconds it is a clique, for α seconds it is not a
clique, and so on. Let each task compute for T seconds. Since the tasks have the same
length, they will complete at close to the same time. The master then broadcasts the
new assignment to start the next round. With probability α/(α + β), the broadcast
will occur during an α period, and will block on average α/2 seconds; otherwise, the
broadcast occurs during a β period and does not block. Hence, it blocks on average
α2/2(α + β) seconds. The slowdown factor should then be (T + α2/2(α + β))/T . This
simplifies to:

Slowdown factor = 1 +
αF

2T

where F is the formula derived in Section 3.4.2 that calculates how large is the portion
of the trace where communication is non-transitive or asymmetric.

60

4.2.1 Simulation Results

In order to establish if our observations on the impact of non-transitive and asymmetric
communication are correct, we simulated AX running over the RON trace. We used
the communication graph to generate a set of view changes, and we used the group
membership semantics in which a process’s multicast is blocked while its connected
component is not a clique. Given the round nature of AX, our results would not differ
if only the delivery of multicast messages were blocked during these times.

We chose each of the sixteen nodes monitored by RON to have ten processes.
Since processes in one node are in the same local area network, we decided that the
communication among them is always symmetric and transitive. We chose there to
be 1,000 tasks that run for a time much longer than it takes for messages to be
transmitted over the wide area network. We decided that communication are effectively
instantaneous among a component when its communication graph is a clique (otherwise,
it is blocked as described above).

We first ran the simulations over a period of time in the RON traces during which
there were no node crashes and there were no partitions. A run Sim(i) indicates a
simulation in which each task runs for 100i seconds. The results of our simulation are
shown in Table 4.1. The column “Start time” indicates where in the trace the simulation
was started. The row “Slowdown” gives the slowdown factor for different simulations
and the row “F” gives the value of F for the segment of the run during which the
simulation ran.

F was either very small or very large. When F is small, there is no effect on the
running time, and large values of F can make AX run between about 50% to over
11 times slower. As predicted, the slowdown factor decreases with increasing T . The
slowdown factor equation requires a value for α, and so we computed a histogram of
values of α and β over the entire run (when the network was partitioned we considered
only the larger connected component). Table 4.2 gives the histogram. The average
and median values for α are 143 and 22 seconds, and for β are 665 seconds and 162
seconds. The ranges of values for both are very large. If we use the average value of α in
the slowdown formula, then the slowdown factors in Table 4.1 are usually much higher
than the slowdown formula predicts. This deviation is caused by some larger periods of
non-transitive communication during the simulation.

We then ran Sim(1) over five different time intervals in the RON trace during which
F was close to 50%. The results are shown in Table 4.3. With α = 143 seconds,
the slowdown formula predicts a slowdown factor of 1.36, which is close to the values
computed by simulation.

Since no partitions occurred during any of these runs, the number of redundantly
executed tasks should be zero, which is what the simulation reported. We then ran
Sim(1) starting at five different times, where at each starting time there was a partition
but no crashed nodes. The results are shown in Table 4.4. In the first simulation, the
network was partitioned throughout the whole execution, and so all tasks were executed
redundantly. In the other cases, the partition lasted for only a short time. Here, since
the partition result in one side having a single node with ten workers, and redundant
executions starts when there is a partition, there will be only ten redundantly executed

61

Start time Value Sim(1) Sim(2) Sim(3) Sim(4) Sim(5)
500,000 Execution time 700 1,400 2,100 2,800 3,500

Slowdown 1 1 1 1 1
F 0% 0% 2.7% 2.1% 1.6%

510,000 Execution time 700 1,400 2,100 2,800 3,500
Slowdown 1 1 1 1 1

F 0% 0% 0% 0% 0%
520,000 Execution time 700 1,400 2,100 2,800 3,500

Slowdown 1 1 1 1 1
F 1% 0.5% 0.9% 0.6% 0.5%

530,000 Execution time 3,266 6,320 6,320 6,858 8,156
Slowdown 4.67 4.51 3.01 2.45 2.33

F 99.2% 99.2% 99.2% 99.3% 99.4%
540,000 Execution time 2,696 3,780 4,081 5,211 5,211

Slowdown 3.85 2.70 1.94 1.86 1.49
F 98.6% 98.9% 98.7% 98.6% 98.6%

550,000 Execution time 7,819 9,573 10,188 10,188 10,825
Slowdown 11.17 6.84 4.85 3.64 3.09

F 99.4% 99.2% 99.1% 99.1% 99.2%
Average Execution time 2,647 3,979 4,482 5,110 5,782

Slowdown 3.78 2.84 2.13 1.82 1.65

Table 4.1: AX simulation results for traces with no partitions. Time values are given in
seconds.

Time range Non-transitive views Transitive views
Number Percentage Number Percentage

10 425 28.41% 240 16.05%
100 1,271 84.96% 637 42.61%
1,000 1,460 97.59% 1,227 82.07%
10,000 1,494 99.87% 1,489 99.60%
100,000 1,496 100% 1,495 100%

Table 4.2: The length of views. Time values are given in seconds.

Start time 526,900 688,000 856,500 1,070,000 1,189,300 Average
Execution time 1,118 813 1,498 1,012 976 1,083

Slowdown 1.6 1.16 2.14 1.45 1.39 1.55
F 52% 41% 55% 44% 50% 48.4%

Table 4.3: Simulation with α = 0.5. Time values are given in seconds.

62

Partn 1 Partn 2 Partn 3 Partn 4 Partn 5
Start time 652,700 905,365 922,027 1,071,235 1,140,363
Duration 27,700 71 28 98 92

Execution time 10,000 19,104 2,642 3,852 761
Slowdown 14.3 27.3 3.8 5.5 1.1

Redundant tasks 1,000 10 0 10 10

Table 4.4: AX simulation results for traces with partitions. Time values are given in
seconds.

tasks. In the third simulation, the number of redundant tasks is zero because the larger
component is not a clique during the partition, and so only the smaller component makes
progress.

4.3 Summary

Algorithm AX depends on group communication to maintain which processes are
available during the master-worker computation. The previous chapter showed that
when network communication is not symmetric or transitive, group communication
blocks. This chapter investigated the impact this blocking has on the performance
of algorithm AX. We found that the impact was significant. When running AX on
top of the traces, blocking caused the computation to slow down from 50% up to 11
times. The results give a strong indication that there are better approaches to solving
the OMNI-DO problem in wide area networks than algorithm AX.

63

64

Chapter 5

Master-Worker Computations
without Group Communication

The previous chapter showed that algorithm AX, which is based on wide-area group
membership, blocks during times of unstable network connectivity. In this chapter,
we devise a simple protocol called Wide-Area Master-Worker (WAMW), that we
conjecture is more appropriate for the network connectivity we observed in the previous
chapter. While WAMW is a partition-aware solution, it does not require group
communication. We evaluate the properties of WAMW using the same traces as we
did for algorithm AX.

5.1 Protocol Requirements

The previous chapter showed that although algorithm AX is optimal in terms of the
worst-case number of redundant tasks, maintaining this property causes blocking when
communication fails. Thus, the measure of success of an alternative algorithm is both
the number of redundant task executions and the amount of blocking. We also require
that an alternative algorithm maintains the safety and liveness properties of OMNI-DO.
The following sections elaborate on the key protocol requirements, avoiding blocking,
avoiding redundant tasks, and satisfying OMNI-DO.

5.1.1 Avoiding Blocking

In Section 4, our experiments showed that algorithm AX blocks during times when
the network is not transitive and symmetric. Ideally, a partition-aware master-worker
protocol should make progress even when the network is unstable. Flooding protocols
and gossip protocols [26, 112] are often used to meet that requirement.

The performance of flooding and gossip protocols depends on the connectivity
between the nodes in the communication graph. Let d(a, b) be the shortest distance
between nodes a and b in a graph G. The time it takes to complete a multicast in
the communication graph using flooding depends on D(G) = maxa,b∈G d(a, b). We call
D(G) the maximum distance of G.

65

Trace Time D(G) > 1 Time D(G) = 2 Percentage
RON 215,043.4 214,376.8 99.7%
exp1 145,560 138,360 95%
exp2 235,20 22,440 95%
exp3 213,180 208,260 98%

Table 5.1: Maximum distance, where the time values in the first and second column are
given in seconds.

Table 5.1 gives information on D(G) where G is the communication graph when not
partitioned and the larger connected component when partitioned. The first column
gives the amount of time that G is not a clique, and the second column gives the
amount of time that D(G) = 2. The third column is the percentage of time that the
graph is not a clique and D(G) = 2. These values are all close to 1, and so a flooding
protocol should be fast most of the time. The observation that D(G) is rarely more
than two has been noted by many others, for instance in [4].

5.1.2 Avoiding Redundant Tasks

Partitions cause redundant tasks to be executed in AX, something that cannot be
fundamentally prevented unless we allow blocking for an unbounded amount of time.
Algorithm AX does not execute redundant tasks when communication is asymmetric
and non-transitive because the group communication system blocks. However, the
disadvantage is that the probability of experiencing a network partition increases with
the time the computation takes to complete. Thus, in practice, the approach AX takes to
minimize redundant tasks may actually increase the number of redundant tasks instead
of decreasing them.

Avoiding redundant tasks requires global knowledge of which tasks have been
completed. An approach to reduce the effects communication problems have on
synchronizing global state, is to statically set up groups of processors within each local
area network, or subnet, and to have these groups work in isolation as long as possible.
Each group periodically flood its view of the global state to the rest of the groups.
Since the maximum distance is seldom more than 2, global state updates should be
disseminated between groups fast.

Given small amounts of contention on the global state of the computation, an
attractive abstraction for synchronizing access and detecting failures is leases [68].

5.1.3 Satisfying OMNI-DO

When there is a partition that splits the computation in two cliques, AX computes
the same set of remaining tasks in both partitions in order to satisfy the OMNI-DO
safety property which states that the computation terminates when all masters know
the results of all tasks.

66

Given the approach stated in the previous section, where groups are statically set
up within each subnet and the work split among the groups, we need to ensure that if
one of the groups partitions away, the OMNI-DO safety property is still enforced. An
approach to ensure this is to associate a lease with each group, and if the lease expires
start redoing the work allocated to the expired group in another group.

5.1.4 Summary

To summarize, our alternative algorithm uses the following strategies to ensure that
requirements are met:

• Flooding instead of group communication.

• Split work in disjoint sets to reduce synchronization in global state.

• Leases to synchronize access to global state and detect failures.

• Recompute the sets of other groups when leases expire.

5.2 WAMW

This section presents WAMW, our alternative to algorithm AX.

5.2.1 System Model

We assume a distributed system comprised of computers, or processors, connected to
local area networks, where the local area networks are connected into a wide area
network. Processes on different processors can only communicate by sending messages
over the network.

We assume that processors can fail by crashing and that the network communication
can fail by dropping messages. The use of leases requires the timed asynchronous system
model [40], since leases assume that all participating processors have the same clock rate.
Thus, we assume that processors have clocks that progress at a rate close to real time,
but the time between some process p sending a message and the intended destination p′

delivering the message can be arbitrarily long.
We assume that network communication provides FIFO delivery order: if process p

sends message m to process p′ and then sends message m′ to process p′, then p′ may
receive just m, or just m′, or m before m′, but never m′ before m.

5.2.2 Algorithm Structure

WAMW uses masters and workers to perform a computation. Masters schedule tasks,
and workers request and execute tasks given by the masters. Initially, each subnet has
at least one master and its set of workers as depicted in Figure 5.1, where there are
three master processors (M) and their associated worker processors (W). Arrows denote

67

M

W

M

M

W

W

W

W

W

Figure 5.1: WAMW spanning three subnets.

possible directed communication paths among master and worker processes. The general
approach of WAMW is to split the computation into disjoint sets of tasks. A set of tasks
is performed by a deterministically chosen master process and its workers. When all
sets of tasks have been performed, the computation terminates. The next subsections
will elaborate on the various parts of the algorithm.

Pseudocode 5.2.1 Worker main loop.

def worker:
result = NULL
while true:
task = request work from master(result)
if task == NO MASTER:
terminate()

lease timeout = extract lease timeout(task)
fork(task)
task completed = false
while not task completed:
result = block until(expired(lease timeout) or task completed)
if result == LEASE EXPIRED:
lease timeout = renew lease(task)

else:
task completed = true

5.2.3 Workers

The main control flow of the worker is given in Pseudocode 5.2.1. A worker processor
executes a single task at a time. When a worker starts up, it requests a task from its
designated master by sending a TASK REQUEST message. Upon receiving a task, the

68

Pseudocode 5.2.2 Worker to master request handler.

def request work from master(result):
masterid = get master()
while true:

task = task request(masterid, result)
if task == REQUEST FAILED:
mark as unavailable(master)
masterid = get master()
if not masterid:

return NO MASTER
else:
return task

worker starts executing it and sends the result of the task to the master upon completion.
When requesting a task from a master, the request can also fail (see Pseudocode 5.2.2)
if the master has crashed or, for masters in other subnets, has partitioned away. When a
request fails, the worker marks the current master as unavailable, chooses a new master,
and re-issues the request to this master. If this master fails, a new is chosen, and so
on until there are no masters that the worker can choose. A worker terminates when
all masters have terminated, meaning the computation has terminated (see handling of
REQUEST FAILED in Pseudocode 5.2.2).

5.2.4 Masters

The main control flow of a master is given in Pseudocode 5.2.3. A master first checks if
there is a worker request pending. If so, the master extracts the result from the previous
task done by the worker from the request, and marks the task as done. The worker is
subsequently added to a list of idle workers. The master then checks if there are any
unallocated tasks left to be performed. If there are tasks to be performed, the master
allocates a task, picks an idle worker, and sends the task to the worker. The masters
are terminated after every master knows the results of all tasks.

5.2.5 Leases

To detect when a master or worker has crashed, WAMW uses two types of leases. The
first lease is the worker lease. When a worker is given a task by a master, the master
registers a lease on the task. The value of the worker lease is the estimated completion
time of the task. From a practical point a view it is hard for a master process to predict
the time it takes to execute a given task, since worker processors may have varying
CPU resources. However, if a worker finds that it cannot complete its task within the
estimated completion time, it calculates a new lease and sends a RENEW LEASEmessage
to the master (see Pseudocode 5.2.1). If, however, a master finds that a worker lease
has expired, the worker is assumed to have crashed.

69

Pseudocode 5.2.3 Master main loop.

def master:
pmax interval = interval between each master state update
pmax = current time() + pmax interval
idle workers = []
while true:

state update = false
type, workerid, result = get worker request()
if type == RENEW LEASE:
set worker lease(workerid)

if type == TASK REQUEST:
idle workers.append(workerid)
if result ! = NULL:

state update = true
mark task as done(result)

while len(idle workers) > 0 and num unallocated tasks() > 0:
task = allocate task()
workerid = idle workers.pop()
set worker lease(workerid)
send task to worker(task, workerid)
state update =true

update master state(state update)
check leases()
if all tasks completed():
terminate()

Pseudocode 5.2.4 State updates from master to the other masters.

def update master state(state update):
if current time() > pmax or state update:

pmax = current time() + pmax interval
send local state to masters()

state = receive state from masters()
if state:

update local state(state)

70

Pseudocode 5.2.5 Checking for expired leases in the master.

def check leases:
for lease in master lease:

if expired(lease):
unallocate all tasks allocated by master()

for lease in worker lease:
if expired(lease):

unallocate task allocated by worker()

The second type of lease is the master lease. Every master registers a master lease
with every other master. If a master lease expires, then the master for which the lease
expired is assumed to have crashed or partitioned away.

Leases require clocks to progress at a rate close to real time. If not, a master with a
faster clock rate than another master may erroneously expire leases and start executing
redundant tasks without any communication failures having occurred. Similar, a worker
with a slower clock rate than its master may fail to renew its worker lease and cause the
task to be redundantly executed by another worker.

5.2.6 Task Allocation

Let T be a vector of all tasks in the computation. The index operation for T gives the
task associated with the index (e.g., T [i] returns task i). As in AX, task allocation in
WAMW assumes that all masters know all tasks T to be executed in advance. WAMW
also assumes that initially all masters know the identity of all other masters and that
masters are totally ordered by 0, 1, . . . , (n− 1) where n is the number of masters. Before
the computation starts, the complete task list for the computation is divided evenly in
a deterministic way among all masters. The size of the slice for each master is |T |

n
. The

slice of tasks to perform for master i, Si, is then given by:

Si = T [i× size, (i+ 1)× size]

and the remote set Ri for master i is defined by:

Ri = {S0, S1, . . . , Si−1, Si+1, . . . , Sn−1}
Tasks are allocated by master i to idle workers as follows: if there is an unallocated

task in Si, then mark the first such task as allocated; else mark the first unallocated
task in Ri as allocated. When a worker lease held by master i expires, all tasks marked
allocated with the expired lease are marked unallocated in Si or Ri. When a master
lease for master j held by master i expires, master i marks all tasks in Sj as unallocated
(see Pseudocode 5.2.5 for lease expire logic). When a task completes, it is removed from
Si or Ri.

A task allocated from Si by master i only causes redundant task executions when a
worker lease expires. A task allocated from Ri by master i always causes a redundant
task execution, unless a remote master j has crashed before allocating this task in Sj .
A task u ∈ Sj in Ri will only be allocated after the master lease of master j has expired.

71

5.2.7 State Dissemination

At each task completion (and the corresponding task allocation) and at the frequency
pmax, a master broadcasts its state. This state includes the tasks that have been
completed, the tasks that have been allocated, the task results, and master lease
information to the other masters (see Pseudocode 5.2.4). Broadcasting at task
completion reduces the chance of two masters both allocating the same tasks in their
remote sets. Broadcasting at pmax frequency increases the chance of overcoming
temporary communication failures. The value of pmax is a function of the average
task execution time and the value for the master lease. For instance, if a task takes c
seconds to complete on average and given that D(G) is almost always 2 or less, then
pmax should be set to c

2
to ensure that state about individual task completions is

broadcast at least twice. However, for a master lease m, if c
2
> m, pmax should be set

to a smaller value than c
2
to avoid a master leases expiring first.

5.3 Worst-case Analysis of WAMW

Redundant task execution occurs in WAMW when leases expire. Compared to AX, the
number of redundant task execution can be large. Let:

M be the number of masters.

Ki be the number of workers associated with master i; Ki > 0.

K be the number of workers: K =
∑M

i=1Ki.

N be the number of tasks.

W be the total number of tasks executed.

Since communication is asynchronous, we can delay messages for an arbitrary amount
of time without having a partition (assuming that we define a “partition” to mean
communications are broken for an even longer time, perhaps forever). In this model,
W can be as large as NK: Delay all messages between masters so that the master
leases expire. Thus, each master will compute all N tasks. Consider master i. Since
it is work-conserving, it will assign Ki tasks in each round. Number the workers as w1

through wx where x = Ki. We can delay the replies long enough so that the worker
leases expire. The master will not assign a task until a worker responds with results of
a task; let this worker be w1. Thus, the task that w1 computed will not be redone. We
can reassign all the other previously assigned tasks, for example, by assigning w2’s task
to w1, w3’s tasks to w2, and so on.

The total number of tasks that master i computes is the number of tasks w1 computes
plus the number of tasks w2 computes ... plus the number of tasks wx computes, which
gives a worst case of:

N + (N − 1) + (N − 2) + . . .+ (N −Ki + 1) = Ki
(2N−Ki+1)

2

72

The total number of tasks Wwc is thus:

Wwc =
∑

i=1Ki
(2N−Ki+1)

2
= NK + K

2
−∑M

i=1
K2

i

2

From this it follows that Wwc is maximized when ∀i : Ki = 1 in which case Wwc = NK.
Suppose we adopt a stronger model: Communications can be arbitrarily delayed

only if there is a partition, and partitions are detected by timeouts of master leases. For
example, if a set of masters c1, c2, c3, c4 send messages to each other and then partition
into two components c1, c2 and c3, c4, then by the time the partition is detected c1 and
c2 have received each other’s messages (but not necessarily c3 and c4’s messages). We
also assume that workers communicate with their masters in a timely manner and so no
worker leases expire.

Under this model, W still depends on more than the number of installed views.
Consider the simple case of the M masters partitioning into two: One side, A, consists
of M1 masters and the other side, B, consists of M2 masters. Assume that each master
has the same number of workers. Have the masters each complete their local sets, but
delay all messages they send among themselves. After the partition, each master in A
will redo the tasks that were computed in B and vice versa. So, before the partition the
A side computed NM1/M tasks and the B side computed NM2/M tasks. Afterwards,
the A side computes M1NM2/M tasks and the B side computes M2NM1/M tasks.
Summing these, we get the total number of task computations, and so the work is:

Wsc = N + (2NM1M2)/M

Wsc is maximized when M1 = M2 = M/2, giving in the worst case Wsc = (1 +M/2)N .
Even with only two views installed, the worst-case of Wsc scales with the number of
masters and is thus not optimal.

We expect that communication will not be as poorly behaved as it is needed to attain
these bounds. Assuming that we can assign lease values in an appropriate manner, we
expect that the number of redundantly executed tasks can be kept small in practice.

5.4 Assigning Leases

The length of master leases influences both the number of redundant tasks executed and
the total execution time of all tasks. Assume that all masters work in isolation during
the whole computation, causing Wwc tasks to be executed. For the total execution time
of the computation to be optimal, the master lease should not be larger than the time
t it takes to execute the local set Si for a master i, since the master immediately starts
executing tasks in Ri once Si is completed. Hence, t seems like a reasonable upper
bound for the master lease. For long-lasting partitions, though, t is unrealistically large
to use for master leases, since doing so will cause the total execution time to become
very large. The question is then, how small can the master lease be to make the number
of redundant tasks small, while at the same time avoiding blocking the computation
unnecessarily.

One obvious value for a master lease is the expected duration of a partition. In
general, such a value is impossible to establish, but we can use a value based on our

73

traces. Partition durations in the RON trace were less than 2 minutes for 9 out of 11
partitions. For the exp1 trace, one partition lasted 5 minutes and one for over an hour.
Hence, if we disregard the very long partitions, partition in the traces typically lasted
5 minutes or less. We thus set the master lease to 10 minutes for our experiments to
mask the majority of partitions while ensuring that the computation does not block for
long periods during long-lasting partitions.

The value for the worker lease is based on the expected execution time of a given
task. We assume that for most cases when a worker sends a RENEW LEASE message to
the master, the message gets to the master successfully and in a timely manner, since
all communication between workers and masters is within subnets with small latency
and low packet loss. Thus the accuracy of the worker lease is not important, as workers
can periodically renew the lease if it is an underestimate. In our simulations we assume
that workers do not crash, and hence the worker lease has no significance for our results.

5.5 Simulation

We used the RON traces to determine whether a message could be successfully sent from
one computer (i.e., RON node) to another during an unreliable broadcast. If a message
sent from node i to node j in the RON trace fails, then we assume that all subsequent
messages sent in WAMW from node i to node j fail until a message is successfully sent
from node i to node j in the trace.

Since the task execution times are identical, we added a small random jitter in the
interval [0, 2] to the execution time of the tasks to avoid unrealistic synchronous behavior
in master to master communication. Adding jitter causes a master state broadcast for
all task completions (and corresponding allocations). Since network jitter was not part
of the simulation for AX, we normalized the execution time for WAMW to exclude the
additional time caused by the jitter.

To increase tolerance to communication failures when doing the state broadcasts in
the master, additional broadcasts are sent every pmax seconds. In our experiments,
tasks have lengths 100i seconds where i = 1, . . . , 5 and to ensure we have at least one
additional broadcast between every task completion broadcast, we set pmax to 100

2
= 50.

Note that we do not increase pmax for i > 1 to avoid master leases from expiring due to
temporal communication failures. As with the AX simulation we assigned one master
and ten workers on each of the 16 nodes monitored by RON, and specified 1,000 tasks to
be executed totally. The computation terminates when all masters know the results of
all tasks. As with AX (see Table 4.1) we first ran the simulations over the same periods
of time in the RON traces that we used for AX and reported in Table 4.1. The results
are shown in Table 5.2.

We also report the number of messages that WAMW uses. The values are
significantly larger than the number used by AX. The average transmission rate is
larger for shorter tasks. With Sim(1) the rate is about 26 messages/second and with
Sim(5) it is about 9 messages/second. If the message size is large, then the overhead
caused by the messages may pose a scalability issue when task duration is short.

The number of redundantly executed tasks is always 0, as expected given that there

74

Sim(1) Sim(2) Sim(3) Sim(4) Sim(5)
Fastest running time 700 1,400 2,100 2,800 3,500
Start Slowdown 1 1 1 1 1
at Total msgs 18,360 21,720 25,080 28,440 31,800

500,000 Pct msgs failed 0.02% 0.02% 0.06% 0.08% 0.11%
Start Slowdown 1 1 1 1 1
at Total msgs 18,360 21,720 25,080 28,440 31,800

510,000 Pct msgs failed 0.08% 0.10% 0.19% 0.23% 0.28%
Start Slowdown 1 1 1 1 1
at Total msgs 18,360 21,720 25,080 28,440 31,800

520,000 Pct msgs failed 0.20% 0.16% 0.19% 0.21% 0.24%
Start Slowdown 1 1 1 1 1.01
at Total msgs 18,360 21,720 25,080 28,440 31,830

530,000 Pct msgs failed 7.40% 6.07% 6.38% 6.15% 6.02%
Start Slowdown 1 1 1 1.02 1
at Total msgs 18,360 21,720 25,080 28,485 31,800

540,000 Pct msgs failed 6.14% 6.05% 6.36% 6.03% 5.69%
Start Slowdown 1.07 1.04 1.02 1.02 1
at Total msgs 18,405 21,765 25,125 28,485 31,800

550,000 Pct msgs failed 11.82% 11.72% 11.79% 11.95% 11.82%

Table 5.2: WAMW simulation results from traces with no partitions. Time values are
given in seconds.

Partn 1 Partn 2 Partn 3 Partn 4 Partn 5
Start time 652,700 905,365 922,027 1,071,235 1,140,363
Duration 27,700 71 28 98 92

Execution time 10,000 700 700 700 700
Slowdown 14.3 1 1 1 1

Redundant tasks 1,000 0 0 0 0
Total msgs 78,480 18,360 18,360 18,360 18,360

Pct msgs failed 28.19% 3.56% 2.64% 4.85% 1.38%

Table 5.3: WAMW simulation results from traces with partitions. Time values are given
in seconds.

75

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 100 200 300 400 500

D
iff

er
en

ce
 in

 e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Task length (seconds)

Start 530,000
Start 540,000
Start 550,000

Figure 5.2: Difference between AX and WAMW execution times when there are no
partitions in the trace. The height of the bars depict the amount of time AX uses in
excess of WAMW for the same computation.

were no partitions, and hence the probability of a lease expiring is low. 80% of the
slowdown factors are 1, and the maximum value is 1.07 which is much better than the
performance of AX, where the largest slowdown was 11.17 and the smallest slowdown
larger than 1 was 1.49. For the results where the slowdown is larger than 1, the execution
time is always optimal plus pmax, where pmax is 50 seconds. In these cases, the last
task completion broadcast from a controller failed to reach all other controllers, but
the successive broadcast which happens pmax seconds later completed the broadcast.
Figure 5.2 shows the difference in task execution time between AX and WAMW for
this simulation. Since the difference is 0 for start times 500000, 510000 and 520000,
these were omitted from the figure. The figure clearly indicates that the computation
completes much faster with WAMW than with AX.

We then ran Sim(1) over the five different time intervals in Table 4.4. The results
are shown in Table 5.3. Since the network is partitioned during the whole execution
in the first simulation, all the tasks are executed redundantly, as they are with AX.
For the other simulations, no tasks are executed redundantly, since the duration of the
partitions are less than the master lease. The slowdown factor of the first simulation is
14.3, and that of all the other simulations are 1, all of them optimal. Figure 5.3 shows
the execution time of WAMW compared to AX in this case.

To summarize, in most cases WAMW runs faster than AX, since it does not block
during non-transitive communication. And in practice, the number of redundant tasks
executed by WAMW is not larger than AX. Attaining this performance requires using
good values for the lease times. In practice, a user might set the master lease times to

76

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4 5

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Partition number

AX
WAMW

Figure 5.3: Comparison of WAMW and AX execution times when there are partitions
in the trace.

balance off his or her own particular trade off between running time and redundant task
execution.

5.6 Observations

The motivation for this study was to gain insight in the issues of constructing a wide-area
master-worker framework for computational grids. We chose to investigate a protocol
that had been developed to minimize the amount of redundant tasks executed and
evaluated it both with an analytical model and via simulation. The protocol was not
meant to be a practical one, but on the surface it does not appear hard to make it
more practical. We also compared the performance under simulation against a simple
protocol that does not use group communication and that has a significantly higher
upper bound on the amount of redundant work.

Our investigations reveal that the frequency of non-transitive or asymmetric
communication can be significant. In an earlier study [95], results indicated significantly
fewer periods of poor communication connectivity. However, the network considered in
this study contained only five nodes. From the traces we used to evaluate AX, it appears
that as the number of nodes grow, the more likely it will be that one will encounter
periods of non-transitive or asymmetric communication. Hence, using wide-area group
communication systems upon which to build wide-area master-worker does not seem to
be a good idea.

There are two ways to reduce the impact of poor communication connectivity and

77

reduce the amount of blocking due to non-transitive and asymmetric communication, i)
static link configurations, and ii) overlay networks.

Static Link Configuration. The approach here is to identify off-line which commu-
nication links will prove to be unreliable and then configure the topology of the group
communication system to avoid these links. An example of doing this is shown in [95].
The drawbacks of this approach are i) it isn’t clear how accurately and completely
unreliable links can be identified in advance, although research has shown that routing
among popular links is reasonably stable [101], and ii) the graph may have small node
and link cut-sets, thereby increasing the chances of a partition. For example, in [95] to
avoid a relatively unreliable link, the topology is set up as a tree. The failure of one
node subsequently caused a long-lasting partition.

In [184], a tool is presented that filters BGP-4 messages into a smaller number
of alerts describing where major routing disruptions occur. Such alerts are then
investigated by operators in root-cause analysis of routing changes, and could also
be used when setting up the topology of the group communication system to avoid
communication across links which are known to be problematic. Furthermore, if parts
of the network are known to be problematic in advance, AS-level path inference can be
used to identify the paths which are likely to be used when two nodes are communicating.
A study [122] reports that the accuracy of AS-level path inference can be as good as
70%-88%.

Overlay Networks. Blocking due to lack of transitivity or asymmetry of communi-
cation can be avoided by relaying information across stable links. This is what overlay
networks like RON do [4] and the Phoenix group communication protocol do [120].
However, scalability of such overlay networks is not clear and is an ongoing research
problem. If scalability can be addressed, this would be a possible approach. However,
our initial results with the simple WAMW algorithm indicate that the kind of poor
connectivity that exists is masked quite well by limited flooding and presumably also
by gossip protocols. Hence, it isn’t clear that the generality of an overlay network is
required. If one had other reasons for wanting partitionable group communication, then
it would be worth considering using very limited gossip or flooding underneath.

What group communication offers for wide-area master-worker computation is a
mechanism to ensure that in the worst case, the number of redundantly executed tasks
is small. Our initial experience with the simple WAMW algorithm, though, indicates
that the expected number of redundantly executed tasks can be kept quite small without
using group communication. If the worst-case scenario were more dire—for example,
as it is in the Bancomat problem [173], then it would be worthwhile running a group
communication system over a communication layer that relayed information to avoid
poor links. For wide-area master-worker, it is hard to justify such an expenditure of
effort to avoid a highly unlikely worst-case behavior.

There are, however, problem domains in wide-area master-worker where group
communication provides an attractive solution, for instance, replicating masters to a
small degree within each local area network. This would be done both to balance load

78

and to mask crash failures of masters. Since communication is more reliable in a local
area network, using a primary-backup approach within a local area network should work
well.

5.7 Mobile Agents and the Grid

We have investigated two different solutions to master-worker computations on the grid.
However, with either solution, a key problem with grid computations is how to manage
the grid resources [96, 97]: grid computers may come and go, parts of the grid network
topology may become unavailable for extended periods, and the available resources on
a grid computer may vary over time. With this in mind, there are several properties of
mobile agents that can be leveraged, for instance:

• Searching the grid for a particular type of resource during the computation or
before the computation starts [97, 178].

• Monitoring the progress of grid applications [78].

• Moving the grid computation executing at one computer to another computer
when there are lack of local resources [61].

• Upgrading and installing software required by the grid infrastructure or the grid
computation itself [178].

A major challenge that faces the adoption of mobile agents in grid environments,
is how to make mobile agent computations robust enough to sustain the life-cycle of
potentially long-running grid applications [57]. Thus, in the next chapter, we devise a
mobile agent fault-tolerance protocol that is appropriate for grid environments.

5.8 Summary

We started this chapter by establishing that a protocol based on flooding or limited
gossip is likely to be suitable for the kind of network behavior we have experienced when
running the experiments on AX in the previous chapter. A protocol, called WAMW,
is specified and is shown to i) complete faster than AX in most cases, and ii) does not
compute more redundant tasks than AX. WAMW uses more messages than AX even
for failure free runs, and approaches to lower the number of messages are presented.

The main results of this study can thus be summarized:

• The amount non-transitive and asymmetric communication can be significant
and cause wide-area group communication to block. Blocking may impact the
application which is using group communication and impair performance.

• Simple, topology-aware solutions to master-worker computations can perform well
in practice despite not being optimal in terms of the number of redundant task
executions.

79

80

Chapter 6

NAP - Norwegian Army Protocol

In this chapter we devise a protocol for mobile agent fault-tolerance called theNorwegian
Army Protocol (NAP). We start by specifying the operations and system model for
mobile agent computations in Section 6.1. We then specify the derived requirements
for NAP in Section 6.2. Following this, we specify the basic operations of a NAP
computation in Section 6.3. Based on these requirements and operations, we infer the
formal properties that the NAP protocol must satisfy, and then derive a specification
of the NAP protocol in Section 6.4. We then describe how to implement the derived
protocol in Section 6.5, and present an implementation of NAP using the TOS platform
in Section 6.6. We end this chapter by discussing NAP and network failures in
Section 6.7.

6.1 Mobile Agent Computations

This section specifies the environment and the operations that our mobile agent
computations must support. Following the specification in Section 2.1, a computer,
or processor, hosting a mobile agent system constitutes a place. In practice, a processor
can host more than one place, but without loss of generality we assume that each
processor hosts a single place. All places execute identical deployments of the mobile
agent system. To start executing a mobile agent stage at some processor H , the place
at H is provided with the code and state necessary to execute the stage. This implies
that executing a stage leaves no residual dependencies, as we discussed in Section 2.1.1.

We specify three operations for mobile agent computations: init, move, and
terminate. The init operation is used to create a new agent and start its first stage.
That stage may be executed at a different place than the place invoking init. Hence, if a
mobile agent computation is started within an application, the init method is normally
used to start the first stage of the computation. The move operation is used to migrate
the agent from one place to another, and takes the stage code to execute and the place
to execute the stage on as parameters. A mobile agent terminates its execution using a
terminate operation.

More formally, the execution of a mobile agent is a sequence of stages, where each
stage is terminated by a move, or a terminate operation. The init operation does not

81

p1

p5

p2

p4

p3

move move

move

move

init

Ax(1)

Ay(1)

Ax(2) Ax(3)

Ay(2)Ay(3)

init

Figure 6.1: Stages of mobile agents x and y.

terminate a stage since the mobile agent is not necessarily executing a stage when init
is invoked. For a mobile agent named m, we denote the ith stage of this agent as Am(i).

Figure 6.1 shows a mobile agent computation with an agent called x, originating at
p1 with Ax(1) after init has been invoked. The second stage of the agent, Ax(2), starts
when Ax(1) executes move to place p2 and terminates when Ax(2) executes move to
place p3. During execution of Ax(2), the agent invokes the init operation that creates
a new agent y on place p4. The new agent y executes a move to place p5 in its second
stage and then a move to place p4 again in its third stage. When only one agent is
used, the subscript indicating the agent name is omitted from the presentation.

6.1.1 System Model

A mobile agent computation is susceptible to crash and to network failures. Conse-
quently, we make the following assumptions:

Crash Failures. A place can crash, and this causes all mobile agents executing on that
place to crash. A processor itself can crash, resulting in the place and all other programs
running on that processor crashing. Finally, the mobile agent itself can crash without
the processor or place crashing. A crash causes the mobile agent to halt execution.

To tolerate crashes, we assume that associated with each processor p is some small,
well-defined set of places that can detect the crash of p, the place at p, and any mobile
agents being executed at p. Postulating this set of places is a practical way of stating
the fail-stop failure model [157].

Reliable Communication. We assume that each pair of processors is connected
by a FIFO communication link: if process p sends message m to process p′ and then
sends message m′ to process p′, then p′ receives m before m′. Further, we assume that

82

transient communication failures between non-crashed processors are masked by a lower
level transport protocol, similar to the semantics offered by TCP communication.

6.2 Derived Requirements

This section specifies the derived requirements for our mobile agent fault-tolerance
protocol, and is based on the investigation of related work in Chapter 2. The two
requirements are that the protocol must be non-blocking and have efficient resource
usage.

Non-blocking. In Section 2.4.1 we observed that enforcing the exactly-once property
can cause a mobile agent computation to block for an unbounded amount of time given
certain network communication failures. From this, we determined that the enforcement
of the exactly-once property of a mobile agent stage is an efficiency concern and not
a safety concern. Hence, for efficiency, we require that all stages must be executed by
NAP exactly once, as long as the protocol does not block for an unbounded amount of
time.

Efficient resource usage. In Section 2.4 we observed that some of the very early
work on fault-tolerance for itinerant computations required that every place an itinerant
computation visits be replicated. In this work, failures were masked by having
multiple instances of each stage executing concurrently [126]. However, mobile agent
computations are typically deployed because different places provide different resources.
Hence, NAP must not require that stages or the stage execution is replicated for fault-
tolerance when there are no failures. This can be satisfied by adhering to the primary-
backup approach that we discussed in Section 2.3.2.

6.3 Fault-Tolerant Mobile Agent Computations

Based on the derived requirements specified in the previous section, we now specify the
operations we require for fault-tolerant mobile agent computations.

The tacoma mobile agent system originally supported recovery from crashes by use
of cabinets [91]. Cabinets provide persistent storage of the agent state at the place the
agent is currently executing. The cabinet approach works by writing the state of the
agent to disk before an agent starts execution at a place. With an option to the meet

operation, as described in Section 2.1.5, the computation can specify that a mobile
agent should be restarted from the state given in the cabinet when a processor and
its place recovers from a crash. The main problem with cabinets is that the mobile
agent computation blocks until the crashed processor and place hosting the cabinet
have recovered, thus violating our non-blocking requirement. A common approach to
avoid such blocking is to have sufficient backup places available to detect the crash and
recover the mobile agent, similar to the primary-backup approach that we discussed in
Section 2.3.2.

83

To better accommodate failure detection and recovery, our approach is to extend the
definition of a mobile agent stage in tacoma by using fault-tolerant actions [156]. A
fault-tolerant action FTA can be written as

FTA: action A recovery R

where A is called a regular action and R is called the recovery action associated with A.
A computation can consist of a sequence of fault-tolerant actions:

FTA1: action A(1) recovery R(1)
FTA2: action A(2) recovery R(2)

. . .
FTAN : action A(N) recovery R(N)

When a sequence of fault-tolerant actions is used, A(i) specifies the ith regular action.
R(i) is the recovery action associated with A(i). Similar to a mobile agent stage, each
action A(i) executes at a place. If an action A(i) is detected as failed, the corresponding
recovery action R(i) is executed. However, we assume that R(i) does not execute at the
same place as A(i), since crash failures can only be tolerated when there is sufficient
capacity to continue execution elsewhere. Hence, R(i) for A(i) is executed by one or
more backup places.

Fault-tolerant actions are general enough to program any kind of fault-tolerance
scheme based on detection and recovery. For example, given an operation undo/redo
mechanism [21], fault-tolerant actions can be used to implement atomic transactions.
Also, masking intermittent crash failures can be implemented by having, for each regular
action A, the recovery action of R be identical to A.

We extend the definition of an action further in Section 6.4.1.

6.3.1 Output Commit

A mobile agent computation often needs to communicate with the environment to
perform an external action. An external action can be to print a document on a printer
or format a disk drive. Such external actions cannot always be rolled back as part of the
recovery procedure when there is a failure. Hence, before starting an external action,
the state leading up to that external action must be recoverable if a failure occurs. This
is commonly known as the output commit problem [48].

A similar problem surfaces as a consequence of using the primary-backup approach:
the environment of the backup places executing the recovery code is different from the
environment executing the mobile agent stage. This limits what the recovery code can
do. For example, consider a mobile agent stage s at place p executing an output commit
action that queries the user for a Uniform Resource Locator (URL) u. The document
that u refers to is subsequently retrieved in s. The task of the corresponding recovery
code r is to log to a file that retrieving u failed. Assume that s fails, and that place q
detects this failure. However, since the recovery code r executing on q does not know
the value of u, it cannot log that retrieving u failed.

84

In the work of Alvisi et al. [47], the output commit problem is specified in the context
of rollback-recovery protocols. An approach to solve the output commit problem in
rollback-recovery protocols, is to save the state required to roll back an action on stable
storage before the application processes the state further. Doing so allows the saved state
to be read by the recovery code after a failure occurs. As an analogy to our example, the
mobile agent stage at p would need to make the URL u from the user available to all its
backups before retrieving u. By following this approach, output commit problems are
handled by using the backups as stable storage and then distributing the state to the
backups before the output commit action is executed. To facilitate this, NAP provides an
operation called checkpoint that enables a mobile agent stage to distribute the mobile
agent state to its set of backups. Similar to the move and terminate operations,
checkpoint terminates a mobile agent stage, and the next stage starts executing on the
same place when the state of the agent has been distributed to its backups.

6.3.2 Example: License Checker

We now illustrate the use of fault-tolerant actions with a simple mobile agent
computation that uses tacoma folder operations to manage the mobile agent state.
The mobile agent starts executing at an originating place o, and visits a set of places,
specified as a parameter that is stored in the place folder. For each place p visited, the
mobile agent creates a folder h p that contains the action the agent executed at place
p or whether it detected place p as failed. These folders are returned to the originating
place o when all places have been visited.

The agent is required to update the places with some care. In the event of a place
crashing while the changes are taking place, the computation that started the agent must
be notified. The crash may be due to a bug in the mobile agent, so such information is
useful for debugging. It may also be that the place was crashed in an effort to thwart
the mobile agent.

The mobile agent computation consists of the four fault-tolerant actions visit,
update, alert, and report. We assume that the originating place does not crash, but
it is straightforward to rewrite this program to use a set of backup places should one
wish to tolerate failures of the originating place. The agent is started with the operation
init, which causes the first action visit to be started at the first place specified in the
place folder.

Because we assume that the originating place o does not crash, there is no handling
of init failing. Even if we did allow the originating place to crash, there are no backups
when init is executed. Specifying a recovery action would be futile.

The four actions for our license checker agent are:

visit This action determines how to proceed based on the license file and the following
rules A1-A3:

A1 If the file license exists and contains a valid key, then the mobile agent
renames the file program to old_program and writes a new file program1.

1A real system would execute action A1 as a transaction, but we ignore this detail for simplicity of

85

A2 If the file license exists and contains the word “demo”, then the mobile agent
takes no action.

A3 Otherwise, the mobile agent deletes the file program.

The action creates a folder h p with the name of the place and records in it which
of the rules A1-A3 to follow. The action terminates with a checkpoint leading
to the action update.

The recovery action creates a folder h p using the name of the place p and records
in it the fact that this place was not available. The recovery action terminates
with a move of the action visit to the next place if there is another place to visit.
Otherwise, it terminates with a move of the action report to the originating
place.

update This action updates the files as instructed by the contents of the h p folder,
and records the fact that the files were updated in the h p folder. The action
terminates with a move of the action visit to the next place if there is another
place to visit. Otherwise, it terminates with a move of the action report to the
originating place.

The recovery action records in h p that the place failed before the action could
take place. If there is a next place to visit, the recovery action executes an init
of a new agent to the originating place where the action alert is executed. The
recovery action then terminates with a move of the action visit to the next place.
If there is no next place to visit, the recovery action terminates with a move of
the action report to the originating place.

alert This action writes a message to the user who initiated the agent indicating that a
place crashed before the action that updates the local file system completed. The
local files may have been correctly updated, or the crash may have left the file
system in an inconsistent state. The action terminates with a terminate. The
recovery action is terminate.

report This action writes the current contents of the briefcase into disk file in a
predefined file location. The recovery action does the same thing. Both actions
terminate with terminate.

6.3.3 Backup Management

In Section 2.3, we observed that an f fault-tolerant computation withstands f failures
within a bounded time interval. A way to characterize an f fault-tolerant itinerant
computation is the Bounded Crash Rate: For any integer 0 ≤ i ≤ f , there can be no
more than i failures of places during the maximum period of time a mobile agent uses
to traverse i distinct places. A property of the Bounded Crash Rate characterization is
that f is fixed during the entire itinerant computation, which allows an implementation

exposition.

86

to make backup management (i.e., adding and removing backups to maintain f backups
during the computation) transparent to the mobile agent.

However, transparent backup management has disadvantages. First, choosing a value
for f is difficult for mobile agent computations. Traditionally, backup places are assumed
to have similar reliability. This assumption is questionable in grid environments. Here,
f would instead vary as a function of i) the place being visited by the agent, ii) how
long the visit lasts (since the probability of multiple concurrent failures increases with
the length of the visit), and iii) the places acting as backups.

An alternative to transparent backup management is to have the set of backups
chosen by the mobile agent computation itself, similar to how mobile agents move to
satisfy resource requirements:

• Choose backups based on the CPU load of the places that the agent has currently
visited. A lightly loaded place may be preferable since it may execute recovery
code faster and may be less likely to fail due to the load on the place.

• Choose backups according to software requirements of the recovery code.

• Choose backups based on the network topology. Our experience with WAMW
in Chapter 5 has shown that network communication across local area network
boundaries should be minimized to avoid problems caused by non-transitive and
asymmetric communications.

• Choose backups based on the suspicion of malicious software. If the computation
moves to a network where the places are likely to host software to foist the
computation into a bad state, backups should be chosen on the likelihood of not
being compromised.

An approach to accommodate a more flexible backup management scheme is to
encode the place that executes the regular action and the associated set of backups as
part of the mobile agent state. More specifically, we encode the set of places P in a
totally ordered failover list P = [p1, p2, ..., pn] for n places, where the first place in the
failover list is the place that executes the regular action, and the remaining n− 1 places
are backups that execute the recovery action. An action A(i) or R(i) can modify this
failover list during the execution of the stage to specify the place that will execute the
next regular action A(i + 1) as well as the place or places that will execute the next
recovery action R(i+ 1).

The position in the failover list defines the failover order for the places. For instance,
the failover list [p1, p2, p3] for regular action A(1) specifies that A(1) should execute at
place p1, and if A(1) fails at p1, place p2 should execute the recovery action R(1), followed
by place p3 executing R(1) if p2 fails.

Enforcing the failover order defined by the failover list requires that NAP implements
a protocol where the places in the failover list agree on the contents of the failover list.
In the following section, we derive a protocol specification for NAP that specifies the
semantics of this protocol and the sequencing of regular action and recovery action
execution based on the failover list and its failover order.

87

6.4 Deriving a Specification of NAP

Our strategy for deriving a specification for NAP starts by defining the exact properties
we want NAP to satisfy in Section 6.4.1. We then develop a simple protocol based on
election in Section 6.4.2; we call this protocol SNAP. We show that SNAP satisfies the
properties of NAP, but has too coarse granularity to be practical. In Section 6.4.3, we
refine SNAP, and use the resulting protocol to explore some tradeoffs. In Section 6.4.4
we look more carefully at the meaning of an action completing without failing. In
Section 6.4.5 we change the derivation into a set of rules executed by participants of
the protocol. We call this protocol NAP2 and show that it satisfies all of the NAP
properties.

The derivation is performed without using the mobile agent operation terminology
specified in Section 6.3, but we explain how to implement the move, checkpoint,
terminate, and init mobile agent operations based on the resulting protocol in Section
6.6.

6.4.1 Definitions

Let p be a place, P be the set of places involved in the computation, F be the set of
failed places where F ⊂ P , and Fp be the set of places that a place p has detected as
failed. A(i) is the ith regular action, and R(i) the ith recovery action. We use the term
terminate to specify that the execution of an action has completed. If the execution
terminates by failing, then this is explicitly stated. We further refine the meaning of an
action terminating by failing in Section 6.4.4.

NAP satisfies:

P1 For all i > 0, A(i) eventually starts executing.

P2 A(i) terminates exactly once.

P3 A(i) will not start executing before all A(i′ : i′ < i) have terminated and all
R(i′ : i′ < i) that have started executing have terminated.

P4 Once A(i) starts executing, neither A(i′) nor R(i′) for i′ < i will start executing.

P5 R(i) starts to execute iff A(i) terminated by failing.

P6 If R(i) starts to execute, then all R(i) that have started executing earlier have
terminated by failing.

P7 If R(i) starts to execute, then some execution of R(i) will terminate without failing.

Properties P1 through P4 specify how regular actions execute: each regular action starts
executing in order and without overlapping previous actions. Properties P5 through P7
specify how recovery actions execute: only after the failure of a regular action, and only
one action terminates without failing.

The state of a place, s(p), is specified by a pair < r, i >:

88

• s(p).r specifies a totally ordered sequence of unique places [p1, p2, ..., pn] for a finite
value of n. We refer to this sequence as the failover list.

• s(p).i is a positive integer that specifies the version of the failover list r. There
can only be one version of the failover list for each stage, so i also specifies the
stage of the mobile agent computation at place p.

Thus, for a place p, s(p).r is the r component of the state of p, and s(p).i is the i
component of the state of p. If p /∈ s(p).r then we denote the state of p as <>. We can
set the state of a place p to <> by setting s(p).r to the empty sequence [].

A failover list r can be indexed by its places, where r[1] is the first place in the list,
r[2] is the second place, and so on. When required, we refer to a specific version i of the
failover list r as r(i). Failover lists, F , and P are operated upon with set operations.
For failover lists, set operations apply to the sets whose elements are places in the list.

Each place p has its own local view Fp of F . We assume no false failure detections:
Fp ⊆ F . We also assume that F monotonically increases (i.e., places do not recover
from failures), so F and Fp for all p do not become smaller. We also assume failures are
eventually detected:

∀p, q : �(q∈F ⇒ ♦(q∈Fp ∨ p∈F))

A place p is electable if it has not failed, and it has itself in its failover list. A place
p is i-electable if it is electable and has version i of its failover list:

p electable : ∧p ∈ P\F
∧p ∈ s(p).r

p i-electable : ∧p electable
∧s(p).i = i

Given a sequence of places r : p ∈ r, let B(r, p) be the maximal prefix of r that does
not contain p. For example, if r = [a, b, c, d, e], then B(r, c) = [a, b]. We will only use
B(r, p) when r contains p.

A place p is elected if it has detected that all places before it in the failover list have
failed, and it has the smallest failover list version of all the electable places. A place is
i-elected if it is both elected and is i-electable:

p elected : ∧p electable
∧B(s(p).r, p) ⊆ Fp

∧∀q ∈ P : (q electable) ⇒ s(q).i ≥ s(p).i

p i-elected : ∧p i-electable
∧p elected

For now, assume the following property:

OnlyOneVersion �(∃r(i) : ∀p ∈ P : (p i-electable) ⇒ (s(p).r = r(i)))

89

That is, it is always the case that all places that have the same version have the same
failover list. If OnlyOneVersion holds, then only one place can be elected at any time.
We show this next by proving that property Mutex holds.

Mutex No more than one place can be elected at any time.

Proof. We show that Mutex holds by contradiction. By the definition of p elected above,
only an electable place p with the smallest failover list version can be elected. Assume
that two places p and q are elected. By definition, both are electable and have the
smallest version i of all versions of all electable places, so both places are i-electable.
By OnlyOneVersion, both places have the same failover list r(i). However, one of the
places must occur first in the failover list. Assume without loss of generality that this
place is p. Since q is elected, p ∈ Fq, and since we assume a perfect failure detector for
F , p ∈ F . Thus, p is not electable, which is our contradiction.

By this, OnlyOneVersion is fundamental to understanding how to implement NAP.
All that OnlyOneVersion requires is that the places with the same version have the same
failover list. Hence, as long as the state of a place is updated atomically (i.e., indivisibly
with respect to failures), and the version number does not decrease, we have much of a
protocol that implements NAP.

Before specifying a protocol that implements NAP, we make the following assump-
tions about the environment where the protocol executes:

F1 For all values of i > 0: it is always true that some place in r(i) does not fail:
∀i : i > 0 : �((r(i)\F) 6= ∅). This implies that each r(i) contains at least one
non-failed place.

F2 For each i > 0, the execution of A(i) and of R(i) terminates in finite time.

6.4.2 SNAP: A Simple NAP

Pseudocode 6.4.1 specifies a simple algorithm for NAP, which we call SNAP. We specify
SNAP as a sequence of actions that are executed like a traditional non-distributed
computer program. However, in our case, the actions might executed at different places.
We use this syntax to allow us to focus on a specific problem; in Section 6.5 we use a
more conventional syntax that makes the message flow of the algorithm explicit. Actions
between ≪ and ≫ brackets are assumed to be executed atomically across all p ∈ P .
The syntax of the when statement that is used in the algorithm is as follows:

when S1 Q until S2

Assume that S1 and S2 are predicates that are initially false and that Q is a sequence
of actions. The when statement evaluates S1 and S2 until either predicate evaluates to
true. If S1 evaluates to true and S2 to false, then Q is executed, and the when statement
completes. If instead S2 evaluates to true, then the when statement completes without
Q being executed.

We also use statements of the following form:

90

∀p ∈ P : Q

The semantics for this statement is that Q is a sequence of actions that is executed on
all places p in parallel.

Pseudocode 6.4.1 SNAP - A simple algorithm that satisfies NAP.

01: [Initial state: ∀p ∈ P\F : if p ∈ r(1): s(p) =< r(1), 1 > else: s(p) =<>]
02: ≪ i = 1 ≫
03: while (true) {
04: [Loop invariant: ∀p ∈ P\F : if p ∈ r(i): s(p) =< r(i), i > else: s(p) =<>]
05: ∀p ∈ P\F :
06: ≪
07: when (p elected){
08: if (p == p.r[1]): A(i)
09: else: R(i)
10: } until (A(i) or R(i) terminates without failing)
11: ≫
12: ≪
13: ∀p ∈ r(i+ 1)\F : s(p) =< r(i+ 1), i+ 1 >
14: ∀p ∈ (r(i)\r(i+ 1))\F : s(p) =<>
15: ≫
16: ≪ i = i+ 1≫
17: }

Informally, SNAP works as follows. For each value of i, a place p is either elected to
execute the regular action A(i) (if p is first in the failover list), or the recovery action
R(i). More specifically, the algorithm starts with an initial failover list with version 1
in line 1. At some point during execution, a place is elected in line 7. If this is the first
place in the failover list, the regular action is executed in line 8. If the elected place is
not the first place in the failover list, the recovery action for the same version is executed
in line 9. If the action terminates, all places in the next failover list have their state set
to the next failover list and the next version in line 13. All places that are not part of
the next failover list, set their state to empty in line 14. The version counter is then
incremented in line 16, and the election of a place for executing an action starts again
in line 7.

We now show that with SNAP, all places with the same version have the same failover
list, thus satisfying property OnlyOneVersion:

Proof. OnlyOneVersion initially holds since all non-failed places p ∈ r(1) where s(p).i
is 1 (i.e., 1-electable places) have s(p).r set to the failover list r(1).

We show that SNAP satisfies OnlyOneVersion by contradiction. Assume that there
is a place q that is i-electable yet s(q).r 6= r(i). For all p ∈ P , the only statement where
s(p) is changed is in lines 13 and 14, where the r and i component of the state s(p) are

91

atomically updated. By the completion of line 15, all non-failed p ∈ r(i + 1) will set
their state s(p) to < r(i + 1), i + 1 >. Assume that place q is one of those places. By
definition, s(q).i must be i + 1 for q to be i + 1-electable. However, by line 13 in the
algorithm, if s(q).i is i+ 1 then s(q).r must be r(i+ 1), which is our contradiction.

The SNAP algorithm also implements properties SyncChange and Move that we will
later use to prove that SNAP satisfies properties P1-P7:

SyncChange If s(p) is < r(i), i >, then no place q will have s(q) =< r(i′), i′ > for
i′ 6= i.

Proof. The initial state s(p) for all p is < r(1), 1 > if p ∈ r(1). From this, all places in
r(1) have version 1 of the failover list, so initially no place q can have a failover list with
i′ 6= 1. SNAP executes lines 13 and 14 of the algorithm atomically for each increasing
value of i. After line 15 completes, the state a place p for all p is either < r(i+1), i+1 >
if p ∈ r(i+ 1) or <> if p /∈ r(i+ 1). Hence, after line 15 has completed, no place q will
have s(q) =< r(i′), i′ > for i′ 6= i.

Move No place p sets s(p) to < r(i + 1), i + 1 > before an execution of A(i) or R(i)
terminates without failing.

Proof. For increasing values of i, either A(i) or R(i) is executed in lines 8 and 9 of the
algorithm, respectfully. Lines 13 and 14 of the algorithm execute iff lines 7 through
10 of the algorithm terminate without failing. The state s(p) is atomically set to <
r(i+ 1), i+ 1 > for all p ∈ r(i+ 1) in line 13. Since line 13 executes iff lines 7 through
10 terminated without failing, no place p sets s(p) to < r(i + 1), i + 1 > unless lines
7 through 10 terminated without failing, implying that A(i) or R(i) executed without
failing.

Given SyncChange, it is straightforward for a place to determine that it is elected.
Recall:

p elected : ∧p electable
∧B(s(p).r, p) ⊆ Fp

∧∀q ∈ P : (q electable) ⇒ s(q).i ≥ s(p).i

SyncChange implies that if p and q are electable, they have the same version. Thus, the
third conjunct of p elected is trivially true, and a place p is elected when p is electable
and p knows that all places before it in its failover list have failed.

We now show that SNAP satisfies the properties P1-P7 that specify NAP. The first
property, P1, poses a metaphysical problem: is there a way to tell whether an action
A(i) starts executing and then fails? Consider a place p.r[1] that executes in line 8,
and starts executing A(i) but crashes while executing the first CPU instruction of the
action. From this we can say that A(i) started executing. If the place p crashed before
executing line 8, then we can say that A(i) did not start executing. Externally, however,
we can not distinguish between these two cases. Thus, we adopt the following pragmatic
approach: if the local state of p.r[1] before crashing would have led to A(i) executing,
we say that p started executing A(i). We will expand on this issue in Section 6.4.4.

92

P1 For all i > 0, A(i) eventually starts executing.

Proof. Since an action A(i) can fail before executing the first CPU instruction of the
action, we can say that A(i) starts executing if line 8 starts to execute. For any value of
i, lines 8 or 9 of the algorithm terminate because r(i) is finite, and by F2, the execution
of A(i) and R(i) must take finite time. Lines 13 and 14 of the algorithm terminate
because the sequence length of r(i+1) and r(i) is finite. Thus, for each value of i, A(i)
starts to execute.

P2 A(i) terminates exactly once.

Proof. From OnlyOneVersion, since all places with the same version have the same
failover list, only one place can be first in this list, and thus execute A(i).

P3 A(i) will not start executing before all A(i′ : i′ < i) have terminated and all R(i′ :
i′ < i) that have started executing have terminated.

Proof. From Move, since no place p sets s(p) to < r(i+ 1), i+ 1 > before an execution
of A(i) or R(i) terminates without failing, A(i) will not start executing before A(i′) or
R(i′) for i′ < i have terminated.

P4 Once A(i) starts executing, neither A(i′) nor R(i′) for i′ < i will start executing.

Proof. From SyncChange, when A(i) starts executing s(p) is < r(i), i >. SyncChange
states that if s(p) is < r(i), i >, then no place q will have s(q) =< r(i′), i′ > for i′ 6= i.
Hence, by lines 8 and 9 in the algorithm, neither A(i′) nor R(i′) for i′ < i can start
executing.

P5 R(i) starts to execute iff A(i) terminates by failing.

Proof. From line 8 of the algorithm, A(i) will only be executed if a place p is elected
and p is the first place in r(i). If a place q in r(i) is elected, and q is not the first place
in r(i), then by the definition of i-elected, A(i) must have terminated by failing at p,
and by line 9 in the algorithm, R(i) is executed at q.

P6 If R(i) starts to execute, then all R(i) that have started executing earlier have
terminated by failing.

Proof. If executing A(i) at p terminates by failing, then by P5, R(i) will start executing
at a place q. By line 7 in the algorithm, R(i) will only start executing again if a place
other than q is elected. However, by the definition of elected, this can only happen if q
has failed, which means that R(i) terminated by failing while executing at q. Hence, R(i)
will not start executing again unless the previous execution terminated by failing.

P7 If R(i) starts to execute, then some execution of R(i) will terminate without failing.

Proof. From our assumption F1 it is true that some place in r(i) does not fail, so each
r(i) contains at least one non-failed place q. If A(i) terminated by failing, then by
P5, R(i) will start executing. If all places in r(i) except q fail, then by line 7 in the
algorithm, q will be elected and R(i) will terminate without failing at q. Hence, some
execution of R(i) will terminate without failing.

93

6.4.3 Improving SNAP

SNAP is impractical since it has several coarse actions that have to execute atomically
within the while loop. Breaking up the coarse atomic actions into a more fine-grained
protocol allows the parts of the algorithm that update the failover list to be implemented
in a way that makes the algorithm perform faster. The algorithm in Pseudocode 6.4.2,
makes SNAP more fine-grained by breaking up the atomic actions of lines 12 through
14.

Pseudocode 6.4.2 A more fine-grained version of SNAP.

01: [Initial state: ∀p ∈ P\F : if p ∈ r(1): s(p) =< r(1), 1 > else: s(p) =<>]
02: ≪ i = 1 ≫
03: while (true) {
04: [Loop invariant: ∀p ∈ P\F : if p ∈ r(i): s(p) =< r(i), i > else: s(p) =<>]
05: ∀p ∈ P\F :
06: ≪
07: when (p elected) {
08: if (p == p.r[1]): A(i)
09: else: R(i)
10: } until (A(i) or R(i) terminates without failing)
11: ≫
12: ∀p ∈ r(i+ 1)\F : ≪ s(p) =< r(i+ 1), i+ 1 > ≫
13: ∀p ∈ (r(i)\r(i+ 1))\F : ≪ s(p) =<> ≫
14: ≪ i = i+ 1 ≫
15: }

With the changes in lines 12 and 13, Move still holds, but SyncChange does not
since all the places no longer change their state atomically. However, SyncChange can
be weakened. If two places have different non-empty states, then their version must only
differ by one:

OnlyTwoVersions �(∃i : ∀p ∈ P\F) :
∨s(p) =< r(i), i >
∨s(p) =< r(i+ 1), i+ 1 >
∨s(p) =<>

This weakening of SyncChange means that it is more difficult for a place p to determine
whether it is elected. Not only does all places preceding p in s(p).r need to be in Fp,
but p needs to know that there are no electable places with a version less than s(p).i.

One approach to simplify the process of determining whether a place is elected, is to
impose an order on how the places change their states. Consider the following property,
OrderedChange, where P (i) is the set of places in the state < r(i), i >:

94

OrderedChange ∀p ∈ P (i), q ∈ P (i+ 1) :
∨ q ∈ B(r(i), p)
∨ p ∈ B(r(i+ 1), q)

OrderedChange and OnlyTwoVersions together simplifies for a place p to determine if
it is elected. Let a place p be in < r(i), i >. If p knows all places p′ not in <> are in
< r(i), i > or in < r(i − 1), i− 1 >, then p knows it is elected when B(s(p).r, p) ⊆ Fp

and all places in r(i−1) are in P (i), in <>, or in Fp. Thus, when p enters P (i), it waits
for all places in r(i− 1) to no longer be in P (i− 1). Once this happens, for as long as
it remains in P (i), p can elect itself when B(s(p).r, p) ⊆ Fp.

We will further refine property OrderedChange in Section 6.4.4. Before doing so, we
examine whether there is an order that can be imposed on how places assign failover
lists to their state so that OrderedChange is satisfied. Initially, OrderedChange holds
because all non-failed places in r(i) are in P (i) and the rest are in <>. Since there are
no places q ∈ P (i + 1), OrderedChange trivially holds. There are three sets of places
whose state is changed:

Leaves The set of places in r(i)\r(i+ 1). Places in this set change from P (i) to <>.

Moves The set of places in r(i) ∩ r(i + 1). Places in this set change from P (i) to
P (i+ 1).

Joins The set of places in r(i+1)\r(i). Places in this set change from <> to P (i+1).

A place in set Leaves can be changed immediately to <> and OrderedChange will
continue to trivially hold. The places in set Leaves can be changed to <> in any order.
OrderedChange can be kept true in two ways when changing the places in set Moves:

C1 Change the places in increasing r(i) order. Doing so ensures that q ∈ B(r(i), p)
holds.

C2 Change the places in decreasing r(i+ 1) order. Doing so ensures that p ∈ B(r(i+
1), q) holds.

Once all the places in set Leaves have changed to <> and set Moves have been changed
to P (i+1), there are no places remaining in P (i). Thus, OrderedChange trivially holds
again. The places in set Joins can be changed to P (i + 1) as soon as all the places in
set Leaves and set Moves have changed. They can be changed in any order.

The second choice, C2, for updating the places in set Moves has the property that
if all the places in B(r(i+1), q) are in Fq, then any place that has version i of the state
has failed. Thus, a place can use the simplified rule to determine that it is elected:

p i-elected: ∧p i-electable
∧∀q ∈ B(s(p).r, p) : q ∈ Fp

Hence, using C2 and the simplified rule is attractive since a process p knows that it is
elected when it is electable and all processes before it in the failover list has failed.

Using C2 for updating the places in set Moves combined with the other update rules
for set Leaves and set Joins gives the following protocol:

95

1. Change all places in r(i)\r(i+ 1) from P (i) to <> in any order.

2. Change all places in r(i) ∩ r(i + 1) from P (i) to P (i + 1) in decreasing r(i + 1)
order.

3. Change all places in r(i+ 1)\r(i) from <> to P (i+ 1) in any order.

Despite this convenience of being able to use the simplified rule for i-elected, this
protocol has a drawback that will lead us to use C1 rather than C2. To show why this is
so, we expand on the indistinguishability that was brought up when arguing that SNAP
implemented P1 in Section 6.4.2.

6.4.4 Termination of an Action

Consider the following execution based on the protocol with C2 given in the previous
section. Version 1 of the state has failover list [a, b, c, d] and version 2 of the state has
failover list [c, d, b], where a, b, c, d are places.

1. {a, b, c, d in < [a, b, c, d], 1 >}

2. a is 1-elected

3. a fails

4. b is 1-elected

5. R(1) at b starts to execute

6. R(1) at b terminates without failing

7. { start change to < [c, d, b], 2 >}

8. b changes to < [c, d, b], 2 >

9. d changes to < [c, d, b], 2 >

10. b fails

11. c is 1-elected

12. R(1) at c starts to execute

This execution violates P6 because R(1) terminated at b without failing in step 6, and
R(1) started to execute at c in step 12. The following execution shows how P5 can be
violated.

1. {a, b, c, d in < [a, b, c, d], 1 >}

2. a is 1-elected

96

3. A(1) at a terminates without failing

4. { start change to < [c, d, b], 2 >}

5. a fails

6. b is 1-elected

7. R(1) at b starts to execute

In step 7, R(1) starts to execute at b although A(1) terminated without failing in step
3, thus violating P5.

The previous executions highlight a fundamental problem: What is the meaning of
an action terminating without failing? For example, a place p could execute all of the
code of an action and then fail before starting the protocol that starts the next action.
Or, a place p could send a message to a place q to start the protocol for starting the next
action and then both q and p could fail. In both cases, there is no external evidence
of the action completing even though all of the code of the action has been correctly
executed. An approach to avoid this problem is to assume the following environmental
property:

F3 If the state of a non-failed place is consistent with an execution where a place p
executed an action A(i) or R(i) that terminated by failing, we assume that p
executed A(i) or R(i), and that the action terminated by failing.

This definition is internally consistent, but an external observer might be able to tell
the difference. This creates an output commit issue [47]: external actions must be
idempotent. F3 implies, as we have already assumed, that a place may never start
executing an action yet we will assume that it started executing the action, which then
terminated by failing.

Consider the first execution. After step 10, there is evidence that R(1) at b
terminated without failing: d is propagating the change from failover list r(1) to r(2).
However, if d were to fail at the same time b does, then the evidence could be lost, and
so, in terms of F3, P6 is not violated. In the second execution, in terms of F3, P5 is not
violated.

F3 means that a place should not execute R(i) if there is evidence that A(i) or
R(i) has executed somewhere else without failing, where “evidence” means that some
nonfailed place has changed its state to < r(i + 1), i + 1 >. This can be ensured with
the following strengthening of OrderedChange:

∀q ∈ P (i) : P (i+ 1) ⊆ B(r(i), q)

For q to be i-elected, it is necessary that all places in B(r(i), q) have failed. Since
the only places that could be in version i + 1 are contained in B(r(i), q), there is no
evidence that any place has set its state to < r(i + 1), i + 1 >. This strengthening of
OrderedChange can be implemented by using C1 to change the places in set Moves. We
call this protocol NAP2.

97

6.4.5 NAP2 Specification

Instead of continuing to specify NAP2 as the execution of a program as with SNAP, we
specify NAP2 as a set of rules that each place participating in the protocol implements.
We have two definitions NAP2Elected and NAP2Change:

NAP2Elected A place p is i-elected when:
∧s(p).i = i
∧∀q ∈ B(s(p).r, p) : q ∈ Fp

∧∀q ∈ r(i− 1)\Fp : s(q).i 6= i− 1

NAP2Elected states that for a place q to be i-elected, the version of the state is i, all
places in B(r(i), q) have failed, and no places are in < r(i− 1), i− 1 >.

NAP2Change Define an operation change:
change places in P to state v in order E

In NAP2Change, E defines an irreflexive partial order of the places in P . The states of
places in P are changed to v such that:

• For two places p, q ∈ P : if p is before q in E, then it is invalid to set the state of
p to v after the state of q has been set to v.

• Let C be the subset of places in P that have changed their state to v. If C\F is
always nonempty, then the change operation eventually terminates with all places
in P\F having set the state to v.

Thus, there are two possible ways for the change operation to terminate:

1. All places in P\F have changed their state to v. This must be the outcome if the
place that initiated the change operation does not fail. If the place that initiated
the change operation fails, then this may be the outcome.

2. All places in P\F have left their state unchanged.

The change operation can thus be considered a reliable broadcast protocol [76] with the
additional constraint that places deliver v consistent with some order.

NAP2 Rules

In NAP2, a place p in P uses the following three rules, R1-R3:

R1 Initially, the state of p is < r(1), 1 > if p is in r(1), and is <> otherwise.

R2 When p becomes i-elected: If p is the first place in r(i) then start executing A(i)
else start executing R(i).

98

R3 When a place p terminates an action, let Q be all the places in r(i) ∪ r(i+ 1):

• For p, q ∈ Q, let p be before q in E iff:

– p and q are both in r(i), and p is before q in r(i).

– p is in r(i) and q is not in r(i).

• change all non-failed places q in r(i) ∪ r(i+ 1) to:

– < r(i+ 1), i+ 1 > if q in r(i+ 1).

– <> if q not in r(i+ 1).

in order E.

Proving that NAP2 Satisfies NAP

We now prove that NAP2 satisfies the properties P1-P7. Recall the environmental
assumptions we made earlier:

F1 For all values of i > 0: it is always true that some place in r(i) does not fail:
∀i : i > 0 : (r(i)\F) 6= ∅. This implies that each r(i) contains at least one
non-failed place.

F2 For each i > 0, the execution of A(i) and of R(i) terminates in finite time.

F3 If the state of a non-failed place is consistent with an execution where a place p
executed an action A(i) or R(i) that terminated by failing, we assume that p
executed A(i) or R(i), and that the action terminated by failing.

In addition to F1-F3, we show that the OnlyTwoVersions property we specified in Section
6.4.3 holds. We also specify a new lemma NAP2Progress that is used to show that P1
and P3 hold. We now prove that OnlyTwoVersions and NAP2Progress hold.

OnlyTwoVersions �(∃i : ∀p ∈ P\F) :
∨s(p) =< r(i), i >
∨s(p) =< r(i+ 1), i+ 1 >
∨s(p) =<>

Proof. We prove this by induction on i.

Base case i = 1: From R1, OnlyTwoVersions initially holds, since all places in r(1)
are in state < r(1), 1 >, and all places not in r(1) are in <>.

99

Induction step i > 1: Assume that there is some version i: all noncrashed places are
in <> or < r(i), i >. From F1 and F2, we know that there is some place p in < r(i), i >
that terminates its action and by R3 executes NAP2Change.

From the definition of NAP2Change, places set their state to <> or < r(i+1), i+1 >
in order E. Since p completes the action, p changes its state < r(i), i > to either <> or
< r(i+ 1), i+ 1 >. Thus, all places in r(i) ∪ r(i+ 1) that do not fail change their state
from <> or < r(i), i > to either <> or < r(i+1), i+1 >. Hence, during the execution
of NAP2Change, all nonfailed places are in <>, < r(i), i > , or < r(i + 1), i + 1 >,
and by the end of R3, all noncrashed places are in <> or < r(i + 1), i + 1 > and
OnlyTwoVersions holds.

NAP2Progress If there exists a place p in < r(i), i > that is i-elected, then for all q
in r(i), q eventually fails or q is in < r(i), i >.

Proof. We prove this by induction on i.

Base case i = 1: In the initial state, all nonfailed q in r(1) are in < r(1), 1 >, so
NAP2Progress holds.

Induction step i > 1: From F1, there is a place x in r(i − 1) that does not fail. If
p is in r(i − 1), then by NAP2Elected, by the time p is elected, x is in < r(i), i > and
so by NAP2Change and R2 eventually all q in r(i) that do not fail are eventually in
< r(i), i >. If p is not in r(i−1), then by R3, x is in < r(i), i > before p is in < r(i), i >.
So, again by NAP2Change and R3, eventually all q in r(i) that do not fail are eventually
in < r(i), i >.

Now that OnlyTwoVersions and NAP2Progress hold, we prove that P1-P7 are
satisfied by NAP2.

P1 For all i > 0, A(i) eventually starts executing.

Proof. We prove this by induction on i.

Base case i = 1: by R1, all places in r(1) have state < r(1), 1 >. Since r(1) is a
totally ordered sequence, by F1 and NAP2Elected some place will become elected, and
by F1 there is only one place that eventually executes rule R2. By F3, this means that
A(1) started executing.

Induction step i > 1: From F2, some place p in r(i− 1) starts executing an action.
From NAP2Progress, all places in r(i − 1) that do not fail eventually enter < r(i −
1), i− 1 >. From F1, there is some place p in r(i− 1) that does not fail, which means
that some place that is i − 1-elected terminates an action, and successfully completes
the change operation in R3. From F1, there is a place q in r(i) that does not fail, and
from R3 this place is eventually in < r(i), i >. From R3, each place in r(i) either fails or
is eventually in < r(i), i >. Hence, there is a place, not necessarily q, that successfully
executes an action of version i. From F3, this means that A(i) started executing.

100

P2 A(i) terminates exactly once.

Proof. From P1, A(i) eventually starts executing. From R2, only one place in r(i) can
execute A(i). Thus, A(i) terminates exactly once.

P3 A(i) will not start executing before all A(i′ : i′ < i) have terminated and all R(i′ :
i′ < i) that have started executing have terminated.

Proof. We prove P3 by contradiction. Assume that there is an action A(i) that has
started executing before all A(i′ : i′ < i) and R(i′ : i′ < i) have terminated. From
R2, A(i) will only be executed if a place p is i-elected and p is the first place in
r(i). By NAP2Elected, i-elected implies that s(q).i 6= i′ for all q in r(i′). Hence,
by NAP2Progress, a place q in r(i′) must have completed the change operation without
failing by the time p is i-elected, and R3 thus completed at q. This implies that R2
terminated without failing at q, and thatR(i′) or A(i′) executing at q terminated without
failing. Hence, when A(i) started executing, all A(i′ : i′ < i) and R(i′ : i′ < i) must
have terminated, which is our contradiction.

P4 Once A(i) starts executing, neither A(i′) nor R(i′) for i′ < i′ will start executing.

Proof. From NAP2Elected, no place is i-elected until all places in < r(i−1), i−1 > are
failed, in <>, or in < r(i), i >. Since a place executes an action of i− 1 only when it is
(i− 1)-elected, P4 holds.

P5 R(i) starts to execute iff A(i) terminated by failing.

Proof. From R2, A(i) will only be executed if a place p is elected and p is the first place
in r(i). If a place q is elected, and q is not the first place in r(i), then by NAP2Elected,
A(i) must have been detected as failed at p. By F3, detected as failed means that p
may have failed before A(i) started executing, during the execution of A(i), or during
the execution of the change operation in R3. By NAP2Elected and R2, when A(i) is
detected as failed, R(i) is executed at q.

P6 If R(i) starts to execute, then all R(i) that have started executing earlier have
terminated by failing.

Proof. If executing A(i) at p terminates by failing, then by P5, R(i) will start executing
at a place q. By NAP2Elected and R2, R(i) will only start executing again if a place
other than q is elected. However, again by NAP2Elected and R2, this can only happen if
the execution of R(i) at q has failed, and the change operation in R3 did not complete.
Hence, R(i) will not start executing again unless the previous execution terminated by
failing.

P7 If R(i) starts to execute, then some execution of R(i) will terminate without failing.

Proof. From F1, it is true that some place in r(i) does not fail, so each r(i) contains at
least one non-failed place q. If A(i) terminated by failing, then by P5, R(i) will start
executing. If all places in r(i) except q fail, then by NAP2Elected and R2, q will be
elected, and R(i) will terminate without failing at q. Hence, some execution of R(i) will
terminate without failing.

101

a

b c

d e f

a

b c

d e f

Figure 6.2: Fault-tolerant broadcast with a tree strategy.

6.5 From Specification to Implementation

This section specifies how to map the derived NAP2 specification to an implementation.
We start by describing one of the building blocks for doing so, called Fault-Tolerant
Broadcast (FTB) [160], in Section 6.5.1. We then specify a variation of FTB in Section
6.5.2 that we use for implementing NAP2 in Section 6.5.3.

6.5.1 Fault-Tolerant Broadcast

The change operation specified in Section 6.4.5 that is executed by rule R3 can be
considered a reliable broadcast protocol with delivery order constraints, so we use
a variation of reliable broadcast to implement change. More specifically, we use a
refinement of the FTB protocol [160]. The FTB protocol is presented using a tree-
based broadcast strategy. The broadcast strategy specifies how a broadcast proceeds,
how participants in the protocol monitor each other for failures, and how failures are
handled. We start by describing how FTB works with a tree-based broadcast strategy.
In the FTB paper [160], the term processor is used to identify the participants of the
protocol, but without loss of generality we use the term place in the subsequent sections.

In FTB, a broadcast strategy is represented by a tree where the root is the place
that initiates the broadcast. Assume such a strategy is defined by a graph (V,E),
and that there are two places p and q where the relation p succ q denotes that q is a
successor node to p in the graph, and succ(p) denotes the set of successor nodes for p.
Consider the strategy given by the tree to the left in Figure 6.2. The place a that is
the root, broadcasts a value m to a group G = {a, b, c, d, e, f}, where succ(a) = {b, c},
succ(b) = {d, e} and succ(c) = {f}. The root a ensures that all non-faulty places in G
either deliver m or do not deliver m. It does so by sending m to succ(a) and waiting for
an acknowledgment from the members of succ(a). The members of succ(a), which are
{b, c}, ensure that unless they fail, all non-failed places in succ(b) and succ(c) deliver
m. In general, when a place q in G receives m from p, it is responsible for ensuring that
m is delivered by all non-failed places in succ(q). When this obligation is discharged,
q sends an acknowledgment to p. Thus, the left tree in Figure 6.2 where there are no
failures, a message m will travel from a to b and c, from b to d and e, from c to f , and
then the acknowledgment will travel back from f to c, from d and e to b, from c to a,

102

from b to a, and the broadcasts completes with all members of G having delivered m.
Once a place p sendsm to succ(p), pmonitors for the crash of the members of succ(p).

If p detects that a member q of succ(p) has crashed before receiving the acknowledgment
from q, then p ”adopts” q - in essence, q is removed from succ(p) and the members of
succ(q) are added to succ(p). By doing so, p takes over establishing that all of the non-
failed places of succ(q) deliver m. Place p sends m to the members of succ(q) and waits
for acknowledgment from all places in the changed succ(p). The members of succ(q)
acknowledge to p when it is legal to do so. For example, the members of succ(q) can
immediately send the acknowledgment to p if they have already sent it to q before q
crashed. As an example, consider the right tree in Figure 6.2 where b fails before sending
an acknowledgment to a. Since b is in succ(a), a monitors b and upon detecting that
b fails, sends m to d and e since they are the members of succ(b). Since d and e have
no successors, they immediately send an acknowledgment back to a and the broadcast
completes.

FTB must also handle failures of places that are root nodes in the broadcast tree.
When a place q receives a value m from its parent place p, q monitors p for failures. It
continues to monitor p for failures until it knows that p has received acknowledgment
messages from all places in succ(p) and that p has acknowledged its parent (unless p is
the root of the strategy). If q detects p’s failure, then q sends the value m to the places
in succ(p) and adds the places in succ(p) to the set of places q is monitoring.

FTB can be instantiated with a linear broadcast strategy. With a linear strategy,
each place in the strategy only has a single successor. Thus, a place p broadcasts
a value m by sending it to its successor q and waits for an acknowledgment from q.
Once p sends m to q, it monitors q for failures. If p detects q’s failure before getting an
acknowledgment, then p sends m to the successor of q, and waits for an acknowledgment
and monitors that place. When a place q receives a value m from a place p, q monitors
p for failures, and sends the acknowledgment message to the parent place for p if p fails.
Thus, if the broadcast strategy is linear, then sending the acknowledgment for message
m is done in the same manner as sending m, except that the strategy is reversed.

FTB assumes that all places initially know the broadcast strategy. This is not
required since a place can learn the broadcast strategy with the first message that is
broadcast. Before receiving the first broadcast message, a place needs not monitor any
other place and so knowing the broadcast strategy is unnecessary. Hence, FTB can be
used to initialize itself.

6.5.2 Fault-Tolerant Forwarding

We now specify a protocol that we call Fault-Tolerant Forwarding (FTF), which is based
on FTB with linear broadcast strategy. Informally, FTF works as follows. The first place
in the strategy starts the FTF by sending a message m to its successor. When a place
receives a message m, it sends it to its successor if it has one. A place p monitors the
first non-failed successor if there is one, and if the successor fails, then p sends m to the
next non-failed successor. p continues to do this until monitoring is explicitly disabled
or p fails. If a place finds itself with no non-failed successor, then it executes a specified
action. Note that as long as not all of the places in the strategy fail and one place starts

103

executing the FTF, then eventually a non-failed place will execute the specified action.

Pseudocode 6.5.1 gives the algorithm for FTF. last up(strategy, place) is a predicate
that is true when the place in the strategy has no successor: either the place is
the last in the strategy, or all places after the place in the strategy have failed.
first up after(strategy, place) is a function that returns the first non-failed successor
of place according to the strategy. If there are no non-failed successors of place in the
strategy, the function returns NULL. The semantics of the when statement is identical
to the definition given in Section 6.4.2. The send statement sends a message to a place
and the execute statement executes an action action. receive is a predicate that is true
when a message has arrived from a place and is ready to be received by the computation
executing the FTF. The values of the received message are represented by the variables
specified in the signature of receive. Note that the values in the message are only
assigned to the local values if the value of v in the message is larger than the local value
of version. Thus, version is used to distinguish between superseded and newer versions
of the message being sent, and must be increased for each consecutive FTF. For each
place participating in the FTF, local place is initialized with the name of the place.

The when statements in lines 17 and 22 are assumed to start evaluating whenmonitor
is set to true. The when statement in line 32 is assumed to start evaluating when the first
FTF is invoked. While not explicitly shown in the algorithm, all the when statements
are assumed to be re-invoked when S1 is true and Q has executed, until the S2 predicate
is true. As an example, this means that the when statement in line 32 is evaluating as
long as the program invoking the FTF is executing. Doing so ensures that messages sent
by a place in line 30 of the algorithm are always received and handled by the receiving
place.

An FTF is started by invoking the ftf function at line 8. If the version v of the
message is greater than the locally stored version, monitor is set to true, causing lines
18-20 or 23-30 to execute depending on the outcome of evaluating last up. Initially,
last sent to is NULL, so if a place p has a successor q in the strategy, !last up(strategy,
p) evaluates to true, last sent to is set to q, and the message is sent from p to q in
line 30. If a place q in the strategy is detected as failed by a place p, and q is not
the last place in the strategy of the FTF, !last up(strategy, p) evaluates to true since
last sent to is no longer equal to the first non-failed place q. Hence, the message is sent
to the successor of q, last sent to is set to the successor of q, and the failed place q is
removed from strategy in line 27. If the place q is the last place in the strategy of the
FTF, last up(strategy, local place) evaluates to true and the action is executed at p in
line 20.

We can use two FTFs to express a protocol that is similar to linear FTB, which
we call FTF-FTB. Sending a message m with FTF-FTB using a linear strategy r is an
FTF of m with r followed by an FTF of the acknowledgment of m with the reverse of r.
The first FTF is disabled by the acknowledgment of m, and the second FTF is disabled
by the broadcast of the next message. The action action of the first FTF starts the
second FTF, and the action action of the second FTF enables the broadcast of the next
message.

As an example execution of FTF-FTB, consider the following sequence of events

104

Pseudocode 6.5.1 Fault-Tolerant Forwarding.

01: Place local place /* The name of the place */
02: Place last sent to /* The current successor place */
03: Message msg /* The current message being sent */
04: Strategy strategy = [] /* The current strategy */
05: Integer version = 0 /* The version of the current message being sent */
06: Action action /* The current action to execute at the last non-failed place */
07: Boolean monitor = false /* Whether this place is monitoring a successor or not */

08: def ftf(Strategy s, Message m, Action a, Integer v):
09: /* Start FTF if the message version is greater than local version */
10: if version < v:
11: msg = m
12: strategy = s
13: version = v
14: action = a
15: last sent to = NULL
16: monitor = true

17: when (last up(strategy, local place)) {
18: /* No non-failed successor place, execute action */
19: monitor = false
20: execute action
21: } until (monitor == false)

22: when (!last up(strategy, local place)) {
23: /* Check if a message must be sent to the current successor place */
24: if last sent to ! = first up after(strategy, local place) && monitor:
25: /* We have a new successor place, send message */
26: if last sent to != NULL:
27: remove last sent to from strategy
28: last sent to = first up after(strategy, local place)
29: if last sent to != NULL:
30: send (message, action, strategy, version) to last sent to
31: } until (monitor == false)

32: when (receive(m, a, s, v)) {
33: /* Store message if message version is greater than local version */
34: if version < v:
35: strategy = s
36: action = a
37: message = m
38: version = v
39: last sent to = NULL
40: monitor = true
41: } until (false)

105

when sending a message m where version is set to 1, to a strategy consisting of the
three places a, b, and c, encoded as [a, b, c]. The action x associated with FTF1 starts
a new FTF2 with the strategy [c, b, a], the message m′ and version set to 2. The action
y of FTF2 enables a subsequent FTF-FTB to take place.

1. FTF1 is started at a by invoking ftf([a, b, c], m, a, 1).

2. Place a has a successor, !last up([a, b, c], a) evaluates to true, and send (m, x,
[a, b, c], 1) to b is invoked.

3. receive(m, x, [a, b, c], 1) evaluates to true at b.

4. Place b has a successor, !last up([a, b, c], b) evaluates to true, and send (m, x,
[a, b, c], 1) to c is invoked.

5. receive(m, x, [a, b, c], 1) evaluates to true at c.

6. Place c has no successor, last up([a, b, c], c) evaluates to true, and execute x is
invoked.

7. FTF2 is started at c by invoking ftf([c, b, a], m′, y, 2).

8. Place c has a successor, !last up([c, b, a], c) evaluates to true, and send (m′, y,
[c, b, a], 2) to b is invoked.

9. Place b fails.

10. Place c detects that b has failed.

11. Place c has a successor, !last up([c, b, a], c) evaluates to true since last sent to no
longer equals place b, and send (m′, y, [c, b, a], 2) to a is invoked

12. receive(m′, y, [c, b, a], 2) evaluates to true at a.

13. Place a has no successor, last up([a, b, c], c) evaluates to true, and execute y is
invoked.

An equivalent execution with the original FTB protocol would be like the following:

1. a sends m to b.

2. b sends m to c.

3. c sends the acknowledgment message to b.

4. b fails.

5. a detects the failure of b and resends m to c.

6. c receives m and sends the acknowledgment to a.

7. a receives the acknowledgment for m and the FTB completes.

Thus, instead of c detecting b’s failure as with FTF-FTB, a detects b’s failure and resends
the message to c.

106

6.5.3 NAP2 Protocol

Assume that action A(i) or R(i) terminates at p according to rule R2. When R2 has
completed, R3 is executed with the change operation we specified in Section 6.4.5:

R3 When a place p terminates an action, let Q be all the places in r(i) ∪ r(i+ 1):

• For p, q ∈ Q, let p be before q in E iff:

– p and q are both in r(i), and p is before q in r(i).

– p is in r(i) and q is not in r(i).

• change all non-failed places q in r(i) ∪ r(i+ 1) to:

– < r(i+ 1), i+ 1 > if q in r(i+ 1).

– <> if q not in r(i+ 1).

in order E.

We implement R3 as two subsequent FTFs, called FTF1 and FTF2. In the following,
the function reverse(r) returns the strategy r in reverse, and the operation r1 ◦ r2
returns strategy r1 with strategy r2 appended to it. At the place resulting from
executing first up after(r(i), NULL), the following is executed:

FTF1: ftf(r(i), state, A1, i)

The action A1 is specified as:

FTF2: ftf(reverse(r(i+ 1)) ◦ reverse(r(i)\r(i+ 1)), state, A2, i+ 1)

ActionA2 is a no-op, and the state is specified by a tuple consisting of< i, r(i), r(i+1) >.
We say that places in r(i) enter a transitional state during the execution of R3. We
encode the transitional state as part of the mobile agent state at a place p: s(p) =<<
r, i >, T > , where T is true iff the place p is in a transitional state, and false otherwise.
We use s(p).T to denote the T component of the mobile agent state at place p. The
following steps are performed at a place p when it receives the state, following the
execution of lines 34-40 of the FTF algorithm:

In1 When p in r(i+ 1) receives state via FTF1, it sets its state to << r(i+ 1), i+ 1 >
, true >.

Out1 When p in r(i+1) receives state via FTF2, it sets its state to << r(i+1), i+1 >
, false >.

In2 When p in r(i)\r(i+ 1) receives state via FTF1, it sets its state to <<>, true >.

Out2 When p in r(i)\r(i+1) receives state via FTF2, it sets its state to <<>, false >.

107

A place is in a transitional state if it does not know that all non-failed places in
r(i) are in << r(i + 1), i + 1 >, false >. A place in << r(i + 1), i + 1 >, true > is not
i+ 1-electable by rule NAP2Elected in Section 6.4.5. We refine property NAP2Elected
to NAP2TransElected to reference the transitional state:

NAP2TransElected A place p is i-elected when:
∧s(p).i = i
∧∀q ∈ B(s(p).r, p) : q ∈ Fp

∧¬s(p).T

A place in r(i)\r(i+1) in <<>, true > will never become i+1-electable because it will
never be in r(i+ 1). Note, though, that any place in r(i) in the transitional state has a
role of monitoring for failures in FTF1.

We now prove that FTF1 and FTF2 implements the change operation of R3. We
do this by showing that the four following properties hold:

A If a place p enters << r(i + 1), i + 1 >, true >, then eventually p fails or enters
< r(i+ 1), i+ 1 >, false >.

B If a place p enters <<>, true >, then eventually p fails or enters <<>, false >.

C If a place p enters << r(i+ 1), i+ 1 >, true > and does not fail, then eventually:

• All places q in r(i+ 1): s(q) =<< r(i+ 1), i+ 1) >, false >.

• All places q in r(i)\r(i+ 1): s(q) =<<>, false >.

D Places in r(i+ 1) ∪ r(i) change states according to the order specified by E.

To prove that A,B,C and D hold, we need a lemma FTFProgress:

FTFProgress Consider an invocation of FTF with a strategy s and version i, and let
p be a place in s. If p receives a message m via this FTF and does not fail, then all
places q after p in s either fail or deliver m. Furthermore, the action a associated
with the FTF is executed at least once.

Proof. If p is the first place in s, p executes lines 8-16, sets last sent to to NULL, and
sets monitor to true. If p is not the first place in s, some other place q sent m to p,
so p executes lines 32-40, sets last sent to to NULL, and sets monitor to true. Let x
be the number of places after p in the strategy s that do not fail before the end of the
execution of the FTF. Either last up(s, p) is true or false. If it ever becomes true, the
all places in s after p have failed, and because p does not fail, p executes action a. This
is the case for x = 0.

Assume that FTFProgress holds for x = x′. Consider an execution in which x = x′+1
where x′ + 1 > 0. Thus, last up(s, p) is never true. Let q be the first place after p in
s that does not fail before the end of the execution of FTF. We know that some place
will send m to q because, even if all places between q and p fail, p will send m to q since
p does not fail. And, from the inductive hypothesis, FTFProgress holds for q. Thus,
FTFProgress holds for p as well.

108

Proof of A. Assume that a place p enters << r(i+ 1), i+ 1 >, true > and does not fail.
By In1, this means that p has received the state < i, r(i), r(i + 1) > from its parent
q via FTF1. By FTFProgress, all non-failed successors of p will then deliver the state
< i, r(i), r(i+ 1) >. Again by FTFProgress, a non-failed successor of p or p itself will
execute the action A1 that starts FTF2.

Assume that FTF2 is started by place q in r(i). If q does not fail, then by
FTFProgress, all non-failed successors of q in reverse(r(i + 1)) will deliver the state
< i, r(i), r(i + 1) >, and by Out1 enter << r(i + 1), i+ 1 >, false >. If q fails, q must
be a successor of p in r(i), and by FTFProgress, the action that starts FTF2 will be
executed again by the first non-failed parent of q. Since p cannot fail, FTF2 is always
started, possibly by p, and since p must be contained in reverse(r(i + 1)), p by Out1
enters << r(i+ 1), i+ 1 >, false >.

Proof of B. The proof is similar to that of A. Assume that a place p enters <<>, true >
and does not fail. By In2, this means that p has received the state < i, r(i), r(i+ 1) >
from its parent q via FTF1. By FTFProgress, all non-failed successors of p will then
deliver the state < i, r(i), r(i+ 1) >. Again by FTFProgress, a non-failed successor of
p or p itself will execute the action A1 that starts FTF2.

Assume that FTF2 is started by place q in r(i). If q does not fail, then by
FTFProgress, all non-failed successors of q in reverse(r(i)) will deliver the state
< i, r(i), r(i+1) >, and by Out2 enter <<>, false >. If q fails, q must be a successor of
p in r(i), and by FTFProgress, the action that starts FTF2 will be executed again by
the first non-failed parent of q. Since p cannot fail, FTF2 is always started, possibly by
p, and since p must be contained in reverse(r(i)), p by Out2 enters <<>, false >.

Proof of C. Assume that p is the first non-failed place in r(i) that enters << r(i+1), i+
1 >, true >. From FTFProgress, In1, and In2, this means that all non-failed successors
of p in r(i) will enter << r(i+ 1), i+ 1 >, true > or <<>, true >. By A, all non-failed
places in << r(i+ 1), i+ 1 >, true > enter << r(i+ 1), i+ 1 >, false >. Since p cannot
fail, FTF2 is always started. Since all non-failed places in <<>, true > are contained
in the strategy for FTF2, by B, all non-failed places in <<>, true > eventually enter
<<>, false >.

Proof of D. From R3, p is before q in E iff:

1. p and q are both in r(i), and p is before q in r(i).

2. p is in r(i) and q is not in r(i).

All non-failed places in r(i) participate in both FTF1 and FTF2, while the non-failed
places in r(i+ 1)\r(i) only participate in FTF2. We know from C that all these places
update their states. The non-failed places in r(i) update their state in the order of r(i),
satisfying the first ordering constraint of R3. The non-failed places not in r(i) update
their states in FTF2, which is after all the places in r(i) update their states with FTF1.
Thus, the places update their states in the order constrained by E.

109

The strategy of FTF1 uses the increasing order of r(i) to ensure that property M2, as
specified in Section 6.4.4, holds. The strategy of FTF2 uses the reverse order of r(i+1)
to ensure that the next stage i + 2 is not enabled at place p until all non-failed places
in r(i + 1)\B(r(i + 1), p) are in << r(i + 1), i + 1 >, false >, as required by the third
conjunct of definition NAP2TransElected.

Places in r(i + 1) start executing rule R2 when they receive the message in step
Out1 in FTF2. When a place p finds itself to be i + 1-elected, as specified by
NAP2TransElected, p starts executing the next action A(i+ 1).

Terminating Monitoring

The places in r(i)\r(i + 1) may receive the messages in step Out2 after the non-failed
place p is i+1-elected in step Out1, so there may be a situation where A(i+1) terminates
faster than the messages have propagated to all places in r(i)\r(i+1). This can lead to
FTF1 for the next version i + 2 to start before FTF2 for version i + 1 has completed.
Since places in r(i)\r(i + 1) are in the transitional state <<>, true >, they will not
execute a recovery action for i, so NAP2TransElected still holds. However, there is no
way for the places in r(i+1) to determine when the places in r(i)\r(i+1) have delivered
the message in step Out2 and terminated the monitoring for FTF1. Hence, the places
in r(i + 1) must monitor the places in r(i)\r(i + 1) even after the change for r(i + 2)
has started to ensure that places in r(i)\r(i+ 1) execute step Out2.

Optimizations

We would like to avoid having places in r(i+1) monitor the places in r(i)\r(i+1) after
A(i+1) or R(i+1) has terminated. In addition, the latency of executing the both FTF1
and FTF2 can be significant, so we want to reduce this latency.

For simplicity of exposition, we call the messages sent to the places in r(i)\r(i+ 1)
during FTF2 stop messages. From R3 and the ordering required by E, the order
which the places in r(i)\r(i+1) receive the stop messages is irrelevant. Hence, instead
of sending stop messages after all the places in r(i + 1) have received the message
in step Out1, the stop messages can be sent in parallel with the execution of FTF2.
More specifically, a non-failed place in r(i + 1) sends a stop message to each place in
r(i)\r(i + 1) when it receives the message in step Out1 in FTF2. Doing so, however,
requires that we change our environmental assumption F1: if a place p in r(i+1) sends a
stop message that is delivered to all places in r(i) in step Out2, and p subsequently fails
before the FTF2 message is sent from p to its successor q in r(i+1), there are no places
in r(i) that will ensure that FTF2 makes progress. Thus, F1 must be strengthened to
require that at least one place in r(i) ∩ r(i+ 1) does not fail:

F1S For all values of i > 0: it is always true that some place in r(i)∩ r(i+1) does not
fail: ∀i : i > 0 : (r(i) ∩ r(i + 1)\F) 6= ∅. This implies that each r(i) ∩ r(i + 1)
contains at least one non-failed place.

Another optimization is to execute rule R2 optimistically. Recall that R2 is executed
when all non-failed places in r(i+1) have received the messages in step Out1 and a place

110

is i+ 1-elected. However, we can start R2 optimistically once FTF1 has completed. To
implement this approach, the action A1 associated with the completion of FTF1 can be
extended to send a special stable message to the first place p in r(i + 1). When, and
if, p receives a stable message, it executes rule R2. When rule R2 terminates, however,
R3 must not be executed before FTF2 has completed sending the messages up to place
p. Doing so ensures that the places in r(i+1) are in < r(i+1), false > when the protocol
for starting the next stage begins, as required by NAP2TransElected.

6.6 Implementation

We now describe our implementation of NAP2 using the optimizations specified in the
previous section. Over the course of the TACOMA project, focus shifted from the idea
of using mobile agents primarily for traditional itinerant style computations to using
mobile agents for Distributed Software Management (DiSM) [109, 111]. In DiSM, the
key problem is the distribution, installation and upgrading of software in a heterogeneous
distributed environment. For instance, rather than itinerant style computations, DiSM
mobility is frequently single-hop. We also observed that DiSM applications rarely need
the functionality of a complete mobile agent environment, but rather a minimal set
of mechanisms to implement various mobility functions [111]. This observation was
strengthened by our experience from using code mobility in several DiSM applications,
for instance:

• Installing and maintaining intrusion-detection software [111].

• Installing application-specific master and worker code in grid computations [109].

The experience we gained from using mobility as part of DiSM applications motivated
the construction of new abstractions specifically tailored for DiSM, where the resulting
system is called TOS. We implemented a new version of TOS as part of this dissertation.
This version of TOS is similar to the Java version described in [111], but written in the
Python programming language.

Besides our experience with DiSM, the focus towards providing building blocks for
code mobility rather than complete mobile agent environments has also been employed
by other projects investigating distributed system and software management [22, 138].

We also considered implementing NAP2 using the wrapper concept introduced in
TACOMA version 2.0 [171]. The main benefit of wrappers is that they are transparent
to the wrapped agent. This way, a regular TACOMA agent can be provided with
fault-tolerance without having to be written specifically with fault-tolerance in mind.
However, transparently wrapped agents would be unable to specify recovery actions and
manage failover lists, which are important features in NAP2.

6.6.1 TOS

TOS is structured as a library that supports asynchronous message passing among
threads of execution, inspired by the actor model [3]. TOS provides a service through

111

an extension, which is a thread of control and a communication channel. The
communication channel can be used to exchange messages with other extensions.

The set of TOS extensions within a process comprises a TOS server, comparable
to a place in mobile agent terminology. Extensions running within the same TOS
server are referred to as local extensions. In terms of control flow, TOS extensions
can communicate with each other in a hierarchical or pipelined fashion with message
passing, or by using a shared-state Python namespace.

Communication Channels

The TOS communication channels use in-memory queues for communication between
local extensions and TCP sockets for communication between extensions on different
TOS servers. Local and remote communication between two extensions are FIFO
ordered. Each pair of extensions communicating remotely use a dedicated TCP
connection.

A TOS communication channel between two places s and r is established when
the first message is sent from s to r. Subsequent messages exchanged by s and r
reuse the established channel. Establishing a channel in TOS involves setting up a
TCP connection with connect from s and accept from r, followed by the following
symmetric authentication protocol between s and r: s sends a byte sequence consisting
of 256 random bytes followed by the string gobbledegook to r, where the byte sequence
is encrypted with a private key known to both s and r. r reads the 256 random bytes and
checks that the string after the random sequence matches gobbledegook. s then sends
the encrypted message using the established channel to r. This simple authentication
protocol helps keeping malicious users from exploiting TOS to gain access to resources
that they are not privileged to access, and gives us a performance baseline for the cost
of providing authentication. A more realistic implementation for authenticating clients
and delegating access to resources would probably be based on an established standard
such as OAuth [77].

6.6.2 Agent Control Flow

An action in NAP2 terminates with the operation move:

move(action@place)

Which regular action to run next as well as the place to execute the action on is specified
as arguments to the move operation.

The move operation is also used to implement the operations checkpoint and
terminate, as specified in Section 6.1. The terminate operation is implemented by a
move that is given NULL as parameter. In this case, the termination protocol specified
in Section 6.6.8 is executed.

If the place specified by the move operation is the place where the agent is currently
executing, move behaves the same way as the checkpoint operation. More specifically,
move will cause the current action to terminate, the protocol for updating the places
in the failover list to be executed, and the next action started at the same place.

112

Operations Operations with move
move(a1@p) move(a1@p)

checkpoint(a1) move(a1@plocal)
terminate() move(NULL)

Table 6.1: Mobile agent operations modeled with the move operation.

When place is specified by the move operation, place is explicitly inserted as the
first member of the failover list. If place is not specified by move, the place is the
first member specified in the failover list. Table 6.1 summarizes how move specifies
traditional move, checkpoint and terminate.

As an example of a NAP2 computation, Figure 6.3 depicts a mobile agent
computation using the variations of the move operation, beginning with action a1 at
place p1. The second action a2 starts on place p2 after the first action terminates. When
the second action terminates, action a3 executes at place p3, followed by action a4 on
place p3. The computation ends when a4 terminates on p4.

6.6.3 Specifying Actions

Pseudocode 6.6.1 Example action and recovery action.

def action1(failed=false):
if not failed:

print ”Hello, world!”
else:

print ”Failed to say hello!”

The move operation terminates an action and specifies which regular action to run
next, but does not explicitly specify which recovery action correspond to which regular
action. Rather than managing actions and recovery actions in two separate tacoma
folders, as we specified for an earlier version of NAP [89], NAP2 actions are written
as a function that accepts a boolean parameter failed. When invoked, failed is
set to false for regular actions and true for recovery actions. Hence, when an agent
specifies which regular action to run next, the next recovery action is implicitly specified.
Pseudocode 6.6.1 gives an example action and recovery action structured this way. If
the regular action and recovery action are identical, then the if...else statements can
be removed.

6.6.4 State Management

The TOS version used to implement NAP2 is written in the Python programming
language, and we decided that NAP2 agents must also be written in Python. For DiSM

113

a1 a2 a3

p1 p2

move(a2@p2) move(a3@p3)

p3

a4

move(a4@p3)

move(NULL)

Figure 6.3: Example mobile agent control flow with move operation.

Attribute name Description

id A globally unique number identifying the agent
rg The failover list for the next action
rg0 The failover list for the current action

version The version of the current failover list
code The source code (Python class) for the agent
next The name of the next action to be executed

Table 6.2: Message attributes used by NAP2.

tasks, we found that the use of a single high-level language is sufficient for most tasks.
Other required functionalities are instead shipped with the agent and executed using
mechanisms such as the system() system-call in Unix [111].

NAP2 agents are Python class instances and the actions must be methods imple-
mented in the agent class. Python class instances have attributes associated with them,
and these attributes determine the state that is shipped along with the agent upon
migration. This is similar to how folders persist through the meet operation in the
original TACOMA system. Instance attributes are restricted to those types supported
by the Python marshal module, which we use for serialization. This include the most
common types such as integers, floats, strings, lists, tuples, and dictionaries.

Some state management is also performed outside the agent code body, for instance
serializing the agent attributes, transferring the serialized agent to the right place and
instantiation of the agent class. This part of the state management is implemented by
the nap extension, as described in Section 6.6.5.

NAP Specific State Management

NAP2 and TOS require the agent to host a number of NAP2-specific attributes in its
state. The particular attributes are listed in Table 6.2, and are used by NAP2 when
executing the protocol. All attributes can be accessed and changed by an agent during
execution, but mobile agent applications normally only update the rg attribute.

The attribute id is a globally unique agent identifier used to separate instances of
agents from each other. The id is generated when the agent is created and must not be
changed during the computation. The rg attribute is the failover list for the next action,

114

monitor nap

TOS input/output

TOS Server A1

A2 A3

Network

Figure 6.4: NAP on TOS.

and the rg0 attribute the failover list for the currently executing action. The version
attribute is an integer that represents the version of the failover list in rg0. code attribute
holds the source code for the agent, and the next attribute holds the method name of
the action to be executed when the current action terminates. The next attribute is not
set explicitly by an action, this is done implicitly when an action is terminated with the
move operation.

6.6.5 NAP2 Extensions

The NAP2 runtime support is implemented by two co-operating TOS extensions, the
monitor extension for failure detection and the nap extension that controls the execution
of agents as well as the orchestration of the NAP2 protocol. Separating failure detection
from the rest of the protocol makes it simpler to adapt to alternative failure detectors.
Figure 6.4 shows a TOS server running agents A1, A2 and A3 within nap, and uses TOS
messages to communicate with the other TOS servers and the monitor extension.

monitor Extension

The monitor extension provides a fail-stop failure detection mechanism. Local
extensions can subscribe to be notified by the monitor extension when a specified
place fails. Failure detection is performed by sending ping messages from the monitor
extension to a set of destination places on remote TOS servers. Destination places reply
with pong messages. If a target place fails to respond with a pong message within a
configured amount of time, a notification message is sent to the local extensions that
have subscribed to failure notifications. NAP2 uses this extension to detect failures
during execution of the FTFs and detecting whether the place executing an agent has
failed.

The monitor extension also allows monitoring so-called activities at destination
places. Activities enable detecting that an individual agent fails without the place

115

or the processor that executes on the place having failed. An activity represents a fine-
grained resource within a place, such as a thread or method call. For NAP2, an agent
denotes an activity represented by the agent identifier in the id attribute. When an
activity is flagged as failed within a place, the subsequent pong message from the place
includes the activity (for nap, the agent id attribute). When receiving the pong message,
a place extracts the failed activities (for nap, agent id attributes) and notifies the local
extensions that have subscribed to failure notifications for the destination place with a
fail message. The activities that failed are contained in the fail message.

The timeout value used by the monitor extension can be configured, and by default
the timeout is set to 30 seconds.

nap Extension

All places involved in a NAP computation must run the NAP extension. All inter-place
communication between nap extensions is by means of TOS messages. All these TOS
messages consist of the agent attributes that comprise the mobile agent state, as well
as a type attribute that identifies the type of the message. The nap extensions handles
seven different message types: start, fail, update, ack, stop, turn, and stable.

The start message is sent locally by the currently elected place when an ongoing
protocol execution has completed. When receiving the start message, the nap extension
creates an agent instance based on the value of the code attribute and determines which
action (i.e., Python method) to execute from the next attribute of the message. Before
the action starts executing, the nap extension stores the failover list in rg in the rg0
agent attribute. During execution of the current action, the mobile agent specifies the
next failover list in the rg attribute. The agent code is subsequently enqueued on a
thread pool that performs the actual execution of the action. The thread that runs
the action returns the operation to be executed next when the action terminates. If
the returned operation is a terminate, then the protocol specified in Section 6.6.8 is
started. If the returned operation is not a move, the agent is assumed to have failed.
The activity representing the agent is flagged as failed, and the monitor extension of
the next place in the failover list will eventually detect the activity or place as failed.
This causes a fail message to be sent to the local nap extension with the activity that
failed. The nap extension then executes the recovery action or resubmits messages as
part of the FTF execution.

If an action instead terminates with a move, then all agent attributes are extracted
by accessing the dict attribute of the agent class instance and put in a message
of type update. If the move specifies a place, then this place is put first in rg. The
update message is then sent to the first place in rg0 of the terminating agent. Sending
the update message to the first place of rg0 thus starts FTF1 of the NAP2 protocol.
When all places of rg0 have received the update message, FTF2 is started by sending
a turn message from the last place in rg0 to the last place of rg. The last place in
rg0 also sends the stable message to the first place in rg to allow starting the next
action optimistically. When the last place in rg receives the turn message, it sends
an ack message to its preceding place in rg. When a place receives the ack or stable
message, it sends stop messages to all places rg0. When a place in rg has received the

116

a b cd

update1 update2

turn3ack5ack7

stop6,8,9

stable4

Figure 6.5: Message flow in NAP2.

ack message or stable message, whichever comes first, rule R2 is executed to determine
whether it is elected. If a place in rg finds itself to be elected, a start message is sent
the local nap extension.

Figure 6.5 shows an example of an invocation of the NAP2 protocol when rg0 is
[a, b, c] and rg is [d, a, b, c]. The subscript of the messages depicts the message ordering.
First, a sends an update message to b, which in turn sends an update to c. c has no
successor so it sends a turn message to b and a stable message to d. Upon receiving
the turn message, b then sends a stop message to c and an ack message to a. a sends
an ack message to d and a stop message to c, whereas d has no previous place and sends
a stop message to c. c, upon receiving a stop message, terminates the monitoring it
previously did for b.

6.6.6 Starting Agents

When an agent has no previous failover list, there is no need for the update messages.
Instead, the agent can be sent with a turn message to the last place in r(1). This will
cause ack messages to propagate up to the first place of r(1), and the elected place starts
executing the agent. This procedure, which is used to bootstrap a NAP2 agent into the
initial state specified by rule NAP2 rule R1, implements the init operation. The init
operation takes three parameters, corresponding to the attributes in Table 6.2:

init(agent, failover, action)

Here, agent is the agent source code, failover the failover list for the first action, and
action the name of the first action to execute. The agent source code in agent is stored
in the code attribute, and the failover list in failover is stored in the rg attribute. The
id attribute is generated by the init operation to ensure that the agent identifier is
unique, and the version attribute is set to 1.

Starting Multiple Agents

When we implemented TOS agents for distributed software management, one of the
recurring scenarios was to use a fan-out strategy for distributing the agents. In this
scenario, the initiating agent typically init n agents, causing n invocations of the

117

bootstrapping protocol specified in the section above. The init operation does not
terminate the action and is non-blocking by virtue of the asynchronous message passing
in TOS, so any number of init operations can be done within the scope of a single NAP2
action.

6.6.7 Deterministic Failures

Although not covered by the system model in Section 6.1.1, in practice there will
be situations, for instance, programming bugs, where a recovery action R(i) will fail
deterministically and all places that attempt to execute R(i) will fail. An approach to
handle this problem is tomove the agent to a specific place, which we call the rally point.
The identity of the rally point is specified in the agent attribute rally point. When a
rally point is specified and there is only a single non-failed place p in r(i) that finds itself
about to execute R(i), then place p will not execute R(i) but instead execute a move
to the place specified in the rally point agent attribute. Doing so can aid identifying the
cause of the deterministic failure by inspecting the mobile agent state at the rally point
place.

6.6.8 Terminating Agents

When no more actions are specified or terminate is issued by the computation, the
NAP2 protocol for this agent also terminates. Although the FTB protocol that NAP2 is
based on cannot terminate [160], orchestrating termination of NAP2 is not complicated.
Assume that the operation exit is the command that instructs a place to terminate
execution for the corresponding mobile agent, and let the last user-defined action be:

FTAω: action Aω recovery Rω

FTAω is replaced by the following two actions:

action { Aω; checkpoint} recovery Rω;
action exit recovery exit;

Hence, after checkpoint terminates, all places in the failover list have their
subsequent action and recovery action set to exit. When a place executes exit, it
terminates executing NAP2 for the agent, resulting in the activity that specifies the
agent being reported as failed with a subsequent failure detection by the next place.
The election protocol in NAP2 chooses a place to execute the recovery action. The
agent that executes the recovery action then terminates, causing the activity specifying
that agent as failed to the next place where another failure detection is done and another
place starts executing the recovery action. This sequence of actions continue until the
last place in the failover list has executed exit.

Note that this behavior is similar to a deterministic failure of a recovery action.
Thus, when a rally point is specified, the last place will move the agent to the place
specified in the rally point attribute of the agent. Hence, all executions end up at the
rally point at termination. The reason for termination can be recorded as an attribute
in the mobile agent.

118

6.7 Network Failures

The NAP2 protocol assumes the use of a perfect failure detector and that processes
execute according to the fail-stop model. Results from the work of Christian and Fetzer
[40] indicate that local area networks perform synchronously most of the time. The
networks fluctuate between long stable periods where timing assumptions can be made
and short unstable periods where timing assumptions no longer hold. In their work,
the ratio between a stable versus an unstable period is measured to 341:1, which means
that a perfect failure detector can work correctly most of the time within a local area
network. However, in an asynchronous environment where places may execute slowly
and network packets are lost, failure detection may cause false positives. For NAP2, false
positives cause redundant actions to be executed, violating the exactly-once property of
a stage. More specifically, this means that the places q in the second conjunct of the
NAP2Elected property specified in Section 6.4.5 may be contained in Fp without having
failed.

From the previous chapters, we have observed three kinds of network failures:
i) partitions where two or more cliques cannot communicate with each other, ii)
asymmetric communication, and iii) non-transitive communication. We now investigate
what happens in the NAP2 implementation specified in Section 6.5 when such failures
occur.

In the following sections, r is a failover list.

6.7.1 Partitions

A network partition divides the set of places in the failover list into two or more cliques
that cannot communicate with one another. In this case, packets going between cliques
will be lost, and the NAP2 failure detector in the monitor extension will eventually
detect this.

Assume that the list of places in r are partitioned into sets c1, c2, ..., cn−1, cn, where
n is the number of cliques. Then, all cn, except the clique containing the head of r
will execute a recovery action. A worst case for redundant recovery action executions is
when each set c contains only one place (i.e., n is equal to the length of r). Then, the
number of recovery actions for r will be |r| − 1.

6.7.2 Asymmetric Communication

When there is asymmetric communication, a place x is able to communicate with a
place y, but y is unable to communicate properly with x.

The failure detector in the monitor extension in NAP2 works by having a thread
periodically send a ping message to the place that is being monitored. Upon receiving
a ping message, a place sends back a pong message to the place that sent the ping
message. If a pong message is not received within a specific timeout value, in our case
30 seconds, the place being monitored is declared as failed.

If x monitors place y, then y may send a pong message, but x will not receive it and
y is thus declared as failed by x. Similar, if y monitors x, the initial ping message is not

119

received by x and thus no corresponding pong message is sent. Hence, x will detect y
as failed, and y will detect x as failed, with the result being similar to that of x and y
being partitioned away from each other. A worst case when the NAP2 failure detector is
used occurs when all places in r have an asymmetric communication link with all other
places. Given the symmetric failure detection property of the failure detector in NAP2,
this scenario is similar to the scenario of partitioned cliques with a single member and
results in a similar number of recovery actions being executed.

Asymmetric communication can also cause disagreement on the members of the
failover list. Assume we have r = [x, y, z], where z cannot communicate with y. In this
case, y will detect z as failed and find itself to be the tail of r and send an ack message
to x. Likewise, z will detect y as failed, and send an ack message to x. The problem
now is that both y and z believe they are the tail of r and monitor x for failures and
should x fail, the recovery action is executed by both y and z.

6.7.3 Non-Transitive Communication

Non-transitive communication happens when a place x can communicate with a place
z only through place y. For instance, if r = [x, y, z] and y fails, then x will fail to
communicate with z and thus assume that both y and z failed although only y failed.

Consider the scenario where all communication goes through a single place, and
this place is either at the head or the tail of r. Assume there are n places in r,
[p1, p2, . . . , pn−1, pn], and that all n − 1 places [p1, p2, . . . , pn−1] communicate through
pn. This means that places p1 through pn−2, will observe all other places as failed,
similar to the case where all places are partitioned away from each other. Place pn−1

will be able to communicate with pn, which leads to one fewer execution of the recovery
action compared to the worst case of all places being partitioned away from each other.
If the communication graph later changes so that pn can only communicate with pn−1

through a place in [p1, . . . , pn−2], then pn will detect pn−1 as failed.

6.7.4 Observations

From the simulation results based on the RON traces in Section 3.4.2 (Table 3.1), we
observed that when network partitioning occurs, the number of connected components
are never more than two. This means that the worst case for partitions in the previous
analysis is unlikely to occur frequently. However, we observed that the amount of non-
transitive communication is significant, and thus more likely to trigger similar worst-case
behavior.

In Section 5.6 we described that there are generally two approaches to avoid faulty
communication links, i) using a static communication link setup, and ii) using an overlay
network. Given the complexity and overhead of maintaining an overlay network as part
of the mobile agent runtime, an approach inspired by static link configuration seems more
appropriate for NAP. If failover lists are adapted to the underlying network topology
during the computation, implying failover lists are network aware, the advantage of
static link configurations can be gained for mobile agents.

120

Recall from Section 3.3.1 that non-transitive communication can occur when
communication spans more than two ASes. Determining whether a failover list spans
more than two ASes can be difficult, since the topology view depends on the mechanism
used to establish the view. For instance, Mahadevan et. al. [117] discovered that the
topology obtained using WHOIS was significantly different from the topologies obtained
with traceroute and BGP. However, a conservative approximation of an AS can be done
by discerning on local area networks. Thus, if the places are organized in such a way that
a failover list never spans more than two local area networks, then the computation will
never span more than two ASes and the probability of non-transitive communication is
small.

Failover lists spanning two or more local area networks are also vulnerable to
partitions. The vulnerability to partitions can be reduced by minimizing the time
failover lists span two or more local area networks. In protocols with transparent backup
management, such as first version of NAP [89], this requires the mobile agent to issue a
sequence of f + 1 move operations each time it enters a new local area network to add
at least f places within that local area network. Allowing multiple places to be added
and removed with fewer than f + 1 move invocations may reduce the time a failover
list spans more than one local area network, and thus reduce the exposure to network
failures.

In the next chapter, we analyze the costs of adapting failover lists to avoid network
failures.

6.8 Summary

We started this chapter by specifying a mobile agent fault-tolerance protocol called
the Norwegian Army Protocol (NAP). NAP is based on a primary-backup approach
and updates state to the backups at fixed points during the computation. The set of
backups can be changed during the computation to accommodate resource changes in
the environment. We presented the derivation of a specification of the NAP protocol,
and continued with specifying how to map the derived protocol to an implementation.
The chapter then presented an implementation of NAP using the TOS mobile agent
platform, and ended with how NAP can be made robust against the network failures we
identified in Chapter 3.3.1.

121

122

Chapter 7

NAP2 Performance Evaluation

In the previous chapter, we derived a specification for NAP2, and described an
implementation of the protocol. In this chapter, the performance of the resulting NAP2
implementation is evaluated. The performance evaluation has two main purposes. First,
evaluate the performance hypothesis we proposed in Section 1.3. Next, serve as basis
for the discussion in Chapter 8 where we consider alternative implementations.

7.1 Purpose

The main purpose of this chapter is to evaluate the performance of our NAP2
implementation. By performance, we mean the latency of executing a mobile agent
computation. The measured latency will be used to answer two questions.

The first question we ask is: what is the latency of running a mobile agent application
in TOS with NAP2? To answer this question, the latency of sending and receiving a
message from one computer to another with TOS must be measured. We then need to
measure the latency of executing the move operation without NAP2, and compare this
with the latency of executing move with NAP2. The latency of NAP2 is influenced by
many parameters, such as the number of places in the failover list, which we vary.

One of the key design features of NAP2 is flexible reconfiguration of the failover
list, and this allows moving a set of backups from one local area network to another to
reduce exposure to communication failures. With transparent backup management, as
specified in Section 6.3.3, similar reconfigurations can be done through use of multiple
move operations. The next question we ask is: is the latency of changing between a
failover list R to a disjoint failover list R′ larger with transparent backup management?
To answer this question, the latency of adding and removing multiple places to the
failover list in NAP2 is measured and compared to the latency of doing a comparable
number of move operations with transparent backup management.

The results will either confirm or falsify the hypothesis given in Section 1.3, where
we propose that network aware mobile agent fault-tolerance will perform better than
transparent mobile agent fault-tolerance in this case.

123

7.2 Experiment Procedure

In order to answer the two questions in the previous section, experiments must be
performed. The purpose of this section is to establish that the procedure for performing
these experiments is reasonable.

7.2.1 Test Environment

Our experience with NAP2 applications like the License Checker in Section 6.3.2 has
so far shown that between 2 and 5 backups provide sufficient fault-tolerance. Some
of the experiments, for instance the last in this chapter, are simpler to measure with
more computers. Thus, our test environment consists of 10 identically configured Dell
Precision WorkStation 360 PCs with P4 3GHz CPUs, 1GB RAM and 120GB disks,
connected by a 100Mbit Ethernet. The computers run Red Hat Enterprise Linux Client
release 5.0. NAP2 is implemented in the Python programming language, and we use
Python 2.5.1 to execute TOS. Each place, as specified in Section 6.1, is a computer
running a single TOS deployment that hosts a single instance of the NAP2 extensions.

Although the latency of NAP2 is expected to be largely dominated by network
latency, some interference can be assumed from the Python interpreter. For instance,
Python internally schedules threads to serialize execution of bytecodes among multiple
threads. This means that only one thread executes bytecode at a time and the cost of
scheduling threads increases with the number of threads [175]. The context switching
is done either when a particular number of bytecodes have executed for a thread, or the
thread explicitly yields control (e.g., before performing a blocking system call such as
sleep). In addition, Python uses reference counting to manage memory, coupled with
a generational garbage collector for handling circular references. The garbage collector
runs asynchronously and freezes the execution of bytecodes when executed.

To avoid buffering in TCP to affect the latency of communicating messages, the
Nagle algorithm has been disabled in TOS. The experiments are performed on multiuser
computers, and users logging into the computers may affect the amount of network
bandwidth and induce processor load on the computer. To limit the impact of the
multiuser environment, we perform all experiments during the night, where we expect
the network and computers to be lightly loaded. The same applies to reducing the impact
of memory pressure. Memory pressure occurs if another users’ application running on the
computer forces our TOS deployment to be swapped out. Since the TOS deployment
requires little memory, we assume that unless another user’s application uses a lot a
memory on the computer, memory pressure should not be a problem. None of our
experiments directly rely on the performance of stable storage such as disks. A subtlety
here is that the Python interpreter dynamically loads modules from disk when the
import statement is issued in the code. To avoid this from influencing our experiments,
we have removed all import statements from the critical paths of TOS and the nap and
monitor extensions.

Although carefully managing our test environment this way can reduce the probabil-
ity of influence from parameters such as users logging into the test computer, we cannot
completely disregard them. Thus, we use statistical methods to remove samples from

124

our results in cases where the test environment has a strong bias on the samples.

7.2.2 Samples

Samples are acquired by recording the time when the experiment begins and ends, and
the difference then denotes the latency of the system. We obtain the time using the
gettimeofday system call with the time function of the time Python module. We
measured the performance of calling gettimeofday with the time function in Python.
The experiment revealed that the mean cost was 9 microseconds for two gettimeofday

calls. This cost is subtracted from all samples.
All experiments in this chapter are executed 100 times, yielding 100 samples, and

based on these samples we calculate the mean (X) and standard deviation (SD) for the
samples. The standard deviation is given by the square root of the variance, where N
is the number of samples and x1, . . . , xN denotes the samples:

X = 1
N

∑N
i=1 xi and SD =

√
1
N

∑N
i=1(xi − x)2

We also calculate the relative standard deviation (RSD) and coefficient of variation
(CV), as given by the following formulas [174]:

RSD = CV ∗ 100 and CV = SD
X

During the course of the experiments we experienced that the RSD factor was
sometimes large. By sorting the list of samples for such experiments, we quickly
discovered that some samples deviated significantly from the calculated mean. Such
values are referred to as outliers [174]. We experienced that outliers for example
occurred when the garbage collection in Python was executed. The procedure we use
for removing the impact of outliers is known as Grubbs test (or extreme studentized
deviate) [174]. The approach of Grubbs test is to rank samples by increasing value and
calculate the mean and the standard deviation for the samples. The lowest and highest
ranked samples (Xlow and Xhigh, respectively) are then evaluated against the mean and
standard deviation like this:

Zlow = (X−Xlow)
SD

and Zhigh =
(Xhigh−X)

SD

Whether Zlow or Zhigh is an outlier then depends on whether they exceed a threshold
value that is determined by the confidence level. Hence, Grubbs test removes outliers for
a given level of confidence, and we use 99.9% confidence for our experiments. We report
the number of samples in the sample sets with the number of outliers removed. Unless
stated otherwise, all figures in this chapter plot the mean values for each experiment
with error bars based on the highest and lowest sample.

7.3 NAP2 Latency

The purpose of the first set of experiments is to investigate the cost of running NAP2.
We start by determining the latency of communicating a message in TOS, both when

125

establishing a new communication channel and when reusing an existing channel. We
then measure the cost of executing mobile agents in TOS with move without NAP2
being enabled.

Based on the results of the experiments above, we develop three estimate functions
α, β and γ, that predict the performance of NAP2 as a function of changes when going
from the failover list r(i) to r(i+ 1) where i is the version of the list.

We then measure the actual latency of running NAP2 and compare the results with
the results of the estimators for the same experiments. If the measured results are close
to the estimators, then the estimators can be used to calculate the expected latency of
executing the protocol for a given computation.

7.3.1 TOS Performance

TOS communication between TOS servers takes place on channels on top of TCP
sockets. Communication is done with messages, where messages are Python dictionaries
serialized with the marshal Python module. The nap TOS extension discussed in
Section 6.5, sends all mobile agent state using a TOS message.

Message communication in NAP2 both establish new channels (e.g., when adding
new places to the failover list) and reuse channels (e.g., when executing checkpoint),
so we measure the latency of communicating a message in both cases.

The experiment uses an extension called pingpong. This extension handles messages
with two attributes, hops and path. The path attribute states the sequence of places
that the message should be sent along. When the first message arrives at the first place
in path, the current time is recorded in the message. The hops attribute is decremented
each time a messages arrives at the pingpong extension at a place. When hops reaches
zero, the difference between the current time and the recorded time is calculated. For
example, to sample the time it takes to do 100 message exchanges between host p1 and
p2, hops would be 100 and path would be [p1, p2].

We use 10 places to run the experiments, configure path to contain all places, and
set hops to 10. The time difference between the start and the end of the experiment
is thus calculated by the same place. Since the sample gives the value of performing
10 functionally identical message exchanges, we find the value of performing a single
message exchange by dividing the sample value by 10.

The experiment involves two scenarios. The first scenario of the experiment measures
the latency of sending and receiving a message between two places when the TOS
communication channel has not been set up. The purpose of this experiment is to
establish whether the latency of communicating a message increases linearly with the
size of the message. Hence, we vary the additional message payload in from 256 bytes up
to 512 kilobytes, which covers the payload requirements of our mobile agent applications
so far. Payloads of 256 and 512 bytes may seem too small to have any practical
use for mobile agents. However, the high-level Python programming language enables
expressing useful computations at this size. Conversely, our experience with TOS written
in Java was that similar computations required more payload due to larger serialized
state [111].

126

P 0B 256B 512B 1 2 4 8 16 32 64 128 256 512

M (N) 1.8 1.9 2.0 2.1 2.2 2.4 2.9 3.7 5.3 8.6 15.2 28.3 55.5
S (N) 95 96 96 94 96 96 96 95 96 96 93 96 100
M (E) 0.6 0.6 0.7 0.9 0.9 1.1 1.7 2.6 4.2 7.4 14.1 27.0 53.9
S (E) 100 100 100 99 96 100 100 100 100 100 100 99 98

D 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.2 1.2 1.6

Table 7.1: Latency results in milliseconds for established (E) and non-established (N)
channels.

The results of the first scenario of the experiment are shown in Figure 7.1a. The
payload of the message on the x-axis is shown in log-scale. The results show that the
latency of communicating a message increases linearly with the size of the message, also
for large messages. This indicates that TOS latency scales linearly as a function of
message size.

The second scenario of the experiment measures the latency of sending and receiving
a message between two places on an already established TOS communication channel.
The purpose of this experiment is to measure the latency of communicating a message
from one extension to another, and also calculate the cost of setting up a TOS
communication channel. The cost of setting up a communication channel can be
calculated by subtracting the result samples of this scenario from the result samples
of the first scenario.

We expect the cost of setting up a communication channel to be similar regardless of
payloads, since the communication setup procedure in TOS transfers the same amount
of data for all payloads. Figure 7.1b shows the result of communicating a message on
an established channel, and Figure 7.2 plots the difference between the mean latency of
a message with and without the channel setup cost. The payload of the message on the
x-axis is shown in log-scale.

As we expected, Figure 7.2 shows that the latency of establishing the channel is
independent of the message payload. There is a marginally higher latency for the
payloads larger than 64 kilobytes, mainly due to operations on larger amounts of data in
the Python interpreter when setting up initial message used for channel authentication.
We can thus infer that the cost of setting up the TOS communication channel is between
1.1 and 1.6 milliseconds.

The results for both scenarios of the experiment are summarized in Table 7.1, where
all time values are given in milliseconds. The P row specifies the payload, the M rows the
mean latency values for established (E) and non-established (N) channels, and the S rows
the number of samples with outliers removed for established (E) and non-established
(N) channels. The D row gives the difference between the mean for the latency with
and without communication channel setup latency. Note that the values in the D row
were calculated with greater precision than given in the table and rounded to the same
precision.

127

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 100 1000 10000 100000 1e+006

T
im

e
(s

ec
s)

Payload (bytes)

Cost

(a) Latency results on non-established channels

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 100 1000 10000 100000 1e+006

T
im

e
(s

ec
s)

Payload (bytes)

Cost

(b) Latency results on established channels

Figure 7.1: Latency results of communicating a TOS message with and without
communication channel setup.

128

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 100 1000 10000 100000 1e+006

T
im

e
(s

ec
s)

Payload (bytes)

Connection setup cost

Figure 7.2: Mean communication channel setup cost.

Observations on TOS Performance

For 256 byte messages, communicating a message between two TOS extensions takes 0.6
milliseconds when the channel is established. Thus, 1666 messages can be transmitted
per second, yielding a bandwidth of 426 kilobytes per second with 256 byte messages.
Similar, with 512 kilobyte messages, 53.9 milliseconds were used, yielding a bandwidth
of 9499 kilobytes per second. This means that TOS is able to utilize most of the 100
megabit bandwidth with 512 kilobyte messages. However, smaller messages are not able
to fully utilize the bandwidth, which may be caused by our choice to disable the Nagle
algorithm for TOS sockets. Another reason TOS does not utilize more bandwidth for
smaller messages is the latency of the Python interpreter when processing incoming and
outgoing messages to and from TOS extensions.

7.3.2 Mobile Agent Performance

The purpose of this experiment is to measure the latency of migrating a mobile agent
in TOS. We use an extension called next that implements the move operation used
by NAP2, but without invoking the NAP2 protocol for changing the failover list. More
specifically, the next extension performs the following steps during execution at a place:

• Extract the mobile agent source code from the TOS message and instantiate the
mobile agent class.

• Enqueue the mobile agent instance on a thread pool where a thread executes the
action of the mobile agent.

129

P 0B 256B 512B 1 2 4 8 16 32 64 128 256 512

M 2.4 2.5 2.6 2.7 2.8 3.4 3.9 4.8 6.4 9.6 16.1 30.3 58.1
S 90 94 91 97 97 100 99 99 99 95 99 98 98

D 0.6 0.6 0.6 0.6 0.6 1.0 1.0 0.9 1.1 1.0 0.9 2.0 2.6

Table 7.2: The cost in milliseconds of executing move including the cost of setting up
communication channels.

• When the action and thread terminates, extract the mobile agent state , prepare
the message consisting of the mobile agent state and mobile agent source code,
and submit the resulting message to the next place.

When the cost of running the next extension has been established, the results can be
combined with the results from the previous TOS experiments to estimate the expected
cost of executing move with NAP2.

This experiment uses 10 places, where the mobile agent executes the move operation
as its only action at each place. We measure the latency of completing all the 10 move
operations, and since the action performed at each place is identical, the measured value
is divided by 10 to give the latency of a single move operation. The next extension
does not affect the code path that involves setting up a communication channel in TOS.
The difference in the latency of doing move with and without communication channel
setup will thus be the same as for the TOS performance experiments1. We only give the
results for the latency including the communication channel setup, since the common
case is that a mobile agent visits a new place for each move operation.

The latency ofmove with communication setup included is visualized in Figure 7.3a.
As expected, latency follows the trend of the TOS performance experiments, and Figure
7.3b plots the difference in mean latency between executing move and the previous TOS
experiments for the corresponding agent payloads. There is an increase in latency for
the larger messages, which is caused by the increased cost of handling the larger agent
state in the next extension with larger payloads. The results are summarized in Table
7.2, where all time values are given in milliseconds. The P row denotes the payload,
the M row shows the mean latency values, and the S row the number of samples with
outliers removed. The D row gives the difference in mean latency versus the TOS mean
latency results for non-established channels in Table 7.1.

An Estimator for NAP2 Performance

Given knowledge of the latency of doing move without NAP2 as well as the latency of
communicating messages with and without communication channel setup in TOS, we
can estimate the expected latency of going from failover list r(i) to failover list r(i+ 1)
in NAP2 by summing the following individual latencies:

1We actually measured the difference in latency to ensure this was the case, but the results are not
included since they did not convey any new insights.

130

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 100 1000 10000 100000 1e+006

T
im

e
(s

ec
s)

Payload (bytes)

No cache

(a) Latency of migrating an agent usingmove including communication channel
setup.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 1000 10000 100000 1e+006

T
im

e
(m

ill
is

ec
s)

Payload (bytes)

Difference vs. ping

(b) Difference in mean latency of move vs. TOS message communication
latency.

Figure 7.3: Cost of migrating an agent using move.

131

Csetup + Cest + Cnext +X

Csetup is the sum of the latency of all TOS messages that require communication
channel setup (Table 7.1), Cest the sum of the latency of all TOS messages without
communication channel setup (Table 7.1), and Cnext the latency of performing the
steps for executing move operation without NAP2 (Table 7.2). X is the unknown
computational overhead of executing the NAP2 protocol at a place, which involves
executing the actual logic of the protocol. For each of the subsequent NAP2 experiments,
we will measure the difference between the estimated latency and measured latency in
an attempt to establish X .

Our evaluation of NAP2 performance now proceeds with three experiments to answer
the question of determining the cost of executing NAP2: i) the latency of adding new
places, ii) the latency of updating an existing set of places, and iii) the latency of
removing places. These cases cover the regular operations performed on failover lists.

Based on the latency results from the previous experiments on the cost of TOS
communication and executing move, we expect the next three experiments to show a
linear increase in latency as a function of the number of places in the failover list. We
expect the value of X to vary according to the number of places, and expect that our
estimators are able to predict the trend of the latency. To test the accuracy of our
estimators further, we use three different payloads: 0 bytes (only the agent code and
state required to do the experiment), 64 kilobytes, and 512 kilobytes. We use the mean
values of the previous experiments to establish the estimators. Also note that all of the
following NAP2 experiments are executed using a timeout of 30 seconds in the failure
detector to avoid interference from the messages sent by the monitor extension.

7.3.3 Adding Places

Adding new places to the failover list is typically used when bootstrapping a computa-
tion, or when the agent moves from a local area network to another.

The experiment uses a mobile agent that has two actions. The first action has a
failover list r(1) with a single place p that records the current time, and starts the
second action with failover list r(2) where p is the first place of r(2) followed by R − 1
additional places. The total number of places R in r(2) is varied between 2 up to 9. The
second action records the current time and calculates the latency. Going from 1 place
in failover list r(1) to R places in failover list r(2) requires the following set of messages
to be sent:

• One turn message from p in r(1) to the last place in r(2).

• R− 1 ack messages from the last place in r(2) to the first place in r(2). The first
place p in r(1) and r(2) is the same, so the final ack message does not contain any
payload.

The places added to failover list r(1) resulting in r(2) have not previously been
involved in the computation, so the latency includes the cost of setting up the

132

R 2 3 4 5 6 7 8 9 Avg(X)

0 kB 5.2 7.2 9.1 11.7 13.7 15.8 18 20 1.15
S 96 98 94 96 95 95 94 94 -

64 kB 12.4 21.1 29.6 39.4 48 56.6 65.3 73.8 1.5
S 94 98 99 98 99 98 95 95 -

512 kB 61.7 116.2 171.8 225.6 280.1 333.5 390.5 449.5 2.8
S 99 99 97 98 98 100 100 100 -

Table 7.3: The cost in milliseconds of adding new places, with the average value of X in
milliseconds for each payload.

communication channel. The size of the mobile agent and its state is comparable to
a TOS message with a payload of 512 bytes.

The estimators, α, for this experiment where R > 1 are thus:

α0 = Csetup + Cest + Cnext +X = ((R− 1) ∗ 2.0) + 1.8 + 0 + 0.6 +X
α64 = Csetup + Cest + Cnext +X = ((R− 1) ∗ 8.6) + 1.8 + 0 + 1.0 +X
α512 = Csetup + Cest + Cnext +X = ((R− 1) ∗ 55.5) + 1.8 + 0 + 2.6 +X

The results for 0 and 64 kilobyte payloads are shown in Figure 7.4 and 512 kilobyte
payload in Figure 7.5. An estimator with X = 0 is plotted along with the mean values.
We observe that the estimator is quite accurate in predicting the trend of the measured
results and that the value of X increases with the number of places for all payloads.

Table 7.3 gives the sample results as well as the average value of X for each payload.
All time values are given in milliseconds, where R denotes the number of places. For
0 and 64 kilobyte payloads, the average is 1.15 and 1.5 milliseconds. The cost for 512
kilobyte payload is a little higher, which conforms to the results for performing move
without NAP2 in Table 7.2. The S rows specify the number of samples with outliers
removed for the corresponding latency values of the previous row.

7.3.4 Checkpointing

During the computation, the agent may issue checkpoint to ensure that the state of
the agent is updated at the current set of places in the failover list. The experiment uses
an agent that has two actions. Both actions have the same R places in the failover lists
r(1) and r(2), respectively. The first action is started with r(1), records the time, and
starts the second action. The second action is started with r(2), records the time and
calculates the latency. Updating R places without changing the failover list requires the
following messages to be sent:

• R− 1 update messages from the first place in r(1) to the last place in r(1).

• 1 turn message from the last place in r(1) to the last place in r(2) (i.e., itself).

• R− 1 ack messages from the last place in r(2) to the first place in r(2).

133

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
s)

Number of places in failover list

Measured
Estimated X=0

(a) Latency for 0 byte payload.

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
s)

Number of places in failover list

Measured
Estimated X=0

(b) Latency for 64 kilobyte payload.

Figure 7.4: Latency of adding new places.

134

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
s)

Number of places in failover list

Measured
Estimated X=0

Figure 7.5: Latency of adding new places with 512 kilobyte payload.

Since the order of the places in failover lists r(1) and r(2) are equal, all messages are
sent on established communication channels, so there is no cost for setting up channels.
Note that when a place sends the ack and turn message to a place in r(2), only the
modified mobile agent attributes since the update message needs to be included. This
means that the R − 1 ack messages and the turn message are comparable to TOS
messages that have zero payload, so we used the latency for the zero payload TOS
messages when estimating the latency of these messages. The mobile agent code and its
state is comparable to a payload of 512 bytes. The estimators, β, for this experiment
are:

β0 = Csetup + Cest + Cnext +X = 0 + (R− 1) ∗ 0.9 + (R− 1) ∗ 0.6 + 0.6 +X
β64 = Csetup + Cest + Cnext +X = 0 + (R− 1) ∗ 7.4 + (R− 1) ∗ 0.6 + 1.0 +X
β512 = Csetup + Cest + Cnext +X = 0 + (R− 1) ∗ 53.9 + (R− 1) ∗ 0.6 + 2.6 +X

The measured results for 0 and 64 kilobyte payloads are shown in Figure 7.6 and 512
kilobyte payload in Figure 7.7. An estimator with X = 0 is plotted along with the mean
values. Like in the previous experiment, we observe that the estimator is quite accurate
in predicting the trend of the measured results and that the value of X increases with
the number of places for all payloads. Table 7.4 gives the average value of X for each
payload. All time values are given in milliseconds. For all payloads, the average of X
is 1.52 milliseconds or less. The S rows specify the number of samples with outliers
removed for the corresponding latency values of the previous row.

135

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
s)

Number of places in failover list

Measured
Estimated X=0

(a) Latency for 0 byte payload.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
s)

Number of places in failover list

Measured
Estimated X=0

(b) Latency for 64 kilobyte payload.

Figure 7.6: Latency of updating state to existing place.

136

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
s)

Number of places in failover list

Measured
Estimated X=0

Figure 7.7: Latency of updating state of existing places for 512 kilobyte payload.

R 2 3 4 5 6 7 8 9 Avg(X)

0 kB 3.2 4.7 6.2 8.1 9.6 11.4 13 14.7 1.52
S 100 100 100 100 100 100 100 100 -

64 kB 10.3 18.3 26 34.3 42.4 50.8 58.9 66.9 1.50
S 100 100 100 100 100 100 100 100 -

512 kB 63.4 117.5 172.1 227.5 282.3 336.8 393.5 449.1 1.14
S 100 100 100 98 100 100 100 100 -

Table 7.4: The cost in milliseconds of updating places, with the average value of X in
milliseconds for each payload.

7.3.5 Removing Places

When a mobile agent moves from one local area network to another, it typically adds a
set of new places in the destination network and removes a set of places in the network
that it left. The purpose of this experiment is to measure the latency of removing a set
of places from the failover list.

The experiment uses an agent with two actions. The first action is executed with a
failover list r(1) with R places and records the time. Before starting the second action,
R − 1 places are removed from the failover list, resulting in r(2). The second action
starts with r(2), records the time and calculates the latency. Removing R − 1 places
from a failover list consisting of R places requires the following messages to be sent:

• R− 1 update messages from the first place in r(1) to the last place in r(1).

137

R 2 3 4 5 6 7 8 9 Avg(X)

0 kB 2.8 5.1 5.8 7 7.8 8.8 9.6 10.6 1.01
S 99 98 98 99 98 98 99 99 -

64 kB 9.9 18.5 25.7 33.3 40.7 47.8 55.1 62.4 0.82
S 99 99 99 99 100 99 98 99 -

512 kB 59.9 114.2 166.9 221.1 274 327.2 379.5 433.8 0.4
S 100 98 100 100 100 100 97 100 -

Table 7.5: The cost in milliseconds of removing places, with the average value of X in
milliseconds for each payload.

• 1 turn message from the last place in r(1) to the remaining place in r(2).

• R − 1 stop messages from the remaining place in r(2) to the removed places in
r(1).

All update messages are sent on established communication channels, but the turn
message sent from the last place in r(1) to the remaining place in r(2) requires a channel
to be set up, except in the case where we go from 2 places in r(1) to 1 place in r(2).
Only the update messages carries payload, since the turn message is sent to a place
present in r(1). The latency is recorded after the stop messages have been sent by the
first place in r(2). This means that the latency does not include the cost of handling
stop messages at the receiving places in r(1). The mobile agent code and its state is
comparable to a TOS message with a payload of 512 bytes.

The estimators, γ, for this experiment are thus:

γ0 = Csetup + Cest + Cnext +X = 0 + (R− 1) ∗ 0.9 + 1.8 + 0.6 +X
γ64 = Csetup + Cest + Cnext +X = 0 + (R− 1) ∗ 7.4 + 1.8 + 1.0 +X
γ512 = Csetup + Cest + Cnext +X = 0 + (R− 1) ∗ 53.9 + 1.8 + 2.6 +X

The measured results for 0 and 64 kilobyte payloads are shown in Figure 7.8 and
512 kilobyte payload in Figure 7.9. An estimator with X = 0 is plotted along with the
mean values. As in the previous experiments, we observe that the estimator is quite
accurate in predicting the trend of the measured results. Table 7.5 gives the average
value of X for each payload. All time values are given in milliseconds. For all payloads,
the average of X is 1.01 milliseconds or less. The S rows specify the number of samples
with outliers removed for the corresponding latency values of the previous row.

7.3.6 Estimators Revisited

The significant result from the previous three experiments is that we have established
that the estimators are able to predict the trend of the measured values. This means
that the latency of our NAP2 implementation scales fairly accurate with our predicted
model, and that the average value of X is generally small, less than 2.9 milliseconds in
all our experiments, and for all but 1 experiment less than 1.53 milliseconds. However,

138

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
s)

Number of places in failover list

Measured
Estimated X=0

(a) Latency for 0 byte payload.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
s)

Number of places in failover list

Measured
Estimated X=0

(b) Latency for 64 kilobyte payload.

Figure 7.8: Latency of removing existing places.

139

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
s)

Number of places in failover list

Measured
Estimated X=0

Figure 7.9: Latency of removing existing places for 512 kilobyte payload.

looking at the values of X as a function of the number of places shows that there is
no clear correlation. This indicates that factors such as thread scheduling and lock
contention in the TOS runtime and Python interpreter are likely to cause perturbations
in the trends of X as a function of places.

During the performance evaluation of NAP2, the estimators proved useful when
identifying performance problems in TOS that did not show up in the TOS and move
experiments. Our first run of the experiments had values of X ranging between 10 and
25 milliseconds, an order of magnitude larger than the current result.

7.4 Two Backup Management Strategies

The previous experiments have evaluated the latency of NAP2 for variations of failover
list operations. We now evaluate how NAP2 performs with the following two backup
management strategies:

1. The itinerant-style mobile agent strategy with transparent backup management,
as specified in Section 6.3.3. This strategy is identical to a strategy used in an
earlier version of NAP [89] that only supported transparent backup management.

2. The network aware mobile agent strategy where the backup management is
explicitly handled by the mobile agent.

These two strategies will be evaluated by a mobile agent computation whose purpose
is to change the places of a failover list to from one disjoint set of places to another. This
is a strategy used when a mobile agent moves from one local area network to another to

140

reduce the time the failover list spans more than one local area network. The purpose of
this experiment is thus to answer whether transparent backup management has smaller
or larger latency for this scenario. The mobile agent and its state is for both strategies
1400 bytes. We run each experiment with three different additional payloads, 0 bytes,
64 kilobytes and 512 kilobytes.

7.4.1 Transparent Backup Management

The strategy used with itinerant computations for transparent backup management
works as follows: when the agent moves from a place p to a place q, the last place in
the failover list is removed, and the new place q is added to the head of the list. The
order of the list is preserved, and with a failover list length of f places, the computation
can sustain f−1 failures. We vary f between 1 and 5 and calculate the latency between
two successive actions for each value of f .

The mobile agent has two actions. The first action is started at a place p with f
places in the failover list, and it records the current time at p. The failover list is then
updated by removing the last place in the list, and the next action a is started on a place
q that is added to the head of the list. The action a checks whether f move operations
have been performed. If so, a message is sent back to place p which records the time
and calculates the latency. Otherwise, the agent performs another move operation.

The set of messages sent in this experiment for each invocation of move is thus
comparable to the messages sent in the experiment with the β estimator. The difference
is that one place is added, requiring an additional ack message with communication
channel setup latency, and one is place is removed, requiring f stop messages to be sent
by the remaining places. An additional latency is incurred by the first update message
since this message includes the communication channel setup latency. Also, since the
total latency of the experiment is calculated by place p, the latency includes the cost of
sending the message to p from the place where the last action was executed.

7.4.2 Network Aware Backup Management

The network aware backup management strategy used when going from one set of places
R to a disjoint set of places R′ can be implemented by a mobile agent with two actions.
The first action adds f places from R′ to the failover list, while still keeping the f places
from R. The second action removes f places from R from the tail of the failover list.
One might be tempted to do both operations in a single action, but this would violate
assumption F1S, as specified in Section 6.5.3, where r(i)∩ r(i+1) = f to tolerate f − 1
failures when going from failover list version i to i+ 1.

The set of messages sent during this experiment can be attributed all three
estimators: when adding new places from R′ in the first action, the α estimator can be
used to estimate the messages for the new places, in combination with the β estimator
that estimate the messages for the places in R. When removing the places in R in the
second action, the γ estimator can be used. Thus, we expect the measured latency of
the two actions to be close to α+β+γ. We vary the value of f from 1 to 5, and compare
the results with the latency of the transparent backup management computation in the

141

previous section that invokes move f times to achieve the same effect. Similar to the
transparent backup management strategy, the first action executed at place p records
the time and the place executing the last action then sends a message to p to calculate
the latency.

7.4.3 Results

We do not use estimators for these two experiments because the message size for the
mobile agent falls between the payload of 1024 and 2048, which makes an estimation
for the zero payload computation difficult to interpret. Several actions are executed in
sequence, and this also causes influence from the handling of receiving stop messages,
which are not covered by the γ estimator. In addition, none of the existing estimators
can be directly applied to the transparent strategy.

However, we expect the transparent strategy to be faster for small values of f because
less messages are sent than with the network aware strategy since β < α+β+γ. However,
the disadvantage with the transparent strategy is that the number of messages with the
complete payload for N places is O(N2) where the network aware strategy is O(N).
Thus, at some number of places, we expect to find a cross-point where the latency for
the transparent strategy exceeds the network aware strategy.

Figure 7.10, 7.11 and 7.12 depict the latency for 0, 64 kilobyte and 512 kilobyte
payloads, respectively, and Table 7.6 summarizes the results. The R row specified the
number of places in the failover list, and the S rows the number of samples with outliers
removed for the transparent (T) and network aware (N) strategies. The remaining rows
specify the mean latency with the specified payload for transparent (T) and network
aware (N) strategies. For zero payload, the latencies are fairly equal at 3 places, while the
network aware strategy performs significantly faster at 4 and 5 places. For 64 kilobyte
and 512 kilobyte payloads, the network aware strategy performs faster at 3 places.

The current results indicate that when the payload increases, the cross-point for
the latency converges towards fewer places in the failover list. The two experiments
are performed within a local area network. This also means that if the computation
was performed across two local area networks connected by one or more weak links with
poor bandwidth, the results would favor the network aware strategy more, and probably
move the cross-point back even further.

7.5 Reducing Latency

None of the experiments in this chapter use the stable message optimization. The main
reason for this that we wanted the experiments to reveal the cost of running the entire
NAP2 protocol. We can, however, tweak our existing estimators to gain insight on the
expected performance gain from using the stable optimization. Recall that the stable

message is sent by the sender of the turn message in the protocol.
For the α estimator, the impact of the stable message depends on the number of

places in the failover list and can be significant since the entire payload is sent in the
ack messages. As an example, consider α512 with 9 places. The latency without stable

142

R 1 2 3 4 5

0 kB (T) 10.5 22.7 40.4 64.9 94.7
0 kB (N) 12.4 25.0 38.0 54.9 73.1
S (T) 97 90 98 97 99
S (N) 94 99 94 96 97

64 kB (T) 18.4 57.6 115.3 194.0 292.4
64 kB (N) 27.0 65.9 105.2 159.9 198.8
S (T) 98 97 97 97 95
S (N) 99 98 96 98 97

512 kB (T) 71.4 299.2 640.6 1093.0 1667.1
512 kB (N) 125.1 348.5 573.0 818.8 1052.8

S (T) 99 100 97 100 98
S (N) 98 99 98 98 97

Table 7.6: The cost in milliseconds of executing transparent (T) and network aware
strategies (N).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 1 2 3 4 5 6

T
im

e
(s

ec
s)

Number of places in failover list

Network aware
Transparent

Figure 7.10: Latency of transparent vs. network aware strategy for zero payload.

143

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6

T
im

e
(s

ec
s)

Number of places in failover list

Network aware
Transparent

Figure 7.11: Latency of transparent vs. network aware strategy for 64 kilobyte payload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6

T
im

e
(s

ec
s)

Number of places in failover list

Network aware
Transparent

Figure 7.12: Latency of transparent vs. network aware strategy for 512 kilobyte payload.

144

was estimated to 443 milliseconds. An estimate with the stable message would for the
same number of places be 59.9 milliseconds, which is a reduction in latency by almost
an order of magnitude.

The latency saved for the β estimator can also be significant. However, since all
places in r(2) are in r(1), the ack messages do not need to carry any payload and the
latency saved by using stable is thus not a function of the payload. Consider β0 with
9 places. The latency without stable was estimated to 12.6 milliseconds. An estimate
with the stable message would in this case be 5.6 milliseconds with 9 places, reducing
the latency by over 50 percent.

For the γ estimator, there is actually no reduction in latency since all but one place
are removed from the list. This implies that there is only one ack message sent from
the last stopped place to the remaining place, effectively the same as the turn message
would do and makes the use of the turn message redundant.

For the transparent strategy, the latency reduction is at least as good as with the β
estimator. In addition, since the first place in the list is new after a move, the stable

message with the entire payload is sent in parallel with the propagation of the ack

messages among the set of places in the previous list. The network aware strategy also
benefits from the stable message: when adding the new places, the next action can
be started early while the ack messages are propagating, with results similar to the α
estimator.

Although the stable optimization decreases the latency for starting an action, there
are two minor drawbacks. First, if the first place in the failover list is not in the previous
failover list and the payload large, then the stable message incurs additional bandwidth
utilization. However, if the first place in the failover list is not new, the stable message
does not contain the entire payload of the agent and incurs little extra bandwidth
usage. Second, since the subsequent action cannot start until all ack messages have
been communicated, short computations with actions that terminate quickly (such as
the ones used for the experiments in this chapter) may not benefit significantly since
actions are typically finished before all ack messages have been communicated.

There are other optimizations that could be applied to reduce latency. Agent
payloads can be compressed and update messages do not need to contain mobile
agent attributes that have not changed since the last action executed. To minimize
the latency contributed by the communication channel setup, a scout agent can be
executed prior to the computation. The scout moves along the expected itinerary of
the agent computation to ensure communication channels are established before the
actual computation starts.

7.6 Summary

We started the chapter by asking two questions:

1. What is the latency of running a mobile agent application in TOS with NAP2?

2. Is the latency of changing between a failover list R to a disjoint failover list R′

larger with transparent backup management?

145

To answer the first question, we measured the basic performance of communicating
messages in TOS and the cost of performing a mobile agent migration without NAP2.
Based on these results we developed three estimators that were able to predict the
performance of NAP2 with good accuracy. We thus established that the latency of our
NAP2 implementation scales according to our predictions.

To answer the second question, and evaluate the performance hypothesis proposed in
Section 1.3, the latency of adding and removing multiple places in NAP2 was measured
and compared to the latency of doing a comparable number of move operations. The
results indicate that for fewer than 3 places, transparent backup management was faster
and rejecting our hypothesis, but with 3 or more places and larger payloads, NAP2 was
faster, confirming our hypothesis. The experiments were conducted within a local area
network, and the results show that if bandwidth is not as good, NAP2 latency is likely
to be faster than transparent backup management for fewer than 3 places in the failover
list and agents with small payload.

We ended the chapter by estimating how much latency can be saved by using the
stable message optimization. The savings can be significant: for large payloads when
adding places, the latency for starting an action can be reduced by an order of magnitude
when using stable messages.

146

Chapter 8

Discussion

In this chapter we discuss issues with our assumptions, design, and implementation that
have not been previously addressed in this dissertation. We start by discussing our
assumption on linear broadcast and how the performance of NAP2 can be improved.
Next, we discuss the applicability of our solution for both mobile and non-mobile
application domains. We then end this chapter by discussing the tradeoff between
providing exactly-once semantics and blocking the computation.

8.1 Performance

The performance of NAP2 depends on the latency of maintaining the failover list.
We now discuss our choice of broadcast strategy, optimizations related to state
dissemination, and how replica placement affects performance.

8.1.1 Broadcast Strategy

The NAP2 implementation evaluated in Section 7 uses a linear strategy with Fault-
Tolerant Forwarding for updating state among the places in the failover list. We chose
to use a linear strategy since it minimizes the amount of messages sent across a single
weak network link. When the set of places spans more than one local area network,
minimizing communication on weak links is attractive. However, within a local area
network, linear broadcast may cause longer latency than a tree-based strategy [160].
Recall from Section 6.5.3 that when changing from failover list r(i) to r(i + 1), the
places in r(i+1) that are changed to < r(i+1), i+1 > with ack messages by the second
FTF do not require the ack message to use a linear broadcast strategy. However, the
elected place for i+ 1 can only start the next action i+ 2 when it has received an ack

message from all non-failed places in r(i + 1) so that no places are in the transitional
state, as required by property NAPTransElected specified in Section 6.5.3. An approach
to improve local area network performance is to flood the ack messages to all members
of r(i+1) that we have not already communicated the ack message with. Flooding has
quadratic message complexity and requires more messages than linear broadcast, but
may result in lower broadcast latency. However, a problem for sender-initiated flooding

147

algorithms is that large broadcast groups can results in message implosion [139].
For larger number of places in the failover list, a reliable best-effort multicast protocol

such as Bimodal Multicast [26] or constrained flooding [112] could be appropriate for
sending the ack messages. Bimodal Multicast uses a limited form of flooding to reduce
the amount of messages, and the protocol runs in two stages. The first stage disseminates
the message to all members using a network level (broadcast) protocol, for instance
IP multicast. The second stage executes a gossip based anti-entropy protocol where
members of the broadcast exchange message history summaries and request missing
messages from other members. While Bimodal Multicast is a best-effort protocol, much
like WAMW, experiments show that it has stable throughput and high reliability when
message loss is uncommon [26]. When message loss is more common, a protocol like
Slingshot [14], that uses Forward Error Correction for faster packet recovery, can be more
reliable. Slingshot uses fewer packets than Bimodal Multicast for recovering packets, and
recovers lost packets an order of magnitude faster than the established SRM multicast
protocol [14, 54]. Regardless, best-effort protocols still have weaker delivery guarantees
than required by the NAP2Change definition specified in Section 6.4.5.

While a flooding or tree-based protocol may perform well with few places and within
a local area network, increasing the number of messages crossing a weak communications
link may cause the broadcast latency to increase. An approach to avoid this problem
is to deterministically choose a place from each local area network to act as a network
proxy for communication with other local area networks, and have such proxies forward
all messages between them using a point-to-point protocol. A problem with managing
multiple broadcast strategies this way is the increased complexity compared to the
current NAP2 implementation that only requires the FTFs specified in Section 6.5.2.
It is also not clear that latency will be significantly reduced compared to NAP2 with
stable messages. In addition, network-level broadcast protocols such as IP multicast
are not generally available in the wide-area Internet [45].

8.1.2 The F1S Property

In Section 6.5.3 we decided to strengthen property F1 into F1S to avoid having places
in r(i+ 1) monitor the places in r(i)\r(i+1) after A(i+1) or R(i+ 1) has terminated.
Since this optimization requires that r(i) ∩ r(i + 1) contains at least one non-failed
place, the latency of the protocol increases when r(i) ∩ r(i + 1) is smaller than f .
This latency increase is because two move operations must be performed, similar to the
network aware backup management strategy that we used in the performance evaluation
in Section 7.4.2.

There are, however, other practical ways to terminate the monitoring while satisfying
F1. One approach is to set an upper bound ∆ on the time a place can be in the
transitional state. When a place p in r(i)\r(i + 1) enters <<>, true >, as specified by
step In2 in Section 6.5.3, a timer is started. If this timer exceeds ∆ time units, p enters
<<>, false >, as specified by step Out2 in Section 6.5.3. The problem is determining an
appropriate value for ∆. If the agent payload is large and bandwidth low, the execution
of the NAP2 protocol can take significant time to complete, and cause ∆ to expire
before the protocol has completed, thus violating property F1. In most cases, however,

148

∆ could be set to a large value or be encoded as part of the agent in an agent attribute
delta to allow mobile agents to calculate or configure an appropriate value based on the
computation.

8.1.3 State Optimizations

Recall two process migration optimizations from Section 2.1.1: pre-copy [35, 38] and
lazy-copy [125, 145, 185]. We now discuss whether similar optimizations can be applied
to reduce the cost of state dissemination in NAP2.

The pre-copy approach was first used by the V distributed system [35]. The general
idea is to execute the computation concurrently with copying state to the destination
place for migration. More recently, this approach was also used to migrate virtualized
machines [38]. Since migration in V is implicit, applying this optimization to NAP2 is
not straightforward since NAP2 uses explicit migration. Thus, the failover list for the
next action may not be chosen until themove operation is about to be invoked. Without
the next failover list, the pre-copy protocol cannot execute since there is no knowledge
of the destination places. If, however, the computation follows a predefined itinerary
where the set of places to execute the actions is known at start of the computation, the
NAP2 runtime can start sending the agent state to the place for the second action when
the first action starts. All subsequent updates to agent attributes are then trapped by
overriding the setattr class method in the agent and either sent immediately to the
place for the second action or buffered until the action terminates. If the set of places on
the itinerary of an agent changes during the execution of the action, then the pre-copied
data needs to be communicated to the new places in the itinerary.

The copy-on-reference [185], or lazy-copy approach, was first used by the Accent
system [145] and later also by Mach [125]. The approach is to migrate the minimal
state required to allow the process to start executing at the destination place and copy
required pages on demand from the source place. Unlike the pre-copy approach, lazy-
copying is simpler to integrate effectively with explicit migration. For instance, a lazy-
copy approach in NAP2 can have the stable message only include the minimal agent
state required to start the action. The NAP2 runtime then traps accesses to agent
attributes by overriding the getattr class method in the agent. When access has
been trapped, the runtime forwards accesses to these attributes to the place at the tail
of the failover list. The ack messages carry the entire state so eventually all the state
will be present at the place executing the action before the next action is started. This
also means that should the place that provides the complete set of agent attributes fail,
the next place in the failover list can be accessed instead.

We have also considered the lazy-copy approach as a mechanism to enforce access
control on specific agent state attributes by the Principle of Least Privilege [154]. For
instance, if an agent is sent to a place that is suspected as malicious, only a minimal set
of agent attributes is sent with the agent. The execution of the agent is then monitored
by a (trusted) runtime environment that enforces access control on the remaining agent
state when the agent subsequently tries to lazy-copy state.

149

8.1.4 Replica Placement

The appeal of optimizing replica placement to increase performance or robustness has
also been observed and applied by other systems, which we now discuss.

Chain Replication [176] is a protocol that focuses on providing strong consistency
with high throughput and availability. The protocol organizes a set of replicas in a
logical chain where read operations are submitted to the head of the chain while write
operations are submitted to the tail and propagate towards the head. Thus, the result of
write operations are not available for read operations until all replicas have received the
value, which ensures strong consistency. Chain Replication is similar to NAP in that it
uses a linear monitoring relation between the replicas. Upon failures, the failed place is
removed from the chain. Optionally, a new replica can be added to maintain sufficient
fault-tolerance. If Chain Replication is deployed in a wide-area setting, then the replica
placement becomes crucial to optimize towards access patterns, network proximity, and
the reliability of a place [176]. While reordering the chain is possible in theory, this area
is not explored further in the paper.

The work in [2] offers a read/write storage abstraction where replicas are placed
according to predictions of future accesses based on the history of accesses so far. Data
is reordered, replicated, or deleted from places. The purpose is to reduce the latency of
communicating messages sent by clients to replicas during read and write operations.
An optimal replica strategy has places that are frequently read located close to the
reader. Writes, however, are performed on multiple places that benefit from being close
to each other. A similar prediction method would be beneficial for NAP computations
that, for instance, implement a server interface. The head, h, of the failover list that
executes the server interface should migrate close to the clients. The rest of the failover
list, r, should consist of places that are topologically close to each other (and, if possible,
to the head) to make the replication perform faster. The challenge here is the tradeoff
between optimizing for h or r, since communication between h and r could become a
bottleneck to the computation.

The work in [183] presents a dynamic object replication approach for distributed
databases. The network topology is modeled as a graph. For each read and write
operation, an adaptive data replication (ADR) algorithm tries to optimize latency for
executing reads and writes by altering the graph. It is shown that the resulting graph is
convergent-optimal, meaning it eventually stabilizes with at least as good performance
as the initial graph. A similar approach would be beneficial for use with NAP, since an
algorithm like ADR can be used to optimize the placement of places within a failover list.
Exploiting the benefits of an algorithm like ADR, however, requires the computation to
be long-running and assumes a failover list that is relatively static.

Distributed hash table services (DHT) like Pastry [152], Tapestry [186], or Chord
[170] are also concerned with replica placement and are designed for wide-area operation.
A DHT is a data structure where key-value pairs are stored and replicated within a
network of connected nodes. All nodes participating in the DHT are typically organized
in a logical ring [152, 170] where a given position in the ring maps to a part of the key
namespace. Due to the number of possible participating nodes, each node cannot know
which nodes map to a specific key for all keys, which is why DHTs route packets to

150

nodes which is known to be closer to the destination. DHTs are generally able to route
packets to its destination using O(log N) hops, where each node only maintains as little
as O(log N) links to its neighbors.

A lot of research on DHTs and peer-to-peer networks has focused on how DHTs
perform when deployed in networks with high churn rates [23, 37, 74, 144]. Churn is
the process where nodes continuously arrive and depart from the table. A study on
churn by Rhea et al. [148] revealed that Pastry failed on the majority of lookups (i.e.,
getting the value for a key) under heavy churn. Chord behaved better as all lookups
completed successfully, although with significant latency. An attempt to avoid the effects
of churn is to use proximity neighbor selection, where neighbors are chosen based on the
measured network latency, and the routing table is re-tuned as the network changes.
The same study shows that by measuring the latency of random key lookups, latency
can be reduced with as much as 24% with only a small bandwidth overhead. Also, the
study shows that with significant bandwidth overhead, the latency can be reduced with
42%. Other techniques, such as the nearest-neighbor algorithm in Pastry [31], have also
been shown to exhibit good reduction in lookup latency during heavy churn. While
DHTs are designed for a very large number of participants, the results are relevant for
long running wide-area NAP computations. For instance, techniques such as proximity
neighbor selection can be used to choose places for the failover list based on the measured
network latency.

A weakness of the network adaption in NAP2 is that distinguishing local area
networks is not always possible by inspecting the IP addresses of places. For instance,
places may communicate indirectly using a roaming protocol such as Mobile IP, where a
home agent forwards inbound communication to a remote place [136]. Hence, methods
based on actual predictions or communication latency measurements may give better
results than our approach in practice.

Our approach for avoiding exposure to weak communication links is to avoid failover
lists that span multiple local area networks. A problem with this approach is that it
may make a mobile agent computation more prone to geographically correlated failures.
Assume that a mobile agent application is initiated by a place p in local area network s,
and that the computation then moves to a local area network s′ and uses a failover list
based on the places in s′. In this case, if s and s′ are partitioned away from each other,
there are no places in s to make the computation progress on behalf of p. To cope with
this, a replica placement strategy inspired by the rally point is frequently used by NAP2
computations: The mobile agent keeps the originating place p that initiated the agent
as the last place on all subsequent failover lists. This way, the place p can monitor the
progress of the agent through the agent state updates when NAP2 executes a move. If
the originating place is the only remaining place in the failover list, the computation is
started over again. While this can cause duplicate computations if s′ partitions away
from p, the computation at least makes progress.

151

8.2 Applicability

Code mobility is not new and is a technology that constantly resurfaces. The paradigm
started with process migration [124] and worms [163], and continued with remote
evaluation [168] and mobile agents [60]. The currently emerging uses of code mobility are
mobile agents in grid computations [61,78,178] and migration of virtualized computers
[38, 155]. Hence, code mobility appears worth studying just from the point of being a
technology that will be reused with high probability.

The use of mobile agents in grid environments influenced our decision to make
NAP2 adaptive to network topology. Other mobile agent systems have followed similar
approaches with stronger constraints: In the Mobile Agent Framework [41], each local
area network has a checkpoint manager that monitors the progress of agents within that
local area network. The checkpoint manager is not replicated and if it fails agents can
no longer execute within that local area network. By changing from one disjoint set
of places to another, NAP2 computations achieve behavior that similar to the Mobile
Agent Framework when moving between subnets. However, by having two or more
backups, NAP2 computations are not vulnerable to the failure of a single component
such as the checkpoint manager. Allowing places to be explicitly organized during the
computation thus expands the set of possible uses of NAP2.

While applicability in the field of mobile agents is important, we have also found
use of NAP2 in systems where code mobility is not used. The main reason why this
is possible is that NAP2 does not require the computation to start the next action on
a different place to ensure f failures can be tolerated. A system using a transparent
fault-tolerance protocol, as specified in Section 6.3.3, would require that the mobile
agent constantly moves to ensure f failures to be tolerated. Conversely, NAP2 does
not require that the next action starts on a different place to maintain the Bounded
Crash Rate, but can instead execute computations as a conventional primary-backup
system. As an example of this, we now present and discuss a revised version of WAMW
that uses NAP2 to ensure sufficient masters are replicated within a local area network.

8.2.1 Wide-Area Master Worker

The WAMW algorithm uses a static configuration of masters, where there is at least one
master per local area network. If all masters crash, then the computations stops even
if all workers are available. A way to increase robustness for master failures is to use
more than one master per local area network. A problem with this strategy is that the
broadcasts between the masters become more costly and the bandwidth requirements
of the protocol increase significantly. Hence, determining how many masters to use per
local area network is difficult. Too many masters and the increased wide-area traffic
becomes a problem, too few masters and the risk of all masters failing within a network
increases. An alternative solution is to use a separate protocol for replicating masters
within a local area network. We now discuss how NAP2 can be used to implement such
a solution.

The general approach is to replicate the WAMW task allocations and task results
among a set of places. Doing so requires the master loop in Pseudocode 5.2.3

152

(Section 5.2.4) to be structured in terms of fault-tolerant actions. Pseudocode 8.2.1
shows the master loop structured as two actions. The first action, action1 initializes the
data structures and terminates by starting the second action, action2. Each invocation
of action2 corresponds to the execution of an iteration of the main loop in Pseudocode
5.2.3, and ensures that task allocations and results are periodically replicated among
the places in the failover list.

The task of maintaining the places in failover list is performed by the check backups

function in action2. All workers are executing TOS with the nap and monitor

extensions enabled. Thus, check backups inspects the failover list, and if the list
is shorter than f , an idle worker is picked from the idle workers list and added to
the failover list. If there are no idle workers, a worker is randomly picked from the
list of active workers. The recovery action is the same as the regular action for
action1. The recovery action for action2 performs update master state(true);

check backups(); checkpoint(action2). This ensures that local state is replicated
to remote masters immediately and causes a new place to be added before resuming
operation of action2.

In the original WAMW, masters know about every other master when the compu-
tation starts and the set of masters does not change. When NAP2 is used, the set of
masters changes in response to masters failing and new masters being added. Thus,
the entire failover list is sent as part of the computation state to remote masters when
action2 terminates. Doing so ensures that remote masters can map (and thus retrieve)
the results from a failed master to the places in its failover list.

Bootstrapping

Mobile agents are beneficial for resource discovery both before and during a grid
computation [97, 178], since what resources are required and how to extract them may
depend on the computation. In WAMW, before action1 starts, the algorithm assumes
that there exists a list of places for each local area network that are designated masters
and workers. Establishing this list is a suitable task for a mobile agent. Given a list of
candidate places, candidates, a mobile agent can move from place to place on the list
as an itinerant computation. A backup place is used to detect that a place on the list
has failed, and records this in a list, failed, adds a new place from the list of visited
places and tries to move to the next place on the list. When all candidate places have
been visited, the difference between the initial candidates list and the failed list gives
the places that can be used for the computation. If the initial candidates list is large,
the list can be split into segments and a mobile agent computation started (using init)
on a separate place for each segment.

An alternative approach to using an itinerant style computation is to have an
initiating place i start agents in parallel at all places c1, ..., cn−1, cn in the initial
candidates list and have the failover lists be of the form < ck, i > for all k in candidates.
This way, i will be notified about all failing places in candidates, and unlike the itinerant
style approach, the completion time of this approach does not depend on the number
of failed entries in candidates. However, if the number of entries in candidates is large,
i may suffer from message implosion when the mobile agents terminate their actions.

153

Pseudocode 8.2.1 Actions for WAMW masters.
def action1:

pmax interval = interval between each master state update
pmax = current time() + pmax interval
idle workers = []
f = desired number of backups
checkpoint(action2)

def action2:
state update = false
type, workerid, result = get worker request()
if type == RENEW LEASE:
set worker lease(workerid)

if type == TASK REQUEST:
idle workers.append(workerid)
if result ! = NULL:

state update = true
mark task as done(result)

while len(idle workers) > 0 and num unallocated tasks() > 0:
task = allocate task()
workerid = idle workers.pop()
set worker lease(workerid)
send task to worker(task, workerid)
state update = true

update master state(state update)
check leases()
check backups()
if all tasks completed():
terminate()

checkpoint(action2)

Splitting the initial candidates list into segments and starting an agent on a separate
place for each segment reduces the amount of messages required to be processed by the
initiating place.

8.3 Other Issues

Our practical approach to preserving the NAP2 properties specified in Section 6.4.1
is to adapt the failover list to the underlying network topology to decrease exposure
to asynchrony. We now discuss alternative approaches to handle asynchrony, by using
failure detector mechanisms that approximate the fail-stop model, by using consensus
algorithms, and by using wide-area group communication.

154

8.3.1 Failure Detection

NAP2 is a protocol that assumes a failure detector that eventually detects all failures and
never suspects a non-failed place as failed. Since the Internet is normally modeled as an
asynchronous system, such semantics are impossible to implement, so an implementation
of a failure detector may in practice make mistakes when deployed on the Internet. There
are, however, failure detectors that make weaker assumptions on synchronous behavior.
We now discuss two approaches to approximate fail-stop semantics [51, 153]. These
approaches enable the implementation of a failure detector with semantics similar to a
perfect failure detector in environments with weaker assumptions on synchrony.

Approximating the Fail-Stop Model

The work in [153] specifies a failure model that is indistinguishable from the fail-stop
model in an asynchronous system. The approach is to simulate a fail-stop failure detector
in an asynchronous system by extending the happens-before relation [102]. If a process
p suspects a process q, then this suspicion must not happen-before a local event in q,
meaning q can execute events after being suspected, but not events that are causally
related to the suspicion of q. In simulated fail-stop, the happens-before relation defines
that the crash of q happens-before the event where p suspects q. The approach works by
having a process exchange a round of suspicion messages with a group of other processes.
All non-failed processes declare the suspected process q as failed. If q has failed, it never
receives the suspicion message. If q has not failed, the receipt of the suspicion message
causes q to voluntarily crash. Simulated fail-stop thus hides that a process is suspected
before it crashes by enforcing the happens-before relation on message channels. However,
doing so requires that all messages are communicated on channels that are known to
the system.

The work of [51] avoids the requirement of simulated fail-stop where all messages
must be sent on channels that are known to the system. Instead, the approach is to
ensure that a computer is crashed before being suspected, by using a hardware watchdog.
The hardware watchdog resets the host computer when a threshold timeout has expired.
Thus, if the threshold is not periodically increased, the computer crashes. Participants of
the protocol grant each other leases [68] that define the threshold value. If a participant
p fails to renew its lease with other participants, the computer that p executes on crashes.
The participants execute a distributed snapshot protocol that ensures a participant is
not suspected unless it has crashed. A similar approach is also described using process
watchdogs instead of hardware watchdogs. The use of leases, like in WAMW, requires
the timed-asynchronous model where clocks have rates close to real time.

Both these approaches would be useful in NAP2 to approximate the fail-stop
model and thus help ensure that the NAP2 properties hold in a deployment of the
implementation. Since all messages in NAP2 are communicated using TOS, the extended
happens-before relation can be implemented, and the use of process watchdogs is
probably not required for the mobile agent applications we have encountered so far. Both
approaches, however, require a majority of correct processes to agree on the suspected
process (i.e., 2f + 1 processes are required for tolerating f failures). Hence, if failure

155

detection is performed exclusively by places in the failover list, additional places are
required to tolerate the same number of failures as the NAP2 implementation specified
in the previous chapter. Additional places will also increase the cost of NAP2 in failure-
free runs.

8.3.2 Consensus

By satisfying certain properties, failure detectors can enable solutions to problems
such as consensus or atomic broadcast [33]. More specifically, consensus can be
achieved even if the failure detector makes mistakes. Consensus involves two primitives
propose and decide. A process invoking propose(x) proposes the value x and a process
invoking decide(y) decides the value y. Consensus algorithms must enforce the following
properties:

• No two correct processes decide on different values (agreement).

• A decided value must have been proposed (validity).

• Every correct process eventually decides on a value (termination).

Consensus has been employed by mobile agent systems before. A variation of consensus
called DIV consensus is used to decide on the result from executing a mobile agent stage
in the Fatomas mobile agent system [140]. For a protocol like NAP2, consensus can be
used to reach agreement on the failover list and the corresponding mobile agent state.
We discuss such an approach below, but before doing so we describe how consensus
protocols operate with unreliable failure detectors.

A failure detector that makes mistakes but is known to enable a solution for consensus
is ⋄P, an eventually perfect failure detector. Eventually perfect means that it satisfies
strong completeness and eventual strong accuracy. Consensus with ⋄P works in rounds,
where a coordinator process proposes a value that it tries to have accepted by other
processes. If the coordinator is suspected as crashed, a new value may be proposed
by another coordinator. To ensure agreement on a value, the majority of the deciding
processes must be correct and decide. Thus, if there is a network partition then only
the partition including the majority of the processes can decide, which means that the
computation fails if the majority of the processes fail.

Paxos

Paxos [103] is a consensus algorithm that always guarantees safety, and satisfies liveness
with very weak synchrony assumptions (e.g., using the Ω unreliable failure detector
[32]). The protocol has been employed in several real systems, for instance the Chubby
distributed lock service [29].

Like the ⋄P-based consensus algorithm, Paxos works in rounds. The first round
starts with a proposer choosing a unique number b, and sending this number to a group
of acceptors. The acceptors receiving the number b check whether they have already
received a higher number. If so, the proposal is rejected, and the proposer must restart

156

the protocol with a higher number. If b is the highest numbered proposal seen by an
acceptor, the acceptor sends a response back to the proposer with the highest numbered
proposal the acceptor has accepted, and promises not to accept proposals less than b.
If a majority of the acceptors accept the proposal, the proposer chooses a value v. This
value is either the highest value from the acceptor responses, or if no value was provided,
an arbitrary value chosen by the proposer. The next round then starts with the proposer
sending b and v to the group of acceptors. The acceptors respond to the proposer by
accepting or rejecting the proposal. An acceptor accepts the proposal unless it has
already received any message with a proposal number greater than b. If an acceptor
accepts b, it sends a message with b and v to a group of learners. A learner decides on
the value v of the proposal if it receives such a message from a majority of the acceptors.

Paxos and NAP

We now outline a high-level approach for a protocol like NAP2 using Paxos. Assume
that for a given failover list, each backup place in the list runs a controller state machine.
Assume that n places comprise the controller state machine. All possible places that
can execute an agent act as clients to this state machine, and execute in an initial
state waiting for a reply from the controller state machine. The reply has two values:
execute tells a client that it should execute the stage encoded in the reply message, and
failed tells a client that a place has failed and that the recovery action encoded in the
reply should be executed. Generating the failed reply requires that the controller state
machine implements a failure detector.

The state of the controller state machine is the place p executing the current action,
and the set of backups for p. Paxos is used to determine the membership of the controller
state machine. Each place that runs the controller state machine plays the role as an
acceptor, and the place p that executed action i acts as the proposer for the next action
i + 1, the place q for executing action i + 1 and the backups for q. Hence, when an
action terminates, p is assigned the consensus instance for action i + 1, and proposes
the membership for i+ 1 and q to the backups for i and i+ 1. If consensus is achieved,
q is sent an execute reply to start executing action i+ 1.

Although detailed analysis of the approach just given is beyond the scope of this
dissertation, we highlight some issues here. Paxos is based on a weaker model (i.e.,
the Ω failure detector [32]) than the fail-stop model of NAP2. For instance, proposed
values are accepted if a majority of acceptors accept the value, which means that n must
be 2f + 1 to tolerate f failures. If there is a network failure and there is a majority
of non-failed controller state machine places within a connected component, there will
be consensus on the controller state machine membership. If communication is non-
transitive, two or more places may disagree on the failover list resulting in multiple
proposals being sent. However, if there is a controller state machine place in common
for all network components, consensus can still be achieved. A problem, though, is
that if an unreliable failure detector such as Ω is used to generate the failed reply, the
resulting protocol cannot satisfy property NAP2Elected, as specified in Section 6.4.5.
For example, consider an execution of the protocol where the controller state machine
consists of places < a, b, c > and a place p is executing the current action. Ω states that

157

there is a time where all correct processes always trust the same process. However, over
time, places a, b and c may suspect p as failed although p has not failed. Hence, if one
of the places in the controller state machine sends a failed response to a client when p
has not failed, a redundant action will be executed.

Another problem with this approach is that it requires more messages to be sent than
NAP2 does. However, the number of messages containing the entire payload of the agent
will be the same as in NAP2 (e.g., by sending a checksum of the consensus value instead
of the actual value in subsequent messages to the same place [104]), unless multiple
proposals are required for consensus. Thus, for computations where the mobile agent
state is sufficiently large, the latency overhead of the extra rounds of communication
in Paxos may be insignificant compared to the NAP2 latency. An alternative would be
to externalize the mobile agent state from the consensus algorithm and run a reliable
broadcast protocol with the mobile agent state once consensus has been reached on
the failover list. However, as observed in [140], separating reliable broadcast from the
consensus algorithm adds complexity to the protocol. Additional complexity can make
Paxos difficult to implement correctly. While the basic algorithm is simple to express at
a high level, an implementation of a Paxos-style protocol may require several thousand
code lines [29].

8.3.3 Wide-Area Group Communication

A protocol like NAP2 can be implemented by abstractions with weaker assumptions
than consensus, for instance by a wide-area group communication system [95, 120,
127, 149, 150]. Group communication systems have different approaches to handling
network instability, but a common problem is that during network instability, the
group communication system will output views that are obsolete shortly after delivery.
Processing obsolete views is expensive for the group communication system and for an
application that rely on virtual synchrony if the application requires computational state
to be communicated upon view changes. The Moshe group communication system [95]
minimizes the amount of obsolete views when the network is unstable by delaying
view delivery until the network is stable. Recall from Section 3.2.1 that Moshe uses
membership servers that communicate the current network topology view among them.
When membership servers disagree on the topology, Moshe enters a state where no
subsequent view updates are sent to group members until the membership servers agree
on the network topology. While this causes significant blocking, as we experienced
in Section 3.4.2, agreement on views allows us to design a protocol like NAP2 that
helps preserve the exactly-once property during times of asymmetric or non-transitive
communication.

We will now outline how a protocol like NAP2 can be realized with a view
synchronous group communication system like Moshe. Assume that initially all places
that will potentially be visited by a mobile agent are running Moshe and that these
places are members of a group called NAP. When an agent starts, a set of places must
be added to its first failover list. To do so, an init message is reliably broadcast by the
agent to the NAP group. The message contains a failover list r(1), the agent code and
its state, the number of crash failures to tolerate f , and a globally unique computation

158

identifier g. Assume that the agent does not crash, so all non-failed members of NAP
receive the init message. When a place p in the failover list r(1) receives the init message,
p joins a group g named by the computation identifier. As members of the NAP group
join g, view updates will be sent to the existing members of g. When all non-failed
places on the failover list r(1) have joined g, the first non-failed place in r(1) starts the
action to be executed. When the action terminates, a new failover list r(2), the agent
code and its state, f , and the computation identifier g are reliably broadcast to NAP
as a new init message, and the procedure is repeated. When the new failover list r(2)
is received by the places in r(1), places in g that are not in the failover list r(1) leave
g when f members of failover list r(2) have joined the group g. The first place in r(2)
can then start executing the current action when all places in r(1) that are not in r(2)
has left g (to preserve property NAP2Elected, as specified in Section 6.4.5).

If the first place of a failover list crashes, a group leave message will be sent to the
remaining members of g, and the recovery action must be executed by the first non-failed
place in the failover list when the subsequent group view is installed.

Although detailed analysis of the protocol just given is beyond the scope of
this dissertation, we highlight some issues here. First, a benefit of using a group
communication system is that the reliable broadcast strategy, if supported, is determined
by the group communication system implementation. However, if the NAP group
contains a large number of places, then broadcasting the state of the agent to all members
when an action terminates is likely to be expensive. The algorithm can, however, be
improved in several ways with respect to performance. Since all non-failed members
of the NAP group receive each broadcast, only the state that has changed from the
previous init message needs to be sent. A further improvement to this approach is to
not include the agent and its state in the init message, but have existing members of g
broadcast the state to new members as they join g.

Although an algorithm built on top of Moshe would help preserve the exactly-
once property when there is asymmetric and non-transitive communication, a network
partitioning will still cause redundant actions to be executed when each network clique
form a new view since property NAP2Elected, as specified in Section 6.4.5, is violated.
Avoiding redundant actions here would require either a primary-partition policy where
one of the partitions decides to terminate the computation like in Isis [149] or block like
in Phoenix [120]. Another approach is to require rollback support for the mobile agent
actions that executed at the places running NAP, and abort the actions at the places
that have been visited by the duplicate computation. This is similar to the approach
taken by NetPebbles [128]. The latter approach, however, would also help ensure the
exactly-once property in NAP2 computations without requiring a group communication
system.

8.4 Summary

We started this chapter by discussing approaches to improve the performance of NAP2.
We first discussed the assumption of linear broadcast, and observed that a flooding
protocol that uses network-level multicast may perform better within a local area

159

network. We then discussed the use of classic state optimization protocols such as pre-
copy and lazy-copy. While pre-copy would only work for specific NAP2 computations,
support for lazy-copy would be simpler to add as a general mechanism. We then
discussed strategies for replica placement in distributed storage systems.

The next part discussed the applicability of NAP2. We showed that an algorithm
that does not use mobile code, WAMW, with minor modifications can be executed in
NAP2 and benefit from the added fault-tolerance without requiring mobility.

We ended the chapter by discussing other issues. First, we discussed our assumption
on failure detection that does not make mistakes and discovered two alternatives that can
be used by a NAP2 implementation. We then discussed the use of consensus protocols
and weaker failure detectors, and discovered that an algorithm like Paxos can be used
to implement a protocol like NAP2. Finally, we discussed the use of wide-area group
communication such as Moshe as a mechanism for implementing a protocol like NAP2.
While the Moshe group communication system blocks when the network is unstable, it
can help enforce the exactly-once property by delaying obsolete views.

160

Chapter 9

Conclusion

The amount of computational resources available on the Internet is increasing. Effec-
tively using these resources for distributed computations is challenging. Computational
grids provide tools for structuring and deploying large-scale distributed computations on
the Internet. One of the key problems in computational grids is managing the available
computational resources, and tools based on mobile agents are being advocated to solve
this problem. However, to be widely adopted, such tools must be robust towards failures
in the grid environment and thus require effective mechanisms for mobile agent fault-
tolerance.

9.1 Results

This dissertation has identified network awareness as a central property for mobile
agent fault-tolerance in grid environments. In Section 1.3, we stated the thesis of this
dissertation:

Network aware fault-tolerance provides similar benefits over transparent fault-tolerance
that mobile agents provide over conventional distributed computing.

The benefit of mobile agents over conventional distributed computing is that a mobile
agent computation can adapt to changes in the network topology by migrating to another
place. Consequently, we have investigated whether network aware fault-tolerance
schemes that allow adapting replicas to changes in the network are beneficial over fault-
tolerant schemes with transparent replica management.

To evaluate our thesis, we started by investigating how network communication
behaves in grid environments. More specifically, we studied the performance of executing
two master-worker algorithms when deployed on the Internet. The first algorithm, AX,
is optimal in terms of redundant task executions and requires a group communication
system. We ran simulations of a wide-area group communication system called Moshe on
top of Internet communication traces and experienced that the performance of Moshe
depends on the amount of asymmetric and non-transitive communication. Running
AX on the same traces revealed that while AX is optimal in terms of redundant
task executions, the frequency of asymmetric and non-transitive communication causes

161

Moshe, and thus AX, to block significantly. We developed a second algorithm, WAMW,
that instead of group communication uses message flooding combined with leases for
synchronization of global state. Although WAMW has significantly higher message
complexity than AX, simulation results show that it completes the same computations
faster and does not execute more redundant tasks than algorithm AX. The first insight
from this study is that non-transitive and asymmetric communication occurs frequently
on the Internet and grows with the number of participating networks. The most
important insight, however, is that our experience with WAMW shows that a network
aware master-worker algorithm can perform better than Moshe and AX despite not
being optimal in terms of redundant task executions.

We then devised a mobile agent fault-tolerance protocol called NAP2. NAP2 is
based on the primary-backup approach where a set of backups monitors the progress of
the place that executes the agent. Upon detecting that the agent has failed, a backup
executes a user specified recovery action. In NAP2, backups are explicitly managed
by the computation in a failover list. More specifically, NAP2 allows computations
to change the failover list to better accommodate resource changes in the execution
environment. NAP2 assumes the fail-stop model. Routing instability in the network
may cause violations of the assumed timing bounds, leading to redundant invocations
of recovery code. However, we observed that by adapting failover lists to the network
topology we could minimize the communication that spans more than one local area
network. Minimizing the time the failover list spans more than one local area network
decreases asynchrony and communication latency among the places in the list. In
addition, by ensuring failover lists do not span more than two local area networks,
non-transitive communication can be avoided.

We then specified the properties of the NAP2 protocol and derived a specification
of NAP2 that we implemented on the TOS mobile agent platform. Our NAP2
implementation uses a linear message forwarding approach, but the specification allows
certain parts of the protocol to use any reliable message forwarding scheme, including
flooding. Our implementation of NAP2 led to several optimizations of TOS, for
instance, better handling of large messages. We evaluated the latency of TOS message
communication and developed three estimator functions that predict the performance
of different operations performed during execution of NAP2. Comparing the estimators
against actual latency measurements showed that the estimators were accurate, within
2.9 milliseconds of the measured value.

In Section 1.3 we listed two properties that together determine the strength of the
dissertation thesis: performance and applicability. We now discuss to what extent these
properties have been fulfilled, and whether the thesis is confirmed, rejected or requires
modification.

Performance. Network aware fault-tolerance as implemented by NAP2 allows a mo-
bile agent computation to adapt fault-tolerance according to changes in the environment.
However, the latency overhead of executing NAP2 may outweigh the performance
benefits compared to performing the same operation in a transparent protocol. Our
performance hypothesis was: network aware fault-tolerance allows adapting to changes

162

in the topology faster than transparent fault-tolerance. In Section 7.4, we measured
the performance of changing between two disjoint failover lists, which is a procedure
that NAP2 computations use to adapt fault-tolerance when moving from one local area
network to another. We discovered that the transparent fault-tolerance approach was
faster than NAP2 when the number of places were fewer than 3 and the agent state
is small. When the agent state size exceeds 64 kilobytes, NAP2 was faster at 3 or
more places in the failover list. Thus, our performance hypothesis is not unanimously
confirmed. However, the experiments were performed within a local area network. We
conjecture that network aware fault-tolerance is faster than transparent fault-tolerance
for fewer than 3 places in the failover list and small agent payload if communication
spans more than a single network.

Applicability. The first requirement was to establish how communication performs
in the environment we consider for grid computations. In Chapter 3, 4 and 5, we studied
the behavior of wide-area group communication and two master-worker computations
when executed on Internet communication traces. The results of this study guided our
strategy for minimizing exposure to network partitions, asymmetric communication and
non-transitive communication in NAP2, as shown in Section 6.7.

The second requirement was to show that NAP2 could be used for computations
that do not migrate. More specifically, show that by explicitly managing failover lists,
NAP2 can satisfy fault-tolerance requirements for computations that do not migrate. In
Section 8.2.1, we modified the original WAMW algorithm to use fault-tolerant actions,
and showed that the changes to do so are modest. The resulting WAMW algorithm uses
NAP2 to replicate masters within a local area network. If a master fails, then a new
backup for the remaining masters is added to the failover list, and the required level of
fault-tolerance is maintained. By this, we have satisfied both applicability requirements
of the thesis.

Thesis Fulfillment. To summarize, we have satisfied the two applicability require-
ments and confirmed scenarios where the performance is better with the network aware
fault-tolerance protocol than with the transparent fault-tolerance protocol. The validity
of our performance hypothesis depends on the number of places in the failover list
and the size of the agent state, and the thesis statement thus needs to include these
variables upon evaluation to be valid. However, as we have shown with both group
communication and itinerant computations, it is difficult to provide transparent fault-
tolerance that scales well with the number of networks. Our experience with NAP2 and
WAMW shows that network aware fault-tolerance is likely to perform better.

9.2 Limitations

There are limitations to our solution. NAP2 requires that parts of the protocol uses a
linear message forwarding protocol, which causes suboptimal performance compared to
network-level broadcast protocols such as IP multicast. In addition, the latency of linear

163

forwarding grows linearly with the size of the agent state and the number of places in
the failover list.

We have only used NAP2 to adapt failover lists to the network topology when
migrating from one local area network to another. Determining the local area network
of a place is done by statically comparing the IP-addresses of the places in the list.
There are, however, other replica placement policies based on latency predictions or
measured communication latencies that may give better performance than our approach
in practice.

Our assumptions on synchronous behavior may be problematic when failover lists
span more than one local area network for longer periods, and cause redundant recovery
actions to be executed. While adapting to the network topology reduces the probability
of asynchronous behavior, NAP2 still only gives probabilistic guarantees on exactly-once
behavior.

9.3 Future Work

The Dynamic Enterprise Bus [87] is a prototype enterprise information middleware
developed to investigate issues related to autonomous behavior such as self-configuration,
self-optimization and self-healing. One of the use-cases for this middleware is a data
processing system based on our experience in enterprise search. The computational
model operates with a data flow going through a sequence of stages, where stages are
interconnected as a directed acyclic graph. The project is currently evaluating the use
of NAP2 as a mechanism to deploy and perform lifecycle management of graphs and
stages in a fault-tolerant manner.

We are also further investigating the use of network aware fault-tolerance for
applications that are not mobile, but rather require dynamic replica placement to
increase read/write performance of servers [2, 183]. Our goal is to develop a library
of replica placement strategies that developers using NAP2 can include as part of their
computations.

More recently, cloud computing [7] has emerged as a complement to grid computing.
Hence, we are also investigating the applicability of mobile agents in cloud environments
and specifically whether NAP2 can be leveraged in cloud computing.

164

References

[1] Anurag Acharya, M. Ranganathan, and Joel H. Saltz. Sumatra: A language
for resource-aware mobile programs. Selected Presentations and Invited Papers
for the 2nd International Workshop on Mobile Object Systems - Towards the
Programmable Internet, pages 111–130, 1997.

[2] Swarup Acharya and Stanley B. Zdonik. An efficient scheme for dynamic data
replication. Technical Report CS-93-43, Brown University, Providence, RI, USA,
1993.

[3] Gul Agha and Carl Hewitt. Concurrent programming using actors. In Object-
oriented concurrent programming, pages 37–53. MIT Press, Cambridge, MA, USA,
1987.

[4] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Re-
silient overlay networks. SIGOPS Operating System Review, 35(5):131–145, 2001.

[5] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@home: An experiment in public-resource computing. Communications of
the ACM, 45(11):56–61, 2002.

[6] James P. Anderson. Computer security technology planning study. Technical
Report ESD-TR-73-51, USAF Electronic Systems Division, Hanscom Air Force
Base, October 1972.

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical Report UCB/EECS-2009-28, EECS Department, University
of California, Berkeley, February 2009.

[8] Yeshayahu Artsy and Raphael Finkel. Designing a process migration facility: The
Charlotte experience. IEEE-CS Computer, 22(9):47–56, 1989.

[9] Algirdas Avižienis, Jean-Claude Laprie, and Brian Randell. Dependability and its
threats: A taxonomy. In Proceedings of the 18th World Computer Congress, pages
91–120. IFIP, Kluwer Academic Publishers, August 2004.

165

[10] Ozalp Babaoglu, Alberto Bartoli, and Gianluca Dini. Enriched view synchrony:
A paradigm for programming dependable applications in partitionable distributed
sytems. In IEEE Transactions on Computers, volume 46(6), pages 642–658, June
1997.

[11] Ozalp Babaoglu, Alberto Bartoli, and Gianluca Dini. Programming partition-
aware network applications. In Advances in Distributed Systems, Advanced
Distributed Computing: From Algorithms to Systems, pages 182–212. Springer-
Verlag, 1999.

[12] Ozalp Babaoglu, Renzo Davoli, Alberto Montresor, and Roberto Segala. System
support for partition-aware network applications. SIGOPS Operating System
Review, 32(1):41–56, 1998.

[13] Omar Bakr and Idit Keidar. Evaluating the running time of a communication
round over the internet. In Proceedings of the 21st Symposium on Principles of
Distributed Computing, pages 243–252. ACM Press, 2002.

[14] Mahesh Balakrishnan, Stefan Pleisch, and Ken Birman. Slingshot: Time-
critical multicast for clustered applications. In IEEE Network Computing and
Applications. IEEE Computer Society, 2005.

[15] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proceedings of the 19th Symposium on Operating Systems
Principles, pages 164–177. ACM Press, 2003.

[16] Daniel J. Barrett and Richard E. Silverman. SSH, The Secure Shell: The Definitive
Guide. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

[17] Forest Baskett, John H. Howard, and John T. Montague. Task communication in
DEMOS. In Proceedings of the 6th Symposium on Operating Systems Principles,
pages 23–31. ACM Press, 1977.

[18] J. Baumann, F. Hohl, K. Rothermel, and M. Strasser. Mole—concepts of a mobile
agent system. In Mobility: processes, computers, and agents, pages 535–554. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

[19] Judy I. Beiriger, Hugh P. Bivens, Steven L. Humphreys, Wilbur R. Johnson, and
Ronald E. Rhea. Constructing the ASCI computational grid. In Proceedings of the
9th International Symposium on High Performance Distributed Computing, page
193. IEEE Computer Society, 2000.

[20] Francine Berman, Richard Wolski, Henri Casanova, Walfredo Cirne, Holly Dail,
Marcio Faerman, Silvia Figueira, Jim Hayes, Graziano Obertelli, Jennifer Schopf,
Gary Shao, Shava Smallen, Neil Spring, Alan Su, and Dmitrii Zagorodnov.
Adaptive computing on the grid using AppLeS. IEEE Transactions on Parallel
and Distributed Systems, 14(4):369–382, 2003.

166

[21] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[22] Lorenzo Bettini. A Java package for transparent code mobility. In Proceedings
of the International Workshop on scientific engineering of distributed Java
applications, volume 3409 of LNCS, pages 112–122. Springer, 2004.

[23] Ranjita Bhagwan, Stefan Savage, and Geoffrey Voelker. Understanding availabil-
ity. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems,
February 2003.

[24] Walter Binder, Giovanna Di Marzo Serugendo, and Jarle Hulaas. Towards a secure
and efficient model for grid computing using mobile code. In Proceedings of the
8th ECOOP Workshop on Mobile Object Systems: Agent Application and New
Frontiers, Malage, Spain, June 2002.

[25] Kenneth P. Birman. Building secure and reliable network applications. Manning
Publications Company, Greenwich, CT, USA, 1997.

[26] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu,
and Yaron Minsky. Bimodal multicast. ACM Transactions Computer Systems,
17(2):41–88, 1999.

[27] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1):39–59, 1984.

[28] Navin Budiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Primary-
backup protocols: Lower bounds and optimal implementations. Technical Report
UW-CS-TR-1346, Cornell University, Computer Science Department, 1992.

[29] Mike Burrows. The Chubby lock service for loosely-coupled distributed systems.
In Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation, pages 24–24, Berkeley, CA, USA, 2006.

[30] Luca Cardelli and Andrew D. Gordon. Formal methods for distributed processing:
a survey of object-oriented approaches, chapter Mobile Ambients, pages 198–229.
Cambridge University Press, New York, NY, USA, 2001.

[31] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Anthony Rowstron. Exploiting
network proximity in distributed hash tables. Technical Report MSR-TR-2002-82,
Microsoft Research, 2002.

[32] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. Journal of the ACM, 43:685–722, July 1996.

[33] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, 1996.

167

[34] Andred Chasin. The Gnutella protocol specification version 0.41. In Clip2
Distributed Search Solutions, June 2001.

[35] David Cheriton. The V distributed system. Communications of the ACM,
31(3):314–333, 1988.

[36] David M. Chess, Colin G. Harrison, and Aaron Kershenbaum. Mobile agents:
Are they a good idea? In Selected Presentations and Invited Papers Second
International Workshop on Mobile Object Systems - Towards the Programmable
Internet, pages 25–45. Springer-Verlag, 1997.

[37] Jacky Chu, Kevin Labonte, and Brian Neil Levine. Availability and locality
measurements of peer-to-peer file systems. In Proceedings of the ITCom:
Scalability and Traffic Control in IP Networks II Conference, volume SPIE 4868,
pages 310–321, July 2002.

[38] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual
machines. In Proceedings of the 2nd Symposium on Networked Systems Design
and Implementation, pages 273–286, May 2005.

[39] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner, and
Paul R. Young. Computing as a discipline. Communications of the ACM, 32(1):9–
23, 1989.

[40] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system
model. In Proceedings of the IEEE Transactions on Parallel and Distributed
Systems, pages 642–657, June 1999.

[41] M. Dalmeijer, E. Rietjens, D. Hammer, A. Aerts, and M. Soede. A reliable mobile
agents architecture. In Proceedings of the 1st IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, page 64. IEEE Computer
Society, 1998.

[42] Raphael Y. de Camargo, Fabio Kon, and Renato Cerqueira. Strategies for
checkpoint storage on opportunistic grids. IEEE Distributed Systems Online,
7(9):1, 2006.

[43] X. Defago, A. Schiper, and N. Sergent. Semi-passive replication. In Proceedings of
the IEEE Symposium on Reliable Distributed Systems, page 43. IEEE Computer
Society, 1998.

[44] Peter J. Denning. Is computer science science? Communications of the ACM,
48(4):27–31, 2005.

[45] Christophe Diot, Brian Neil Levine, Bryan Lyles, Hassan Kassem, and Doug
Balensiefen. Deployment issues for the IP multicast service and architecture.
IEEE Network, 14(1):78–88, 2000.

168

[46] Mark W. Eichin and Jon A. Rochlis. With microscope and tweezers: An analysis
of the Internet virus of november 1988. In Proceedings of the IEEE Computer
Society Symposium on Security and Privacy, Oakland, Ohio, 1989.

[47] Elmootazbellah N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. A survey of rollback-recovery protocols in message-passing systems.
ACM Computing Survey, 34(3):375–408, 2002.

[48] Elmootazbellah N. Elnozahy and Willy Zwaenepoel. Manetho: Transparent roll
back-recovery with low overhead, limited rollback, and fast output commit. IEEE
Transactions on Computing, 41(5):526–531, 1992.

[49] Nick Feamster, David G. Andersen, Hari Balakrishnan, and M. Frans Kaashoek.
Measuring the effects of Internet path faults on reactive routing. In Proceedings
of the SIGMETRICS international conference on measurement and modeling of
computer systems, pages 126–137. ACM Press, 2003.

[50] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a
partitionable group communication service. ACM Transactions on Computer
Systems, 19(2):171–216, 2001.

[51] Christof Fetzer. Perfect failure detection in timed asynchronous systems. IEEE
Transactions on Computers, 52(2):99–112, 2003.

[52] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–382,
1985.

[53] Gary W. Flake. The Computational Beauty of Nature: Computer Explorations
of Fractals, Chaos, Complex Systems, and Adaptation. The MIT Press, January
2000.

[54] Sally Floyd, Van Jacobson, Steve McCanne, Ching-Gung Liu, and Lixia Zhang.
A reliable multicast framework for light-weight sessions and application level
framing. SIGCOMM Computer Communication Review, 25(4):342–356, 1995.

[55] Ian Foster. Internet computing and the emerging grid. Nature Web Matters
(http://www.nature.com/nature/webmatters/grid/grid.html), December 2000.

[56] Ian Foster, Jerry Gieraltowski, Scott Gose, Natalia Maltsev, Edward N. May,
Alex Rodriguez, and Dinanath Sulakhe et al. The Grid2003 production grid:
Principles and practice. In Proceedings of the 13th International Symposium
on High Performance Distributed Computing, pages 236–245. IEEE Computer
Society, 2004.

[57] Ian Foster, Nicholas R. Jennings, and Carl Kesselman. Brain meets brawn: Why
grid and agents need each other. In Proceedings of the 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 8–15. IEEE
Computer Society, 2004.

169

[58] Ian T. Foster. The anatomy of the grid: Enabling scalable virtual organizations. In
Proceedings of the 7th International Euro-Par Conference on Parallel Processing,
pages 1–4. Springer-Verlag, 2001.

[59] Roy Friedman and Alexey Vaysburd. Fast replicated state machines over
partitionable networks. In Proceedings of the 16th Symposium on Reliable
Distributed Systems, page 130. IEEE Computer Society, 1997.

[60] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding code
mobility. IEEE Transactions on Software Engineering, 24(5):342–361, 1998.

[61] Munehiro Fukuda and Duncan Smith. UWAgents: A mobile agent system
optimized for grid computing. In Proceedings of the 2006 International Conference
on Grid Computing and Applications, pages 107–113, 2006.

[62] Munehiro Fukuda, Yuichiro Tanaka, Naoya Suzuki, Lubomir F. Bic, and Shinya
Kobayashi. A mobile-agent-based PC grid. Proceedings of the Autonomic
Computing Workshop, pages 142–150, 2003.

[63] Lixin Gao and Jennifer Rexford. Stable Internet routing without global coordina-
tion. IEEE/ACM Transactions on Networking, 9(6):681–692, 2001.

[64] Eugene Gendelman, Lubomir F. Bic, and Michael B. Dillencourt. An application-
transparent, platform-independent approach to rollback-recovery for mobile agent
systems. In Proceedings of the 20th International Conference on Distributed
Computing Systems, page 564. IEEE Computer Society, 2000.

[65] Chryssis Georgiou, Alexander Russell, and Alex A. Shvartsman. The Complexity
of Distributed Cooperation in the Presence of Failures. In Proceedings of the 4th
International Conference on Principles of Distributed Computing, pages 245–264,
Paris, France, 2000.

[66] Chryssis Georgiou and Alex A. Shvartsman. Cooperative computing with
fragmentable and mergeable groups. Journal of Discrete Algorithms, 1(2):211–
235, 2003.

[67] Graham Glass. Objectspace voyager - the agent ORB for Java. In Proceedings of
the 2nd International Conference on Worldwide Computing and Its Applications,
pages 38–55. Springer-Verlag, 1998.

[68] Cary G. Gray and David R. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. In Proceedings of the 12th
Symposium on Operating Systems Principles, pages 202–210, 1989.

[69] Robert S. Gray. Agent Tcl: A flexible and secure mobile-agent system. In
M. Diekhans and M. Roseman, editors, Proceedings of the Fourth Annual Tcl/Tk
Workshop, pages 9–23, Monterey, CA, 1996.

170

[70] Karl Taro Greenfeld. Meet the napster. In TIME Magazine, volume 156(4),
October 2000.

[71] Timothy G. Griffin and Gordon Wilfong. An analysis of BGP convergence
properties. In Proceedings of the Applications, technologies, architectures, and
protocols for computer communication, pages 277–288. ACM Press, 1999.

[72] Andrew S. Grimshaw, Jon B. Weissman, Emily A. West, and Edmond C. Loyot
Jr. Metasystems: An approach combining parallel processing and heterogeneous
distributed computing systems. Journal of Parallel and Distributed Computing,
21(3):257–270, 1994.

[73] Rachid Guerraoui and André Schiper. Software-based replication for fault
tolerance. IEEE-CS Computer, 30(4):68–74, 1997.

[74] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble,
Henry M. Levy, and John Zahorjan. Measurement, modeling, and analysis of
a peer-to-peer file-sharing workload. In Proceedings of the 19th Symposium on
Operating Systems Principles, pages 314–329. ACM Press, 2003.

[75] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning Ding, and Xiaodong
Zhang. Measurements, analysis, and modeling of BitTorrent-like systems. In
Proceedings of the 2005 Internet Measurement Conference, pages 35–48, 2005.

[76] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related problems.
In Distributed systems (2nd Ed.), pages 97–145. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1993.

[77] E. Hammer-Lahav. The OAuth 1.0 protocol. RFC 5849, Internet Engineering
Task Force, April 2010.

[78] Salim Hariri, C.S. Raghavendra, Yonhee Kim, Muhamad Djunaedi, Rinda P. Nel-
lipudi, Ashok Rajagopalan, Prasad Vadlamani, and Yeliang Zhang. CATALINA:
A smart application control and management. In Proceedings of the NSF Active
Middleware Services Workshop, pages 43–55, 2000.

[79] Kevin Holley and Ian Doig. Digital cellular telecommunications system (Phase 2+)
(GSM); Use of Data Terminal Equipment - Data Circuit terminating Equipment
(DTE - DCE) interface for Short Message Service (SMS) and Cell Broadcast
Service (CBS) (GSM 07.05 version 6.0.0). The European Telecommunications
Standards Institute (ETSI), 1997.

[80] John B. Horrigan. Home broadband adoption 2006. Report, PEW Internet &
American Life Project, May 2006.

[81] Christian Huitema. Routing in the Internet (2nd ed.). Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2000.

171

[82] Geoff Huston. Interconnection peering and settlement - part I. Internet Protocol
Journal, 2(1), March 1999.

[83] Geoff Huston. BGP routing trends in 2006. In Proceedings of the 68th Internet
Engineering Task Force Meeting, March 2007.

[84] Jeremy Hylton, Ken Manheimer, Fred L. Drake, Jr., Barry Warsaw, Roger Masse,
and Guido van Rossum. Knowbot programming: System support for mobile
agents. In Proceedings of the 5th International Workshop on Object Orientation
in Operating Systems, pages 8–13, Seattle, WA, USA, 1996.

[85] Kjetil Jacobsen and Dag Johansen. Ubiquitous devices united: enabling
distributed computing through mobile code. In Proceedings of the 1999 ACM
Symposium on Applied Computing, pages 399–404. ACM Press, 1999.

[86] Dag Johansen and Gunnar Hartvigsen. Convenient abstractions in stormcast
applications. In Proceedings of the 6th ACM SIGOPS European Workshop, pages
11–16. ACM Press, 1994.

[87] Dag Johansen and H̊avard Johansen. The dynamic enterprise bus. In Proceedings
of the 4th International Conference on Autonomic and Autonomous Systems.
IEEE Computer Society Press, Guadeloupe, France, 2007.

[88] Dag Johansen, K̊are J. Lauvset, Robbert van Renesse, Fred B. Schneider, Nils P.
Sudmann, and Kjetil Jacobsen. A TACOMA retrospective. Software: Practice
and Experience, 32(6):605–619, 2002.

[89] Dag Johansen, Keith Marzullo, Fred B. Schneider, Kjetil Jacobsen, and Dmitrii
Zagorodnov. NAP: Practical fault-tolerance for itinerant computations. In
Proceedings of the 19th International Conference on Distributed Computing
Systems, pages 180–189. IEEE Computer Society Press, 1999.

[90] Dag Johansen, Nils P. Sudmann, and Robbert van Renesse. Performance Issues
in TACOMA. In Proceedings of the 3rd Workshop on Mobile Object Systems, 11th
European Conference on Object-Oriented Programming, Jyväskylä, Finland, 1997.

[91] Dag Johansen, Robbert van Renesse, and Fred B. Schneider. An introduction to
the TACOMA distributed system—version 1.0. Technical Report 95-23, University
of Tromsø, June 1995.

[92] Dag Johansen, Robbert van Renesse, and Fred B. Schneider. Operating System
Support for Mobile Agents. In Proceedings of the 5th Workshop Hot Topics in
Operating Systems (HotOS), pages 42–45, Washington, USA, 1995.

[93] Dag Johansen, Robbert van Renesse, and Fred B. Schneider. Supporting Broad
Internet Access to TACOMA. In Proceedings of the 7th SIGOPS European
Workshop, pages 55–58, Connemara, Ireland, 1996.

172

[94] Katarzyna Keahey and Von Welch. Fine-grain authorization for resource
management in the grid environment. In Proceedings of the 3rd International
Workshop on Grid Computing, pages 199–206. Springer-Verlag, 2002.

[95] Idit Keidar, Jeremy Sussman, Keith Marzullo, and Danny Dolev. Moshe: A
group membership service for WANs. ACM Transactions on Computer Systems,
20(3):191–238, 2002.

[96] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, November 1998.

[97] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy
and survey of grid resource management systems for distributed computing.
Software: Practice and Experience, 32(2):135–164, 2002.

[98] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed
Internet routing convergence. IEEE/ACM Transactions on Networking, 9(3):293–
306, 2001.

[99] Craig Labovitz, Abha Ahuja, and Farnam Jahanian. Experimental study of
Internet stability and backbone failures. In Proceedings of the 29th Annual
International Symposium on Fault-Tolerant Computing, page 278. IEEE Computer
Society, 1999.

[100] Craig Labovitz, Abha Ahuja, Srinivasan Venkatachary, and Roger Wattenhofer.
The impact of Internet policy and topology on delayed routing convergence. In
Proceedings of the 20th Joint Conference of the IEEE Computer and Communi-
cations Societies, Anchorage, Alaska, April 2001.

[101] Craig Labovitz, G. Robert Malan, and Farnam Jahanian. Internet routing
instability. IEEE/ACM Transactions on Networking, 6(5):515–528, 1998.

[102] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[103] Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[104] Leslie Lamport and Mike Massa. Cheap paxos. In Proceedings of the 2004
International Conference on Dependable Systems and Networks, pages 307–,
Washington, DC, USA, 2004. IEEE Computer Society.

[105] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4(3):382–
401, July 1982.

[106] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents.
Communication of the ACM, 42(3):88–89, 1999.

173

[107] Danny B. Lange, Mitsuru Oshima, Gunter Karjoth, and Kazuya Kosaka. Aglets:
Programming mobile agents in Java. In Proceedings of the International Con-
ference on Worldwide Computing and Its Applications, pages 253–266. Springer-
Verlag, 1997.

[108] Stefan M. Larson, Christopher D. Snow, Michael R. Shirts, and Vijay S.
Pande. Folding@Home and Genome@Home: Using distributed computing to
tackle previously intractable problems in computational biology. Computational
Genomics, 2002.

[109] K̊are J. Lauvset, Kjetil Jacobsen, Dag Johansen, and Keith Marzullo. Separating
mobility from mobile agents. In Proceedings of the 8th Workshop Hot Topics on
Operating Systems (Position Summary), page 173, 2001.

[110] K̊are J. Lauvset, Dag Johansen, and Keith Marzullo. TOS: A kernel of a
distributed systems management system. Technical Report 2000-35, University
of Tromsø, Department of Computer Science, 2000.

[111] K̊are J. Lauvset, Dag Johansen, and Keith Marzullo. TOS: kernel support for
distributed systems management. In Proceedings of the 2001 ACM Symposium on
Applied Computing, pages 412–419. ACM Press, 2001.

[112] Meng-Jang Lin, Keith Marzullo, and Stefano Masini. Gossip versus determin-
istically constrained flooding on small networks. In Proceedings of the 14th
International Conference on Distributed Computing Systems, pages 253–267.
Springer-Verlag, 2000.

[113] Michael Litzkow and Miron Livny. Supporting checkpointing and process
migration outside the UNIX kernel. In Proceedings of the Winter USENIX
Conference, pages 283–290, San Francisco, CA, January 1992.

[114] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter of idle
workstations. In Proceedings of the 8th International Conference of Distributed
Computing Systems, pages 104–111, June 1988.

[115] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Checkpoint
and migration of UNIX processes in the Condor distributed processing system.
Technical Report UW-CS-TR-1346, University of Wisconsin - Madison Computer
Sciences Department, April 1997.

[116] Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1986.

[117] Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Xenofontas Dimitropou-
los, Claffy, and Amin Vahdat. The Internet AS-level topology: three data
sources and one definitive metric. SIGCOMM Computer Communication Review,
36(1):17–26, January 2006.

174

[118] Grzegorz Greg Malewicz, Alexander Russell, and Alex Shvartsman. Optimal
scheduling for disconnected cooperation. In Proceedings of the 20th Symposium
on Principles of Distributed Computing, pages 305–307. ACM Press, 2001.

[119] Grzegorz Greg Malewicz, Alexander Russell, and Alexander A. Shvartsman.
Distributed cooperation during the absence of communication. In Proceedings
of the 14th International Conference on Distributed Computing, pages 119–133.
Springer-Verlag, 2000.

[120] Christoph Malloth, Pascal Felber, Andre Schiper, and Uwe Wilhelm. Phoenix:
A toolkit for building fault-tolerant, distributed applications in large scale. In
Proceedings of the Workshop on Parallel and Distributed Platforms in Industrial
Products, October 1995.

[121] Christophe Malloth and Andre Schiper. View synchronous communication in large
scale networks. Technical Report TR95-92, University of Bologna, 1995.

[122] Z. Morley Mao, Lili Qiu, Jia Wang, and Yin Zhang. On AS-level path inference. In
Proceedings of the SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 339–349. ACM Press, 2005.

[123] Zhuoqing Morley Mao, Ramesh Govindan, George Varghese, and Randy H. Katz.
Route flap damping exacerbates Internet routing convergence. In Proceedings of
the Applications, technologies, architectures, and protocols for computer commu-
nications, pages 221–233. ACM Press, 2002.

[124] Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, Richard Wheeler, and
Songnian Zhou. Process migration. ACM Computing Surveys, 32(3):241–299,
2000.

[125] Dejan S. Milojicic, Wolfgang Zint, Andreas Dangel, and Peter Giese. Task
migration on the top of the Mach microkernel. In USENIX MACH III Symposium,
pages 273–290. USENIX Association, 1993.

[126] Yaron Minsky, Robbert van Renesse, Fred B. Schneider, and Scott D. Stoller.
Cryptographic support for fault-tolerant distributed computing. In Proceedings
of the 7th workshop on ACM SIGOPS European Workshop, pages 109–114. ACM
Press, 1996.

[127] Shivakant Mishra. Consul: a communication substrate for fault-tolerant distributed
programs. PhD thesis, University of Arizona, Tucson, AZ, USA, 1992.

[128] Ajay Mohindra, Apratim Purakayastha, and Prasannaa Thati. Exploiting non-
determinism for reliability of mobile agent systems. In Proceedings of the 2000
International Conference on Dependable Systems and Networks, pages 144–156.
IEEE Computer Society, 2000.

[129] George C. Necula. Proof-carrying code. In Proceedings of the 24th Symposium on
Principles of Programming Langauges, pages 106–119, January 1997.

175

[130] John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N. Nelson,
and Brent B. Welch. The Sprite network operating system. IEEE-CS Computer,
21(2):23–36, 1988.

[131] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP
throughput: a simple model and its empirical validation. In Proceedings of the Ap-
plications, technologies, architectures, and protocols for computer communication,
pages 303–314. ACM Press, 1998.

[132] Holger Pals, Stefan Petri, and Claus Grewe. FANTOMAS: Fault tolerance for
mobile agents in clusters. In Proceedings of the 2000 Workshop on Parallel and
Distributed Processing, pages 1236–1247. Springer-Verlag, 2000.

[133] Vern Paxson. End-to-end routing behavior in the Internet. In Proceedings of the
Applications, technologies, architectures, and protocols for computer communica-
tions, pages 25–38. ACM Press, 1996.

[134] Vern Paxson. Measurements and Analysis of End-to-end Internet Dynamics. PhD
thesis, University of California Berkeley, 1997.

[135] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980.

[136] Charles E. Perkins. Mobile networking through mobile IP. IEEE Internet
Computing, 2(1):58–69, 1998.

[137] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A Blueprint
for Introducing Disruptive Technology into the Internet. In Proceedings of the
HotNets–I, Princeton, New Jersey, October 2002.

[138] Gian Pietro Picco. µcode: A lightweight and flexible mobile code toolkit. In
Proceedings of the 2nd International Workshop on Mobile Agents, Lecture Notes
in Computer Science, pages 160–171. Springer-Verlag, 1998.

[139] Sridhar Pingali, Don Towsley, and James F. Kurose. A comparison of sender-
initiated and receiver-initiated reliable multicast protocols. In Proceedings of
the SIGMETRICS international conference on measurement and modeling of
computer systems, pages 221–230. ACM Press, 1994.

[140] Stefan Pleisch and Andre Schiper. FATOMAS - a fault-tolerant mobile agent
system based on the agent-dependent approach. In Proceedings of the 2001
International Conference on Dependable Systems and Networks, pages 215–224.
IEEE Computer Society, 2001.

[141] Stefan Pleisch and Andre Schiper. Approaches to fault-tolerant and transactional
mobile agent execution—an algorithmic view. ACM Computing Survey, 36(3):219–
262, 2004.

176

[142] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel.
LOCUS: a network transparent, high reliability distributed system. In Proceedings
of the 8th Symposium on Operating Systems Principles, pages 169–177. ACM
Press, 1981.

[143] Michael L. Powell and Barton P. Miller. Process migration in DEMOS/MP. In
Proceedings of the 9th Symposium on Operating Systems Principles, pages 110–
119. ACM Press, 1983.

[144] Venugopalan Ramasubramanian and Emin Gün Sirer. Beehive: O(1)lookup
performance for power-law query distributions in peer-to-peer overlays. In
Proceedings of the 1st conference on Symposium on Networked Systems Design
and Implementation - Volume 1, pages 8–8, Berkeley, CA, USA, 2004. USENIX
Association.

[145] Richard F. Rashid and George G. Robertson. Accent: A communication oriented
network operating system kernel. In Proceedings of the 8th Symposium on
Operating Systems Principles, pages 64–75. ACM Press, 1981.

[146] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4). RFC 1654, Internet
Engineering Task Force, July 1994.

[147] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. BGP routing stability of
popular destinations. In Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment, pages 197–202. ACM Press, 2002.

[148] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling
churn in a DHT. In Proceedings of the 2004 Usenix Annual Technical Conference,
pages 10–10, June 2004.

[149] Aleta M. Ricciardi and Kenneth P. Birman. Using process groups to implement
failure detection in asynchronous environments. In Proceedings of the 10th ACM
Symposium on Principles of Distributed Computing, pages 341–353. ACM Press,
1991.

[150] Luis Rodrigues and Paulo Verissimo. xAMp: A multi-primitive group commu-
nications service. In Proceedings of the 11th Symposium on Reliable Distributed
Systems, pages 112–121, 1992.

[151] K. Rothermel and M. Strasser. A fault-tolerant protocol for providing the exactly-
once property of mobile agents. In Proceedings of the 17th IEEE Symposium on
Reliable Distributed Systems, page 100. IEEE Computer Society, 1998.

[152] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture Notes in
Computer Science, 2218:329–350, 2001.

177

[153] Laura Sabel and Keith Marzullo. Simulating fail-stop in asynchronous distributed
systems. In Proceedings of the 13th Symposium on Principles of Distributed
Computing, page 399. ACM Press, 1994.

[154] J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[155] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S.
Lam, and Mendel Rosenblum. Optimizing the migration of virtual computers. In
Proceedings of the 5th Symposium on Operating Systems Design and Implementa-
tion, pages 377–390. ACM Press, 2002.

[156] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach
to designing fault-tolerant computing systems. ACM Transactions on Computer
Systems, 1(3):222–238, 1983.

[157] Fred B. Schneider. Byzantine generals in action: implementing fail-stop processors.
ACM Transactions on Computer Systems, 2(2):145–154, 1984.

[158] Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Computing Surveys, 22(4):299–319, 1990.

[159] Fred B. Schneider. Towards fault-tolerant and secure agentry. In Proceedings of
the 11th International Workshop on Distributed Algorithms, pages 1–14. Springer-
Verlag, 1997.

[160] Fred B. Schneider, David Gries, and Richard D. Schlichting. Fault-tolerant
broadcasts. Science of Computer Programming, 4(1):1–15, 1984.

[161] Aman Shaikh and Albert Greenberg. OSPF Monitoring: Architecture, Design
and Deployment Experience. In Proceedings of the 1st Symposium on Networked
Systems Design and Implementation, March 2004.

[162] Gary Shao, Francine Berman, and Rich Wolski. Master/slave computing on the
grid. In Proceedings of the 9th Heterogeneous Computing Workshop, page 3. IEEE
Computer Society, 2000.

[163] John F. Shoch and Jon A. Hupp. The ”worm” programs — early experience with
a distributed computation. In Mobility: processes, computers, and agents, pages
18–27. ACM Press/Addison-Wesley Publishing Company, New York, NY, USA,
1999.

[164] Flavio M. Assis Silva and Sven Krause. A distributed transaction model based
on mobile agents. In Proceedings of the 1st International Workshop on Mobile
Agents, pages 198–209. Springer-Verlag, 1997.

[165] Luis Moura Silva, Vitor Batista, and Joao Gabriel Silva. Fault-tolerant execution
of mobile agents. In Proceedings of the 2000 International Conference on
Dependable Systems and Networks, pages 135–143. IEEE Computer Society, 2000.

178

[166] Larry Smarr and Charles E. Catlett. Metacomputing. Communications of the
ACM, 35(6):44–52, 1992.

[167] Eugene H. Spafford. The Internet worm program: An analysis. SIGCOMM
Computer Communication Review, 19(1):17–57, 1989.

[168] James W. Stamos and David K. Gifford. Remote evaluation. ACM Transactions
on Programming Languages and Systems, 12(4):537–564, 1990.

[169] Rick Stevens, Michael E. Papka, and Terry Disz. Prototyping the workspaces of
the future. IEEE Internet Computing, 07(4):51–58, 2003.

[170] Ion Stoica, Robert Morris, David Karger, Frans F. Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for Internet applications.
SIGCOMM Computer Communication Review, 31(4):149–160, October 2001.

[171] Nils P. Sudmann and Dag Johansen. Adding mobility to non-mobile web robots.
In Proceedings of the ICDCS 2000 Workshop of Knowledge Discovery and Data
Mining in the World-Wide Web, pages F73–F79, 2000.

[172] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing
I/O devices on VMware workstation’s hosted virtual machine monitor. In
Proceedings of the 2002 USENIX Annual Technical Conference, pages 1–14.
USENIX Association, 2001.

[173] Jeremy Sussman and Keith Marzullo. The bancomat problem: an example of
resource allocation in a partitionable asynchronous system. Theoretical Computer
Science, 291(1):103–131, 2003.

[174] John K. Taylor and Cheryl Cihon. Statistical Techniques for Data Analysis, Second
Edition. Chapman & Hall/CRC, 2004.

[175] Steffen Viken Valv̊ag, Åge Kvalnes, and Kjetil Jacobsen. POSH: Python object
sharing. In PyCon 2003, 2003.

[176] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high
throughput and availability. In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation, pages 91–104. USENIX Association, 2004.

[177] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent route
oscillations in inter-domain routing. Computer Networks, 32(1):1–16, January
2000.

[178] Sankararaman Venkatesh, Bapu Bindhumadhava, and Amrit Bhandari. Imple-
mentation of automated grid software management tool: A mobile agent based
approach. In Proceedings of the International Conference on Information &
Knowledge Engineering, pages 208–216. CSREA Press, 2006.

179

[179] C. Villamizar, R. Chandra, and R. Govindan. BGP route flap damping. RFC
2439, Internet Engineering Task Force, November 1998.

[180] Alan S. Wagner, Halsur V. Sreekantaswamy, and Samuel T. Chanson. Performance
models for the processor farm paradigm. IEEE Transactions on Parallel and
Distributed Systems, 8(5):475–489, 1997.

[181] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Efficient software-based fault isolation. SIGOPS Operating System Review,
27(5):203–216, December 1993.

[182] Jim White. Telescript technology: The foundation for the electronic marketplace.
General Magic white paper. General Magic Inc. 1994.

[183] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data replication
algorithm. ACM Transactions on Database Systems, 22(2):255–314, 1997.

[184] Jian Wu, Z. Morley Mao, Jennifer Rexford, and Jia Wang. Finding a needle in a
haystack: Pinpointing significant BGP routing changes in an IP network. In Pro-
ceedings of the 2nd Symposium on Networked Systems Design and Implementation,
May 2005.

[185] Edward Zayas. Attacking the process migration bottleneck. In Proceedings of the
11th Symposium on Operating Systems Principles, pages 13–24. ACM Press, 1987.

[186] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph,
and John D. Kubiatowicz. Tapestry: A global-scale overlay for rapid service
deployment. IEEE Journal on Selected Areas in Communications, 2003.

180

Appendix A

Publications

This dissertation is based on the work presented in the following three publications:

Publication I

Kjetil Jacobsen, Dag Johansen. Ubiquotous Devices United: Enabling Distributed
Computing Through Mobile Code. In Proceedings of the 1999 ACM Symposium on
Applied Computing (ACM SAC ’99), pages 399–404.

In this paper we devise an architecture that enables cellular phones as interacting
clients in a distributed system. Through GSM text messages, the cellular phone is
used submit tiny programs called weather-alarms for execution at an extensible server
running TACOMA. When weather alarms are triggered, a notification is sent back to
the user with a GSM text message. The paper shows that mobile code is a convenient
tool for integrating clients with extremely limited computational power and asymmetric
network capabilities. The paper does not address mobile agent fault-tolerance, but
motivates the need for such fault-tolerance given the limited possibility of the client
performing recovery. The system is described in Section 2.2 as part of our background
survey.

Publication II

Dag Johansen, Keith Marzullo, Fred B. Schneider, Kjetil Jacobsen, Dmitrii Zagorodnov.
NAP: Practical Fault-Tolerance for Itinerant Computations. In Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems (ICDCS’99), pages
180–189.

In this paper we present the first version NAP. The paper was one of the first publications
on mobile agent fault-tolerance based on the primary-backup approach. The work on
the NAP protocol in this dissertation is based on the experiences from the first version
of NAP.

181

Publication III

Kjetil Jacobsen, Xianan Zhang, Keith Marzullo. Group membership and wide-area
master-worker computations. In Proceedings of the 23rd IEEE International Conference
on Distributed Computing Systems (ICDCS’03), pages 570–579.

Group communications systems have been designed to provide an infrastructure for
fault-tolerance in distributed systems, including wide-area systems. In our work on
master-worker computation for GriPhyN, which is a large project in the area of the
computational grid, we asked the question should we build our wide-area master-worker
computation using wide-area group communications? This paper explains why we
decided doing so was not a good idea. The paper presents results from running the
simulations of algorithm AX and WAMW, and shows that the degree of asymmetric
and non-transitive communication is a significant factor for the performance of wide-
area group communication. The main parts of this paper are described in Chapter 3, 4
and 5.

Other Publications

During the course of the study for this dissertation, the author also contributed to the
following publications, which are related but not part of this dissertation:

• Dag Johansen, K̊are J. Lauvset, Robbert van Renesse, Fred B. Schneider, Nils P.
Sudmann, Kjetil Jacobsen. A Tacoma Retrospective. In Software: Practice and
Experience, Volume 32, Issue 6, 2002.

• K̊are J. Lauvset, Kjetil Jacobsen, Dag Johansen, Keith Marzullo. Separating
Mobility from Mobile Agents. Position summary in Proceedings of the Eight
Workshop on Hot Topics in Operating Systems (HotOS-VIII’01), May 2001.

• Steffen Viken Valv̊ag, Åge Kvalnes, Kjetil Jacobsen. POSH: Python Object
SHaring. In PyCon DC 2003, March 2003.

182

183

ISBN 978-82-8236-042-5

