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Abstract 

 

Temperatures at 90 km altitude above Ramfjordmoen (69°N, 19°E) have been obtained with 

the Nippon/Norwegian Tromsø Meteor Radar. The temperatures have been derived from 

meteor radar decay rates using two techniques: the pressure based and the temperature 

gradient based methods. The results have been compared to the Microwave Limb Sounder 

(MLS) instrument on board the Aura spacecraft. It was found that the pressure method was 

simpler to implement than the temperature gradient method and gave better results in relation 

to the MLS temperatures. With the use of a technique for statistical comparison of geophysical 

data, the intrinsic uncertainty of the radar temperatures was estimated to be less than 4 K. 

Two attempts to combine the two techniques in order to measure both temperatures and 

pressure with the meteor radar have been carried out. One of the approaches proved to be 

feasible and gave promising results. This indicates that the meteor radar may have the potential 

of producing continuous temperature and pressure measurements virtually independent of 

external data.    

A new collocated sodium lidar is introduced and some initial comparisons are carried out 

between the two instruments. At times there were large discrepancies, but more data is 

necessary in order to obtain reliable results.   

Finally, some possible uses of the radar temperatures are proposed. A method for investigating 

long term trends is discussed in detail. The data available resulted in a trend of - 2.2 K per 

decade, but more data is required to establish the trend at the 95 % confidence level. It was 

estimated that there is a 90 % probability of detecting a significant non-zero trend after 

approximately 13 years. 
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Chapter 1:  Introduction 

 

Lately there has been an increasing interest in the atmospheric region around the mesopause. 

The mesopause is the boundary region between the mesosphere and the thermosphere. The 

height of the mesopause varies from 80 to 100 km, depending on the latitude and season. One 

of the main reasons for the increased focus on the upper atmosphere is that society is 

becoming more and more dependent on space based technology such as satellite 

communication and navigation systems. Radio waves are distorted when they pass through the 

ionosphere, the ionized part of the upper atmosphere. Accurate information on the structure of 

the upper atmosphere is therefore important in order to ensure good performance in systems 

like the Global Positioning System (GPS). Another reason for the increased attention is the 

growing realisation of the importance of the coupling between the mesopause and the 

neighbouring layers.  

The mesopause houses several interesting phenomena. At high latitudes in the summer there is 

large scale upwelling of air, which causes extremely cold temperatures in the mesopause due to 

adiabatic cooling. The mesopause is actually the coldest place on earth, with temperatures that 

could reach down to around -140 °C in the summer (Garcia and Solomon, 1985). Another 

interesting phenomenon in the mesopause region is the occurrence of polar mesospheric 

clouds. These are the highest clouds in the atmosphere, and are called noctilucent clouds when 

visible from the ground. The name noctilucent clouds means ‘clouds that shines at night’. The 

clouds can be seen when light is reflected from ice particles in the clouds, and the sun has set 

on the lower atmosphere. A related phenomenon is polar mesospheric summer echoes (PMSE), 

which are anomalous radar echoes found in the artic mesopause region during the summer. 

Our knowledge about the PMSEs is poor, but they are thought to be caused by water vapour 

that nucleates into ice crystals because of the extremely cold temperatures in the mesopause. 

More knowledge about the physical conditions in the mesopause region will be important in 

order to fully understand these phenomena. 
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At the height of the mesopause, carbon dioxide is too thin to contain the earth’s outgoing 

infrared radiation, but it will still absorb energy from collisions with the ambient gas. Some of 

the absorbed energy will be lost to space through radiation. Due to this, the temperature in the 

mesopause is expected to decrease as carbon dioxide levels rise (Laštovička, et al., 2008). 

The mesosphere and lower thermosphere, together called MLT, are regions of the atmosphere 

which are very hard to explore. The region is too high for balloons to reach, and too low even 

for the lowest satellite orbits. This leaves rockets as the only method to do in situ 

measurements. Unfortunately, the use of rockets is very expensive and time consuming. 

Rockets are therefore highly unsuitable for long continuous temperature measurements of the 

mesopause. Because of its inaccessibility, the knowledge about the mesopause is sparse. This 

applies especially to high latitudes, where harsh climate and limited infrastructure limit the 

research activity. 

The mesopause may be less complicated than the underlying atmosphere. There are less local 

effects that can affect measurements, and the solar influence is particularly low in the 

mesopause. This might make it easier to determine the cause of potential trends in the 

measurements, and therefore make the region ideal for investigation of climate change. 

In this paper temperature measurements at 90 km altitude will be obtained using data from the 

Nippon/Norway Tromsø Meteor Radar (NTMR) located at Ramfjordmoen, Norway (69°N, 19°E). 

The temperature retrieval method will be based upon the method used by Dyrland, Hall, 

Mulligan, Tsutsumi, and Sigernes (2010) for a similar radar at Adventdalen, Spitsbergen (78°N, 

16°E). An alternative approach developed by Hocking (1999) is also investigated, and the 

possibilities of combining the methods are evaluated.  

At the beginning of this paper, the most commonly used techniques for temperature 

measurement at this height are reviewed and compared to the properties of the radar. Then 

the details on the radar and the theory of radar echoes from meteor trails are presented. 

Thereafter the main focus will be on the techniques for temperature acquisition with the radar 

and comparing the results with other independent instruments. Lastly, the value of the meteor 

radar temperatures is evaluated and possible ways to utilize the results are considered. 
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Chapter 2:  Various measurement techniques for the mesopause 

 

In the last decades a number of different remote sensing techniques have been developed to 

measure the temperature in the mesopause region, each with their own individual advantages 

and disadvantages.  Technological advances in lasers and sensors have led to many ground 

based optical systems. Some of the most used techniques will be discussed below, including 

space missions and the meteor radar. 

2.1 Hydroxyl rotational temperature 

One of the oldest and most applied optical techniques measures the hydroxyl (OH) rotational 

temperature. The temperature is obtained by looking at the relative intensities of the spectral 

lines of the OH airglow emission. This emission emanates from layers of hydroxyl at an average 

height of 87 km and an average thickness of 8km (Sigernes, et al., 2003). 

There are however some uncertainties regarding the accuracy of the technique. Some older 

measurements used interference filters to look at the spectral lines. These filters are known to 

have poor long term stability, and thus make the data less suitable for trend studies (Beig, et al., 

2003). However, this is not the case with modern OH airglow measurements. The main 

uncertainty with this technique lies in the determination of the height of the hydroxyl layer, 

which in extreme cases has been measured to be up to 10 km lower than the mean height of 87 

km (Winick, et al., 2009). These variations will introduce great errors if not taken into account. 

Since these measurements are passive measurements of the airglow, the height has to be 

determined by an independent system. In addition, the OH airglow is emitted from a layer of 

which thickness and vertical distribution varies, making the height determination more 

complicated. The OH rotational temperature measurement itself usually has very good 

accuracy, and it has commonly been accepted to be equal to the neutral temperature. 

However, new research by Cosby and Slanger (2007) suggests that this might not be the case 

after all. 
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2.2 Lidar systems 

A potassium lidar (K-lidar) is an optical system that can measure the temperature by looking at 

the Doppler broadening of emission lines from potassium. This technique typically has a 

resolution of 1 km in height and a temperature uncertainty around 3K (Höffner and Lübken, 

2007). The relatively small uncertainties are the main advantage of the K-lidar. Some lidars can 

measure during day time with the use of daylight filters, but as most other optical systems, they 

depend on clear sky. Another disadvantage of many lidars is that they often require operation 

by personnel, which is expensive and impractical in areas with rough weather conditions. 

Another high precision optical system is the Sodium lidar (Na-lidar). This lidar measures the 

temperature from the Doppler broadening of the backscattered signal from sodium atoms. Its 

properties are generally very similar to the K-lidar. In 2010 such a sodium lidar was installed 

right next to the meteor radar. Temperature measurements have not been the main focus of 

the lidar, but measurements for some days were acquired for comparison. The details of this 

comparison will be discussed in Chapter 9.   

2.3 Falling sphere 

The falling sphere method is a technique where a rocket carries a folded sphere to around 110 

km altitude. The sphere is then dropped and unfolded. By accurately monitoring the fall of the 

sphere, one can deduce a profile of the atmospheric density. Temperatures can then be 

obtained by integrating the density profiles. Clearly, one of the biggest weaknesses of the 

technique is that the measurements are very sporadic in time. Another weakness is that the 

integration requires knowledge of the initial conditions at the beginning of the drop. The effect 

of the initial conditions decreases downward with height, so that the temperatures are 

accurate one to two scale heights below the drop height. The initial conditions are generally not 

known, but the effect of the initial conditions tends to vanish when the iteration is repeated 

(Lübken, et al., 1994). Falling sphere measurements will be used several times later in the 

thesis.  
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2.4 Space missions 

The large focus on the MLT region has led to several space missions. One of the first missions 

launched was the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) 

satellite, which is a NASA mission launched in 2001. Its objective is to investigate the energy 

transfer in and out of the Mesosphere and Lower Thermosphere/Ionosphere (MLTI) region. It 

also contributes to research on the basic structure of the mesopause, including temperature 

measurements. 

Another NASA satellite with long temperature records is the Aura satellite. This satellite was 

launched in 2004. Aura’s tasks are to answer questions about changes in the atmosphere and 

monitor air quality. One of its main objectives is to keep track of changes in the ozone layer. On 

board the Aura space craft is the Microwave Limb Sounder (MLS) instrument which measures 

the temperature in the MLT region. Dyrland et al. (2010) chose to use the temperatures from 

the Aura satellite as a source of calibration for the meteor radar on Svalbard, mainly because it 

has better temporal cover of the radars location.  

A more recent mission is the Aeronomy of Ice in the Mesosphere (AIM) satellite. This satellite’s 

main objective is to explore the phenomena of Polar Mesospheric Clouds (PMCs). To better 

understand the nature of these clouds and how they form, the satellite will measure the 

thermal and chemical properties of the mesopause region in which the clouds form. The AIM 

mission was launched in 2007 and therefore the temperature record was too short to be used 

in previous calibrations of the meteor radar temperatures. At the time of writing, the satellite 

has collected data for almost four years and it might be considered used for future calibrations. 

The main advantage of satellites is the global coverage, unlike ground stations which measure 

the region just above their location. Unfortunately, satellites have limited lifetimes due to orbit 

instabilities, system failures and fuel limitations. This makes it difficult to provide continuous 

measurements needed for long term studies. In fact, many satellite missions have lifetimes 

shorter than a solar cycle, which lasts about 11 years. 
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2.5 Advantages of the meteor radar 

The limitations of the optical instruments are the very strength of the radar. The meteor radar 

does not need clear sky, and can run year round with very little maintenance and supervision. It 

can make 30 minute average measurements, making it suitable for investigation of both 

intraday variations and long term variations. An advantage of the meteor radar compared to 

airglow observations is that the radar measures the height and the temperature 

simultaneously. The radar itself is relatively inexpensive compared to other systems, and also 

measures other valuable scientific parameters such as wind speed and meteor flux. A network 

of meteor radars could run uninterrupted for a very long time and produce relatively good 

spatial cover.  

2.6 Disadvantages of the meteor radar 

The main disadvantage of the meteor radar is that it depends on other parameters in order to 

produce temperatures. For instance the pressure method discussed in Chapter 6 depends on 

the pressure in order to estimate the temperature. Large uncertainties in these input 

parameters might cause unacceptably large errors in the temperatures. The techniques for 

temperature acquisition with meteor radars are fairly new, thus comparisons against other 

instruments are required to validate the results. Following the example of Dyrland et al. (2010), 

the temperatures from the Microwave Limb Sounder on board the Aura space craft will be used 

for comparison. 
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Chapter 3:  Description of the meteor radar 

 

The data used in this paper are obtained by the Nippon/Norway Tromsø Meteor Radar (NTMR), 

located close to Tromsø at Ramfjordmoen, Norway (69.4°N, 19°E). The radar was installed in 

November 2003 and is jointly operated by Tromsø Geophysical Observatory (TGO) and National 

Institute for Polar Research (NIPR, Japan). 

The radar consists of five receiving antennas and one transmitting antenna which operate in 

the very high frequency regime (VHF) at 30.25 MHz. The field of view of the radar is 

approximately 70° off zenith. Receiving antennas are arranged in a cross, as illustrated in Figure 

1, enabling the radar to measure winds speeds and position in the sky through interferometric 

techniques. All antennas are 3-element crossed Yagi antennas. 

 

Figure 1: Sketch of the radars antennas arrangement.    

The peak power is 7.5 kW, but the average power is only around 500 W and the power is 

spread out over a large part of the sky in order to detect as many meteors as possible. This 

results in a very low radiation hazard, which minimizes the need for supervision and facilitates 

automatic operation. 



8 
 

 

 

Figure 2: One of the six identical crossed Yagi-antennas of the Nippon/Norway Tromsø Meteor Radar.  

The earth’s great orbital velocity causes more meteors to be swept up in the direction of travel 

than there are meteors catching up with the earth. This will cause a diurnal variation in echo 

occurrences, especially at low latitudes. The high latitude of this radar causes it to observe less 

diurnal variation because the observations will almost always be done at high angles to the 

earth’s direction of travel.  

The fundamental measurement of the radar is the decay time of the meteor echo. The radar 

also measures the time it takes for the transmitted pulse to return to the radar, which gives the 

distance between the meteor and the radar. The configuration of the receiving antennas makes 

it possible to calculate the position in the sky, which can be used together with the distance to 

obtain the altitude of the meteor trails. The radar has a height resolution of 1 km. 
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The output data from the radar relevant to temperature measurements includes time of 

acquirement, altitude, zenith angle, azimuth angle, error code and decay time for each meteor 

detected. The error code is an indication that the detected signal is not suited for temperature 

analysis purposes, and should therefore be excluded from further analysis. Some of the 

detections with error codes will be unsuitable meteor echoes, but many will also be non-

meteoric detections or detections with various analysis errors. A full list of the 16 error criteria 

used by the radar is found in Holdsworth and Reid (2002) and is reprinted here in Table 1. The 

same paper also said that when events have zenith angles larger than 70°, the height of the 

meteors are considered ambiguous. The events are however not assigned an error code as they 

may be useful in some analyses. In this case the height is important, thus all events with error 

codes or zenith angles larger than 70° are therefore removed before further analysis. The error 

codes reduce the total number of events by approximately 40%. Despite this, an average of 

over 12,000 meteors is left for further analysis. 

Table 1: Rejection criteria for the Nippon/Norway Tromsø Meteor Radar 

Criterion Explanation 

1 SNR < 12 dB 

2 Angle of arrival (AOA) may be unambiguously determined (unused) 

3 AOA estimate is not feasible 

4 Large difference in AOAs obtained from different antenna baselines 

5 Event at start or end of time series 

6 Length of event time too short for analysis 

7 Event rise time too long to be a meteor 

8 Decay time less than twice rise time  

9 Power level before meteor event large 

10 Power level after meteor event large 

11 Poor fit to amplitude for estimation of decay time 

12 Poor fit to cross correlation function (CCF) phase variation 

13 Range and AOA estimate does not yield a height within the expected height range 
(70 to 110 km) 14 Range and AOA estimate yield more than one height within expected height range 

15 Radial velocity exceeds 200 m/s 

16 Oscillatory, indicating event is most likely not underdense 
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Chapter 4:  Radio wave scattering from meteor trails 

 

There are mainly two ways in which portions of a transmitted radar beam can return back to 

the receiving antennas. One instance is when the radar beam is reflected from a surface layer, 

similar to how light is reflected by a mirror. The other situation occurs when small fractions of 

the radar beam are absorbed and backscattered from charged particles in the atmosphere.     

A certain change in the refractive index is required in order to reflect the radar waves. The 

refractive index n is a measure of the speed of electromagnetic radiation through a substance 

defined by 

 

  
 

 
 , (1) 

where c is the speed of light in vacuum and   is the phase speed through the medium. The ratio 

R of reflected radiation is for two materials denoted with indices one and two in the case of 

normal incidence angle given by 

 

  (
     

     
)
 

 (2) 

This means that a bigger difference between the refractive indexes will increase the amount of 

radiation that is reflected. The atmosphere has very weak variations in the refractive index, and 

it will normally be transparent to radars, but the meteors that frequently enter the earth’s 

atmosphere set up the conditions needed by the radar.   

Meteors travel through the vacuum of space at very high velocities. When they enter the 

earth’s atmosphere, the air in front of the meteors compresses very quickly. The compression 

instantly heats the air to temperatures high enough for it to ionize. The heat and friction will 

completely ablate most meteors before they reach the ground. The plasma in the trail is what 
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makes it possible to receive the returned signal at ground, because there is a change in the 

refractive index between the ionized plasma in the trail and the ambient neural atmosphere.    

The refractive index of the meteor trail depends on the free electron density. Together with 

Equation (2), this means that a stronger gradient in the free electron density will increase the 

reflectivity. The gradient needed for reflection is dependent on the frequency of the radar. 

Higher frequencies require stronger gradients to be reflected.  

4.1 Diffusion of the meteor trail 

The reflected power from a meteor trail will fade away and eventually disappear. This is 

because the plasma in the meteor trail diffuses much like the condensation trail from an 

aeroplane. Diffusion is the movement of atoms or molecules from an area of higher 

concentration to an area of lower concentration. The process continues until the differences in 

the concentrations are equalized, thus also removing the gradient needed to reflect the radio 

wave. Diffusion is driven by the thermal motion of the particles and its speed also depends on 

the viscosity of the involved matter. The fact that the diffusion is independent of the magnitude 

of the concentration makes it easier to link the speed of the diffusion to the temperature. 

The ions in the meteor trail are much heavier than the electrons. The ions will therefore have 

much lower thermal velocities than electrons at the same temperature. Because of this, one 

might think that the electrons would diffuse faster than the ions, but both ions and electrons 

will diffuse at the same rate. The reason for this is that the equations of diffusion assume that 

there are no other forces acting on the system. In a meteor trail there are electric forces 

between the ions and electrons that have to be taken into account. What actually happens is 

that the initial fast diffusion of the electrons, cause a separation from the slow ions. This sets up 

an electric field, which will speed up the ions and slow down the electrons. Such diffusion of 

charged particles is called ambipolar diffusion. The result is that both electrons and ions diffuse 

at a rate which is somewhere between the rate that one diffuses without the other. 
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4.2 Overdense echoes 

An overdense meteor trail is a trail where the plasma frequency is higher than the radar 

frequency (McKinley, 1961). An overdense echo occurs when the radar beam is reflected from a 

surface layer of an overdense meteor trail. The plasma frequency is proportional to the electron 

density. Since bigger meteors usually create trails with high electron densities, the overdense 

meteors are likely to be large. Figure 3 illustrates the cross section of a trail where the electron 

density in the central part is high enough for the radio wave to get reflected. Surrounding the 

dense part of the trail is a layer of underdense plasma. As the trail diffuses the overdense part 

expands, creating a larger surface available to reflect the radar beam. Eventually, the expansion 

will cause the electron density to decrease to a level insufficient for surface reflection. If 

temperatures were to be obtained using overdense meteors, one would have to look at how 

the diffusion increases the diameter of the overdense part of the trail. Unfortunately, the 

overdense trails can last for several seconds, making the trails prone to distortions by wind. The 

relatively small flux of incoming overdense meteors along with the risk of distortions makes 

them unsuitable for temperature measurements.  
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Figure 3: Illustration of the cross section of a meteor trail. The highly ionized central part is overdense and the less 
dense surrounding part is underdense. 

 

4.3 Underdense echoes 

An underdense meteor is a meteor where the radio wave is not reflected at the surface, but 

rather penetrates into the trail and scatters from individual electrons. These meteors are 

smaller and much more numerous than the overdense meteors. The underdense meteors 

normally weigh less than 10-6 kg and have a radius less than 10-3 m (Havnes and Sigernes, 

2005). Some of the radiation scattered from the electrons will be backscattered to the meteor 

radar. In such cases the received signal will rise in a few hundredths of a second and then 

decline with an exponential decay as illustrated in Figure 4. The total evolution of signals from 

underdense meteors lasts no more than a few tenths of a second, thus making them less 

exposed to distortions by winds. The fading time of these echoes depends mainly on the 

ambipolar diffusion, which itself is dependent on the temperature.  
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Figure 4: Sketch of the received power from an underdense meteor echo as a function of time. The signal is 
characterized by a step rise in the received power, followed by an exponential decay. 

 

4.4 Frequency dependency 

The frequency choice of the radar depends on two criteria. First of all, the frequency has to be 

high enough to penetrate the meteor trail, such that the signal is backscattered from the 

electrons inside trail. Higher frequency will therefore increase the amount of underdense 

echoes, but too high frequencies will result in lower backscattered power, shorter fading times 

of the echoes and lower the maximum observation height (Hall, et al., 2006). Lower 

backscattered power will reduce the amount of detected meteors and therefore aggravate the 

statistics. Also, if the frequency is too low, there is a risk of group retardation or complete 

reflection of the signal by the ambient ionosphere (Hall, et al., 2006). In addition, a lower 

frequency is more prone to refraction and thus increasing the uncertainty in the altitude.  
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4.5 Decay time and ambipolar diffusion coefficient 

Now the decay time will be defined and a relationship between the decay time and the 

ambipolar diffusion coefficient will be established. If there were no diffusion and the meteor 

trail had no thickness, the backscattered power received by the radar would according to 

diffraction theory be (McKinley, 1961): 

 

                         (
 

  
)
 

 
     

 
   (3) 

where    and    are the received and transmitted power,    and    are the transmitting and 

receiving gain of the antenna, q is the electron line density of the trail,    is the wavelength of 

the radar,    is the perpendicular distance to the trail and C and S are Fresnel integrals from 

diffraction theory. Further, it will be assumed that the radial density of electrons in the trail is 

Gaussian. Simulations done by Jones (1995) showed that the initial electron density of the trail 

is not Gaussian, but rather has a compact core surrounded by a less dense distribution of 

electrons. The same paper also showed that correcting for the distribution does not change the 

resulting expression of the decay time. Using the Gaussian distribution McKinley (1961) showed 

that the ratio of the received power at time t, PR (t), over the ideal scattered power, PR (0), from 

the case of no diffusion in Equation (4) is given by 
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A is the amplitude of the signal, Da is the ambipolar diffusion coefficient and r0 is the initial 

radius. The first exponential in this expression describes the immediate attenuation due to the 

finite initial radius of the trail. The second exponential is time dependent and tells us how the 

power decays as a function of time. The decay time is usually defined as the time it takes for 

the power to fall by 1/e2 or amplitude to fall by 1/e. By solving for which t the exponential 

equals 1/e one gets an expression for the decay time  : 
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An expression for the ambipolar diffusion coefficient is then easily obtained by rearranging the 

above equation. 

 

   
  

       
 (6) 

It should be noted that some authors use different definitions for the decay time. For example 

Hocking, Thayaparan, and Jones (1997) and Kumar (2007) define the decay time as the time it 

takes for the amplitude to fall to half of its original value. 

The above analysis is valid only under the assumption that the expansion of the trail is 

governed by ambipolar diffusion alone. Unfortunately, there are several effects that are known 

to influence the dissipation of the meteor trails. Plasma simulations done by Dyrud, 

Oppenheim, and vom Endt (2001) showed that the density gradients at the edges of the meteor 

trails a few kilometres above 90 km, drive instabilities which create an anomalous diffusion that 

can affect the radar results. Below 90 km there is an increasing risk of underestimating the 

decay time as turbulence may contribute to the dissipation of the meteor trail (Hall, 2002). A 

recent study showed that the decay time for underdense meteor echoes can vary depending on 

the strength of the echo. Although having great influence both below and above 90 km, the 

effect is negligible at 90 km altitude. The study also found that the occurrence of noctilucent 

clouds increases the diffusion rate of the meteor trails at all altitudes (Singer, Latteck, Millan, 

Mitchell and Fielder, 2008). Along with the minimum of disturbing effects at 90 km, it is also the 
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altitude where most meteors are detected with the frequency of this radar. This makes 90 km 

the ideal altitude for temperature measurements with the meteor radar. 
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Chapter 5: Method for statistical comparison of geophysical data 

 

Later in the thesis the temperatures produced by the radar will be compared against the Aura 

MLS temperatures. A common way to determine the relationship between two measurements 

is to apply the least squares regression. A problem with this method is that it assumes that 

there is no uncertainty in one of the datasets. This chapter introduces a method for statistical 

comparison of geophysical data, which was developed by Hocking, Thayaparan and Franke 

(2001b). The main advantage of this technique is that it takes the uncertainties of both datasets 

into account. 

With the standard least squares regression it would be typical to use the Aura temperatures as 

the independent variable with zero uncertainty. Such an assumption would lead to an 

overestimation of the uncertainty in the radar temperatures. The uncertainty of the Aura MLS 

temperatures is stated to be ± 3.5 K (Livesey, et al., 2007).  The method Hocking et al. (2001b) 

developed was originally intended for comparing measurements of one geophysical parameter 

obtained by different instruments, but the technique can replace any standard linear regression 

analysis. 

In the derivation of this technique, the datasets involved will be called X and Y. X is the 

measurements of a parameter V, and Y is measurements which are linearly related to the same 

parameter. In this case, the X could represent the Aura MLS measurements and Y could be the 

radar measurements. The mean of both sets is assumed to be zero. Although this rarely is the 

case, it can easily be achieved by removing the mean value from each dataset. The relationship 

between the two measurements can be written as 

 

              i={1, N} ,  (7) 

where g0 is the gain of Y relative to the parameter V and N is the number of measurements. In 

the following analysis there are two important assumptions. The first is that the measurement 
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errors are normally distributed with zero mean, and the second is that the errors are mutually 

independent.  

The analysis starts by looking at the variances of the datasets. X is equal to V plus some 

normally distributed noise             and similarly               . 

By squaring the datasets and taking the ensemble average one gets:  

 

   
       

           
     

   (8) 

  and    are the standard deviations of the errors. Because we have assumed zero mean 

quantities the above Equation becomes 

 

   
       

     
   (9) 

And similarly for Y we get  

 

   
     

     
     

   (10) 

The same procedure for the crossed terms yields 

 
              

                      

        
   

(11) 

The above Equation can be rearranged with respect to g0 to give  

 

   
        

   
  

 (12) 

At this point the standard least squares method would proceed by assuming that there is no 

uncertainty in the measurements of X. Although this is exactly the assumption that we aim to 
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avoid, it will give results that can be used in the further progress. From Equation (9) it can be 

seen that this assumption means that    
   is equal to    

  . Replacing    
   in the 

equation above gives an expression for the slope, which will be called gx because of the 

assumptions of zero error in the X measurements. 

 

   
        

   
  

 (13) 

Similarly by assuming zero error in the Y measurements we obtain 

 

   
   

  

        
 (14) 

Note that the latter is the inverted slope such that it fits the usual regression line Y = gy   X +c. 

The slope gx corresponds to regression of Y on X and gy corresponds to regression of X on Y. 

None of these are the correct slope g0. In fact gx will always be equal to or less than the true 

slope, and gy will always be equal to or larger than the true slope. The slope g0 is therefore 

always somewhere between gx and gy depending on the assumed uncertainties. In the following 

analysis we will no longer assume zero errors in the measurements, but rather establish a 

relationship between the errors and the true slope. From rearranging Equation (13) with 

respect to the crossed terms one gets 

 

              
   (15) 

From Equation (9) we have that     
    is equal to      

     
  . Now, inserting this 

expression for     
   into Equation (11) and equating with Equation (15) gives 

 

       
     

        
   (16) 

Again, the same approach is applied to the Y dataset 
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   (17) 

The    
   is now eliminated from the equations. Also,     

    and    
   can be 

estimated with their sample expectations 
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This means that there are two equations with three unknowns: g0,    and   . This implies that 

knowledge about one of them will enable us to solve for the others. The last step is to solve 

Equations (16) and (17) with respect to g0 and the standard deviations. This gives the final 

relationships which will be used to estimate the true slope and standard deviations: 
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Chapter 6:  Pressure based method 

 

The aim here is to relate the ambipolar diffusion coefficient from Equation (6) to the neutral 

temperature, and to use this relation to estimate the temperature from the measured decay 

times. The radar temperatures are then compared to the Aura MLS temperatures, followed by 

a discussion on the errors involved with this method. 

6.1 Derivation of the temperature 

The relation between the ambipolar diffusion coefficient and the temperature can be 

established by first looking at the Einstein-Smoluchowski diffusion Equation. This Equation gives 

an expression for the diffusion coefficient Di for an ion species in a neutral gas as 

 

    
       

 
   (24) 

where kB is Boltzmann’s constant, Ti is the ion temperature and K is the zero field ion mobility 

factor of the ion. Mason and McDaniel (1989) showed that the ambipolar diffusion coefficient 

Da in the case of a negligible magnetic field can be expressed as 

 

        
  
  

  (25) 

Te is the electron temperature. After the ablation of the meteor the thermalization of both ions 

and electrons against the ambient atmosphere happens at the order of milliseconds 

(Bronshten, 1983). The two temperatures can therefore be assumed to be equal and the 

ambipolar diffusion coefficient becomes 

 

          (26) 
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The only parameter left in order to solve for the temperature in the Einstein-Smoluchowski 

Equation is the zero field ion mobility factor K. It is defined as a proportionality factor of the 

drift velocity Vd of an ion in a gas when an electric field E is applied. 

 

       (27) 

Unfortunately, K varies a little with the temperature, but the change in K is less than 20% for a 

temperature change of 100 Kelvin (Ceplecha, et al., 1998). It is common to express the ion 

mobility as a function of the reduced ion mobility K0 correcting to standard gas density n0. 

 

     
  

 
 (28) 

With the use of the ideal gas law the ion mobility can be written as 

 

     

  

     

 
    

    
    

    
    

 

 
 
         

      
   (29) 

where the standard temperature T0 is 273 K and the standard pressure P0 is 101.3 kPa. The 

reduced mobility for specific ions can be measured in a laboratory, and these measurements 

can be used to estimate the ion diffusion coefficient. Unfortunately, the exact content of the 

meteor trail is not known and K0 will therefore depend on the ion composition one assumes for 

the meteor trail. As an example the reduced mobility factor for molecular nitrogen ions   
  in 

neutral nitrogen gas is                   (Hocking et al., 1997). For metallic meteor ions the 

corresponding values lie between                   and                   according to 

Jones and Jones (1990).  

By inserting the expression for the ion mobility from Equation (29) into Equation (24), we get 
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   (30) 

The last steps are then to substituting Di with Da and to solve with respect to the temperature, 

which gives the final result: 

 

  √
     

            
 (31) 

This equation shows that in addition to the reduced mobility factor and the measured 

ambipolar diffusion coefficient, the pressure is needed in order to solve for the temperature. 

Unfortunately, the pressure is generally not known and it will vary on both short and long time 

scales. Ideally the decay time and the pressure should be measured simultaneously. As pressure 

measurements in the mesopause are very rare and difficult, one normally has to rely on a 

model for the pressure values. This may introduce quite large errors depending on the quality 

of the pressure model, and it will not take day to day variations into account. The errors 

involved in this method will be discussed in more detail in Section 6.7. 

6.2 Acquiring the pressure model 

For the location of the radar, there are basically three different data sources available in order 

to obtain a pressure model. There are two global coverage models called COSPAR International 

Reference Atmosphere (CIRA) and the Mass-Spectrometer-Incoherent-Scatter (MSIS) model. 

These models can provide atmospheric temperature and mass densities from which the 

pressure can be estimated. The third option is a series of measurements done by Lübken and 

von Zahn (1991) and Lübken (1999). The CIRA model has been criticized for its lack of precision, 

especially at high latitudes. Due to this criticism and the old age, the CIRA model will not be 

considered here. 

6.2.1 The Mass-Spectrometer-Incoherent-Scatter model 

The Mass-Spectrometer-Incoherent-Scatter model describes the neutral temperatures and 

mass densities in the upper atmosphere. The MSIS model is based on data from various sources 
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including rockets, satellites and incoherent scatter radars. The model has the following output 

parameters: total mass density, neutral temperature, exospheric temperature and number 

densities of He, O, N2, O2, Ar and H. There are several versions of this model. The last one is 

named NRLMSIS-00, but in this paper the preceding model MSIS-E90 will be used because the 

accuracy is sufficient for making a raw temperature estimate. Also, the data from the MSIS-E90 

model can easily be obtained online from 

http://omniweb.gsfc.nasa.gov/vitmo/msis_vitmo.html, whereas NRLMSIS-00 requires 

dedicated software. 

6.2.2 Falling sphere measurements  

In 1991, F.-J. Lübken and U. von Zahn published mass densities and temperatures measured at 

Andøya (69°N, 15.5°E), approximately 120 km from Tromsø. Measurements were done mainly 

with falling spheres and a sodium lidar. These measurements are monthly averages for all 

months except April, May and September. In 1999 Lübken published a new paper with a total of 

89 falling sphere measurements done in period from late April to late September. The 

advantage of these measurements is that the measurements are done relatively close to the 

site of the radar, which might be more accurate than the globally fitted MSIS model.  

6.2.3 Calculating the pressure models 

The MSIS-E90 model and the falling sphere data give us the temperatures and the mass 

densities which will be used to calculate the pressure. In Figure 5 the monthly average values 

from the MSIS-E90 model are shown together with the two falling sphere campaigns from 

Andøya. The plots are expected to show a smooth annual variation as the data represents 

climatological values. It is therefore noteworthy that the mass densities from the two falling 

sphere campaigns seem to show a small inconsistency around April and October, where data 

from the two datasets meet. The Lübken and von Zahn measurements done in the winter 

months have less data and it is reasonable to assume that the newer falling sphere data for the 

summer period are of higher quality. It is emphasized that all the data presented in this thesis 

represent an altitude of 90 km.  

http://omniweb.gsfc.nasa.gov/vitmo/msis_vitmo.html
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Figure 5: Mass densities and temperatures at 90 km. The MSIS-E90 model is indicated with blue plus signs. The 
corresponding values of the Lübken and von Zahn campaign is presented with black circles and the latest falling 

sphere measurements by Lübken are shown as red asterisks. 

  

The pressure can then be estimated from the temperatures and the mass densities by assuming 

hydrostatic equilibrium and using the ideal gas law of the following form  

 

  
      

 
   (32) 

where   is the mass density, T is the temperature, kB is Boltzmann constant and M is the 

molecular mass. For simplicity, the molecular mass is assumed to be constant, made up of 20% 

oxygen and 80% Nitrogen. This might be an oversimplification, because the meteor region is 

very close to the homopause. The homopause is a transition region, which is normally situated 

between 80-90 km. Far beneath the homopause turbulence dominates over diffusion processes 

causing the atmosphere to be equally mixed. In the homopause on the other hand, diffusion 
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processes will become increasingly important, thus leading to variations from equal mixing of 

constituents of different molecular masses. 

Another possible source of error is the use of average values of the mass density and the 

temperature in the ideal gas law. This is because the multiplication of the two average values 

not necessarily equals the average pressure. From the ideal gas law, the average pressure 

should be calculated with corresponding mass densities and temperature values as   
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Since only average values are available, the actual calculation becomes  
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From the above expressions it can be seen that  
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  (35) 

Unfortunately, the errors introduced by using the average values are difficult to estimate 

without access to the original measurements. 
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Figure 6 shows the pressure values estimated from Equation (33). The pressure calculated from 

the falling sphere measurements turns out to be lower than the MSIS pressure throughout 

most of the year. It also looks like the inconsistencies between the falling sphere datasets have 

passed on to the pressure estimates, causing some unexpected behaviour in the pressure in 

February and April. 

 

 

Figure 6: Pressure values estimated by Equation (32) using MSIS-E90 and falling sphere data. 

 

The aim is to end produce daily average temperatures, the pressure is therefore needed for all 

days throughout the year. For the MSIS-E90 model this is straightforward, as the data can be 

downloaded as daily averages. The falling sphere measurements on the other hand, have to be 

interpolated to give daily values. 



30 
 

 

Before the pressure estimate from the falling sphere measurements are interpolated, some 

adjustments are needed in order to avoid that the inconsistencies between the datasets cause 

artefacts in the pressure. As previously stated, the older winter measurements are more likely 

to be of poorer quality. The winter measurements are therefore manually adjusted with the 

help of the MSIS-E90 curve to fit with the summer measurements. The result from the adaption 

is shown as a black line in Figure 7. 

   

 

Figure 7: The black line shows how the falling sphere measurements are adjusted in to achieve a smooth annual 
pressure model.  

 

In Figure 8 the daily pressure model obtained from MSIS-E90 data is shown as a blue line. The 

red line in the figure is the result of a cubic spline interpolation of the pressure estimated from 

the falling sphere data. A two way running average has been applied to both of the pressure 
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estimates to obtain smooth annual pressure models. From now on, the pressure models 

obtained by MSIS-E90 and falling sphere data are referred to as MSIS-pressure and FS-pressure 

respectively. It can be seen from Figure 8 that the FS-pressure is lower than the MSIS-pressure. 

It also looks like there is a phase shift between the two models. 

 

Figure 8: The pressure model obtained from falling sphere data is presented by a red line and the pressure model 
from the MSIS-E90 data is shown as a blue line. This difference in the two models is most noteworthy in October, 

November and December where the MSIS model is close to 15% higher.    

 

6.3 The first temperature estimate 

Daily average temperatures will be produced because of the large number of meteors 

throughout a whole day should ensure a good statistical basis. First, the dataset is checked for 

abnormalities. Days where the radar halted temporarily or days with unusually low meteor 

counts are removed. These tests have little influence on the dataset, because the radar has run 

almost continually since it started operating in November 2003. 
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To obtain temperatures representative of 90 km altitude all meteors between 89.5 and 90.5 km 

are selected. This introduces an error, unless the vertical temperature gradient is linear and the 

height distribution of meteors is equally distributed around 90 km. By using a one kilometre 

wide interval the number of meteors that can be used in the temperature estimate drops from 

the total of more than 12 000 to approximately 1000. A smaller interval would reduce this 

number further. Experiments with wider intervals were attempted without improving the 

temperature estimate, indicating that 1000 meteors are enough to produce reliable 

temperatures.   

One of the main reasons for choosing the height of 90 km is that this is very close to the peak of 

the meteor height distribution, and the standard deviation from 90 km is relatively small. For a 

period of six years between 2004 and 2010 the mean peak height of the meteors in the interval 

was 90.004 km and the standard deviation was 0.011 km. For the whole dataset the largest 

deviation from the mean height was 0.081 km. Even for a very steep temperature gradient of 5 

K/km, this would result in a temperature error of only 0.4 K. This error is therefore considered 

negligible at 90 km, but it will cause larger errors at heights above or below this height. 

A value for the reduced ion mobility has to be specified before the temperatures can be 

calculated. The value used by different authors span from                   to     

             . The higher values correspond to metallic ions, while lower values corresponds 

non-metallic ions such as N2
+. The lowest value was suggested by Chilson, Czechowsky, and 

Schmidt (1996), but it has received hard criticism afterwards (e.g. Cervera and Reid, 2000). 

Dyrland et al. (2010) used a value of                  while Hall et al. (2006) and 

Holdsworth et al. (2006) both used a value of                  . Their argument for using 

this value was to be in accordance with Cervera and Reid (2000), but the value used in that 

paper was actually                  . Other authors have also used this value, for example 

Hocking et al. (1997), Takahashi, Nakamura, Tsuda, Buriti and Gobbi (2002) and Kumar (2007). 

Because of this, the value of                   will be used when calculating the 

temperatures. 
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The next step is to convert the measured decay times into ambipolar diffusion coefficients with 

the use of Equation (6). Finally, the coefficients are inserted into Equation (31) together with 

the FS-pressure to produce the first temperature estimate shown in Figure 9. 

 

Figure 9: First estimate of meteor radar temperatures at 90 km using the FS-pressure model. 

 

The same procedure is repeated with the MSIS-pressure model. These temperatures are shown 

in Figure 10, and seem to have quite similar values to the falling sphere version. In order to 

examine the differences closer, the two estimates are smoothed and plotted together in Figure 

11. The red line is the FS-temperatures and the blue line is the MSIS-temperatures. The MSIS-

temperatures are generally higher, but the difference is most noteworthy in the winter. This is 

expected since the deviations in the pressure models are greatest in the winter.  
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Figure 10: First estimate of meteor radar temperatures using the MSIS-pressure model. 
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Figure 11: Comparison of smoothed temperatures produced with the use of the two pressure models. The FS-
pressure model is used to produce the red temperatures and the MSIS-pressure is used to produce the blue 

temperatures.   

 

Both temperature estimates display the expected annual variation with temperatures below 

150 K in the summer and higher temperatures in the winter. Although the estimates look 

promising at first sight, a comparison against an independent instrument is needed in order to 

evaluate the temperatures and determine which estimate is better.  

Thoroughly validated data from the Aura MLS instrument was kindly provided by Margit 

Dyrland at the University of Svalbard. At the location of the meteor radar the Aura satellite 

measures the temperature on two times during the day. The first period is around 2 AM and 

the other around 11 AM. Figure 12 shows in more detail the periods when the Aura 

temperatures were recorded in 2006.  
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Aura measurements within one day were then averaged, bearing in mind that these values may 

not represent daily averages. Selecting radar measurements done at the same time of the day 

as the Aura measurements greatly reduces the amount of meteors and had no noteworthy 

effect on the result. This might be an indication that the two measurement periods of the Aura 

satellite represents daily averages quite well. Daily averages of the radar temperatures will 

therefore be used when compared with Aura MLS.     

 

Figure 12: Time of acquisition of the Aura MLS temperatures above the location of the radar. 

 

The Aura MLS measurements at 90 km altitude have an observed scatter of ± 3.5 K and an 

observed bias of -9 K (Livesey et al., 2007; French and Mulligan, 2010). Therefore 9 K is added to 

all temperatures in the Aura dataset.  

In order to increase the number of available measurements from the Aura satellite, data from 

an area around the radar location had to be accepted. The maximum radial distance was set to 
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610 km, thus the distance between the centres of the two measurements can be quite large. 

The horizontal resolution of the Aura MLS instrument is 220 km, and the radar’s field of view at 

90 km altitude is 250 km. This means that some of the measurements will not overlap. In Table 

2 some statistics on the spatial distribution of Aura’s measurements are listed. The standard 

deviation in latitude from the radar location is 3°, which is equal to a distance of more than 300 

km. The maximum deviation in latitude is 4.9° or 550 km. 

 

Table 2: Statistics on the spatial distribution of the Aura temperature acquirements 

 Latitude Longitude 

Location of the radar 69.58° 19.22° 

Mean 69.86°    18.92° 

Standard deviation 3°     8° 

Max  74.3° 35.0° 

Min 64.7°   3.0° 

   

A comparison of the NTMR temperatures obtained with the MSIS-pressure and the 

temperatures from the Aura MLS instrument is shown in Figure 13.  The temperatures show a 

similar annual variation, but the radar temperatures are higher at all times. In Figure 14 the 

same comparison is presented, only this time the FS-pressure is used to calculate the 

temperatures. The radar temperatures are considerably lower this time and therefore match 

better with the Aura MLS temperatures. It is reasonable to suspect that the poor match in the 

winter temperatures is caused by a lower data quality in the winter falling sphere 

measurements. As mentioned earlier, the FS-pressure model was estimated from 

measurements done at a site close to the radar, while the MSIS model is based on data from 

sites located mainly at low- to mid-latitude. Also, the MSIS-E90 model has been reported to 

conflict with several rocket studies in the mesopause region (Hedin, 1991). Due to this, and the 

better match against the Aura MLS instrument, the temperatures produced with the FS-

pressure will be used in the forthcoming analysis.  
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Figure 13: First estimate temperatures obtained with the MSIS-pressure and the Aura MLS temperatures. The 
radar temperatures seem to be overestimated at all times, especially during the winter. 
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Figure 14: Radar temperatures obtained with the FS-pressure together with temperatures from the Aura satellite. 
The radar temperatures show a reasonably good match in the summer, but are overestimated in the winter 

 

To get a better look at the small scale variations, a new plot is made with data from 2007 only. 

Also included in the plot is a linearly interpolated version of the falling sphere climatology. It is 

evident that the radar temperatures are far superior to the falling sphere temperatures in the 

summer. This is somewhat surprising since the falling sphere summer measurements were 

thought to be of higher quality than the winter measurements.    
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Figure 15: Comparison of the radar, Aura MLS and falling sphere temperatures. Most conspicuous is the deviations 
of the falling sphere temperatures in the summer, which are much lower that both the Aura MLS and the radar 

temperatures. 

 

 

6.4 Calibration against Aura data 

The goal here is to use regression techniques to quantify how well the radar temperatures 

match the Aura MLS temperatures and then calibrate the radar data.  

The first step is to select coinciding measurements and make a scatterplot of the radar 

temperatures versus the Aura temperatures. To begin with, the uncertainty in the Aura MLS 

measurements is assumed to be zero. The standard least squares regression analysis resulted in 

the following relationship between the two temperatures. 



41 
 

 

 

                      (36) 

The uncertainty in the slope is ± 0.01 and the uncertainty in the intercept is ± 1 K. The resulting 

scatterplot in Figure 16 also shows the results of the linear regression as a black line. The 

coefficient of determination R2 is 0.92, meaning that the linear regression model explains 92% 

of the relation between the temperatures. The root mean square error is ± 7.2 K, which is very 

close to the uncertainty that Dyrland et al. (2010) obtained for the similar radar at Svalbard. 

Two significant figures will be kept in order to make comparisons of upcoming results easier. In 

this case, the estimator is unbiased and therefore the standard deviation will be identical to the 

root mean square error. The standard deviation explains how much the radar measurements 

deviate from the AURA measurements. 68.3 % of the radar measurements will have deviations 

less than one standard deviation if the data is normally distributed. Likewise, 95.5 % of the 

radar measurements will have deviations less than two standard deviations, which in this case 

is 14.4 K.  

Eminent in the scatter plot is the slightly curved data. This suggests that the relationship 

between the measurements is not strictly linear. Dyrland et al. (2010) pointed out that there 

are two clusters of measurements, one of low summer temperatures and one of high winter 

temperatures. They also performed linear regression on both sets individually, showing that 

there are two different relationships for the summer and winter measurements. The reason for 

the difference is not clear, but it might be caused by errors in the pressure model. The fact that 

the winter measurements by Lübken and von Zahn (1991) are older, less numerous and 

obtained in an independent campaign points in that direction. Other possible causes could be 

violations of the ideal gas or constant molecular mass assumptions used to derive the pressure. 

The effects of fitting a non-linear curve to the scatter plot will be investigated in Chapter 6.5. 
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Figure 16: Scatterplot of the radar temperatures versus the Aura MLS temperatures. The black line in the plot is 
the least squares regression line.   

 

By inverting the relationship in Equation (36) we obtain the following linear equation that is 

used to calibrate the radar temperatures. 

 
                           (37) 

The result of the calibration is shown in Figure 17. The calibration has clearly made the winter 

temperatures match better with the Aura MLS temperatures. The highest radar temperatures 

are still slightly higher than the highest Aura temperatures. 
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Figure 17: Comparison of the linearly calibrated radar temperatures and Aura MLS temperatures. The linear 
calibration lowers the temperatures to a level much closer to the Aura temperatures.  

 

Now, performing the least squares regression on the linearly calibrated temperatures yields a 

standard deviation is ± 6.4 K. An important assumption in the least squares method is that the 

uncertainty is equal for all measurements. If this is a reasonable assumption the standard 

deviation can be used as an estimate of the uncertainty in the radar measurements, but it will 

only be correct if the Aura MLS temperatures are the true temperatures. Before the Aura MLS 

uncertainty is included in the analysis, two non-linear calibration techniques will be evaluated.  

6.5 Nonlinear calibration 

From the curved scatter plot in Figure 16 it was suggested that a non-linear regression could 

explain the relation between the two instruments better. In this chapter the regression will first 

be fitted to a second degree polynomial, and then an exponential curve.  
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The resulting second degree polynomial regression curve is shown in Figure 18 and has the 

following coefficients 

 
                  

                 (38) 

Solving this equation with respect to       yields the calibration Equation 

 

              
      √                                     

        
 (39) 

 

A visual comparison of the linearly calibrated temperatures in Figure 17 and the polynomially 

calibrated temperatures in Figure 19 gives the impression that the polynomial calibration gives 

a better result.  

 

Figure 18: Scatterplot of the radar temperatures versus the Aura MLS temperatures. The black curve is the second 
degree polynomial regression curve.  
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Figure 19: Comparison of the polynomially calibrated radar temperatures and the Aura MLS temperatures. 

 

The coefficient of determination for the polynomially calibrated temperatures is 0.936 and the 

root mean square error is 5.7 K, which is 0.7 K lower than what was achieved with the linearly 

calibrated temperatures. The regression results confirm that the polynomial calibration gives a 

better result than the linear calibration.   

Now, an exponential calibration will be examined. The exponential relation we seek is on the 

form                 , where A and B are the regression constants. The least squares 

method is very difficult to apply directly on this expression. Fortunately, the expression can be 

linearized by taking the natural logarithm of both sides. The standard least squares method can 

then be applied directly on the following expression                           . One 

way to see the effect of such a calibration is to plot the logarithm of the radar temperatures 
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versus the Aura temperatures, as done in Figure 20. A visual inspection of the result shows that 

the relation between the temperatures is more linear in this case compared to the original 

scatterplot in Figure 16. It is therefore reasonable to expect an improvement relative to the 

linear calibration, but more details are needed in order to undergo a proper comparison.  

 

Figure 20: Scatterplot of the logarithm of the radar temperatures versus the Aura MLS temperatures 

 

Applying the least squares method on the data in Figure 20 gives the following results: 

 
                             (40) 

The exponential regression curve then becomes 
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                           (41) 

This regression curve is shown together with the scatter plot in Figure 21.  

 

Figure 21: Scatter plot of NTMR temperatures and the Aura MLS temperatures with the corresponding exponential 
regression curve. 

To obtain the calibration expression, Equation (41) is solved with respect to the Aura 

temperature to give 

 

            
 

      
                  (42) 

The temperatures calibrated with this equation are plotted together with the Aura MLS 

temperatures in Figure 22. A regression analysis of the calibrated temperatures resulted in an 
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R2 value of 0.932, which is slightly lower than the polynomially calibrated temperatures. The 

root mean square error from the Aura MLS Temperatures is ± 5.9 K 

 

Figure 22: Exponentially calibrated temperatures compared to the Aura MLS temperatures. 

 

An overview of the statistics for the different calibrations is presented in Table 3. Altogether, 

the polynomially calibrated temperatures gave the best result with the highest coefficient of 

determination and the smallest root mean squared error.  

As mentioned earlier, the root mean squared error in Table 3 only represents the uncertainty of 

the radar measurements in the case where the Aura temperatures represent the true 

temperatures. By applying the statistical comparison technique from Chapter 5, a more correct 

value of the root mean squared error in the radar temperatures can be obtained. The root 

mean squared error of the polynomially calibrated temperatures is reduced to ± 4.5 K. The 

actual error will in fact be even lower because the deviations caused by the fact that the 
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instruments are not measuring the exact same area at the exact same period of time are still 

embedded in this value. It is very difficult to say how much this difference contributes to the 

total error, but the uncertainty estimate obtained with this method can be seen as an upper 

limit of the true intrinsic error of the radar. 

Table 3: Summarization of regression results of raw and calibrated temperatures 

Calibration method R2 Root mean squared error [K] 

None 0.920 7.2 

Linear 0.920 6.4 

Second degree 0.936 5.7 

Exponential 0.932 5.9 

Second degree with  
Aura error incorporated 

0.936 4.5 

  

6.6 Decay time limits 

Hocking et al. (1997) and Holdsworth et al. (2006) applied several criteria to their data before 

the temperatures were calculated. Several of the criteria are similar to those used by the NTMR 

radar but a closer look at the raw data reveals that some of the measurements still have very 

unrealistic decay time values. Hocking (1997) excluded all measurements with decay times 

longer than 0.3 seconds or shorter than 0.025 seconds. The decay time definition used was half 

time amplitude decay, thus similar limits for the  
 

 
 decay time would be a little longer. 

Holdsworth et al. (2006) on the other hand, used the values of 0.6 seconds and 0.02 seconds as 

the upper and lower decay time limits.  

To investigate the effect of excluding very high or low values, a new temperature estimate is 

calculated with upper and lower limits on the decay time. The warmest temperatures reported 

by Aura MLS were around 220 K, and the coldest were about 130 K. To ensure that no realistic 

measurements are removed, only decay times resulting in temperatures higher than 300 K in 

the winter and lower than 50 K in the summer are rejected. The pressures in the winter and 

summer are approximately 0.18 and 0.12 Pa respectively. Inserting these temperatures and 
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pressure values into Equation (31) and (7) gives an upper decay time limit of 1.87 seconds and a 

lower limit of 0.078 seconds. 

The raw temperatures produced with these criteria applied are shown in Figure 23. The result 

looks very promising, especially when looking at the highest temperatures. An R2 value of 0.939 

and a standard deviation of ± 5.8 K confirm that the temperatures produced with the decay 

time limits are considerably better than the ones produced without. When the statistical 

comparison method is used to incorporate the Aura MLS uncertainty, the estimate of the 

intrinsic error of the radar temperatures is reduced to ± 4.6 K 

Again, the polynomial calibration is applied, and the resulting temperatures are presented in 

Figure 24. It is evident that there is less scatter in the temperatures this time. The red Aura MLS 

temperatures almost completely cover the blue radar temperatures. The root mean square 

error has decreased to ± 5.1 K. The coefficient of determination has also improved, now 

indicating that the linear regression explains 94.8 % of the relation between the polynomially 

calibrated Radar temperatures and the Aura MLS temperatures. By applying the statistical 

comparison technique on the calibrated temperatures, the standard deviation is estimated to ± 

3.8 K. The intrinsic uncertainty of the radar measurements is therefore estimated to be less 

than 4 K. The regression results are summarized in Table 4, along with the results obtained 

without decay time limits for comparison. It should be noted that the uncertainty estimate of 

the radar temperatures is only valid if the uncertainty in the Aura MLS measurements is ± 3.5 K. 

For example, if the Aura MLS uncertainty is overestimated, then the radar uncertainty will be 

underestimated. 

Experiments with other decay time limits found that the results were moderately sensitive to 

the value of the chosen limits. As stated earlier, Hocking et al. (1997) and Holdsworth et al. 

(2006) used two differet sets of limits for two different radars. This might be an indication that 

the decay time limits have to be specified for the particular radar systems, and may be viewed 

as a part of the calibration of the radar. 
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Figure 23: Comparison of radar versus Aura MLS temperatures. Uppper and lower decay time limits have been 
aplied to the radar data. There is less variation compared to the case without limits, especialy in the winter.   
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Figure 24: Polynomially calibrated radar temperatures produced with decay time limits plotted together with the 
Aura MLS temperatures for comparison.  

 

Table 4: The coefficient of determination R
2
 and root mean square error for the temperatures calculated with 

upper and lower decay time limits. In the bottom part the values obtaind withouts decay time limits are reprinted 
for comparison. 

   Calibration method R2 Root mean square error 
[K] 

With decay time limits 

None 0.939    5.8 

None - With Aura error 
incorporated 

0.939 4.6 

Second degree polynomial 0.948     5.1 
Second degree - with 
Aura error incorporated 

0.948     3.8 

Without decay time 
limits 

None 0.920 7.2 

Second degree polynomial 0.936 5.7 
Second degree with 
Aura error incorporated 

0.936 4.5 
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6.7 Pressure and ion mobility induced error 

In this section the error introduced by the pressure model and the reduced ion mobility K0 will 

be discussed. The error caused by the estimate of the decay time and thereby Da is assumed to 

be zero. 

The equation for the squared error in the temperature is 
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where the errors are assumed to be random. It is also very likely that both the pressure models 

and the reduced ion mobility have systematic error components. Now, with the use of Equation 

(31) the above expression becomes 
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The error in the temperature is then found by solving the partial differentials and taking the 

square root on both sides 
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(45) 

 

With little knowledge about the standard deviation of either the pressure or the reduced ion 

mobility, the error introduced by a standard deviation of 5 % in both is calculated. With the use 

of Equation (45), this corresponds to a relative error of 3.5 % in the temperature. Since the 
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temperatures vary with the season, the magnitude of the error will also vary with the season. 

The size of the error is therefore calculated for both the winter and the summer conditions. The 

standard deviation in the temperatures is in this case ± 8 K in the winter, and ± 5 K in the 

summer.  

The disadvantage of using a pressure model is that it cannot take short time scales variations 

into account. This will definitely introduce random errors in the pressure, even if the average 

values of the models are correct. There are very few measurements of the pressure at this 

altitude, especially of variations on short timescales. It is therefore very hard to say anything 

about what kind of spatial and temporal variations that could be expected. The pressure at 

ground level is not likely to change with more than 3 % within a day, and a similar variation in 

the meteor region would result in a temperature error of 1.5 % or a maximum of 3.3 K in 

winter. The systematic error in the pressure model is unfortunately even more difficult to 

estimate. In section 6.2.3 it was suggested that the pressure model most probably is more 

accurate in the summer, thus implying that the systematic error will vary with the season.  

The value of the reduced ion mobility factor depends on the ion composition of the meteor 

trail. The content of the incoming meteors is likely to vary and therefore introduce random 

errors. Holdsworth et al. (2006) found that there was a bias in the temperatures during the 

Southern Delta Aquariids meteor shower. This bias might occur because the meteors in this 

shower have a different composition and therefore create trails with different ion mobilities. 

As discussed in section 6.1, the reduced ion mobility values used by different authors spans 

from                   to                  . The majority of the authors agree on the 

latter value, but in a worst case scenario where the true value is off by         , the 

systematic error in the temperature would be 14 % or about 30 K in the winter. The 

temperatures produced previously had uncertainties far less than this, making such a large 

offset highly unlikely. Even so, the reduced ion mobility might be the source of a systematic 

error. 
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Table 5: Numerically calculated temperature errors based on a 5 % error in both the pressure and the reduced ion 
mobility. The errors were calculated for the winter of 2006/2007 and the summer of 2007. 

 
June and July 2007          Dec 2006 and Jan 2007 

Mean diffusion coefficient [m2/s] 2.6 5.1 

Mean temperature [K] 152 223 

Mean pressure [Pa] 0.124 0.16 

   from 5 % error in both P and K0 5 K 8 K 

Relative error                           3.5 %  3.5 % 
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Chapter 7:  Temperature gradient based method 

 

The second method for obtaining neutral temperatures with the meteor radar is called the 

temperature gradient method. The advantage of this technique is that it does not depend on 

knowledge of the pressure. However, as the name implies, it does require the mean vertical 

temperature gradient. The resulting temperature, called TG-temperature from now on, is a 

weighted average over the height distribution of meteors. This is commonly accepted to 

represent the height of maximum meteor occurrences (e.g. Hocking, 1999; Holdsworth, et al., 

2006; Kumar, 2007). The altitude of the temperatures produced by this method will therefore 

vary with the peak of the meteor height distribution, but the temperatures may be adjusted to 

90 km altitude if the deviations are small. The mean peak height in the period from 2004 to 

2010 was 90.3 km, and the standard deviation was 0.8 km. The peak height is therefore very 

close to 90 km for the frequency of this radar, and should therefore be ideal to produce 

temperatures at 90 km altitude. 

 

7.1 Derivation of the temperature 

The derivation of this technique was first done by Hocking (1999), and it begins with the result 

of the pressure based method, namely Equation (31): 
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The technique is based upon expressing the temperature as a function of height with the use of 

the vertical temperature gradient and the temperature at the peak height (T0). 
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Here the vertical coordinate z’ is introduced, which is the height defined to be zero at the 

meteor peak height. The pressure can then be expressed by the hypsometric equation as 
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This equation assumes that both the temperature and gravity are constant. While this is a good 

approximation for the gravity, it is clear that the temperature will vary. Hocking (1999) justified 

the use of this assumption by arguing that the pressure changes much faster with height than 

the temperature. Now, substituting the expression for the temperature into the hypsometric 

equation gives 
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The next steps are to square Equation (46) to avoid the square root and to insert the 

expressions for the pressure and temperature. Then, taking the natural logarithm of both sides 

gives 
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where C is the constant                            . The next move is to rearrange the 

equation such that Da is left on the side. 
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The final steps are to differentiate this Equation with respect to z’ and then evaluate it at the 

peak height z’=0. 
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Evaluating at z’=0 gives 
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(53) 

 

The value of the expression on the left side can be estimated from the slope of the scatterplot 

of log (Da) versus z’. This value is commonly called 
 

  
, where the subscripted m stands for mean. 

Finally, the temperature can be found by rearranging Equation (53) with respect to the 

temperature 
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7.2 Calculating Sm 

Since  
 

 
  is proportional to Da , the gradient Sm can be found by calculating the best fit line from 

a scatterplot of height versus log (Da) or log(
 

 
). In Figure 25 the latter is used to produce an 

example of such a scatterplot with data from the entire period the radar has been operating. A 

large portion of the scatter stems from natural seasonal variation, but even without the 

seasonal variations there are substantial amounts of scatter in the data. Therefore, several 

thousands of meteors are needed in order to get a reliable estimate of Sm (Singer, et al., 2004b). 

As previously mentioned, the NTMR radar has since its inception detected on average more 

than 12,000 usable meteors per day, and should therefore be capable of producing good 

temperature estimates with the temperature gradient technique. 

 

Figure 25: Example of a scatterplot of height versus    (
 

 
). The data in the plot span the period from September 

2003 to June 2011. A large portion of the scatter stems from natural seasonal variation.  
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Hocking et al. (1997) pointed out that various instrumental errors will lead to errors to the 

measured heights. In order to compensate for these errors a method for bias adjustment was 

introduced. Holdsworth et al. (2006) used the statistical comparison technique from Chapter 5 

instead of the bias adjustment, arguing that the method takes the height measurement error 

directly into account when making the fit. This approach is adopted here, since the statistical 

comparison technique is easy to apply and works as both bias adjustment and regression 

analysis in one. A disadvantage with both methods is that the value of the slope Sm depends on 

the assumed errors in the height and the decay time measurements. Greater uncertainty in log 

(
 

 
) increases the value of Sm which results in higher temperatures. 

Daily average temperatures will be produced in order to easily compare the result with the 

temperatures produced with the pressure method. In addition to the data criteria used in the 

pressure based method, all meteors above 100 km are discarded because the magnetic field is 

likely to affect the trail diffusion at these heights (Dyrud et al., 2001). The daily average 

correlation coefficient of height versus log (
 

 
) for the NTMR radar was 0.71, which is very 

similar to results reported by Hocking (2004) and others. 

 

7.3 Gradient model 

All that remains in order to calculate the temperatures with Equation (54) is the vertical 

temperature gradient. As with the pressure, the knowledge about the temperature gradient is 

very limited. Again, a model has to be used in the lack of better options. The falling sphere 

measurements that were used to obtain the pressure model can also be used to derive a 

gradient model. Unfortunately, some of the temperature profiles in Lübken and von Zahn 

(1991) stop at 90 km, thus impeding the calculation of gradients at 90 km. Since there were 

fewer measurements in the winter to begin with, one would expect poor accuracy in the winter 

season with this model. 

In the search for an alternative gradient model, Doctor Werner Singer at the Leibniz-Institute of 

Atmospheric Physics was contacted. He has applied the temperature gradient technique to data 
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from a meteor radar at Andøya, the same location as the falling sphere measurements. Doctor 

Singer supplied the gradient model used in the Singer et al. (2004b) paper, which will be called 

the Singer model hereafter. This model is an adjusted version of a gradient model for mid-

latitudes that has been cross-checked with the falling sphere climatology (W. Singer, personal 

communication, July 8, 2011). For comparison, the gradients are also obtained from the MSIS-

E90 model. All three models are shown in Figure 26. The Singer gradients are generally of lower 

value than both the MSIS-gradients and the FS-gradients, especially in the summer. This is 

somewhat surprising since the Singer model has been cross-checked against the falling sphere 

climatology. Both the MSIS-gradients and the Singer gradients display a smooth seasonal 

variation, but the FS-gradients clearly suffer from an insufficient number of measurements. 

Also, the FS-gradient model has some inconsistencies in April and October, where the 

measurements from two campaigns are joined.   

 

Figure 26: The three gradient models for 90 km altitude above the radar.  
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7.4 Calculating the temperatures 

Before the temperatures are calculated one issue with the method has to be addressed. As 

previously mentioned, the value of the slope Sm will depend on the assumed uncertainty in the 

height and decay time measurements. Since the gradient models have large deviations, there 

will not be one set of uncertainties suiting all the models. A good estimate of the uncertainties 

should therefore make it possible to determine which gradient model is better. With the use of 

the statistical comparison technique from Chapter 5 an estimate of one of the uncertainties will 

allow for the determination of the other uncertainty and the bias adjusted slope.  

Because little information on the uncertainty of the decay time measurements is available, an 

attempt to estimate the uncertainty in the height measurements will be conducted. The 

uncertainty in height will depend on the pulse length and the angular resolution of the radar. 

Unfortunately, the uncertainty caused by the pulse length of the radar is not straightforward, 

because the radar beam consists of two 4-bit coded pulses. Holdsworth and Reid (2002) stated 

that the transmited pulse length is between 100 to 4000 meters long. With little detailed 

information on the uncertainties of either the pulse length or the angular resolution, the values 

of 2 km and 1.5° respectively will be assumed in order to proceed. With the help of Figure 27 

the height uncertainty caused by the pulse length can be found as            , where θ is 

the angle between zenith and the meteor. The height H of a measurement can be calculated 

as          , where R is the range given by         . The height difference caused by a 

change in angle of δθ is then 

 

                         
 

      
                    (55) 

The mean height is 90 km and the mean zenith angle observed at all heights is very close to 50°. 

The height uncertainty caused by the pulse length at this average angle is ± 1.3 km and the 

uncertainty caused by an angular error of 1.5° is 2.8 km. Adding these two uncertainties gives 
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   √                 (56) 

 

 

Figure 27: Sketch of parameters used to estimate the height uncertainty of the radar.  

 

In Figure 28 the temperatures calculated with the height uncertainty of 3.1 km and the FS-

gradient model are presented. The temperatures are extremely high. In fact, the errors are so 

large that they cannot be caused by an improper gradient model alone. It can only be assumed 

that the attempt to estimate the height uncertainty failed.  
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The uncertainty of ± 3.1 km in height corresponded to an uncertainty of ± 0.23 in log (
 

 
). 

Holdsworth et al. (2006) used an error of ± 0.14 for the measurement of log (Da), where Da has 

the units of m2/s. Adopting this lower value should result in considerably lower temperatures 

since a lower uncertainty will decrease the values of Sm. First the temperatures are produced 

with this uncertainty and the FS-gradient model, and then the temperatures are the adjusted to 

90 km height. Figure 29 shows that the temperatures are much lower this time.  In Figure 30 

the temperatures calculated with the same uncertainty and the Singer gradient model are 

plotted. Neither of the gradient models gives very good results, but the adopted measurement 

uncertainty greatly improves the temperature estimates. The temperatures acquired with the 

MSIS-gradients were far inferior and are therefore omitted in the text. 

The uncertainty of ± 0.14 in log (
 

 
) corresponds to an uncertainty of ± 4.5 km in height. This 

means that a difference in height uncertainty of 1.4 km results in two tremendously different 

temperature estimates. The method is therefore very sensitive to the assumed uncertainties of 

the instrument. 
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Figure 28: TG temperatures produced with the FS-gradients and an uncertainty in the height measurements of 
±3.1 km. The radar temperatures are overestimated by several hundred Kelvin. 
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Figure 29: TG temperatures produced with the FS-gradients and an uncertainty in the height measurements of 
±4.5 km. 
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Figure 30: TG temperatures produced with the Singer gradient model and a height uncertainty of ± 4.5 km. 

 

Both gradient models give initial temperatures which are underestimated in the summer and 

overestimated in the winter, but the coefficient of determination is relatively good in both 

cases. The highest value of 0.89 was obtained with the Singer model, while the FS-gradient 

model gave a value of 0.86. The Singer model temperatures gave the best result after 

calibration. The calibrated temperatures, shown in Figure 31, have a standard deviation of 7.4 K 

and a coefficient of determination of 0.90. The details of the comparison of the TG 

temperatures against the Aura temperatures are listed in Table 6. 
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Table 6: Statistical comparison of TG temperatures against the Aura MLS temperatures 

Gradient Model Calibration R2 RMSE [K] 

Falling spheres None 0.86 12.7 

Falling spheres Polynomial 0.86     8.6 

Singer None 0.89 11.7 

Singer  Polynomial 0.90 7.4 

 

 

Figure 31: Polynomially calibrated TG temperatures produced with the Singer gradient model compared to the 
Aura MLS temperatures. 
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Chapter 8:  Combining the methods 

 

In the two previous chapters the temperature at 90 km has been calculated by two 

independent methods. A disadvantage to the methods is that they depend on input data from 

other instruments or models. The pressure method for example, needed a pressure model in 

order to work. Such a model will not be able to take into account any variations from the mean, 

such as day to day variations or long term changes like climate change. In this chapter, the 

possibility of combining the gradient method and the pressure method into one self-sustained 

method will be outlined.  

One possible approach is to start by creating height dependent temperatures with the pressure 

method, and then use these temperatures to estimate the vertical temperature gradients 

needed by the gradient method. Even though a pressure model would be used initially, the 

resulting temperature gradients would incorporate both short and long changes inherited from 

the measured decay times. Thereafter, the temperatures are calculated with the gradient 

method. The pressure could then be estimated by inserting these temperatures and the 

measured ambipolar diffusion coefficients into Equation (31). One could also picture an 

iterative process wherein the estimated pressure is used to adjust the pressure model used 

initially. Unfortunately, my attempts to create height dependent temperatures with the 

pressure method failed. Both the MSIS-pressure and the FS-pressure gave temperature 

gradients which were strongly negative at all heights, which clearly is wrong since temperatures 

increase with increasing height above the mesopause.  

Another way to combine the methods is to first calculate the temperatures with the gradient 

method and then use the ideal gas law to estimate the pressure at 90 km. A model of the 

particle number density is needed in order to calculate the pressure with the ideal gas law. This 

pressure estimate can then be used to calculate the temperatures with the pressure method. 

The advantage of these methods is that they obtain both the pressure and the temperature at 

the same time. 
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First, the TG temperatures and the falling sphere mass densities are used to estimate the 

pressure shown in Figure 32. A lot of the variability stems from the uncertainty in the 

temperature measurements. The TG-pressure is compared to the FS-pressure model estimated 

in Chapter 6. 

 

Figure 32: The pressure estimated from the TG temperatures 
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Figure 33: Comparison of the TG-pressure and the FS-pressure.  

   

The pressure estimates match very well, but there are some notable differences in the summer. 

The good match must partially be attributed to the fact that the falling sphere mass density 

measurements were used to produce the pressure. It is therefore curious that the largest 

deviations occurred in the summer where the falling sphere measurements are thought to be 

best. The temperatures calculated with this pressure are shown in Figure 34 together with the 

Aura MLS temperatures. A least squares regression analysis on these data gives a coefficient of 

determination of 0.922 and a standard deviation of ± 5.9 K. This result is close to the 

uncalibrated PB-temperatures. The R2 value is a little bit smaller, but at the same time the 

standard deviation is slightly lower. By taking the Aura MLS uncertainty into account, the 

estimate of the intrinsic standard deviation of the temperatures produced with this method 

becomes ± 4.9 K. 
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Figure 34: Temperatures obtained with the pressure estimated from the temperature gradient method. 

 

It is also recognized that the close match against The Aura MLS measurements partially stems 

from the fact that the TG temperatures have been calibrated against the Aura MLS 

temperatures. At the same time, it should be noted that authors like Hocking et al. (2004) and 

Singer et al. (2004b) were able to obtain TG temperatures with similar accuracies without 

calibration. This suggests that this method has the potential of producing both pressure and 

temperature estimates with high accuracy even without calibration. 
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Chapter 9:  Lidar comparison 

 

Collocated with the meteor radar at Ramfjordmoen is a sodium lidar operated by Professor 

Satonori Nozawa at the Nagoya University in Japan (Tsuda, et al., 2010). A comparison between 

the lidar and the radar was proposed, although there is not a large amount of data to compare 

yet. This is mainly because the lidar is a fairly new installation that started doing measurements 

in October 2010 and temperature measurements have not been the main focus so far. Also, the 

lidar is not able to operate under daylight or cloudy conditions, which greatly restricts the 

runtime. As a consequence of this, the temperature measurements of the lidar have not yet 

been thoroughly validated, at least not compared to the Aura measurements.  

Nozawa were able to obtain lidar temperatures from six periods where the lidar had run 

continuously for several hours. Unfortunately, the radar operated only during five of the six 

periods, leaving only five periods of measurements available for comparison. The lidar 

measurements are 30 minute average values. This should suit the radar well as 30 minutes are 

commonly regarded as the shortest time scale at which the radar can produce reliable 

temperatures. The Aura temperatures should have been included in the comparison, but the 

data at hand does not cover the period of time after the initialization of the lidar. 

The radar automatically produces estimates of the ambipolar diffusion coefficients. These 

estimates are 30 minute averages. These coefficients are used to calculate the temperatures, 

and then the second degree polynomial calibration from Chapter 6 is applied. The period with 

the best match had a correlation coefficient of 0.65 and is presented in Figure 35. The period 

with the lowest correlation of 0.38 is plotted in Figure 36. The plots show that there can be 

rather large discrepancies between the two measurements but they also show similarities in 

the tides. In Figure 37, a scatterplot of all the coinciding data is presented. It is fair to say that 

the scatterplot displays a lot more scatter than what was hoped for. A least square analysis 

results in a correlation coefficient of 0.44 and a root mean squared error of 12.6 K. 



76 
 

 

 

Figure 35: Comparison of lidar and radar temperatures for the period between 19.11.10 15:30 and 20.11.10 06:00. 
The Radar temperatures are shown in blue and the lidar temperatures in red. A line has been drawn between each 

measurement to emphasize the tides. 
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Figure 36: Comparison of lidar and radar temperatures for the period between 08.01.11 16:00 and 09.01.11 06:30. 
These temperatures had a correlation coefficient of 0.36, the lowest of the five comparisons. 
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Figure 37: Scatterplot of radar versus lidar temperatures. The red line is the best fit line with zero uncertainty 
assumed in the radar measurements, and the black line is with zero uncertainty assumed in the lidar 

measurements.  

 

The poor result from the lidar comparison raises doubts on the radar’s ability to produce 30 

minute average temperatures. It was found that the radar detected on average 16 meteors 

every 30 minutes in the height interval between 89.5 and 90.5 km. The lowest count was only 

four meteors and it is possible that this is too few to obtain a reliable temperature estimate. 

However, experiments with increased height interval to increase the number of meteors did 

not improve the results. Also, the radar temperatures are produced with the daily mean 

pressure values only. This may introduce relatively large errors, depending on the size of the 

intraday pressure variations.  
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In Figure 38 the mean temperatures for the five periods are presented. Although, there are too 

few data to perform any accurate analyses on these data, one may note that the deviations are 

almost 16 K for the three last periods.       

 

Figure 38: Period average lidar and radar temperatures.  

 

In addition to the static pressure and the relatively low meteor count, the difference in 

measurement areas of the two instruments might contribute a lot to the discrepancies. At 90 

km height, the radar measures over an area of 192,000 km2, while the beam width of the lidar 

can be considered a point measurement. Both the lidar and the radar measurements show that 

the temperature can change with as much as 30° C within an hour. A large portion of the 

deviations between the instruments could be attributed to the differences in the measuring 

area if there are similar spatial variations in the temperatures. 
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With more data available in the future, it might be concluded that the radar is best suited to do 

measurements on longer time scales and the lidar is better for short time scale measurements. 

There is no doubt that the lidar measurements at the time of writing are too few to undergo a 

proper comparison. Regardless, we recognise that the collocation of these instruments can be 

of great benefit in the future. They have the potential of compensating for each other’s 

weaknesses, and together they can form a valuable platform for observing the mesopause 

region. 
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 Chapter 11:  Application to climate studies  

 

In this chapter the utility value of the meteor radar temperatures is discussed. A method for 

investigating the possibility of a long term trend is presented and the length of the time series 

needed to determine the trend with a 95 % confidence level is estimated. 

A group of researchers observing PMSEs with the collocated European Incoherent Scatter radar 

are interested in the possibility of predicting temperatures in the mesopause region. The 

reason is that PMSEs occur at temperatures below 140 K when turbulent structures and 

sufficient ionisation are present. Therefore, a forecast could help the researchers to optimize 

the radar-time at their disposal. The ability of producing uninterrupted near real time 

temperature measurements could make the meteor radar a valuable instrument in the process 

of estimating future temperatures. 

As mentioned earlier, the availability of data from the mesopause is very poor, thus new data is 

very likely to contribute to the basic knowledge of the region. As seen in the comparison 

against the lidar, the radar may not be the best choice for measurements on small spatial scales 

or short time scales. Its advantage is rather the capability of producing long continuous time 

series with little supervision and low cost. The need for long term measurements is most 

evident in climate change studies, where many years of measurements are needed to extract 

small trends from inherently noisy datasets. Now, it will be outline a procedure to detect long 

term change, and an estimate of the time needed to determine the trend with a confidence 

level of 95 % is calculated.  

It is common to work with monthly average values when examining long term change. 

Therefore, monthly averages are calculated of the polynomially calibrated temperatures from 

section 6.5. Then, all measurements in the dataset belonging to January, February, March and 

so on are averaged. The latter will be called climatological monthly averages to avoid confusion. 

By subtracting the climatological values from the monthly values one gets a measurement of 

how much each month deviates from the overall mean, as well as an effective way to remove 



82 
 

 

the strong seasonal variation in the temperatures. In Figure 39 the monthly excursions from the 

climatological means are presented along with the best fit line obtained with the least squares 

method. The best fit line has a slope of – 5 K per decade, with an uncertainty of ± 1.5 K per 

decade. It is common to use the following expression to decide if a trend is determined at a 95 

% confidence level (Tiao, et al., 1990)  

 
| |

  
   (57) 

ω is the estimated trend and σω is the standard deviation of the trend. In this case, the trend is 

large enough to be significant non-zero. 

 

Figure 39: Monthly deviations from the overall mean. The red line is the best fit trend with a slope of – 5 K per 
decade. 
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Even if the trend line turned out to be significantly non-zero, one could not interpret it as proof 

of climate change. The trend is an estimate of the average change per month only for the 

period for which we have data. Short scale variations as daily and seasonal variations have been 

taken into account, but any variations with timescales longer than the length of the dataset are 

not. One well-known process which greatly affects the temperatures is the solar cycle. The solar 

cycle is a periodic variation in the suns magnetic activity, irradiation, number of sunspots and 

other properties that have a period of about 11 years (Rishbeth and Clilverd, 1999). 

A change in the irradiance from the sun will affect the temperatures on earth, especially in the 

upper atmosphere. In order to examine the effect of the solar cycle, a smoothed version of the 

monthly excursions is plotted in the upper panel of Figure 40 and the international sunspot 

number is plotted in the bottom panel. In this way the link between the temperature and the 

solar cycle becomes clear.  

 

Figure 40: Comparison of monthly temperature excursions and sunspot numbers. 
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The ideal way to remove this variation is to average over several solar cycles. This is one of the 

reasons why detecting climate change requires long time series. The radar has at the time of 

writing collected less than eight years of data, thus such an averaging is not possible. Another 

way to handle the solar cycle is to use the sunspot number. First, a linear regression is 

performed on the monthly excursions versus the sunspot number. The regression coefficients 

are then used to create a new time series, which is subtracted from the monthly excursions.    

The solar cycle adjusted monthly excursions are presented in in Figure 41 along with the trend 

line. The new trend line has a slope of – 2.2 K per decade, with a standard deviation of ± 1.5 K 

per decade. It is noteworthy that this result is less than half of the trend before the solar cycle 

was removed, thus emphasizing the importance of taking the solar cycle into consideration.     

 

Figure 41: Solar cycle adjusted monthly excursions and best fit trend line with a slope of -2.2 K per decade. 
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From the decision rule in Equation (57) it can be seen that the solar cycle adjusted trend is far 

from significantly non-zero. The negative trend is however in in accordance with models 

predicting lower temperatures in the upper atmosphere as the carbon dioxide level rise (Roble 

and Dickinson, 1989). It is obvious that more data is needed in order to increase the certainty of 

the estimated trend. Weatherhead, Stevermer and Schwartz (2002) used the following 

approximate expression for the number of years n needed to determine a trend at the 95 % 

confidence level with a probability of 90 % as 

 

  (
     

| |
 √

   

   
)

 
 

  (58) 

where     is the standard deviation of the noise, and   is the autocorrelation at lag one. Before 

calculating the standard deviation of the noise, any trend in the monthly excursions is removed, 

so that only the noise part remains. From the formula we see that n increases with the noise 

and autocorrelation, and that larger trends are easier to detect than smaller trends. For this 

dataset, the standard deviation of the noise is ± 3 K and the autocorrelation at lag one is 0.006. 

Inserting these values into Equation (58) yields n = 13 years, for the trend of - 2.2 K per decade. 

The main reason for the need of such a long time series is that the trend we seek to determine 

is very small compared to the noise in the dataset. So far, only the average trend has been 

considered, but it is not necessarily such that the trend is equal for all months of the year. In 

Figure 42 the trend for each individual month is presented. The trend seems to vary throughout 

the year. In fact the resulting trends in April and October are strongly positive and the trends in 

January, June and November are strongly negative.    
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Figure 42: The trend per year for all months.  

 

In the above analysis the process has been assumed to be autoregressive and the probability 

distributions have been assumed to be Gaussian. This may not be the case and a more 

thorough analysis of the noise would enable us to take the true probability distribution into 

account as done in Hall, Rypdal and Rypdal (2011).  
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Chapter 10:  Conclusion 

 

Daily temperatures at 90 km have been obtained with the Nippon/Norwegian meteor radar 

using two different methods. The pressure method gave the best result with a standard 

deviation of ± 5.8 K from the Aura MLS temperatures. By calibrating the temperatures with a 

second degree polynomial, the standard deviation was lowered to ± 5.1 K. These results are 

among the best results that have been achieved with meteor radars. However, it is likely that a 

better pressure model would improve the results even further. Compared with previous work, 

there have been made mainly three important improvements. The first was the use of a more 

suitable reduced ion mobility constant. The second was the replacement of the linear 

calibration used previously with a polynomial calibration. The last major improvement was the 

introduction of upper and lower decay time limits.  

A relatively new statistical comparison technique was employed to estimate the intrinsic 

uncertainty of the radar measurements. For the uncalibrated temperatures the intrinsic error 

was estimated to ± 4.6 K and the calibrated temperatures gave a standard deviation of ± 3.8 K. 

The other temperature acquisition technique, the temperature gradient method, gave a very 

poor temperature estimate with standard deviation of ± 11.7 K from the Aura MLS 

temperatures. Despite the low accuracy of the raw temperatures, the standard deviation ended 

up at an acceptable uncertainty of ± 7.4 K after calibration. It is recognized that other authors 

have produced more precise measurements with this method, and more work should allow for 

accurate temperature measurements with this method without calibration. For instance, it is 

possible that the use of the bias correction from Hocking et al. (1997) over the statistical 

comparison method would improve the results. Also, this method will most certainly gain from 

an improved vertical temperature gradient model. The accuracy of both techniques are 

therefore expected to improve with increaced knowledge of the mesopause region. 

In addition to the ability of creating very accurate temperatures both with and without 

calibration, the pressure method is far simpler to implement. The pressure method is therefore 

recommended, subject to an appropriate pressure model. 
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The gradient method should however not be rejected as there are situations where the method 

will be beneficial. This was shown in Chapter 8 when the two methods were combined into one 

method capable of estimating both temperatures and pressure at 90 km altitude. The latter is a 

rather unique capability. However, this approach was still dependent on external data, namely 

the atmospheric number density. A more ideal way to combine the methods into one method 

virtually independent of external data is also suggested. The approach relies on the ability of 

the pressure method to create height dependent temperatures. Unfortunately, attempts at this 

failed for hitherto unknown reasons. Solving this problem may enable a combination of the two 

existing methods into one method capable of measuring both temperatures and pressure 

without the need for input data. 

Throughout the thesis, the Aura MLS instrument has been used for validation of the radar 

temperatures. A new and exciting comparison alternative was introduced in the relatively new 

and collocated sodium lidar. The two instruments had a low average correlation coefficient of 

0.44, but there was not enough data available to perform any proper analyses. The radar 

measures over a much larger spatial scale than the lidar and this is probably one of the main 

reasons for the low correlation. Although the difference in the measured areas may prevent 

direct comparison of the temperatures, it may very well become an advantage as the two 

instruments can fulfil each other’s weaknesses. 

Finally, some possible utilisations of the radar temperatures are discussed. A method for 

investigation of climate change is outlined. The data collected so far gave a trend of - 2.2 K per 

decade with an uncertainty of ± 1.5 K per decade. The large uncertainty of the trend means that 

more data is required in order to determine a non-zero trend at the 95 % confidence level. The 

length of the time series needed to obtain the trend with a probability of 90 % was estimated to 

13 years. It is interesting to note that the negative sign of the preliminary trend is consistent 

with the expected decrease in temperatures with increased amounts of carbon dioxide in the 

upper atmosphere. 
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