
Environment Mobility — Moving the Desktop Around ∗

Dag Johansen
Dept. of Computer Science

University of Tromsø
Norway

dag@cs.uit.no

Håvard Johansen
Dept. of Computer Science

University of Tromsø
Norway

haavardj@cs.uit.no

Robbert van Renesse
Dept. of Computer Science

Cornell University
USA

rvr@cs.cornell.edu

Abstract

In this position paper, we focus on issues related to mid-
dleware support for software mobility in ad hoc and per-
vasive systems. In particular, we are interested in moving
the computational environment of a mobile user following
his trajectory. We present details of WAIFARER, a proto-
type implementation that automatically saves and restores
application level state to support this mobility. Security, in-
tegrity, and fault-tolerance are just some of the key problems
that need to be addressed in the future.

1 Introduction

Pervasive computing is there and growing, but people
still have to switch contexts and move their state around
manually. Hence, mobile users constantly need to create
and personalize their working environments once they move
from one computer to another. A very common, but trivial
example is a user moving current tasks from his office en-
vironment to his home. Before leaving, s/he must manually
store and e-mail documents and references from thesource
computer. Similarly, upon arrival at thedestinationcom-
puter, s/he must parse the e-mails, start specific programs,
open attachments, find bookmarks, maybe install some re-
quired software, integrate with local files and do manual
version controlling.

We are interested in automating this type ofenvironment
mobility. An environment is the set of applications and ser-
vices whose state needs to be captured from the source com-
puter when a user decides to move on. For instance, if a user
is editing a text document, is listening to some mp3 music
in the background, and has his mailer and browser active
on the desktop, the same environment should be recreated
upon arrival at a destination.

∗This project is partially funded by the Research Council of Norway
(IKT-2010 Program).

In a pervasive setting, a user is moving about in a far
more heterogeneous environment. He now carries some
wireless connected, memory rich computer device and
docks into environments along his trajectory. Extra com-
putational, connectivity, and display resources are then bor-
rowed or rented from the destination environment.

The rest of this position paper is structured as follows.
In section 2, we present the design principles we conjec-
ture to be important in a pervasive computing environment.
Based on these principles, we are building and evaluating
prototypes. Software mobility is key among these princi-
ples, and provide a state of the art survey of this area in sec-
tion 3. Next, in section 4, we present some of the prototype
middleware systems we have built to gain initial insights
into this problem domain. In section 5, we outline the main
challenges we have identified for this type of computing in
a pervasive environment. Finally, in section 6, we provide a
summary of this position paper.

2 Our Approach

In WAIF1, we are investigating how to structure next-
generation large-scale pervasive systems [7]. The infras-
tructure we build is much like in Oxygen2 and Aura [3],
but we focus more on how the next generation Internet
can be made programmable and extensible with person-
alized, mobile software. Our goal is to replace the old,
time-consuming pull-based Internet, with a push-based one
delivering high-precision information in a timely manner.
Servers initiating information dissemination can be pro-
grammed by accepting entrant client code and data for exe-
cution [1].

We investigate and apply four design principles in our
pervasive computing environments.

1http://www.waif.cs.uit.no/
2http://www.oxygen.lcs.mit.edu/

1



2.1 Proactive

Principle 1 Pervasive systems should be proactive.

The traditional ways for users of computer systems have
typically involved them to explicitly request, or pull, infor-
mation when needed. As an alternative, we are building
proactivemiddleware systems thatpushinformation to its
users. Other projects like, for instance, Aura [3] also use
proactivity to anticipate requests. Such a structure lends it-
self naturally to information overload problems, so an obvi-
ous research goal is how to achieve both recall and precision
in a proactive environment.

2.2 Personal Overlay Network Systems

Principle 2 A single user should have his private (push-
based) network.

For many years, computers systems were structured to
accommodate many users per computer. In our pervasive
computing model, though, we structure systems initially so
that many computers serve a single user. For each user,
we create apersonaloverlay network system (PONS). This
ad hoc network serves a single user by filtering, fusing and
pushing information based on personal preferences. In ad-
dition, a PONS provides a distributed personal file system
and private compute resources.

2.3 Extensibility

Principle 3 Mobile code should be used to achieve expres-
siveness and upstream evaluation.

A publish/subscribe system like, for instance, Siena [2]
achieves expressiveness by evaluating filter predicates close
to data sources. We advocate a similar, but even more ex-
treme design principle for our pervasive systems. We ac-
tually program the servers by deploying client code at the
data sources. This resembles how we used mobile agents in
TACOMA [6]. As such, a PONS can be created by extend-
ing servers with client code.

2.4 Mobile Computing

Principle 4 Software mobility should be treated as a first
order design principle.

In a pervasive environment, users are on the move as
a rule. Nevertheless, software for mobile users is still de-
signed to be booted and run at a single computer, and never
relocated. Today, you can not move a standard application
in the midst of its execution.

We conjecture that applications and services should be
built following the trajectory of a user, and this without
necessarily moving the computer along. One of our main
research goals is to devise design patterns and templates for
software that can be moved. The rest of this position paper
focuses on this particular problem.

3 State of the Art

Software mobility can be provided technically in a num-
ber of ways, but each approach has its limitations and spe-
cific requirements.

3.1 Move User Interface

One approach is through a remote access model, where
a user logs in remotely to a source computer. Applications
run at the source computer, but the desktop environment
(user interface) is displayed at the destination computer.

The advantage with this approach is simplicity, but it also
has its limitations. It is, for instance, not trivial just to redi-
rect output from a running application to a new computer.
Hence, applications need to be stopped and restarted from
scratch from the destination computer. Since few applica-
tions are state-full, they must be manually brought back to
the state they were in at the source computer. Another prob-
lem is network dependence, with inherent security, perfor-
mance, and partitioning problems.

A variation of the remote computing concept is imple-
mented by the X Window System3 and other thin client mid-
dleware. The graphical user interface of an application can
now be running on a different computer than other parts of
the application. As part of logging off, all open application
sessions are closed. Hence, moving to another destination
implies manually restart of the same applications.

What is neat with this approach, though, is that the X
Window System implements a session manager. This is
used to store application state, so that a restart of the sys-
tem brings the applications back to a state-full state. We
have taken advantage of this concept in our work, and we
refer to section 4 for how we leverage use of this protocol
and session manager.

3.2 Move Hardware

A common approach is to move the source computer to
the destination environment. A mobile user carries his lap-
top around and just plugs it into the destination infrastruc-
ture. Remote applications now need to be restarted, if pos-
sible.

3www.x.org

2



In the pervasive environment we are building, we assume
that a pure hardware solution has its limitations. A PDA or
laptop solution is a compromise for a mobile user, while
we build an environment where the docking environment
provides a much more powerful virtual computer. This en-
vironment is like an ad hoc network that can be leased or
rented. Our portable client hardware will soon be a cellular
phone equipped with WiFi capabilities and Giga-byte mem-
ory.

3.3 Move Computation Along

A third approach is to move applications about. Differ-
ent types of mechanisms for application mobility have been
investigated, process migration one of them. A process mi-
gration mechanism is typically an operating system service
which captures the state of a running process and recreates
it at the destination. Transparency is a goal so that a run-
ning process can be moved atany point in its execution.
State capturing at the process abstraction level requires a
homogeneous hardware infrastructure.

Several systems were built more than a decade ago with
transparent migration support [11, 14, 16], but they never
made it into real production systems4. There are a num-
ber of technical reasons for this, including problems with
pending messages, open files, and host security. The lack of
applicability for process migration mechanisms also made
such techniques less interesting.

Process migration can be supported in a less transpar-
ent way. This has been demonstrated in a system like,
for instance, Condor [9], where programmers manually
insert application-level check-pointing and restart instruc-
tions. This gives application programmers more control
when a process is ready for migration, for instance, right
after a checkpoint has been taken. The check-pointed data
can now be used to restart the application at another com-
puter.

Mobile agent technologies have also been used to move
applications around [4, 6, 8]. An application is implemented
as one or a group of agents. The agent itself decides when
to move.

Most of the mobile agent systems are implemented in
Java and support agents implemented in Java. This limits
the type of applications that can be moved. One exception
is TACOMA, which is built for moving a group of agents
implemented in almost any programming language. This
also includes legacy code and binaries, which makes it use-
ful for bringing a complete desktop environment around.

A central storage like, for instance, a distributed file sys-
tem can be used to move applications around. A user stores

4There is one notable exception, MOSIX (www.mosix.org), but this
system is specialized for parallel computation environments, not for per-
sonal computing.

his files upon departure from the source, and later down-
loads them to the destination computer. Aura uses the dis-
tributed file system Coda [10] to support such nomadic disk
access. Coda has been extended with a client-close proxy
that prefetches and stores volumes of data that can be ac-
cessed by the client.

3.4 Move Data Along

A common approach for moving a desktop environment
around is to move meta-data and application data, but not
the applications. This assumes that applications are already
installed at the destination. This is what many Internet users
do frequently, but manually, by zipping data and e-mailing
files around, or sometimes using the check-in/check-out
support of a version control system. The user either knows
which applications to start at the destination (i.e. his home
computer), or the applications are started automatically by
opening attachments of specific types.

This concept has been automated in Aura by introducing
the taskconcept. A task is an abstraction layer above ap-
plications, but below the user. Its role is to explicitly repre-
sent user intent so that Aura can adapt to or anticipate user
needs. User tasks are explicitly represented as coalitions
of abstract services, so that application data can be check-
pointed through Coda for later restart at another computer.
This way, pervasive applications like, for instance a stan-
dard editor or video-player, do not have to be moved, but
are activated at the destination with application data as in-
put.

4 Our Approach — WAIFARER

A WAIFARER client moves among environments
equipped with extensible servers. Docking into an environ-
ment typically involves off-loading client computations and
running them on an ad hoc network of extensible servers.

One example of an off-loaded computation can be proxy
software connecting back to a source environment. Us-
ing the destination environment for connectivity might save
both battery capacity in the client computer and give better
network bandwidth.

Another example is to use CPU-cycles in the destination
environment. The client can off-load and build, for instance,
an ad hoc, personal grid.

4.1 Data Mobility — Desktop Migration

We have built a series of WAIFARER clients supporting
software mobility. A first prototype usesdata mobilityand
moves tasks around. This gives the user the same desktop
environment whenever he touches base with a new environ-
ment.

3



Upon departure from the source computer, state from
applications like, for instance, mp3 players, games, and
text editors are automatically hoarded and marshaled to an
XML-file.

Next, a USB-memory stick is used for transport between
the environments [13], but the marshaled state can also be
transferred using, for instance, e-mail or FTP. When the
USB-memory is plugged in at the destination computer, the
same applications are restarted with the check-pointed state.
An mp3 song, for instance, is restarted with a specific offset
that was set by the checkpoint mechanism.

Our scheme assumes that the applications already exist
at the destination, a valid assumption today. On most com-
puters, you find the same set of standard browsers, editors,
e-mailers, mp3 players, games and the like. Another limita-
tion with our prototype is that we needed to modify applica-
tions with checkpoint-restart abstractions. Because of these
limitations, our implementation of this approach currently
only supports Python applications linked with a library of
our checkpoint-restart abstractions.

4.2 Wrappers — Desktop Migration

A second prototype implementation also provides task
migration, but applications do not have to be instrumented
with our checkpoint-restart abstractions.

If an application does not write necessary state to a file,
it can be captured and recreated by wrapping techniques.
This means that a wrapper binds to an interface exported
by the application, and uses this to capture and restart it.
Such API’s are commonly found in component-based ap-
plications, such as those using Microsoft COM, or Gnome’s
Bonobo component models. Still, for this approach to
work, it is required that the application exports function-
ality which allows the wrapper to extract and set the correct
type of information.

We have created wrappers for the most common Mi-
crosoft applications [12]. Associated with applications like,
for instance, Powerpoint, Internet Explorer, or Microsoft
Word, is a COM object. Through COM objects, we manage
to capture enough state for later recovery.

The wrappers store state from the applications in atask
description file. This includes a description of the task (i.e.
volume of a music file and its offset), requirements (i.e. for-
mat that the music player must support), and application
data (i.e. an mp3 song). Upon marshaling, the task descrip-
tion file is stored in a distributed file system (or spooled in
a mail system like, for instance, smtp or pop) for later re-
covery. This Python based file system implements file op-
erations as a web service for easy access from any remote
platform or programming language. Enabling the web ser-
vice with SSL for security is easily done, but it has impact
on performance and requires that all clients support SSL.

The main disadvantage with our wrapper approach is that
each application requires a specific wrapper. Also, generat-
ing a task description is not trivial, especially since no stan-
dard for this exist.

4.3 Move Legacy Code Transparently

Our initial WAIFARER implementation and the
one.world Java framework [5] taught us the same les-
son, that applications written for mobility can easily be
migrated. However, such approaches exclude the large
corpus of existing applications not built for mobility. In
addition, this approach is to restrictive with regard to
what programming languages, libraries, and platforms an
application programmer might choose from.

Therefore, we stress even more the potential ability to
move legacy application in our current WAIFARER im-
plementation5. Our goal is that most existing applications
should be movable without any, or minimal changes. Even
if no API for moving an application around is supported
by these legacy applications, we are investigating existing
API’s and protocols to see if we can apply them for our pur-
pose.

In particular, the “X Session Management Protocol”
(XSMP) [15] is an interesting candidate for our migration
problem. This protocol is a well established X-Consortium
standard and is employed by several popular Linux and
Unix desktop environments, like KDE and Gnome.

XSMP introduces the concept of a persistent session of
running applications. That is, if an application needs to be
terminated as a consequence of a user logout, a session man-
ager (SM) will ask it to save its state and terminate. The
application is also required to provide the SM with a restart
command, which, when executed, will bring the application
back to its former state.

A SM is required to provide a private data storage to each
application. While the XSMP does not impose any limita-
tion on the amount or type of data that a client can store in
the SM, transferring large state, like a mpeg video, can be
impractical. A more common usage is for an application to
write its state in a local file and then store only the path to
this file in the SM. Most applications store this path as part
of the restart command. For instance:

RestartCommand =
’editor --id=ar93 --state=/tmp/ar93’

The XSMP SM does not have to reside on the same host
as the application it manages. However, XSMP does not
explicitly support migration. By using XSMP, the current
WAIFARER prototype supports migration of many XSMP

5An initial implementation of WAIFARER is in the public domain
(http://www.sf.net/projects/waifarer/ ).

4



enabled application by relocating their state files. This in-
cludes applications like, for instance, gedit, kedit, gthumb
and nautilus.

In addition, we are also exploring how to take advantage
of recovery mechanisms in, for instance, Microsoft software
for migration purposes. Upon failure in, for instance, Mi-
crosoft Word, a recovery file has already been created trans-
parently. This file can potentially be restarted on another
node.

5 Challenges and Open Problems

Solving the software mobility problem for a few appli-
cations, as we have done, is a good way to get an un-
derstanding of the general issues and problems involved.
Next, we need to go beyond those few examples and de-
vise a general-purpose toolbox that (almost) automatically
converts applications for being able to move from node to
node. Currently, programmers who wish to use application-
level check-pointing must analyze and instrument their code
manually. A run-time system should provide this transpar-
ently.

The middleware system for this type of mobile comput-
ing needs to support more than just state checkpoint-restart
operations. For instance, we need a way to do version con-
trol. We already experience the complications of having our
environments instantiated in multiple places and us forget-
ting to move our memory sticks around. Also, there may be
multiple ways of communicating the state (memory stick,
fast internet connection, e-mail, web pages, distributed file
system) that need to be explored and compared.

So far, we support only stand-alone applications for a
single user. Collaborative applications, or applications that
have a persistent network connection to some service, adds
complexity. How to move such applications around must be
investigated. Also, there are applications that should not be
mobile, and we need to identify these. Due to, for instance,
security restrictions, licensing agreements or data locality,
some applications are better off by not being mobile.

Non-functional aspects like, for instance fault-tolerance,
trust, security, performance and implications of heterogene-
ity are also open problems. This includes more than, for
instance, traditional network security problems, with host
and mobile code integrity problems as examples. Hetero-
geneity is also more complex, with a simple example being
a text document being edited on different platforms (home-
computer→ PDA → office computer) or some music in
one format played on a RealPlayer being restarted on a Mi-
crosoft Media Player in another format. The offset of the
file is then used, but the music sampled in the supported
format might need to be located and downloaded.

Context awareness is the concept of sensing and reacting
to dynamic environments and activities. Important chal-

lenges are related to interaction with the user. Captur-
ing user presence in an environment, especially combined
with transparent capturing of user intent, is an example of
a complex human-computer problem. Resource discovery
and management must also be investigated. Since we have
moved the mobility abstraction to the task level, we need
mechanisms for locating and even installing applications
and services on the fly.

6 Summary

We are building extensible middleware technologies for
large-scale pervasive environments. Our thesis is that a user
should be connected to his personal overlay network sys-
tem, a PONS. Part of the PONS should have potential for
relocation while in execution. This way, PONS software
can be dynamically moved along the trajectory of a mobile
user.

Our current run-time system requires only minimal input
from the programmer. We are currently exploring how APIs
and protocols of legacy applications can be utilized for this.
Our three first WAIFARER implementations taught us that
applications should be made with mobility in mind. That
is, mobility should be a first order design principle for any
pervasive application.

References

[1] I. Arntzen and D. Johansen. A programmable structure for
pervasive computing. InProceedings of the IEEE/ACS In-
ternational Conference on Pervasive Services (ICPS’2004),
Beirut, Lebanon, July 2004. To appear.

[2] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-
uation of a wide-area event notification service.ACM Trans-
actions on Computer Systems, 19:332–383, August 2001.

[3] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project Aura: Toward distraction-free pervasive computing.
IEEE Pervasive Computing, 1(2):22–31, April 2002.

[4] R. Gray. Agent Tcl: A transportable agent system. In
Proceedings of CIKM Workshop on Intelligent Information
Agents, Baltimore, MA, USA, December 1995.

[5] R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. Mac-
Beth, S. Swanson, T. Anderson, B. Bershad, G. Borriello,
S. Gribble, and D. Wetherall. Systems directions for perva-
sive computing. InProceedings of the 8th Workshop on Hot
Topics in Operating Systems (HotOS-VIII), pages 147–151,
Elmau, Germany, May 2001.

[6] D. Johansen, R. van Renesse, and F. Schneider. Operating
system support for mobile agents. InProceedings of the 5th
IEEE HOTOS, Orcas Island, Wa, USA, May 1995.

[7] D. Johansen, R. van Renesse, and F. Schneider. WAIF: Web
of asynchronous information filters. InLecture Notes in
Computer Science: ”Future Directions in Distributed Com-
puting”, volume 2584. Springer-Verlag, Heidelberg, April
2003.

5



[8] D. Lange and O. Mitsuru. Programming and Deploying
Java Mobile Agents with Aglets. Addison Wesley, 1st edi-
tion, 1998.

[9] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. InProceedings of the 8th International
Conference of Distributed Computing Systems, pages 104–
111, San Jose, CA, USA, June 1988.

[10] L. Mummert, M. Ebling, and M. Satyanarayanan. Exploit-
ing weak connectivity for mobile file access. InProceedings
of the 15th ACM Symposium on Operating Systems Princi-
ples, pages 143–155, Copper Mountain Resort, CO, USA,
December 1995.

[11] M. Powell and B. Miller. Process migration in DEMOS/MP.
In Proceedings of the 9th ACM Symposium on Operating
Systems Principles, pages 110–119, Bretton Woods, NH,
USA, October 1983.

[12] A. Søreng, A. Johannessen, and K. Pedersen. Task mi-
gration. INF-3203 project report, University of Tromsø,
Tromsø, Norway, April 2004.

[13] J. Tennøe. WAIF — task migration. Master’s thesis, Uni-
versity of Tromsø, Tromsø, Norway, December 2003.

[14] M. Theimer, K. Lantz, and D. Cheriton. Preemptable re-
mote execution facilities for the V-system. InProceedings
of the 10th ACM Symposium on Operating Systems Princi-
ples, pages 2–12, Orcas Island, WA, USA, December 1985.

[15] M. Wexler. X Session Management Protocol. X Consortium
Standard. X Version 11, Release 6.4. Kubota Pacific Com-
puter, Inc., 1994.

[16] E. Zayas. Attacking the process migration bottleneck. In
Proceedings of the 11th ACM Symposium on Operating Sys-
tems Principles, pages 13–24, Austin, TX, USA, November
1987.

6


