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Protein-protein binding affinities calculated 
using the LIE method 

 

 

Keywords: protein-protein interaction; serine proteinase; docking; molecular 

dynamics; linear interaction energy; molecular modelling. 

 

Abstract: Protein-protein interactions are important for many biological functions, 

such as enzyme regulation and immune response. Knowledge about these interactions 

is important both to understand the biological processes but also to aid in drug design. 

This project has studied the interaction of the third domain of the turkey ovomucoid 

inhibitor (OMTKY3) in complex with Streptomyces griseus proteinase B (SGPB) and 

porcine pancreatic elastase (PPE). Point mutations were carried out on the primary 

binding residue (P1) and the models were subjected to molecular dynamics 

simulations. Absolute binding energies were calculated using the linear interaction 

energy (LIE) method and 70 % of the P1 variants yielded calculated binding free 

energies with error less than 2.0 kcal/mol in respect to the experimental binding 

energies. 

  



	

2	
	

 

  



	

3	
	

Acknowledgements 

I want start with thanking my family for their help and unconditional support. During 

the latter part of the project I have worked part time as a teacher and I want to thank 

the school, Nordkapp maritime fagskole og videregående skole, for their 

understanding and willingness to work out solutions (finding substitutes) whenever I 

went to Tromsø. 

I also want to thank everyone who has in some way helped me, encouraged me 

or simply crossed paths with me during the course of the project. This includes 

Valentina Vollan for helping me with administrative issues, Erik Axel Vollan whose 

help with my computers has been invaluable, Ronny Helland for organising practical 

matters and I also want to thank Magne Olufsen who introduced me to the molecular 

dynamics software and who is always available for a chat. A few others I want to 

mention are Annfrid Sivertsen and Geir Isaksen. 

But most of all I want to thank my supervisors Arne Oskar Smalås and Bjørn 

Olav Brandsdal for bearing with me and encouraging me when things looked bleak. I 

especially want to thank Bjørn Olav Brandsdal for his help, guidance and insight, and 

without whom this project would never have been completed. 

This thesis is dedicated to my uncle Egil Henrik Heim who passed away 

unexpectedly in March 2005. 

 

 

Tor Arne Heim Andberg 



	

4	
	

  



	

5	
	

Abbreviations 

BO Born-Oppenheimer 
BPTI Bovine Pancreatic Trypsin Inhibitor 
FEP Free Energy Perturbation 
HLE Human Leukocyte Elastase 
IUPAC International Union of Pure and Applied Chemistry 
LIE Liner Interaction Energy 
LRF Local Reaction Field 
MC Monte Carlo 
MD Molecular Dynamics 
MM Molecular Mechanics 
MM-PBSA 
 

Molecular Mechanics/Poisson-Boltzmann/Surface 
Area 

OMTKY3 Third Domain of the Turkey Ovomucoid Inhibitor 
PDB Protein Data Bank 
PPE Porcine Pancreatic Elastase 
QM Quantum Mechanics 
RMSD Root Mean Square Deviation 
SGPB Streptomyces Griseus Proteinase B 
TI Thermodynamic Integration 
vdW van der Waals 

 



	

6	
	

  



	

7	
	

Contents 

 
1  Introduction	...................................................................................................................................	9 

1.1  Proteolytic enzymes	........................................................................................................	10 

1.1.1  Serine proteinases	...................................................................................................	10 

1.1.2  Substrate specificity	...............................................................................................	13 

1.1.3  Protein inhibitors	.....................................................................................................	13 

1.2  Intra- and intermolecular forces	..................................................................................	14 

1.3  Modelling of intra- and intermolecular forces	........................................................	18 

1.3.1  Molecular Mechanics	.............................................................................................	18 

1.3.2  Molecular Dynamics	..............................................................................................	24 

1.3.3  Rigorous free energy methods	............................................................................	25 

1.3.4  Linear interaction energy method	......................................................................	26 

1.3.5  MM-PBSA	.................................................................................................................	28 

1.4  Protein-protein interactions and the LIE method	..................................................	29 

1.5  Aims of the study	.............................................................................................................	30 

2  Methods	.......................................................................................................................................	31 

2.1  Model building	..................................................................................................................	31 

2.2  Molecular dynamics simulations	................................................................................	32 

2.3  LIE model and analysis	..................................................................................................	36 

3  Results and discussion	............................................................................................................	37 

3.1  Construction of molecular complexes	.......................................................................	37 

3.2  Point mutation and energy minimization	.................................................................	39 

3.3  Molecular dynamics simulations	................................................................................	39 

3.3.1  Molecular dynamics quality	................................................................................	41 

3.4  LIE calculations	................................................................................................................	42 

3.5  Effect of multiple simulations	......................................................................................	49 

3.6  SGPB-OMTKY3	..............................................................................................................	51 

3.7  PPE-OMTKY3	..................................................................................................................	55 

3.8  Preorganization energy	...................................................................................................	63 

4  Concluding remarks	................................................................................................................	65 

5  References...................................................................................................................................	69 

 



	

8	
	

  



	

9	
	

1 Introduction 

Proteins are polypeptides, which are essential in living organisms. They occur as 

structural proteins like keratin found in hair and nails or globular proteins such as 

haemoglobin, which transports oxygen in the bloodstream. Another group of globular 

proteins are enzymes and they catalyse chemical processes by reducing the activation 

energy. 

 Interactions involving globular proteins are critical in many biological processes. 

Computer based approaches are well suited to probe protein-ligand and protein-

protein interactions, and a large number of techniques have been developed to study 

these interactions. Two problems are typically associated with protein interactions: 

Structural prediction of a protein-ligand or protein-protein complex and accurate 

calculation of the binding energies for the complex. The former is referred to as 

docking, and the latter as scoring. Computer based methods for docking and binding 

energy calculations are useful tools to supplement traditional experiments in fields 

such as drug design. To allow accurate prediction of binding energy a model needs to 

describe intra- and intermolecular forces accurately, which is perhaps only possible 

through the use of quantum mechanical models. Secondly, sufficient sampling of 

configurations is necessary to generate a truly representative ensemble of structures. 

Accurate quantum mechanical methods are notoriously computer intensive and 

protein sized systems involving thousands of atoms present a very difficult challenge 

for today’s methods and computers. 

 Current transistor based computers have come a long way since the advent of the 

microprocessor in the early 1970’s. But even today’s powerful computers are based 

on the same fundamental design and unless new technology is developed the 

exponential growth in computer power, as stipulated by Moore’s law, will slow down 

as the transistors approach their theoretical minimum size. To best take advantage of 

current and future computers, it is important to find a healthy compromise between 

computational cost and accuracy. Many methods exist today and improving them and 

devising new methods is one of the goals of computational chemistry. 

 This thesis focus on protein-protein interactions and computer based models for 

studying the binding affinities. An overview is given of the actual protein systems to 

be studied and important interaction types are discussed. Special care is given to the 
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modelling of the interactions for protein-protein complexes and methodologies for 

calculating binding free energies for protein complexes. 

 

1.1 Proteolytic enzymes 

Proteolytic enzymes catalyse the hydrolysis of peptide bonds and are important in 

many physiological processes in most living organisms. There are two classes of 

proteolytic enzymes, exopeptidases and endopeptidases. Exopeptidases hydrolyse 

peptide bonds at either the N- or C-terminal side of polypeptide chains, while 

endopeptidases hydrolyse peptide bonds within the polypeptide chain. Proteolytic 

enzymes are classified according to the principal catalytic residue (serine, threonine, 

cysteine, aspartic and metallo peptidases) and are further divided into limited and 

unlimited proteolysis. Limited proteolysis is when a proteinase cleaves a limited 

number of peptide bonds of a target protein to produce an active form of the given 

protein. This allows for control of proteolytic activity. Unlimited proteolysis is 

complete degradation from protein to amino acids, as is the case for digestive 

enzymes. 

 

1.1.1 Serine proteinases 

Serine proteinases are one of the most studied classes of proteolytic enzymes. This is 

because serine proteinases have important biological functions both in digestion and 

proteolytic regulation. 40 different families of serine proteinases have been identified 

based on amino acid composition [1, 2]. The chymotrypsin and subtilisin families are 

the two most studied serine proteinase families. Both families utilize the same 

arrangement of catalytic residues, His, Ser and Asp, but, although the catalytic region 

is virtually identical the proteins themselves are structurally very different. Due to the 

intense scrutiny of serine proteinases there is an abundance of available x-ray 

structures and experimental binding data, for example the work of Laskowski et al. 

which is of particular importance for this thesis [3, 4]. 

 In 1967 Schechter and Berger proposed a model for the interactions between 

an enzyme and a substrate or inhibitor [5]. The model describes the interaction in 

relation to the primary or catalytic binding site being flanked by secondary binding 

sites as illustrated in Figure 1.1. The primary binding site is termed S1 and the 
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secondary sites are labelled S2-SN towards the N-terminal and S1’-SN’ towards the 

C-terminal sides, respectively. The binding sites on the substrate or inhibitor follow a 

similar scheme with P1 being the name for the primary binding residue and P2-PN 

and P1’-PN’ for the secondary residues. 

 

Figure 1.1: Binding subsites complexes formed by serine proteinases and their 
substrates/inhibitors, using nomenclature of Schechter and Berger [5]. 

 
Chymotrypsin-like serine proteinases 

The fold of chymotrypsin-like serine proteinases are similar, consisting of two six 

stranded β-barrels with the catalytic triad situated between the two domains (Figure 

1.2). Although the amino acid sequence can differ substantially the fold is highly 

conserved. 

 

Figure 1.2: SGPB a chymotrypsin-like serine proteinase with catalytic residue drawn 
as sticks (1SGQ [3]). Figure generated using PyMol [6]. 
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Catalytic mechanism in serine proteinases 

The catalytic triad is composed of His57, Asp102 and Ser195. During catalysis 

Ser195 acts as a nucleophile and reacts with the carbonyl oxygen of the P1 residue 

and leads to cleaving of the peptide bond, also referred to as the scissile bond. The 

lone pair on the His57 nitrogen can accept the hydrogen from Ser195’s hydroxyl 

group. Asp102 form a hydrogen bond through the carboxyl group with His57 and 

increase the electronegativity of the lone pair. The catalytic action relies on 

stabilisation of the transition state and the mechanism is described by Branden and 

Tooze in “Introduction to Protein Structure” from 1999 [7]. An important feature in 

the catalysis is the “oxyanion hole” which stabilizes the negatively charged carbonyl 

oxygen in the tetrahedral transition state. The oxyanion hole consists of backbone 

nitrogen atoms that donate their hydrogen atoms to stabilize the carbonyl oxygen as 

the reaction takes place. The reaction mechanism is outlined in Figure 1.3. 

 

 
Figure 1.3: Reaction mechanism in serine proteinases (figure adapted from [8]). 
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1.1.2 Substrate specificity 

The chymotrypsin super family is comprised of very similar enzymes but with very 

different specificities. This is typically illustrated by exploring chymotrypsin, trypsin 

and elastase. The enzymes themselves are very similar in structure, the catalytic 

residues are placed almost identical in space and the mechanism is the same. 

Chymotrypsin has high affinity for large aromatic side chains, trypsin favours 

positively charged side chains and elastase binds best to small uncharged side chains. 

These differences are caused by the mutation of a small number of amino acids at and 

around the primary binding site. Of particular importance are residues 189, 216 and 

[8]226. Residue 189 is situated at the bottom of the binding site and 216 and 226 sits 

on either side. In chymotrypsin and trypsin residues 216 and 226 are glycines and 

allow large and wide residues access to the binding pocket. Residue 189 is Ser in 

chymotrypsin and Asp in trypsin. Serine is small and do not hinder aromatic residues 

from binding. Whereas in trypsin residue 189 is mutated to Asp and it interacts 

beneficially with Arg and Lys residues, explaining trypsin’s preference for positively 

charged side chains. Elastase cleaves peptide bonds adjacent to small uncharged 

residues, and this is because the glycines found in chymotrypsin and trypsin at 

position 216 and 226 are replaced with Val216 and Thr226. The binding pocket in 

elastase is narrower and do not allow large residues to fit at all [4]. 

 

1.1.3 Protein inhibitors 

Proteolytic enzymes are essential in living organism but their proteolytic activity 

needs to be controlled as unregulated proteolysis would degrade the all proteins into 

their constituent amino acids. Proteinases are expressed as inactive precursors and 

activated when needed by cleaving off one or more peptide bonds at the N-terminal 

side of the catalytic site. The activated enzyme is then controlled by protein inhibitors 

that reduce or stop the proteolytic activity upon complex formation. 

Proteinase inhibitors are classified according to function, into either active site 

inhibitors or α2-macroglobulins (α2Ms) [9, 10]. α2Ms inhibit a large range of 

endopeptidases of varying origins and catalytic mechanisms. The target proteinase 

binds to the α2M and cleaves a peptide bond in the “bait region”, causing the α2M to 

change conformation and enfold the proteinase. 
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Active site inhibitors are either canonical or non-canonical, as outlined by 

Bode and Huber [11]. Canonical inhibitors have the same Ramachandran angles in the 

combining loop in both bound and unbound states. Canonical inhibitors targeting 

chymotrypsin-like and subtilisin-like serine proteinases can be divided into at least 18 

different groups based on sequence homology, structural similarity and binding 

mechanism [9, 12]. When the canonical inhibitors bind to serine proteinases they 

follow “the standard mechanism” [9, 13]. The enzyme-inhibitor interaction can be 

written as an equilibrium reaction: 

*E I C E I    

where E is the enzyme, I is the intact inhibitor, I* is the modified inhibitor with 

hydrolysed peptide bond and C is the enzyme-inhibitor complex. 

Canonical inhibitors of this group are small to medium sized proteins, ranging 

from 14 to about 200 residues [14], and bind through an exposed combining loop that 

surrounds the P1 residue. The binding interaction can be divided into primary and 

secondary interactions in relation to the primary and secondary binding sites, as 

shown in Figure 1.1. At the primary binding site the P1 side chain interacts with the 

specificity pocket or S1 pocket. The nature of this interaction is highly dependent on 

the side chain and specificity pockets composition. Secondary interactions include 

hydrogen bonds between the enzyme and inhibitor main chains as well as electrostatic 

and van der Waals interactions. Hydrophobic interaction also plays a part in the 

formation of the enzyme-inhibitor complex, although not specific to the binding loop 

it relates to the hydrophobic surface area which is buried upon formation of the 

complex.  

 

1.2 Intra- and intermolecular forces 

Shape complementarity 

Shape complementarity is sometimes referred to as “key in lock” or “hand in glove” 

analogies, because matching surfaces are necessary to form stable complexes. This is 

important for protein-ligand and protein-protein complexes. It is not the shape 

complementarity itself that causes favourable interactions, but rather the contacting 

surface allows the target and the ligand to interact via electrostatic, van der Waals 

(vdW) and also hydrophobic interactions. When protein-protein complexes form the 

water molecules solvating the proteins must be expelled to allow for favourable 



	

15	
	

interactions to occur. The local environment at the contact interface of protein-protein 

complexes is also expected to change; in particular the dielectric constant will be 

reduced. As a consequence the electrostatic interactions will increase in strength due 

to less screening of the charges. 

 Many experimental structures of protein-protein complexes have been 

determined during the past decades, which has led to activities aimed at predicting the 

three dimensional structure of such complexes. A number of methods have been 

developed to find the best binding mode between a protein and a target, either a 

ligand or another protein [15]. To simplify the docking proteins are often treated as 

rigid bodies, and such methods are quick and computationally efficient, especially for 

protein-ligand systems but also for some protein-protein complexes. The drawback 

with rigid bodies is that proteins sometimes undergo conformational change upon 

binding and rigid body models are unable to predict these effects.  

 In order to form a stable complex the surfaces must match and the close 

contacts must also include attractive interactions, such as electrostatic attraction 

between permanent charges or multipoles, attractive vdW forces between non polar 

atoms and hydrogen bonds. The interactions that stabilize protein-protein complexes 

can be grouped into several different categories, main chain-main chain, main chain-

side chain and side chain-side chain. Main chain-main chain interactions typically 

involve hydrogen bonds between the N-H group and the carbonyl oxygen. 

 

Electrostatic interactions 

Electrostatic interactions are important not only to provide specificity but also for the 

overall stability of protein-protein complexes. These interactions arise from the 

attraction and repulsion of electrically charged particles. Electrostatic interactions can 

be further divided into different types, including hydrogen bonds, salt bridges, 

multipole and vdW interactions that are typically found in protein systems. Hydrogen 

bonds and vdW interactions are discussed below. 

Electrostatic interactions between pairs of point charges are described 

mathematically by Coulomb’s law and form the basis for understanding interactions 

between ions. Salt bridges are formed when two ionisable amino acids of opposite 

charge are close in space, typically around 3 Å, and are of significant importance for 

protein stability as well as protein-protein complex formation. It is generally found 

that locally solvent exposed salt bridges contribute little to stability, and may even 
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destabilize proteins, while completely buried salt bridges contribute with several 

kcal/mol to the free energy of folding. Global salt bridges occur between pairs of 

ionisable amino acids that are separated in sequence, and thus connect different parts 

of the protein together. These are also expected to contribute more to the stability. 

Differences in electronegativity between elements result in uneven charge 

distributions in molecules. This gives rise to dipoles, quadrupoles, octopoles, etc. 

collectively called multipoles, which interact with permanent charges or other 

multipoles. For simplicity the phenomenon is commonly referred to as dipole 

interactions although multipole interactions are technically a better name. Dipole 

interactions are classified as either dipole-dipole or dipole-induced dipole, where the 

first is the electrostatic interactions between the partial charges of the atoms in the 

dipole. In the latter case, the electrostatic influence of one dipole induces a dipole in 

otherwise neutral atoms by polarizing the covalent bond between them. 

 

van der Waals interactions 

van der Waals forces are of electrostatic origin and composed of attractive and 

repulsive forces unrelated to point charges, dipole-dipole or dipole-induced dipole 

interactions. The attractive component is called dispersive forces and is a result of 

instantaneous dipole interactions caused by fluctuations of the electron clouds. It was 

first explained through quantum mechanics (QM) by Fritz London in 1930, and is 

sometimes called the London force [16]. 

 van der Waals repulsion can be explained by Pauli’s exclusion principle, 

which states that no two electrons in a given system can have the same quantum 

numbers. This prevents electrons with the same spin from occupying the same area of 

space and if two atoms are too close the electron density between the corresponding 

nuclei is reduced due to overlap. When the electron density is reduced there is less 

shielding between the positively charged nuclei and this leads to electrostatic 

repulsion [17]. 

 vdW forces are important not only for the interaction between different 

proteins but also between proteins and small ligands. These interactions occur 

between any pair of atoms, and will increase in strength as the number of atoms 

increase. While they decay rapidly as the distance between the interacting particles 

increases, the large number of interacting particles in protein-protein complexes 
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results in a significant contribution from vdW forces to the overall stability of the 

complexes. 

 

Hydrogen bonds 

Hydrogen bonds are perhaps the most important interaction in biological systems, and 

are responsible for the peculiar properties of water. Hydrogen bonds play a pivotal 

role in stabilizing secondary structure elements of proteins, they are central in DNA 

base-paring and at interfaces of protein-protein complexes. A hydrogen bond is 

typically described as an attractive force between a hydrogen atom from a molecule 

where the hydrogen is covalently bound to N, O or F and a lone pair in an adjacent N, 

O or F atom of another molecule or part of the same molecule. It is usually depicted 

as: X H Y   where the dots denote the bond and X and Y are N, O or F. The 

International union of Pure and Applied Chemistry (IUPAC) recently updated their 

definition of hydrogen bonds [18] to give a more general and universal view of the 

phenomenon. 

Hydrogen bonds are mainly electrostatic, but also include contributions that 

are covalent in nature as well as dispersion effects [19]. The X H Y   unit tends to 

be linear and the bond is oriented towards a lone pair in Y. Typical bond lengths 

measured from H to Y are about 2 Å. The binding energy depends on which elements 

the hydrogen is bound to, O H O  has a binding energy of about 5 kcal/mol. 

Hydrogen bonds in protein ligand systems are more favourable than hydrogen bonds 

between the protein and solvent [20] and hydrogen bonds are also important to 

determine the specificity [20, 21]. 

 

Hydrophobic interactions 

Hydrophobic interactions are the seemingly attractive interactions that arise between 

hydrophobic substances when they are dissolved in water. It is worth noting that 

hydrophobic interactions are not an attractive force between the particles but rather an 

effect caused by the solvent. Upon dissolving a hydrophobic unit, either a non-polar 

molecule or a non-polar part of a molecule, will be surrounded by water molecules 

that form a network of hydrogen bonds between themselves. This ordered structure 

reduces the entropy, making the above case energetically unfavourable. 
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When multiple hydrophobic units come together the combined surface area is 

smaller than for the units individually. A smaller surface area means fewer water 

molecules are locked and this causes an increase in entropy. Thus maximising 

hydrophobic contacts minimises the disruption of water and is energetically 

favourable. Proteins are known to have hydrophobic cores and hydrophobic 

interactions are important for the correct fold. Hydrophobic interactions are also 

important for protein-ligand and protein-protein binding. Protein-protein binding 

interfaces are found to be more hydrophobic than the solvated surface area [22] and 

facilitate the complex formation.  

 

1.3 Modelling of intra- and intermolecular forces 

Many methodologies are presently available to model biological systems of interest, 

and the interactions occurring in such systems. The most accurate way to model a 

molecular system is by quantum mechanics. All QM methods are based on the 

Schrödinger equation and consider the electrons in the system explicitly. This 

combined with the general difficulty of solving the equation results in high 

computational cost. Ideally one would like to apply quantum mechanical models on 

every system, but many systems are unfortunately too large to be considered by QM 

approaches. This is particularly true for complex biological systems, which often 

consist of several thousands of atoms. Solvents effects may also be difficult to reveal 

through QM calculations, as a large amount of water molecules are needed for proper 

solvation of biological molecules. 

 

1.3.1 Molecular Mechanics 

Molecular mechanics (MM), also known as force field methods, ignore the electrons 

and write the energy as a function of nuclear coordinates only. MM is based on 

several assumptions, among them the Born-Oppenheimer (BO) approximation is of 

particular importance. The BO approximation states that the electrons immediately 

adapt to any changes in the nuclear positions, and since a proton is roughly 1800 

times as heavy as an electron this is regarded as a good approximation. MM is usually 

based on simple models, typically a sum of components from stretching of bonds, 

bending angles and rotation of single bonds among others. Even using simple 
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functions to model the contributions, e.g. Hooke’s law, the accuracy can be good and 

comparable to QM at a much lower computational cost for some properties. 

A typical MM force field can look as follows: 
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V(rN) is the potential energy of a system as a function of the positions (r) of N 

particles (usually atoms). The first term is contributions from bond stretching, the 

second is angle bending and the third is bond rotation or torsions. The last term 

models non-bonded interactions between atom pairs, specifically van der Waals and 

electrostatic interactions. Contributions from bond stretching, angle bending, torsions, 

electrostatic and van der Waals interactions make up a typical force field and is 

discussed in greater detail below. 

 

Bond stretching 

An accurate description of the potential energy curve for bonds is given by the Morse 

potential: 

   20exp1)( llaDlv e   (2) 

eDa 2/
 

(3) 

where De is the depth of the potential energy minimum, µ is the reduced mass and ω 

is the frequency of the bond vibration. l0 is the reference length of the bond, and is the 

length of the bond when all other terms in the force field are zero. In contrast the 

equilibrium bond length results in the lowest potential energy when all terms are 

considered. Although accurate the Morse potential is computationally inefficient and 

it requires three parameters per bond. 

 Because bond lengths rarely change significantly from the reference length the 

simpler Hooke’s law (or harmonic potentials) is often used: 

2
0 )(

2
)( ll

k
lv 

 
(4) 

where k is the force constant, l is the bond length and l0 is the reference bond length. 

The functional form of Hooke’s law is a good approximation to the curve of the 
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Morse potential at the bottom of the potential energy well. It is however less accurate 

away from the reference length.  

Sometimes cubic, quartic and higher order terms are included in the Hooke’s 

law potential to increase the accuracy. These higher order functions will be more 

accurate around the reference length, but have certain drawbacks as well. As the order 

increases additional parameters are needed for each bond type and as the function gets 

more complicated the computational cost increases. Cubic functions can cause 

another problem if the bond is stretched beyond the maximum of the cubic function. 

In this case the potential energy will become increasingly negative as the bond length 

increases and break the model. 

 

Angle bending 

As with bond stretching a Hooke’s law formula can be used to describe the potential: 

2
0( ) ( )

2

k
v l   

 
(5) 

where k is the force constant, θ is the bond angle and θ0 is the reference bond angle.  

The energy required to bend angles is less than the energy necessary to change 

the bond length. As such the parameters for angle bending is comparatively smaller, 

and typically 1/10 of the force constants used to model bond stretching. Higher order 

terms can be included to increase the accuracy of the force field, but again, at the cost 

of increased computing time 

 

Torsional terms 

Torsional terms are usually included to construct rotational barriers. The energy 

required to rotate a bond is significantly smaller than deviations in bond length and 

angle, often referred to as hard degrees of freedom. It is not strictly necessary to 

include explicit torsional terms since non-bonded interactions often are sufficient to 

provide the required energy barrier. Most force fields dealing with “organic” 

molecules usually have a torsional component for each quartet A-B-C-D in the 

system. Torsional potentials can be written as follows:  

0

( ) [1 cos( )]
2
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n

V
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
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(6) 
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where Vn is often referred to as the barrier height, ω is the torsion angle and n is the 

multiplicity which defines the number of minimum points through all 360°. γ is the 

phase factor and defines when the torsion angle passes through the energy minima.  

 

Improper torsions and out-of-plane bending 

Improper torsion and out-of-plane bending terms are necessary to allow force fields to 

reproduce planar geometries. In some cases involving sp2 hybridized carbon atoms 

such as the cyclobutanone molecule, the carbon and oxygen atoms lie in a plane due 

to the π bond. A force field with only bond stretching and angle bending terms predict 

the oxygen atom to be placed at an angle rather than in the plane. One way to deal 

with this effect is through the use of an “improper” torsional angle, which is a torsion 

angle between four atoms not bound in sequence. To keep the improper torsional 

angle at either 0° or 180° a torsional component can be used: 

( ) (1 cos 2 )v k  
 

(7) 

where k is the force constant and ω is improper torsion angle. 

A way to calculate the out-of-plane bending effect is to calculate the angle or distance 

the atom in question is away from the plane. Two typical harmonic potential formulas 

are: 

2( )
2

k
v  

 
(8) 

2( )
2

k
v h h

 
(9)

 

where k is the force constant, θ is the angle between the atom and the plane and h is 

the distance between the angle and the plane. 

 

Cross terms 

Cross terms are contributions relating to coupling between various terms in the force 

field. Common cross terms include stretch-stretch, stretch-bend, stretch-torsion, bend-

torsion and bend-bend couplings. MM is based on a sum of different energy 

contributions such as bond stretching, angle bending among others. These 

contributions are calculated separately regardless of any other terms, and additivity is 

assumed. From QM we know that changes in one part of a molecule will affect the 

molecule as a whole and the idea to break down the potential energy to a set of 

independent contributions is an approximation. However, not all properties are 
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affected in the same manner. Certain structural properties for small molecules can be 

accurately reproduced with only a few cross terms, while other properties such as 

vibrational frequencies are even affected by small changes to the bond length and 

angles require more cross terms, yet not all force fields include any cross terms. 

AMBER [23] and OPLS [24] are two commonly used force fields to model biological 

molecules and neither incorporates cross terms. Indeed a force field requires cross 

terms between all contributions if it is to be completely accurate. The drawback is 

extensive parameterization and computational cost. In general interactions that are far 

away from each other in the molecule can be treated as zero, while cross terms are 

included for close interactions. 

The purpose of the force field is also important, a force field designed to 

calculate vibrational spectra would include many cross terms as well as higher order 

expansions for bond stretching, etc. This would result in a complex but accurate force 

field suitable for vibrational spectra, but would be too computational costly to use in a 

large scale Monte Carlo (MC) or Molecular Dynamics (MD) simulation where a 

simpler and faster force field would allow for longer simulations and better sampling. 

 

Non-bonded interactions 

Non-bonded interactions are typically divided into van der Waals and electrostatic 

contributions. The charge distribution in molecules determines the electrostatics and 

can be represented in many ways, most commonly through the use of partial atomic 

point charges. Obtaining the partial atomic charges can be accomplished in a number 

of ways [17]. Electrostatic contributions are often calculated using Coulomb’s law, as 

a sum of interactions between pairs of point charges between two molecules or 

between different parts of the same molecule.  
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(10) 

qi and qj are point charges, ε0 is the vacuum permittivity and rij is the distance 

between the point charges. NA is the number of point charges in the first molecule and 

NB is the number of point charges in the second molecule.  

van der Waals interactions are in a sense electrostatic in nature. There are both 

attractive and repulsive van der Waals forces and both can be explained by 

electrostatic interactions. The attractive forces are explained with quantum mechanics 
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as fluctuations in the electron cloud around the atom, which in turn induce dipoles in 

nearby atoms. As a result induced dipole-induced dipole interactions occur. The effect 

increase with the number of electrons, so heavier elements will contribute 

significantly more. Quantum mechanical models predict this force potential is related 

with the distance as 1/r6.  At short range repulsive exchange forces prevent the atoms 

from coming too close. There are many ways to model this effect but using a 

relationship of 1/r12 is common. This leads to the Lennard-Jones 12-6 function: 
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This potential is a function of the distance r, and ε is the depth of the well, while σ is 

the collision diameter. This gives the force field a fast and roughly accurate 

description of the van der Waals interactions. Due to the nature of orbitals, van der 

Waals forces are direction specific. This is not included in the Lennard-Jones 

potential, and to model this effect additional terms are required. 

 

Transferability 

Ideally a force field should include unique parameters for every possible combination 

of atoms from every possible molecule. For example the C-H bonds in methane 

would be expected to be subtly different from the C-H bonds in let say ethane. 

However this level of parameterization would result in a very large and cumbersome 

force field, if it was possible to make one at all. Such a force field would not be able 

to predict properties of new molecules and its usefulness would be limited. Instead 

properties are assumed to be transferable from one system to another. Meaning a C-H 

bond for example would be treated identically in both methane and ethane or simply 

whenever a hydrogen atom is bound to a sp3 hybridized carbon atom.  

 Transferability allows a force field to use a small set of parameters, typically 

obtained through QM calculations of a series of test molecules, to predict properties 

in other similar molecules. In fact transferability is the premise on which all MM 

force fields rely. 

 Polypeptides can consist of hundreds and thousands of atoms and it is virtually 

impossible for current QM methods to analyse entire proteins to elucidate the MM 

parameters. Force fields for polypeptides are usually constructed through the study of 

dipeptides and tripeptides. Atoms inside di- or tripeptide will experience similar 
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surroundings as if they were inside a larger polypeptide and the low number of atoms 

makes it easier to use QM calculations. The parameters are then assumed to be 

applicable to atoms from any polypeptide. 

 

1.3.2 Molecular Dynamics 

Molecular dynamics is a method used to generate successive configurations of a 

system by integrating Newton’s laws of motion.  
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which describes the movement of a particle of mass mi, along the direction xi where 

Fx is the force along the given direction. 

An alternative method is Monte Carlo simulations. Whereas MD integrates 

Newton’s laws of motion MC employ random sampling algorithms to produce similar 

results. 

Several different MD models have been made. The first of these is the hard-

sphere model, and in this model particles move at constant speed in straight lines until 

they collide with another particle. The collisions are perfectly elastic and after a 

collision the new velocities are calculated through conventional mechanics applying 

conservation of linear momentum. This model has provided useful insights into the 

microscopic understanding of fluids, but suffers from many deficiencies. 

 

Molecular dynamics with continuous potentials 

In reality particles are under the influence of continuous potentials and the force on 

each particle changes as it moves in relation to its surroundings. The motions are 

coupled and the movement of one particle will affect all the others. Models using 

continuous potential will in all but the simplest cases give rise to a many-body 

problem that cannot be solved analytically. 

 Finite difference methods avoid the many-body problem by breaking down the 

integration into small steps of time, δt. At a given time t the total force acting on all 

particles are calculated. When the force is known the acceleration can be calculated, 

which in turn is used to calculate the speed and position of each particle. When the 

position and velocity has been calculated for t + δt the procedure is repeated and the 

new positions are used to calculate the positions and velocities for the next step. 
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 Many algorithms exist for integrating the equations in the finite difference 

method; all of them use Taylor expansions to approximate the positions, velocity, 

acceleration and other dynamic properties. 
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r is the position and v is the velocity (first derivative), a is the acceleration (second 

derivative) and b is the third derivative and so on. 

 

Time step 

The time step is an integral part of MD simulations using finite difference methods. 

Choosing the time step is a compromise between speed and stability. A large time 

step allows for quicker conformational sampling, yet it might cause instabilities and 

inaccurate trajectories. A general rule of thumb is that the time step should be roughly 

a tenth of the highest-frequency vibrations in the system. A C-H bond vibrates with a 

period of about 10 fs, and an appropriate time step in such a case will be about 1.0 fs. 

Certain constraints are often applied to the fastest period vibrations, one such method 

is the SHAKE procedure proposed by Ryckaert, Ciccotti and Berendsen [25]. 

 

1.3.3 Rigorous free energy methods 

Free energy perturbation (FEP) and thermodynamic integration (TI) are known as 

rigorous approaches and calculate the relative binding free energy between two 

equilibrium states. The free energy between two states can be expressed by Zwanzig’s 

formula [26]: 

 1 ln expB A A
G G G V       

 
(17) 

where β = 1/kT, 
A

is the MC or MD ensemble average of ΔV = VB - VA sampled 

using the VA potential. The equation requires constant temperature and pressure 

during the sampling, while another requirement is that configurations from VA should 
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also have a chance of occurring in VB, which means VA and VB have to be somewhat 

similar. 

 The FEP approach is theoretically exact, but the drawbacks are often 

significant. The systems VA and VB have to be similar and this limits diversity of 

ligands the FEP method can be applied to. Many protein-protein interactions 

involving P1-mutations involve changes that are too large for the FEP method to 

handle. Secondly the FEP approach spends most of the computer time exploring 

intermediate states which are not physically relevant, resulting in long and costly 

calculations. These two drawbacks led to the development of the LIE method, which 

will be discussed later. 

 A multistep approach is usually employed to solve the previous equation by 

constructing intermediate potential energy functions as a linear combination of initial 

and final potentials, VA and VB: 

 1m m A m BV V V   
 

(18) 

where λm assumes values from 0 to 1, but is in practice divided into a number of 

discrete points which represents a potential energy function. Through summation of 

the energy states the total free energy change can be found: 
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Combining these two equations leads to: 
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which is often referred to as the thermodynamic integration formula and is sometimes 

simplified as: 
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A more detailed overview of FEP and TI is given by Brandsdal et al. [27]. 

 

1.3.4 Linear interaction energy method 

The linear interaction energy (LIE) method was proposed by Åqvist et al. in 1994 [28] 

to predict the binding affinity of drug-sized ligands to proteins through the use of MC 

or MD simulations. It was originally tested on a set of endothiopepsin inhibitors and 

accurately reproduced experimental binding energies [28]. The idea was to consider 
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only the physically relevant states of the ligand, i.e. bound and unbound and calculate 

the absolute binding energy as the difference in free energy of solvation between 

these states. TI and FEP approaches are inefficient since most of the simulation time 

is spent investigating intermediate states, whereas the LIE method requires only two 

simulations. 

 The LIE model relies on scaling of the electrostatic and vdW energies 

obtained from MC or MD simulations and the binding free energy is expressed as: 

vdW el
bind l s l sG V V        

 
(22) 

 denotes MC or MD averages of the vdW and electrostatic contributions. l-s is the 

interaction between the ligand and the surroundings and Δ refers to the difference in 

the averages from bound and free state. α, β and γ are the LIE coefficients. For small 

drug like ligands α = 0.18 have produced good results, linear response give β = ½ 

although later work has revised the β value depending on the chemical nature of the 

ligand [29]. The final variable γ has been treated as 0 and is necessary if absolute 

binding energies are to be reproduced in some systems. 

 A key concept in the development of the LIE method was the linear response 

approximation. The linear response approximation was employed in the original 

version of the LIE method to approximate the electrostatic contribution to the binding 

free energy. For a given environment the linear response gives the electrostatic 

component as: 
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(23) 

the el
l sV   term is MC or MD averages, while the “on” and “off” terms refer to 

whether or not the electrostatic interactions between the ligand and its surroundings 

are turned on or off. To simplify the LIE method, el
l s off

V   term is neglected. This has 

proven to be a good approximation in water as the molecules are more or less 

randomly oriented, and this term largely cancels itself out [29]. 

The non-polar energy requires a different approach. Here the idea is to 

measure the non-electrostatic interactions between the ligand and its surroundings in 

both the bound and unbound states and scale the contribution by an empirical factor. 

In a typical MD simulation this energy is obtained from a Lennard-Jones potential. 

Although “hydrophobic” energy is not directly described by this potential, two 
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observations make this a sound approach. Solvation free energies for typical non-

polar compounds are experimentally found to scale linearly with solute size measures 

such as accessible surface area, and MD simulations have shown that the average van 

der Waals interaction energies scale approximately linearly with solute size in both 

polar and non-polar solvents [28, 29]. Combining these observations suggests it is 

possible to use average van der Waals energies to estimate the non-polar binding 

contribution. This is because the “hydrophobic” energies are scaled in approximately 

the same way as the van der Waals energy [27]. 

 

1.3.5 MM-PBSA 

MM-PBSA (Molecular Mechanics/Poisson-Boltzmann/Surface Area) is a method for 

estimating the free energy in molecular complexes [30, 31]. It was initially used to 

study DNA and RNA fragments but has also been used to calculate binding free 

energies between proteins and small ligands [32] as well as protein-protein complexes 

[33]. MM-PBSA uses a continuum solvent model and estimates the binding free 

energy according to: 

MM PBSA MMG E E T S  
 

(24) 

MME  is the average energy obtained from a typical molecular mechanics force-field 

with contributions from bond stretching, angle bending, torsions, electrostatic and van 

der Waals terms without any non-bonded cut-offs. PBSAE
 
is the solvation free energy 

and consist off polar and non-polar contributions. The polar contribution is typically 

calculated from the Poisson-Boltzmann equation [34], while the non-polar solvation 

free energy is estimated from a solvent-accessible-surface-area term [35].
 MMT S  

is the solute entropy and can be estimated using normal mode analysis [30]. There are 

two ways to estimate the binding free energy. The first is to examine the MM-PBSA 

equation (Equation 25) for the complex, receptor and ligand, and calculate the binding 

free energy according to: 

bind complex receptor ligandG G G G   
 

(25) 

This approach is not suitable for protein-ligand or protein-protein systems because the 

MME  term does not converge within a within a reasonable computing time. The 

second approach is to solve the MM-PBSA equation using MD snapshots from the 
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simulation of the complex only and contributions from the receptor or the ligand are 

calculated by removing the other molecule from the trajectory. This approach 

assumes the receptor and ligand will explore similar conformations both in the 

complex and free in the solution. This is not always the case and studies using the LIE 

method have revealed that the ligand often adopts different conformations while free 

in the solution compared to in a complex [27]. 

 

1.4 Protein-protein interactions and the LIE method 

The physical principles for protein-protein interactions are the same as for protein-

ligand interactions, it can however be expected to have more complex enthalpic and 

entropic contributions. In fact, this makes computer simulations for determining 

absolute binding energies in protein-protein complexes extremely difficult. Because 

of extremely large interaction energies, approaches such as the LIE method would 

require extremely long simulations in order to obtain stable averages and convergent 

energies. Such an approach is therefore clearly inefficient. Accurate estimations of 

absolute protein-protein associations are not feasible by today’s methodologies. 

Protein-protein interfaces are usually composed of hot spots where a few 

residues make up for almost all the binding energy [36]. The interface between serine 

proteases and their canonical inhibitors is composed of hot spot residues. In the case 

of the complex between bovine pancreatic trypsin inhibitor (BPTI) and trypsin, 70% 

of the binding energy comes from the P1 residue [37]. Another way to calculate 

binding energies for protein-protein complexes is possible. Instead of absolute 

binding energies, one can calculate the relative binding energy for some of the hot 

spot residues. Although this approach cannot give the absolute binding energies, 

relative energies are useful to examine effects of point mutations. Analysis of crystal 

structures of different P1 variants of BPTI with trypsin shows that the secondary 

interactions are almost identical regardless of the P1 side chain [38]. The P1-Gly 

variant is suitable as reference state, as glycine does not have a side chain that enters 

the S1 site and the binding energy of the complex will therefore come from the 

secondary interaction sites only.  

When using the LIE method to study the relative binding energies of point 

mutations, the mutated residues are treated as ligand in the LIE framework. The rest 

of the protein and inhibitor is treated as the surroundings. Several P1 mutational 
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studies of complexes have been done using the LIE method in this manner. This 

strategy has proven to be useful since the ligand-surrounding interactions converge 

rapidly in MD simulations. 

The LIE parameters in this kind of protein-protein complex studies have been 

found to be quite different than in protein-ligand simulations [39]. β assumes values 

ranging from 0.33 to 0.50 as noted earlier. The reason for this lies in relaxing the 

linear response approximation, and is related to the number of hydrogen bonds the 

residue can form. Contrary to protein-ligand simulations where α = 0.18, protein-

inhibitor simulations have accurately reproduced experimental results with α ≈ 0.5. γ 

is not needed to calculate relative binding energies but is necessary for the absolute 

binding free energy [39]. 

 

1.5 Aims of the study 

The purpose of the project is to study the effect of point mutations at protein-protein 

interfaces through the use of computer based models to accurately predict absolute 

and relative binding energies. 

1. Use an available crystal structure of Streptomyces griseus proteinase B 

(SGPB) in complex with the third domain of the turkey ovomucoid inhibitor 

(OMTKY3), and perform point mutations on the P1 residue. 

2. Create a model of porcine pancreatic elastase (PPE) in complex with the third 

domain of the turkey ovomucoid inhibitor by docking PPE with OMTKY3, 

and perform point mutations on the P1 residue. 

3. Subject the models to molecular dynamics simulations and use the linear 

interaction energy method to calculate binding energies. 

4. Investigate to what degree the linear interaction energy method reproduces 

experimental binding energies and evaluate the applicability of the LIE 

method. 

5. Suggest and examine improvements of the methodology. 
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2 Methods 

2.1 Model building 

The starting point for the SGPB-OMTKY3 model was obtained from the 1SGQ [3] 

protein data bank (pdb) structure. The pdb file was first edited to the format required 

by the Q [40] program package. This involved removing excess crystallographic 

information from the file, so that only the atomic coordinates of the protein remained 

and removing multiple configurations of side chains refined with alternate 

conformations. Crystallographic water molecules and ions were removed so that only 

the complex remained. 

There is presently no crystal structure of PPE in complex with OMTKY3 

available, and it was therefore necessary to build a model of this complex. The 1QNJ 

[41] structure was used as template with a 1.1 Å resolution of the native PPE 

structure. The OMTKY3 structure was obtained from 1SGQ [3] which contains 

SGPB in complex with OMTKY3. Because PPE and SGPB are serine proteases and 

OMTKY3 is a canonical inhibitor, the binding interactions are expected to be similar. 

Manual docking was carried out using PyMol [6] aligning the catalytic triad of PPE 

onto SGPB-OMTKY3. Visual inspection revealed a good match around the binding 

site, requiring no further alignment. Certain close contacts remained, in particular the 

145-150 loop and the 215-220 loop from PPE caused a number of close contacts. The 

loops were shifted using the modelling program O [42] removing high energy 

contacts. Finally the PPE-OMTKY3 system was subjected to a 0.1 ns MD simulation 

using the Amber95 force-field [23], to further remove any remaining steric clashes 

and optimize bond angles etc., which had been strained when the loops were shifted. 

The result was a working model of the PPE-OMTKY3 complex. 

 

P1 mutation and minimization 

Point mutations of the P1 residue were carried out using the Maestro 9.1 software 

package [43] and a total of 28 P1 variants were constructed for each complex. 

Although only 20 amino acids exist naturally, several configurations exist for some of 

the amino acids, such as glutamic acid which can exist in either charged or uncharged 

form. To optimize the geometry after mutating the P1 residue each complex was run 

through an energy minimization using  MacroModel [44] and the OPLS2005 [24, 45] 
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force field. The OMTKY3-Water model was made by manually removing the PPE 

atoms from the PPE-OMTKY3 complex. 

 

2.2 Molecular dynamics simulations  

MD simulations and free energy calculations were carried out using the program 

package Q [40]. The Q package consists of four different programs, Qprep, Qdyn, 

Qfep and Qcalc. Each program has its own role in the simulation timeline as seen in 

Figure 2.1. Qprep is used to generate topologies for the system which contains all the 

necessary information for the MD simulation. The finished topologies are then read 

by Qdyn which is used to run the simulations themselves. Analysis and extraction of 

energies and trajectories are done using Qfep and Qcalc. 

 

 

Figure 2.1: Flowchart of the program structure of Q, displaying typical input and 
output and common file extensions. 

 

The final structures for all P1 variants of the SGPB-OMTKY3, PPE-

OMTKY3 and OMTKY3-Water systems were subjected to MD simulations with the 

program package Q [40] using the OPLS-AA force field [24]. The atomic structure 

for each P1 variant was loaded into Qprep5 along with the force-field to generate the 

topology. Qdyn5 was then used to run the simulations themselves. All simulations 

were carried out using a 20 Å sphere with the Cα-atom of the P1 residue as the centre. 
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Atoms in the outermost 3 Å of the sphere were weakly restrained to their 

crystallographic coordinates by a harmonic potential of 5 kcal/mol Å2 and atoms 

outside the 20 Å sphere was strongly restrained by a harmonic potential of 200 

kcal/mol Å2. Both the equilibration phase and the production phase used the same set 

of cut-offs. The P1 residue was allowed to interact with the entire system without any 

truncations. Non-bonded forces were explicitly calculated within 10 Å, while 

contributions outside this range were estimated using the local reaction field (LRF) 

method [46]. The LRF method uses Taylor expansion to approximate the long range 

interactions and is computationally faster than the calculating the forces explicitly. 

The nonbonded pair list was updated every 25 steps. SHAKE [25] was used to 

restrain the bonds and angles of the solvent molecules during the entire MD 

simulation. The first part of the MD simulation was an equilibration phase where the 

complex was heated from 1 K to 300 K using a stepwise scheme and time step of 1.0 

fs for the first 16 000 steps and 1.5 fs during the latter 60 000 steps, for a total 

equilibration time of just over 0.1 ns. The production phase was 3 000 000 steps at 

300 K with a time step of 1.5 fs. A total of three parallel series was run for each P1-

variation for a total of 9 000 000 production steps equalling 13.5 ns of simulation 

time. The simulations were done on the supercomputer Stallo [47] using the 

multiprocessor version of Qdyn5 set up to utilize 4 threads. 

 The integrity of the finished MD simulations was verified by assessing the 

root mean square deviation (RMSD) of the atomic positions obtained from the 

trajectories according to: 
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where di is the distance between current and initial atomic coordinates. 

 

Treatment of ionisable residues 

Ionisable residues (Asp, Glu, Arg, Lys and His), within the simulation sphere were by 

default treated as charged. Some modification to the scheme was necessary to avoid 

potential artificial energy contributions, known as Born terms [48]. Due to the way 

long range electrostatics are calculated, contributions outside the simulation cut offs 

are neglected. This energy contribution is dominated by the Born term: 
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where Q is the charge of the system, r is the radius of the simulation sphere and ε is 

the dielectric constant of the surroundings. In order to avoid Born terms from entering 

the into the calculated free energy the system must have the same net charge, the 

same size as described by the simulation sphere and surroundings with the same 

dielectric constant. 

 Two solutions have been suggested to solve this problem. One way is to 

include counter ions to ensure the net charge is the same within the simulation series. 

Although this approach technically solves the Born term problem, the mobility of the 

counter ions hampers the convergence of the simulation. The preferred method is to 

neutralize residues as close to the edge of the boundary as possible, in order to avoid 

artificial effects related to the solvation of charges. 

 In these simulation series, SGPB-OMTKY3, PPE-OMTKY3 and OMTKY3-

Water, the net charge was set to zero. This was done by the latter method of 

neutralizing residues close to the edge of the simulation sphere. The different protein 

systems required different charge distributions. It was decided to use a net charge of 

zero and this more or less dictated which amino acids should be charged. Overviews 

of the chargeable residues within the simulation sphere for the different systems are 

found in Table 2.1, Table 2.2 and Table 2.3 
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Table 2.1: List of chargeable residues within 17Å for SGPB-OMTKY3. 

Residue Number Protein Distance (Å)* Charge 
Arg 41 SGPB 9.3 +1 
Asp 60 SGPB 14.2 -1 
Arg 81 SGPB 15.9 +1 
Asp 102 SGPB 8.9 -1 
Arg 138 SGPB 9.8 +1 
Arg 139 SGPB 16.8 +1 
Asp 175 SGPB 14.5 -1 
Arg 182 SGPB 16.8 +1 
Glu 192A SGPB 10.2 -1 
Asp 194 SGPB 7.6 -1 
Lys 13 OMTKY3 13.8 0 
Glu 19 OMTKY3 5.2 -1 
Arg 21 OMTKY3 11.6 +1 
Lys 29 OMTKY3 14.6 0 
Lys 34 OMTKY3 14.4 0 
Glu 43 OMTKY3 16.2 0 
Lys 55 OMTKY3 16.5 0 

* Distance measured from simulation centre to charged atoms at start of simulation. 

  

Table 2.2: List of chargeable residues within 17Å for PPE-OMTKY3. 

Residue Number Protein Distance (Å)* Charge 
Val 16 PPE 9.3 +1 
Asp 60 PPE 12.1 -1 
Arg 61 PPE 9.8 +1 
Asp 97 PPE 16.9 -1 
Asp 98 PPE 12.3 -1 
Asp 102 PPE 8.5 -1 
Asp 194 PPE 7.5 -1 
Arg 217A PPE 12.5 +1 
Lys 224 PPE 13.2 0 
Lys 13 OMTKY3 13.2 +1 
Glu 19 OMTKY3 5.3 -1 
Arg 21 OMTKY3 9.8 +1 
Lys 34 OMTKY3 14.5 +1 
Glu 43 OMTKY3 16.9 0 
Lys 55 OMTKY3 15.5 0 

* Distance measured from simulation centre to charged atoms at start of simulation. 
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Table 2.3: List of chargeable residues within 17Å for OMTKY3-Water. 

Residue Number Protein Distance (Å)* Charge 
Lys 13 OMTKY3 13.2 0 
Glu 19 OMTKY3 5.3 -1 
Arg 21 OMTKY3 9.8 +1 
Lys 34 OMTKY3 14.5 0 
Lys 55 OMTKY3 15.5 0 

* Distance measured from simulation centre to charged atoms at start of simulation. 

 

2.3 LIE model and analysis 

The linear interaction energy method was used to obtain absolute binding energies for 

the SGPB-OMTKY3 and PPE-OMTKY3 complexes. In the LIE framework the P1 

residue is treated as a ligand and the binding energy is calculated as the difference in 

P1-surroundings interaction energies between bound and unbound states. Qfep5 was 

used to obtain the ligand-surroundings interaction energies, where the P1 residue is 

the ligand. Since multiple simulations were used for each P1 variant, the average 

interaction energy was calculated. The binding energy was then estimated according 

to the LIE equation: vdW el
bind l s l sG V V          

An initial parameterisation of α = 0.58 was chosen and γ was adjusted to allow 

the P1-Gly variants to reproduce the experimental binding energies exactly, and β is 

fixed depending on the nature of the P1 residue. The free LIE variables, α and γ, were 

then optimized to minimize the RMSD of the error, measured as the difference in 

calculated and experimental binding energies. To evaluate the reliability of the 

simulations and the calculated binding energies, the energies and trajectories were 

examined using Qfep5 and Qcalc5. PyMol [6] was used to visualize structures and 

generate illustrations of both MD snapshots and MD average structures. 
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3 Results and discussion 

3.1 Construction of molecular complexes 

As mentioned, there is presently no experimental structure of OMTKY3 in complex 

with PPE. Secondary interactions between serine proteinases and their canonical 

inhibitors are almost identical, and it was therefore decided to attempt a manual 

alignment between PPE and OMTKY3 using the SGPB-OMTKY3 complex as a 

template. The catalytic triad of PPE was aligned using PyMol and an RMSD of 0.245 

Å was obtained for the catalytic residues. Figure 3.1 shows the result of the structural 

alignment and the similarities between the two enzymes are apparent. 

 

Figure 3.1: Aligning the catalytic triad (drawn as sticks) resulted in a high degree of 
overlap between the SGPB and PPE enzymes, showing PPE (green), SGPB (cyan) 
and OMTKY3 (pink). 

 

The next step was to produce a working model of the PPE-OMTKY3 

complex, and the structure was therefore refined. Although surface plots show a good 

match around the primary binding site (Figure 3.2) a number of steric clashes 

remained. The clashes were primarily caused by the 145-150 and the 215-220 loops, 

and most notably by Arg217 as seen in the surface plot in Figure 3.3. Manual shifting 

of the loops using O removed the worst contacts. In order to further relax the model, a 

short MD simulation of 0.1 ns was carried out, and the last structure from this 

simulation was then used as a template for further work on the PPE-OMTKY3 
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complex. Figure 3.4 show the effect of the MD simulation and the effect this has on 

the surface plot. 

      

Figure 3.2: (Left) Surface plot of the SGPB binding site, showing the OMTKY3 
binding loop. (Right) Surface plot of the PPE binding site, showing the OMTKY3 
binding loop. 

 

Figure 3.3: Steric clash between PPE and OMTKY3 immediately after alignment. 
The OMTKY3 main chain is seen passing through the Arg217 side chain. 

       

Figure 3.4: (Left) Comparison between the initial alignment and refined model of the 
PPE-OMTKY3 complex. The initial model is coloured in green and pink, and the 
refined model is yellow and teal. (Right) Surface plot of the refined PPE-OMTKY3 
model, showing the ribbon structure of the inhibitor now adapted to the surface of the 
PPE enzyme. 
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3.2 Point mutation and energy minimization 

Both PyMol and Maestro were used to construct the P1 mutants. For most P1 variants 

it was possible to obtain models with PyMol, however, when attempting to fit large 

residues into the narrow S1 site on PPE steric clashes were significant. The Maestro 

software package allowed for easy mutation as well as good fitting of the P1 side 

chain, and the subsequent energy minimization run using MacroModel [44] removed 

steric clashes and optimized the geometry. The resulting structures were successfully 

subjected to MD simulations. 

The pdb files generated by Maestro could not be read by Q due to different 

naming schemes for atoms, in particular hydrogen atoms. Perl scripts were made to 

change the names first from Q-format to Maestro-format and then back to Q-format 

after completing the P1 mutation and energy minimization. The resulting structures 

were subjected to MD simulations and free energy calculations using the LIE method. 

 

3.3 Molecular dynamics simulations 

MD simulations were carried out for both the SGPB-OMTKY3 complex and the PPE-

OMTKY3 complex, yielding a total of 56 systems, differing only in the P1 position. 

All 20 commonly occurring amino acids were simulated as well as different 

protonation states where applicable, increasing the number to 28 per complex and 56 

in total. Each calculation consisted of three parallel MD simulations using the same 

protocol, consisting of an equilibration phase and a production phase. The parallels 

used different random seed for the equilibration phase. In the equilibration phase the 

system was heated stepwise from 0 to 300 K and the production phase was run at 300 

K over 3 000 000 steps with a time step of 1.5 fs, for a total simulation time of 4.5 ns. 

An identical setup was used for the OMTKY3-Water simulations, in total 28 

simulations. The OMTKY3-Water models were made by removing PPE from the 

PPE-OMTKY3 complex and were then subjected to the same MD scheme as the 

protein-protein complexes. Thus 84 simulations were run in three parallels and the 

final energies were collected from averages over all three series. 
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Choice of time step 

To reduce the computational cost of the planned MD simulation a time step of 2.0 fs 

was originally chosen. Compared to a time step of 1.5 fs, this reduces the number of 

steps required for a given simulation time by 25 % and would in the long run save 

thousands of computing hours. The MD simulations started at 1 K in order to relax 

the molecular system and allowing it to adapt to the chosen force field. Hot atoms 

were observed in the beginning of the MD simulations due to atoms coming too close 

and vdW repulsion moves the atoms apart again. In itself this is quite common as 

most crystal structures include close contacts that triggers repulsions during the first 

stages of equilibration and then disappears as the simulation progresses. In particular, 

crystal structures are refined with different force field parameters than what is 

normally used in traditional MD simulations, and the systems are normally relaxed 

prior to MD to accommodate new parameters. 

 However this can also happen at a later stage if the time step is too large, as a 

result of instabilities in the simulations. As MD integrates Newton’s laws and assigns 

each atom with a speed and acceleration according to the Taylor expansion it does so 

for the entire time step, it is possible for two atoms to move closer than they could 

naturally. If the atoms are too close the repulsion forces, which usually scale at r -12 in 

most force-fields, will throw the atoms apart violently and can cause the simulation to 

“blow up”. 

 Test simulations carried out on the PPE-OMTKY3 complex as well as 

OMTKY3 in water yielded mixed results. Some of the simulations completed 

successfully while others crashed during the equilibration phase. Closer examination 

of the simulations revealed that this was caused by SHAKE failure. Normally, 

SHAKE failure is a symptom of something wrong in the simulations and not the 

SHAKE algorithm itself. SHAKE was used only on hydrogen atoms and on solvent 

molecules, and an update frequency of 25 was used for the non-bonded pair list. To 

solve this various changes were tested. The simulation sphere was increased but 

without consistent effect. Different random seeds were tested with the same result. 

Since all the hot atoms were hydrogen, removing them and then let Q reinsert them 

into a hopefully less strained configuration was also tested with the aforementioned 

result. As neither approach could produce stable MD simulations the time step was 

reduced to 1.5 fs. The new simulation was set up to run 3 000 000 steps with a time 
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step of 1.5 fs, in total 4.5 ns of simulation time per parallel. When reducing the time 

step to 1.5 fs all simulations finished successfully.  

 

3.3.1 Molecular dynamics quality 

Before analysing the energetics associated with point mutations, the quality of the 

MD simulations must be sufficient. In general, the quality of MD simulations can be 

addressed by examining the physical properties of the simulations (e.g. temperature, 

total energy, pressure, volume etc.) and the quality of the simulated structures. The 

variance in the temperature and the total energy was examined for all simulations, and 

are stable throughout the production phase. The temperature was set to 300 K, but 

was found to vary within ±5 K. This indicates that the bath coupling is correctly set, 

as too weak or strong coupling can give artificial trajectories. Another property 

examined was the root-mean-squared deviation with respect to the initial structure. 

The RMSD is in the range 0.6 to 1.0 Å excluding hydrogen atoms and solvent 

molecules, confirms that the simulations maintain the overall structure. Figure 3.5 and 

Figure 3.6 show plots of the RMSD as a function of simulation time for the P1-Tyr 

mutant of the SGPB-OMTKY3 and PPE-OMTKY3 complexes obtained from the first 

parallel. RMSD plots from the other P1 mutants show similar results. 

 

Figure 3.5: RMSD plot for first parallel of the P1-Tyr variant from the SGPB-
OMTKY3 complex, in relation to the starting structure. 

 

Figure 3.6: RMSD plot for first parallel of the P1-Tyr variant from the PPE-
OMTKY3 complex, in relation to the starting structure. 
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3.4 LIE calculations  

Complexes between serine proteinases and their canonical inhibitors have almost 

identical secondary interactions regardless of the P1 residue [3, 49]. In the LIE 

method the P1 residue is treated as a ligand and the binding energy is calculated as the 

difference between bound and unbound states with the remainder of the complex 

forming the surroundings. The LIE equation use three parameters to approximate the 

binding energy, α scales the vdW energy, β scales the electrostatic energy and the 

final term γ corresponds to the binding energy contributions from the secondary 

interactions and is only necessary to reproduce absolute binding energies. A key 

assumption in the LIE method is that the secondary interactions remain the same and 

for serine proteinases this is generally true as noted earlier. The constant term γ is 

therefore the same for all P1 variants, but varies between different proteinases. 

The LIE variables were initially estimated, α was set to 0.58 as this has proved 

to be a good value [39]. The γ variable corresponds to the binding energy contribution 

from the secondary interactions. P1-Gly with only a single hydrogen as its side chain 

has virtually no primary interactions, all binding energy contributions come from the 

secondary interactions. Based on this, γ was adjusted to allow the calculated binding 

energy for P1-Gly to exactly reproduce the experimental binding data. Using this 

estimate the most favourable configurations for the P1 residues were chosen and the 

LIE variable estimates were optimized for the new selection of P1 variants and the 

result is displayed in Table 3.1. 

In the initial LIE equation the β variable was set to 0.50, but FEP 

investigations of the various amino acids have calculated different β values, 0.37, 0.43 

or 0.50 depending on the chemical nature of the side chain [50]. Deviations from the 

linear response value of 0.50 are primarily caused by functional groups capable of 

extensive hydrogen bonding. Hydroxyl groups were found to deviate most from the 

value of 0.50. 

Certain amino acids can undergo protonation or deprotonation depending on 

the pH. The experimental association energies were obtained at pH = 8.3 [4] and at 

this value P1-Arg, P1-Lys, P1-Asp and P1-Glu can be expected to be ionized when 

the inhibitor is free. Since both simulations require the inhibitor to be of the same 

state, the binding energy must be corrected free energy required to 

protonate/deprotonate chargeable residues. This is calculated according to: 
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1.35pH
bind aG pH pK  

 
(28) 

where pH = 8.3 and pKa of the amino acid in question is used. This result in free 

energy penalty upon protonation of 5.8, 5.1, 5.7, 3.2 and 3.1 kcal/mol for Asp, Glu, 

Arg, Lys and His respectively.  

Qfep5 was used to obtain vdW and electrostatic molecular mechanics averages 

between the ligand and the surroundings. In the LIE framework the P1 residue is 

treated as a ligand while the rest of the protein is treated as the surroundings. The 

energies obtained from the SGPB-OMTKY3, PPE-OMTKY3 and OMTKY3-water 

series are listed in Table 3.2 and Table 3.3 and the LIE equation is used to calculate 

the binding energy according to vdW el
bind l s l sG V V         . In addition the 

experimental binding energies from Lu et al. [4] are shown for comparison. Scatter 

diagrams of calculated and experimental binding free energies are found in Figure 3.7 

and Figure 3.8. 

 

 

Table 3.1: Optimized LIE variables for SGPB-OMTKY3 and PPE-OMTKY3 
complexes. 

Enzyme α β γ 
RMS 

(kcal/mol)#

Error  

(kcal/mol)# 

SGPB* 0.45 FEP -8.7 1.27 1.16 

PPE* 0.55 FEP -9.2 1.18 1.06 
* Only one P1 variant for each amino acid included in optimization and outliers with 
error > 2.0 kcal/mol are not included in the optimization. 

# RMS and Error  is calculated for the P1 variants included in the optimization. 
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Table 3.2: Ligand-surroundings interaction MD average energies for P1 variants of 
OMTKY3 in water and bound to SGPB. 

 SGPB-OMTKY3 OMTKY3-Water   

P1 residue 
el

slV   vdw
slV 

el
slV   vdw

slV   *calc
bindG  exp **bindG  

Gly -71.6 -6.2 -70.7 -4.0 -10.1 -9.5 
Ala -72.1 -9.2 -70.4 -6.0 -10.9 -11.5 
Arnn -95.8 -23.0 -102.2 -11.8 -5.3 -11.1 
Argc -177.3 -17.8 -197.7 -5.6 -4.1 -11.1 
Asn -89.9 -15.8 -89.8 -7.6 -12.5 -11.1 
Aspc -201.4 -8.1 -218.2 -0.1 -3.9 -8.8 
AspH1a -83.6 -17.3 -92.8 -7.4 -4.0 -8.8 
AspH2a -83.1 -17.3 -83.2 -8.0 -7.0 -8.8 
Cys -77.1 -12.8 -72.2 -7.9 -13.1 -14.4 
Gln -92.6 -18.6 -92.1 -10.3 -12.7 -11.9 
Gluc -200.7 -11.6 -220.5 -1.7 -3.2 -8.5 
GluH1a -85.3 -20.1 -93.2 -10.6 -5.0 -8.5 
GluH2a -85.7 -18.8 -93.4 -10.1 -4.7 -8.5 
Hidb -88.7 -21.6 -91.6 -12.0 -11.9 -12.7 
Hieb -87.4 -20.7 -91.8 -11.8 -10.8 -12.7 
Hipc -166.8 -16.5 -180.3 -7.0 -3.1 -12.7 
Ile -71.1 -20.2 -69.1 -12.7 -13.0 -10.0 
Leu -72.5 -19.9 -69.8 -12.4 -13.3 -14.4 
Lynn -83.5 -20.2 -83.2 -11.3 -9.7 -11.3 
Lysc -197.0 -13.9 -208.6 -5.3 -6.8 -11.3 
Met -77.1 -19.9 -77.1 -12.5 -12.1 -14.0 
Phe -74.6 -24.5 -74.0 -15.2 -13.2 -13.1 
Pro -49.3 -14.2 -47.4 -8.9 -12.0 -6.1 
Ser -86.4 -9.0 -85.1 -4.8 -11.1 -10.3 
Thr -84.1 -13.0 -81.6 -7.2 -12.2 -11.3 
Trp -82.1 -30.2 -81.9 -18.4 -14.2 -12.6 
Tyr -85.2 -25.0 -84.8 -14.6 -13.5 -12.8 
Val -72.1 -16.9 -68.2 -10.3 -13.3 -11.4 

Energies listed in kcal/mol 
* Energies calculated using the LIE equation: calc vdW el

bind l s l sG V V              

** Experimental binding affinities from Lu et al. [4]. 
# Binding energy corrected with free energy required to protonate/deprotonate the 
side chain based on: )(35.1 pKapHG pKa

bind   
a Refers to either variant of protonated, neutral, aspartic or glutamic acid. 
b Hid and Hie refers to protonation state of neutral histidine. 
c Refers to charged variant of P1 residue (Asp, Glu, Arg, Lys or His). 
n Refers to protonated, neutral, variant of arginine or lysine. 
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Table 3.3: Ligand-surroundings interaction MD average energies for P1 variants of 
OMTKY3 in water and bound to PPE. 

 PPE-OMTKY3 OMTKY3-Water   

P1 residue 
el

slV   vdw
slV 

el
slV   vdw

slV   *calc
bindG  exp **bindG  

Gly -72.2 -7.04 -70.7 -4.0 -11.5 -12.0 
Ala -73.1 -10.9 -70.4 -6.0 -13.1 -14.2 
Arnn -85.7 -22.8 -102.2 -11.8 -2.5 -4.9 
Argc -145.2 -18.0 -197.7 -5.6 10.2 -4.9 
Asn -85.7 -18.5 -89.8 -7.6 -13.5 -10.5 
Aspc -186.6 -10.4 -218.2 -0.1 0.9 -6.5 
AspH1a -90.2 -17.1 -92.8 -7.4 -7.8 -6.5 
AspH2a -72.9 -18.9 -82.9 -7.8 -5.8 -6.5 
Cys -76.7 -13.9 -72.2 -7.9 -14.4 -13.9 
Gln -81.0 -21.3 -92.7 -10.4 -10.2 -10.2 
Gluc -167.1 -15.6 -220.5 -1.7 9.9 -6.6 
GluH1a -74.2 -22.0 -93.2 -10.6 -3.4 -6.6 
GluH2a -73.8 -21.5 -93.4 -10.1 -3.2 -6.6 
Hidb -86.0 -19.7 -91.6 -12.0 -11.1 -6.1 
Hieb -77.1 -22.7 -91.8 -11.8 -8.9 -6.1 
Hipc -127.0 -17.1 -180.3 -7.0 15.0 -6.1 
Ile -73.4 -19.4 -69.1 -12.7 -14.8 -13.1 
Leu -74.4 -19.4 -69.8 -12.4 -15.0 -14.2 
Lynn -75.1 -21.2 -83.2 -11.3 -8.0 -6.3 
Lysc -152.3 -15.9 -208.6 -5.3 13.1 -6.3 
Met -73.9 -21.3 -77.1 -12.5 -12.7 -13.6 
Phe -70.3 -22.1 -74.0 -15.2 -11.5 -6.3 
Pro -50.3 -13.7 -47.4 -8.9 -13.1 -7.7 
Ser -79.1 -11.8 -85.1 -4.8 -10.8 -12.0 
Thr -83.1 -12.9 -81.6 -7.2 -12.9 -14.0 
Trp -76.7 -30.9 -81.9 -18.4 -13.9 -5.9 
Tyr -79.0 -24.5 -84.8 -14.6 -12.5 -5.2 
Val -74.8 -15.6 -68.2 -10.3 -14.9 -13.3 

Energies listed in kcal/mol 
* Energies calculated using the LIE equation: 
 calc vdW el

bind l s l sG V V              

** Experimental binding affinities. 
# Binding energy corrected with free energy required to protonate/deprotonate the 
side chain based on: )(35.1 pKapHG pKa

bind   
a Refers to either variant of protonated, neutral, aspartic or glutamic acid. 
b Hid and Hie refers to protonation state of neutral histidine. 
c Refers to charged variant of P1 residue (Asp, Glu, Arg, Lys or His). 
n Refers to protonated, neutral, variant of arginine or lysine. 
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Figure 3.7: Scatter diagram of calculated and experimental binding energies for 
SGPB-OMTKY3, using the optimized LIE variables. Only the best P1 variants are 
drawn, while P-Pro is omitted. 

 

 

 

Figure 3.8: Scatter diagram of calculated and experimental binding energies for PPE-
OMTKY3, using the optimized LIE variables. Only the best P1 variants are drawn, 
while P1-Phe, P-Pro, P1-Trp, P1-Tyr are omitted. 
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The chosen LIE model reproduces the experimental binding energies within 

acceptable accuracy for most P1 variants. Where multiple configurations of the P1 

residue are available only the one who reproduces the experimental binding energies 

best were used during the optimization of the LIE variables. Certain P1 variants, in 

particular the charged residues like protonated Arg are calculated to bind much worse 

than what is found experimentally. The most obvious explanation is that P1-Arg is 

uncharged. As such the binding energy obtained from unfavourable configurations are 

ignored and only one result is chosen for each P1 variant with multiple 

configurations. In previous protein-protein simulations using the LIE method P1-Pro 

has been troublesome [51]. The restrictions to binding angles imposed by proline’s 

side chain have been difficult to model accurately and the binding energy obtained 

from P1-Pro is omitted when optimizing the LIE variables. 

 After the LIE optimization the mean unsigned error for the SGPB-OMTKY3 

complex was 1.82 kcal/mol and for PPE-OMTKY3 it was 2.45 kcal/mol. This is 

somewhat higher than comparative LIE simulations [51], which report mean unsigned 

errors of 0.69, 0.43 and 1.01 kcal/mol. However these figures includes several 

outliers, and if P1-Pro is excluded the figure drops to 1.61 kcal/mol for SGPB-

OMTKY3. P1-Pro and the aromatic residues (Phe, Trp and Tyr) are problematic in 

the PPE-OMTKY3 simulations and when these are dropped the new figure is 1.45 

kcal/mol.  

 One of possible source for the discrepancy between theoretical and 

experimental binding energies can be related to convergence of the interactions 

energies between the P1 residue and its surroundings. Figure 3.9 show how the 

electrostatic and the van der Waals interaction energies vary as a function of 

simulation time. Inspection of P1–surroundings interaction energies reveal no sudden 

jumps and that both the electrostatic and van der Waals component rapidly reach a 

stabile plateau. Three independent MD simulations were carried out and comparisons 

of the individual free energies are very similar, indicating stable structures and 

energetics. 
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Figure 3.9: P1-surroundings interaction energy plots for a selection of SGPB-
OMTKY3 complexes (left) and PPE-OMTKY3 complexes (right). Electrostatic 
energy (red) and vdW energy (blue), in kcal/mol, are plotted against time measured in 
nanoseconds. 
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3.5 Effect of multiple simulations 

To evaluate the effect of multiple simulations the LIE binding energy was calculated 

for each parallel. Most of the simulations result in fairly similar LIE binding energies, 

but some parallels result in large deviations (Table 3.4 and Table 3.5). Structural 

analysis indicates this is most likely caused by conformational changes during the 

equilibration phase but sometimes conformational changes occur during the 

production phase. Specific details are discussed under the appropriate P1 heading. 

Table 3.4: Comparison of calculated binding energies for each parallel in SGPB-
OMTKY3. 

P1 1

calc
bind

MD

G


  
2

calc
bind

MD

G


  
3

calc
bind

MD

G


  

Gly -9.9 -10.2 -10.2 
Ala -11.2 -10.8 -10.9 
Arnn -5.6 -5.4 -5.1 
Argc -7.4 -5.3 0.5 
Asn -11.7 -13.0 -12.7 
Aspc -4.9 -2.3 -4.6 
AspH1a -3.9 -3.6 -4.4 
AspH2a -7.1 -7.6 -6.4 
Cys -13.2 -13.3 -12.7 
Gln -13.1 -12.8 -12.1 
Gluc -5.2 -2.8 -1.7 
GluH1a -4.4 -4.4 -6.2 
GluH2a -5.2 -5.1 -3.8 
Hidb -11.9 -12.4 -11.3 
Hieb -10.5 -11.2 -10.9 
Hipc -3.9 -2.9 -2.6 
Ile -13.3 -12.5 -13.2 
Leu -13.7 -12.9 -13.2 
Lynn -9.9 -9.2 -9.9 
Lysc -7.0 -6.6 -6.8 
Met -12.4 -11.4 -12.5 
Phe -13.6 -13.3 -12.7 
Pro -11.7 -12.3 -11.9 
Ser -10.9 -11.2 -11.4 
Thr -12.5 -12.3 -11.9 
Trp -14.1 -14.3 -14.0 
Tyr -13.6 -13.5 -13.5 
Val -13.7 -12.9 -13.4 

Energies listed in kcal/mol 
Energies calculated using the LIE equation:   

el
sl

vdW
sl

LIE
bind VVG  

MD-1, MD-2 and MD-3 indicate from which parallel the binding free energy was 
obtained. 
a Refers to either variant of protonated, neutral, aspartic or glutamic acid. 
b Hid and Hie refers to protonation state of neutral histidine. 
c Refers to charged variant of P1 residue (Asp, Glu, Arg, Lys or His). 
n Refers to protonated, neutral, variant of arginine or lysine. 
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Table 3.5: Comparison of calculated binding energies for each parallel in PPE-
OMTKY3. 

P1 1

calc
bind

MD

G


  
2

calc
bind

MD

G


  
3

calc
bind

MD

G


  

Gly -11.4 -11.6 -11.7 
Ala -13.3 -12.8 -13.1 
Arnn -1.4 -3.1 -2.4 
Argc 11.1 10.2 10.1 
Asn -12.2 -13.4 -14.2 
Aspc 0.4 0.6 2.3 
AspH1a -8.1 -6.6 -8.3 
AspH2a -5.4 -5.9 -9.5* 
Cys -14.5 -14.0 -14.6 
Gln -12.8* -10.0 -10.0 
Gluc 9.8 8.2 12.4 
GluH1a -3.9 -3.1 -2.4 
GluH2a -3.5 -3.3 -2.1 
Hidb -11.3 -10.6 -11.0 
Hieb -8.6 -8.3 -9.3 
Hipc 14.6 14.8 16.1 
Ile -15.5 -13.8 -14.9 
Leu -15.1 -14.9 -14.9 
Lynn -9.4 -6.3 -7.7 
Lysc 12.9 12.3 14.6 
Met -13.2 -11.2 -13.3 
Phe -11.9 -11.3 -11.0 
Pro -13.1 -13.3 -12.9 
Ser -11.1 -10.6 -10.7 
Thr -13.3 -12.9 -12.4 
Trp -13.1 -12.8 -15.0 
Tyr -12.4 -11.9 -12.7 
Val -15.3 -14.8 -14.7 

Energies listed in kcal/mol 
Energies calculated using the LIE equation:   

el
sl

vdW
sl

LIE
bind VVG  

MD-1, MD-2 and MD-3 indicate from which parallel the binding free energy was 
obtained. 
a Refers to either variant of protonated, neutral, aspartic or glutamic acid. 
b Hid and Hie refers to protonation state of neutral histidine. 
c Refers to charged variant of P1 residue (Asp, Glu, Arg, Lys or His). 
n Refers to protonated, neutral, variant of arginine or lysine. 
* Indicates anomalous parallel, energy contribution excluded from average. 
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3.6 SGPB-OMTKY3 

The optimized LIE model is very accurate (error less than 1.0 kcal/mol) for 8 of the 

20 P1 mutants when choosing the configuration with the least error, and fairly 

accurate (error less than 2.0 kcal/mol) for another 8 mutants. Since P1-Pro is omitted, 

due to the restrictions imposed by the side chain, this leaves 3 P1 mutants as 

significant outliers. The majority of the simulations show only small differences in 

binding energy between the parallels. Notable exceptions are arginine, aspartic acid 

and glutamic acid, which show high degree of variation between some of parallels 

and are discussed in greater detail under the appropriate heading. 

 Crystal structures are available for 18 of the 20 P1 amino acids. Even though 

the simulations are based on models made from the P1-Gly variant, the crystal 

structures provide useful insight into actual binding actions between the enzyme and 

inhibitor. Early in the project it was decided to create models rather than adopt 

individual crystal structures for each P1 variation. Partly because crystal structures 

were not available for all P1 variants of SGPB-OMTKY3, but also to evaluate the LIE 

model and determine if the model would yield accurate results without relying on x-

ray diffraction. This also provides a reference point for studying the PPE-OMTKY3 

system, for which there are no crystal structures. 

 

P1-Asp and P1-Glu 

The side chains aspartic and glutamic acid are similar in many respects, and the 

binding free energies for both are under estimated by the chosen LIE model. Both side 

chains end with a carboxylic acid unit, and the possible protonation states are 

identical for either amino acid. The side chain can be charged (deprotonated) or one 

of the oxygen atoms can be protonated. 

 Binding free energies obtained from the simulations show the P1-AspH2 

variant best reproduces the experimental binding energies. The charged P1-Asp is 

predicted to be unfavourable and is so for all parallels, and the P1-AspH1 mutant is 

significantly underestimated as well. Apart from one parallel involving the charged 

P1-Asp, which is unfavourable anyway, the simulations yield similar energies. 

Analysis of the trajectories reveals the presence of a hydrogen bond between 

the P1 side chain and Ser214. Examination of the crystal structure of P1-Asp (1SGD) 

shows that the P1 side chain adopts a different conformation when compared to the 
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dominating one found in the simulations. Rather than H-bond with Ser214 the P1 side 

chain is oriented outwards and faces crystallographic water molecules. The resolution, 

1.8 Å, is not good enough to identify hydrogen atoms and the actual protonation state 

for the P1 side chain is impossible to ascertain. Nevertheless H-bonds likely exist 

between the P1 side chain and the water molecules, but this does not offer new insight 

into the protonation state. 

Water molecules are similarly positioned during the simulation and are 

available to form of H-bonds, but the P1 side chain is oriented inward rather than to 

the water molecules. The formation of an H-bond with Ser214 is likely favourable for 

the calculated binding energy but this provokes changes in the secondary interactions 

whose energy contributions are not factored into the LIE equation. 

P1-Glu is underestimated as well and examination of the crystal structure 

(1SGE) show that the P1 side chain is oriented towards the crystallographic water. 

The experimental binding energy is best reproduced by the P1-GluH1 protonation 

state and structural analysis show interaction with water molecules during a part of 

the simulation. The third parallel of the P1-GluH1 mutant show the formation of a 

hydrogen bond with Ser214 in the latter part of the simulation, and this is clearly 

visible in Figure 3.10.  

 

Figure 3.10: Interaction energy plot for the third parallel of the P1-GluH1 mutant 
from the SGPB-OMTKY3 complex. vdW energy is blue and electrostatic energy is 
red. 
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As with P1-Asp it is not clear if the H-bond in question should form. It does however 

provide a strong bond and it affects the LIE equation favourably. Nevertheless it also 

induces changes in the secondary interactions that are not included in the LIE 

equation and as such is suspect. 

 It is possible the experimental binding energies could be reproduced if greater 

care were taken during the construction of the models in respect to the orientation of 

the P1 side chain. However for such a technique to work available crystal structures 

are required but defeats the purpose of creating a method that can reliably predict 

binding energies based on models alone. 

 Two sets of crystal structures are available for the Asp and Glu variants, one at 

pH = 6.5 (1SGD, 1SGE) and the other at pH = 10.7 (2SGD, 2SGE) for Asp and Glu 

respectively. The high pH structures show the presence of a potassium ion close to the 

carboxylic unit. As no ion is present in the simulation this could possibly explain the 

difference in calculated and observed binding energies. However, MM-PBSA 

simulations on the SGPB-OMTKY3 complex conducted by Fujinaga et al. achieved 

best results without the K+ ion [52]. 

 To summarize, the P1-AspH2 reproduces the experimental binding energy to 

some degree, but this may be due to a cancellation of errors. The P1-Glu simulations 

fail to reproduce the experimental binding energies and obtain errors ranging from 

3.6-5.3 kcal/mol. 

 

P1-Arg 

Accommodation of P1-Arg is underestimated by 7.0 and 5.8 kcal/mol for the charged 

and uncharged mutants respectively. The starting orientation of the P1 side chain is 

different from the crystal structure (2NU2), but trajectories from the simulations show 

that the P1 side chain adopt a similar conformation for both the charged and 

uncharged side chain. A number of protonation states are possible for neutral Arg, as 

deprotonation can occur at either -NH2 group. The true protonation state is unknown, 

and although crystal structures are available the resolution is not good enough to 

identify hydrogen atoms. Previous LIE studies have concluded that chargeable P1 

residues (His, Arg, Lys, Asp, Glu) bind predominantly in uncharged state [39]. For an 

accurate estimation of the binding energy the different protonation states will likely 

have to be considered. 
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 Another issue is the low agreement among the charged P1-Arg simulations, in 

particular the third parallel. Structural investigation shows that the P1 side chain 

adopts a different conformation during the equilibration. The interaction energies 

show stable sampling, but unfavourable energies. In fact the high variation in 

calculated binding energies for the charged P1-Arg questions the validity of the 

energetics and prompts further simulations to reach a consensus. 

 

P1-Ile 

The LIE model calculates the binding free energy for P1-Ile to be -13.0 kcal/mol, and 

thus overestimates the energy by 3.0 kcal/mol. The parallel simulations yield 

consistent binding energies, and P1-surroundings interaction energies are stable. 

Examinations of the trajectories and comparison with the crystal structure (1CSO) 

show the P1 side chain adopting similar configurations during the simulations for 

parallel 1 and parallel 3. The main chain H-bond between the P1 residue and the 

enzyme is unchanged in all simulations with a distance similar to the crystal structure. 

No specific structural details can be pointed to as the cause of the discrepancy, but the 

over estimation is likely caused by too strong vdW interactions. This is however 

difficult to verify without further studies. 
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3.7 PPE-OMTKY3 

Elastase has a much smaller binding pocket than SGPB and chymotrypsin. The 

binding site in elastase is closed by Val216 and Thr226, whereas these residues are 

glycine in chymotrypsin. This prevents larger side chains from entering the binding 

site, which is reflected in the experimental binding energies (Table 3.3). 12 of 20 

possible amino acids at the P1 position are calculated within 2.0 kcal/mol of their 

experimental binding energies. Of the 8 outliers, 4 have previously proven to be 

problematic (Pro, Phe, Trp, and Tyr). In several cases H-bonds with Ser214 are shown 

to be the problem and this is further discussed under the appropriate P1 headings. 

 
Aromatic residues and P1-Trp 

The binding affinities of the aromatic P1-variants are vastly over estimated, LIE 

calculations estimate the free energy of binding of P1 Phe, Trp and Tyr to -11.5, -

13.9, -12.5, respectively, with corresponding experimental values of -6.3, -5.9 and -

5.2 kcal/mol. The binding affinities of the aromatic residues are thus overestimated by 

up to 8.0 kcal/mol. Phe, Trp and Tyr are experimentally among the worst binders. 

Similar effects are observed in the human leukocyte elastase (HLE) [51]. In the case 

of HLE the cause is suspected to be changes in the secondary interactions from trying 

to fit a large residue into the small S1 site of elastase. In the LIE method the P1 

residue is treated as a ligand and secondary interactions are assumed to be the same. 

When a large P1 residue is docked into a narrow pocket the steric clashes will interact 

with the S1 site and the pocket will adapt and expand. This will likely change the 

secondary interactions and as noted earlier the LIE method requires the secondary 

interactions to be identical. Whenever the secondary interactions change the LIE 

method will fail to predict the effect. This problem is explored further in the 

preorganization energy section. 

The third P1-Trp parallel is ~2 kcal/mol overestimated compared to the other 

two. Investigation of the trajectory of the P1-Trp complex simulations reveals that 

main chain-main chain hydrogen bonds at the P1, P2 and P3 sites are broken. The 

structural change is illustrated in Figure 3.11 which shows the secondary interactions 

between the protein and inhibitor main chains from the P1-Trp and P1-Ala mutants. 

Figure 3.12 show the changes in the surface of PPE from the P1-Trp and P1-Ala 

simulations respectively. In the other two parallels the P1 side chain is positioned 

inside the binding pocket. 
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Figure 3.11: (Left)MD average trajectory of P1-Trp showing broken hydrogen bonds 
at secondary binding sites, only P2-S2 interaction is intact. (Right) MD average 
trajectory of P1-Ala, showing intact hydrogen bonds at secondary binding sites. 

	

    

Figure 3.12: (Left) Surface of PPE bound to P1-Trp. The tryptophan side chain is 
seen carving out space for itself. (Right) Surface of PPE bound to P1-Ala shown for 
comparison. 

	
P1-Arg 

The LIE equation underestimates both variants of arginine, although only the neutral 

arginine is predicted to actually bind. Experimentally Arg is the worst P1 residue in 

respect to binding energy and this is also replicated in the simulations. The 2006 study 

by Almlöf et al. into HLE-OMTKY3 overestimates Arg by 3.7 kcal/mol and suggests 

this is caused by different protonation states [39]. The parallels show similar energies, 

although differing by somewhat they consistently underestimate the binding energy. 

Since crystal structures are not available it is difficult to say which side chain 

orientation is correct or whether it is reproduced during the simulations. 
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P1-Asn 

The accommodation of P1-Asn is overestimated by 3.0 kcal/mol. Analysis of the MD 

trajectories show that the P1 side chain forms a hydrogen bond with the carbonyl 

oxygen of Ser214. This change can be seen in Figure 3.13 and Figure 3.14 which 

show the starting structure compared to a snapshot from the MD simulation. 

Examination of the non-bonded interaction energies from the trajectories confirms 

there is a strong electrostatic interaction between P1-Asn and Ser214. 

 

Figure 3.13: Starting structure of the PPE-OMTKY3 P1-Asn complex, showing the 
distance (2.5 Å) between the Asn and the carbonyl oxygen in the binding pocket. 

 

Figure 3.14: Snapshot of the PPE-OMTKY3 P1-Asn simulation, showing the 
distance (2.0 Å) between the Asn and the carbonyl oxygen in the binding pocket. The 
distance and geometry is typical for hydrogen bonds. 



	

58	
	

P1-Gln 

The binding energy of P1-Gln is overestimated by 1.6 kcal/mol, this is attributed to 

one of the P1-Gln parallels which have a significantly different binding energy 

compared to the other two, -13.0 kcal/mol against -10.2 kcal/mol for the two others. 

Analysis of the trajectories shows an increase in favourable non-bonded interactions 

between the P1-residue and several residues in the enzyme, as well as a decrease in 

unfavourable non-bonded interactions. The differences can for the most part be 

ascribed to electrostatic interaction with His57 (favourable), Asp194 (unfavourable) 

and Ser214 (favourable). The large difference in binding energy, ~3 kcal/mol, 

questions the validity of the anomalous parallel. 

Plotting the interaction energies during the simulation reveal that the first 

parallel is trapped in a local minimum during much of the simulation (Figure 3.15). 

As it does not sample the energies properly contributions from the first parallel is 

removed from the energy average. The second and third parallel reproduce the 

experimental binding energy with very good accuracy. 

 

    

Figure 3.15: Interaction energy plot for first (left) and second parallel (right) of the 
P1-Gln variant of PPE-OMTKY3. The first parallel is trapped in a local minimum for 
a large part of the simulation. Electrostatic energy (red) and vdW energy (blue). 
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P1-Asp 

The P1-Asp models are made up of the three different protonation states, each 

subjected to three parallel MD-simulations. Examining the LIE binding energies the 

AspH2 mutant reproduces the experimental association energy closest, while a 

charged side chain is energetically unfavourable. Which protonated configuration is 

correct, is difficult to determine as there is no crystal structure available of the PPE-

OMTKY3 complex. Although an equilibrium between the protonation states can be 

expected. 

 The LIE method works best for AspH2 and examination of the MD stability 

reveal somewhat stable energies for the first and second parallel. Some 

conformational rearrangement is mirrored in the energies, but the energies are fairly 

stable as far as the average is concerned. The last parallel adopts a different 

conformation, in which the electrostatic interaction energy measured between the P1 

residue and the surroundings is greatly increased (Figure 3.16). This is reflected in the 

LIE energy which is overestimated by ~4 kcal/mol. For the most part this is attributed 

to a hydrogen bond between the –OH in the P1 side chain and Ser214. In addition 

changes in the enzyme’s hydrogen bond network are observed; Ser195 H-bonds to 

His57 but this bond assume different conformations and is also broken for a part of 

the simulation. 

Overall the validity of the third parallel is in question. It undergoes 

conformational change and forms a hydrogen bond not found in the other two 

parallels. It is unknown whether the H-bond in question should form, because there is 

no available crystal structure to compare with. But if the LIE method is accurate in 

predicting the binding energy, the energy data for the first and second parallel indicate 

it should not form. If the energy contribution from the suspect third parallel is 

excluded the LIE model is in excellent agreement with the experimental binding 

energy. 
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Figure 3.16: Ligand-surroundings interaction energies for P1-AspH2 variant of PPE-
OMTKY3 for all three parallels. Electrostatic energy (red) and vdW energy (blue). 

 
P1-Glu 

Glutamic acid is either charged or protonated at either carboxylic oxygen. 

Experimentally P1-Glu binds weakly, and this is replicated in the simulations. The 

charged variant is predicted not to bind at all, while the two uncharged are predicted 

to bind poorly, but the binding energies are underestimated by roughly 3 kcal/mol for 

both protonation states. Some differences in binding energies are observed among the 

parallels but nothing that compromises the results of the simulations. 

 The P1-GluH1 variant matches the experimental binding energy best with an 

error of 3.2 kcal/mol, just slightly lower than P1-GluH2 with an error of 3.4 kcal/mol. 

There are possible hydrogen bonding partners in the binding pocket, but the MD 

trajectories show no evidence of H-bond formation. The energy difference is the same 
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as typically seen in H-bonds and the error can be a result of hydrogen bonding 

networks that are not properly reproduced in the simulations. 

 
P1-His 

The calculated binding free energy overestimates P1-His by 5.0 kcal/mol and 2.8 

kcal/mol for the Hid and Hie variants respectively. The charged histidine variant is 

calculated to be extremely unfavourable with ΔG >> 0 and is as such unlikely to 

occur. An equilibrium among the protonation states is possible, but with a calculated 

ΔG = 15.0 kcal/mol the charged histidine would not be expected to bind at all. 

Experimentally P1-His is found to bind poorly but the simulations predict the binding 

to be stronger, with the Hie variant closest with an error of 2.8 kcal/mol. Investigation 

of the Hid and Hie structures suggest two possible explanations for the 

overestimation. 

As with the aromatic P1 variants histidine incorporates a large side chain 

which will expand the binding site and weaken the secondary interactions. These 

energy contributions are not included in the LIE equation and the calculated binding 

energy will be overly favourable. Surface plots of the average structure from the Hie 

variant compared with P1-Ala show an enlarged binding pocket (Figure 3.17). 

 

     

Figure 3.17: (Left) Surface plot of P1-Hie (MD-average structure, parallel 1), 
showing enlarged binding pocket in relation to the binding loop. (Right) Surface plot 
of P1-Ala, shown for comparison. 

 
Investigation of the non-bonded interaction energies measured between the P1 

residue and the surroundings show strong vdW and electrostatic interactions with 

residue 190-194 and 213-216. If these interactions are stronger than they are supposed 

to in the simulations, it would explain why the binding energy is overestimation. It 
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can also be a combination of strengthened binding pocket interactions combined with 

neglecting the energy contribution associated with enlarging the binding site that 

causes the overestimation. 

In the study by Almlöf et al. the experimental binding energy of P1-His from 

HLE-OMTKY3 is reproduced with high accuracy [39]. This suggests it is possible 

withing the current LIE model to calculate the binding energy accurately for histidine 

bound to elastases. The current simulations however fail to yield an accurate result, 

and further simulation possibly using different orientations of the P1 side chain could 

reproduce the experimental binding energy better. 
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3.8 Preorganization energy  

Several studies have examined the validity of the linear response approximation [27]. 

Linear response gives:  1

2
i el el
el l s l son off

G V V     

As noted earlier the el
l sV   

term denotes MD or MC averages, while “on” and 

“off” refer to whether electrostatic interactions between the ligand and surroundings 

are turned on or off. The el
l s off

V  term is often referred to as the preorganization term 

or preorganization energy, and is approximated to zero in the LIE equation. When the 

electrostatic interactions are turned off the solvent molecules relax and orient 

themselves randomly in relation to the solute, thus cancelling out energy contributions 

from the el
l s off

V  term [29]. While this is found to be true in water, the surroundings 

are vastly different in protein-protein complexes. When a canonical inhibitor such as 

OMTKY3 is bound to serine proteinases the secondary interactions keep the complex 

together and the close contacts restrict the relaxation in both enzyme and inhibitor. 

Under these conditions the el
l s off

V  term is most likely not zero. Examinations of 

chymotrypsin in complex with OMTKY3 have found non-zero preorganization terms 

[39]. To calculate the el
l s off

V  term another simulation is required and is further 

complicated by slow convergence of the preorganization term. 

 Another finding by Almlöf and co-workers [39] is that the preorganization 

term increases with the size of the ligand, in this case the P1 residue. And perhaps 

more importantly that it is possible to incorporate the preorganization term into the α 

variable for some systems, instead of calculating it explicitly. 
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4 Concluding remarks 

Evaluation of molecular dynamics simulations and LIE calculations 

Molecular dynamics simulations and free energy calculations have been used to study 

the effect of mutations of the P1 residue for complexes between SGPB and PPE with 

OMTKY3. It is found that the method is generally able to predict the effect quite 

reliable. However, some residues appear to be more problematic than others. In the 

SGPB with OMTKY3 complex glutamic acid at the P1 position is underestimated by 

3.6 kcal/mol and P1 asparagine is overestimated by 3.0 kcal/mol in the PPE with 

OMTKY3 complex. Analysis of the structural data reveals that subtle differences in 

primarily hydrogen bonding interactions are the source of the discrepancy. Indeed, in 

some cases conformational sampling becomes trapped in local minima, yielding 

overestimation of the free energy of binding. Three independent simulations were 

carried out for each possible amino acid at the P1 position, and in some cases the 

three parallels are seriously different (up to 8 kcal/mol). This indicates that the 

sampling of the phase space is not sufficient and to obtain converged binding free 

energies more simulations should ideally been carried out. The statistical mechanical 

nature of the methodology used here raises the question of conducting more 

independent simulations rather than few long simulations to assess the convergence 

and accuracy. It is more likely that 100 independent 1 ns simulations cover a larger 

fraction of phase space compared to two 50 ns simulations. This is an exercise left for 

future work. 

 

Ionisable residues 

The effect of ionisable amino acids at the interface is generally found to be 

problematic to model. However, it appears that most if not all are neutral in the bound 

state, consistent with the fact that burial of charges is energetically unfavourable. The 

major challenge with modelling ionisable P1 variants is due to the nature of force 

fields where one has to define only one state, neutral or charged. In reality, an 

equilibrium exists between these two states which is difficult to capture by using a 

single-state model. Modelling of ionic P1 variants is further complicated by the 

potential presence of counter-ions in at the protein-protein interface. It is difficult to 

know the position of such ions unless they contain a significantly different number of 



	

66	
	

electrons than water, so that they can be detected in the electron density of crystal 

structures. Nonetheless, we find that the ionisable P1 variants are preferred to be in 

their neutral state when bound to PPE and SGPB.  

 

Improving the linear interaction energy method 

Modelling the effect of large aromatic P1 variants at the protein-protein interface has 

been very difficult, particularly for PPE. In this case, the free energies of binding are 

overestimated by 5-8 kcal/mol. This is at first somewhat surprising, but can be 

understood when examining the equilibration phase. As mentioned, the S1 site of PPE 

is too small to accommodate these side chains, but model construction phase they are 

placed inside or at the entrance of the S1 site. Then, during the equilibration phase the 

S1 site adjusts and becomes sufficiently large to accommodate these side chains. It is 

thus not a deficiency of the LIE method, but rather the fact that we force something to 

stay in the binding pocket which is not supposed to be there. An alternative technique 

to study mutations, which not been pursued in this work, is to use free energy 

perturbation with dual topologies and soft-core potentials.  

 Preorganization energy contributions have been listed as a source of error in 

the LIE method. Although it is not investigated in this project, it can to some extent 

be corrected by the parameterization. To improve the parameterization two sets of 

LIE variables can be used; one in bound state and another set when the ligand is free 

in solution. This can better compensate for the difference in preorganization of 

charges from bound to unbound states than a single variable. 

 

Ideas for the future 

This thesis has focused exclusively on the LIE method using explicit solvent models. 

However continuum based solvent models can also be used to give a new insight into 

problematic models or simply extend the knowledge of current models. 

 Since no crystal structure is available for PPE with OMTKY3 this is another 

possible task. A crystal structure can verify and possible identify problems related to 

the MD simulations, in particular related orientation of large amino acids in the S1 

pocket. 
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Summary 

This project demonstrates the ability of the LIE method to predict the binding free 

energy of different P1 variants using models based on a small number of crystal 

structures only. In about 85 % of the cases the method was able to differentiate 

between strong and weak binders and 70 % of the values were within 2.0 kcal/mol of 

the experimental binding free energy. The method is as such applicable in tasks such 

as aiding in drug design and screening of binding candidates before experiments are 

carried out. 
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