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Abstract

In this report we define the semantics of a language for dynamic QoS expres-

sions which can be evaluated at run-time for conformance. We define how ex-

pressions can be constructed from atomic expressions termed ’basic profiles’ us-

ing composition operators. Two such operators are defined: The sum ( ’+’ ) 

which corresponds to simple conjunction and  component-sum (’⊕ ’) which as-

sume that the operands denote properties of separate environments and there-

fore must be satisfied separately. Based on those, algorithms for conformance 

checking any pair of expressions can be developed. Concrete models are typi-

cally defined for specific application domains, they define the basic profile 

space and explicitly establishes conformance relationships between basic pro-

files. These are essentially sets of axioms from which we can infer conformance.
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A Declarative Profile Model for 

QoS negotiation

Øyvind Hanssen

Abstract

In this report we define the semantics of a language for dynamic QoS expres-

sions which can be evaluated at run-time for conformance. We define how ex-

pressions can be constructed from atomic expressions termed ’basic profiles’ us-

ing composition operators. Two such operators are defined: The sum ( ’+’ ) 

which corresponds to simple conjunction and  component-sum (’⊕ ’) which as-

sume that the operands denote properties of separate environments and there-

fore must be satisfied separately. Based on those, algorithms for conformance 

checking any pair of expressions can be developed. Concrete models are typi-

cally defined for specific application domains, they define the basic profile 

space and explicitly establishes conformance relationships between basic pro-

files. These are essentially sets of axioms from which we can infer conformance.   

1. Introduction 

There is much interest in how to build open and distributed applications which can be 
adapted to varying environmental properties as well as varying user requirements. Open 
systems are specified in terms of components, services and use of services. However, when 
implementing software components one often make implicit assumptions on extra-
functional behaviour like performance, reliability, or other properties which are typically 
termed "Quality of Service". This may lead to implementations which are tied to specific 
environments and where reusability and adaptability is limited. 

Extra-functional behaviour may be considered explicitly in the specification and design of 
systems. As well as describing functional interfaces and contracts, we may specify QoS con-

tracts between components. This is for instance addressed in QoS modeling languages like 
QML [Frølund98a] or CQML [Aagdedal01].  However, in open systems components could be 
deployed or replaced at run-time, meaning that some aspects of their running environ-
ments cannot be known at design time. Requirements and properties of environments, may 
also change dynamically. Hence, deciding on QoS properties and contracts statically is not 
always sufficient. 

We envisage that some aspects of component and system behaviour could be made nego-

tiable. Reflective middleware, aspect oriented programming environments with dynamic 
aspect weaving are examples of how implementations can be supported. However, it is also 
necessary to perform negotiation between autonomous components, in order to reach agree-
ments on how to configure their composition, and what extra-functional behaviour the con-
figuration should result in. To support such negotiation, components and platforms must be 
able to express at run-time what they offer and what they require (c.f QoS-awareness 
[Frølund98b]). Expessions should be in a form which enables efficient exchange and evalua-
tion, even though components and platforms may be highly heterogenous.    
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In this report we propose an expression language for QoS statements, i.e. descriptions of 
requirements, offers, etc., to be exchanged during negotiation. Any pair of expressions in 
this language can be evaluated at run-time for conformance (if one expression satisfies the 
other). Our model is partly based on declared conformance, meaning that conformance can 
be defined explicitly between identifiers rather than doing complex comparison of param-
eter values or value ranges. Our model also addresses dynamic composition, i.e., that ex-
pressions can be composed from simpler ones, possibly originating from different compo-
nents of a system.      

Complex expressions are constructed from atomic expressions (termed basic profiles) using 
composition operators. Basic profiles and rules for conformance are expressed in terms of 
concrete models defined for specific application domains, by domain experts. Our focus here 
is on an abstract core profile model which define how concrete profile models are defined, 
and how conformance can be inferred from those. We also define how expressions combin-
ing basic profiles relate to each other, thus allowing complex QoS statements to be formu-
lated and compared at run-time.  

The rest of the report is structured as follows: Section 2 gives some overall definitions and 
motivation, and section 3 defines the fundamentals of profile models. In section 4 we define 
how complex expressions are built from simpler ones by using two composing operators: ’+’ 

(sum) and ’⊕ ’ (component-sum). We develop conformance rules and a conformance evalua-

tion algorithm for expressions. In section 5 we describe how concrete models can be defined 
as rule-bases. We also develop an experimental compiler which convert rule-base descrip-
tions to testing-code and how this involves computing derived rules from axiom rules. In 
section 6 we analyse our model with respect to how we can check models for consistency 
problems, as well as how interoperability and composition can be addressed.

2. Context

In this section we give some overall definitions and some motivation for the ideas of our ap-
proach. The context is the need for negotiation of extra-functional behaviour resulting from 
composition in open systems. Composition may involve deployment of components in some 
environment, binding between components, etc. Either case would involve a decision on a 

contract and a corresponding configuration of implementation aspects, interaction protocols 
and resource management to realise the composition. A goal of negotiation would be to 
reach agreement between possibly autonomous parties on contract and configuration. The 
negotiation process may involve exchange of statements (offers and requirements). 

2.1. Policy trading model 

Consider some abstract service. Clients need to bind to it in order to use it. A binding repre-
sent a contract, which is a promise that the service will behave according to certain require-
ment, as long as its environment (including client) behaves according to certain expecta-
tions. A binding also represents a certain configuration of implementations and resources, 
which ensures that the client can invoke the service according to the contract.  

In earlier papers, we introduce the concept of "policy" as an encapsulation of a potential 
contract and a corresponding implementation or enforcement policy [Hanssen99]. Further-
more, we propose to use trading of policies as a principle of negotiation [Hanssen00]. For a 
given service, there would exist a set of policies, each stating an offer and an expectation. 
The goal of negotiation is to find a policy whose offer satisfies the user requirement while 
its expectation is satisfied by the environment properties. 

Our proposed language is meant to be used for the following: (1) expressions representing 
user or application requirements, (2) "environment descriptors", which are expressions de-
scribing environments, (3) "user profiles", which are expressions representing offers of poli-
cies, and (4) "service profiles", which are expressions representing expectations of policies. 
All such expressions are termed "profile expressions".
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Figure 1. QoS statements and satisfaction relationships 

The relationships between user requirements and offers, as well as the relationships be-
tween the QoS expectation and the capabilities of the environment, are satisfaction rela-
tionships. To facilitate conformance testing, our language should define a partial order on 
such expressions with respect to satisfaction. Thus, any statements could be mechanically 
evaluated for conformance. Figure 1 illustrates which roles profile expressions play in nego-
tiation based on policy trading. 

2.2. Profile models and declared conformance

Profile expressions are formulated according to a profile model which defines the vocabu-
lary of expressions and rules for how these relate to each other wrt. conformance. A profile 
model would typically be defined for an application or application domain, but parts of it 
may also be shared between application domains. Traditionally (c.f. e.g. [ISO95]), QoS 
statements are typically predicates formulated explicitly as constraints on parameter val-
ues. Models are typically defined (for instance in QML [Frølund98a] or CQML [Aagedal01]) 
as a set of QoS characteristics, and contract-templates. Negotiation can be a complex task 
of matching parameter values, and possibly mapping between abstraction levels.    

To reduce the computational complexity of matching QoS statements, it looks appealing to 
adopt the technique typically used in ODP trading [Bearman93, ISO97] where each re-
quirement or offer is a reference to a type name, and where type conformance is declared a 
priori. This way of using declared conformance for negotiation was proposed in 
[Hanssen98].  Here, a profile model is defined as a set of simple names (profiles). Confor-
mance relationships are declared explicitly. Conformance checking at run-time is then very 
simple, compared to evaluating a potentially complex set of QoS parameter values and con-
straints against each other. Figure 2 shows a simple example of a profile graph for an email 
application. Users can specify requirements for message delivery which are mapped to this 
graph. For instance, ’Authenticated’ is a subprofile of ’Secure’, i.e. it satisfies the require-
ments of ’Secure’. 

We consider this simple scheme to be too limiting since each declared type will need to cap-
ture all aspects relevant for the application. This may lead to conformance graphs which 
are too complex and application specific. Obviously, profiles would need to capture all rel-
evant QoS dimensions, and in some cases, one may need to define a large number of pro-
files, for instance to cover all relevant values of a variable. Examples of this include band-
width or latency time constraints where the differences within a group of profiles are just a 
numeric value and it would be more efficient and readable to use numeric metrics. 

To address these problems we propose a compromise between simple declared conformance 
and parameter-based conformance. First, we propose a scheme for dynamic composition 
(see section 2.3 below). Second, we propose to allow profiles with simple numeric param-
eters. We may introduce profiles which takes one or more parameters from totally ordered 
domains (typically numbers) along with predicates denoting rules for how conformance re-
lates to the parameters. 



- 4 - 

Reliable Secure
Express

QoSMail

Content
Proof

Authenticated

Super
Express

10 minutes or faster
(for example)

Mail without QoS
requirements.

Check that content is
not changed during
delivery. Message guaranteed to be

delivered . Use retry-
mechanisms if neccessary.
Delivery receipt to sender.

5 minutes or faster
(for example)

Also ensure that the sender 
of a message really is who 
he says.

Message guaranteed to be
delivered unchanged.
Delivery receipt to sender.

Figure 2. Example profile graph

2.3. Dynamic composition

QoS expressions and QoS negotiation should support composition, in the sense that expres-
sions from components of a system, which do not necessarily know each other, need to be 
combined into one describing the composed system. Given statements about the behaviour 
of individual components, it is not obvious how to infer the behaviour of the total system. 
There are three different problems to be addressed when it comes to expressing the total 
behaviour: 

● Autonomous users may issue different requirements for the same object and all users 
should be satisfied. For instance, the participants in a binding may have separate re-
quirements for its QoS.  

● We may need to combine expressions regarding the same component, but in more than 
one dimension.    

● Open systems are systems interacting with environments neither they or their imple-
menters controls [Abadi94]. Expectations may need to characterise a number of ab-
stract components, for instance, client, server and communication channel, with a sepa-
rate QoS expectation for each. Our model should then support dynamic composition of 
statements about different components of the environment.

To address the first and the second problem we introduce an operator to construct state-
ments from simpler sub-expressions meaning that the predicates stated by each part must 
be true in the same environment (c.f. logical conjunction). We address the third problem by 
introducing an additional composing operator. It is partly addressed in QoS specification 
models like [Aagedal01], by allowing QoS-characteristics to be defined with such composi-
tion in mind. Work on formal models has shown that with certain assumptions on the tem-
poral relationships [Abadi93] it is possible to make statements about the behaviour of com-
posite systems as conjunctions of statements about each component. 

3. Fundamentals

We are interested in defining models that let us state QoS and resource requirements as 
simple expressions. In addition we will introduce operators for combining simple state-
ments into complex expressions. Profile models define a (possibly infinite) set of values 
called basic profiles and how these are related to each other by conformance.  In this section 
we introduce basic profiles. 



1In this section we use the symbols a, b, c for profile expressions assumed to be restricted, 
for instance to basic (atomic) or sum profiles only. For other profiles we use the symbols x, 

y, z, u, v and w.   

2We use the notation of placing parameters inside brackets following the profile symbol. 

_________________________
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Definition 1 (profile expression and environment): A profile expression1 x denotes a 

predicate σ(x). σ represents the interpretation of the profile expression x in a specific envi-

ronment.   o
In the following definitions we use the term ’environment’ about σ. A requirement or offer 

may be stated as a reference to the profile by name, for instance  by saying ’HighBW’. The 

actual definition of σ is implicit in negotiation, but may be needed by the implementers of 

application components. For instance, ’HighBW’ may be defined as "(bandwidth >= 10)" in a 
particular environment, meaning that a measured bandwidth of a communication channel 
should be higher than 100 MB/s. 

Definition 2 (basic profile expression): A basic profile a is either a symbol sa or a pair 

consisting of a symbol sa  ∈  Identifier, and a parameter ta ∈  Da where Da is a tuple domain 

[T1, ... Tn].  o
A profile may have parameters2, which would be given some interpretation in the context 
of the profile symbol. For instance ’Rtt[100]’ may denote a mean round-trip delay of 100 
milliseconds. For the rest of this discussion, we limit the domain of parameters to integer 
numbers.   

Definition 3 (Direct conformance relationship): A basic profile a is satisfied by (it is a 

subprofile of) a basic profile b iff for all possible environments σ, the predicate of a implies 

the predicate of b.  

a ≤ b  ⇔  ∀σ :  ( σ(a) ⇒  σ(b) ).  o
Definition 4 (profile model): A profile model defines the domain of basic profiles, F, and 

a mapping C(F, F) → boolean, defining conformance directly. A conformance relationship 

between a and b exist iff C(a,b)=true or if there exist a set of conformance relationships 
which leads to this transitively. 

( )C(a,b) ∨ ∃ c ∈ F: (a ≤c ∧ c≤b) ⇔ a≤ b. o
   

A concrete profile model will define a set of basic profiles plus a set of rules defining confor-
mance relationships between them. For conformance testing, the actual meaning of a pro-

file, σ(a) is not used directly, since we use conformance rules to test if one basic profile sat-

isfies another. However, policy implementers and implementers of certain local middleware 
components, may need to know the exact meaning of a basic profile, for instance that a pro-
file ’HighBW’ means a bandwidth higher than e.g. 100 MB/s. A concrete environment repre-
sented by for instance a middleware platform running on a node, may incorporate software 
fragments which evaluate or generate simple expressions by evaluating the current situa-

tion. Thus implementers of such components would need to  know the definition of  σ for 

basic profiles of interest. Policy implementers define and implement configurations repre-
senting mappings between a current situation and a particular QoS to be observed by the 

client. Thus policy implementers would also need to know the definition of σ. In contrast, a 

policy trading service only need to know that for instance ’SuperHighBW’ is a subprofile of 
’HighBW’.  
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4. Profile expression composition

The simplest possible expression (except the empty one) is the reference of a single basic 
profile. However, if we were to cover all possible situations by single references to a priori 
defined profiles, basic profile models would need to be complex and domain specific, since 
an expression typically needs to describe many different dimensions, and possibly the prop-
erties of more than one component of the system. If models could be made as simple and ge-
neric as possible this would allow higher degrees of interoperability across different compo-
nents and domains. We therefore allow profiles to be stated as combinations of basic pro-
files.

We introduce two operators, ’+’ (sum) and ’⊕ ’ (component-sum) to form expressions combin-

ing profiles and deduce a set of rules defining the semantics of expressions (conformance 
rules). Hence, we develop an algebra of profiles. Those ideas was first introduced in 
[Hanssen00] and they are generalised and formalised here.

4.1. Sum operator

The ’+’ operator is used to combine requirements (or offers) to be applied to the same envi-
ronment. To satisfy a sum x+y both x and y must be satisfied. 

Definition 5 (sum):   For any environment σ, for the predicate of a sum to be true, the 

predicate of both operands must be true:

σ(x+y) ⇔ σ(x) ∧  σ(y).  o
Note that our model do not assume orthogonality between x and y. It is also obvious from 
the rules of logic, that x + x = x.

Theorem 1 (associaticity and commutativity):  Sums follows the associative law:  
x+(y+z) = (x+y)+z  =  x+y+z and the commutative law:  x+y = y+x.  o
This can be proved by writing profiles as predicates using definition 1 and the associative 
and commutative laws for logic. 

σ(x+(y+z))  ⇔  σ(x)  ∧  σ(y+z)   ⇔   σ(x)  ∧   σ(y)  ∧   σ(z)

σ((x+y)+z)  ⇔  σ(x+y) ∧   σ(z)   ⇔   σ(x)  ∧   σ(y)  ∧   σ(z)

Theorem 2 (satisfaction by sum): A basic profile is satisfied by a sum, if and only if it is 
satisfied by at least one of the operands of the sum. 

(x+y) ≤ a   ⇔   x ≤ a   ∨   y ≤ a .   o
Proof: From definition 3 and definition 5  we can see that the property holds where x and y 

are assumed to be basic profiles only: 

(a +b)≤ c ⇔ ( )( )σ(a)∧σ (b) ⇒ σ(c) ⇔ ¬( )σ(a) ∧ σ (b) ∨ σ (c)

⇔ ( )¬σ(a) ∨ σ (c) ∨ ¬σ(b) ∨ σ (c) ⇔ ( )( )σ(a) ⇒ σ(c) ∨ ( )σ(b) ⇒ σ(c) ⇔ a≤ c ∨ b≤ c

Let us now assume that the theorem is true also where x and y can be sums of length m 
and n operands (induction hypothesis). If we substitute x with (x+a) or y with (y+a), where 
a is a basic profile, we observe that the theorem is still true for sums of length m+1 and 
n+1, hence it is true where x and/or y are sums of any length:

((x+a) + b) ≤ c   ⇔   (x+a) ≤ c  ∨   b ≤ c    ⇔   (x≤c ∨  a≤c) ∨  b ≤ c
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Theorem 3 (satisfaction of sum): A profile x satisfies a sum if and only if it satisfies both 
sides of the sum. Here x, y and z may be any sum or basic profile. 

x ≤ (y+z)   ⇔   x ≤ y  ∧   x ≤ z .   o
We can prove this by first proving from definition 1 and definition 3 that the property holds 
for basic profiles. 

a≤ (b+c) ⇔ ( )σ(a) ⇒ ( )σ(b) ∧ σ (c) ⇔ ¬σ(a) ∨ ( )σ(b) ∧ σ (c)

⇔ ( )¬σ(a) ∨ σ (b) ∧ ( )¬ σ(a) ∨ σ (c) ⇔ ( )σ(a) ⇒ σ(b) ∧ ( )σ(a) ⇒ σ(c ⇔ a≤ b ∧ a≤ c

To show that x can be any sum, let us now assume that the theorem is true for sum x which 
has a length of n operands (induction hypothesis). We then show that it is true for a sum of 
length n+1, i.e. where x is substituted with a+x. By using theorem 2 and the induction hy-
pothesis we get:   

a≤ (b+c) ⇔ a ≤ (b+c) ∧ x ≤ (b +c)
⇔ (a≤ b ∧ a ≤ c) ∨ (x ≤ b ∧ x≤ c) ⇔ (a≤ b ∨ x ≤ b) ∧ (a≤ c ∨ x≤ b) ∧ (a≤ b ∨ x ≤ c) ∧ (a ≤ c ∨ x ≤ c)
⇔ (a≤ b ∨ x ≤ b) ∧ (a≤ b ∨ x ≤ b) ⇔ (a +x) ≤ b ∧ (a+x) ≤ c

The sub-expressions (a≤c ∨  x≤b) and (a≤b ∨  x≤c) are always true due to the induction hy-

pothesis and can then be eliminated. To show that y and z can be any sum, let us assume 
that the theorem is true for any sums y and z. We observe that it is also valid where y or z 
is substituted with y+a (or z+a). 

(x ≤ ((y+a) + z)  ⇔  x ≤ (y+a) ∧  x≤z   ⇔   (x≤y ∧  x≤a) ∧   x≤ z

Theorem 4 (comparison of sums): For any pair of sums x and y of basic profiles,  a sum x 
satisfies the sum y iff there for all components of x exist a component of y that satisfies it. 

∑
n

ai

i = 1

≤ ∑
m

bj

j = 1

⇔ ∀ aj ∈ { }b1 ... bm :( )∃ ai ∈ { }a1...an : ai ≤ bj . o
This follows from theorem 2 and theorem 3. To prove this we first show that it is true for 
the base case where each sum contain only one element (i.e. they are simply basic profiles): 

a ≤ b  ⇔   a ≤ b

We assume that the theorem is true where x is a sum of length n (induction hypothesis). 
We then observe that this is also true where x is of length n+1, i.e. it is substituted with 
x+a (where a is a basic profile): 

x+a ≤ y   ⇔   ∃ u ∈  {x, a} :  u≤y     ⇔    x ≤ y  ∨   a ≤ y

which obviously follows from theorem 2. This is valid where y is a basic profile. It will also 
be valid if we assume that y is any sum profile. 

Furthermore, we assume that the theorem is also true where y can be a sum of length n (in-
duction hypothesis). If y is substituted with y+a  we get: 

x ≤ y+a   ⇔  ∀ v ∈  {y, a} : x≤v    ⇔     x≤y  ∧   x ≤ a

which obviously follows from theorem 3. This is valid where x is a basic profile. It will also 
be valid if we assume that x is any sum profile.



3By a ’sum profile’ we mean a sum of basic profiles, or a single basic profile, i.e. a sum of 
only one element, c.f. the identity law (theorem 9).

_________________________
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4.2. Component-sum operator

Basic profiles or sums (of basic profiles) describe properties of a single environment. How-
ever, we need to describe open component systems, where each component represents a 
separate environment with separate properties. For instance, we may need to characterise 
the client side and the server side of remote bindings separately.    

The ’⊕ ’ (component-sum) operator is used to state expressions regarding separate environ-

ments. Those environments represents separate contexts. The main idea is that to satisfy a 

component-sum x⊕ y both x and y must be satisfied, but unlike sums, x and y cannot be sat-

isfied by the same profile. The satisfying expression must be a component-sum with sepa-
rate operands satisfying each x and y. To define the semantics of this operator, we start 
with the definition of composite environments.  

Definition 6 (composite environments): A composite environment σ is a collection of 

components σ1, σ2 , ... σn such that any given sum3 profile a which is true with σ, is true 

with at least one of σi. No satisfaction relationship exist between profiles if they are applied 

to different component environments.  

σ(a)  ⇔  σ1(a) ∨  σ2(a)  ∨ ... ∨  σn(a) 

∀  i,j ∈  {1..n}  :  ( σi(a) ⇒  σj(b) )   ⇒      i=j .   o
This reflects that component environments are to be treated as separate; a statement about 
one environment cannot be satisfied by a statement about another. For instance a require-
ment for processing at the server side cannot be satisfied by processing capacity at the cli-
ent side. 

Definition 7 (component-sum): The ’⊕ ’ (component-sum) operator denotes that each op-

erand is applied to different components of the environment. As for sums, for the predicate 
of a component-sum to be true, both component predicates must be true, but in separate 
component environments. Observe that order of operands is not significant. 

σ(a⊕ b) ⇔  ∃σ i ,σj ∈{ σ1 ... σn}:  σi(a) ∧  σj(b)  

where a and b are sum profiles and σ is a composition of σ1 ... σn.  o
Theorem 5 (associativity and commutativity): component-sums follows the associative 

law:  x⊕ (y⊕ z) = (x⊕ y)⊕ z  =  x⊕ y⊕ z, and the commutative law: x⊕ y = y⊕ x.    o
The proof is similar to the proof of associativity and commutativity for sums (theorem 1).  

Theorem 6 (satisfaction of component-sum): A profile x satisfies a component-sum y iff 
x is a component-sum and each operand of y is satisfied by an unique operand of x: 

Let Perm[1..n] be the set of all possible permutations of the numbers 1..n. 

x ≤ (b⊕ c)   ⇔  ∃ s ∈  Perm[1..n]: ( xs(1) ≤  b  ∧   xs(2) ≤ c )   where   x = (a1 ⊕  ... ⊕  an).   o
To prove this, we first show that (b⊕ c) can not be satisfied by a simple sum profile, by using 

definition 6 and definition 7 to rewrite the proposition to a conjunction where the second 
and third part are always false due to the second part of definition 6. 

a≤( )b ⊕ c ⇔ ( )σ1(a)∨σ 2(a) ⇒ σ1(b) ∧ ( )σ1(a)∨σ 2(a) ⇒ σ2(c)

⇔ ( )σ1(a) ⇒ σ1(b) ∧ ( )σ2(a) ⇒ σ1(b) ∧ ( )σ1(a) ⇒ σ2(c) ∧ ( )σ2(a) ⇒ σ2(c) ⇔ false
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Now, replace a with a component-sum with n operands x = (a1 ⊕ ... ⊕  an). If we can show 

that 

(1) If there exist two component-sum operands of x: ai and aj such that (ai⊕ aj) ≤ (b⊕ c), 

then x ≤ (b⊕ c)

(2) (c⊕ d) ≤ (a⊕ b)  ⇔  (c ≤ a  ∧   d ≤ b)   ∨   (c ≤ a  ∧   d ≤ b)

Then it is straightforward to prove the theorem. (1) follows from the fact that if x satisfies a 

profile expression y, x⊕ a also does. Using definition 7 this is equivalent to (σ1(x) ∧  σ2(a)) ⇒  

σ1(y) which is obviously true if σ1(x) ⇒  σ1(y). (2) follows from definition 6 and definition 7: 

σ( )c ⊕ d ⇒ σ( )a ⊕ b ⇔ ( )σ1(c)∧σ 2(d) ⇒ σA(a)∧σ B(b)

⇔ ( )σ1(c)∧σ 2(d) ⇒ σA(a) ∧ ( )σ1(c)∧σ 2(d) ⇒ σB(b)

⇔ ( )( )σ1(c) ⇒ σA(a) ∨ ( )σ2(d) ⇒ σA(a) ∧ ( )( )σ1(c) ⇒ σB(b) ∨ ( )σ2(d) ⇒ σB(b)

There are two possibilities for matching environment functions, either by setting index 
numbers:   A=1 and B=2, or A=2 and B=1 respectively. In each case one of the implications 
in each of the two disjunctions will be always be false due to the second part of definition 6. 
Thus the expression can be rewritten as follows: 

( )( )σ1(c) ⇒ σ1(a) ∧ ( )σ2(d) ⇒ σ2(b) ∨ ( )( )σ2(d) ⇒ σ2(a) ∧ ( )σ1(c) ⇒ σ1(b)

⇔ ( )c≤ a ∧ d ≤ b ∨ ( )d≤ a ∧ c ≤ b

Theorem 7 (satisfaction by component-sum): A basic profile (or a simple sum) is satis-
fied by a component-sum, iff it is satisfied by at least one of the operands of the component 
sum.   

(a⊕ b) ≤ c   ⇔   a ≤ c   ∨   b ≤ c     o
The proof is an application of the definitions and elimination of implications with different 
environments: 

( )a ⊕ b ≤ c ⇔ ( )σ1(a) ∧ σ 2(b) ⇒ σ(c)

⇔ σ1(a) ⇒ σ(c) ∨ σ 2(b) ⇒ σ(c) ⇔ σ1(a) ⇒ ( )σ1(c)∨σ 2(c) ∨ σ 2(b) ⇒ ( )σ1(c)∨σ 2(c)
⇔ σ1(a) ⇒ σ1(c) ∨ σ 2(b) ⇒ σ2(c) ⇔ a ≤ c ∨ b ≤c

Theorem 8 (rule for comparing component-sums): A component-sum x satisfies a 
component-sum y iff  every operand of y is satisfied by an unique operand of x. Formally 

(we use the symbol ’Φ’ to denote a component-sum):

n

Φ
i = 1

ai ≤

m

Φ bj

j = 1

⇔ ∃ s ∈ Perm[1..n] :( )∀ bj ∈ { }b1 ... bm :( )as( j) ≤ bj

where

n

Φ
i = 1

ai = a1 ⊕ a2 ⊕ ...⊕ an o
This follows from theorem 6 and theorem 7. The proof is similar to the proof of theorem 4: 
We first show that it is true for the base case where each component-sum contain only one 
element (i.e. they are basic profiles or simple sums): 
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a ≤ b  ⇔   a ≤ b

We assume that the theorem is true where x can be a component-sum of length n (induction 
hypothesis). We then observe that this is also true for component-sums of length n+1, i.e. if 

x is substituted with u = x⊕ a (where a is a basic profile). Since u here have two elements 

and b only one, this is equivalent to saying that either the first or second element of u 
should satisfy b.  

x⊕ a ≤ b      ⇔    x ≤ b  ∨  a ≤ b

This obviously follows from theorem 7. Furthermore, we assume that the theorem is also 
true where y can be a component-sum of length m (induction hypothesis) and see if this still 

holds where y is subsituted with v = y⊕ a. Here, x must be a component-sum of n elements 

and there must exist a permutation s(i) of these, such that both y and a are satisfied by a 
separate element of v.  

x ≤ y⊕ a   ⇔     xs(1) ≤ y  ∧   xs(2) ≤ a   where x = (a1 ⊕  ... ⊕  an)

Which  obviously follows from theorem 6. 

4.3. General expressions and the normal form

Until now we have defined the semantics of expressions which are either basic profiles, 
sums of basic profiles or component-sums of sums. In the following define the semantics of 
expressions which may be compositions of sums and component-sums. Essentially, any pro-
file expression can be represented in a normal form. We can then use theorem 4 and theo-
rem 8 to test conformance between any pair of expressions. 

Definititon 8 (null profile): There exist a special basic profile named ’null’  such that for 

all σ: 

σ(null) = true    o
Theorem 9 (identity law): 

x + null = x

x ⊕  null = x    o
Proof:  σ(x+null) ⇔ σ(x) ∧  σ(null) ⇔ σ(x) ∧  true ⇔ σ(x) 

Definition 9 (composite expressions): Expressions may be constructed by using basic 
profiles, the sum and component-sum operators according to operator precedence grammar 

where the ’+’ operator has precedence over the ’⊕ ’ operator: 

E ::= E + E | E ⊕  E | (E) | basic-profile    o
Definition 10 (distributive law): The + operator distributes over the ’⊕ ’ operator: 

x + (y⊕ z)  =  (x+y) ⊕  (x+z)    o
A consequence of this is that for expressions of the form x+(y⊕ z) the profile x applies to both 

environments of y and z. 

The rules we have developed above defines the semantics of profile-expressions which are 
either basic profiles, sums of basic profiles or component-sums of sums of basic profiles. 
Sums containing component-sums can here be regarded as shortcuts for component-sums 
containing (shared) requirements.  Now we have a complete semantics for general profile 
expressions. 
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Definition 11 (normal form): A profile expression is in normal form if and only if it is a 

component-sum a1⊕ ...⊕ am of sums ai = bi1
+...+bin

 of basic profiles.    o
Using the distribution law and the associative law, we can rewrite any expressions contain-
ing component-sums, to the normal form, i.e. component-sums of sums of basic profiles. For 
instance: 

x + (y ⊕  (z + (u ⊕  v)))  =  (x+y)  ⊕   (x + z + u) ⊕  (x + z + v)

Note that basic profiles or simple sums (of basic profiles), or component-sums of simple ba-
sic profiles are also in the normal form. In such cases, some component-sums or sums have 
only one element. This follows from the identity law (theorem 9). We can now conclude that 
any pair of profile-expressions can be algorithmically tested for conformance, using the rule 
of theorem 4 and theorem 8 and the set of rules defining conformance between basic profile 
defined in the concrete model of use.  

4.4. Conformance testing algorithm

From the conformance rules defined above, we can develop an algorithm to test any pair of 
profile expressions for conformance. We assume that profile expressions are first trans-
formed into normal form. Expressions (in normal form) can then be evaluated against each 
other, using a mix of (1) a component-sum test, (2) a sum test and the (3) a basic profile test 
evaluating rules of a basic profile model. In the following we assume that x and y are profile 

expressions and that the goal is to determine if x ≤ y. 

4.4.1. Component-sum test

If all expressions to be compared are in normal form, we can start by using a test based on 
theorem 8 for comparing component-sums. A simple and naive algorithm can be formulated 
like this (the outermost call to the recursive function isSubR starts with i=1) :

boolean isSubR(Compsum x, Compsum y, int i)
{
    for (each p in x) { 
        if (p ≤ y[i]) {
            remove p from x; 
            if (isSubR(x, y, i+1))
               return true; 
            re-insert p in x; // Backtrack
        } 
    } 
    return false; 
}

The worst case complexity of this simple algorithm is O(N!) where N is the size of x or y (de-
pending on which is smallest). Therefore we should look for a better algorithms if the sizes 
of expressions are not expected to be small. For instance, dynamic programming techniques 
could be used to eliminate repeated recursions on the same sub-expressions, possibly reduc-
ing the complexity significantly. Instead of investigating further how to improve our naive 
algorithm, we observe that the problem of testing component-sums for conformance cor-
responds (under certain restrictions) to the problem of determining the existence of a maxi-
mum matching in a bipartite graph. Each expression (x and y) corresponds to a partition, 
each component of a component-sum of a node in this graph and conformance relationships 
(from components of y to components of x), to edges. If a maximum matching involves all 
nodes in y, this means that expression x satisfies expression y. It is known from literature 
that this problem can be solved with algorithms of complexity O(N·E) where N is the num-
ber of nodes and E is the number of edges. However, in our case, to find the edges, we need 
first to use the conformance rules to determine conformance for up to every possible pair of 
nodes which is a O(N2) problem. This means that it is possible to do the matching with a 
worst case performance of O(N3). 
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4.4.2. Sum test

This component-sum test again make use of the test for sums of basic profiles which follows 
from theorem 4. A simple test with a worst case complexity of O(N2) can (in pseudocode) be 
formulated like this:

boolean isSubR(Sum x, Sum y) 
{
    for (each p in y) {
        for (each q in x) {  
           if (p≤q) 
              return true;
    }
}
return false;

4.4.3. General algorithm

If expressions are in the normal form, a sum cannot contain component-sum components, 
i.e. x and y can be either component-sums (of sums or basic profiles), sums of basic profiles 
of just basic profiles. Furthermore, theorem 8 and the corresponding algorithm above allow 
component-sum components to be either sums or basic profiles. Therefore we can formulate 
a testing algorithm for any pair of profile expressions in the normal form.  This would be a 
recursive function, using one of three different tests (basic profile, sum or component-sum 
test respectively) depending on the type of x and y. If x and y are of different types, this is 
resolved as follows. 

• A basic profile and a sum: Use the sum test where one of the sums contains only one el-

ement.  

• A basic profile and a component-sum: Use the component-sum test where one of the 

component-sums contains only one element. Note that a basic profile cannot be a sub-
profile of a component-sum. 

• A sum and a component-sum: Use the component-sum test where one of the component-

sums contains only one element; the sum. Note that a simple sum cannot be a subpro-
file of a component-sum with more than one element. The normal form ensures that a 
sum will always be of basic profiles. 

It follows from theorem 9 that sums or component-sums with only one element can exist. 

5. Definition of profile models

A profile model would be defined for an application or application domain. It can be defined 
as a rule-base, i.e a set of rules each which state a predicate for when there is conformance 
between two given basic profiles. A full formal analysis of how we can use rule-bases for 
this purpose, is outside the scope of this report. Here we describe a relatively simple ap-
proach to model definition, and our experimental prototype which demonstrates it. We 
show how model definition and rule derivation works using an example. 

5.1. Foundations

A profile model defines a partial order, i.e. a set of binary, reflexive and antisymmetric rela-
tions between points in a profile value space. Our profile model definition language is 
founded on the definitions in section 3. In addition we need to define how conformance 
rules form axioms of a model, and how transitive conformance relationships can be inferred 
from such axioms. 



4In this section we use the symbols a, b and c for basic profile types, x, y, z, u, v and t for 
parameters, P, Q and R for rules, and p, q and r for predicates. 

_________________________
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Definition 12 (profile type): A profile type is a pair consisting of an identifier4, a and a 

tuple domain D = [T1, .. Tn] and where Ti ∈  Integer. A profile type is identified by a. o 

Definition 13 (conformance rule): A conformance rule is a predicate p (t1, t2) defining a 
conformance relationship between two basic profile types (a1, D1) and (a2, D2). We use 
square brackets to apply parameters to a profile type instance.  

∀ t1∈ D1, t2∈ D2:   ( p (t1, t2)   ⇒    x1 [t1] ≤ x2 [t2] ).   o 

The implication is the minimum requirement for the predicate. It can be viewed as a safety 
requirement in the sense that the rule set should at least not produce false positives. Note 

also that in first order logic, the conformance operator ’≤’ should be understood as a predi-

cate taking two basic profile types (a1 and a2) as arguments.  

5.1.1. Computing derived rule set

The set of axioms should be the minimum needed to define all conformance relationships in 
the model. Some of those can be inferred directly from some axiom, others can be inferred 
from a combination of axioms. It is possible to derive an additional set of rules from axioms 
and it is convenient to do this statically since the axioms does not change at run-time. By 
precomputing inference which involves more than one axiom rule, conformance checking at 
run-time becomes equally simple and efficient for any pair of basic profiles. We may view a 
profile model as a directed graph where nodes correspond to profile types and where edges 
correspond to predicates of axioms. The derived rules corresponds to paths in the graph, 
and the set of all rules which can be derived corresponds to a transitive closure of the 
graph.   

We compute derived rules from axioms by using the principle of transitivity. Given two 
rules which share a common profile identifier b: 

∀ x,y:  p(x, y)  ⇒   a[x] ≤ b[y]

∀ u,v:  q(u, v)  ⇒   b[u] ≤ c[v]

we want to derive a rule like this:  

∀ x,v:  p(x, y)  ∧   q(u, v)   ⇒   a[x] ≤ c[v].

This derivation is possible if y and u are empty. If not, the new predicate expression would 
refer to unbound variables y and u. Therefore, simply creating a conjunction would not be a 
general solution. We need to eliminate y and u. If we assume that parameters y and u have 
the same domain and have the same value in all instances, such that they both can be rela-
belled y, we can try to find a predicate r such that:

∀ x,y,z :  (  r(x, z)  ⇒   a[x] ≤ b[y]  ∧   b[y] ≤ c[z]  )  ∧
  ( p(x, y) ∧  q(y, z)   ⇒   r(x, z)  )

We can then derive a new rule

∀ x,z:  r(x, z)  ⇒   a[x] ≤ c[z].

5.1.2. Alternative paths and disjunctions

There may be more than one rule for a given pair of profile types. In particular this may be 
the case after computing the transitive closure, since there may be more than one path be-
tween two nodes in the graph representing the rule-base. Alternative rules may correspond 
to disjunctions in the sense that conformance means satisfying at least one of them. They 
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should be combined to one rule to facilitate efficient conformance checking at run-time. For 
instance, from

p(x,y)  ⇒   a[x] ≤ b[y]  and

q(x,y)  ⇒   a[x] ≤ b[y].

we would derive

p(x,y) ∨  q(x,y)  ⇒   a[x] ≤ b[y].

5.2. Rule definition language

Below we define a language for defining profile models as axioms on the form given by defi-
nition 13. As a proof of concept and a tool for further exploration, we have made a compiler 
which takes a set of such axioms and generates conformance testing code for basic profiles. 
This code is used by the conformance-tester described in section 4.4.

A profile model is specified as a set of axioms, each stating a conformance rule. There are 
two kinds of rules: (1) simple conformance and (2) parametric conformance. Semantically, a 
simple conformance rule can be seen as a special case of definition 13 where t1 and t2 are 
empty and p= true. 

5.2.1. Simple conformance

Simple conformance rules are on the form (EBNF): 

conformance ::= profile-name  [ "<" profile-name ] + ";"

One can state conformance between pairs of profile-names, or one can chain several state-
ments. For instance the statement: 

a < b < c;

is a short form for the following two axioms: 

a < b; 
b < c; 

5.2.2. Parametric conformance rules

In general, profiles may have parameters, and one may specify rules for how the confor-
mance relationship depends on the value of the parameters. 

conformance ::= bprofile "<" bprofile  ","  "if"  boolexpr ";"
bprofile    ::= IDENT "[" parameterlist "]"

The boolean expressions (boolexpr) would specify comparisons of numeric values and/or 
identifiers. Identifiers referenced in expressions must be found in the parameter lists of the 
profile declaration part. For example: 

Res[x1, y1] < Res[x2, y2], if x1 >= x2 AND y2 >= 23;

Our experimental prototype supports the "<", ">", "<=", ">=" and "=" comparison operators. 
Only one value type is allowed: integer numbers. The boolean operators: AND, OR and 
NOT can be used to compose more complex expressions.



5The abstract syntax tree will have nodes for NOT, AND, OR and COMPARE (which cor-

responds to the grammar production expr → expr RELOP expr, where RELOP is a compari-

son operator).

6It is straightforward to use a DFS based algorithm for instance the one in [Sedgewick] p. 
178. 

_________________________
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5.3. Profile model compiler

Our experimental profile model compiler is constructed using Java tools like jflex, cup and 
classgen [Cup] and consists of the following phases: 

1. Transform source text into an abstract syntax tree (lexical and syntax analysis), which 
can be traversed and transformed using the visitor pattern [Gamma95]. 

2. Semantic analysis: consistency checking, computing of parameter indices,  transform-
ing the AST to list of ASTs (representing rules) and transforming boolean expressions 
to the conjunctive normal form. 

3. Compute derived rules representing the transitive closure of the initial rule set.  

4. If there are alternative rules for any pair of profile-types, combine by disjunction as 
suggested above. 

5. Generate conformance testing code representing the derived rule set.  

5.3.1. Semantic analyser

The semantic analyser check that all variable names used in the boolean expression exists 
in the ’bprofile’ part (see section 5.2.2), and assigns an index to each of them which cor-
responds to where it was declared. It would then normalise the predicate expressions by 
applying the following transformations:

¬(x < y)     →  x ≥ y
¬(x > y)     →  x ≤ y
¬(x ≤ y)     →  x > y
¬(x ≥ y)     →  x < y
¬(p ∨  q)     →  ¬p ∧  ¬q
¬(¬(p))      →  p

Now the AST5 for the predicate expressions will be in a conjunctive normal form, having 
the following properties: (1) The operands of a AND node can be AND, OR, or COMPARE 
nodes, (2) the operands of an OR node can only be COMPARE nodes.5.3.2. Computing the transitive closure
We use an adapted version of a well known algorithm for computing the transitive closure 
of a directed graph6. The transitive closure algorithm inserts new edges where it finds a 
path of two edges between pairs of nodes. In our case we operate on rules instead of simple 
edges; we try to create derived rules. Figure 3 illustrates this. 

P Q

Derived rule, R

P.left P.right
  =
Q.left

Q.right

Figure 3. Rule derivation step
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Given a pair of rules P, Q and where p and q denotes the predicates of P and Q respectively, 
the method for deriving a new rule R is as follows: 

1. If P is a simple rule (p just returns true), just return r = q. Similarily return r = p if Q is 
a simple rule. 

2. Let P.left denote the left ’bprofile’ node of a rule P, Let P.right denote the right side etc. 
If the identifier of P.right equals the identifier of Q.left, continue. If not, return no 
match. 

3. Combine two expressions p and q by first constructing a conjunction node: AND (p, q). 
Then we flatten AND-trees to a list, For instance AND(AND(p, q), r) would be trans-
formed to ANDLIST(p, q, r).  

4. For any possible pair (p, q) of conjuncts of this list, if p and q originate from different 
rules, we try to combine them using the subexpression matching rules described below. 
If matching is successful, the result is added to the resulting expression (by conjunc-
tion). 

5. The remaining conjuncts (those which were not matched in step 4) are added to the re-
sulting expression. Remaining subexpressions with unbound operands are removed 
since they are not transitively related to any other subexpression, and thus have no 
meaning in the derived rule. 

6. Construct a new rule node R setting R.left = P.left, R.right = Q.right and using the 
predicate rule resulting from step 4. Use the semantic analyser to check that all vari-
ables in the predicate are defined in either R.left or R.right. If true, return R, otherwise 
return no match. 

5.3.3. Subxpression combination rules

Assume that we have a conjunction (p ∧  q) of subexpressions each which is either an arith-

metic comparison expression (e.g. x < y), or a disjunction of arithmetic comparison expres-
sions. 

1. If p and q are comparison expressions, and the right operand of p is identical with the 
left operand of q, there is a transitive relationship between the two expressions. It is 
necessary to rewrite as follows when deriving a rule where the operand y is unbound:  

   x < y  ∧   y < z    →  x < z
x ≤ y  ∧   y ≤ c    →  x ≤ z
x < y  ∧   y ≤ z    →  x < z
x ≤ y  ∧   y < z    →  x < z
x > y  ∧   y ≥ z    →  x > z
x = y  ∧   y = z    →  x = z
x = y  ∧   y < z    →  x < z
x < y  ∧   y = z    →  x < z
x = y  ∧   y ≤ z    →  x ≤ z
x ≤ y  ∧   y = z    →  x ≤ z

etc. 2. If p is a comparison expression and q is a disjunction, we can use the distributive law to 

transform it such that we can apply step 1 above, for conjunctions of compare nodes. 

p  ∧  (q1 ∨  q2 ∨  ... qn)  →  (p ∧  q1) ∨  (p ∧  q2) ... ∨  (p ∧  qn).
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5.4. Example
The following example capture delay and display resolution. We illustrate the simple form 
of parametric profile (rule 2 below), meaning that a smaller number satisfies a higher num-
ber. We also illustrate various ways to state resolution in one, two or three dimensions (e.g. 
for displays) where obviously higher numbers satisfy smaller numbers. We include ex-
amples of profile for one dimension (rule 5 and 8), two dimensions (rule 7) and three dimen-
sions (rule 9), as well as rules for comparing profiles of different dimensions (rule 6 and 10).

LowDelay < ModerateDelay < AnyDelay;  (1)
Delay[x] < Delay[y], if x <= y;  (2)
Delay[x] < LowDelay, if x <= 100;  (3)
Delay[x] < ModerateDelay, if <= 200;  (4)

XRes[x]  < HiRes, if x < 1000;  (5)
Res[x1, y1] < XRes[x2], if x1 >= x2;  (6)
Res[x1, y1] < Res[x2, y2], if x1 >= x2 AND y1 >= y2;   (7)

XRes[x] < XRes[y], if x <= y;  (8)
3Res[x1, y1, z1] < 3Res[x2, y2, z2], 
    if x1 > x2 AND y1 > y2 AND z1 > z2;  (9)
3Res[x1, y1, z1] < Res[x2, y2], if x1 > x2 AND y1 > y2; (10)

From the above axioms we can for instance infer that Delay[10] satisfies ModerateDelay 
and that Res[2000, 1000] satisfies XRes[500]. In the following we give some examples 

of how rules are derived from other rules.

Example 1: 

From rule 5 and 6 above we can derive 

Res[x, y] < HiRes, if x < 1000;

When explaining how the rules are derived we use a slightly different notation where pa-
rameters are relabelled using the profile identifier with an index.  

XRes ≤ HiRes ⇐  (XRes0 > 1000)

Res ≤ XRes  ⇐  (Res0 ≥ XRes0)

The predicates can be be conjoined: 

(XRes0 > 1000)  ∧  (XRes0 > Res0)  

The two comparison nodes are transitively related and we can eliminate XRes0 when deriv-
ing a rule:

Res ≤ HiRes  ⇐  (Res0  > 1000).  

Example 2: 

From rule 6 and 10 we can derive

3Res[x1, y1, z1] < Res[x2, y2], if (x1 > x2); 

Rule 6 and 10 are: 

Res ≤ XRes  ⇐   (Res0 ≥ XRes0)

3Res ≤ Res  ⇐   (3Res0 > Res0) ∧  (3Res1 > Res1) 

The predicates are conjoined: 

(Res0 ≥ XRes0) ∧  (3Res0 > Res0)  ∧   (3Res1 > Res1)
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We combine the first and the second comparison node by transitivity. The third node still 
has an unbound variable and is removed. We derive: 

3Res ≤ XRes  ⇐   (3Res0 > XRes0). 

Example 3:

We can derive a rule for Delay[x] ≤ AnyDelay. From rule 1, 3 and 4 we see that there are 

two paths. Either via LowDelay or ModerateDelay: 

Delay ≤ AnyDelay   ⇐   (Delay0 < 100)             

Delay ≤ AnyDelay   ⇐   (Delay0 < 200)

The second alternative is widest in the sense that it returns true for a larger set of values 
for x, so it should be chosen. If combined by using a disjunction the first case will have no 
effect since it is fully covered by the second case. Figure 4 below illustrates the relation-
ships as a graph.

Delay ≤ AnyDelay    ⇐     (Delay0 < 100)  ∨   (Delay0 < 200).

LowDelay

Delay[x]

ModerateDelay

x <= 200x <= 100

(x <= 100) ∨  (x <= 200)

AnyDelay

Figure 4. Rule derivation

Example 4: 

Assume that we remove rule 5 and add some rules stating a resolution requirement in ei-
ther the x or y dimension.

1Res[x]  < HiRes,   if x > 1000; (11)
Res[x,y] < 1Res[n], if x > n OR y > n; (12)

From these two we can conjoin the predicate expressions like we did for the examples 
above: 

(1Res0 > 1000)  ∧   ( (Res0 > 1Res0)  ∨   (Res1 > 1Res0) )

If we use the distributive law to transform the expression to a disjunction of two conjunc-
tions and the transitivity combination rules for each of those, we get a derived rule: 

Res ≤ HiRes   ⇐    (Res0 > 1000)   ∨    ( Res1 > 1000) .



7Algorithms with complexity O(EV) may at first sight seem to be better, but finding all 
edges (conformance relationships) is a O(N2) problem. So, in sum it is a O(N3). 

_________________________
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6. Evaluation and analysis

In this section we analyse the profile model with respect consistency and completeness in 
concrete model definitions, to interoperability between autonomous applications, and how 
composition can be adressed using the model. But first we briefly discuss the performance 
issues of evaluating profile expression. 

6.1. Performance 

The complexity of evaluating profile expressions against each other to test for conformance 
is discussed in section 4.4. The matching of component-sums is equivalent to a bipartite 
graph matching problem. Therefore it is possible to implement this with a worst case per-
formance of O(M3) where M denotes the number of components of the component-sum in 
the normal form of the expressions7. Our naive but simple implementation has an exponen-
tial worst case complexity. The matching of sums is O(M2) worst case (where M is the num-
ber of components of the sum).  

It is generally hard to analyse the practical performance of expression matching indepen-
dently of applications. First performance is highly influenced by the structure of the expres-
sions to be compared, not only their length. Furthermore, this analysis is based on that M 
denotes the length of both expressions. Often, the lengths are different. The performance is 
also influenced on how often there exist conformance relationships between basic profiles 
used, i.e. the size and the structure of the profile conformance rulebase is also relevant. 

We have implemented a prototype policy trader, using the algorithm as described above, 
which is a tool for experimenting on different application scenarios. The prototype is imple-
mented in Java and contains an expression parser,  conformance testing code as well as a 
trading service interface. To get an indication of how comparison behaves, we run the com-
parison algorithm on examples believed to be realistic. In the following case we have two 
service profile expressions and two environments to match. We assume that there is a para-
metric rule for ’Lat’ (which represents latency) and that we have a rule saying that ’Storage’ 
satisfies ’LimitedStorage’:  

SP1="(Channel+Lat[30])⊕ (Server+LimitedStorage+Lat[10])"

SP2="(Channel+Lat[39])⊕ (Server+LimitedStorage+Lat[1])"

E1 = "Server+((Channel+Lat[35])⊕ (Storage+Lat[10])
        ⊕ (LimitedStorage+(Lat[0.5]))" 

E2 = "Server+((Channel+Lat[30])⊕ (Storage+Lat[10])
         ⊕ (LimitedStorage+Lat[0.8]))"

The number of basic profile comparisons lies between 9 and 16 in this example (the number 
basic components is 5 and 7 in the expressions to compare, respectively). If we use the 
component-sum operator to add a component to the service profiles, the number of basic 
comparisons rise to 25, at most. This and other experiments indicate that the number of 
basic comparisons would typically be lower than M2 (where M is the number of basic com-
ponents in the longest expression), though theoretically the worst case complexity would lie 
between N2 and N3 depending on the expression structure. This analysis suggest that if the 
length of profile expressions are kept within manageable bounds, the comparison cost 
would be reasonably small.    
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Test Result Comparisons
E1 ≤ SP1 FALSE 10 
E1 ≤ SP2 TRUE 16 
E2 ≤ SP1 TRUE 9 
E2 ≤ SP2 TRUE 16 

Table 1. Basic comparisons of expressions

We have been able to produce a worst case behaviour for component-sums. Our experi-
ments with application cases indicate however, that the probability of such scenarios is 
small. The average performance is expected to be significantly better than the worst case 
performance.  We also observe that a critical operation in our algorithms is the comparison 
of basic profiles, which is expected to be cheap (see section 5). We believe that in most 
cases, the length of profile expressions would be reasonably low, and probably lower than 
the number of QoS characteristics in parameter-based negotiation schemes, since our de-
clared conformance approach allows profiles which abstract over detailed characteristics. It 
is therefore likely that scalability issues would be related to the number of candidate poli-
cies to search in the trading process rather than the length of profile expressions.  

6.2. Model consistency and completeness

When defining concrete models as described in section 5, it is possible to mistakenly define 
models which do not work as indended. One might make models with inconsistencies, or 
one may fail to completely cover the range of conformance relationships needed for the ap-
plication in question. Therefore, additional guidelines and tools for checking can help to 
avoid or discover such problems.  

In this section we propose a consistency criterion which let us detect some problems by sys-
tematic analysis. We look at some relevant cases, to discover what we can expect to be typi-
cal patterns of rule-derivation or sources of problems. We also observe that it can be useful 
to extend the model definition language with higher order constructs like equivalence. 

6.2.1. Completeness

A model is complete if all possible conformance relationships may be inferred from the rule-
set. i.e. the implication in defintion 13 is also an equivalence. Definition 13 means that 
models need not be complete, but one should strive to define models which are sufficiently 
complete, mening that the conformance relationships needed by the applications are cov-
ered.  

6.2.2. Consistency

Consistency means that we would not infer contradicting results from a set of axioms. How-
ever, two rules returning different truth values for a given set of parameters are not neces-
sarily inconsistent rules. Instead we base the notion of consistency on which range of profile 
values evaluate to true. To help finding inconsistencies we propose a simple rule which can 
be applied to the axioms of a model.

Proposition (consistency): The predicate p of any axiom, a ≤ b, would be implied by any 

derived predicates q, for a ≤ b. We say that p covers q in the sense that the set of values 

which satisfy q is a subset of the values which satisfy p. 

∀ x: q(x) ⇒  p(x).  o
A derived rule will involve another profile type, c and a rule c ≤ b such that all profile val-

ues which satisfy c also satisfy b. If we assume we have a complete and consistent model, 

the set of profile values which (when applied to a and b) satisfy a ≤ c  ∧   c ≤ b, is a subset of 

the values which satisfy a ≤ b directly. This follows from the definition of conformance rela-

tionship (definition 3) and the definition of transitivity: 
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( σ(a) ⇒  σ(c)  ∧   σ(c) ⇒  σ(b) )   ⇒    ( σ(a) ⇒  σ(b) )

We cannot prove consistency since our models are not complete. However, we can prove 
that inconsistencies exist. Given the argument above about consistent models, and defi-
nition 13, it can be proven that if the above proposition does not hold for a set of rules, 
the model is inconsistent: It is straightforward to prove that the following is true 
(p,q,r,x,y and z are logic expressions):

( ¬ ( p ∧  q  ⇒  r)  ∧  x⇒ p ∧  y⇒ q ∧  z ⇒ r )   ⇒    ¬ (x ∧  y ⇒ z).    

By definition 13 and transitivity we have 

p ⇒   a≤b, q ⇒  (a≤c ∧  c≤b) ⇒  a≤b. 

From this we can show that

¬ ( q ⇒  p)   ⇒    ¬ (a≤c ∧  c≤b  ⇒   a≤b).   

6.2.3. Examples

In the following we discuss some cases where this rule may help us detect problems. We 
also consider cyclic rulesets and two patterns for rules which goes in the opposite direction: 
Symmetry (to address completeness) and equivalence (to realise synonym profiles). We also 
consider the pattern of parallel paths. 

Example 1 (inconsistent rules): Consider the following rules:

LowDelay < ModerateDelay; (1)
Delay[x] < LowDelay, if x <= 100; (2)
Delay[x] < ModerateDelay, if x <= 50; (3)

Since LowDelay ≤ ModerateDelay, the requirement for a Delay profile to satisfy LowDelay 

should be at least as strict as for ModerateDelay. There is an inconsistency here in the 
sense that rule 3 does not cover the rule derived from rule 1 and 2. In this case, the result 
of combining alternative rules by disjunction is that rule 3 will have no effect. Figure 5 il-
lustrates this by representing profile types as nodes and predicates as edges. We show de-
rived rules by using dashed lines.

LowDelay

Delay[x]

ModerateDelay

x <= 50
x <= 100

(x <= 100), 
(x <= 50)

Figure 5: Derived rule

Example 2 (cycle): Consider the following rules: 

LowDelay < ModerateDelay; (1)
Delay[x] < LowDelay, if x <= 100; (2)
ModerateDelay < Delay[x], if  x > 200; (3)

This results in a cycle in the conformance graph. A cycle is not necessarily an error, but 
may be problematic because of the derived rules it produces.   
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LowDelay

Delay[x]

ModerateDelay

x > 200

x <= 100

(x > 200)  ∧  (x <= 100) = false

(x > 200)

(x <= 100)

Figure 6: Conformance cycle

No new rule will be derived for ModerateDelay ≤ Lowdelay (conformance is false) since x is 

not bound by any of those profile types. In this case there should not be any conformance in 

this direction anyway. The derived rules for Lowdelay ≤ Delay and Delay ≤ ModerateDelay, 

are not wrong, but imprecise in the sense that they do not cover all cases where we expect 
conformance. Here, we would expect conformance to be true for excactly the set of values 
for which conformance is false in the opposite direction.

These observations suggest that cycles may lead to derivations which are not intuitively 
foreseen, and that some of these do not necessarily are as complete as we may wish. They 
may still be useful, but somewhat complicated to analyse by a programmer. Therefore, we 
believe that a profile model compiler should warn or inform about cycles, except when in-
troduced by symmetric rules in opposite directions (directly between two nodes), or by de-
fining equivalence. We illustrate the usefulness of this case in example 3 and example5 be-
low. 

Example 3 (symmetry): Consider the following rules:

LowDelay < ModerateDelay; (1)
Delay[x1] < Delay[x2], if x1 <= x2; (2)
Delay[x] < LowDelay, if x <= 100; (3)
LowDelay < Delay[x], if x > 100; (4)
ModerateDelay < Delay[x], if x > 200; (5)
Delay[x] < ModerateDelay, if x <= 200; (6)

Here we want to represent the fact that LowDelay satisfies Delay[x] if x is smaller than 100 
(rule 2), while also Delay[x] satisfies LowDelay if x is bigger than 100 (rule 3 and 4). This 
realises a more complete connection between the two profile types than the previous ex-
ample. A similar rule is made to connect Delay with ModerateDelay (rule 5 and 6). Those 
rules are consistent with the rule for two Delay[x] profiles in the sense that derived rules 

for Delay ≤ ModerateDelay and Delay ≤ Delay are covered by axioms 

LowDelay

Delay[x]

ModerateDelay

x > 200

x <= 100

(x1 <= 100)  & (x2 > 200)
  Covered by axiom:  x1 < x2. 

x > 100
x <= 200

x <= 100
  Covered by axiom

Figure 7. Symmetric rules

Example 4 (Conflicting rules): Assume that we make a mistake in example 3 above and 

define conformance between ModerateDelay ≤ LowDelay in the wrong direction. Now, there 

will be a derived rule for Delay ≤ LowDelay which is not covered by the axiom. In fact the 

comparison rules goes in the opposite direction. Observe that the derived rule for Delay ≤ 
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Delay is not covered by the axiom as well. We have two indications that the model has in-
consistencies.  

LowDelay

Delay[x]

ModerateDelay

x > 200

x <= 100

(x1 > 100  & x2 <= 100) 
   Not covered by axiom! 

x > 100
x >= 200

x >= 200
  Not covered
  by axiom!

Figure 8. Conflicting rules

Example  5 (Equivalence): Consider the following rules:

LowDelay < LowLatency < LowDelay; (1)
Delay[x] < Latency[y]; (2)
Latency[x] < Delay[y]; (3)
Delay[x] < LowDelay, if x <= 100; (4)
LowDelay < Delay[x], if x > 100; (5)

In some cases we may want to define equivalence between pairs of profiles, meaning that 
there is a conformance relationship in both directions at the same time. We limit the dis-
cussion to the cases where there is equivalence for all possible parameter values. In the fig-
ure below we indicate equivalence by thicker, double arrowed lines. It illustrates how 
equivalence and rule derivation effectively mirrors the conformance rules to synonym pro-
file types. 

LowDelay

Delay[x]

LowLatency

x > 100

x <= 100

x > 100

x >= 100

Latency[x]

x > 100

x <= 100

x <= 100

x > 100

Figure 9. Equivalence

Example 6 (parallel paths): Consider the following rules:

XRes[x] < HiRes, if x >= 1000; (1)
YRes[y] < HiRes, if y >= 800; (2)
Res[x,y] < XRes[x], if x1 >= x2; (3)
Res[x,y] < YRes[y], if y1 >= y2; (4)

Rules 3 and 4 define the relationship between one-dimensional and two-dimensional pro-
files describing (display) resolution. But they will also define a relationship between Res 
and HiRes, i.e. it represent a composition of two rules into one. If we follow the simple rule 
of composing alternative rules to disjunctions, we get 

Res[x,y] < HiRes, if (x >= 1000) or (y >= 700); 

Figure 10 illustrates how rules are composed. We have two parallel derived rules, which do 
not cover each other in any way. In this case they cannot, since they are based on different 
parameters in the Res profile. Intuitively, it looks like it is possible to define conflicting par-
allel rules, but to be able to detect or prove the existence of such conflicts we need to add 
further constraints to the model. This may be a topic for further investigation. 
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   Res

YRes

HiRes

x >= 700x >= 1000

y1 >= y2

(x >= 1000), 
(y >= 700)

XRes

x1 >= x2

Figure 10. Parallel rules

Another possible problem of this pattern may occur if we actually wanted to compose the 
two rules (between XRes/YRes and HiRes) by conjunction instead of disjunction. Note that 
we may express conjunctive composition in an expression by using the ’+’ operator (c.f. sec-
tion 4.1). To build conjunctive composition into the model we may be tempted to define a 
rule explicitly between Res and HiRes, using conjunction. However the explicit rule would 
then clearly be inconsistent with the two derived rules (a conjunction does not cover a dis-
junction or any of the individual conjuncts). In addition, it is somewhat redundant. A pos-
sible resolution is to recognise this particular pattern, and simply override any derived 
rules, or we may add a keyword to the profile definition language to explicitly request such 
overriding.  

6.2.4. Discussion

It is possible to develop a notion of consistency for profile models. We have seen that there 
is a set of inconsistencies which can be detected and reported by a profile model compiler, to 
the extent it can detect if one predicate imply another. 

Cycles in the conformance graph are legal, but may lead to derived rules which are not eas-
ily foreseen by the model designer and which may be imprecise. Therefore cycles are likely 
to be problematic, except when introduced by (1) symmetric rules, i.e. rules which goes in 
the opposite direction and where one rule is a negation of the other, or (2) equivalence, i.e. 
rules which evaluate to true in both directions at the same time. It is useful to restrict eqi-
valence to simple rules (always true). It is possible for a compiler to warn about cycles 
which do not follow those constraints. It would also be useful to extend the profile definition 
language with higher order constructs like an equivalence operator and an operator to de-
fine symmetric rules automatically. 

Example 5 shows that there exists a type of inconsistency which we may want to resolve by 
letting the axiom override (disable) the derived rules. We observe that the pattern of paral-
lel paths can be a source of some problems and it may be helpful for a profile model pro-
grammer, if a compiler could detect and report this case. 

6.3. Interoperability

Components participating in a binding may be heterogeneous, and not necessarily designed 
for one single purpose. Still, there is a need to express and convey QoS and resource infor-
mation among the participants. In this context, interoperability is about establishing a 
common understanding across different subdomains and component applications, of profile 
expressions to be exchanged during negotiation, and consequently, of the resulting con-
tracts. We may distinguish between two levels of interoperability:  (1) Interoperability 
among components in a single application sharing a single profile model. (2) Interoper-
ability among applications using different profile models. 

We assume that participants have agreeed on a shared profile model which defines the syn-
tax and semantics of profile expressions to be exchanged. However, the semantics of profile 
identifiers and parameters are not completely defined, since a profile model is limited to 
conformance relationships. Each participant need to interpret profiles in terms of measur-
able characteristics or platform properties, and they should do it in a consistent way. For 
instance, the parameter in a profile Delay[x] may mean the maximum end-to-end execution 
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time for empty operation invocations measured in milliseconds. It is obviously a problem if 
the other participant understand it as a mean estimate, or using microseconds as the unit. 
It is also important that programmers of policies or platform components have precise in-
formation about the meaning of basic profiles, in addition to the profile model itself, to be 
able to implement those components correctly. The consequence of making the wrong as-
sumptions could be that the wrong policies are selected. This could lead to failure of policies 
or that they violate the contract. 

6.3.1. Integrating models

Applications may want to interoperate and negotiate, even if they use different profile mod-
els locally. This problem is comparable with the problem of integrating schemas for feder-
ated databases [ShLa90] or different datasources described by ontologies [Wache01] (for in-
stance in the context of the semantic web).  

We can distingush between (1) loose coupling strategies where mappings between applica-
tions to cooperate are defined in an ad hoc way and (2) tight coupling strategies where one 
would statically define one or more federated (global) schemas, based on local schemas. 
[Wache01] also classify the approaches to mapping based on ontologies as follows

1. Defining one shared ontology (or merging local ontologies into one) for all datasources to 
interoperate. This approach limits the diversity of local applications. 

2. Multiple ontologies which is somewhat similar to a loose coupling strategy, but makes it 
more difficult to compare local ontologies. 

3. Hybrid approaches allowing local ontologies which share a common vocabulary. Local 
ontologies may be defined in terms of this vocabulary which support easier comparison 
and mapping. However, with this approach it is harder to integrate existing ontologies 
which are not based on the common vocabulary.

In the following discussion we assume that all local models to be integrated follows the 
model defined in this report. This simplify the problem compared to a more general case. 
We also assume a tight coupling strategy and that the integration is done by merging rel-
evant parts of profile models (termed local models) into one global model. We may also de-
fine new profiles at the global level to generalise over local concepts. We may provide map-

pings such that expressions in terms of one local model can be understood in terms of global 
model (or another local model). Mappings should preserve authonomy in the sense that ex-
isting negotiations within a single application need not be affected by the integration. Each 
application would use their own profile models in platform implementations and policy 
implementations. 

In our case, relationships between local and global profile types can be defined as confor-

mance rules (see section 5). This means that a policy trading service (see section 2) would 
automatically perform the necessary mappings if it knows the complete integrated model 
(including the mapping rules). Alternatively, one may add run-time interception and trans-
lation of expressions which cross application boundaries.

6.3.2. Heterogeneity and conflict types

The problems arising from data heterogeneity are well known within e.g. the federated da-
tabase community [ShLa90]. In our context we are mostly concerned about semantic het-
erogeneity [Kim91]. Integration of models will need to resolve conflicts. According to a tax-
onomy of [Goh97], data heterogeneity leads to three main types of semantic conflicts:  nam-
ing conflicts, scaling conflicts and confounding conflicts. Because of the strong limitations of 
exchanged data types in our model, the schematic and intensional conflicts (except general-
ization conflicts), are not directly relevant for us. The taxonomy is shown in the figure be-
low. 
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Figure 11: Conflict taxonomy

Naming conflicts stem from differing naming of values, typically synonyms and hom-
onyms. In our model, this is also similar to what [Goh97] calls labelling conflicts since the 
labels of profile types also denote define possible profile identifier values. Synonyms are 
handled by defining equivalence (see section 6.2.3). Homonyms can be resolved for instance 
by prefixing names, such that they are recognised as distinct. 

Scaling conflicts stem from the use of different units for values. For instance, using dif-
ferent currencies, or expressing delay in milliseconds in one place and microseconds in an-
other. Our models do not state units and scaling explicitly. It is possible to resolve such con-
flicts by defining rules which do the necessary conversions. However, this will require that 
the language in section 5 is extended with arithmetic operators. For example if delay is 
given in both milliseconds and microseconds: 

Delay[x] < us_Delay[y], if  x <= y * 1000;
us_Delay[x] < Delay[y], if  x * 1000 <= y;    

Given the idea of extending with an equivalence operator (section 6.1) we may add scaling. 
From such a rule, proper conformance rules may be derived. For instance: 

Delay[x] = us_Delay[x * 1000]; 

Confounding conflicts occur when information items seem to have the same meaning but 
have not, because they are defined in different contexts. For instance it is a conflict if a De-

lay parameter denote a maximum delay in one instance and a mean delay in another. It is 
not trivial to map between various interpretations for this type of conflict. Note that pro-
files like e.g. Delay may be used in different contexts, and a ruleset for Delay can have dif-
ferent contextual interpretations. Recall that the component-sum operator (section 4) can 
be used to express constraints in different contexts. It is possible to use the sum operator to 
relate a constraint to a context. For instance:

( Mean + Delay[40] ) ⊕  ( Maximum + Delay[100] )

state  requirements for both mean and maximum delay (the Mean and Maximum profiles 
represents contexts for delay expressions). Expressions in different contexts are not compa-
rable unless we define an additional rule defining that one context is subsumed by another. 

For instance we may also specify a rule Maximum ≤ Mean meaning that a maximum delay 

offer will satisfy a mean delay requirement, from which we can infer that (Maximum + 

Delay[40]) satisfy (Mean + Delay[40]). Note however that this example reveals a dangerous 
trap. Consider a parametric profile Bandwidth[x] instead, where the higher parameter 

value satisfies a lower. Here it will be wrong to use it with the Maximum ≤ Mean contexts, 

since they were meant for use with a parametric profile where the smaller value would sat-
isfy a higher. In this case it would be better to relate the context profiles to the more ab-

stract notion of conformance relationships. For instance to define: Best ≤ Mean ≤ Worst.

6.3.3. Model consistency

In section 6.2 above we discussed consistency with respect to conformance rules and transi-
tivity. The types of conflicts discussed there can also arise from heterogeneity in confor-
mance rules. It can be viewed as a generalisation conflict (c.f. [Goh97]) in the sense that 
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profile expressions subsumes each other by conformance relationships. Integrating models 
may create new paths of transitive conformance, and conflicting derived rules if conflicts 
between models are not properly resolved. The following example illustrates how inconsis-
tency can arise from wrongly assuming that two profile types are equivalent (we assume 
that we can define equivalence using the ’=’ operator). 

Delay[x] < LowDelay, if x <= 100;  (model 1)
Latency[x] < GoodLatency, if x <= 50; (model 2)
Delay[x] = Latency[x]; (mapping 1)
LowDelay = GoodLatency; (mapping 2)

The error here is that GoodLatency is assumed to be equivalent with LowDelay. It is not. 
This problem can be detected using the consistency test from section 6.2, i.e. the derived 

rule for Delay ≤ LowDelay should not be covered by the axiom (from model 1). This problem 

is easily resolved by changing mapping rule 2 to a one way conformance: 

LowDelay < GoodLatency; (mapping 2)

6.4. Composition

According to section 2 we want to support composition of profile expressions. The profile 

model can capture basic conjunctive composition using the sum operator and composition of 

separate contexts using the component-sum operator. In this section we look into the prag-

matics of expressing composition using these operators, and discuss what are the possibili-

ties and limitations of our model in addressing composition. 

First, it is important to observe that it is not within the scope of profile expressions them-

selves, to define how components are combined and what a composition actually results in, 

but rather constraints on how policies can combine the resources. Our approach of policy 

trading (c.f. section 2.1) imply that the effect of composition, i.e. the relationship between 

the expectation (service profile) and the obligation (user profile), is encapsulated into each 

policy. It is the concern of policy implementers how available resources should be used in 

combination to reach a goal. Given the same environmental properties, making different 

choices wrt. protocols and other parts of policy implementations could result in different 

interactions between the resources. This could again lead to different resulting QoS. 

This is somewhat different from CQML [Aagedal01] where the result of composition may be 

specified per QoS characteristic. Three types of composition are considered: ’parallel-or’, 

’parallel-and’ and ’sequential’ and an application specific model may define functions defin-

ing characteristic specific meaning for each of them. As an example, Aagedal considers (as 

an example), the start-up time for a composition of two components. The total start-up time 

could either be the quickest one if the policy is to select the best one (parallel-or composi-

tion), the latest one if both are needed (parallel-and composition), or a sum of the start-up 

times, if the second one cannot be started before the first is ready (sequential composition) 

For instance the sequential composition of startup times would be the sum of the compo-

nent startup times.

In the following we discuss how the patterns of composition in [Aagedal01] (parallel-or, 

parallel-and and sequential) can be captured by our profile model. We also discuss how to 

address nested composition. But first we briefly discuss some pragmatics in describing enti-

ties. 

6.4.1. Entity descriptors 

Environmental expressions (in normal form) will typically be component sums where each 

element is a sum of some entity name, defining the context, plus a set of constraints to be 

associated with it. We refer to such subexpressions as ’entity descriptors’. Note that the 



8This particular case could be viewed as a possible conflict which need to be resolved to pro-
vide interoperability (c.f. section 6.3).

_________________________
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term ’entity’ is not a syntactic category of our expression language; it is rather a way to de-

scribe pragmatics of structuring expressions.  

entity + property1 + ... + propertyn  

Expressions may be composed from a set of entity descriptors. We should normally use the 

component-sum operator to separate entity descriptors, like this: 

(entity1 + properties) ⊕  ... ⊕  (entityn + properties)

The entity name may be skipped if there are no ambiguity with respect to what entity the 

property refer to, for instance when the expressions describe only one entity. Furthermore, 

expressions can be sums of entity names only, meaning that all those entities are (or is re-

quired to be) available, for instance "network + CPU + memory". The existence of entities 

may be viewed as properties, but observe that the choice of this form must be consistent 

among the negotiating participants8. For instance there will be no conformance relation-

ship between "A + B + C" and "A ⊕  B ⊕  C". If other properties are to be associated with any 

of the entities, they must be separated by using a component-sum, like in following expres-

sion: 

(Network + HighBW) ⊕  CPU ⊕  (Memory + HighCapacity) 

In contrast, the expression 

Network + HighBW + CPU + Memory + HighCapacity

would not express the same fact. In this example we cannot longer tell which entity proper-

ties like ’HighBW’ are associated with, i.e. what context they appear in. 

6.4.2. Parallel-or composition

If there exist no dependencies between (possibly equivalent) components, the composition 

can be classified as parallel. Parallel-or composition corresponds to the case where one of 

the components is selected for use.  

In the context of policy trading where SP denotes the service profile of a potential policy 

and where E denotes the description of the environment, consider the example of combining 

properties of communication channels (assume that SuperHighBW ≤ HighBW). 

SP =  Channel + SuperHighBW,    E =  Channel + (HighBW ⊕  SuperHighBW)

The policy requires one SuperHighBW channel. The environment offers two channels, one 

of them satisfy the requirement, which is sufficient to result in a match. Note that if a 

policy implementation for example uses one channel, and the environment supports two or 

more channels, the implementation must be able to select a suitable channel from the avail-

able ones.  

6.4.3. Parallel-and or sequential composition

Parallel-and composition mean that components are unrelated but all are used in combina-

tion. For the example of startup time, this may mean that the longest time must be used as 

the result, since the components can startup in parallel, but we need all to finish. For cer-

tain capacity characteristics, parallel-and may mean that the result is the sum of the com-

ponent capacities, e.g. for processors which can run in parallel without need for synchroni-

sation. Sequential composition mean that there are dependencies between constituent 
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components, for instance that one cannot run before the other has finished. For the case of 

startup time this would typically mean to return the sum of component times. 

Consider the following expressions. 

SP = Channel + (HighBW ⊕  HighBW),   E = Channel + (SuperHighBW ⊕  HighBW)

The policy expresses the need for the satisfaction of two separate channel entities by using 

the component-sum operator, and only environments with at least two channels will satisfy 

it. This is the way to express parallel-and or sequential composition. Observe that the ex-

pression pattern is the same for those two cases. In essence, policies express the need for 

multiple resources. How these are combined (parallel, sequential or something in between) 

is an implementation issue. However, environment descriptors may need to include ad-

ditional constraints on how components can be combined by policy implementations, for in-

stance they may explicitly disallow parallel composition. Such constraints may be specific 

to component types or application domains. The only way to express them, is to define basic 

profile types denoting composition constraints or location, and to use these in profile ex-

pressions. Figure 12 illustrates how we may define a profile model for channel entity pro-

files: 

RestrictedChannel
(disallow all compositions)

SequentialChannel ParallelChannel

Channel
(allow all)

Figure 12. Constraints on composition

For instance, a pair of channels which can only be combined sequentially may be described 

like this: 

E = SequentialChannel + (SuperHighBW ⊕  HighBW)

Observe that a profile which denotes a restriction of composition compared with another 

profile, would be a superprofile of that other profile, since a requirement for a more capable 

channel is a stronger constraint on the environment. A requirement for a resource which 

can be used in any way, is a stronger requirement than a resource with restrictions on the 

use. 

It may also be necessary to state the roles of each component or the context they are ex-

pected to be used in, as additional constraints. Consider the following expression: 

E = (SeqSourceChannel+ SuperHighBW) ⊕  (SeqSinkChannel + HighBW) 

Here the basic profile types ’SeqSourceChannel’ and ’SeqSinkChannel’ describes channels 

which could only be used with the source and the sink of some stream, when used in se-

quential composition.

6.4.4. Nested composition

An entity descriptor (c.f. section 6.4.1) may be a property of another entity. For instance we 

could have a component-sum of two entity descriptors describing the client and the server 

respectively. Each of those could contain a set of sub-entities to describe local services and 

resources at each side. Given an entity e with properties p1, p2, ... pn, if at least one prop-

erty pi is a entity descriptor f with its own properties q1, q2, ..., qm, it is necessary to sepa-

rate this part from the other properties of e by using the component-sum operator. Expres-

sions should be on the form: 



9If we assume that SuperHighBW ≤ HighBW ≤ NormalBW. 

_________________________
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e + ( (p1 + ... + pn) ⊕  (f + q1 + ... + qm) )

For instance if we have a channel with the property ’HighBW’, which also have a special 

sub-channel with the property ’SuperHighBW’, it cannot simply be expressed: 

Channel + HighBW + (SubChannel + SuperHighBW) 

According to the associative law the parentheses does not mean anything, and the sum 

’HighBW + SuperHighBW’ is actually equivalent to just saying ’SuperHighBW’9. Thus, this 

expression does not capture that the outer and inner component have different bandwidth 

constraints. Instead we need to express this as a component-sum of the outer and the inner 

components: 

Channel + ( HighBW  ⊕   (SubChannel + SuperHighBW) ) 

for which the normal form is: 

(Channel + HighBW)  ⊕   (Channel + SubChannel + SuperHighBW)  

6.4.5. Limitation of nested composition  

Consider the example: 

E = (Server + ((Disk + LowLatency) ⊕  HighPerformanceCPU))  ⊕  

       (Client + LowPerformanceCPU)

It may seem like expressions can express nested (or hierarchical) composition. In this ex-

ample a disk and a CPU component appear in the context of a server. But observe that the 

nesting hierarchy is flattened when transforming to the normal form. However we do not 

lose all nesting information this way. For instance ’(a+(b⊕ c)) ⊕  d’  is equivalent to ’(a+b) ⊕  

(a+c) ⊕  d’. If any constraints are associated with a containing context, any subcontexts 

would inherit those constraints. This follows from the distributive law. An identification of 

the context (i.e. an entity name) should also be viewed as nothing more than a constraint. 

One could view normalisation as writing the expression as a component-sum of leaf con-

straints along with (the constraints of) the contexts they appear in. The top level context 

would appear repeatedly for each operand. 

This means that our model captures nested composition only in a limited sense, i.e. the 

component-sum separation cannot actually be nested. To see this clearer, consider the fol-

lowing example: 

SP = (Server + ( (Disk+LowLatency) ⊕  HighPerformanceCPU)

E = (ServerA + Disk + LowLatency) ⊕  (ServerB + HighPerformanceCPU)

In SP, the profile ’Server’ seems to occur once as a shared context for the two sides of the 

component sum and it may look like the SP expression describe one single server instance. 

This is not necessarily true; it may be two as well. If ’ServerA’ and ’ServerB’ are subprofiles 

of ’Server’, E will satisfy SP. Strictly speaking, we cannot tell from this expression if ’Ser-

verA’ and ’ServerB’ describe separate containing server instances or just two components 

(disk, CPU) sharing the same server instance.      

We may want to express that the separate components describe the same instance or sepa-

rate instances. With our current profile model the only way to do this is to use basic profiles 

which identify particular instances. This is obviously not a flexible or scalable solution, 

since the instances must be known a priori. 
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We see from this that our model has significant limitations in expressing nested composi-

tion. This should be a case for further work in extending the profile model. A possible ap-

proach is to introduce labels to indicate instances. If we for instance want to describe an 

environment with two separate environment and where there should be separate instances 

of the entity ’Server’ associated with each component. 

SP1 = (x:Server + some-cpu) ⊕  (y:Server + some-storage)

SP2 = x:Server + (some-cpu ⊕  some-storage)

E = (a:Server + some-cpu) ⊕  (b:Server + some-storage) 

Here, E would satisfy SP1 but not SP2. If we say ’x:Server (some-cpu ⊕  some-storage)’ we 

clearly state that the CPU and the storage must be associated the same server instance. 

Note that we suspect that this approach may increase the computational complexity of con-

formance checking and should be carefully evaluated before making any conclusion. 

7. Concluding remarks

In this report we define a language for dynamic QoS expressions which can be evaluated at 
run-time for conformance. We define how expressions can be constructed from atomic QoS 
statements termed ’basic profiles’ using composition operators. Two such operators are de-

fined: The sum ( ’+’ ) which corresponds to simple conjunction and  component-sum (’⊕ ’) 

which assume that the operands denote properties of separate environments and therefore 
must be satisfied separately. To define the semantics of expressions using both operators, 
we define a distributive law and a normal form. Based on those rules, as well as confor-
mance rules for pairs of component-sums or sums, algorithms for conformance checking any 
pair of expressions can be developed. 

Concrete models define the basic profile space and explicitly establishes conformance rela-
tionships between basic profiles. They are typically defined for specific application domains 
and can be defined as rule-bases. These are essentially sets of axioms from which we can 
infer conformance between any pair of basic profiles. From the axiom set we may derive a 
full rule set, covering any pair of profile-types for which there may be conformance. Such a 
rule set can be directly mapped to executable code which allows efficient conformance 
checking at run-time. As a proof of concept we implemented a profile model compiler (which 
also has been useful in analysing consistency and performance issues). The compiler per-
forms a basic semantic check of rules, compute derived ruleset by using a transitive closure 
algorithm and outputs conformance checking code.  

Our analysis shows that there exist some types of inconsistencies which are detectable by a 
profile model compiler. It follows from the model that an axiom should cover (its predicate 
should be implied by predicates of) any derived rules between the same pair of profile 
types. Furthermore, some problems can be detected if additional constraints are intro-
duced. We also observe that the pattern of parallel paths can be a source of some consis-
tency problems. In that case it would be useful if an axiom could could be set to override 
any parallel derived rules. Cycles in a conformance graph may lead to derived rules which 
are not easily foreseen by the model designer.   

The problem of supporting interoperability between applications using different profile 
models is comparable with the problem of integrating datasources described by different 
ontologies. In analysing interoperability we see that certain conflict types are relevant 
when integrating profile models from different sources. Domain specific models define pro-
file names and semantics only. Therefore, conflict resolution is mostly limited to semantic 
conflicts. The sources of problems comes from differences in how expressions are inter-
preted locally (scaling and confounding conflicts), and in how names and rules are defined 
(naming, and generalisation conflicts). The latter is partly detectable. In our context it is 
possible to define mappings and possibly merge models by defining additional conformance 
rules. In particular we can use equivalence to handle synonyms.
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When discussing composition, it is important to note that profile expressions is used to ex-
press requirements or constraints on composition rather than what composition results in. 
It is up to a policy implementation how available resources are combined. We observe that 
we may need to add profile types to represent constraints on how resources can be com-
posed. We also observe that the ability to express nested composition is limited because of 
the distributive law. A particular problem which results from this is that it is complicated 
to express properties which apply to different instances of a profile type. 

7.1. Cases for further work

Our analysis suggests that we investigate some extensions to the model. Some are higher 
order constructs which can be defined in terms of the core model. Others may be more fun-
damental. We believe that the following issues should be cases for further investigation: 

● An equivalence operator ’=’ which is straightforward to define in terms of two confor-
mance rules. We have shown some cases where this is obviously useful.  

● A symmetry operator where one conformance rule can be defined in relation to another 
meaning that there is conformance excactly for the parameter values where it is not 
conformance in the opposite direction.  

● Overriding of any derived rules (in the case of parallel paths). 

● Arithmetic operators in rules to support scaling. 

● The core profile model is designed with conformance checking and composition in mind. 
This is however not necesssarily easy to read by humans and we may need some compo-
sition pragmatics in addition to the model. We may benefit from defining some higher 
order syntax, for instance to simplify expressing entity descriptors with constraints like 
discussed in section 6.3.1.

● Variables (labels) in expressions to distinguish between separate instances like dis-
cussed in section 6.3.7.
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