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Abstract

This article describes an architecture that allows a replicated service to sur-
vive crashes without breaking its TCP connections. Our approach does not
require modifications to the TCP protocol, to the operating system on the
server, or to any of the software running on the clients. Furthermore, it runs
on commodity hardware. We compare two implementations of this architec-
ture – one based on primary/backup replication and another based on mes-
sage logging – focusing on scalability, failover time, and application trans-
parency. We evaluate three types of services: a file server, a web server, and
a multimedia streaming server. Our experiments suggest that the approach
incurs low overhead on throughput, scales well as the number of clients in-
creases, and allows recovery of the service in near-optimal time.

Categories and Subject Descriptors: D.4.4 [Operating Systems]: Com-
munications Management—Network Communication; D.4.5 [Operating
Systems]: Reliability—Fault-tolerance; D.4.8 [Operating Systems]:
Performance—Measurements; C.2.4 [Computer-Communication
Networks]: Distributed Systems—Network operating systems; C.2.4
[Computer-Communication Networks]: Local and Wide-Area
Networks—TCP/IP

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: Fault-tolerant computing system, pri-
mary/backup replication, message logging, FT-TCP, connection failover
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1 Introduction

TCP is the most popular transport layer protocol in use today and a diverse set of
network services has been built on top of it. It is used for short sessions such as
HTTP connections, for longer sessions that involve large data transfers, and for
continuous sessions like those used by the Border Gateway Protocol (BGP). As
more people come to rely on network services, the issue of reliability has become
vital. To ensure reliable service, failures of the service endpoint must be tolerated.

Many companies marketing high-end server hardware—IBM, Sun, HP, Veritas,
Integratus—offer fault-tolerant solutions for TCP-based servers. They are usually
built using a cluster of servers interconnected with a fast private network which is
used for access to shared disks, for replica coordination, and for failure detection.
When a server in the cluster fails, all ongoing connections to that server break. The
failover mechanism ensures that if a client attempts to reopen a connection, it will
be directed to a healthy server. Although this client-assisted recovery works well
for some services, it is often desirable to hide server failures from clients.

When the client base is large and diverse, the organization running the service
may lack control over the client host configuration and the applications running on
the host. This means that client applications often can not be expected to assist
in the failover of the service. Such is the situation with many Internet services,
where servers and clients are written by different people and provisions for fault-
tolerance in the application-level protocol do not exist. This is also the case with
BGP [27]—a TCP-based protocol deployed on the border routers that connect dif-
ferent administrative domains of the Internet—where peers are run by different
organizations. Convincing everyone to upgrade to a new routing protocol is not a
trivial task.

Exposing failures to clients is also inefficient. A client may have internal state
associated with the open TCP connection to the server; losing the connection then
requires the client to redo a significant amount of work. For example, a client with
a connection to an Oracle server will abort all open transactions if the server fails.
A similar case occurs with popular Samba clients: when a server fails, all transfers
are aborted and the user must explicitly restart any outstanding transactions. With
BGP, the problem is more severe: a router observing a break in the connection
with its peer starts a flood of messages to other BGP routers indicating that the
peer has failed; upon recovery there is yet another flood to indicate that the peer
is once again available. In situations where the connection break is caused by a
planned software upgrade or when the failed router can recover quickly, all these
messages are undesirable, as they consume resources and unnecessarily destabilize
the routing tables.

In this article we describe a system called fault-tolerant TCP (FT-TCP). This
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system allows a faulty server to keep its TCP connections open until it either re-
covers or it is failed over to a backup. In either case, both the failure and recovery
of the server are completely transparent to clients connected to it via TCP. FT-
TCP does not require any changes to the client software, does not require changes
to the TCP protocol, and does not use a proxy in the middle of the network—all
fault-tolerance logic is constrained to the server cluster. Furthermore, because the
system has been designed in the form of “wrappers” around kernel components, no
changes to the TCP stack implementation on the server are required.

We have evaluated the performance of FT-TCP both with a synthetic appli-
cation designed to obtain maximum throughput of TCP, as well as with several
real-world services, such as Samba [32], Darwin Streaming Server [13], and the
Apache [4] Web server. FT-TCP supports two common application-level replica-
tion methods: primary-backup [9] and message-logging [15]. In our experiments,
we found their failure-free performance characteristics statistically indistinguish-
able. Neither one incurred significant overhead on connection throughput and their
impact on latency is small enough to be unnoticeable by users of the service. We
also found that with primary-backup the failover time of FT-TCP can be made very
short, but to do so the backup must aggressively capture client data.

The remainder of this article is organized as follows. We describe the general
structure of the system—primary-backup as well as message-logging versions—in
Section 2. In Section 3 we cover the details of the protocol used within FT-TCP,
while in Section 4 we discuss the three applications we used to evaluate the proto-
col. The performance discussion is divided in two parts: in Section 5 we discuss
the overhead of FT-TCP in terms of throughput and latency, and in Section 6 we
look at the dynamics of connection failover. We compare FT-TCP to other possible
approaches and alternative systems in Section 7. Finally, we draw our conclusions
in Section 8.

2 Architecture

In this section, we first introduce several concepts that are relevant to the discussion
of service failover, including the operation of TCP and fault-tolerance fundamen-
tals. We then describe the general structure and operation of FT-TCP.

2.1 TCP Overview

TCP implements a bi-directional byte stream by fragmenting data into segments
(usually up to 1480 bytes in length) and by sending each segment in a packet
with its own header. Among other things, the header tells the receiver where in
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the stream the data contained in the packet belongs. That is done using sequence
numbers. When a connection is established, each connection endpoint selects a
random 32-bit integer to serve as its initial sequence number (isn) that is logically
associated with an imaginary byte zero in the data stream. Consequently, an actual
byte number n (where n ≥ 1) in the stream is associated with the sequence num-
ber (isn + n) mod 232. The modulo operation accounts for the sequence number
wraparound that occurs when the number exceeds the capacity of a 32-bit integer.
Every header contains the sequence number of the first byte in the segment that
the packet carries, allowing the receiver to sequence that segment with respect to
all other segments regardless of the order in which they arrived. Duplicates are
likewise detected and ignored.

TCP connections are established with the help of binary flags in the packet
header. A client initiates the connection by sending to the server a packet with the
SYN flag set and with a randomly chosen sequence number isnc. If the server ac-
cepts the connection (i.e. the server is willing and able to proceed with this client)
it replies back with a packet that has both the SYN and ACK flags set and contains
a proposed isns for the server as well as the TCP header acknowledgment number
field, set to isnc + 1. Outgoing acknowledgment numbers are set to the sequence
number of the byte following the last contiguous byte the receiver got from the
sender, thereby indicating what data have been received. When the acknowledg-
ment number field contains a valid value the ACK flag is also set. We call a packet
that acknowledges data but does not carry any data an ACK packet, or simply an
ACK. Finally, the client replies with an ACK packet with acknowledgment number
set to isns + 1, at which point both sides consider the connection established. This
protocol is known as a three-way handshake. We call the byte stream from the
client to the server the instream and the byte stream from the server to the client
the outstream.

Another relevant field in the TCP header is the 16-bit window size, which is
used to tell the sender how much buffer space is available on the receiver. If, for
example, the advertised window is 16 KB then the sender can send up to eleven
1460-byte segments before stalling in wait for an acknowledgment. The window
size is used for flow control: if the receiver is not able to process the incoming
segments fast enough, the window shrinks and may eventually reach zero, at which
point the sender should refrain from sending any more segments. As the receiver
consumes the buffered segments, its buffers free up and the window increases in
size, allowing the sender to resume sending data.

To implement a reliable stream, TCP must deal with dropped or corrupted
packets. A checksum of the whole packet enables TCP to identify corrupted pack-
ets and discard them. The acknowledgment number tells the client when packets
are dropped using a cumulative acknowledgment scheme. For example, in a situ-
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ation where packets A, B, and C are sent and packet B gets dropped, the receiver
will acknowledge only A even after it receives C. Eventually, a retransmission
timer will expire on the sender, which will then resend B, thus filling the gap and
causing the receiver to acknowledge everything, including C.

2.2 Replication Concepts

Recovery of a network service is possible when every connection is backed by
some number of server replicas: a primary server and at least one backup. Should
the primary fail, all backups must have the information needed to take over the
role of the primary as endpoint in its ongoing connections. A backup is said to be
promoted, when it is chosen to become the next primary. FT-TCP supports two
approaches to coordinating replicas.

In the first approach, called primary-backup [9], every replica performs the
processing of client requests; when all replicas have completed processing, one
of them (the primary) replies. If the primary fails, one of the backup replicas is
promoted. In the second approach, called message logging [15], only one replica
is actively processing requests and all requests from the client are saved in a log
that is guaranteed to survive failures. Just as in the first approach, the primary does
not reply to the client until it is assured that all prior requests have been logged. If
a failure occurs, another replica is started. This replica replays messages from the
log to bring itself to the pre-failure state of the primary, at which point, the replica
is promoted. If periodic checkpoints are taken, then only the messages that arrived
since the most recent checkpoint need to be replayed.

In this article, we refer to these two approaches as hot backup and cold backup,
respectively. In both approaches the primary waits before replying to a client until
it is assured that the backup can be recovered to the primary’s current state. This
is commonly referred to as the output commit problem [15]. We henceforth refer
to these forced waiting periods as output commit stalls. Note that, when a backup
takes over, it does not know whether the primary failed before or after replying
to the client (this is a fundamental limitation of any fault-tolerant system). For-
tunately, TCP was designed to deal with duplicate packets, so when in doubt the
backup can safely resend the reply.

Another issue that comes up in the context of replicated processes is nonde-
terministic execution. For both hot and cold backups, the execution paths of the
primary and the backups must match. If they do not, then a backup may never
reach the state of the primary and therefore will not be able to take over the con-
nection. If, for example, a system call returns different values on the primary and a
backup replica, the execution paths of these processes may diverge. To accommo-
date this possibility, we intercept system calls on all replicas and save the system
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Figure 1: FT-TCP Architecture.

call results returned on the primary in a log, along with client requests. We discuss
further how we deal with this and other sources of nondeterminism in Section 3.8.

2.3 FT-TCP Architecture

FT-TCP is implemented by “wrapping” the TCP/IP stack. By this, we mean that it
can intercept, modify, and discard packets between the TCP/IP stack and the net-
work driver using a component we call the south-side wrap or SSW. Also, FT-TCP
can intercept and change the semantics of system calls (between the application and
the kernel) made by the server application using a component we call the north-side
wrap or NSW. Both the NSW and the SSW on the primary replica communicate
with a stable buffer that is designed to survive crashes.

In our implementation, the stable buffer is located in the physical memory of
the backup machines, but other approaches—such as saving data on disk or in non-
volatile memory—are also possible. In addition to logging data, a stable buffer can
acknowledge the data elements it receives, as well as return them to a requester in
FIFO order. When we call a datum stable, we mean that it has been acknowledged
by the stable buffer and will therefore survive a failure. In the rest of the paper we
will use a setup with a single backup and a single stable buffer, collocated with that
backup, as shown in Figure 1. Note that, for cold backup, the server process on the
backup machine will not be instantiated until after a failure has occurred. Such a
setup is by far the most common one in practice, as running multiple backups can
be exceedingly expensive, both in terms of money and performance. Nevertheless,
our technique can be extended to use any number of backup hosts by slightly mod-
ifying the stable buffer protocol and by ensuring that, during failover, all backups
elect the same primary.

For every open connection, the NSW and the SSW on a replica may be jointly
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in one of three modes:

1. RECORD MODE: In this mode the SSW sends incoming packets to the sta-
ble buffer. The NSW does the same with the results of system calls invoked
by each thread of the application (every thread has its own queue). Every at-
tempt by a thread to send data to the client is stalled until all its system calls
are stable. Fortunately, it is not also necessary to wait for the stable buffer
to acknowledge packets. FT-TCP leverages the semantics of TCP, by which
data must be retained at the sender until acknowledged. By acknowledging
to the client only data that is stable, we have the client store segments until
they are stable. The primary is in RECORD MODE until either it fails or the
connection terminates normally.

2. PLAYBACK MODE: In the hot-backup scheme, all backup replicas start
in PLAYBACK MODE; in the cold-backup scheme, a backup replica enters
PLAYBACK MODE after detecting a failure of the primary. Upon entering
this mode, the backup spawns its own copy of the server process and pro-
vides that process with data that it retrieves from the stable buffer. When
a thread in the backup makes a system call, a corresponding record of the
primary’s system call is removed from the stable buffer and is used to ensure
deterministic execution. When the primary process accepts a connection, the
backup’s SSW spoofs connection establishment on behalf of the client by
simulating an internal three-way handshake. When the backup process re-
quests data from the network, the data are removed from the corresponding
segment in the stable buffer and returned with the call. When the backup pro-
cess wishes to send data, the segments are quietly discarded. This mode ends
either when the connection terminates normally or when a backup replica is
promoted (i.e. switched into the RECORD MODE).

3. STANDBY MODE: Cold backups are in STANDBY MODE until either they
are promoted or until they are reconfigured to be a hot backup. If there
was no need to recover a connection during its lifetime, the replica leaves
STANDBY MODE when the client connection is shut down.

As noted above, only the primary replica may be in RECORD MODE at any
given time. This is to ensure that all communication with a client occurs through a
single connection endpoint. Any number of backup replicas may be in either one of
the other two modes. Details of each of these modes will be covered in Section 3.

The state diagram for the operational modes of FT-TCP replicas is shown in
Figure 2.
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Figure 2: FT-TCP replica modes for a connection.

2.3.1 Overview of FT-TCP Operation

During normal operation, the primary is in RECORD MODE. In the cold-backup
scheme, all other replicas are in STANDBY MODE. In the hot-backup scheme, the
replicas are in PLAYBACK MODE 1.

A failure of the primary is detected by the backup(s) based on the absence of
communication by the primary for an interval of time (see Section 6 for additional
details on failure detection and recovery durations.) Once the failure is detected,
the backup initiates failover by changing the operational mode of the replica. The
details of this transition differ for the hot-backup and the cold-backup schemes.

In the hot-backup scheme, the replica continues in PLAYBACK MODE for a very
short interval to consume any TCP segments or system call results remaining in the
stable buffer2. It then may be promoted to primary and enter RECORD MODE. One
of the key advantages of the hot backup approach is its short failover time, as it only
requires bringing the backup process up to date by processing a few segments and
system calls that the backup may have received before the primary failed before
the backup can be promoted.

In the cold-backup scheme, the operational mode of the replica proceeds
through two transitions. First, the replica transitions from STANDBY to PLAYBACK

MODE, allowing it to roll forward by consuming segments and system call re-
sults from the stable buffer until it is in a state consistent with the client. Once
this is achieved, the replica is promoted to primary and transitions to the RECORD

MODE. Naturally, rolling the process forward takes time, hence recovery with a
cold backup can be considerably slower than with a hot backup. Recovery from

1It is also possible to envision a hybrid solution, wherein backups start in STANDBY MODE and
then, based on elapsed time, network conditions, or some other observable metric, become hot and
switch into PLAYBACK MODE. This might allow the system to avoid the increased overhead of
hot backups in the case of short-lived connections, but still achieve faster failover for long-lived
connections. We have not explored this idea in practice.

2The stable buffer is typically empty by this point, as a replica in PLAYBACK MODE would have
consumed any remaining buffers during the duration of the failure detection timeout interval.
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a cold backup can be sped up significantly by adding a checkpointing mechanism
to FT-TCP; however, checkpointing the state of the server application is outside
of the scope of this paper—henceforth, we assume that a restarting server has the
application restart from its initial state.

During failover, it is important to prevent connection timeouts and the appear-
ance of a non-responsive server. In FT-TCP, a separate component keeps client
connections alive by responding to their segments with an ACK packet that has a
window of size zero. This gives clients the illusion that the server is still viable,
but also does not allow them to send any more data while the service is recovering.

Different techniques can be used to reconcile the difference in IP addresses
of the primary host and the promoted backup. In our implementation, the SSW
switches the backup’s real IP address for the old primary’s address on all outgo-
ing packets and performs the reverse on all the incoming client packets, effectively
functioning as a network address translation (NAT) unit [35]. To gain access to
all incoming packets (that are destined to a different MAC address), we place the
network interface card in promiscuous mode. When using a switched hub for con-
necting replicas to the client, the hub must be configured to direct client packets to
all replicas. If some other technique for permanently changing the IP address of the
entire host is used (e.g. by using a Gratuitous ARP [7]), then using promiscuous
mode may not be necessary.

3 Protocol

In this section we describe the operation of FT-TCP in detail. After introducing
the state maintained by FT-TCP, we discuss how the NSW and the SSW enter and
exit each of the three modes of operation (RECORD, PLAYBACK, and STANDBY)
and describe the responsibilities of the wraps for each of these modes. Finally, we
cover additional material including sources of nondeterminism and the details of
inter-replica communication.

3.1 Variables

FT-TCP maintains the following variables for each ongoing connection:

• idelta-seq and odelta-seq: The deltas (for instream and outstream, respec-
tively) between the sequence numbers in use by the client and the sequence
numbers apparent to the TCP stack at the server. These variables allow
the SSW to map sequence numbers between the server’s TCP layer and the
client’s TCP layer for the instream and outstream, respectively.
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• stable-seq: The smallest sequence number of the instream that has not yet
been acknowledged by the stable buffer to the SSW. Note that this can never
be larger (ignoring the 32 bit wrap) than the largest sequence number that
the server has received from the client. During recovery, this value can be
computed from the data stored in the stable buffer.

• server-seq: The highest sequence number of the outstream acknowledged
by the client and seen by the SSW. This value also can be computed during
recovery from the data stored in the stable buffer.

FT-TCP maintains the following variables for each thread of execution of the
server. (A single-threaded server has a single instance of each of these variables.)

• syscall-id: The count of the number of system calls made by the thread. This
variable is also used as the ID of the next system call.

• unstable-syscalls: The count of the number of system calls whose records
have not been acknowledged by the stable buffer. If unstable-syscalls is
zero, then the NSW knows that the stable buffer has recorded the results of
all prior system calls.

3.2 Entering and Exiting Record Mode

The primary replica enters RECORD MODE as soon as the server process is initial-
ized. Before a single instruction in the process is allowed to execute, the NSW sets
syscall-id and unstable-syscalls to zero for the original thread.

During the TCP three-way handshake, the SSW records to the stable buffer
both the client’s and the server’s initial sequence numbers. The SSW delays
server’s TCP segment that acknowledges the client’s SYN packet until acknowl-
edgment of these sequence numbers from the stable buffer. Without this precaution,
an early failure might admit the possibility of a client being aware of an established
connection, while a recovering replica might not know the connection exists. Fi-
nally, the SSW completes the initialization of FT-TCP by setting idelta-seq and
odelta-seq to zero and stable-seq to the client’s initial sequence number plus one.

The primary replica leaves RECORD MODE either when the client connection
is terminated properly or when the replica itself fails. In the latter case, one of
the backups is chosen to handle the connection. As that backup completes the
failover procedure, it switches from the PLAYBACK into the RECORD MODE. Vari-
ables syscall-id, unstable-syscalls, and stable-seq are unaffected by this transition,
whereas the two sequence number deltas are updated as described in Section 3.9 .
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3.3 SSW in Record Mode

In RECORD MODE, the SSW responds to three different events: receiving a packet
from the network on its way to the TCP stack, receiving a segment from the TCP
stack on its way to the network, and receiving an acknowledgment from the stable
buffer. The first two events are illustrated in Figure 3, where each arrow represents
a packet containing a TCP segment and seq, ack, and win indicate the values of
the sequence number, acknowledgment number, and window size for the segment,
respectively.

When the SSW receives a packet from the network, it immediately forwards a
copy of the packet to the stable buffer. The SSW then subtracts odelta-seq from
the ACK number and subtracts idelta-seq from the sequence number. These op-
erations change the payload, and so the SSW recomputes the TCP checksum on
the segment. Recomputing the checksum is not expensive: it can be done quickly
given the checksum of the unchanged segment, the old sequence number, and the
new sequence number [28]. The SSW then passes the result to the server TCP/IP
stack. This may be done without waiting for an acknowledgment from the stable
buffer indicating that the packet has been logged.

When the SSW receives an acknowledgment from the stable buffer for a packet,
it updates stable-seq if necessary. Specifically, if the stable buffer acknowledgment
is for a packet that carries client data with sequence numbers from sn through sn+`,
then stable-seq is set to the larger of the current value of stable-seq and sn + `+1.

When the SSW receives an outgoing segment from the TCP layer, it re-maps
the sequence number by adding odelta-seq to it. The SSW then overwrites the
ACK number with stable-seq. Since stable-seq never exceeds an ACK number
generated by the TCP layer, modifying the ACK number may result in an effective
reduction of the window size advertised by the server. For example, suppose that
the segment from the TCP layer has an ACK number asn and an advertised window
of w. This means that the server’s TCP layer has sufficient buffering available to
hold client data up through sequence number asn + w − 1. By setting the ACK
number to stable-seq the SSW effectively reduces the buffering for client data by
asn − stable-seq. To compensate, the SSW increases the advertised window by
asn − stable-seq. Again, after modifying the TCP segment, the TCP checksum
must be recomputed. Finally, the TCP segment is passed to the network.

3.4 NSW in Record Mode

When in RECORD MODE, the NSW is activated on every system call and also when
a system call acknowledgment from the stable buffer arrives.

The NSW oversees the execution of each system call. Upon completion, the
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Figure 3: Record mode operation of the SSW.

NSW sends the system call record (which includes syscall-id, system call param-
eters, and its result) to the stable buffer and increments both unstable-syscalls and
syscall-id. Note that the message content of a network read is not sent because the
stable buffer already has this data in the form of client’s packets that are logged
by the SSW. Furthermore, message content of network writes is not sent because
backup processes will generate an identical message on their own. A short hash of
the message may be sent to the backup for comparison, as a safety check against
divergence of execution paths.

When the NSW receives an acknowledgment from the stable buffer, it decre-
ments unstable-syscalls. And, for each write or send3, the NSW blocks in an
output commit stall until unstable-syscalls is zero.

3.5 Entering Playback Mode

A replica enters PLAYBACK MODE either at connection establishment time (for a
hot backup) or as part of the failover procedure (of a cold backup). Initially, FT-
TCP sets stable-seq and server-seq to the values obtained from the stable buffer,
and unstable-syscalls is set to zero.

Then, FT-TCP simulates a connection establishment for the TCP stack. This is
accomplished through the SSW, which can both create and respond to the segments
required for the TCP three-way handshake. First, the SSW creates a SYN packet
that appears to be from the client (with appropriate MAC and IP address), and has
an initial sequence number of stable-seq. The TCP stack responds with a segment
acknowledging the client SYN and with a proposed initial sequence number for
the server. This segment is captured by the SSW, which sets odelta-seq to the
difference between the original initial sequence number logged to the stable buffer
and the initial sequence number from the current outgoing segment. Discarding
the outgoing segment, the SSW finally creates an acknowledgment that appears to
be from the client and passes it to the TCP stack.

3These are system calls that affect the environment.
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When the three-way handshake simulation is complete, the TCP stack has what
it believes is an open connection in which client data is expected to begin at se-
quence number stable-seq + 1.

3.6 SSW in Playback Mode

We made a design decision to feed network data to the backup replica directly
through the NSW (unlike the system of Koch et al. [19] that injects the packets into
the TCP stack). So, on the backup, both the SSW and the TCP stack are idle during
normal operation—they consider the connection open, but there are no bytes going
through. This is efficient, since the data takes the shortest path to its destination:
from the stable buffer directly into the application’s buffer. This also prevents the
TCP stack from estimating the packet round trip time incorrectly, which can lead
to poor performance upon failover. Of course, since the TCP stack is not involved,
the task of reassembling packets is left to the stable buffer. Fortunately, that’s the
only task of TCP that we must handle—flow control and retransmission are done
by the TCP on the primary.

3.7 NSW in Playback Mode

When a backup process in PLAYBACK MODE makes a system call, the NSW uses
the corresponding system call record from the primary to do one of several things:

• For calls that query the operating system environment—such as getuid, get-
pid, and gettimeofday—the backup immediately returns the result that the
primary got;

• For a send, the backup queues the data passed by the server application in
a send buffer and returns the result that the primary got. The send buffer is
needed on the backup so it can resend to the client any outstream data that
got lost in the crash. The send buffer is cleaned when client acknowledg-
ments arrive on the backup. For debugging, the messages returned by the
backup and the primary (or their checksums) can be compared to flag any
inconsistencies;

• For a recv, the backup waits until all necessary data packets are in the stable
buffer, copies the same number of bytes as the primary got, and returns the
same result;

• For the two calls that return socket status—select and poll—the backup re-
turns the value from the primary (if a timeout was specified, then the backup
invocation will block until the same call on the primary times out);
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• For all others, the backup executes the call and compares its result to what
the primary got. Any inconsistencies are flagged as a potential divergence in
execution paths.

The first category of calls takes care of simple sources of nondeterminism such
as different clock values on the replicas and different attributes of their process
environments. Special treatment of send and recv allows us to pass client data
efficiently from the stable buffer directly into the application, without having to
feed the packets through the backup’s TCP. This means that as far as the backup’s
TCP is concerned, the connection to the client during this period is idle.

If an invocation on the primary returned an error code, it is important to return
the same code on the backup. In particular, if a non-blocking read returns an error
indicating the lack of any data to return, it is important to return the same error on
the backup even if packets with new data have arrived by the time this system call
is invoked on the backup.

The last category of system calls can be quite complex in both their semantics
and side-effects. We consider these general cases of nondeterminism outside the
scope of this paper. We allow these system calls to execute on the backup check-
ing for the same results as the calls on the primary. These system calls returned
identical results for the three applications that we considered.

3.8 Nondeterminism During Playback

For replicas to execute deterministically during playback, it is not sufficient to
ensure identical input. Error conditions and asynchronous events must be delivered
consistently, too.

Our experience with real applications shows that capturing and replaying the
value of system calls that returned the status of a socket—namely select and poll—
is necessary for ensuring deterministic execution. For example, suppose a poll on
the primary indicates that there is data to be read; the primary then would proceed
and read the data. But if at the same point poll at the backup shows no data, the
backup may yield the CPU to a different thread and follow a different execution
path. Therefore, poll must return the same result on both replicas.

Two additional important cases exist. First, just like poll, a non-blocking read
can indicate the lack of data in a socket buffer (by returning -1 with errno set
to EAGAIN). We use the term readlength to refer to a result returned by a read.
Readlengths from the primary are forwarded to the backup to ensure deterministic
execution. Although we found the readlength of -1 to be a source of nondeter-
minism, returning the same data in chunks of different size (e.g. chunks of size
4 and 5 bytes on the primary and 2, 3, and 4 bytes on the backup) did not result

14



in divergent execution for the applications that we tried. We conjecture that most
applications do not depend on the particular number of bytes returned by any given
read, probably because they use a protocol based on messages of predetermined
size.

A second important source of nondeterminism arises when several processes
compete for a file lock, as there is no guarantee that they will acquire it in the
same order on the primary and on the backup. Hence there may be processes for
which lock acquisition will succeed on the primary, but will fail on the backup
or vice versa. For some applications—the ones written to retry lock acquisitions
indefinitely—this may not pose any problems. But for others, all lock requests
must return the same results on both replicas. Therefore, we intercept the system
call implementing file locking operations (fcntl on Linux) and enforce identical
order of acquisitions on the replicas.

Thread scheduling and signal handling are both commonly identified as sources
of nondeterminism, too. Neither proved to be problematic for the three services
that we evaluated. This is not to say that a service like Samba does not use signals
(in fact, we verified through code inspection that it does), but signals do not occur
often enough to warrant our immediate attention. Building a commercial fault-
tolerant TCP system would require capturing and replaying signals at the appro-
priate times in the execution path [8, 31] and implementing efficient deterministic
thread scheduling [5, 22].

Finally, we had to address the nondeterminism introduced when a server gen-
erates a random value and then uses it in communications with the client. The
next section shows how we modified the server applications to ensure that identi-
cal random values are generated on the primary and on the backup. To avoid source
code modifications, we are considering using a protocol-specific “hook” to capture
randomly generated values and make the appropriate substitutions.

3.9 Exiting Playback Mode

When a connection terminates normally, the backup replicas in PLAYBACK MODE

eventually shut down—but if a failure is detected, the backup transitions from
PLAYBACK MODE to RECORD MODE. In that situation, the backup first executes
all the system calls that the primary has executed prior to failing. It then sets the
delta values appropriately:

idelta-seq = stable-seq− isnc − 1 (1)

odelta-seq = server-seq− isns − 1 (2)

This has the effect of translating instream and outstream sequence numbers be-
tween the view of the client and the view of the newly promoted primary. This
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completes the failover and the replica moves into RECORD MODE.

3.10 Stable Buffer Protocol

In our implementation both wraps on the primary communicate with the stable
buffer using a TCP connection. On the backup, the wraps use kernel-level function
calls. The stable buffer protocol is based on pairs of request-reply messages that
contain a header that is optionally followed by data. The header includes message
type, several IDs for quickly finding the appropriate queue for that message, and
some metadata such as sequence numbers and system call IDs. In our implemen-
tation the request header is 62 bytes long and the reply header is 39 bytes long.

Requests write-packet, write-isn and write-syscall are issued by the wraps in
RECORD MODE to place information in the stable buffer. The buffer replies with
simple acknowledgments, in the form of a stable sequence number or a latest
syscall-id. Requests read-data and read-syscall are issued in PLAYBACK MODE

and cause the stable buffer to reply with the corresponding information and option-
ally remove those records. With only one backup we remove the records imme-
diately, but with multiple backups buffer content must persist in the stable buffer
until all backups have had a chance to read it. Note that since client data are stored
in the stable buffer as packets, to service a read-data request the stable buffer may
have to remove contents of multiple packets and fuse them together into a message
of the same size as was returned on the primary.

Each write-packet reply from the stable buffer is essentially a sequence num-
ber: it is the lowest sequence number of client bytes that are not logged. Thus,
the sequence of acknowledgments is monotonically increasing (ignoring the 32 bit
wrap). This means that the last acknowledgment in any batch contained in a seg-
ment is the only one that needs to be processed by the SSW, since it dominates
the other acknowledgments. We have found, though, that the overhead incurred by
having the SSW process each acknowledgment is small enough that it is not worth
taking advantage of this observation.

Every time a message is received from the primary, the stable buffer resets
the failure detection timer. If no requests arrive for a prescribed time interval, the
stable buffer sends a heartbeat probe that the primary is expected to acknowledge.
If the primary does not acknowledge the heartbeat probe within a certain time, the
backup assumes that the primary has failed and initiates failover.

3.11 Ack Strategies

As described in Section 3.3, the SSW ensures that a client does not discard instream
data before the SSW knows they are logged in the stable buffer. This is done by
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setting the ack field of outstream segments to stable-seq. If all outstream segments
are thus modified and sent to the client but no additional segments are generated by
the SSW, the connection may be unable to reach the maximum possible throughput.
To make this concrete, imagine a segment arriving at the SSW from the client
carrying bytes ending with sequence number sn. The SSW sends this data to the
stable buffer, but by the time the server’s TCP layer generates an ack for them, the
stable buffer has not yet acknowledged them, so stable-seq is still less than sn + 1.
Even if the acknowledgment from the stable buffer arrives immediately thereafter,
the client’s TCP layer will not become aware of it until the server’s TCP layer sends
a subsequent segment.

Such a situation inhibits the client’s ability to measure the round trip time
(RTT), which is an important parameter for TCP. A worse situation occurs, how-
ever, when the outstream traffic is low and the instream traffic is blocked because of
windowing restrictions. For example, consider what happens when slow start [18]
is in effect. Suppose that the client sends two segments S1 and S2 when the client’s
congestion window is two segments in size and is less than the server’s advertised
window. If the acks to these packets are generated before either are logged in the
stable buffer, then the client will block with a filled congestion window, and the
server will block starved for data. This situation will persist until the client’s TCP
layer retransmits S1 and S2.

We experimented with three simple ack strategies that avoid such problems. All
three suppress outstream segments that carry no data and do not ack additional data,
since such segments do not affect the connection dynamics. The three strategies
differ in when they generate new outstream acks in response to acknowledgments
from the stable buffer:

• Lazy: The SSW generates an ack for a segment S if S was the most recent
segment that the server’s TCP has acked.

• Delayed: The SSW generates an ack for a segment S if the server’s TCP
layer has acked S at any point in the past.

• Eager: The SSW generates an ack for every acknowledgment it receives
from the stable buffer (unless that packet has already been acknowledged to
the client), thus potentially acking every instream packet.

Lazy generates the smallest number of acks necessary to keep the connection
active without retransmissions. This count of acks can be smaller than the number
of acks sent from the TCP stack down to the SSW—multiple outgoing acks may
get merged into one actual ack since the SSW only considers the latest one. De-
layed is equivalent to delaying the outgoing ack segments until stable-seq catches
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up to their ack sequence number, so it can be thought of as regular TCP behavior
with some additional latency on every outgoing ack packet. Finally, Eager acks ev-
ery packet, generating considerably more packets than the TCP layer. In contrast,
typical TCP implementations ack at most every other packet. The motivation be-
hind Eager is that these additional acks can keep the client’s TCP more up-to-date
about socket buffer space available on the server. We show in Section 5 how these
strategies perform in practice.

3.12 Nagle’s Algorithm

Since the exact timing of acknowledgment packets from the stable buffer may af-
fect the dynamics of the client connection, a relevant question is whether Nagle’s
algorithm [21] should be disabled for the inter-replica TCP connection. When Na-
gle’s algorithm is disabled, every message is placed in the segment and sent as
soon as possible, allowing for the fastest possible update of stable-seq. With Nagle
enabled (which is the default TCP setting) small messages from the application are
delayed slightly in hope of batching them together with other small messages and
reducing the total number of segments on the wire. While this conserves band-
width, it also increases latency. We explore this tradeoff in Section 5.3.

4 Applications

We selected three popular TCP-based servers to study the difficulties of replicat-
ing real applications and to measure the performance overhead imposed by FT-
TCP: the Darwin Streaming Server (DSS) that serves multimedia content, the
Samba server that implements Microsoft’s file and printer sharing protocols, and
the Apache Web server. Besides their popularity, these applications were attractive
to us because they tend to have long-lived connections (which are worth recov-
ering) and their source code is publicly available. Each one handles connections
differently, though—Samba spawns a separate process for each client connection,
Apache assigns an incoming connection to an already existing idle process, and
DSS handles all connections asynchronously, in a single thread—so three common
types of network programming practices are represented by these applications. We
discuss such structural details below in the sections dedicated to the individual
servers.

Another application that we used for studying the impact of FT-TCP on
throughput is ttcp—a simple bandwidth testing tool. All data in ttcp are fabri-
cated by the sender and thrown away by the receiver, allowing the connection to
fully saturate the link. In our experimental setup (described in Section 5), ttcp
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can obtain over 99% of maximum theoretical throughput of TCP/IP on Ethernet
configurations up to a gigabit per second.

4.1 Darwin Streaming Server

DSS is currently available under an open source software license from Apple Com-
puter, Inc. Although it is generally considered better to stream multimedia over
datagram-based protocols like UDP, streaming is frequently done over TCP to
bypass firewalls. In both cases the stream is encapsulated inside the Real-Time
Streaming Protocol (RTSP).

DSS runs as one process with at least three main threads: one for all network
communication, one for servicing requests, and one auxiliary thread. The applica-
tion is event-driven and all I/O is done asynchronously. For each viewing session
there are two connections: one for controlling the stream and one for the stream
itself. The streams live at least as long as they are being played, and the connection
state indicates the position in the stream. Hence, if a failure causes the connection
to fail, then the client needs to re-open the connection and re-position the playback
point in the stream. Our viewer has application-level recovery: it remembers where
the playback of the stream left off and repositions for the client when the “play”
button is pressed again.

DSS is an interesting service to consider because it uses multiple connections
per client and also because it is a multi-threaded application. It has some attributes
that make it less challenging. In particular, it only reads files, making the output
commit problem only an issue with the playback of the stream. Additionally, it
generates a large amount of output data in response to small requests, thus reducing
the load on the buffering mechanism.

We ran an unmodified version of DSS on top of FT-TCP to explore its sources
of nondeterminism. The NSW detected a nondeterministic divergence between the
primary and backup almost immediately. This nondeterminism occurred when the
server generated a random Session ID that was sent to the client in response to a
SETUP request of the RTSP protocol. The ID is used for all subsequent commu-
nication in a session. If the primary and the backup generate different IDs, then
all client requests will be rejected because of an invalid ID. To generate the same
IDs while keeping the protocol cryptographically secure, we retained the calls to a
pseudo-random number generator, but made sure that the values used to compute
the seed are derived from the system calls whose return values we insert on the
backup, such as gettimeofday. After we changed the source code of DSS to make
sure identical IDs were generated, we saw no further execution deviations between
the primary and backup servers.
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4.2 Samba Server

The Samba server implements Microsoft’s family of protocols for sharing files and
printers, such as the Server Message Block (SMB) and the newer Common Internet
File System (CIFS) [17, 39]. These protocols were originally designed to run over
LAN transport protocols, but these days they use TCP/IP almost exclusively.

On the Linux platform, a new Samba process is spawned by the inetd dæmon
for each incoming connection. Connections typically last a long time—for as long
as a remote file system is mounted on the client. Clients may mask connection
failures if they occur during idle periods (no outstanding requests) by reconnecting
to the service upon the next user command. If, however, a connection is broken
during an active transfer, the transaction is abandoned and an error is raised.

We found two sources of nondeterminism in Samba. The first one has to
do with the challenge-response authentication scheme used for access control, in
which the server generates a random challenge string that the client encrypts with
a password and passes back to the server for comparison. If the random challenges
generated by the replicas are different, then the response from the client will only
succeed in authentication on the primary, while the backup will reject that connec-
tion. The second source of nondeterminism, similar in principle to the Session ID
in DSS, was generation of a file handle for each file opened by a client, who then
uses it in all file operations. As with DSS, we changed the code to make sure that
the same challenges and the same file handles were generated on the primary and
on the backup, taking care to preserve the cryptographic integrity of the protocol.
After that we saw no further execution deviations in any of our experiments.

4.3 Apache Web Server

Apache has been the most popular Web server on the Internet for many years now.
It communicates with clients using a relatively simple HTTP 1.1 protocol, but it
is a non-trivial application to replicate as it relies on many modules to extend its
functionality.

The server uses one master thread for receiving all network requests, which are
handed off to one of the idle service processes that Apache maintains. If the number
of service processes is insufficient to handle the connection load, the master spawns
additional ones. Apache is similar to Samba in that separate connections may be
handled by different entities (processes in Samba and threads in Apache), but it is
different in that Apache’s threads are not spawned by an external dæmon and they
typically handle many connections throughout their lifetime.

In many cases, the ability to fail over Web server connections may not be
worth the potential overhead and the hardware requirements of FT-TCP. Web server
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connections are typically short and their failure rarely leads to a serious service
disruption—in the worst case the user may have to press the “reload” button on
their browser to resolve a problem. We were primarily interested in Apache for
helping us understand how FT-TCP performs when many connections are created
and torn down simultaneously.

5 Overhead

We studied the overhead of FT-TCP with a prototype written as a kernel module
for version 2.4.20 of Linux. No kernel re-compilation is needed to use it—the
module loads on-the-fly into a standard kernel. The SSW relies on netfilter hooks
for intercepting packets and the NSW uses several symbols exported by the kernel
(sys-call-table among them) for intercepting system calls and TCP-related func-
tions. The FT-TCP module on the primary communicates with the backup module
through a kernel-level socket, so no additional context switches are introduced.

For all experiments we used 1.4-GHz Pentium III workstations with a 512-KB
L2 cache and 1 GB of RAM. Each machine had two on-board Intel Pro 1000 XT
1-Gbps Ethernet adapters that we could configure to run at speeds of 10, 100 and
1000 Mbps. By varying speeds and wiring configurations we experimented with
six different network setups:

• 10 Shared: All machines share a half-duplex 10-Mbps broadcast Ethernet
segment (implemented by a single hub). In this case the client connection
competes for bandwidth with the inter-replica connection. Since the instream
data is going over the same medium both on its way from client to server as
well as from server to stable buffer, we cannot expect to obtain more than
50% of the link’s maximum bandwidth once saturation is reached.

• 10-10, 10-100, 100-100, and 100-1000: In these experimental setups, the
first number specifies the bandwidth of the client-primary link and the second
number specifies the bandwidth of the primary-backup link. Physically, all
machines were interconnected through a 100-Mbps switch via one of their
interfaces, and the two replicas employed a direction connection between
their second interfaces. Changing speeds of the two adapters on the primary
machine allowed us to experiment with these four setups. All links were
full-duplex.

• 1000-1000: Although we did not have a 1-Gbps switch for connecting the
client to all replicas, we created this setup by connecting one interface on the
primary directly to an interface on the client, and the other to an interface
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on the backup. No failover is possible with this configuration since there is
no redundant path between the client and the backup, but it is still useful for
testing throughput.

These variations cover most setups common in commercial fault-tolerant clus-
ter systems which are the most likely setting for FT-TCP deployment. In particular,
since it is common for clients to encounter a bandwidth bottleneck on the link to
the service, we consider asymmetric setups such as 10-100 and 100-1000 the most
realistic for evaluating FT-TCP performance from the point of view of a typical
client.

We used packet traces from the tcpdump utility collected on the client machine
for calculating throughput and latency. To determine the aggregate throughput of
an incoming (client-to-server) data flow, we recorded the time when acknowledg-
ment packets were received by the client and the total number of bytes acknowl-
edged at that point. For an outgoing data flow, the sending time of server-bound
acknowledgments was recorded. In both cases the slope of a least squares fit for
this data provides an accurate representation of the steady-state throughput of a
connection. We also measured the average packet latency as the mean time from
when a data-carrying packet departed from the client and when an acknowledg-
ment for that packet arrived back at the client. Acknowledgments frequently ack
several packets at once, so this measure should not be taken as the minimum pos-
sible round-trip time of a TCP packet. Since our traces are obtained on the client,
the latency of client-bound packets in an outgoing stream cannot be measured, but
neither are they particularly interesting.

In the tables that follow we present both throughput and latency as mean values
from 15 identical experiments. Included are error bounds for a 95% confidence in-
terval. Each experiment consisted of a 4-MB transfer, except the 1000-1000 setup
where 40 MB were sent. We used default TCP buffer sizes (8 KB) for all setups
except 1000-1000 where the buffer was increased to 64 KB (more on this in Sec-
tion 5.2). We first gathered the results of a non-wrapped TCP stack at the primary
machine with the same client and server applications as used for the experimental
runs. Those results are labeled throughout as Clean and we commonly use percent-
age of Clean throughput obtained by FT-TCP connections as the key measure of
overhead. Finally, the tables show the average number of TCP acknowledgments
sent back to the sender during a connection.

5.1 Throughput of ttcp

Table 1 shows how incoming ttcp transfer behaves on the 10 Shared network setup
under three ack strategies. Delayed and Eager strategies are similar in performance
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Error % of Average Error Ack
Throughput Bound Clean Latency Bound Count

(KB/s) (KB/s) (ms) (ms)

Clean 1084.29 5.99 100.00 7.84 0.02 1439
Lazy 171.44 1.28 15.81 49.60 0.11 503

Delayed 463.17 4.30 42.72 19.03 0.06 1440
Eager 464.55 10.97 42.84 18.34 0.09 2869

Table 1: 10 Shared Performance of ttcp in (with Nagle).

with slightly larger throughput variance in throughputs of the latter. Both obtain
43% of Clean throughput, which is not too far from the maximum of 50% that they
can obtain under this setup. Lazy only gets 16% and tcpdump traces show why.

With Clean, the server application is at least as fast as the client. Good band-
width utilization is achieved through a well-formed interleaving of the instream
data packets within the advertised window with the sequence of acks returning to
the client. To illustrate by example, say that the advertised window has a capacity
of six packets. At some point in the steady state of the transfer, the client sends
segments x, x + 1, and x + 2. At this point in the interleaving, the server sends an
ack for the bytes in x− 1, which allows the client to send packets x + 3, x + 4, and
x + 5, and then receives the ack for the bytes in x + 2. This pattern then repeats.
Under this interleaving, the client is rarely stalled awaiting an ack from the server
to allow more data to be sent.

Under FT-TCP, the Lazy ack strategy exhibits a pattern in which the client
sends all the data possible in the window and then stalls for an acknowledgment.
This ack is only sent after the ack field has been acknowledged by the stable buffer.
This pattern of behavior is indicative of a fast sender and a slow receiver (see
p. 279 of [36]). Both Delayed and Eager avoid this performance-draining pattern
by acking more promptly.

Lazy retains this poor performance under 10-10 setup, shown in Table 2, since
it was never limited by the shared link in the first place. On the other hand, Delayed
and Eager take advantage of the additional bandwidth of the inter-replica link and
throughput increases to 86%. We will explain in Section 5.2 why it is difficult to
do much better than this under such a symmetric setup where the bandwidths of
client-primary and primary-backup links are identical. Note that in both Tables 1
and 2 the acknowledgment count allows us to relate ack strategies to regular TCP:
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Error % of Average Error Ack
Throughput Bound Clean Latency Bound Count

(KB/s) (KB/s) (ms) (ms)

Clean 1158.26 0.14 100.00 7.37 0.00 1438
Lazy 171.11 0.02 14.77 49.88 0.02 482

Delayed 993.45 0.47 85.77 8.60 0.00 1439
Eager 995.51 0.38 85.95 8.58 0.01 2874

Table 2: 10-10 Performance of ttcp in (with Nagle).

Error % of Average Error Ack
Throughput Bound Clean Latency Bound Count

(KB/s) (KB/s) (ms) (ms)

Clean 1158.26 0.14 100.00 7.37 0.00 1438
Lazy 1158.20 0.18 99.99 7.37 0.00 1438

Delayed 1158.19 0.18 99.99 7.37 0.00 1439
Eager 1158.34 0.12 100.01 7.37 0.00 1439

Table 3: 10-100 Performance of ttcp in (with Nagle).

Delayed sends the same number of acks as TCP, Lazy sends about a third less and
Eager sends about twice as many. Clean throughput is slightly higher under 10-
10 because the link runs in full-duplex mode instead of the half-duplex mode of
Table 1.

When the speed of the inter-replica link is increased to 100 Mbps FT-TCP
seems to no longer impose any significant overhead on the connection, as shown
in Table 3. All three ack strategies are able to keep up with Clean TCP throughput
(Eager even seems to exceed it, but this is not statistically significant), with sim-
ilar variance, identical average packet latencies, and essentially the same number
of acks. This last point deserves a note, as we saw in the previous tables that the
three ack strategies can generate significantly different number of acks. When the
acknowledgment from the stable buffer arrives before the server’s TCP stack at-
tempts to send that same ack, the strategies behave the same: Lazy does not merge
acks and Eager does not generate extra ones because they would be redundant.
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Shared 10 100 1000

Nagle ———Nagle Nagle ———Nagle Nagle ———Nagle Nagle ———Nagle

Delayed 43 38 86 77 100 100
10

Eager 43 38 86 77 100 100
Delayed 80 77 100 100

100
Eager 85 77 100 100
Delayed 36 57

1000
Eager 56 60

Table 4: Relative throughput of ttcp in.

Incoming ttcp throughput results for all six network setups are summarized in
Table 4. The table shows only the rounded-off percentages of Clean throughput
(i.e. values from the third column of the preceding tables). The rows determine
the speed along with the ack strategy on the client-server link, while the columns
determine the speed and the use of Nagle algorithm on the primary-backup link.
For example, the 10-100 results may be found in the first row, labeled “10,” and the
third column, labeled “100.” Each cell contains four measurements, allowing us to
identify the best parameters for each network setup. The highest numbers in each
cell are set in bold. Some cells are empty either because the setup is impossible
(e.g. there is no shared 100-Mbps Ethernet) or it doesn’t make much sense (e.g.
client link faster than the inter-replica link).

It is evident from the table that asymmetric setups (10-100 and 100-1000) im-
pose practically no overhead on ttcp, whereas symmetric setups suffer a penalty
of 15–40%. To be fair, 40% loss took place under an extremely challenging setup
where a single client was able to saturate a 1-Gbps link with incoming data—not a
common situation in most organizations. In fact, we expect the real-world network
configurations to be highly asymmetric.

These results also indicate that it is best to keep Nagle’s algorithm on, since
turning it off either lowers throughput or doesn’t make any difference (one excep-
tion to that is in the 1000-1000 numbers, to be discussed shortly). However, we
defer discussion of Nagle’s algorithm until Section 5.3 that describes more realistic
applications.

We additionally performed outgoing transfers with ttcp and found that FT-
TCP did not add any significant overhead under any network setup. That is not
surprising since outgoing data is not sent to the stable buffer and can be sent out
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immediately. As described in Section 3.4, write may block waiting for system
calls to become stable, but since here data is written in big chunks, this overhead is
negligible.

5.2 1-Gbps experiments

The goal of this section is to explain the performance under the 1000-1000 network
setup and to give intuition for why all symmetric setups are bound to suffer some
throughput loss.

To saturate a 1-Gbps link we increased the Ethernet frame size from the stan-
dard 1500 bytes to 9000 (these are frequently called jumbo frames in the literature).
We also configured ttcp to use the largest possible TCP buffer size of 64 KB on the
receiver. Larger buffers can be used together with a window scale option of TCP,
but our implementation did not support that option. With this buffer size and the
maximum segment size of 8960, which is 9000 minus 40 to account for the TCP
and IP headers, our TCP stack advertises a window of 53720 which is large enough
for exactly 6 packets.

For Clean runs, the client never sends more than 4 packets before it gets an ack
from the server, so the pipe is always full of data and the sender never blocks wait-
ing for the receiver. With FT-TCP under 1000-1000 (as well as other symmetric
setups) every packet travels twice as far—first from the client to the primary, then
at the same speed from the primary to the backup—so we can expect the round-
trip latency to double. As the latency doubles, so does the bandwidth-delay product
(i.e. the size of the pipe) and it now takes twice as many packets to keep the con-
nection going. So instead of the 4 outstanding packets we saw under Clean, we
may expect up to 8 with FT-TCP. The problem is that the maximum our window
allows is 6, so occasionally the client has to stop sending and wait for an ack.

This is, indeed, what we see in the tcpdump traces. Luckily, there is some
overlap between actions of TCP and FT-TCP. The minimum acknowledgment la-
tency for a TCP packet on a 1-Gbps link is about 372 µsec of which, in theory, only
72 µsec are spent by the packet on the wire. When we measured the average time
it took for our stable buffer to acknowledge a packet, we obtained a very similar
value of 378 µsec. Because server’s TCP is processing the packet in parallel with
the copy of the packet traveling to the stable buffer, the overall packet latency seen
by the client does not quite double with FT-TCP—it is 686 µsec. In particular, this
means that the time it takes to make a copy of a packet (about 25 µsec) is absorbed
by the overlap.
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Shared 10 100 1000
Nagle ———Nagle Nagle ———Nagle Nagle ———Nagle Nagle ———Nagle

Delayed 21 38 55 75 61 100
10

Eager 34 37 55 75 61 100
Delayed 15 78 15 95

100
Eager 15 79 15 95
Delayed 1 38

1000
Eager 2 63

Table 5: Relative throughput of Samba in.

5.3 Samba throughput

The first real application that we studied under FT-TCP was Samba. Our band-
width experiments consisted of logging into the server and performing a single
put or get operation to transfer a 4-MB (or, on a 1-Gbps link, a 40-MB) file to or
from the server. The throughput percentages of incoming transfer experiments are
summarized in Table 5.

Just like ttcp, Samba runs best on asymmetric setups. It reaches 100% with 10-
100 and 95% with 100-1000. We were initially surprised because the application is
much more complex (i.e. has many more system calls to log). Throughput loss with
symmetric setups ranges from 25% to 37%. The latter number, derived from the
bottom right cell, is comparable to the 40% loss suffered by ttcp under 1000-1000
setup. In both cases, Eager with Nagle disabled seems to yield the best throughput.

The most pronounced difference between ttcp and Samba is in the impact of
Nagle’s algorithm on throughput. Recall that for ttcp Nagle worked best, but with
Samba it consistently leads to lower throughputs and, in fact, produces increasingly
disastrous results as the speed of the client link increases—around 15% with a
100-Mbps and as little as 2% on a 1-Gbps link! By examination of tcpdump
traces, we determined that the root of the problem is that Samba sends data in
batches (of about 64 KB), with an acknowledgment expected after every batch.
Naturally, the speed of the transfer is affected by how promptly the server can send
an acknowledgment. Because Nagle’s algorithm can slightly delay responses from
the stable buffer, this can, in turn, enlarge the time it takes for the Samba server to
send an acknowledgment, since all send calls must wait for the preceding system
calls to become stable. Batch after batch, these delays add up.

The performance of outgoing Samba transfers is summarized in Table 6. Be-
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Shared 10 100 1000
Nagle ———Nagle Nagle ———Nagle Nagle ———Nagle Nagle ———Nagle

Delayed 56 80 42 98 42 99
10

Eager 56 80 42 98 43 98
Delayed 7 93 7 96

100
Eager 8 92 8 94
Delayed 3 71

1000
Eager 3 71

Table 6: Relative throughput of Samba out

cause Samba uses many send calls all of which can block in an output commit
stall, no network setup reaches 100% of Clean throughput, but many come close.
In fact, most setups are only short by 4% or less and only 1000-1000 loses 29%.
This is quite a contrast to ttcp, where no overhead was measured on the outgoing
transfers because it sends data in just several sends. As with the incoming trans-
fers, it is better to turn off Nagle’s algorithm. Finally, note that there isn’t much
difference between Delayed and Eager, which is to be expected since ack strategies
only matter when there is incoming data to be acknowledged.

5.4 Logging cost

In this section we compare hot and cold backups in terms of throughput, as well as
consider the cost of intercepting system calls.

As was discussed in Sections 3.3 and 3.4, in RECORD MODE both the NSW and
the SSW buffer incoming packets and system call results. The difference between
hot and cold backups is that in the former case the buffered records are consumed
promptly, while in the latter they keep accumulating in the stable buffer. For some
applications, buffering all system call results may be unnecessary, so it is worth-
while to consider the cost of buffering just the packets and readlengths (results
returned by read calls do matter for most applications). So, in Figure 4 we show
average throughput of an incoming Samba transfer on a 100-100 setup with hot
and cold replicas. Both are divided further into three modes:

• Packets, Readlengths and System calls are recorded in the stable buffer.
This is the full-fledged mode of FT-TCP operation that allows replication of
arbitrary programs. It is also the most costly one. All throughput numbers
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Figure 4: Throughput of Samba in under different levels logging.

in previous sections were obtained in this mode.

• Packets and Readlengths are recorded, but not system calls—allowing us
to determine their contribution to overhead. If an application can run deter-
ministically without interception of system calls then this mode is sufficient
for correct operation.

• Immediate: Packets and readlengths are recorded, but FT-TCP does not
perform output commit stalls. In this mode recovery cannot be guaranteed
and it is only useful for the purposes of evaluating the minimal overhead
imposed by FT-TCP’s interception and buffering mechanisms.

The first observation to make from this bar chart is that the values in each pair of
hot and cold measurements are very close. As expected, cold sometimes performs
slightly better, but not by much. This implies that the active backup process is not
significantly affecting the operation of the stable buffer. Neither is the buffering
affecting the speed of the process, because we did not see any increases in the
average size of the system call queue (if the backup process was lagging behind
the primary then its queue of system calls would keep growing).

As for overhead, roughly a quarter of it (5% of Clean performance in this case)
is introduced by our interception mechanism, as shown by difference between the
Immediate and Clean values. Then, about half of the overhead (10% of Clean)
is from buffering of packets and readlengths. And, finally, the remaining quarter
is because of system call interception and buffering. This indicates that buffering
systems calls is not the major cause of overhead in applications like Samba. As
expected, all these types of overhead are much less pronounced for simpler appli-
cations like ttcp.
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Latency (ms) Samba Request TCP Packet Buffering

min. avg. max. min. avg. max. min. avg. max.

Clean 2.11 2.18 2.97 0.24 0.70 1.92
Cold 5.39 5.82 6.99 0.71 2.05 4.25 0.05 0.52 1.62
Hot 5.80 6.18 7.33 0.75 2.23 4.33 0.04 0.55 3.69

Table 7: Breakdown of latencies for short Samba requests

5.5 DSS and Apache

We also looked at performance of DSS and Apache but found no significant over-
head imposed by FT-TCP. For one thing, both applications primarily send data,
so the load on the stable buffer is small. Additionally, DSS throttles its outgoing
streams to some relatively small bandwidth appropriate for streaming multimedia
content, so FT-TCP had no problems keeping up with it. Unlike SMB, responses
in HTTP do not require intermittent acknowledgments, so the sequence of send
calls in Apache is never interrupted by other system calls.

5.6 Latency

For interactive services—such as a terminal connection—responsiveness of the
server may be more important than its maximum bandwidth. To see how FT-TCP
affects latency characteristics of services, we executed short requests to a Samba
server under the 10-100 setup and analyzed client-side packet traces for these con-
nections. Each instance of the experiment (a directory listing request) consisted of
an 87-byte request, a 464-byte reply with the directory contents, a 39-byte server
status request and a corresponding 49-byte reply. We defined Samba request la-
tency as the time interval between the client sending a 87-byte request and the
client receiving the 49-byte reply. We also measured the average TCP packet la-
tency of all incoming data-carrying packets as the time between the moment the
packet left the client and the moment the packet acknowledging that data arrived
at the client. Finally, for the runs done under FT-TCP, we measured the internal
buffering latency, which is the time elapsed between a buffering request and a reply
as measured on the primary.

Results of these latency experiments are shown in Table 7 with minimum,
mean, and maximum values. Also, the same mean values along with error bars
for the 95% confidence interval are graphed in Figure 5. There were 30 Samba
request latency measurements, 68 packet latency measurements, and 230 buffering
latency measurements (which include both packet and system call requests).
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Figure 5: Breakdown of latencies for short Samba requests.

As the second column of the table illustrates, the average Samba request la-
tency almost tripled—from 2.2 ms to 5.8 ms under cold and 6.2 ms under hot—
when FT-TCP was added. Those values are shown as Xs on the graph, which also
reveals that the difference between cold and hot is statistically significant, since
their error bars do not overlap. Although FT-TCP increases the latency over 280%
in this experiment, the values are still low enough that from the human perspective
responsiveness is not affected at all.

The increase in Samba request latency can be attributed to the increase in TCP
packet latency. Average packet latency, shown in column five, also roughly tripled
from 0.7 ms to around 2.2 ms because of interception and buffering overhead. The
packet latency is not directly comparable with the Samba request latency because
a Samba request consists of two incoming and two outgoing data packets along
with some acks, but there is a clear correlation between them. While such an
increase may be significant in some circumstances, the latencies are comparable
to connection latencies experienced across a WAN. For transfers that saturated the
link and used mostly full-sized packets (1460 data bytes)—such as ttcp in and
Samba in—the latency of packets for both Clean TCP and FT-TCP connections on
the 10-100 configuration is around 7.4 ms, as was shown in Table 3.

As Figure 5 shows, there is no statistically-significant difference between hot
and cold average packet latencies, indicated with diamonds. The same is true for
the FT-TCP buffering latencies, shown as crosses in the figure and as numbers in
the last three columns of the table. Because the distribution of values in all of these
experiments is not perfectly normal (three different types of packets produced a tri-
modal distribution), the averages and their confidence levels are not very useful for
understanding these data. Still, by noting that both minimal and maximal values of
hot are higher than for cold, we can conclude that the increased buffering latency
is the cause of the higher Samba request latency under hot replication.

The minimal and maximal buffering latencies are also useful measures of the
range of the round-trip times for messages between our replicas. The RTT is useful
for determining reasonable values for the failure detection mechanism described in
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Figure 6: Behavior of FT-TCP for a long (2.5 sec) promotion latency with no
snooping.

the next section.

6 Failure and Recovery

Here we describe how we could minimize failover time, where the failover time
is the length of the period during which a client’s data stream is stalled. For FT-
TCP the failover time is affected by the time it takes to (a) detect the failure (the
failure detection latency), (b) bring the backup into the state where it can take
over the connection (the promotion latency), and (c) restart the flow of data on
the connection (the retransmission gap, more carefully defined below). In our
earlier study [3] we measured the failover time for a cold backup—approximately
20 ms per megabyte of buffered data—and that time is dominated by the promotion
latency. We found recovery of a hot backup considerably more efficient than that.
Hot backup failover time is dominated by the failure detection latency and the
retransmission gap. Consider the following example.

Figure 6 shows a portion of one connection by plotting sequence number off-
sets (relative to the beginning of the connection) of the data packets sent by the
client or acknowledgment packets sent by the server. About 1 sec into the experi-
ment the primary host is forced to fail and acknowledgments from the server cease,
which soon causes the client to also stop transmission of data when its TCP win-
dow fills up. About 300 ms later the client’s retransmission timer goes off and it
attempts to resend the packet that follows the last acknowledged packet (shown
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as a dip in the line). For the purposes of analysis we forced the recovery to take
2.5 seconds and so retransmissions proceed unacknowledged at exponentially in-
creasing intervals for three more rounds. By the fourth round, 4.8 seconds into the
experiment, the backup is ready, so the retransmission succeeds and the flow of
data resumes.

The actual time when the backup recovered is indicated by an ACK packet
visible around 3.6 seconds. Unfortunately, that ACK does not succeed in reviving
the flow of data because it acknowledges an older packet that client TCP already
considers acknowledged. The length of this retransmission gap between the actual
time of recovery and the time when the flow of data revives depends on exactly
where in the retransmission cycle recovery happens to take place: it can be very
short if the next retransmission follows soon after recovery, but it can also be very
long (up to 64 seconds of maximum TCP retransmission period) if the service
recovers right after a retransmission. It is impossible to avoid this gap if packets
arriving immediately after the crash are lost. In fact, a hot backup that can detect a
failure and recover well under the 200 ms will inevitably have to wait that long for
the first retransmission to restart the flow of data. This effectively places a 200 ms
lower limit—for both hot and cold replication—on the guaranteed failover time.

The only way to eliminate the retransmission gap is to ensure that the backup
receives all of the packets sent by the client. That can be done by switching the
backup’s network card into promiscuous mode at the beginning of the connection
and snooping packets off the network shared by the client and the replicas. When
the backup decides that the primary failed it can process the snooped packets, ac-
knowledge them and thereby restart the flow of data immediately, as shown in
Figure 7. With this method the failover time is limited only by the failure detec-
tion delay. From Table 7 we can see that the average RTT for messages between
the replicas is about 0.5 ms (although it can be much less for shorter messages).
So a reasonable value for a failure detection timeout might be 1–2 ms. Unfortu-
nately, FT-TCP implementation relies on Linux kernel timers that have granularity
of 10 ms, making that the minimal failure-detection latency and consequently the
minimal failover time for our hot backup.

Although snooping helps ensure the fastest possible failover time, looking at
every packet on a busy network may place too heavy a load on the backup machine.
Therefore it is worthwhile to consider a third approach, in which the network card
operates normally during failure-free operation, but goes into promiscuous mode
whenever a failure is detected. We call this reactive snooping; the first two schemes
are no snooping and permanent snooping, respectively. Reactive snooping makes
sense when the failure detection latency is shorter than the TCP retransmission
delay (200 ms), but the promotion latency is longer. Starting to snoop before the
first retransmission allows the backup to collect all packets lost in the crash and
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Figure 7: Behavior of FT-TCP for a short (100 ms) promotion latency with perma-
nent snooping.

restart the data flow as soon as the promotion is complete, as, for example, happens
around 3.4 seconds in Figure 8. There is no point in reactive snooping with a
backup that is promoted quickly since it will get the first retransmissions itself.
With short promotion latency the question is whether to snoop permanently or not
at all, and that is a trade-off between good failure-free performance (which would
be affected by snooping) and short failover time.

The idea of using snooping to improve reliability at a low cost has been around
for a long time [26]. Dolev et al. [12] have used it for primary-backup replication
of a network file system service. Two fault-tolerant TCP systems [20, 24] also rely
on permanent snooping to obtain client packets on the backup.

7 Related Work

One can classify solutions to the problem of connection failover according to the
level at which server failures are masked. With application-level recovery the fail-
ures are masked from the user by the client application that attempts to reestablish
broken connections. An FTP client that automatically restarts aborted transfers is
an example of such recovery. NFS and Samba clients also fall in this category
because in many cases they can recover from short disconnections transparently.
Since the client needs to be explicitly designed to support application-level recov-
ery, this approach is inapplicable to the already deployed applications.

Several projects have explored the idea of socket-level recovery, where the fail-
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Figure 8: Behavior of FT-TCP for a long (2.5 sec) promotion latency with perma-
nent or reactive snooping.

ure is hidden from the client by some lower layer that reestablishes connections
when necessary and provides a reliable socket to the application. One such sys-
tem [33] extends the TCP protocol with an option that enables migration of con-
nections from one host to another. Among other things, this allows the service
provider to ask the client TCP stack to migrate a failed connection to a backup.
Another system that can use migration to tolerate failures is MTCP by Sultan et
al. [37], which builds upon earlier work [34, 38] from that team. This system is
fine-grained in that it can migrate individual connections (not just whole processes)
but it does require the server application to participate in the transfer of application
state.

The system by Nasika et al. [23] enables transparent reconnection in Windows
NT without changing the TCP stack by wrapping the socket standard library rou-
tines. This system was designed to support process migration, but can be used
for fault tolerance as well. ST-TCP [24] applied a similar wrapping technique to
the standard C library on Linux to mask server failures. A Java-based socket-level
failover mechanism has been developed by Ekwall et al. [14]. “Rocks” is another
system based on wrapping [42], although their goals were to mask connection fail-
ures due to network problems rather than server crashes. This last paper describes
two approaches to connection recovery, one of which relies on the interception of
packets, just like our system. The main drawback of socket-level recovery is that
it requires upgrading some of the infrastructure—operating system, protocol stack,
or middleware—on the client host.
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Server-side recovery restricts the fault-tolerance logic to the server cluster. This
is the easiest solution to deploy: as soon as the servers are fault-tolerant, then
any client can benefit from greater reliability. Our first work [3] demonstrated the
feasibility of efficient server-side recovery and the followup [41] expanded on that
by evaluating our approach with two well-known replication techniques and for
two real-life applications.

Two similar systems were presented at the same conference as our second pa-
per: Failover TCP [19] also replicates the connection at the server end, but instead
of storing the incoming packets in a stable buffer and feeding the data directly to
the NSW it injects identical packets into the backup’s TCP layer. This implies that
for a purely deterministic application no NSW is necessary, which may carry some
performance advantages. ST-TCP [20], building on authors’ earlier work [24, 16],
is a special version of the TCP stack that enforces identical connection state, such
as isns, on the replicas and does not discard TCP buffer data on the primary until
both the client and the backup have acknowledged it. Notably, ST-TCP uses tap-
ping to obtain client packets on the backups during failure-free execution without
involvement of the primary. Such technique can be added to FT-TCP, as well. A
high-level overview of another system using a custom TCP stack and system call
interception was presented at LISA’02 [10].

Several projects studied connection failover of specific servers. A content-
aware distributor has been used to resubmit failed HTTP requests [40]. The authors
of [1, 2] have developed a protocol similar to ours that is specialized to HTTP re-
quest/reply pairs. In doing so, they are able to avoid the problem of server nonde-
terminism. [11] sketches out an architecture for a replicated NFS server, building
on earlier work [25] in this vein.

A more ambitious TCP server-side recovery approach is described in [30],
which proposes using several router-level redirectors scattered across the Internet
to fan out packets to several geographically-distributed replicas. While deploying
redirectors may be a costly endeavor, this system has the benefit of tolerating WAN
partitions in addition to failures that are local to the server.

Finally, there are several projects that have applied the state-machine approach
(also known as active replication) to TCP-based services. One work [6] that de-
scribes “triplicating” an Apache Web server is notable for developing an algo-
rithm (which was improved in [5]) for enforcing determinism in a multi-threaded
application—such an algorithm could be incorporated into FT-TCP. A similar
algorithm for mutli-threaded Java applications was presented in [22]. Another
work [29] describes an NFS server that can tolerate Byzantine failures. While
such systems can tolerate a larger class of failures, the voter mechanism used in
active replication imposes a significant performance penalty.
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8 Conclusion

We have described the architecture and performance of FT-TCP, a software that
wraps a standard TCP layer to mask server failures from unmodified clients. We
have implemented a prototype of FT-TCP, applied it to three real applications—
Samba, DSS, and Apache—and studied its impact for both failure-free execution
and for executions with failures. Our implementation does not change the TCP
stack and can be applied on-the-fly to a standard, running Linux kernel. We exper-
imented with several network setups and found that:

• Of the two kinds of setups that we tested—symmetric and asymmetric—the
system runs best on the latter one, where the link between the replicas is
faster than the link to the client. For a 10-100 setup we see no significant
overhead with any applications, for 100-1000 only Samba takes a perfor-
mance hit of 5% on an incoming transfer and a 4% hit on the outstream.

• For real applications, using the Eager ack strategy on the client connection
and turning off Nagle’s algorithm on the inter-replica connection yields the
best results. The Lazy ack strategy should be avoided.

• Performance of a hot backup with FT-TCP is practically indistinguishable
from performance of a cold backup (with no checkpoints). Given the short
recovery time of a warm backup, it is clearly the better choice.

• The largest contributor to FT-TCP overhead is the logging of packets, while
interception overhead and logging of system calls are secondary. This would
imply that avoiding interception and logging of system calls will gain little
in throughput.

• While it was necessary to modify the code of two existing services to have
them be recoverable using FT-TCP, the modifications were few. For both
services, the nondeterminism was explicitly introduced by the service: for
Samba, nonces and file handles are generated, and for DSS, session IDs are
generated. This experience implies that adding a protocol-specific “hook”
might be useful for making it easier to ensure that the backup makes the
same nondeterministic choices that the primary does.

• The failover time of FT-TCP can be made very short, but to do so requires the
backup to capture the data sent by the client immediately before the server
failed. This requires the backup to snoop on the incoming traffic by setting
its network interface to promiscuous mode. For servers that have a large
promotion latency, the backup need only start snooping when it suspects that
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the primary has failed, while if the promotion latency is under 200 ms then
the backup should start snooping as soon as it starts executing. The use
of snooping, however, only enhances performance, and is not required for
server-side recovery.
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