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Abstract 

 

Respiratory symptoms are present in workers processing a great variety of seafood, including the 

salmon, sardine, and king crab industry. We have previously shown that salmon trypsin is able to 

generate DNA-binding of NF-κB and induce secretion of IL-8 from airway epithelial cells by activating 

PAR-2. In this study we explore if purified trypsins from king crab (Paralithodes camtschaticus) and 

sardine (Sardinops melanostictus) is able to induce similar effects in cell stimulation assays. Different 

types of seafood seem to display dissimilar irritant/allergic potencies in human airways and molecular 

modelling has identified divergent positions in the king crab trypsin compared to salmon trypsin that 

might influence upon the binding to the N-terminal end of PAR-2, which is a prerequisite for proteolytic 

activation of the receptor. This knowledge inspired us to investigate if we could detect differences in 

intracellular signalling pathways coupled to IL-8 in human airway epithelial cells (A549) following 

stimulation with purified king crab and sardine trypsin. Both sardine and king crab trypsin induce 

secretion of IL-8 from human airway epithelial cells in a concentration-dependent manner and 

generate DNA-binding of activated NF-κB. By the use of siRNA we can conclude that these effects are 

both mediated, at lest partly, through the activation of PAR-2. The king crab and sardine trypsin 

displays individual differences in transformation of the NF-κB signal, as high enzyme concentrations of 

king crab trypsin yields high levels of NF-κB that does not translate into increased secretion of IL-8 in 

the cell stimulation assays. The contribution of MEK/ERK, p38 and NF-κB to the secretion of IL-8 

following stimulation with purified sardine and king crab trypsins were explored by the use of specific 

inhibitors. The results demonstrate that MEK/ERK and NF-κB are both required for purified sardine 

and king crab trypsin-induced secretion of IL-8 but via separate pathways. P38 was also found to 

contribute to the secretion of IL-8 by seemingly NF-kB-dependent processes.  

The data presented indicate that small structural variations in agonists may lead to differences in 

receptor activation and subsequent intracellular signalling. 

 

 



Introduction 

 

The amount of evidence that connects proteases to airway inflammation is increasing. Secretion of 

cytokines from the airway epithelium contributes to the inflammation response. Cell stimulation assays 

show that increased cytokine secretion can be induced by both endogenous proteases from the 

coagulation cascade and inflammatory cells (Schoenmakers et al., 2005; Wang et al., 2006), as well 

as exogenous proteases derived from mites (King et al., 1998; Tomee et al., 1998), molds (Borger et 

al., 1999; Kauffmann et al., 2000), bacteria (Lourbakos et al., 2001; Ubl et al., 2002; Kida et al., 2007; 

2008), cockroaches (Bhat et al., 2003), and fish (Larsen et al., 2008). In addition to their well known 

role in digestion of dietary proteins, blood coagulation, and homeostasis, recent studies have revealed 

a novel role of serine proteases as signalling molecules acting via protease-activated receptors 

(PARs) in innate and adaptive immunity (Shpacovitch et al., 2008). PARs have emerged as important 

receptors in airway inflammation and allergy, and PARs are expressed in all cell types that participate 

in  the inflammatory response of the lung; epithelial cells, mast cells, macrophages, infiltrated 

neutrophils and eosinophils, fibroblasts, smooth muscle cells, endothelial cells, lymphocytes, and 

neurons (Cocks et al., 1999; Ramachandran and Hollenberg, 2008).  

 

Receptor activation by proteases is achieved by proteolytic cleavage of the N-terminal sequence, 

which unmasks a new amino terminus that serves as a tethered ligand that binds to conserved regions 

in the body of the receptor, resulting in the initiation of signal transduction (Ossovskaya and Bunnett, 

2004). Exogenously applied synthetic peptides based on the sequence of the tethered ligand are also 

capable of activating PARs by directly binding to the body of the receptor. To date, four PARs have 

been cloned and characterized; PAR-1, PAR-2, PAR-3, and PAR-4. In contrast to the remaining PAR 

family members, PAR-2 is resistant to thrombin, but can prototypically be activated by trypsin (Nystedt 

et al., 1995; Böhm et al., 1996; Alm et al., 2000; Cottrell et al., 2004). A number of other proteases like 

mast cell tryptase (Molino et al., 1997), tissue factor (TF)-factor VIIa/factor Xa complex (Camerer et 

al., 2000), membrane-type serine protease-1 (MT-SP1) (Takeuchi et al., 2000), dust mite allergens 

Der P3 and Der P9 (Sun et al., 2001), mold allergen Pen c 13 (Chiu et al., 2007), and bacterial 

proteases like R-gingipain-B (Lourbakos et al., 2001), thermolysin (Ubl et al., 2002), serralysin (Kida et 

al., 2007), and LepA (large exoprotease) (Kida et al., 2008) are also shown to activate PAR-2 in 

experimental settings. Cleavage and activation of PAR-2 by different proteases might vary according 

to the type of cell that express the receptor, and is also shown to depend on the glycosylation status of 

the receptor (Compton et al., 2001; 2002).  

Recent data also indicate that the proteolytically-revealed tethered ligand sequence(s) and the mode 

of its presentation to the receptor (tethered vs. soluble) can confer biased signalling by PAR-2, its 

arrestin recruitment, and its internalization (Ramachandran et al., 2009). Thus, PAR-2 can signal to 

multiple pathways that are differentially triggered by distinct protease-revealed tethered ligands and 

soluble peptide agonists. For many other G-protein-coupled receptors, such as those for angiotensin 

II, dopamine, serotonin, and adrenergic ligands, differential signalling depending on the activating 

ligand (termed “agonist-biased signalling” or “functional selectivity”) are now accepted (Wei et al., 

2003; Galandrin et al., 2007; Kenakin, 2007; Urban et al., 2007). 



 

PAR-2, like other PARs, couples to Gq/11 protein that mediates downstream signal transduction upon 

receptor activation (Ossovskaya and Bunnett, 2004). Besides the activation of phospholipase Cβ, 

formation of inositol triphosphate and diacylglycerol, the receptor is shown to trigger the activation of 

other downstream signalling pathways including the mitogen-activated protein kinase (MAPK) 

cascades in distinct cell types. Additionally, studies indicate that maximal interleukin (IL)-8 protein 

expression requires activation of the MAP kinases ERK, JNK, and p38 as well as activation of the 

transcription factor NF-κB (Blackwell and Christman, 1997; Gon et al., 1998; Matsumoto et al., 1998; 

Hashimoto et al., 1999; Chen et al., 2000; Li et al., 2002). 

 

Inhalation of particulate matter may affect the airway epithelial cells and previous studies have shown 

that production workers in the seafood industry inhale aerosols containing biological material (Bang et 

al., 2005; Jeebhay et al., 2005). Reports by Bang and co-workers (2005) and Shiryaeva and co-

workers (2010) show an enhanced occurrence of respiratory symptoms from both the upper and lower 

parts of the airways in workers in the Norwegian salmon industry. The majority of the observed 

symptoms could not be explained by IgE-mediated processes as the prevalence of specific IgE was 

very low (none of the examined workers in the study conducted by Bang and co-workers (2005) had 

specific IgE towards salmon antigen, and only 2,2% of salmon workers displayed IgE towards salmon 

in the follow up study by Shiryaeva and co-workers (2010)). Recently, we have shown that purified 

salmon trypsin induces secretion of the inflammatory mediator IL-8 and generate DNA-binding of NF-

κB via activation of protease-activated receptor (PAR)-2 (Larsen et al., 2008). 

 

Allergic diseases associated with occupational exposure to crab are well characterized (Jeebhay et al., 

2001). Several studies report a high incident of occupational asthma in workers processing snow crab 

(Chionoecetes opilio) and king crab (Paralithodes camtschaticus), but other symptoms as rhinitis, 

conjunctivitis, and skin rash are also registered (Orford and Wilson, 1985; Cartier et al., 1986; Ortega 

et al., 2001; Howse et al., 2006; Gautrin et al., 2009). Although a majority of the literature point to an 

IgE-mediated mechanism for the development of respiratory disease among crab processing workers, 

there are reports that fail to show a clear correlation between crab specific IgE and new incidents of 

asthma-like and bronchitis cases (Ortega et al., 2001). Workers processing saltwater bony fish 

(sardine (Sardinops sagax) and anchovy (Engraulis capensis)) also appear to be at increased risk for 

developing work-related upper and lower allergic respiratory outcomes (Jeebhay et al., 2008). Like 

many of the studies conducted in the fish industry, the prevalence of work-related symptoms in the 

Jeebhay-study was higher than diagnosed occupational disease due to fish and allergic sensitization 

was reported only for a minority. 

 

Knowing that purified salmon trypsin is able to induce secretion of IL-8 from airway epithelial cells by 

activating PAR-2 we wished to explore if purified trypsins from king crab (Paralithodes camtschaticus) 

and sardine (Sardinops melanostictus) could induce similar effects in cell stimulation assays.  

Additionally, different types of seafood seem to display dissimilar allergenic/irritant potencies and 



higher prevalence of occupational allergic outcomes/airway symptoms is associated with exposure to 

aerosols from arthropods (crustaceans) than with pisces (bony fish) and molluscs (Jeebhay et al., 

2001). Based on this knowledge, we wished to investigate if we could detect differences in intracellular 

signalling pathways coupled to IL-8 in human airway epithelial cells following stimulation with king crab 

and sardine trypsins.  

 



Matherials and methods 

 

Materials 

Selective PAR-2 peptide agonist, Ser-Leu-Ile-Gly-Arg-Leu-amide (SLIGRL-NH2), the inactive control 

peptide, Leu-Arg-Gly-Ile-Leu-Ser-amide (LRGILS-NH2), Na-Benzoyl-D,L-arginine 4-nitroanilide 

hydrochloride (DL-BAPNA), and DMSO (D-2650) were purchased from Sigma-Aldrich, MO, USA. P38 

inhibitor (SB203580) was purchased from Alexis Biochemicals, Lausen, Switzerland, while MEK 

inhibitor (U0126) was purchased from Promega, WI, USA and NF-κB inhibitor (BAY 11-7082) was 

purchased from Calbiochem, Merck4Biosciences, Darmstadt, Germany. Purified king crab trypsin was 

a kind gift from Dr. Galina N. Rudenskaya (Moscow State University), and the purified sardine trypsin 

was kindly supplemented by Dr. Hideki Kishimura (Hokkaido University). 

 

Cell culture 

A549/NF-κB-luc cells, a human pulmonary epithelial cell line stable transfected with a NF-κB binding 

luciferase reporter construct (Panomics P/N LR0051), were purchased from Panomics (no. RC0002), 

CA, USA, and were cultured in Dulbecco’s minimum essential medium/Ham’s F12 medium (1:1) 

(Gibco, NY, USA) supplemented with 10% fetal calf serum (Gibco), 2 mM L-glutamine (Invitrogen), 50 

IU/ml penicillin,  50 µg/ml streptomycin (Invitrogen), and 100 µg/ml hygromycin B (Sigma-Aldrich). 

The cells were passed without the use of trypsin by using a non-enzymatic cell dissociation solution 

(Sigma-Aldrich). 

 

Preparation of crude enzyme 

The preparation of sardine and king crab trypsin was conducted by our collaborators as described by 

Kishimura et al. 2006, Rudenskaya et al., 2000, and Kislitsyn et al., 2003. 

 

Fast protein liquid chromatography (FPLC)  

In order to standardize the purification processes, both trypsins were purified by fast protein liquid 

chromatography. All purification steps were carried out at 0-4°C. The freeze dried trypsins were re-

suspended in 25 mM TrisHCl, pH: 7.5 and applied to a 1,5 ml Benzamidine-Sepharose 6B column 

equilibrated with 25 mM TrisHCl pH: 7.5, 10 mM CaCl2, 500 mM NaCl. Bound trypsin were eluted 

using 120 mM Benzamidine and collected in 1,5 ml fractions. All fractions with enzymatic activity 

measured by the serine protease assay (DL-BAPNA) were pooled and dialysed against 25 mM 

TrisHCl pH: 7.5, 10 mM CaCl2 at 4°C over night using 10K Slide-A-Lyzer dialysis cassettes from 

Pierce, IL, USA. The following day the benzamidine purified trypsins were applied to a 1 ml Resource 

Q ion exchange column equilibrated with 25 mM TrisHCl pH: 7.5, 10 mM CaCl2 and the enzymes were 

eluted with 1 M NaCl using a 7,5% gradient for 10 fractions (total of 5 ml) followed by a linear gradient 

rising to 100% in 20 fractions (total of 10 ml). Fractions corresponding to the observed peaks were 

tested for enzymatic activity and pooled before dialysis as described previously. 

 

 



Protease activity determination 

The enzymatic activity of the purified trypsins was determined by a serine protease assay where the 

hydrolyzation of a chromogenic substrate (DL-BAPNA) was measured spectrophotochemically by the 

increase in absorbance at 405 nm at room temperature for the length of 10 min. The substrate was 

diluted in substrate buffer (25 mM Tris/HCl, 10 mM CaCl2, 2% (v/v) DMSO, pH 8.1) and used at a final 

concentration of 0,5 mM. The activity is measured in a total volume of 250 ul (10 ul of enzyme and 240 

ul of diluted substrate) in clear, 96 well trays with flat bottom (BD Falcon, NJ, USA). The results were 

expressed as units (U)/ml (Outzen et al., 1996), and one unit of activity was defined as 1 µmol 

substrate hydrolyzed per minute using an extinction coefficient of 8800 M
-1

cm
-1

 (Erlanger et al., 1961). 

The calculations were made using the following formula: 

  
Unit: dA  x               1                                   x Vfinal  
         dt         ( ε x optical path lenght) x 10

6
       

  
dA/dt = rate of absorbance change  
ε  = extinction coefficient  
 
 
Cell stimulation assays 

A549/NF-κB-luc cells (2 x 10
5
 cells/well) were seeded in 6 well plates (9,6 cm

2
) and were cultured until 

80-90% confluence was reached, before the cells were starved for serum over night. Cells were 

exposed for different concentrations of purified trypsins, PAR-2 peptide agonist, or inactive control 

peptide for the appropriate time. In the inhibition assays the cells were pre-incubated with 10 µM 

(SB203580, U0126) or 100 µM (BAY 11-7082) of inhibitors for 1 hour at 37 C prior to the execution of 

the assay. Heat-inactivation was conducted by incubating the trypsins at 95°C for 15 min. Culture 

supernatants were harvested and kept at -20°C until the level of IL-8 was measured. 

 

Measurement of IL-8 secretion 

The amount of secreted IL-8 in the supernatant was determined by using an ELISA (enzyme-linked 

immunosorbent assay)-kit from BD Biosciences, NJ, USA, according to the manufacturer’s protocol. 

The absorbance was read using an iEMS Multiscan EX (Thermo Labsystems). IL-8 production was 

expressed as pg/ml supernatant. 

 

Small interfering RNA 

A mix of three pre-designed siRNAs (Ambion, USA, catalogue nr 16704, ID nr 1960, 1876, and 1783) 

for the PAR-2 gene was used. The sequences of the siRNA primers were as follows: nr 1960; forward 

primer 5’-GGAGUUACAGUUGAAACAGTT-3’, and reverse primer 5’-CUGUUUCAACUGUAACUCC- 

TT-3’, nr 1876; forward primer 5’-GGAAGAAGCCUUAUUGGUATT-3’, and reverse primer 5’-UACCA- 

AUAAGGCUUCUUCCTT-3’, and nr 1783; forward primer 5’-GGAACCAAUAGAUCCUCUATT-3’, and 

reverse primer 5’-UAGAGGAUCUAUUGGUUCCTT-3’. The Silencer negative control nr 1 (Ambion, 

catalogue nr 4611) was used as a control siRNA. The primer sequences of the negative control were 

as follows: forward primer 5’-AGUACUGCUUACGAUACGGTT-3’, and reverse primer 5’-CCGUAUC- 

GUAAGCAGUACUTT-3’. A549/NF-κB-luc cells (2 x 10
5
 cells/well) were seeded in 6 well plates (9,6 



cm
2
) and were transfected at 70-80% confluency using Lipofectamine 2000 (Invitrogen)-assisted 

transfection according to the manufacturer’s protocol. 

 

Reporter gene assay 

A549/NF-κB-luc cells (2 x 10
5
 cells/well) were seeded in 6 well plates (9,6 cm

2
) and were cultured until 

80-90% confluence was reached, before the cells were starved for serum over night. Cells were 

exposed to different concentrations of purified trypsins, PAR-2 peptide agonist, or inactive control 

peptide for the appropriate time as in the cell stimulation assays. The cells were lysed using lysis 

buffer (Applied Biosystems, CA, USA) and the luciferase activity was determined on a Luminoscan 

Ascent (Thermo Electron Corporation, Vantaa, Finland) using the Dual-Light Luciferase Reporter gene 

Assay System (Applied Biosystems, CA, USA) according to the manufacturer’s instructions. The 

luciferase activity was normalized with respect to protein concentration in the lysates by the use of a 

DC Protein Assay (Bio-Rad, CA, USA). 

 

Statistical analysis 

Group data were compared using Student’s t test for independent samples (SPSS). Differences were 

considered significant for p values of < 0.05. 

 



Results 

 

Purified king crab trypsin induces secretion of IL-8 in A549/NF-κB-luc cells in a different concentration 

range than fish trypsins 

 

We have previously shown that salmon trypsin can induce secretion of the pro-inflammatory cytokine 

IL-8 in human airway epithelial cells (Larsen et al., 2008). In order to determine whether trypsin from 

other species used in the seafood industry can enhance the secretion of IL-8 in human airway 

epithelial cells, A549/NF-κB-luc cells were stimulated with different concentrations of purified king crab 

and sardine trypsin for 6 h. The results depicted in figure 1a show that purified sardine trypsin as well 

as purified king crab trypsin caused an increase in the secretion of IL-8 in a concentration-dependent 

manner, but the concentration range that lead to IL-8 secretion were different for the two trypsins. 

Maximum response was seen with 0,2 mU of sardine trypsin with a 18 fold increase compared to 

untreated cells, while the maximum peak for king crab trypsin was reached already at 0,02 mU with a 

9 fold increase above untreated cells.  

With regards to the sardine trypsin, the level of IL-8 decreased with high enzyme concentrations until 

barely detectable in the concentrations that also lead to detachment of the cells (1 mU – 2 mU). The 

king crab trypsin behaved somewhat different as we observed that the level of IL-8 fell already at lower 

concentrations than the ones causing changed cell morphology (0,2 mU – 0,4 mU). The maximum IL-8 

secreted was also lower for the purified king crab trypsin compared to purified sardine trypsin (9-fold 

vs 18-fold) and purified salmon trypsin (20-fold) (Larsen et al., 2008). 

Heat-inactivation completely abolished the IL-8 response to both trypsins (Fig. 1a, supplementary 

data). This confirms that the observed IL-8 secretion was dependent on the proteolytic activity of both 

enzymes. 

 

 

Purified sardine and king crab trypsin stimulates generation of NF-κB, but in a different pattern 

compared to subsequent IL-8 secretion 

 

Our previous research has shown that purified salmon trypsin stimulates DNA-binding of activated NF-

κB (Larsen et al., 2008). Based on this knowledge we wanted to investigate if purified sardine and king 

crab trypsin behaved similarly. The results shown in figure 1b demonstrate that both trypsins are 

capable of inducing NF-κB-driven luciferase activity in the A549/NF-κB-luc cells. Maximum response 

was seen with 0,4 mU for both enzymes with a 9,2-fold increase compared to untreated cells for the 

purified sardine trypsin and a 13-fold increase for purified king crab trypsin. In contrast to the IL-8 

response, the maximum NF-κB generated was higher for the purified king crab trypsin compared to 

the purified sardine trypsin. We also registered that the higher concentrations of purified king crab 

trypsin were able to stimulate NF-κB activation without subsequent generation of IL-8. 

 



Secretion of IL-8 and activation of NF-κB in A549/NF-κB-luc cells by purified sardine and king crab 

trypsins are, at least partly, due to activation of PAR-2 

 

Based on the divergence in the NF-κB and IL-8 dose-response results, we wanted to investigate if the 

observed IL-8 secretion and NF-κB response was due to activation of PAR-2 with respect to both 

trypsins as previously shown for salmon trypsin (Larsen et al., 2008). We used specific siRNA to knock 

down the expression of endogenous PAR-2 in A549/NF-κB-luc cells. A mixture of three siRNAs 

targeting the PAR-2 gene is previously shown to reduce the expression of endogenous PAR-2 

transcripts at 24 hours post-transfection in A549 cells with 91% compared to non-transfected cells 

using real-time PCR (Larsen et al., 2008). Stimulation of mock-transfected (receiving negative control) 

and PAR-2 knockdown cells with PAR-2 agonist peptide, purified sardine trypsin and purified king crab 

trypsin showed a reduced level of IL-8 secretion in the cells receiving siRNA targeting PAR-2 

compared to the negative control (Fig 2). The amount IL-8 secreted was reduced with 52% in the 

PAR-2 agonist peptide stimulated cells, 0%, 17%, and 34% (0,02 mU, 0,2 mU, and 0,4 mU) in the 

cells stimulated with purified sardine trypsin, and 29% and 31% (0,02 mU and 0,2 mU) in the cells 

stimulated with purified king crab trypsin. The highest concentration of purified king crab trypsin (0,4 

mU) yielded no IL-8 secretion.  

We also observed a reduced level of NF-κB-driven luciferase activity in the cells receiving siRNA 

targeting PAR-2 compared to the negative control (Fig 3). The amount NF-κB generated was reduced 

with 57% in the PAR-2 agonist peptide stimulated cells, 0%, 24%, and 38% (0,02 mU, 0,2 mU, and 0,4 

mU) in the sardine trypsin stimulated cells, and with 32%, 31%, and 49% (0,02 mU, 0,2 mU, and 0,4 

mU) in the cells stimulated with purified king crab trypsin. 

 

 

IL-8 secretion by purified sardine and king crab trypsin stimulated A549/NF-κB-luc cells is dependent 

on p38 and MEK activity, as well as NF-κB generation, but probably through separate pathways  

 

Research indicates that maximal IL-8 protein expression requires activation of NF-κB as well as 

activation of the MAP kinases ERK, JNK, and p38 (Li et al., 2002). In order to investigate the 

contribution of MEK/ERK , p38 and NF-κB to the observed secretion of IL-8 and by this to address the 

observed lack of IL-8 secretion following the generous NF-κB induction in cells stimulated by higher 

concentrations of purified king crab trypsin, we examined the effects of U0126 (MEK inhibitor), 

SB202190 (p38 inhibitor), and BAY 11-7082 (NF-κB inhibitor) in PAR-2 agonist peptide, sardine and 

king crab stimulated A549/NF-κB-luc cells. 

The use of 10 µM U0126 reduced the secretion of IL-8 after stimulation with the PAR-2 agonist 

peptide SLIGRL-NH2 (25 µM) with 86%, while the NF-κB level was almost unchanged with a slight 

decrease of 9% (Fig. 4). Application of U0126 also reduced the secreted IL-8 level after stimulation 

with purified sardine trypsin with 81% and 86% (0,2 mU and 0,4 mU), while the NF-κB levels showed a 

slight increase with 7% and 9%. U10126 reduced the secretion of IL-8 following king crab trypsin 



stimulation with 65% (0,02 mU) (stimulation with 0,4 mU king crab trypsin yields no detectable IL-8), 

while the NF-κB levels increased with 25% and 16% (0,02 mU and 0,4 mU).  

Application of the p38 inhibitor SB202190 (10 µM) reduced the secreted IL-8 level with 52% from the 

PAR-2 agonist peptide stimulated cells, while the NF-κB level was reduced with 46% (Fig. 5). 

SB202190 attenuated the secretion of IL-8 from purified sardine trypsin stimulated cells with 45% and 

35% (0,2 mU and 0,4 mU). The levels of NF-κB were reduced with 49%, and 44% respectively. In the 

king crab stimulated cells the SB202190 reduced the secretion of IL-8 with 40% (0,02 mU) (stimulation 

with 0,4 mU king crab trypsin yields no detectable IL-8). The levels of NF-κB were reduced with 53% 

(0,02 mU and 0,4 mU). 

The use of a NF-κB inhibitor (BAY 11-7082, 100 µM) reduced the secretion of IL-8 from the PAR-2 

peptide stimulated cells with 99%, the purified sardine trypsin stimulated cells with 98% and 99% (0,2 

mU and 0,4 mU), and from the purified king crab stimulated cells with 98% (0,02 mU) (stimulation with 

0,4 mU king crab trypsin yields no detectable IL-8). BAY 11-7082 completely abolished the generation 

of NF-κB at a concentration of 100 uM (Fig. 2, supplementary data). 

 



Discussion 

 

Although a precise function for PAR-2 in the airways is currently uncertain, several lines of evidence 

support a role for PAR-2 in the progression of inflammatory diseases (Vergnolle, 2009). Inhalation of 

biological particles containing exogenous proteases may produce inflammatory responses in the 

airways due to activation of PAR-2 mediated reactions. PAR-2 activation on lung epithelial cells is 

responsible for the release of numerous mediators of inflammation such as IL-8, IL-6, prostaglandin 

E2, matrix-metalloprotease-9 (MMP-9), and granulocyte macrophage-colony stimulating factor (GM-

CSF) (Vliagoftis et al., 2000, 2001; Asokananthan et al., 2002). In this study, we have shown that 

purified sardine and king crab trypsins are able to induce secretion of the pro-inflammatory cytokine IL-

8 from cultured human airway epithelial cells (A549) as previously shown for purified salmon trypsin 

(Larsen et al.,  2008). The secretion of IL-8 occurred in a concentration-dependent manner with 

regards to both trypsins tested, but the optimal concentration of enzyme producing maximal secretion 

of IL-8 differed. Purified sardine trypsin was most potent at 0,2 mU while the purified king crab trypsin 

stimulated maximal IL-8 secretion already at 0,02 mU, yielding no secretion of IL-8 in the 0,2 mU 

concentration. Additionally, the two trypsins differed with respect to maximal levels of IL-8 induced. 

The sardine trypsin was most effective generating twice as much IL-8 secreted in the maximal 

concentration compared to king crab trypsin. This resulted in diverging dose-response curves for the 

two enzymes. As the enzymes were equally effective when measured by the serine protease assay, 

the dose-response results were somewhat unexpected. 

 

We have previously shown that knockdown of PAR-2 expression by specific siRNA almost completely 

abolishes the dose-dependent release of IL-8 caused by stimulation of A549 cells with different 

concentrations of purified salmon trypsin, demonstrating that salmon trypsin induce expression of IL-8 

via activation of PAR-2 (Larsen et al., 2008). By incorporating the selective PAR-2 agonist peptide to 

the cell stimulation assays we show that activation of PAR-2 make a major contribution to the 

observed secretion of IL-8. The use of siRNA targeting PAR-2 significantly reduced the secretion of IL-

8 from PAR-2 knockdown cells with 52% following stimulation with PAR-2 agonist peptide, SLIGRL-

NH2. The secretion of IL-8 was reduced with 34% at the most in the sardine and king crab trypsin 

stimulated PAR-2 knockdown cells. Although not significant, the results indicate that both trypsins are 

capable of activating PAR-2. The increased residual level compared to untreated cells may be due to 

incompletely silencing of the PAR-2 receptor as follow up studies with real-time PCR showed that 

siRNA targeting PAR2 reduces the expression of the receptor mRNA levels with 54 – 72% in the 

A549NF-κB-luc+ cells as compared to 91% in the wild type A549 cell line previously used (Larsen et 

al., 2008). There might also be a possibility of the purified sardine/crab trypsins activating other 

receptors/ signalling pathways leading to increased secretion of IL-8. Recent data from our 

collaborators imply that both sardine and king crab trypsin activate hPAR-1 as well as rPAR-4 

(Hollenberg MD, personal communication). Activation of PAR-1 and PAR-4 are, in addition to PAR-2, 

both shown to induce secretion of IL-8 in human airway epithelial cells (Asokananthan et al., 2002).  



In addition to IL-8 secretion, we also wanted to address the question whether the trypsins 

(sardine/king crab) were able to activate NF-κB through PAR-2 activation, as reported for other serine 

proteases in general (Kanke et al., 2001; Adam et al., 2006; Kida et al., 2007, 2008) and purified 

salmon trypsin in particular (Larsen et al., 2008). Both trypsins induced generation of NF-κB in human 

airway epithelial cells, an effect at least partly mediated by PAR-2 activation since knockdown of the 

receptor displayed reduced levels of NF-κB generated (0 – 38% in sardine trypsin stimulated cells, and 

31 – 49% in king crab trypsin stimulated cells). In PAR-2 agonist peptide stimulated cells the level of 

NF-κB was significantly reduced with 57% in PAR-2 knockdown cells. Based on these result we are 

able to conclude that both sardine and king crab trypsin are able to increase the secretion of IL-8 and 

generate activated NF-κB in human airway epithelial cells, at least partially, through PAR-2 activation. 

 

The receptor knockdown studies confirmed PAR-2 activation but revealed no obvious differences 

between the sardine and king crab trypsins that may lead to the dissimilar IL-8 dose-response 

relationships. Some proteases, including the PAR-2 agonist tryptase, are shown to cleave PARs at 

several sites, including activation and disabling sites, and the net result depends on the efficiency of 

cleavage at different locations (Molino et al., 1997; Ossovskaya and Bunnett, 2004). Regarding 

tryptase, the cleavage of the inactivation site is shown to be concentration-dependent and occurs at 

100 nM compared to the cleavage at the activation site which can be detected already at 1 nM of 

tryptase. Differences in capacity to cleave the PAR-2 N-terminal tail creating the activating tethered 

ligand may be a possible cause for variation in the dose-response relationship for the trypsins. Both 

trypsins may be capable of cleaving PAR-2 at activation and disabling sites, but the enzyme 

concentration at which these reverse effects occur may vary creating the observed differences in 

dose-response relationship. 

 

When comparing the results from the reporter gene assays measuring NF-κB with the concentration-

dependent release of IL-8, we observed that the concentrations of purified sardine trypsin that yielded 

the highest induction of NF-κB also lead to the highest release of IL-8. On the contrary, the purified 

king crab trypsin showed the highest induction of NF-κB-driven luciferase activity in an enzyme 

concentration (0,4 mU) that yielded no detectable IL-8. For the purified sardine trypsin we found the 

dose-response curve for IL-8 to follow the generated levels of NF-κB, while for the purified king crab 

trypsin the NF-κB response in the higher enzyme concentrations (0,2 – 2 mU) did not generate 

secretion of IL-8 (see Fig. 1).  

Earlier researches have shown that increased expression of IL-8 is mediated by transcriptional 

regulation involving the transcription factors NF-κB, NF-IL6 (C/EBP-β), and AP-1, with NF-κB being 

essential. Unlike the NF-κB site, the AP-1 and NF-IL-6 sites are not essential for induction but are 

required for maximal gene expression (Matsusaka et al., 1993; Kunsch et al., 1994; Mukaida et al., 

1994; Garofalo et al., 1996; Mastronarde et al., 1996, 1998; Blackwell and Christman 1997; Brasier et 

al., 1998; Hoffmann et al., 2002). Our previous work has established that purified salmon trypsin 

promotes DNA-binding of NF-κB via PAR-2 (Larsen et al., 2008). A possible explanation for the 

diverging results in the king crab stimulation assays could be that purified king crab trypsin activate 



PAR-2 in the lower enzyme concentration range, resulting in generation of activated NF-kB and 

secretion of IL-8, while in the higher enzyme concentrations the king crab trypsin activates an 

unknown receptor/separate signalling pathways that induces NF-kB activation but does not stimulate 

IL-8 secretion. The generated NF-kB may very well cause transcription of different target genes 

besides IL-8, as NF-κB is a transcription factor known to regulate the expression of over 200 immune, 

growth, and inflammation genes (Aggarwal, 2004) and is activated by a large number of receptors and 

pathways (Bonizzi and Karin, 2004; Bassères and Baldwin, 2006).This scenario might be partly true. 

However, the results from our siRNA assays show that the increased levels of NF-κB following 

stimulation with king crab in the higher enzyme concentrations (0,2 mU and 0,4 mU) also involves 

PAR-2 activation as we observe a reduction of 31 – 35% in PAR-2 knockdown cells. The fact that this 

amount of activated NF-κB, although proven to be partly due to PAR-2 activation, did not lead to 

secretion of IL-8 as observed in the lower enzyme concentrations puzzled us. Theoretically, as 

previously mentioned, purified king crab trypsin might be able to cleave PAR-2 both at activation and 

inactivation sites, but an inactivation of the receptor does only explain the lack of IL-8 secretion and 

not the increased amounts of NF-κB. Besides inactivation, concentration-dependent differences in the 

capability to cleave the PAR-2 N-terminal end might activate separate PAR-2 coupled signalling 

pathways with different end result devoid of IL-8 secretion. However, the question why the apparent 

PAR-2 mediated NF-κB generation translates into increased secretion of IL-8 only in the lower enzyme 

concentrations of king crab trypsin (0,004 – 0,01 mU) and not in the higher range (0,2 – 2 mU) needs 

further investigation to be answered.  

 

According to Hoffmann and co-workers (2002) maximal IL-8 amounts are generated by a combination 

of three different mechanisms: first, de-repression of the gene promoter; second, transcriptional 

activation of the gene by NF-κB and JUN-N-terminal protein kinase pathways; and third, stabilization 

of the mRNA by the p38 mitogen-activated pathway. In human airway epithelial cells maximal TNFα-

induced IL-8 protein expression is shown to require activation of NF-κB as well as activation of the 

MAP kinases ERK, JNK, and p38 (Li et al., 2002).  

In an attempt to reveal possible differences in the PAR-2 activating potential between the trypsins 

investigated, we have explored the contribution of MEK/ERK, p38 and NF-κB to the secretion of IL-8 

following stimulation with purified sardine and king crab trypsins by the use of specific inhibitors. ERK 

activation has been demonstrated to be required for IL-8 mRNA or protein expression in A549 lung 

epithelial cells (Chen et al., 2000) and PAR-2 has been shown to activate ERK in the airways by 

stimulating human bronchial epithelial cells (16HBE14o) with a selective PAR-2 peptide (SLIGKV) 

(Page et al., 2003). In line with this research we observed a pronounced reduction in the secreted 

levels of IL-8 when inhibiting MEK/ERK in PAR-2 agonist peptide (SLIGRL-NH2), purified sardine and 

king crab trypsin stimulated A549 cells. The NF-κB levels remained almost unchanged in the PAR-2 

agonist peptide and sardine trypsin stimulated cells, indicating that the contribution of MEK/ERK to IL-

8 secretion is a NF-κB-independent process. In the king crab trypsin stimulated cells the NF-κB level 

showed an increase of 16 – 25% in the inhibitor treated cells, but these results were not found to be 

significant. The U0126 inhibitor studies showed that activation of MEK/ERK contribute to the secretion 



of IL-8 from human airway epithelial cells following stimulation with sardine and king crab trypsins, but 

revealed no significant differences between the two trypsins. 

Activation of PAR-2 by PAR-2 agonist peptide (SLIGKV) and trypsin is shown to increase p38 

mitogen-activated protein kinase activity in a human keratinocyte cell line (NCTC2544) (Kanke et al., 

2001). P38 is primarily believed to regulate the IL-8 protein expression at a post-transcriptional level. 

Li and co-workers (2002) have shown that the use of a chemical p38 inhibitor (SB202190) failed to 

attenuate transcription from the IL-8 promoter, but significantly reduced TNFα-induced IL-8 protein 

abundance from human bronchial epithelial cells. As for IL-8, NF-κB also play a crucial role in IL-6 

gene expression and former studies have shown that inhibition of the p38 MAPK pathway abrogates 

TNF-mediated IL-6 gene expression without affecting the levels of TNF-induced NF-κB release and 

DNA-binding (Beyaert et al., 1996). However, there are studies that indicate involvement of p38 in NF-

κB-dependent processes as well. In murine fibrosarcoma cells (L929sA), the TNF-activated p38 

pathway contributes to transcriptional activation by modulating the transactivation capacity of the NF-

κB p65 subunit (Vanden Berghe et al., 1998). Furthermore, in primary human dendritic cells, p38 

mitogen-activated protein kinase-dependent phosphorylation and phosphoacetylation of histone H3 is 

shown to be induced by inflammatory stimuli. This selectively occurred on the promoters of cytokine 

and chemokine genes. P38 activity was required to enhance the accessibility of the cryptic NF-κB 

binding sites contained in H3 phosphorylated promoters, which indicates that p38-dependent H3 

phosphorylation may mark promoters for increased NF-κB recruitment (Saccani et al., 2002).  

In line with former inhibitor-studies we found that the p38 inhibitor reduced the secreted levels of IL-8 

from PAR-2 agonist peptide (52%) and trypsin stimulated (sardine 35 – 45% and king crab 40%) A549 

cells, but in contrast to the referred studies we observed a reduced level of NF-κB following p38 

inhibition both in peptide and trypsin stimulated cells (PAR-2 agonist peptide 46%, sardine trypsin 44 – 

49%, and king crab trypsin 51 – 56%). Although our SB202190 inhibitor studies indicate that p38 

contribute to the regulation of secreted IL-8 from human airway epithelial cells as well as activation of 

NF-κB following stimulation with sardine and king crab trypsins, no significant differences were 

observed between the two trypsins. The role of NF-κB being essential for IL-8 production were 

confirmed as the use of a NF-κB-inhibitor completely abolished the secretion of IL-8 from A549 cells 

following stimulation with PAR-2 agonist peptide and both trypsins. 

The results from the inhibition assays indicate that MEK/ERK and NF-κB are both required for purified 

sardine and king crab trypsin-induced secretion of IL-8 but via separate pathways, while p38 in 

addition to a probable regulation of the IL-8 protein expression at a post-transcriptional level as 

reported by others, may influence upon activation, nuclear translocation and/or DNA binding of 

activated NF-κB. 

Besides the slight increase in NF-κB activity in MEK-inhibitor treated king crab trypsin stimulated A549 

cells, the inhibitor assays revealed no significant differences between purified sardine and king crab 

trypsin that might explain the observed discrepancy between NF-κB generation and subsequent IL-8 

secretion in the upper concentration range of king crab trypsin.  

 



Research by Ramachandran and co-workers (2009) has shown that PAR-2 exhibit functional 

selectivity and that the proteolytically revealed tethered ligand (TL) sequence(s) and the mode of its 

presentation to the receptor (tethered vs. soluble) can confer biased signalling. Besides influencing 

upon the activation of different signalling pathways, substitution of amino acids in the activating 

sequence may modulate the strength of a given signal. In addition to the Ser
37

-Leu
38

 in the tethered 

ligand, the Arg
5
 (corresponding to Arg

41
 in the TL) in the PAR-2 agonist peptide has been shown to be 

important for the peptide’s potency (Al-Ani et al., 2002, 2004). Changing this positive Arg
5
 in SLIGRL 

to a neutral alanine or a negative glutamatic acid creating SLIGAL or SLIGEL markedly reduces the 

peptides potency to cause intracellular Ca
2+

 signalling. This residue (Arg
5
) is from receptor chimera 

studies in PAR-1 suggested to interact with the negative Glu
260

 in the second extracellular loop of 

PAR-1 during receptor activation (Gerszten et al., 1994; Nanevicz et al., 1995). Since these amino 

acids are conserved in PAR-2 an Arg
5
-Glu

260
 interaction might operate in recognition of the PAR-2 

agonist peptide SLIGRL by the receptor. The study conducted by Al-Ani and co-workers (2002) 

indicate that changes in electrostatic potential seems to be an important aspect in the binding of 

agonist to PAR2. Whether these changes in electrostatic potential only results in modulation of the 

strength of a given intracellular signal or whether they may contribute to the activation of different 

signalling pathways resulting in functional selectivity following PAR-2 activation is presently unknown. 

Molecular modelling conducted by our group shows that the surface of king crab trypsin displays a 

more negative electrostatic potential compared to salmon and bovine trypsins (Larsen et al. – 

manuscript). The modelling studies also suggest at least 3 divergent positions located near the 

substrate binding pocket that may affect binding of substrate to PAR-2. Because of differences in the 

electrostatic potential it is possible that PAR2 might bind weaker to king crab trypsin than to other 

trypsins due to repulsive interactions between the positive Lys
34

 in PAR2 and the positively charged 

Arg
244

 in king crab trypsin. This residue corresponds to a negative amino acid (Glu
221

) in salmon 

trypsin and a neutral amino acid (Gln
199

) in bovine trypsin. It might be a possibility that the differences 

observed in net charge and the molecular size/structure in king crab trypsin compared to other fish 

trypsins may cause a concentration-dependent biased signalling giving rise to the observed 

differences in secretion of IL-8 and generation of activated NF-kB, but this issue needs to be further 

explored.  

 

In summary, we have demonstrated that purified sardine and king crab trypsins induce secretion of IL-

8 from human airway epithelial cells, at least partially, via activation of PAR-2. We can also conclude 

that sardine and king crab trypsin promotes DNA-binding of NF-κB, at least partially, through PAR-2 

activation, and that generation of NF-κB is essential for secretion of IL-8 protein following trypsin 

stimulation. The MAP kinases MEK/ERK and p38 are both activated by sardine and king crab trypsins 

and contribute to the increased secretion of IL-8 by NF-κB independent (MEK/ERK) and seemingly 

NF-κB-dependent (p38) processes.  

From this work we are not able to make conclusions regarding the differences in IL-8 and NF-κB dose-

response relationships, but the results indicate that small structural variations in agonists may lead to 

differences in receptor activation and subsequent intracellular signalling. Future research focusing on 



possible biased signalling based on molecular structure, charge, and concentration will be important in 

understanding PAR-2 mediated signalling events in human airway epithelial cells. 
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Figures and legends 
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Figure 1  

Dose-response relationships of IL-8 and NF-κB in human airway epithelial cells following 

sardine and king crab trypsin stimulation. A549/NF-κB-luc cells (2 x 10
5
 cells/well) were seeded 

out in 6-well dishes, grown to 80-90% confluency and kept in serum-free medium for 24 hours prior to 

incubation with the indicated concentrations of purified sardine and king crab trypsin. (A) The 



supernatant were harvested 6 h later and analyzed for the presence of IL-8 by ELISA. (B) For the 

analysis of NF-κB-driven luciferase-expression the cells were lysed and harvested after removal of the 

supernatant. Lysates were analysed for luciferase activity and normalized against the total protein 

concentration. The results are given as pg/ml supernatant (a) or fold induction above basal levels in 

untreated cells (b). Data are expressed as mean ± S.E., n = 6 – 10 from at least three separate 

experiments in (a) and n = 4 – 8 from at least two separate experiments in (b). RLU (relative light 

units). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 2 
 

 



Figure 2. Inhibition of IL-8 secretion from A549/NF-κB-luc cells using siRNA against PAR-2.  

A549/NF-κB-luc cells (2 x 10
5
 cells/well) were seeded out in 6-well dishes. Forty-eight hours later the 

cells were transfected with a mixture of three different siRNAs (total of 40 nM) targeting hPAR-2. Cells 

not receiving siRNA targeting PAR-2 were transfected with a negative control siRNA. The cells were 

kept in serum-free standard medium for 24 h until stimulation with PAR-2 agonist peptide (SLIGRL-

NH2), inactive control peptide (LRGILS-NH2) (a), or the indicated concentrations of sardine (b) and 

king crab trypsins (c). The supernatant were harvested 6 h later and analyzed for the presence of IL-8 

by ELISA. Data are expressed as mean ± S.E., n = 4 – 6 from at least 2 separate experiments. (* 

different from PAR-2 positive cells, p < 0,02). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 3 

 



 
Figure 3. Inhibition of NF-kB activation in A549/NF-κB-luc cells using siRNA against PAR-2.  

A549/NF-κB-luc cells (2 x 10
5
 cells/well) were seeded out in 6-well dishes. Forty-eight hours later the 

cells were transfected with a mixture of three different siRNAs (total of 40 nM) targeting hPAR-2. Cells 

not receiving siRNA targeting PAR-2 were transfected with a negative control siRNA. The cells were 

kept in serum-free standard medium for 24 h until stimulation with PAR-2 agonist peptide (SLIGRL-

NH2), inactive control peptide (LRGILS-NH2) (a), or the indicated concentrations of sardine (b) and 

king crab trypsin (c). After removal of the supernatant the cells were lysed and harvested. Lysates 

were analysed for luciferase activity and normalized against the total protein concentration. The results 

are given as fold induction above basal levels in untreated cells. Data are expressed as mean ± S.E., 

n = 4 – 6 from at least 2 separate experiments. RLU (relative light units), * (different from PAR-2 

positive cells, p < 0,02). 

 

 
 
 
 
 
 
 



Fig. 4 
 

 



Figure 4. Inhibition of MEK activity in human airway epithelial cells reduces secretion of IL-8 but 

not generation of NF-κB. A549/NF-κB-luc cells (2 x 10
5
 cells/well) were seeded out in 6-well dishes, 

grown to 80-90% confluency and kept in serum-free medium for 24 hours. Inhibitor (10 µM U0126 in 

DMSO) or DMSO (as negative control in cells not receiving inhibitor) was added to the wells 1 hour 

prior to stimulation with PAR-2 agonist peptide (SLIGRL-NH2, 25 uM), inactive control peptide 

(LRGILS-NH2, 25 uM), sardine and king crab trypsins. (a – c) The supernatant were harvested 6 h 

later and analyzed for the presence of IL-8 by ELISA. (d – f) For the analysis of NF-κB-driven 

luciferase-expression the cells were lysed and harvested after removal of the supernatant. Lysates 

were analysed for luciferase activity and normalized against the total protein concentration. The results 

are given as pg/ml supernatant (a – c) or fold induction above basal levels in untreated cells (d – f). 

Data are expressed as mean ± S.E., n = 12 from six separate experiments in (a), n = 4 – 8 from at 

least two separate experiments in (b – c), n = 10 from five separate experiments in (d) and n = 4 – 6 

from at least two separate experiments in (e – f). RLU (relative light units), * (different from non-

inhibitor treated cells, p < 0,02). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 5 

 



 
 
Figure 5. Inhibition of p38 activity in human airway epithelial cells reduces secretion of IL-8 and 

generation of NF-κB. A549/NF-κB-luc cells (2 x 10
5
 cells/well) were seeded out in 6-well dishes, 

grown to 80-90% confluency and kept in serum-free medium for 24 hours. Inhibitor (10 µM SB202190 

in DMSO) or DMSO (as negative control in cells not receiving inhibitor) was added to the wells 1 hour 

prior to stimulation with PAR-2 agonist peptide (SLIGRL-NH2, 25 uM), inactive control peptide 

(LRGILS-NH2, 25 uM), sardine or king crab trypsins. (a – c) The supernatant were harvested 6 h later 

and analyzed for the presence of IL-8 by ELISA. (d – f) For the analysis of NF-κB-driven luciferase-

expression the cells were lysed and harvested after removal of the supernatant. Lysates were 

analysed for luciferase activity and normalized against the total protein concentration. The results are 

given as pg/ml supernatant (a – c) or fold induction above basal levels in untreated cells (d – f). Data 

are expressed as mean ± S.E., n = 6 from three separate experiments in (a and d), n = 4 – 6 from at 

least two separate experiments in (b, c, e, and f). RLU (relative light units), * (different from non-

inhibitor treated cells, p < 0,02). 
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Supplementary data 
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Figure 1. Secretion of IL-8 and generation of NF-κB by king crab and sardine trypsins in human 

airway epithelial cells are dependent on protease activity. A549/NF-κB-luc cells (2 x 10
5
 cells/well) 

were seeded out in 6-well dishes, grown to 80-90% confluency and kept in serum-free medium for 24 

hours prior to incubation with the indicated concentrations of purified sardine and king crab trypsins, 

intact or heat inactivated by incubation at 95°C for 15 min. (A) The supernatant were harvested 6 h 

later and analyzed for the presence of IL-8 by ELISA. (B) For the analysis of NF-κB-driven luciferase-

expression the cells were lysed and harvested after removal of the supernatant. Lysates were 

analysed for luciferase activity and normalized against the total protein concentration. The results are 



given as pg/ml supernatant (a) or fold induction above basal levels in untreated cells (b). Data are 

expressed as mean ± S.E., n = 4 from two separate experiments. RLU (relative light units), * (different 

from active trypsins, p < 0,02). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 2  
 

 



 
Figure 2. Inhibition of NF-kB abolishes the secretion of IL-8. A549/NF-κB-luc cells (2 x 10

5
 

cells/well) were seeded out in 6-well dishes, grown to 80-90% confluency and kept in serum-free 

medium for 24 hours. Inhibitor (100 µM BAY 11-7082 in DMSO) or DMSO (as negative control in cells 

not receiving inhibitor) was added to the wells 1 hour prior to PAR-2 agonist peptide (SLIGRL-NH2), 

inactive control peptide (LRGILS-NH2), sardine or king crab trypsins. (a – c) The supernatant were 

harvested 6 h later and analyzed for the presence of IL-8 by ELISA. (d – f) For the analysis of NF-κB-

driven luciferase-expression the cells were lysed and harvested after removal of the supernatant. 

Lysates were analysed for luciferase activity and normalized against the total protein concentration. 

The results are given as pg/ml supernatant (a – c) or fold induction above basal levels in untreated 

cells (d – f). Data are expressed as mean ± S.E., n = 4 from two separate experiments. RLU (relative 

light units), * (different from non-inhibitor treated cells, p < 0,02). 

  

 

 
 

 


