
A graphical deployment and management tool
for distributed applications?

Anders Andersen and Thomas Aanensen

Department of Computer Science
University of Tromsø, Norway

aa@cs.uit.no,thoaan@online.no

Abstract. OOPP is a component based middleware platform with sup-
port for complex distributed applications. The main goal of OOPP is
to create an expressive programming model for distributed applications
where by default details are hidden for the programmer. When neces-
sary, reflection is used to expose and sometimes modify these details. All
interaction with an OOPP component are specified by its component
model and a at set of well-defined interfaces. The component model spec-
ifies how a component interacts with the runtime. The set of interfaces
specifies how a component interacts with other components. An OOPP
application is created by combining a set of OOPP components. OOPP
Studio can be used to create and manage such an application. This pa-
per gives an overview of the OOPP programming model and discusses
in more details OOPP Studio. OOPP Studio is a powerful graphical tool
used to build, deploy, and manage a distributed OOPP application.

1 Introduction

Middleware is used to help programmers to create distributed (and complex)
applications [1, 2]. It presents a set of high-level programming abstractions hiding
the details of distributed programming and the platform services (i.e. providing
transparencies). Software components makes it possible to develop different parts
of the application independently, and then later combine and deploy them for a
specific application setup. The main motivation for this is to have manageable
code (code with well defined functionality and well defined interfaces) that can
be easily reused.

OOPP (Open-ORB Python Prototype) [3] is a middleware platform support-
ing software components. It has an expressive (high-level) programming model
inspired by the ISO Reference Model for Open Distributed Processing (RM-
ODP) [4].

One consequence of high-level programming abstractions is that the middle-
ware providers have made a lot of decisions on behalf of the programmer about
the behavior of the provided abstractions. This might not be feasible for the

? This work has been supported by the Norwegian Research Council (IKT 2010,
project number 146986/431).

requirements of a given application or a given context. An example could be an
implementation of remote method invocation (RMI) using a transport protocol
that does not handle disconnection. Such an RMI implementation would not
work in a mobile setting where disconnection happens frequently. To expose im-
plementation details and adapt the system at runtime OOPP provides an open
implementation through the concept of reflection [5].

A distributed application in OOPP is a composition of software components
connected with bindings. Components can be located in different address-spaces
and on different nodes. The reflective mechanisms of OOPP makes it possible
to inspect and adapt this composition at runtime. Components can be added,
removed, replaced or altered. Bindings can be established, removed or modified.

OOPP Studio [6] is a powerful graphical tool used to build, deploy and man-
age distributed OOPP applications. The four steps in the process of creating
distributed applications with OOPP Studio are:

1. Develop OOPP components
2. Combine components to an application
3. Deploy the application components
4. Manage the running application

In this paper we will present the programming model of OOPP, the tool
OOPP Studio, and the role of reflection in this development platform. We will
in each step use a distributed ‘Hello World!’ example to illustrate the process.
Some examples of OOPP Studio usage will be presented and discussed. Finally,
OOPP Studio will be compared with other approaches and a conclusion will be
made.

2 OOPP programming model

An OOPP application consists of a set of software components deployed in one
or more capsules. Each component has a set of interfaces. OOPP provides three
kinds of interfaces. Signal interfaces are used for one-way signals. A signal inter-
face is either the source or the sink (receiver) of a signal. Signals are typically
produced when certain events occur. Stream interfaces are used for continu-
ous media like audio and video. A stream interface is also either a source or a
sink. Operational interfaces are used to access and/or provide a set of methods.
An operational interface exports (provides) and/or imports (requests) a set of
methods.

An interface can be connected (bound) with a binding to a matching inter-
face. An operational interface i1 matches an operational interface i2 if i1 exports
the methods i2 imports, and vice versa. In OOPP, a binding can be explicit.
Complex bindings are composite components that might consist of components
in different address-spaces and on different nodes. A composite component is
represented by a component graph, where its contained components are the
nodes and the bindings between these components are the edges. The external

interfaces of a composite component are mappings to a subset of the interfaces
of its contained components.

Components are deployed in capsules. A capsule is a managed address-space
providing a set of services used to manage the life-cycle of components. Each
node has a node manager. The node manager manages all the different capsules
on a given node.

An interface can be registered (with a name) in a name server. A component
requesting a given interface (with a name) can use the name server to get a
reference to the registered interface. With this interface reference a binding can
be created to the provided services. In this example the name server provides
the bootstrapping mechanism of a distributed application. The name server (or
actually the location of the name server represented by an address) is the com-
mon knowledge between the different autonomous components of the distributed
application.

Below, another approach to bootstrap a distributed OOPP application will
be presented. This approach is based on OOPP Studio.

3 OOPP Studio explained

OOPP Studio will be explained using an example. The example is a distributed
‘Hello World!’. It is implemented in Python1 using OOPP programming abstrac-
tions.

Step 1: Components

The distributed ‘Hello World!’ contains two components, a client hello and a
server world. Figure 1 and 2 list the Python code of the two modules imple-
menting these two components.

In OOPP the interfaces of a component are defined in the interfaces at-
tribute. This attribute is a Python dictionary2 where a valid key is the name of
an interface and the value of that key is a two-tuple describing the exported and
imported methods of the interface (the first element of the tuple is the exported
methods and the second element is the imported methods). The elements in the
two-tuple are dictionaries where the keys are method names and their values
are three-tuples defining the signature of the methods. The first element of the
signature is the arguments of the method, the second element is the return value
of the method, and the third element is a list of exceptions that the method
might generate.

1 http://www.python.org/
2 Python provides three sequence types. A dictionary is a sequence with key-value

pairs. If a dictionary p has the value {"age":23,"name":"Bob"}, then p["age"] is
23. A list is a sequence of values like [1,4,0], and a tuple is an immutable list
(e.g. (1,4,0)). Both lists and tuples are indexed by numbers (starting at zero).

from oopp.core.component import * 1

from types import * 2

3

from world import world 4

hello = { "mhello" : (5

(StringType, IntType), StringType, [AttributeError])} 6

7

class Hello (Component): 8

interfaces = { 9

"ihello" : (hello, {}), "iworld" : ({}, world)} 10

def mhello (self, name, num): 11

msg = "" 12

for i in range(num): 13

resp = self["iworld"].mworld(name) 14

msg += "%d: %s\n" % (i, resp) 15

return msg 16

Fig. 1. The class implementing the ‘Hello World!’ client component (hello.py). A
Hello component export the interface ihello with the method mhello, and it imports
the interface iworld with the method mworld. The external mworld method is called
using the interface iworld in the implementation of the mhello method.

from time import ctime 1

from oopp.core.component import * 2

from types import * 3

4

world = { "mworld" : ((StringType,), StringType, [])} 5

6

class World (Component): 7

interfaces = { "iworld" : (world, {})} 8

def mworld (self, name): 9

if name == "" : 10

return "Hello World (%s)!" % (ctime(),) 11

else : 12

return "Hello %s (%s)!" % (name, ctime()) 13

Fig. 2. The class implementing the ‘Hello World!’ server component (world.py). A
World component export the interface iworld with the method mworld.

In Figure 1 we have a Hello component with two interfaces ihello and
iworld. The methods ihello exports are described in the value hello. Inter-
face ihello exports the method mhello that takes two arguments (a text string
and a number), returns a text string, and might produce an AttributeError ex-
ception. An AttributeError is produced when the interface iworld is accessed
(in the method mhello) before it is bound to a matching interface. The methods
iworld imports are described in the value world defined in the module world.
Interface iworld imports the method mworld that takes a text string argument,
returns a text string and does not produce any exceptions.

From Figure 2 we can see that a World component has one interface iworld.
This is an interface matching the interface iworld in a Hello component (it
exports the methods the other interface imports).

When the Hello and World component implementations are loaded in OOPP
Studio the tool will parse the classes and recognize their interfaces (see Figure 3
in the Appendix). The reflective features of OOPP makes it possible to inspect
and modify this implementation in OOPP Studio (e.g. adding interfaces). It is
even possible in OOPP Studio to load a standard Python class and populate it
with interfaces to create an OOPP component. The tool creates a component
template based on the Python class and the user’s description on how to map
this class to an OOPP component implementation. In the current example the
component is used without any modifications of the original implementation
from Figure 1.

After a component implementation has been loaded the tool can be used to
create one or more such components. These components can then be combined
with other components to create a distributed application.

Step 2: Application

An OOPP application is described as a set of capsules, their containing com-
ponents, an the bindings between the components. OOPP Studio can be used
to create all those building blocks, and it does not enforce any order that they
have to be created. You can either create all the capsules first and then populate
them with components, or you can create all the components first and then later
distribute those components among the set of capsules. You can also create a set
of capsules and later decide on what node those capsules should execute on. At
any time you can save your current work and terminate OOPP Studio. Later,
you can start OOPP Studio, load your earlier work, and continue working on
the application. As seen later, a subset of your application can be running while
you are still working on it.

A typical scenario based on the distributed ‘Hello World!’ application could
be as follows. First, two capsules are created. They will be called the client
capsule and the server capsule. The client capsule will execute on localhost,
and the server capsule on ablab11 (see Figure 4 in the Appendix).

Then, the component classes are loaded and one of each is created in the
OOPP Studio drawing area (see Figure 5 in the Appendix). You should control
that the expected interfaces are recognized and visible in the tool. By selecting a

component it is also possible to see the exported and imported methods of each
interface of a component. In the example, a Hello component named hello and
a World component named world are created.

Now, the components can be located to a given capsule. This is in OOPP
Studio simply done by dragging the component to a given capsule. The hello
component is moved to the client capsule, and the world component is moved
to the server capsule. Their iworld interfaces are connected by dragging one
on top of the other (the T-shaped drawings attached to a component are its
interfaces). An implicit binding between them will be created if they match
(see the implicit binding between the iworld interfaces in Figure 6). A local
binding is created if the interfaces are located in the same capsule. Otherwise,
a remote implicit binding matching the interfaces will be created. This binding
is implemented as a composite component, but since it is an implicit binding it
is not visible in OOPP Studio. The middleware platform has decided on what
binding implementation to use. The difference between a local binding and a
remote binding is transparent for the user. If the user wants to influence the
selection of a binding implementation an explicit binding can be created. All
implicit bindings can be replaced by explicit bindings.

Step 3: Deploy

When OOPP Studio is used to draw an application as described above, no cap-
sules, components and bindings are actually created. A running capsule is created
when it is activated. This is an explicit action in OOPP Studio. Components are
also only drawings in OOPP Studio until they are activated. A binding between
two interfaces is activated when their components are activated. It is possible to
activate only a subset of the capsules and the components currently drawn in
OOPP Studio. A capsule can only be activated when it is decided on what node
it should be executed on. A component can only be activated if it is deployed in
an activated capsule.

Every node that should be populated with OOPP capsules have to have
a core OOPP implementation installed and a OOPP node manager running.
The node manager will create and activate capsules upon requests from OOPP
Studio. When a component deployed in a capsule is activated its implementation
is transfered from a component implementation repository managed by OOPP
Studio.

The capsules of the example application are activated by selecting them and
pressing the activate button . This will actually create and start the capsules
on their nodes, and the deployed components will be activated in their capsules.
Before this explicit is done, the client and server capsules, the hello and world
components, and the binding between the iworld interfaces, only exists as an
internal representation in OOPP Studio.

At any time we can save the current application, quit OOPP Studio, and
then later load and continue working on the same application. This means that
a saved application can be either non-activated (no capsules and components

activated), partly activated, or completely activated (all capsules and all com-
ponents activated). When an application is loaded in OOPP Studio the tool will
inspect and connect to the activated capsules and components.

In the ‘Hello World!’ example no name server has been used. This is not
necessary since the tool has the complete view of the application and can do
the bootstrapping needed to locate and connect the different autonomous com-
ponents and capsules. A name server can be used to include existing capsules
or components (services) in an OOPP application. If existing capsules or com-
ponents (created with or without OOPP Studio) providing a set of interfaces
have been announced to an OOPP name server, OOPP Studio can be used to
locate them. The user of OOPP Studio has to provide the necessary informa-
tion to locate the name server and the name of the capsule or interface that
will be used in the application. An interface identified in this way can be bound
to another matching interface. A capsule identified in this way can be browsed
for components and their interfaces. Unbound interfaces can be bound to other
matching interfaces.

By default, such capsules and components will in OOPP Studio not be man-
aged as part of the current application. The provided interfaces will only be
external services used by this application. If it is a capsule it is possible to try
to3 include it and its components in the current application. If successful, the
capsule and its components will be viewed and can be operated on just as all the
other capsules and components in the application. Later when the application
is saved this capsule and its components will be included.

Step 4: Manage

When an application is up and running it has to be maintained. OOPP Studio
can be used to manage all aspects of a running application. Examples could be to
distribute the load on more nodes (by moving components or capsules), update
the implementation of a component (to correct bugs or make it more efficient),
or to add more functionality. If you load a running application in OOPP Studio
then all operations described in step 1–3 can be done on this application. You
can add and remove capsules and components, you can break or create new
bindings, and you can even modify existing components. This makes it possible
to use OOPP Studio with applications that evolves over time.

4 The role of reflection

The reflective features of OOPP makes it possible to inspect and modify compo-
nents. An example discussed above was to add interfaces to objects created from
a standard Python class. Reflection provided by OOPP can be used to moni-
tor and modify the components and capsules of a running application. A good

3 This article does not discuss any security issues and access control. Therefore, the
discussion on when this will succeed is ignored.

example is an explicit binding. An explicit binding is a composite component
including sub component that are marshalling and unmarshalling the contents
of messages (arguments and return values). Those components can be replaced
by other implementations introducing a different behavior for this underlying
service (e.g. encryption or compression of the message content).

5 Conclusion and future work

OOPP Studio has proven to be a powerful graphical tool matching the expres-
siveness of OOPP. It makes it possible to deploy and maintain a distributed
application running on a large number of different nodes from a single desktop
computer. The flexibility given by the reflective mechanisms provided by OOPP
makes it possible to create a tool that can be used to inspect and modify all
aspects of a distributed application.

Future versions of OOPP Studio will extend this functionality even further
giving access to a more complete set of reflective functionality found in OOPP.
This includes more possibilities to manipulate components (e.g. replace or add
method implementations), composite components (manipulation of the compo-
nent graph), bindings, and capsules.

More specific contracts between a component and its runtime is another thing
that we would like to add to OOPP Studio and the OOPP component model.
Such a contract should include a description of the support needed by a compo-
nent. An example could be a specific service (and even a specific version of that
service) provided by the middleware platform or a third party library provider.
Another example could be a set of Quality of Service properties (e.g. processing
resources per time unit for a given component).

References

1. Bernstein, P.A.: Middleware: A model for distributed system services. Communi-
cations of the ACM 39 (1996) 86–98

2. Eckerson, W.W.: Three-tier client/server architecture. Open Information Systems
10 (1995) 3–22

3. Andersen, A.: OOPP, A Reflective Middleware Platform including Quality of Ser-
vice Management. Dr. sci. thesis, Department of Computer Science, University of
Tromsø, Tromsø, Norway (2002)

4. ISO/IEC: Open distributed processing reference model, part 1: Overview. ITU-T
Rec. X.901 — ISO/IEC 10746-1, ISO/IEC (1995)

5. Smith, B.C.: Procedural Reflection in Programming Languages. PhD thesis, Mas-
sachusetts Institute of Technology (1982)

6. Aanensen, T.: OOPP studio: Et verktøy for dynamisk utplassering og distribusjon
av komponentbaserte applikasjoner. Masteroppgave, Institutt for Informatikk, Uni-
versitetet i Tromsø (2005)

Appendix

Fig. 3. When the implementation of Hello components is loaded in OOPP Studio,
the component edit view shown above will be visible. The user can use this view to
browse the identified the interfaces of the component class. This view can also be used
to modify the component and its interfaces.

Fig. 4. The user has added two capsules in the drawing area. The server capsule is
selected and we can see that is will be activated on the node ablab11.

Fig. 5. A component hello and a component world have been added to the application.
The components are not yet deployed in a specific capsule. Component hello is selected
and it has two interfaces ihello and iworld. The ihello interface exports the method
mhello, and the iworld interface imports the method mworld.

Fig. 6. The components are deployed in their specific capsules and implicit bindings are
created between the interfaces. A component user has been added. It has an interface
ihello bound to the ihello interface of the hello component.

