Policies and Metrics for Fair Resource Sharing

Age Kvalnes
University of Tromsg
aage@cs.uit.no

Dmitrii Zagorodnov
University of Tromsg
dmitrii@cs.uit.no

Abstract

Performance isolation is essential to operating systems
shared by dependable services. Unfortunately, most
such systems, including real-time operating systems and
VMMs, only fairly divide and account for CPU cycles.
We submit that dependable services require specifying
and enforcing policies for all resources, and that current
metrics for evaluating fair sharing are insufficient. This
paper proposes new policy specifications and metrics, and
illustrates these with the help of a new operating system
that supports holistic resource sharing.

1 Introduction

Performance isolation is essential in shared systems used
by dependable services. Given an accurate estimate of
the maximum resource requirements of a particular ser-
vice — the amount of CPU, memory, network bandwidth,
etc., that it needs for adequate performance under the ex-
pected usage scenarios — one can provision it by deploying
the service on hardware that matches those requirements.
When multiple services share hardware, however, under-
provisioning of one can degrade the performance of oth-
ers, unless the operating system enforces fair sharing of
all resources.

There is much evidence that contemporary operating
systems fail to enforce fair sharing of all resources. While
fair sharing of application-level CPU cycles, disk band-
width, or network bandwidth have been achieved in iso-
lation, guaranteeing to an application some fraction of
all resources, including kernel-level CPU cycles needed
for various types of 1/0 operations, is an unsolved prob-
lem. As a consequence, services with strict performance
requirements tend to be deployed on isolated hardware,
leaving it generally underutilized; other services are in-
creasingly co-located, but without any performance guar-
antees.

This paper argues that fair sharing of resources, which
we call performance isolation of services from each other,
is a dependability issue that is critical, particularly in the
light of unexpected load spikes that network services ex-

Robbert van Renesse
Cornell University

Dag Johansen
University of Tromsg

dag@cs.uit.no rvr@cs.cornell.edu

perience nowadays. To the future discussions of this issue,
this paper contributes the following: a model for speci-
fying resource sharing policies that can range from strict
partitioning to proportional sharing; two metrics for quan-
titatively evaluating the fairness of sharing under the cho-
sen policy on a particular system; examples of applying
these metrics to evaluate a real system.

The next section, which constitutes the bulk of the pa-
per, is followed by the discussion of related work in Sec-
tion 3 and the conclusion in Section 4.

2 Performance isolation

A system with performance isolation is characterized by
the inability of one service to cause the performance of an-
other co-located service to degrade below a certain level.

2.1 Sharing Policy

The policy for such a system to enforce is two fold: the
specification of resource shares that are guaranteed to
each service, which we call minimal guarantee policy, and
the specification of how spare capacity is shared among
the services using a resource, which we call spare capac-
ity policy. Spare capacity may arise when the minimal
guarantees for all services do not add up to full capacity
of a resource or when some services do not use their guar-
anteed share.

Enforcing the minimal guarantees prevents uncontrol-
lable performance degradation because each service re-
ceives at least their guaranteed share of each resource.
Allocating spare capacity allows the system to utilize re-
sources better and it allows the services to achieve perfor-
mance above the guaranteed minimum. However, since
spare capacity varies with demand, services using it may
experience fluctuations in performance.

Through the two policies, the system operator can
achieve the desired tradeoff between better system uti-
lization and more consistent performance for a service.
At one extreme, spare capacity can be left unallocated for
more consistent response times; on the other extreme, all
spare capacity can be shared among services.

2.2 Ideal Share

Given a performance isolation policy and a pattern of re-
source requests from services, it is possible to compute the
ideal share of a resource that a service should be receiv-
ing at any time. We define the ideal share as the minimum
of the demanded share and the share that the service is
entitled to. The latter is the sum of its guaranteed share,
as prescribed by the minimal guarantee policy, and any
spare capacity that is available to it under the current re-
quest load, as prescribed by the spare capacity policy.

Consider the following example: three services, each
able to use 100% of the resource when running alone
and guaranteed 50%, 33%, and 17%, respectively; spare
capacity is allocated in proportion to these guaranteed
shares. For any service running alone, the ideal share is
100%, while the ideal shares for other services are zero.
If the 50% service and the 33% service run together, their
ideal shares are 60% and 40%, respectively. (83% is re-
served for their combined minimums and the remaining
17% is split into 50/83 and 33/83.) If the 33% service and
the 17% service run together, their ideal shares are 66%
and 34%. With all three services running, the ideal share
for each is its guaranteed share, since there is no spare
capacity left. If the policy were to not allocate spare ca-
pacity, then the ideal share for any running service would
also be its guarantee.

2.3 Accuracy

To evaluate experimentally how well a system enforces
performance isolation, we propose to compare the ob-
tained shares of a resource received by the services during
a run to their ideal shares under those conditions. The dif-
ference between the two values is the error. Since some
resources, such as CPU and 1/0 bandwidth, are timeshared
by services, comparison of obtained and ideal shares of
such resources is only meaningful over a time interval.

Consider a timeshared resource and an interval during
which the ideal shares are fixed. With an interval shorter
than the scheduling timeslice, the error will be large, since
at any point in time one service has 100% of the resource
while the ideal share is smaller. However, as longer in-
tervals are chosen, spanning enough time to give each re-
source at least one timeslice, the error will decrease.

Formally, given an interval ¢ (of duration |¢|) during a
run, the error Esr|[t] during that interval for each service
S and resource R is the difference between the obtained
share Ogg[t] and the ideal share Igg[t], expressed as the
percentage of the ideal one:

_ Ogglt] — Isglt]

ESRM = ISR[t] x 100%.

The units in which the shares are expressed are not im-
portant: they can be percentages of maximum capacity of
a resource, such as percent of CPU time, or they can be
resource-specific units, such as bytes, bytes per second,
etc. Given Egp[t] for every interval during a run T' (of
duration |T|), it is possible to compute the average per-
service error for a resource as

By, = Leer Esall]

1
7] (D

By averaging these values over all services, we can cal-
culate the overall error E'r associated with sharing a re-
source of a particular type. These per-service and per-
resource error values allow one to quantify the accuracy
of performance isolation under a specific load on a given
system. Accuracy is the key metric for evaluating how
well a system isolates services.

Measuring Error

Measuring error in practice is challenging, particularly
due to the difficulty of computing the ideal share Igg|t].

Recall that the ideal share for a service is the minimum
of the demanded share and the entitled share. If spare ca-
pacity is shared among services then the entitled share of
one service depends on the ideal shares of others, which
results in a circular definition. This problem can be solved
iteratively, by repeatedly assigning spare capacity to ser-
vices in proportion to their minimal shares until either all
demand is satisfied or until the resource is exhausted. The
harder part is measuring demand.

It may seem that demand is reflected in the number of
outstanding requests for resources from a service. That
is true at any particular instant: all services waiting for
a CPU have 100% demand for it, all services with pack-
ets in network queues demand the share of the network
bandwidth necessary to send those packets, etc. However,
the demand of a service over an interval may depend on
how loaded the resource is. For a hypothetical example,
imagine a process that runs for 1 second no matter how
much CPU time it gets: depending on how loaded the CPU
is, its demand is different (and always satisfied). To put it
simply, the demand may vary with supply.

To measure the error, we configure our experiments so
that the demand is known for their duration. Thus, we can
compute the ideal share without having to measure it.

CPU sharing example

Consider three services, guaranteed the same 50-33-17
minimal shares as in the example above. Spare capac-
ity is allocated in proportion to those shares. The ser-
vices are CPU-bound, which means their demand is 100%

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

100

=
0.0/0.0 0.6/0.6 -

- 50%
- service

80 —

1.6/3.2

2
3
|

1.6/5.1

33% LO3ADN n A, (1 A -

40 —

CPU Share (%)

service

2.5/3'5/ 2.0/5.0

| obtained (0.5-s interval) ~
52152
— obtained (2-s interval)

— ideal

17%
service

| ' ' ' ' | ' ' ' ' | ' ' ' ' |
0 50 100 150

Time (sec)

Figure 1: Obtained and ideal shares for a CPU-bound load with
three services given minimal CPU shares of 50%, 33%, and 17 %.
Thick grey lines and per-stage error values in bold font are for
a 2-s sampling interval. Thick black lines and error values in
regular font are for a 0.5-s interval. Boxes show termination.

when they are running and 0% when they are not. Fig-
ure 1 shows a run of these services on an operating system
called Vortex!, which has been designed from the ground
up by the authors to support performance isolation of ser-
vices.

The services were started and stopped at different
times, resulting in changes in ideal shares, which are
shown as thin straight lines (to avoid clutter, we do not
show 0% ideal shares). We refer to each of the time pe-
riods with stable ideal share as a stage. In the first and
last stages, a service runs alone with 100% ideal share.
In the intermediate stages, the ideal shares for concurrent
services are the same as in the example above.

We sampled the CPU usage of each service twice a sec-
ond and plotted it with thick grey lines. The errors com-
puted from those measurements are thus at a 0.5-second
interval. We also re-sampled the values in groups of four
to demonstrate how the error changes when the interval is
increased to 2 seconds. Those values are shown as thick
black lines.

Using the errors in each interval, we computed per-
service error Egp for each stage (shown on the plot) and
for the entire run (shown in the table below, together with
the overall, per-resource error E'R).

% error for interval

Type of error 0.5 sec 2 sec

50% service Esgr 33 1.2
33% service Egpr 59 1.9
17% service Esr 8.7 3.2
FEr 6.0 2.1

'In this, and in following experiments, we ran Vortex on a 2-GHz
AMD Opteron machine with 2 GB of memory, a PCI Express bus, a 1-
Gbps network interface (with Jumbo frames disabled).

Although the obtained shares generally follow the ideal
ones, there is fluctuation due to imperfections of schedul-
ing. The error is 3 times larger with an interval quarter
as long. Two more observations can be made: accuracy
decreases as more services are added to the system and,
generally, the accuracy of services with smaller shares is
lower. This behavior can be explained by the timeshared
nature of the CPU.

In the experiment, Vortex was set up with a weighted
fair queuing CPU scheduler and a timeslice size of 16 ms,
resulting in scheduler invocations at a rate of 63.5 times
per second. Thus, a service with 17% of the CPU should
ideally receive 10.6 timeslices per second. However, since
the scheduler does not hand out fractions of a timeslice,
shares obtained within short time intervals will be inaccu-
rate, and the smaller the share, the greater the error.

2.4 Agility

Although the overall error E'r quantifies how fairly a sys-
tem schedules a resource, it gives no insight into the un-
derlying causes of unfair scheduling. One important char-
acteristic of scheduling, though, can be gleaned from the
individual error values: By analyzing their trend within a
stage (period with unchanging ideal share), one may be
able to separate the error due to the system’s inability to
quickly adjust to changes in demand from the error due
to the system’s inability to enforce performance isolation
with fixed demand. If either type of “inability” dominates,
the best gains will come from fixing it.

Specifically, the goal of the analysis is to divide each
stage into the initial adjustment period, when the obtained
share is adjusting from the previous ideal share to the new
one, and the following stable period, when the obtained
share has stabilized. (Either period can be of length 0 if
no adjustment or no stability are discernible.) By recom-
puting the errors Egr using only the error values within
adjustment periods or within the stable periods, we can
obtain two new error values — E%%¥ and Eg'¢ — which
show how much each period contributes to the per-service
error. Likewise, the two values can be computed for the
overall, per-resource error.

Another way to quantify the ability of the system to ad-
just to changes in demand is to compute the average length
of the adjustment period. We call this metric agility. As
with error, agility can be computed either for each service
using a resource (Agg) or for a resource as a whole (AR).

Adjustment-stable boundary

To compute either the agility or the two error components
requires one to locate the boundary between the adjust-
ment and the stable period inside each stage. Intuitively,
in the intervals that follow the boundary the error val-

ues are contained within a small range, with a stable run-
ning average; the intervals preceding the boundary, how-
ever, exhibit error values from a much larger range, with
a changing running average.

In our preliminary experiments we found the boundary
using the following method: First, we found the maxi-
mum and the median error for a stage. Then, starting at
the beginning of a stage and moving forward in time, we
included all intervals into the adjustment period until we
reached the one with the maximum error; then, we contin-
ued to include the intervals for as long as their error was
larger than the median error. This method works, assum-
ing that the instability period consists of a single cluster of
error values that are all higher than the error values during
the stable period, and that this cluster is fully contained in
the first half of the stage. We ensured that in our exper-
iments the stages were long enough to satisfy those two
conditions.

Although this approach was sufficient in our case, we
acknowledge that a more general definition, known to
work with all patterns of error values, still remains to
be devised. We suspect that techniques such as “change-
point detection” for time-series analysis or “transient re-
moval” for analysis of simulation data can be applied here.

Network sharing example

Consider Figure 2 for an illustration of agility analysis.
The graph shows the bandwidths achieved by a network-
bound load with three services, which were given the
same 50-33-17 minimal shares as in the CPU experiment.
In addition to the three lines corresponding to each ser-
vice (and their ideal shares shown as straight lines in the
middle), there is also a thick dark-gray line showing the
overall network bandwidth utilization. The nature of the
load is such that one service is not able to saturate the net-
work card, two services together are sometimes saturating
it, and with three services the NIC is always at its full ca-
pacity.

Due to the inherent inability of weighted fair queuing
algorithms to schedule fairly in the presence of drastic
changes in demand, such as when services start and stop,
large bandwidth fluctuations lasting 10-30 seconds occur.
These adjustment periods are shown with light-gray lines.
Agility analysis of the 3rd stage, when three principals are
sharing the network card, indicates that the adjustment pe-
riod of that stage lasts 15.8 seconds for each service. Here
is the summary, for stage 3, of the values computed using
the metrics that we proposed:

Service Asp E&Y EYS Esg
50% 158 434 54 938
33% 158 453 52 98
17% 158 2053 52 283

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

80 —

x
(=]

o
22° Adjustment period
|

Bandwidth (%)
IS

Overall
50% service —

20 -

---- 33%service -
e 17% service -

PR T L A
300 400 500 600

Time (sec)

0 100 200

Figure 2: Obtained bandwidth for a network-bound load with
three services, given minimal bandwidth shares of 50%, 33%,
and 17% and sampled in 2-s intervals. Light-gray shows adjust-
ment periods. The dark-gray line shows overall bandwidth use.
The thin straight lines show ideal shares during the 3rd stage.

In these results, the error for the stable period is sig-
nificantly lower than the error for the adjustment period.
Furthermore, the adjustment period errors differ among
services, while the stable period errors are similar (indi-
cating a scheduler trait that is unaffected by the size of
the share). The combined Egp is less revealing since it
lacks such information. As with CPU, the higher error is
associated with the smaller share.

By relating the obtained values to the ideal values,
which are visible as straight horizontal lines in stage 3, we
can conclude that the 50% service is under-provisioned
while the other two are over-provisioned. This can be ver-
ified quantitatively by computing the per-service average
error using the sum of errors instead of their absolute val-
ues, as in (1). Positive values show the magnitude of over-
provisioning and negative values show the magnitude of
under-provisioning.

3 Related Work

We complement and extend previous work by introducing
a model and metrics for evaluating how well an approach
or a system enforces performance isolation. For example,
systems such as Eclipse [2], Resource Containers [1], and
Software Performance Units [12], which were designed to
do performance isolation, can be evaluated and compared
using our approach.

Our notion of error and ideal share is similar to ser-
vice error and perfect fairness from work in the area of
proportional share scheduling [11, 3]. However, our defi-
nition of ideal share encompasses scheduling approaches
that are both work conserving and non work conserving.
Previous work has identified agility as a key attribute of

mobile systems [9]. We argue that agility is an equally
important attribute of dependable systems.

Accurate scheduling of resources has traditionally been
an important concern in real-time operating systems.
These systems host services with time constraints and
must multiplex resources to ensure that all deadlines are
met. However, real-time systems are typically ‘CPU-
centric’ in that they only provide guarantees on the avail-
ability of CPU cycles. If guarantees on other types of re-
sources are supported, these are typically probabilistic and
based on techniques such as progress monitoring [7, 10].
For example, Rialto [6, 4] relies on collected profiles to
produce CPU schedules. Real-time mechanisms tend to be
too rigid for modern applications that have a rich mix of
real-time and non-real-time considerations. The capacity
reservation paradigm in RT-MACH [8] is designed to sup-
port such a mix, but only manages user-level CPU cycles.
Lottery Scheduling [13], on the other hand, uses a prob-
abilistic strategy that can handle a variety of resources,
both in kernel and user space.

Most recently the issue of performance isolation has
been explored in the context of virtual machines [5].

4 Conclusion

In this paper we argue that performance isolation is es-
sential in shared systems used by dependable services and
that current operating systems do not allow for specifica-
tion and enforcement of sharing policies for all resources.
Moreover, we argue that there exists no satisfactory set of
metrics to measure if isolation requirements are met.

We define performance isolation as enforcement of two
policies: minimal guarantee policy and a spare capacity
policy. The former prevents uncontrollable performance
degradations, while the latter allows one to make trade-
offs between utilization and predictability of performance.
This definition covers policies ranging from strict parti-
tioning to proportional sharing of resources.

We put forth two intuitive metrics for evaluating how
well a system enforces performance isolation: accuracy
and agility. Accuracy captures how close actual allotment
of resources is to an ideal allotment under a given shar-
ing policy, while agility captures how quickly a system
adjusts to changes in resource demand.

Running workloads on Vortex, a new operating system
that supports holistic resource sharing, we demonstrate
and confirm the effectiveness of these metrics.

References

[1] G. Banga, P. Druschel, and J. C. Mogul. Resource con-
tainers: A new facility for resource management in server
systems. In Proceedings of the 3rd USENIX Symposium

(2]

(3]

[4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

on Operating Systems Design and Implementation, pages
45-58, New Orleans, LA, February 1999.

J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz. The
Eclipse operating system: Providing quality of service
via reservation domains. In Proceedings of USENIX An-
nual Technical Conference, pages 235-246, New Orleans,
Louisiana, June 1998.

A. Demers, S. Keshav, and S. Shenker. Analysis and simu-
lations of a fair queuing algorithm. In Proceedings of Spe-
cial Interest Group on Data Communication, pages 3—12,
Austin, Texas, September 1989.

R. P. Draves, G. Odinak, and S. M. Cutshall. The Rialto
virtual memory systems. Technical Report MSR-TR-97-
04, Microsoft Research, Advanced Technology Division,
February 1997.

D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. En-
forcing performance isolation across virtual machines in
xen. Technical Report HPL-2006-77, Hewlet Packard,
May 2006.

M. B. Jones, P.J. Leach, R. Draves, and J. S. Barrera. Mod-
ular real-time resource management in the Rialto operating
system. In Proceedings of the 5th Workshop on Hot Top-
ics in Operating Systems, pages 12—17, Orcas Island, WA,
May 1995.

H. Massalin and C. Pu. Fine-grain adaptive scheduling us-
ing feedback. Computing Systems, 3(1):139-173, Winter
1990.

C. W. Merecer, S. Savage, and H. Tokuda. Processor capac-
ity reserves: Operating system support for multimedia ap-
plications. In Proceedings of the IEEE International Con-
ference on Multimedia Computing and Systems, pages 90—
99, Boston, MA, May 1994.

B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton,
J. Flinn, and K. Walker. Agile application-aware adaption
for mobility. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, Saint Malo, France, Oc-
tober 1997.

D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,
and J. Walpole. A feedback-driven proportion allocator for
real-rate scheduling. In Proceedings of the 3rd Symposium
on Operating Systems Design and Implementation, pages
145-158, New Orleans, Louisiana, February 1999.

R. Tidjeman. The Chairman assignment problem. Discrete
Mathematics, 32:323-330, 1980.

B. Verghese, A. Gupta, and M. Rosenblum. Performance
isolation: Sharing and isolation in shared-memory multi-
processors. In Proceedings of the Sth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 181-192, San Jose,
CA, October 1998.

C. A. Waldspurger and W. E. Weihl. Lottery schedul-
ing: Flexible proportional-share resource management. In
Proceedings of the 1th Symposium on Operating Systems
Design and Implementation, pages 1-11, Monterey, CA,
november 1994.

	Introduction
	Performance isolation
	Sharing Policy
	Ideal Share
	Accuracy
	Agility

	Related Work
	Conclusion

