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Accurate detection of the borders of skin lesions is a vital first step for computer aided diagnostic systems. This paper presents
a novel automatic approach to segmentation of skin lesions that is particularly suitable for analysis of dermoscopic images.
Assumptions about the image acquisition, in particular, the approximate location and color, are used to derive an automatic
rule to select small seed regions, likely to correspond to samples of skin and the lesion of interest. The seed regions are used
as initial training samples, and the lesion segmentation problem is treated as binary classification problem. An iterative hybrid
classification strategy, based on a weighted combination of estimated posteriors of a linear and quadratic classifier, is used to
update both the automatically selected training samples and the segmentation, increasing reliability and final accuracy, especially
for those challenging images, where the contrast between the background skin and lesion is low.

1. Introduction

Melanoma is a common cancer in the adult population, and
accounts for a considerable number of deaths in fair skinned
people worldwide. It may arise within preexistent moles or de
novo in unaffected skin. When diagnosed at an early-stage
prognosis is excellent, the melanoma can be cured by simple
excision. However, as melanomas can be hard to distinguish
from common moles, even for experienced dermatologists,
early diagnosis is a challenge, especially for general practi-
tioners.

A recent advance in diagnosis of melanomas is the emer-
gence of dermoscopy, also known as epiluminescence micro-
scopy. Dermoscopy is a noninvasive diagnostic technique
that consists in the examination of skin lesions with a der-
moscope, which is a hand held optical device that typically
consists of a magnifying lens and a light source, used to
illuminate the skin. Usually, a transparent plate and liquid
medium is placed between the instrument and the skin,
allowing the inspection of a lesion, in the upper layers of

the skin, in great detail. This clear view of the skin can help
with diagnosing skin cancers [1].

There is a considerable variation in the appearance of
common moles and melanomas. They both appear as spots
on the skin, with diameters ranging from a few millimeters
up to several centimeters. Color typically is brown or black,
but red and blue also exists. In most situations the pigmented
lesion can easily be identified from the normal surrounding
skin which appears lighter.

Delineation of the contour of pigmented skin lesions
(segmentation) plays a relevant role for automatic feature
extraction, where the purpose is automatic diagnosis of
melanomas. Image segmentation is the process of adequately
grouping pixels into a few regions, whose pixels share some
similar characteristic, like color, texture, or shape [2]. Auto-
mated analysis of edges, colors, and shape of the lesion relies
upon an accurate segmentation and is an important first
step in any computer aided diagnosis system. Indeed, most
commercially available systems show a great variability in
reliability and specificity in the diagnostic process, and
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the image segmentation also varies greatly [3]. Irregular
shape, nonuniform color, and ambiguous structures make
the problem challenging [4]. The presence of hairs and skin
flakes are additional undesirable features that may interfere
with segmentation. An additional complication arises in the
validation of any technique, as there is no gold standard to
refer to. Even trained dermatologists differ significantly when
delineating the same lesion in separate incidents [5], so val-
idation of any technique has to be treated with care. Indeed,
an important feature of any segmentation procedure must
be reproducibility. Even under the best effort to counter this,
different images of the same lesion will differ slightly in illu-
mination, rotation, and shear due to the flexibility of the skin.

Supervised segmentation methods are those methods
that require input from the analyst, such as examples of
skin and lesion pixels, a rough approximation of the lesion
borders to be optimized, or a final refinement of a proposed
solution [6–8]. Generally, in such settings, the user needs
to provide a priori input for each particular image being
analyzed. This task relies on the experience and knowledge
of the user. Although this kind of approach may be very
effective, the process may be particularly time consuming
for health care professionals. As an alternative, automatic
segmentation methods (also called unsupervised methods)
attempts to find the lesion borders without any input from
the analyst and can, therefore, be applied even by persons
who are not trained in dermatology. Several approaches have
been proposed in this direction. Most common automatic
segmentation algorithms rely on techniques based on his-
togram thresholding [7, 9–12], where most commonly RGB
information is mapped to a one or two-dimensional color
space through choice of one of the channels, luminance,
or principal component analysis. Other approaches include
clustering [4, 13, 14], region-based techniques [7, 15, 16],
contour-based approaches [7, 17–20], genetic programming
[21], and segmentation fusion techniques [22]. A recent
overview of methods applied to segmentation of skin lesions
in dermoscopy images suggest that clustering is the most
popular segmentation method, probably due to the availabil-
ity of robust algorithms [6].

The algorithm proposed in Celebi et al. (2008) [16] uses
a region growing and merging technique called statistical
region merging (SRM) [23] to segment the image. SRM was
proven to be a robust segmentation algorithm for segmen-
tation of color images. In [16], SRM achieved better results
on segmentation of skin lesions when compared to five auto-
mated methods: the dermatologist-like tumor extraction
algorithm [15], the JSEG segmentation algorithm [24], the
mean-shift clustering [4], and the orientation-sensitive fuzzy
c-means [13]. The recently proposed automatic adaptive
thresholding (AT) by Silveira et al. (2009) [7] segments the
image by comparing the color of each pixel with a threshold.
The algorithm uses entropy to find the most suitable RGB
channel for discrimination, and a pixel is classified as lesion
if it is darker than the threshold. Distinct rules are proposed
to compute the threshold for the cases of bimodal or single
component histograms.

Currently, several instruments designed for computer
aided diagnosis (CAD) of skin lesions are commercially

available. Despite the use of powerful and dedicated video
cameras, the cost related to the acquisition material [25] or
the actual usefulness of these instruments for dermatologists
practising [3] may be the reasons that prevent their wide
diffusion to physicians.

At the other hand, current limitations of state-of-art
CAD instruments motivates the development of new algo-
rithms for analysis of skin lesions and simple data acquisition
options. Following an approach that might be practical
and intuitive for dermatologists, the images considered in
this study are taken by a consumer digital camera with a
dermatoscope attached. This simple image acquisition setup
was considered for instance in [26–28]. As a usual procedure
for dermatologists, an alcohol-based contact fluid liquid
between the skin and the dermoscope is used during the
acquisition of the images. This minimizes the formation of
air bubbles, reducing artifacts.

Although several algorithms for unsupervised image
segmentation have been proposed in the literature, they do
not necessarily perform well for the specific problem of
skin lesion segmentation, and it appears unlikely that one
particular method could outperform all other segmentation
methods for any lesion. Our idea is to exploit (a) the fact that
skin lesions are approximately located in the center of the
dermoscope during the acquisition process and (b) the color
characteristics of typical lesions and integrate such informa-
tion into a reliable framework for automated segmentation
of skin lesions. This results in an algorithm for segmentation
based on classification, where the initial training data set
is selected as portions of the image based on these initial
assumptions, and the training set is iteratively expanded.
This training and classification occurs within one image only,
the training set being small portions of the image called seed
regions. Thus, we arrive at our proposed algorithm, which
we will denote iterative classification Segmentation (ICS).

The proposed segmentation method introduces novelties
in the current state-of-art of methods designed specifically
for segmentation of dermoscopic skin lesions.

(1) An automated method is proposed to select small
seed regions to represent both the background skin
and lesion. In the proposed approach, seed regions
are used for initialization of an iterative classification
framework. This differs from previous studies, in
some of which seed regions are manually placed for
modeling the background skin [4], or others, where
it is assumed that the corners of the lesion images
are good estimates for the background skin [16]. We
believe our approach provides more flexibility in the
search for suitable regions despite its simplicity.

(2) The lesion segmentation problem is treated as a bina-
ry classification problem. A hybrid strategy that com-
bines classification posterior probability estimates
from two distinct classifiers is presented. For each
particular lesion, the best choice between a linear or
quadratic classifier (or a weighted combination of
both) is automatically set by optimization of the clas-
sification accuracy. The proposed classifier proved to
be valuable in the context of iterative classification.
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(3) An iterative approach is used to update the param-
eters of the classifiers and the final segmentation. In
contrast to semisupervised learning techniques that
make use of both labeled and unlabeled data for
training [29], where typically high confident samples
are iteratively added to the initial set of ground
truth manually labeled samples; here, the proposed
method attempts to use only automatically selected
samples with no supervision involved. It appears of
interest to understand if such kind of approach would
be valuable to solve the problem of segmentation of
skin lesions.

(4) The proposed method makes specific hypothesis for
the segmentation problem of interest, allowing the
design of safeguard criteria for driving the unsuper-
vised update of training samples. We believe that
the idea might also be successfully extended to seg-
mentation of other kind of medical images, provided
that the hypothesis, notably the a priori location of
and relative color of elements of interests, is properly
defined.

(5) As with most of methods dealing with image pro-
cessing, there are inevitably parameters that must be
set by the user. Throughout this paper, we attempt
to use parameters defined in length units as much
as possible, thus using the magnitude of a physical
quantity. Since in practical applications, the resolu-
tion of the equipment used for image acquisition can
be measured, the parameters can be easily converted
to pixel unities for image analysis. Surprisingly, we
observe in the literature that most papers dealing
with segmentation of skin lesions cite the relevant
algorithm parameters in pixels, or a value relative to
the image size, often without reference to the image
resolution. This complicates unbiased implementa-
tion of alternative techniques for comparison pur-
poses. Hopefully, our approach might help other
researchers using different equipment.

The remaining of the paper is organized as follows; in
Section 2, we introduce the ICS framework. Section 3 out-
lines the postprocessing steps allowing the final segmenta-
tion. Section 4 presents experimental evidence of the com-
petitiveness of the ICS algorithm for segmentation of skin
lesions using dermoscopy images. We conclude with final
remarks in Section 5.

2. Methodology

The proposed ICS framework is characterized by three main
processing stages.

(1) Initialization: automatic search for seed regions
under assumptions on the approximate location of
the lesion and the usual lighter nature of the skin
color compared to the lesion. The seed regions pro-
vide training samples for the binary classification
between background skin and lesion.

(2) Classification: two distinct base classifiers are made
available to the classification procedure, specifically a
linear and quadratic classifier. The decision of which
classifier to use for each particular lesion, or possibly
a combination of both classifiers (weighting), is
automatically decided using optimization of the clas-
sification accuracy. This classification strategy can be
seen as a hybrid classifier, here defined in terms of the
combination of the posterior classification probabil-
ities. The classification is iterated, facilitating robust
selection of new training samples and segmentation.

(3) Iteration: the automatically selected training samples
are updated and the classification is repeated itera-
tively until convergence.

A flowchart of the proposed ICS algorithm is depicted
in Figure 1. A detailed description of the assumptions and
the relevant processing stages is provided in Sections 2.2–2.5.
The postprocessing that leads to the final segmentation mask
is presented in Section 3.

2.1. Preprocessing. The RGB image is first processed to the
perceptual uniformity CIE L∗u∗v color space. The L∗u∗v
color space attempts perceptual uniformity, and it is exten-
sively used for applications such as computer graphics and
was previously used for segmentation of skin lesions [13].

2.2. Assumptions. Specific assumptions about the dermo-
scopic image acquisition and the colors of skin and lesion
are used for the initial automatic selection of seed regions, as
described below.

2.2.1. Image Acquisition. We assume that at least part of the
lesion is located inside the circular spatial domain d1 =
{r ≤ 5 mm}, where r is the radius of a disk centered in the
image (r = 5 mm corresponds to the red circular ring in
Figure 2). In practice, this assumes that some care was taken
during the acquisition of the image. The assumption is not
very stringent: as it will be described in Section 2.3, only a
small part of the lesion needs to be located inside this spatial
domain. When the lesion is relatively small, the domain d1

might enclose the entire lesion.
In a similar way, we assume that in the remaining part

of the imaged area, the spatial domain d2 = {5 mm <
r ≤ �}, where � is the radius of the entire circular imaged
area acquired using the dermatoscope (with our equipment,
� ≈ 8.7 mm), a few small skin regions, possibly spatially
homogeneous, are available. In general, this should be true,
except for big lesions covering the entire image. For skin
lesions covering the full dermoscopic area, (i.e., ≈240 mm2

with the current dermatoscope), segmentation between skin
and mole is not applicable. From a medical point of view, the
size of a lesion is itself indicative of further medical attention,
but since segmentation is meaningless in such cases, we will
ignore these in the remainder.

2.2.2. Skin Color. An a priori assumption regarding the
color of both skin and lesion areas is necessary to initialize
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Figure 1: A flowchart of the proposed ICS algorithm showing the main processing modules.

the unsupervised (automatic) selection of training samples.
We assume that the lighter areas in d2 are likely to be skin and
those areas in d1 that differs most, in a statistical sense, from
the skin correspond to lesion.

The statistical difference is here computed measuring
the Euclidian distances in the Luminance component of the
calibrated RGB image processed to the CIE L ∗ u ∗ v color
space. As will be shown later in experiments (in Figure 3),
the location of the seed regions using only the Luminance
component proved to be robust enough to the great majority
of lesions analyzed.

2.3. Stage1: Initial Unsupervised Selection of Training Samples

2.3.1. Skin Samples. The peripheral spatial domain d2 is
divided into four quadrants. In each quadrant, we search for
a small seed, a box of size wskin × wskin pixels corresponding
to the lighter colored areas by looking for the regions with
maximum average value of the pixel’s luminance component.
According to the assumption in Section 2.2.2, these regions
are likely to be skin portions. We suggest wskin = 1.0 mm. The
skin seed regions corresponds to the green boxes depicted in
green in Figure 2.

Once the four skin seeds are positioned, in order to
further increase the robustness of the process, we select and
merge only the three seeds that correspond to the regions
that are statistically most similar by testing all three vs
one combination of regions (again, measuring the Euclidian
distance of the luminance component in the two sets). The
pixels located in the seed regions are the initial skin training
samples. Excluding one out of the four seeds reduces the risk
of incorporating regions that are contaminated by artifacts.

2.3.2. Lesion Samples. Once representative initial skin sam-
ples are identified (Section 2.3.1), we search in the central
spatial domain d1 for the box of size wmole × wmole whose
average pixel values in the luminance component has the
largest Euclidian distance from the initial skin training sam-
ples average value.

Depending on the size of the box compared to the size
of the lesion, skin pixels may be present inside the box.

Intuitively, a bigger box over the lesion would better capture
the variability of the lesion, but it increases the probability of
including skin pixels, so a tradeoff must be made. We suggest
wmole = 1.5 mm. Examples of this initial location for the
lesion seed are the blue boxes shown in Figure 2.

For illustrative purposes, Figure 2(b) includes the case
of a challenging lesion characterized by a brighter color
compared to the background skin. In this particular example,
the proposed method was able to accurately position both
seed regions.

2.4. Stage 2: Classification. Once the initial training samples
are automatically selected using the procedure described in
the previous section, the samples can be used for “super-
vised” classification. Note that the initial training samples
were obtained in an automated way using only assumptions
about the images. Notice, however, that since the initial
training samples were obtained from an automatic strategy, a
mechanism aiming at improving the segmentation accuracy
and the confidence of the automatic training samples selec-
tion would be desirable.

From a classification perspective, it is worth mentioning
that the initial seed regions (the automatically selected skin
and mole box regions in Figure 2 using the luminance L com-
ponent) are likely to be perfectly separable. This is because
the seeds are found by looking for bright pixels on the
periphery and the most dissimilar pixels in the center. There-
fore, it is likely that the decision boundary will be poorly
specified and hence unlikely that a quadratic classifier could
initially outperform a simple linear classifier. However, as
new training samples are iteratively added to the model, and
using all the L∗u∗v color components, one could expect that
the decision boundaries between both skin and lesion would
become progressively better defined in the feature space and
potentially allowing a quadratic classifier to benefit from the
higher flexibility in placing the discriminating boundaries.

Because of their simplicity and fast calculation, linear
discriminant analysis (LDA) and quadratic discriminant
analysis (QDA) [30] are initially considered as base classifiers
for the binary classification problem. QDA fits multivari-
ate normal densities with covariance estimates stratified by
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(a) Malignant melanoma

(b) Lesion lighter than the background skin

Figure 2: (Left) The small automatically selected green boxes correspond to the skin seed regions used as initial training. The location
is based on the brightest luminance in each quadrant. The blue box corresponds to the seed region for the lesion, selected as the region
statistically most different from the skin seeds. The three middle images show intermediate iterative steps at iterations j = {1, 2} and the
final iteration which is j = 7 in (a), j = 3 in (b). In these maps, yellow and blue pixels are those classified with high confidence as skin
and lesion, respectively. The maps include also red and green pixels, corresponding to those pixels classified with low confidence as skin and
lesion, respectively. The white contour in the rightmost figure is the final border obtained after postprocessing.

lesion and skin groups, when LDA uses a pooled covariance
matrix estimation. We also considered using a nonparamet-
ric classifier (specifically, the neatest-neighbor classifier), but
due to the computational burden it was discarded. LDA can
be seen as a particular case of the QDA classifier, raising the
question if there is some added value in considering the use
of a linear classifier in the proposed method. In preliminary
experiments, we found scenarios where the simple linear
choice appears to be preferable, for instance, in cases where
the seed regions corresponding to skin are placed on very
homogenous areas. This areas typically exhibit very low
variance, compromising the estimation of the covariance
matrix for the skin class in QDA. The low variance may
result also from the placement of the seed in regions that
does not provide an accurate representation of the statistics
of all the background skin (poor location). If the quadratic
classifier is used, despite the perceptual small differences
of color between the seed region for skin and the whole
background skin, it appeared that skin portions would be
wrongly classified as high confident skin (pλk(y = 1 |
x) > 0.98). This undesired behavior would compromise
the iterative update of confident training samples, especially
for the lesion. Especially at the beginning of the iterative
classification, it appears to be more prudent to use of linear
classifier. As more samples are added, a better estimate of the
class statistics would be a benefit for the quadratic classifier.

The above considerations suggests that the use of an iter-
ative procedure would be a reasonable choice for update of
the initially selected training samples, and ideally, the choice
between LDA and QDA should be automatic in the iterative
process.

Our proposed methodology for selection between LDA
and QDA for classification is very simple in nature. Assume
that the classification output for a given pixel x is y = 1 for
pixels classified as skin and y = 2 for lesion. We consider a
class of hybrid posterior estimates

pk
(
y = Ω | x) = λk p

QDA
k

(
y = Ω | x)

+ (1− λk)pLDA
k

(
y = Ω | x),

(1)

where 0 ≤ λk ≤ 1. Given the training data, our aim is to
choose a value of λk that maximizes classification accuracy of
classes Ω = {1, 2} at each iteration k = {1, 2, 3, . . . ,n}.

Without ground-truth samples, estimating classification
accuracy is a challenging task. We rely on the train-
ing samples from the automatically placed seed regions.
Such samples are dived in two spatially disjoint subsets. One
subset is used to train LDA and the other QDA. In practice,
one and a half of the three seed regions corresponding to
skin, and half of the mole seed region are used in each
classifier. This reduces the spatial correlation between the
samples used in both classifiers. For an easy implementation
of (1), the interval [0− 1] for λk is finely partitioned and the
value of λk that provides the best classification is chosen. For
each value of λk , we compute the classification accuracy for
both the skin and the lesion classes and retain the minimum
value. At least, half of the samples remained unseen by each
classifier, acting like independent test samples. An important
point is that in case of identical classification accuracies
for distinct values of λk , the lowest value of λk is selected,
privileging the simpler LDA. Typically, this is the case in the
first iterations.
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(b) 22 malignant lesions

Figure 3: Average accuracy (η) of the detected seed regions for the images in the test set, according to the diagnosis. For visualization
purposes, instead of the number of lesions, the vertical axis shows the corresponding percentage out of 100 benign and 22 malignant lesions.

2.5. Stage 3: Iterative Update of Training Samples and Classifi-
cation. After the initial binary classification, new additional
samples are added iteratively to the classification process to
better estimate the parameters of the classification model. In
order to keep classification stable, it is desirable to focus on
those skin and mole pixels classified with high confidence:
those pixels classified with an estimated a posterior prob-
ability higher than the predefined threshold pλk(y = Ω |
x) > τ. In our experiments, we set τ = 0.98, which seems
a reasonable empirical choice. In the case of the background
skin, any position in the image classified as skin with
high confidence is eligible for providing additional training
samples. In the case of the lesion, an additional safeguard
constraint is imposed. The idea is to eliminate artifacts and
lesion pixel candidates from small isolated regions that are
possibly not representative. For this purpose, mathematical
morphological opening [31] is applied to regions classified as
mole in the input binary mask. In our experiments, opening
is applied using a disk of diameter d = 1 mm as structural
element. In the sequence, the continuous subregion resulting
from opening that best encloses the initial lesion seed box is
selected. Lesion pixels classified with high confidence inside
this subregion are eligible for update. This restriction is not
applied for the segmentation itself but only for the selection
of training samples.

The classifiers are, thus, iteratively trained using those
samples from the original seed regions plus an additional
set of training samples randomly selected at each iteration.
For practical computational, the maximum number of added
samples for each class is limited to the corresponding number

of samples contained in the original seed regions. Thus, at
each iteration, half of samples are the original, and half are
updated with high confident ones.

The classification and training sample selection is repeat-
ed until convergence. The default stop criteria of the iterative
update of training samples is defined as

∣
∣
∣
∣1− mk+1

mk

∣
∣
∣
∣ < 0.01, (2)

where mk is the number of pixels classified as lesion with high
confidence at iteration k.

3. Postprocessing

The final binary segmentation mask might contain a certain
number of disjoint regions classified as lesion. Ideally, the
segmentation procedure is expected to produce two inde-
pendent regions: lesion and background. Since these regions
are rarely homogeneous, segmentation can classify multiple
isolated objects as lesion. To obtain a single lesion object, a
set of postprocessing steps are applied.

First, mathematical morphological erosion [31] is ap-
plied to the binary mask obtained from classification. Ero-
sion is commonly used in image processing to eliminate
small isolated regions and artifacts. In our experiments, ero-
sion is applied using a disk of diameter d = 0.12 mm as
structural element. The size of this element seems to be a
safe choice [32] when the intention is to eliminate potential
isolated hairs classified as mole pixels over the background
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skin. Morphological dilation [31] is applied to the resulting
“cleaned” image. In order to better preserve the fine details
of the border, otherwise eliminated by the morphologi-
cal operations, a slightly bigger disk element of size d =
0.3 mm is used for the dilation, and the resulting image is
multiplied pixelwise by the input binary mask obtained from
classification.

In sequence, the remaining objects in the generated bi-
nary mask that are spatially closer than a given threshold are
connected. The idea is that small scattered objects classified
as mole could be part of a continuous subregion, that
eventually could be connected to a big segment, if close
together. Connecting regions classified as mole might also
be useful for those patients with light-colored hairs imaged
over the lesion, likely to be classified as background skin,
thus “breaking” the main lesion into subregions during the
classification. Again, this can be easily done using a classical
spatial image filtering procedure. A Gaussian filter is selected
for our experiments. The bandwidth is set identical to the
radius used in the above erosion procedure, and the empiri-
cal selected value 0.1 is used as threshold for generating the
final binary mask containing a certain number of subregions.

Each contiguous subregion i labeled as lesion is given a
score ni. If each region i is labeled Ri each region’s score is
given by

ni =
∑

u,v∈Ri

f (u, v), (3)

where f (u, v) is the two-dimensional Gaussian function

f (u, v) = exp

{

−
[

(u− uo)2

2σ2
u

+
(v − vo)

2

2σ2
v

]}

, (4)

where (uo, vo) are the coordinates of the center of the disk
image, and σ is the Gaussian bandwidth. This gives each
region a score that increases with size and proximity to the
centre, and penalizes regions that are small or off centre. In
our experiments, we set σu = σv = 2.5 mm. This particular
choice of σ gives over 95% of the total weight to regions
(at least partially) centered in a disk of diameter 10 mm. In
practice this postprocessing step allows to eliminate poten-
tially disconnected peripheral objects classified as lesion and
serves as a guide allowing the doctor to select the lesion to be
analyzed by framing the lesion at the center of the picture.

Except for the region with largest score ni, all remaining
objects labeled as lesion are discarded. Any holes in this
region are filled. It is worth mentioning that although
“single” lesions are more common, there exists also multi-
focal lesions. For such particular cases, the current default
preferred behaviour of our algorithm is to outline the larger
individual lesion.

Finally, the border of the lesion is drawn around the sub-
region with the highest score. The Gaussian filter used in the
postprocessing renders the contour visually smooth, as usu-
ally is the output of hand-drawn borders by dermatologists.
See the examples in Figure 2. However, when the border line
is intended to be used for computing features for diagnosis
in a computer aided diagnosis system, smoothing should be
used carefully, since it may be removing information about

the contour irregularity, which is an important feature, for
example, for the ABCD Rule of Dermatoscopy [33].

4. Experiments

4.1. Data Acquisition. The data used in this study are dermo-
scopic images acquired by a portable dermoscope (Dermlite
Pro II HR) attached to a digital camera (Ricoh GR, Ricoh
Company Ltd, Tokyo, Japan). The equipment acquires a
circular imaged area of diameter about 17.4 mm (1650
pixels), spatial resolution of about 2400 dpi and 8 bits per
channel color depth. The images have been corrected for
nonuniform illumination using calibration color standards.
A 5 × 5 median filter was applied for noise reduction, but
no further preprocessing was used for removing additional
artifacts. As mentioned in the introductory section, the
images considered in this study were acquired using an
alcohol-based contact fluid liquid between the skin and the
dermoscope, which minimizes formation of air bubbles in
the images. If bubbles were present, it might call for an ad
hoc preprocessing algorithm to remove light-colored areas
due to reflection in the image that might compromise the
skin modeling and location of the seed lesions, with loss of
accuracy [6].

A set of 122 images of pigmented lesions divided between
100 benign and 22 malignant lesions (i.e., melanomas)
were used for clinical evaluation of the segmentation. These
images were randomly selected from a larger database of der-
moscopic images and not used during development of the
ICS framework. Copies of the images were printed in 178 ×
178 mm paper format and independently given to three
dermatologists, who were asked to manually draw the con-
tours of the skin lesions. No additional information, like the
histopathological diagnosis, was given to the dermatologists.
After careful digitalization, the contour obtained from der-
matologists was stored for reference purposes.

It is worth noticing that delineation of the borders of
lesions is challenging for dermatologists and is not part of the
daily routine, and results can greatly vary between doctors.
Essentially, doctors are trained to differentiate between be-
nign and malignant lesions, not necessarily in the specific
task of border location.

4.2. Measures for Border Detection Evaluation. Qualitative
and quantitative approaches are the most common strategies
used in literature for the purpose of evaluation of the
performance of border detection in dermoscopic images.

Qualitative evaluation of lesion segmentation is a passive
strategy in the sense that a candidate border is shown to a
dermatologist, who is asked to provide a score or grade to
the solution (e.g., good, acceptable, poor, and bad) based on
visual assessment. Examples include [19, 34].

In quantitative evaluation, the role of the dermatologist is
reversed. In this context, the dermatologist is asked to man-
ually draw the border around the lesion, and the manually
drawn border is used as ground truth. Assessing accuracy of
an alternative segmentation requires definition of a similarity
score between ground truth and a candidate border. Among
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the many scores are the overlap-based agreement ratio in
[35] that uses the logical operation exclusive disjunction
(symbolized XOR), the sensitivity and specificity, precision
and recall, true positive rate, false positive rate, pixel
misclassification probability [36], the Hausdorff and the
Hammoude distances in [7], the weighted performance
index [37], among others. A common fact with these scores is
that they are computed from paired comparisons of borders.
Recently an extension considering simultaneous comparison
with multiple reference ground-truths (obtained by several
dermatologists) was examined in [38].

In this paper, we will focus on three of the previous
scores. In addition, an alternative score derived from the
Hausdorff distance computation will be introduced. The
first two scores considered are the sensitivity and specificity.
Sensitivity and Specificity are statistical measures of the
performance of a binary classification test, commonly used
in medical studies. In the context of segmentation of skin
lesions, sensitivity measures the proportion of actual lesion
pixels which are correctly identified as such. Specificity
measures the proportion of background skin pixels which are
correctly identified. Given the following definitions:

TP: true positive, lesion pixels correctly classified as
lesion,

FP: false positive, skin pixels incorrectly identified as
lesion,

TN: true negative, skin pixels correctly identified as skin,

FN: false negative, lesion pixels incorrectly identified as
skin,

and the number of pixels (#) in each of the above categories,
the sensitivity and specificity are given by

sensitivity = #TP
#TP + #FN

,

specificity = #TN
#TN + #FP

.

(5)

The third score considered is the Hausdorff distance
defined as follows. Let M = {m1,m2, . . . ,mz} and A =
{a1,a2, . . . ,an} denote the set of points belonging to the
manually and automatically drawn contours M and A,
respectively. The distance from mi to its closest point in A
is given by

d(mi, A) = min
j

∥
∥
∥mi − aj

∥
∥
∥. (6)

The Hausdorff distance is the maximum of the distance
to the closest points between the two curves,

dH = max

{

max
i

d(mi, A), max
j

d
(
aj , M

)
}

. (7)

We convert dH from pixels to millimeters for easier interpre-
tation.

The forth and last score that will be considered is
also based on the distance between the ground truth and

candidate contour. Instead of taking the overall maximum
value of the distance between contour points, as done in (7),
we will compute the fraction of the contour pixels with an
error lower than a predefined threshold τ

e(τ) = 1
n + z

⎛

⎝
z∑

i=1

I(d(mi, A) ≤ τ) +
n∑

j=1

I
(
d
(
aj , M

)
≤ τ

)
⎞

⎠,

(8)

where the indicator function I(·) = 1 when the condition is
satisfied, 0 otherwise.

The metric e(τ) is convenient in the sense that it
allows the analyst to set an error tolerance during the
comparison of a candidate border and the ground-truth
reference. What is computed in (8) is a ratio of contour
pixels matched below the error threshold tolerance. e(τ) is
robust to the presence of local high disagreement between
contours (outlier distances). For τ ≥ dH , e(τ) = 1, and we
should therefore set τ < dH . Since the value of dH is different
for each lesion, and the disagreement between contours
usually depends on how easy or difficult is the lesion to
be segmented, a tradeoff value for τ should be set. In our
experiments, we set τ = 0.5 mm. This applies for all lesions,
and we belive it to be a reasonable tolerance for assessing
the accuracy of the location of the contour of lesions seen at
the high magnification provided by dermoscopes. In contrast
to dH , a higher e(τ) score, indicates a better agreement of
contours.

To conclude this section, it is worth noticing than when
the sensitivity and specificity are computed, all pixels in the
binary segmentation masks contribute to the final result. The
Hausdorff distance, and the ratio of border samples with an
error lower than the above threshold τ = 0.5 mm used in
(8), are complementary scores to sensitivity and specificity,
that are more oriented towards the quantification using the
magnitude of a physical quantity as a measure of accuracy
and tolerance of segmentation.

4.3. Algorithm Settings and Benchmark. During the classifi-
cation, equal priors were assumed for skin and lesion. In
order to speed up computation, all images were downsam-
pled to 826× 826 pixels using bilinear interpolation [39].

For benchmarking, both unsupervised (automatic) and
supervised segmentation methods are considered.

4.3.1. Fully Automatic Segmentation Methods. The first algo-
rithm considered for benchmark was proposed in Celebi
et al. (2008) [16]. The approach uses a region growing
and merging technique called statistical region merging
(SRM) [23] to segment the image. The SRM-based approach
requires estimation of the color of the background skin. In
our implementation, instead of placing four boxes at the
corners of the image, as originality proposed, we used the
location of the seed regions found by ICS to model the
background skin. In practice, this avoids ambiguity, since the
results would otherwise depend on how a square is cropped
from the circular sector provided by dermoscopes, specially
for lesions covering a large portion of the dermoscope.
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The light-colored regions, that is, the regions whose
mean color has a distance <60 to the background skin color
are eliminated. The final result is obtained by removing the
isolated regions and then merging the remaining regions,
followed by a postprocessing stage [16]. SRM has an internal
parameter Q that makes it possible to control the coarseness
of the segmentation. Higher values of Q result in finer
segmentation and thus the generation of more regions [23].
Specific details about the setting of the parameter Q are not
reported by Celebi et al. in [16]. Using a trial and error
procedure, a few candidate values for the parameter Q (as
suggested in [23]) were applied to images from an indepen-
dent training set. Q = 32 was found to be a reasonable
choice. Clearly, a more in depth search using a more objective
criterion for setting the optimal value of Q might lead to
slightly different SRM results.

The second automatic algorithm considered for bench-
mark purposes is the adaptive thresholding (AT) recently
proposed by Silveira et al. (2009) in [7]. AT performs seg-
mentation by comparing the color of each pixel with a
threshold τ. A pixel is classified as lesion if it is darker than
τ. First the algorithm search for the RGB channel which
allows the best discrimination. It is assumed that the entropy
provides the answer, and the channel with maximum entropy
value is selected. In most dermoscopic images, the blue
channel is selected. The histogram of the automatically
selected color component is computed. For bimodal his-
tograms, the threshold is automatically computed as the local
minima between the maxima, plus a small offset to account
for quantization issues. When the histogram has a single
component, the threshold is obtained from the 5% percentile
color of a squared region located at the center of the image,
plus a constant offset. The default offset values presented in
[7] are used in our implementation.

4.3.2. Supervised Segmentation Methods. As mentioned in
the introductory section, supervised methods implies user
interaction during the segmentation process. The way super-
vision can be used varies a lot. Supervision could be used
in the initialization of the algorithm, or alternatively, at the
end of the process, allowing for instance user interaction
for manual correction of a proposed solution. Different
algorithms are available in literature. For instance, in [7], the
authors consider three edge-based methods that require only
two mouse clicks for initialization. Very promising results are
reported. In our study, however, we will prefer to deal with
approaches more oriented to pixelwise classification along
the lines of the proposed ICS method.

It is important to stress that in general a direct com-
parison between supervised and nonsupervised methods
is unfair. Supervised methods are expected to outperform
unsupervised methods, since they are given additional input
information. But the reason why the proposed automatic
ICS is compared with supervised methods in this paper has
an important motivation: we would like to estimate how
well a classification algorithm could perform if representative
ground-truth (manually labeled) skin and lesion samples
were used for training purposes.

In order to make the supervised analysis more trackable,
a few practical experimental simplifications are done. First,
we consider an estimated ground truth, given by the
pixelwise majority voting of the independent segmentation
masks provided by the three dermatologists (Section 4.1).
In addition, the image is randomly sampled with a ratio
corresponding to 1% of the total amount of pixels. Although
low, this ratio provide a visually dense sampling of the image
(≈22 pixels/mm2) that, given the high spatial resolution of
the dermoscopic image, typically allows the selection of
thousand of samples for both the background skin and the
mole class.

Three supervised classifiers will be used for the seg-
mentation (binary classification) task: the classic linear and
quadratic discriminant analysis, LDA and QDA, respectively,
and the support vector machines classifier (SVM) [40].
The SVM kernel used is the Gaussian radial basis function
(RBF). The regularization term in the formulation of SVM
and the kernel bandwidth are set using a traditional grid-
search procedure with maximization of the 10-fold cross
validation accuracy. Both LDA and QDA are also available
in the proposed ICS algorithm. SVM is a nonparametric
method based on a mathematical framework and presents
several advantages compared to other pattern recognition
methods, including the ability to handle large numbers or
predictors with relatively small sample. Diagnosis of skin
lesions is one among the many examples of use of SVM
[41].

4.3.3. Postprocessing. In order to minimize differences in the
final border location due to differences introduced by specific
postprocessing choices, mainly related to the criteria of
exclusion of isolated regions and smoothing applied to draw
the final border, the postprocessing discussed in Section 3
was applied to all the automatic and supervised segmentation
methods, allowing a fair comparison.

4.4. Experiment 1: Evaluation of the Accuracy of the Automatic
Selection of the Seed Regions. The location hypothesis that
allows the initial sample selection for the proposed iterative
segmentation algorithm plays a key role in the methodology.
Intuitively, a good initialization increases the chance of a
good final segmentation. In this first experiment, the interest
is to experimentally verify if the proposed algorithm is able to
accurately locate the skin and mole seed regions. For location
accuracy assessment, here, the segmentation masks provided
by the three dermatologists are combined to generate a
reference map. For each image, we focus on the regions of
agreement, where pixels are labeled as mole or skin by at
least two of the three dermatologists. Ideally, we would like
the algorithm to automatically place the initial small seed
regions inside this “safe regions”. How it deviates from this
ideal situation is then investigated in Figure 3. This figure
shows the percentage of cases in the test set, where the seed
regions are correctly located according with distinct accuracy
levels. For assessment purposes, the lesions are grouped
by diagnosis. For each lesion, the individual accuracies of
both skin and mole seed regions are computed as the ratio
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Table 1: Average accuracy of segmentation, quantified by the sensitivity (%), showing the performance of the proposed ICS method against
alternative solutions. Borders manually drawn by three dermatologists, and their agreement, are considered as the ground-truth reference
for accuracy assessment.

Manual by doctors Fully automatic Supervised

Ref. D1 D2 D3 SRM AT ICS LDA QDA SVM

D1 — 86.9 85.4 79.2 87.3 91.8 93.4 95.3 92.2

D2 89.5 — 87.1 79.6 87.1 93.4 94.3 96.8 93.6

D3 92.7 91.0 — 82.1 90.0 94.0 96.1 97.7 95.1

All 95.9 93.5 93.2 81.2 89.2 94.1 97.0 98.5 96.0

Table 2: Average accuracy of segmentation, quantified by the specificity (%), showing the performance of the proposed ICS method against
alternative solutions. Borders manually drawn by three dermatologists, and their agreement, are considered as the ground-truth reference
for accuracy assessment.

Manual by doctors Fully automatic Supervised

Ref. D1 D2 D3 SRM AT ICS LDA QDA SVM

D1 — 98.3 98.4 98.0 91.6 96.7 97.6 96.9 97.7

D2 96.1 — 97.6 98.3 90.3 96.3 96.9 96.2 96.8

D3 96.4 97.9 — 98.0 90.7 96.2 96.8 96.2 96.8

All 97.4 98.9 99.1 98.2 90.8 96.4 97.3 96.7 97.4

Table 3: Average accuracy of segmentation, quantified by the percentage of contour with an error≤0.5 mm, showing the performance of the
proposed ICS method against alternative solutions. Borders manually drawn by three dermatologists, and their agreement, are considered
as the ground-truth reference for accuracy assessment.

Manual by doctors Fully automatic Supervised

Ref. D1 D2 D3 SRM AT ICS LDA QDA SVM

D1 — 84.5 87.1 75.7 75.0 81.1 86.3 81.8 88.8

D2 84.5 — 86.8 76.8 74.8 84.5 88.2 84.8 90.1

D3 87.1 86.8 — 78.5 77.1 82.7 88.5 83.3 90.6

All 92.6 91.7 95.5 78.7 77.1 84.8 91.5 87.5 94.4

between pixels correctly classified and the respective size of
the seed. The “skin + mole” label in Figure 3 refers to the
average value. Results in Figure 3 shows that for over 90%
of the 122 dermoscopic lesions analyzed the seed regions are
positioned in locations where at least two out of the three
dermatologists would agree as accurate background skin or
mole regions.

4.5. Experiment 2: Clinical Evaluation. When it comes to
computing performance scores for assessment of the accu-
racy of the segmentation of skin lesions, like the scores
presented in Section 4.2, the reference segmentation to be
used as ground truth must be established.

According to previous studies, the use of the borders
provided by a single dermatologist as ground truth should
be avoided, since the solution for the same lesion by other
dermatologists would exhibit a natural variability. A detailed
discussion about this important point is beyond the scope
of this work, but the reader is referred to [36, 42] for more
details.

For the evaluation of the proposed method, the borders
provided by three dermatologists are considered individually.
An additional segmentation mask, generated by the pixelwise
agreement in terms of the majority voting of the solutions

provided by the three dermatologists is computed. The use
of this additional segmentation is a simple attempt to
obtain a more accurate estimation of the underline ground
truth. Majority voting attributes the same weight for each
dermatologist, which seems a reasonable hypothesis given
their similar professional training. The segmentation mask
generated by combination of the single solutions provided
by dermatologists is expected to be more accurate than each
of the individual solutions, because each manual solution is
drawn independently, with an expected accuracy better than
50% (random guess). This is one of the key points usually
exploited in the design of the so classed Ensemble methods
in statistics and machine learning [43]. We believe majority
voting would be a good attempt to estimate the underline
ground truth, ideally considering manual borders from many
independent dermatologists.

The average accuracy of segmentation is shown in
Tables 1, 2, 3, and 4. The performance scores are computed
using different references (marked “Ref.”) as ground truth:
each of the manually drawn border by the three dermatol-
ogists, marked as “D1”, “D2”, and “D3”, plus an additional
mask generated by the pixelwise majority voting of the three
dermatologists’s segmentations, marked as “All”. The accura-
cies are grouped in three blocks according to the nature of
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Table 4: Average accuracy of segmentation, quantified by the Hausdorff distance (mm), showing the performance of the proposed ICS
method against alternative solutions. Borders manually drawn by three dermatologists, and their agreement, are considered as the ground-
truth reference for accuracy assessment.

Manual by doctors Fully automatic Supervised

Ref. D1 D2 D3 SRM AT ICS LDA QDA SVM

D1 — 1.50 1.35 2.50 1.91 1.68 1.40 1.47 1.17

D2 1.50 — 1.31 2.42 2.14 1.56 1.22 1.33 1.14

D3 1.35 1.31 — 2.43 1.93 1.61 1.25 1.37 1.13

All 1.04 1.01 0.75 2.39 1.92 1.52 1.09 1.20 0.86

the segmentation solution: automatic methods and super-
vised methods. For reference purposes, scores corresponding
to manual segmentation are included. For 2 out of the 100
benign lesions present in the test set, SRM did not provide
a segmentation. These two lesions were excluded in this
experiment.

Concerning the automatic methods, the main focus in
this paper, Tables 1–4 shows that the proposed ICS method
provide very competitive results when compared to SRM
and AT, all the reference segmentations taken as ground
truth, and for the different accuracy scores considered. In
terms of sensitivity ICS scores above 91.8%, while SRM
remains under 82.1%, with intermediate values for AT. On
the other hand, the lower sensitivity scores of SRM are
balanced by the higher specificities that lies above 98.0%,
with ICS performing slightly lower at 96.7%. Surprisingly,
the sensitivities and specificities of the automatic methods,
in particular the proposed ICS, are very close to those of the
dermatologists. However, the better performance of human
segmentations when compared to the automatic methods
is much clearer when the other two scores, the Hausdorff
distance and the percentage of border pixels with an error
lower of 0.5 mm, are considered. For these two scores,
the ICS algorithm performs better than the SRM and AT
alternatives.

Tables 1–4 clearly evidence the very good segmentation
performance by the three supervised methods. Notice,
however, that the supervised results were obtained after a
dense sampling of training pixels, selected using the skin
and lesion portions given by the majority voting solution
(see details in Section 4.3.2). Thus, it is natural that in most
of cases the performance of LDA, QDA, and SVM are even
better than those of the single doctors. On the other hand, the
results are interesting in the sense that they provide an idea
where is the limit of the accuracy of a computer generated
segmentation would be in the current test set, provided that
individual training for each image based on the estimated
underline ground truth was available and considering the
current postprocessing employed. Somehow surprising is the
poor performance of QDA compared to LDA. In any event,
results show clear evidence that the nonlinear SVM classifier
performs the best.

The above experimental results are based on the average
values of the scores used for accuracy assessment. The disper-
sion of the scores is also an important factor to be analyzed.
This is shown in Figure 4. Here, to reduce the amount of

plots otherwise required for visualization of all data used
to compute the averages in Tables 1–4, only the case corre-
sponding to the use of the reference ground truth generated
by majority voting is depicted (the scores corresponding
to the row “all” in the previous tables). To understand the
traditional box plots depicted in Figure 4, it is necessary to
visualize its distinctive features. On each box, the central
mark is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme
datapoints the algorithm considers to be not outliers, and
the outliers are plotted individually. Not surprisingly, the
automatic segmentation methods show higher variability
when compared to the borders manually drawn by der-
matologists and the supervised methods tested. Overall, we
once again appreciate the very competitive results provided
by the proposed ICS algorithm, when compared to the
alternative automatic methods considered, for all the four
scores considered. Except for the Hausdorff distance, higher
values indicate a more accurate segmentation. For the test set,
ICS proved to be more stable as shown by the lower degree
of dispersion of the scores, in the plots shown by the shorter
distance between the lower and upper quartiles summarizing
the data.

The contrast between the background skin and the lesion
is expected to influence the accuracy of the delineation of
the borders of the lesion. When evaluating the reasons why
state-of-art CAD systems rejected analysing some lesions
that would be of interest for dermatologists, Perrinaud et al.
[3] observed that all instruments required the presence of
“adequate contrast” between the lesion and surrounding
nonlesional skin. Not surprisingly, borders manually drawn
by different dermatologists tends to agree less when the
delineation of the contours of the lesion is unclear. The same
behavior is expected in automatic segmentation methods,
impacting CAD systems.

In order to get additional insights about the performance
of the different segmentation methods for distinct levels of
contrast, Figure 5 shows the average values of the accuracy
of segmentations, quantified by the four distinct scores,
focusing on the automatic segmentation methods analyzed.
For reference purposes, the scores obtained from manual seg-
mentation are included. In this complementary analysis, the
set of 120 test lesions is grouped in three disjoint subsets (cat-
egories), here labeled as “low”, “intermediate”, and “high”,
referring to increasing levels of contrast between background
skin and lesion. In this study, the luminance component of
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Figure 4: Dispersion of the accuracy of segmentation, quantified by the four distinct border measures, showing the performance of the
proposed ICS method against the different segmentation methods analyzed. D1, D2, and D3 corresponds to the manual segmentations
provided by dermatologists. SRM, AT, and ICS are automatic methods. LDA, QDA, and SVM are supervised methods that here include
only for reference purposes. The accuracy scores are computed using the mask generated by majority voting of the manual segmentations
provided by three dermatologists as ground-truth reference.

the dermposcopic image is used to measure the contrast,
quantified by the absolute value of the difference between
the median of the lesion and skin pixels. For the purpose
of computing the luminance difference between background
skin and lesion pixels, the mask generated by majority voting
of the manual segmentation of the three dermatologists was
used.

The three subsets of lesions were automatically parti-
tioned by minimizing the within-cluster sum of squares of
the luminance values, according to the Euclidian distance cri-
teria. The resulting subsets contained 49, 56, and 15 lesions,
corresponding to the subsets labeled as low, intermediate,
and high contrast, respectively. For indicative purposes, the
respective values obtained for the contrast at the center
of the clusters were 9.0, 21.9 40.4 (from 3 × 8 bits RGB
images converted to L ∗ u ∗ v space). The high number
of lesions with very low contrast stress the challenge of
accurately segment the current test set, composed by many
lesions of very low contrast (accounting for 41% of the 120
lesions), randomly selected, and previously unseen by the
segmentation methods tested.

Figure 5 confirms that the accuracy of all the segmenta-
tion methods decreases when the contrast between lesion and
skin is lower. In terms of segmentation scores, we observe

that the proposed ICS presents very competitive results when
compared to the SRM and AT algorithms, specially in pres-
ence of low contrast lesions. For instance, in terms of average
sensitivity and specificity for this particular “low contrast”
subset of lesions, ICS scores 88.6% and 93.7%, whereas
AT scores 84.4% and 80.7%, when SRM scores 61.7% and
98.3%, respectively. Concerning these performance scores,
we conclude that the best tradeoff is provided by ICS, fol-
lowed by AT and SRM. The competitive performance of ICS
is also confirmed when compared to the best performance
by alternative algorithms, for both the Hausdorff distance
(2.4 mm for ICS against 3.5 mm for AT) and the percentage
of contour with an error ≤0.5 mm (74.5% for ICS against
60.5% for SRM). The good news is that when the level of
contrast between skin and lesion increases, suggesting that
the moles are easier to be segmented, the performance of the
three methods increases considerably, remaining similar for
all algorithms.

We conclude this experiment examining the accuracy
of the segmentation methods in terms of histopathological
diagnosis. The lesions are grouped in two subsets according
to benignity (98 lesions) or malignancy (22 lesions). Figure 6
once again confirms the very competitive results provided by
ICS. In the current test, set we observe that ICS performed
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Figure 5: Average values of the accuracy of segmentation, quantified by the four distinct border measures, showing the performance of the
proposed ICS method against the different segmentation methods analyzed. The lesions are grouped in three disjoint sets: low, intermediate,
and high contrast between skin and lesion. The mask generate by majority voting of the manual segmentation by three dermatologists is
used as ground-truth reference. The bars refer to low (orange), medium (blue), and high (pink) contrast lesions.

similarly well for both benign and malignant lesions. This
behavior of ICS was found consistent for the different accu-
racy scores. The differences in terms of performance for
benign and malignant lesions is more remarkable for both
the AT and SRM algorithms, that in general tended to score

better on the malignant set, compared to their respective
scores in the begin set.

4.6. Experiment 3: Convergence and Posteriors in ICS. The
aim of the experiment is to provide additional details about
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Figure 6: Average values of the accuracy of segmentations, quantified by the four distinct border measures, showing the performance of
the proposed ICS method against the different segmentation methods analyzed. The lesions are grouped by histopathological diagnosis. The
mask generate by majority voting of the manual segmentation of the three dermatologists is used as reference. The bars refer to benign (blue)
and malignant (green) lesions.

the behavior of the proposed ICS framework during the clas-
sification. The two main aspects, (i) the number of iterations,
and (ii) how the posteriors of the LDA and QDA classifiers
are combined, are experimentally investigated.

Figure 7(a) provides details about the number of itera-
tions. On average, the method converged in 4.7 iterations.

This suggests that just a few iterations are enough for mod-
eling the statistics of the background skin and lesion. During
experiments, we set the maximum number of iterations
n = 30. If not converged at iteration n = 30, the iterative
classification was stopped, and the last result used. As shown
in Figure 7(a), this occurred only for one lesion, suggesting
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Figure 7: (a) Number of iterations for convergence and the (b) frequencies of the automatically selected value for the weight λ showing how
the LDA (λ = 0) and QDA (λ = 1) posteriors where combined according to (1) in the proposed ICS algorithm. Results are summarized
according to three intervals of possible λ values.

that the proposed method is very likely to converge for the
task of segmentation of dermoscopic images.

How the posteriors are combined in the proposed ICS
framework is analyzed in Figure 7(b). For summarization
purposes, we group the values of λk in (1) in three intervals
(i) 0 ≤ λk ≤ 1/3 (ii) 1/3 < λk ≤ 2/3, and (iii) 2/3 <
λk ≤ 1 and count the number of lesions that had, for
some of the iterations k = {1, . . . ,n}, a λk value inside
the intervals. As shown in Figure 7(b), for most of the
cases (94 lesions) the proposed ICS framework selected low
values of λk , suggesting the preference for LDA. This fact
is not surprising in the current implementation. Since the
separability between the initial samples from the skin and
lesion seeds is usually good, the accuracy of the seed regions
is very high in most cases (≈100%), and in case of identical
accuracy for both LDA and QDA, λk in (1) is taken as
the lowest value possible, thus intentionally privileging the
simpler LDA (for the reasons discussed in Section 2.4). It is
also worth noticing that when LDA was used in the context
of supervised segmentation, LDA tended to perform slightly
better than QDA (Tables 1–4). But selection of low values for
λk is not always the case, in particular, for other 42 and 21
lesions in the two remaining intervals shown in Figure 7(b),
indicating intermediate preferences between LDA and QDA,
and a stronger preference for QDA, respectively. In the
current analysis, the total number of lesions contained in the
three intervals is bigger than the number of lesions in the test
set. This is due the fact that λk is optimized for each iteration,
so in this analysis, a given lesion may account in more than
one of the intervals considered until reaching convergence.

We conclude our analysis showing in Figures 8 and 9 a
few examples of pigmented skin lesions from the test set, and
the manual border drawn by the dermatologists, the pro-
posed ICS, and the alternative AT and SRM methods. Note
that none of the methods performs better in all cases.

5. Conclusions and Final Remarks

We have presented an automatic algorithm for segmentation
of pigmented skin lesions. The technique is primarily devel-
oped for analysis of images acquired by a portable dermato-
scope attached to a consumer-grade digital camera.

In contrast to other automatic segmentation techniques,
the proposed ICS algorithms relies on specific assumptions
about the image acquisition, in particular the approximate
location and color of the skin and lesion. The assumptions
are simple in nature and are designed for the specific problem
of segmentation of dermoscopic images. The main purpose
is a safe selection of initial small seed regions corresponding
to skin an lesion portions that through iterative classification
leads to the final segmentation mask.

The clinical accuracy assessment using 122 dermoscopic
images, randomly selected, with ground-truth lesion borders
manually drawn by three dermatologists suggests competi-
tive segmentation results when the proposed ICS algorithm
is compared to alternative automatic segmentation methods.
The improvements are particularly remarkable for lesions
with low contrast between background skin and lesion. In
addition, in the current test set the proposed algorithm was
found to perform similarly well for both begin and malignant
lesions.

Overall, the proposed framework is simple and flexible
enough to allow testing with different classifiers. Com-
pared to a traditional 1-D histogram-based segmentation,
the proposed approach uses all the RGB color informa-
tion available. In addition, since the proposed segmenta-
tion framework is essentially classification based, it could
eventually accommodate additional input features such as
contextual information. Usually, convergence was reached
in a few iterations. The algorithm is relatively fast (takes
about 1 min.), and the processing time depends essentially on
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(a) Manual borders (b) Automatic borders

Figure 8: Example of lesions in the test set and the border provided by (a) the three dermatologists and (b) the automatic borders by
AT (black border), SRM (gray border), and the proposed ICS algorithm (white border). None of the methods performed better in all
cases.

the choice of the classifiers, whose posteriors are combined
automatically.

We believe that the suggested framework is general
enough to be useful for analysis of other kind of images
acquired by different equipments, adapting the initial as-
sumptions about the geometry of acquisition and color of the
lesion of interest to the specific problem at hand. In addition,
despite not directly envisaged in this paper, it appears also
that the proposed method could be easily modified to accom-
modate user iteration, for instance, by manual placement
of seed regions, rendering the proposed method even more
robust.

We conclude reminding that it is important to keep in
mind that the effect of border detection error upon the
accuracy of a computer aided diagnosis system can only be
validated when used as a part of a final diagnostic system.
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