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Abstract

In this thesis we present a new semi-supervised classification technique based
on the Kernel Entropy Component Analysis (KECA) transformation and the
least absolute shrinkage selection operator (LASSO). The latter is a con-
strained version of the least squares classifier.

Traditional supervised classification techniques only use a limited set of la-
beled data to train the classifier, thus leaving a large part of the data prac-
tically unused. If we have very little training data available it is obvious
that the classifier will have problems generalizing well as too few points will
not fully represent the classes we are training the classifier to separate. So
creating semi-supervised classifiers that somehow includes information from
unlabeled data is a natural extension. This is further confirmed by the fact
that labeling of data is very often a boring and time consuming task that can
only be done by a few experts on the field in question rather than general
pattern recognition experts, while unlabeled data are often abundant and no
experts are needed.

One way of taking advantage of unlabeled data, which is the one we will use
in this thesis, is to first transform the data to a new space using all data, both
labeled and unlabeled, and in this new space use the labeled points to create
a classifier. The idea is that when we include all the unlabeled data in the
transformation the, often scarcely populated, labeled data set will represent
the data better than without the unlabeled points. Previous work have shown
very good results using the data transformations Laplacian eigenmaps with
ordinary least squares and Data Spectroscopy with the LASSO.

We transform the data with a new method developed at the University of
Tromsø called Kernel Entropy Component Analysis and combine it with
LASSO classification. Previous work using ordinary least squares and KECA
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have shown good results. This transformation preserves entropy components
from the input data which has been showed can give much better represen-
tation of data than the otherwise almost exclusively used variance measure.

Through different experiments we show that this semi-supervised classifier in
most cases performs comparable to or better than the previous results using
other data transformations. We also show that the LASSO has an almost ex-
clusively positive effect on classification after data transformation. A deeper
analysis of how the LASSO classifier works together with the Kernel En-
tropy Component Analysis transformation is included, and we compare the
results to the closely related Kernel Principal Component Analysis transfor-
mation. Finally we test the new classifier on a data set consisting of different
facial expression showing that including unlabeled data leads to much bet-
ter classification result than with straight forward least squares or LASSO
classification.
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Chapter 1

Introduction

The world today is at the pinnacle of the information age, and we are sur-
rounded by enormous amounts of data. Sources as different as the Internet,
new advanced high resolution DNA measurement techniques, gigantic digital
text libraries, hyperspectral image sensors and many others provide us with
far more data than we are able to process. To cope with this almost uncon-
trollable amount of data, pattern recognition and machine learning methods
are extremely important today.

The norm in machine learning is to operate in either of two directions:
supervised and unsupervised learning [30]. In this thesis we will work in
between these different settings and explore the semi-supervised learning
scheme where the two frameworks are combined with an intention of creating
better classifiers by utilizing information available in the data sets normally
only used for testing.

In practice labeled data, i.e. data that belongs to a certain class1, are often
scarce as they usually have to be determined by an expert on the field in ques-
tion rather than the actual person designing the learning algorithm2. E.g.
doctors examining medical data, geologists defining specific mineral types
and so on. Because of this it is an enormous advantage if a learning algo-

1E.g. a blood sample that we know indicates a certain type of cancer. An unlabeled
data point would be a blood sample that we don’t know if indicates cancer or not

2Today it is not uncommon that statisticians and other pure data analysis experts work
with scientific data rather than the actual person who collects the data.
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rithm can be trained using both a few known examples and a large quantity
of unlabeled examples.

There are two main ideas that motivate taking advantage of unlabeled data in
practice: the cluster assumption or low-density separation assumption and
the manifold assumption [27], [6]. The cluster assumption, as the name
implies, assumes that there exists some kind of natural clusters in the data
and that these clusters or classes are separated by low density regions. The
manifold assumption expects the data to be suspended along some kind of
manifold3 hidden in the input space, so that with a proper distance measure
points that lie on the manifold should be close, e.g. in the same class.

In the traditional binary classification setting we have two classes of data we
want to separate, a set of points we know the classes of and an unknown
test set. We train the classifier using the test points and use it to classify
the test points. Assume that we have 20 labeled test points, 10 from each
class. When we think of the cluster- or manifold assumption it seems obvious
that only 10 points from each class would probably not represent the given
cluster or manifold very well. However if we now somehow could include all
the unlabeled test points in the classifier to yield a better representation of
the clusters/manifolds corresponding to the different classes we would expect
a better result.

This is where the idea stops and the practical implementations start: We
have chosen to use the setting presented in [4], [28] and [16]: If we first
transform all of our data, both labeled and unlabeled, to a new space and then
train a classifier in the new space based on our labeled data we have a way
of taking advantage of the normally unused unlabeled data. The idea is that
when included in the data transformation the unlabeled data helps describe
the overall structure of the data. In this way a traditionally small training
set will become a much better representative for the entire data distribution
yielding a better and more general classifier.

In this thesis we will investigate how the Kernel Entropy Component Analysis
transformation, [15], developed at the University of Tromsø, behaves in this
version of the semi supervised scheme. Previous work has been done using the
ordinary least squares classifier [16]. We introduce a new version using the
least squares classifier called the LASSO, [31], which has some advantageous

3In practice any kind of smooth geometric hypersurface [30].
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Figure 1.1: A toy data set, often referred to as the ’two moons’ data set. The
points marked with red and blue are labeled, the rest are unlabeled data.

properties and has shown good results with other dimensionality reducing
transformations similar to the Kernel Entropy Component Analysis trans-
formation, [4], [28]. There also exist many other schemes of semi-supervised
learning which we will not discuss, but a survey of the most used methods
can be found in [33].

To conclude this introduction we include a simple toy example to illustrate
how a generic semi supervised way of thought could work in practice. In
Figure 1.1 we see a set of data where we only have one labeled point from
each class marked with red and blue.

Now if we only work with the two labeled points we would probably create
a simple linear classifier as seen in Figure 1.2.

It is evident that when we know how the rest of the data is distributed, this
would not give a particularly well result. On the other hand if we actually
use the unlabeled data to help us look at the structure of the data we could
create a classifier more like we see in Figure 1.3.

When looking at the two figures it is quite obvious that the latter, Figure 1.3,
would give a much better classification result. We see that this particular
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Figure 1.2: The two moons data set with a ’reasonable’ classifier if we only
take the two known points into account.
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Figure 1.3: The two moons data set with a reasonable classifier if we make
use of the unlabeled data in addition to the two known points.
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data set can fulfill both the cluster and the manifold assumptions: the cluster
assumption is reasonable as there clearly is a low density region between the
two moons4, and the manifold assumption can be related to the fact that
the nonlinear moon, or almost banana-like, shapes can be interpreted as two
manifolds which each class lies on. Actually in practice the two assumptions
often implies the same meaning as classes that lie on different manifolds
will have low density regions between them indirectly fulfilling the cluster
assumption [6].

1.1 Structure of Thesis

We divide this thesis in two parts, Theory and Experiments. In the The-
ory part we derive, discuss and illustrate the Kernel Entropy Component
Analysis transformation in Chapter 4. We also introduce the Data Spec-
troscopy algorithm and the Laplacian eigenmaps in Chapter 5 which we will
use as comparisons in the Experiments part. Upon deriving the KECA trans-
formation we introduce several important subjects: non-parametric density
estimation in Section 4.2 and Information theoretic learning in Section 4.1 as
well as the closely related non-centered Kernel Principal Component Anal-
ysis transformation and the baseline transformation Principal Component
Analysis, in Chapter 3 and Chapter 2 respectively.

One important factor the reader should note is that we in the Theory section
only focus on data transformations and their properties. The semi-supervised
setting and related subjects are put on hold until the experiment section
where the concept of classification is introduced and we tie it up with the
theory to introduce the semi supervised learning algorithms we will use.

The Experiments part starts with introducing the concept of classification
and the classifiers we will use, least squares and the LASSO in Chapter 7. We
continue by explaining the practical considerations we have taken to perform
different experiments in MATLAB.

Lastly we present and discuss the results in the Chapter 9 followed by a

4We of course notice that the region between the two moons is actually a ’no-density
region’ as there are no data points there, but we think it illustrates the point in a good
fashion.
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conclusion and ideas for further work in Chapter 10.
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Theory
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Chapter 2

Principal Component Analysis

Principal component analysis (PCA) is perhaps the most well known sta-
tistical dimensionality reducing data transformation, and it has been used
extensively. The goal of PCA is to remove redundancies in a data set by
generating decorrelated features, or dimensions [30]1. In the derivation of
the PCA it will become obvious that the transformation also can be used
to reduce the dimension of the input data while still keeping as much of the
variance, or energy, of the data as possible.

Let x = {x1, x2, · · · , xN} be a stochastic variable. Then we define the trans-
formation

y = ATx (2.1)

where the transformed data y = {y1, y2, · · · , yN} is also a stochastic variable
and A is a transformation matrix.

As mentioned the goal is to generate uncorrelated data, and therefore it is
natural to look at the correlation matrices of both the input data x and the
resulting output y 2.

1The terms feature and dimension, when expressed in this context, is used interchange-
ably in the literature used in this thesis, and is roughly speaking just the number of
measurements in an experiment.

2In this derivation we assume centered data, that is E{x} = 0, and therefore look at
the correlation matrix and not the covariance matrix. The non-centered data derivation

9
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The correlation matrix of the input data is given as

Rxx = E{xxT}. (2.2)

The correlation matrix of the output is given as

Ryy = E{yyT} = E{ATx(ATx)T} = ATE{xxT}A = ATRxxA. (2.3)

The next step is expressing Rxx as the eigenvalue problem

RxxE = EΛ (2.4)

where E is the matrix consisting of the eigenvectors of Rxx as columns, i.e.
E = [e1 e2 · · · eN ], and Λ is a diagonal matrix with the eigenvalues of Rxx

as its diagonal elements.

Rewriting (2.4) yields3

Rxx = EΛE−1 = EΛET . (2.5)

Using this relation in (2.3) gives the following

Ryy = ATEΛETA. (2.6)

If then the transformation matrix A is chosen as E we get

Ryy = ETEΛETE = Λ (2.7)

and since we know that Λ is diagonal we then reach the goal of uncorrelated
dimensions in the output y.

is a trivial extension.
3Here we use the fact that the correlation matrix is symmetric, and therefore has

orthogonal eigenvectors, which gives E−1 = ET .
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2.1 Dimensionality reducing property

Now we go a little further and notice that the transformation is a projection
of x onto the space spanned by the eigenvectors of Rxx given by

y = ETx =


eT1
eT2
...

eTN



x1
x2
...
xN

 =


eT1 x
eT2 x

...
eTNx

 (2.8)

And if we simply use a subset of the eigenvectors to do the transformation it
is obvious that we get a dimensionality reduction as the choice of eigenvectors
directly affect the dimension of y.

The problem now is what eigenvectors to choose. If we choose some subset
of the eigenvectors and look at the mean square error (MSE) of the recon-
struction of x, given by x = Ay [30], we get the following.

Let x̂ be the projection using only M of the N eigenvectors of Rxx given by

x̂ = AMy = EMy =
M∑
i=1

yiei, (2.9)

where AM and EM denotes the matrices containing the chosen M eigenvec-
tors.

Then the MSE between the two vectors is

E
{
‖x− x̂‖2

}
= E

{
‖

N∑
i=1

yiei −
M∑
i=1

yiei‖2
}

= E

{
‖

N∑
i=M+1

yiei‖2
}

= E

{∑
i

∑
j

(yiei)
T (yiei)

}
= E

{∑
i

∑
j

y2i e
T
i ei

} (2.10)

and since we know that the eigenvectors ei are orthogonal, i.e. eTi ei = 1 and
eTi ej = 0, and that yi = eTi x we get
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E
{
‖x− x̂‖2

}
= E

{
N∑

i=M+1

y2i

}
= E

{
N∑

i=M+1

(eTi x)T (eTi x)

}

=
N∑

i=M+1

E
{
xTeie

T
i xT

}
=

N∑
i=M+1

E
{
eTi xxTei

}
=

N∑
i=M+1

eiE
{
xxT

}
eTi .

(2.11)

Finally using the orthogonality properties of E and (2.5) we see that we are
left with

E
{
‖x− x̂‖2

}
=

N∑
i=M+1

eiEΛETeTi

=
N∑

i=M+1

λi.

(2.12)

And from this we easily see that if we chose the eigenvectors corresponding
to the top M eigenvalues in (2.9) the mean square error will be minimized as
it will consist of the sum of the N-M smallest eigenvalues.

Now we will show that this choice of eigenvectors will keep as much variance
as possible for the given dimensionality reduction.

Since we have used centered data as a starting point we can use the same
derivations for the variance of the dimensionality reduced data as for the
MSE.

So from (2.11) and (2.12) we have that 4

var(yi) = E{y2i } = λi (2.13)

and using the fact that yi = eTi x, we see that when using the eigenvectors
belonging to the top M eigenvalues to do the transformation the variance
will be the maximum it can be for the chosen dimensionality reduction.

4We still assume centered data so the formula for the variance is simplified
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2.2 Examples

To show how PCA works in practice and illustrate the associated problems,
we start with some basic examples using toy-data generated in Matlab. We
start with a simple Gaussian distributed ’blob’ of data to get a visual intuition
of how the PCA works.

In Figure 2.1(a) we see the Gaussian data and in Figure 2.1(b) we see the
covariance structure of the data as well as the two eigenvectors of the co-
variance matrix. What the PCA does is that it finds the eigenvectors that
has the largest eigenvalues, and then project the data onto that axis, in our
example that would be the blue vector in Figure 2.1(b). This we can see
directly from the data as the variance is clearly largest in that direction, i.e
the radius of the elliptical covariance structure is largest in that direction.

In order to investigate what happens when we do the actual projection we
project the data to one dimension using the largest eigenvalue of the covari-
ance matrix in Figure 2.1 estimated in matlab. The result can be seen in
Figure 2.2.

Now that we have seen how the PCA works in the simplest of cases, it is
time to discuss some of the related problems, which we will see form all the
major motivations as to why the rest of the methods reviewed in this thesis
were created.
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(a) Gaussian ’blob’ of data.
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Gaussian toy data with covariance structure and eigendecomposition

(b) Covariance structure and eigenvectors.

Figure 2.1: Gaussian toy data showing covariance structure and the eigen-
vectors spanning the covariance space
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Figure 2.2: Data set from Figure 2.1 projected to first principal component

2.3 The issues of Principal Component Anal-

ysis

Even though Principal Component Analysis has been used widely, we notice
some serious restrictions.

• The foundation of the PCA is covariance, the second order central
moment which in practice is only a descriptor of the spread of the
data, see [29] for details. Description of a density using covariance is
only optimal for the Gaussian density as it is the only distribution with
all moments of order greater than two equal to zero. So from this one
can conclude that if a distribution differs greatly from the Gaussian
shape, the covariance is a poor estimate and the PCA will perform
accordingly.

• In effect the covariance measure is an elliptical measure5 and thus if
we have data with nonlinear structure the covariance has no way of

5A hyperellipsoide in dimensions >3.
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capturing it and hence it will be lost in a PCA dimensionality reduction.

With these restrictions and illustrations in mind we have a clear picture
of what the PCA does and what we need to investigate further to fix the
inherent problems we have proposed. In Chapter 3 we look at kernel methods
which can deal with nonlinearities, and in Chapter 4 we look at information
theoretic measures as an alternative to the limited variance descriptor.



Chapter 3

Kernel Principal Component
Analysis

Kernel principal component analysis (KPCA) is a data transformation which
deals with the nonlinearity problems of PCA based on th so-called kernel
methods. We start by a quick introduction of these methods in general.

3.1 Kernel methods

Kernel methods have been fundamental in the development of data analysis
methods that solve nonlinear problems. The most well known example is
the support vector machine [30], but numerous other examples exist such as,
ranking, clustering and regression [24].

When we talk about kernel methods we are really talking about a framework
of different algorithms where two steps are involved:

• A nonlinear transformation, sometimes reffered to as mapping, to a
new space called the feature space.

• The execution of some linear algorithm in the new space.

The idea is that we transform the nonlinear input data set to a new higher
dimensional space where the data is linearly separable, Cover’s theorem states
that the probability of reaching linear separability increases to one as the

17
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dimension of the feature space goes to infinity [10], and then we can use any
method from the well established world of linear filters and algorithms that
suits the given problem, e.g. classification, clustering, etc. Unfortunately this
presents us with some problems, the nonlinear mapping to the feature space
is not at all a trivial matter, and in theory the feature space can have infinite
dimension. It is in the consideration of these problems we introduce the
kernel functions, which lets us do the nonlinear mapping to and operations
in the feature space in an elegant way. Before we define the kernel function,
we quickly formalize the transformation from the input space to the feature
space.

If we assume that the input space consists of some xi ∈ Rl in the set X we
denote the nonlinear mapping as

Φ : X → F

x→ Φ(x)
(3.1)

where F ⊆ RM , M ≥ l.

3.1.1 Kernel functions

A kernel function is a function κ that satisfies

k(xi,xj) = 〈Φ(xi),Φ(xj)〉 (3.2)

for all xi,xj ∈ X.

In short this is what is known as the kernel trick. As we see in (3.2) it lets
us calculate inner products in a possibly infinite dimensional feature space
directly without having to deal with the explicit data mapping. This means
that any linear machine learning algorithm that can be expressed via inner
products now can solve nonlinear problems by operating in a high dimensional
feature space.

The mathematical foundation of kernel functions is deep and beyond the
scope of this paper, but we introduce two key elements: the Moore-Aronszajn
theorem and Mercer’s theorem [2], [18], [24].
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Theorem 3.1.1 (Moore-Aronszajn’s)[21] For any positive semidefinite func-
tion κ(x, y) there exists a uniquely determined (Hilbert1) space, H, which
consists of functions of the input set X given by

1. ∀ x, κ(·,x) ∈ H
2. ∀ x, ∀f ∈ H, f(x) = 〈f, κ(·,x)〉Hκ

(3.3)

In the first equation we directly see the mapping to the feature space via the
kernel function. From the second equation we can directly derive the kernel
trick, [21] by

f(x) = Φ(x) = κ(·,x) (3.4)

giving
〈Φ(x),Φ(x′))〉 = 〈κ(·,x), κ(·,x′)〉 = κ(x,x′). (3.5)

The last property of (3.3) is referred to as the reproducing property as it
reproduces functions in the Hilbert space via the inner product with κ(·,x),
because of this the space is limited by the choice of κ(·, ·) which is the reason
for the denotation with the Hκ.

The Mercer theorem simply secures the existence of the feature space.

Theorem 3.1.2 (Mercer’s)[30] Let κ(x, z) be given. Then κ is a valid Mer-
cer kernel, i.e ∃ Φ s.t κ(x, z) = Φ(x)TΦ(z), if and only if for all {x1,x2, · · · ,xl}
the kernel matrix K is symmetric positive semidefinite.

Naturally there exist numerous choices of actual kernel functions, but we
will just introduce the most commonly used function, namely the Gaussian
kernel. Other kernels can be found in [21],[24] or [30]. We adopt the form of
the Gaussian kernel in [24] which is defined as follows,

κσ(x,y) = exp

(
−||x− y||2

2σ2

)
, (3.6)

where σ is known as the kernel size. This choice of kernel actually represents
inner products in an infinite dimensional feature space, see [24] or [21] for
details.

1A Hilbert space is a, possibly infinite dimensional, complete inner product space . A
complete vector space is a space where a Cauchy sequence is guaranteed convergence.
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Lastly we will introduce the kernel matrix K, which contains all the evalu-
ations of the kernel function κ on the input data e.g the input data in 3.1.
From the kernel trick we know that this matrix also contains all evaluations
of inner products between the data points in the feature space. It is given by

Kij = κ(xi,xj) = 〈Φ(xi),Φ(xj)〉 (3.7)

or in matrix form

K =


κ(x1,x1) κ(x1,x2) · · · κ(x1,xn)
κ(x2,x1) κ(x2,x2) · · · κ(x2,xn)

...
...

. . .
...

κ(xn,x1) κ(xn,x2) · · · κ(xn,xn)



=


〈Φ(x1),Φ(x1)〉 〈Φ(x1),Φ(x2)〉 · · · 〈Φ(x1),Φ(xn)〉
〈Φ(x2),Φ(x1)〉 〈Φ(x2),Φ(x2)〉 · · · 〈Φ(x2),Φ(xn)〉

...
...

. . .
...

〈Φ(xn),Φ(x1)〉 〈Φ(xn),Φ(x2)〉 · · · 〈Φ(xn),Φ(xn)〉

 ,
(3.8)

where n is the number of data points in the input space.

Finally we will list some of the most important properties of the kernel ma-
trix:

• It is positive semidefinite2.

• It is symmetric.

• It is a Gramian matrix, i.e a matrix of inner products.

• In a way it acts as a funnel3, the only information we get to work
with in the feature space are the inner products, i.e the elements in the
kernel matrix are all the information we get [24]!

2The positive semidefinite property is a direct implication from Mercer’s theorem
3This property is naturally also true for the kernel function.
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3.2 The Kernel Principal Component Analy-

sis transformation

Now that we have the basics of kernel methods in place, we can utilize the
kernel trick to derive a nonlinear version of the principal component analysis
in Chapter 2, namely the Kernel Principal Component Analysis [22]. As with
PCA we want to project the data onto the principal axis of the covariance
matrix of the data, but now we transform the data to the aforementioned
feature space and in effect doing a PCA in that space.

The derivation of the KPCA is not as simple as the PCA as we have to do
some algebra to be able to use the kernel trick making the transformation
only dependent on inner products. Otherwise the main steps are similar to
those of PCA.

We start by introducing the function Φ which maps the input data to a
feature space F.

Φ : X → F

x→ Φ(x).
(3.9)

As with the linear PCA we assume centered data, E{Φ(x)} = 0, and the
estimated correlation matrix of the input data is given by

C =
1

N

N∑
i=1

xxT . (3.10)

Expressing the correlation matrix in the feature space, CF , via the mapping
Φ gives

CF =
1

N

N∑
i=1

Φ(xi)Φ(xi)
T . (3.11)

Now we follow a similar path as with the derivation of the linear PCA, and we
start by defining the eigenvalue problem for the correlation matrix of the data
in the feature space F. Remember that the goal is to find the eigenvectors that
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span the covariance space of the data, in this case in the higher dimensional
feature space. The only major difference in the derivations is that we have
to tailor the kernel PCA so that it is an expression of inner products in the
feature space so that we can utilize the kernel trick.

The eigenvalue problem expressed in the feature space:

λv = CFv =
1

N

N∑
i=1

Φ(xi)Φ(xi)
Tv =

1

N

N∑
i=1

Φ(xi) 〈Φ(xi),v〉

=
1

N

N∑
i=1

〈v,Φ(xi)〉Φ(xi).

(3.12)

Where 〈·, ·〉 denotes the Euclidean inner product (dot product).

From this we see that the solutions of v lies in the span of the transformed
input data, Φ(x1), · · · ,Φ(xN), and it is possible to reformulate the eigenvalue
problem as

λΦ(xk)
Tv = Φ(xk)

TCFv ∀ k = 1, · · · , N. (3.13)

Using this and the fact that v can be expressed as (from (3.12))

v =
1

λN

N∑
i=1

〈Φ(xi),v〉Φ(xi) =
N∑
i=1

αiΦ(xi), (3.14)

since 〈Φ(xi),v〉 is just a scalar, we get(from (3.13))

λ
N∑
i=1

αiΦ(xk)
TΦ(xi) = Φ(xk)

T 1

N

N∑
i=1

Φ(xi)Φ(xi)
T

N∑
j=1

αjΦ(xj). (3.15)

To simplify and get a thorough understanding of (3.15), we rewrite the left
and right hand sides separately.

The left hand side gives
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λ

N∑
i=1

αiΦ(xk)
TΦ(xi) ∀k, (3.16)

m

λ

 α1Φ(x1)
TΦ(x1) + α2Φ(x1)

TΦ(x2) + · · ·+ αmΦ(x1)
TΦ(xN)

...
α1Φ(xN)TΦ(x1) + α1Φ(xN)TΦ(x2) + · · ·+ α1Φ(xN)TΦ(xN)

 = λKα.

Where α is a vector containing the coefficients α, α = [α1, α2, · · · , αN ]T , and
K is the kernel matrix as stated in (3.7).

Looking at the right side we can rewrite it as follows

Φ(xk)
T 1

N

N∑
i=1

Φ(xi)Φ(xi)
T

N∑
j=1

αjΦ(xj) =
1

N

N∑
i=1

N∑
j=1

αjΦ(xk)
TΦ(xi)Φ(xi)

TΦ(xj)

=
1

N

N∑
i=1

N∑
j=1

αjk(xk,xi)k(xi,xj) =
1

N

N∑
i=1

N∑
j=1

KkiKijαj ∀k = 1, · · · , N.

(3.17)

If we now look at the kernel matrix Kij = k(xi,xj) and the standard formula
for matrix multiplication

K2
kj =

M∑
i=1

KkiKij ∀k, j (3.18)

and in addition look at the coefficients α and the sum over all j as a multi-
plication with the vector α, given by

Kα =
M∑
j=1

Kkjαj for each row k , (3.19)

we see that the right hand side expression of (3.15) simply becomes
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1

N
K2α. (3.20)

Combining (3.20) and (3.17) we get the eigenvalue problem expressed via the
kernel matrix

λKα =
1

N
K2α. (3.21)

This is equivalent to

Nλα = Kα = λkα, (3.22)

where λk = Nλ denotes an eigenvalue of the kernel matrix.

Now we have the coefficients α which can be used to find v. The only thing
left is to make sure that the norm of v is equal to one, as the eigenvectors
are used to form a basis for the points in the feature space.

The squared length of v is given by

vTv =
N∑
i=1

αiΦ(xi)
T

N∑
j=1

αjΦ(xj)

=
N∑
i=1

N∑
j=1

αiαjΦ(xi)
TΦ(xj) = αTKα = λkα

Tα = λk.

Now we can express the eigenvectors that is used to project the data onto
the principal axes in the feature space:

v =
1√
λk

N∑
i=1

αiΦ(xi). (3.23)

The final thing we need to look at is the transformation of an arbitrary point
Φ(x) in the feature space onto the k’th principal axis of the same space which
is given by

vTk Φ(x) =
1√
λk

N∑
i=1

αi,kΦ(xi)
TΦ(x) =

1√
λk

N∑
i=1

αi,kκ(xi,x). (3.24)
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And if we use only the input data we can rewrite it as follows.

For all input point xj, j = 1, · · ·N , the projection onto the k’th principal
component is given as

vTk Φ(xj) =
1√
λk

N∑
i=1

αi,kκ(xi,xj)

∀j
=

1√
λk

N∑
i=1

αi,kK

=
1√
λk

αTkαkλkα
T
k

=
√
λkα

T
k

(3.25)

From (3.24) and (3.25) we see that we use the eigenvectors of the kernel
matrix to do the actual transformation. The choice of eigenvector follows the
idea of ordinary PCA, the eigenvectors with the highest belonging eigenvalues
are chosen as we have seen that this minimizes the mean squared error and
retains the most variance possible for the chosen dimensionality reduction.

To conclude this section we sum up the Kernel PCA transformation in a
simple pseudo-code algorithm:

Algorithm 1 Kernel principal component analysis dimensionality reducing
algorithm

Input: The complete set of data, X = {x1,x2, · · · ,xN}

1: Calculate the kernel matrix, K, with elements Kij = k(xi,xj).
2: Calculate the eigenvectors and eigenvalues, α and λk, of K.

Output: Chose the eigenvectors corresponding to the d largest eigenvalues
of K for a d dimensional output.

3.2.1 Examples

We illustrate the properties of the KPCA transformation with a toy example.
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Figure 3.1: The toy data.

In Figure 3.1 we see a typical nonlinear toy data set. The colors are included
so we can see how the data behave when transformed. If we perform ordinary
PCA we get the result displayed in Figure 3.2 which is clearly undesired as
the two structures, marked with red and blue, in the data are totally gone
after the transformation. In Figure 3.3 and Figure 3.4 we see the dataset
transformed to two and one dimensions respectively using kernel PCA. In
both transformations we see that the data are now at least linearly separable4,
which is good for clustering or classification, and the nonlinear structure has
been reduced significantly.

4Linearly separable means that they can be separated by a line, plane or hyperplane,
depending on the dimension. See [30].
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Figure 3.2: Ordinary PCA performed on the nonlinear data. Dimension
reduced to 1.
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Figure 3.3: Example of Kernel PCA on the data in Figure 3.1.
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Figure 3.4: Kernel PCA with dimension reduced to 1.



Chapter 4

Kernel Entropy Component
Analysis

Kernel Entropy component analysis is a data transformation that is very
closely related to the kernel principal component analysis, but as the name
implies, it focuses on entropy components instead of the principal, variance
describing, components in PCA and KPCA. The term entropy stems from a
branch of statistics and machine learning called information theoretic learn-
ing, so we start with introducing this framework.

4.1 Information theoretic learning

Information theoretic learning (ITL) is an approach to machine learning
where information theoretic learning criteria, or cost functions as in many
pattern recognition techniques, form the backbone instead of more classi-
cal approaches such as mean square error, minimizing Euclidean distance or
similar. We will look at the basic concepts of this framework after a quick
motivation.

29
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4.1.1 Motivation

The main idea of using information theory in machine learning and pattern
recognition is that the the widespread use of second order statistics, i.e.
terms such as mean square error, variance, correlation, l2 norm, etc, as a
learning criterion, or cost function, is only optimal when assuming Gaussian
or symmetric ’Gaussian-like’ distributions.

As stated in [11], ’Learning in artificial neural networks and adaptive filters
has used almost exclusively correlation (the l2 norm or mean-square error) as
a criterion to compare the information carried by the signals and the response
of the learning machine’...

In real-life applications there are many examples of problems which need a
statistical foundation beyond the second order. For instance simple things
like error densities with fat tails or severe outliers may cause problems if only
second-order statistics are used [21]. In Figure 4.1 we see three distributions
with equal variance and it is obvious that these three distributions behave
quite differently even though they share the exact same variance. So for
example if we have an optimization problem based on minimizing the mean
square error, these three distribution will be treated as equals, which is not
good.

In Figure 4.2 we see a toy data set with an estimate of the covariance structure
plotted on top. Here we can see that the variance measure fails completely
when trying to describe the dataset. This is of course a toy data set created
for illustration only and it also has a nonlinear aspect which we will not
comment here, but it clearly illustrates the problems of the second order
statistical ’way of thought’.

It is worth mentioning that even though the apparent difficulties of the tradi-
tional ’Gaussian assumption - second order statistics’ concept, the framework
has been used, and still is, with great success. Erdogmus and Principe [7]
lists some of the main reasons to why this has been so widely used:

• The success of linear filters combined with second-order statistics.

• A well established framework, with a wide arsenal of efficient algo-
rithms.

So to conclude this section:
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Figure 4.1: Three distributions, normal, uniform and Laplace, with variance
equal to one.

Second order statistics can be used to solve many problems, but in a wide
array of problems it simply is not enough. In the next section we will briefly
go through the fundamental concepts of information theory relevant to ITL,
and look at how it can be used in machine learning and pattern recognition.

4.1.2 Fundamentals of information theoretic learning

In ITL two fundamental statistical descriptors are used: entropy and di-
vergence. In short terms these can be thought of as basic nonparametric
measurements performed on probability density functions. Entropy can be
thought of as the general uncertainty of a pdf, and divergence is simply a
dissimilarity measure between two densities.
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Figure 4.2: A toy data set

In this thesis we will not use the divergence quantity so we will leave it out
and focus on entropy, often called the most important quantity in ITL [14].

Entropy

The concept of entropy in statistics was first introduced by Shannon as a
measure of statistical uncertainty used in communication. He defined the
entropy of a random variable X as the sum of the uncertainty, or information,
in each message (a realization, xk, of X) weighted by the probability of each
message

Hs(x) = −
∑
k

p(xk) log p(xk), (4.1)
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or

Hs(x) = −
∫
p(x) log(x)dx, (4.2)

where the quantity − log p(xk) or log 1
p(xk)

is called Hartley’s information

content of xk
1 [21].

A fundamental property of entropy is that it is a single scalar measuring the
uncertainty in a probability density. It is also a very robust, or ’naturally
balanced’ as stated in [21], measure. An unlikely realization, i.e a low value of
p(xk), is weighted up by its high information content, log 1

p(xk)
, and similarly

a more probable realization is weighted down. This balance is really the
essence of entropy as it makes it better suited to capture the true information
in probability densities. For example a very skewed density may have almost
the same entropy, or information content, as a totally symmetric distribution,
something a variance measure would have serious problems describing.

The last thing we will mention is that the entropy measure has also been
showed to be a good descriptor of the hypervolume spanned by a high di-
mensional probability density, making it usable in high dimensional data
which is very seldom the case for other descriptors [21].

There exist many different definitions of entropy, but the information theo-
retic framework relevant to this thesis focuses on a definition called the Renyi
entropy [15]. Therefore we move on to look at Renyi’s definition of entropy,
which is computationally simple and easy to estimate [21].

Renyi’s entropy

Renyi’s entropy of order α of a random variable X is given as

Hα(X) =
1

1− α
log

(
N∑
k=1

pαk

)
(4.3)

or

1Similarly for the continuous definition.
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Hα(X) =
1

1− α
log

∫
pα(x)dx, (4.4)

where α ≥ 1. Complete derivation can be found in [11].

In the information theoretic framework presented in [21], α = 2 is chosen as
the fundamental descriptor because it gives us an easy and computationally
effective estimator of entropy, and thus we get Renyi’s quadratic entropy

H2(X) = − log

∫
p2(x)dx = − log V2(x), (4.5)

where V2(X) is called the quadratic information potential and can be ex-
pressed as

V2(X) =

∫
p2(x)dx = E {p(x)} . (4.6)

Similarly for the discrete case we get

H2(X) = − log

(∑
k

p2(xk)

)
. (4.7)

The reason for choosing α = 2 is that it gives a simple, but elegant way to
estimate the quadratic information potential directly from data samples as
we will see in Section 4.3 where the continuous definition in (4.5) is used to
create an estimator using a nonparametric density estimate called a Parzen
window2.

One of the most important results directly relevant to Renyi’s entropy is
found in [17] where it is shown that the Gaussian distribution is the only
distribution that has a finite number3 of cumulants. The cumulants of a
probability density function are simply the coefficients, similar to the mo-
ments, created from the logarithm of the moment generating function, and

2See section 4.2.
3As we know the Gaussian distribution has only two moments, the mean and the

variance, and therefore also only two cumulants.
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any probability density function can be expressed as a function of its cumu-
lants [5]. So from this we see that since the Renyi entropy can be viewed as
a monotonic function of the expectation of the probability density itself it is
a measure which contains all order moments of the density. Because of this
the entropy measure is a completely general measure, which can be used in
principle for any density.

A good example where the entropy measure has been used with great success
is in the blind source separation method called independent component anal-
ysis (ICA) [13]. In this method the goal is to find independent latent mixture
components in signals. A simple example would be two people talking in-
dependently in a room recorded with two microphones, and the goal would
be to separate the two monologues, this is called the cocktail party problem.
We will not go into details, but the solution comes from searching after sta-
tistically independent component which are non-Gaussian. Because of this a
measure of non-gaussianity is needed, and since Gaussian distributions have
the highest possible entropy of all distributions with equal covariance struc-
ture, a measure based on entropy has been used, called negentropy. It is
stated as

J(y) = H(yGauss)−H(y), (4.8)

where yGauss is a random variable with the same covariance as y andH is some
entropy measure. Because H(yGauss) has the largest possible entropy of y
J(y) will be a nonnegative measure describing how dissimilar the distribution
of y is from a Gaussian distribution.
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4.2 Non-parametric density estimation

Nonparametric density estimation is a framework of methods that estimates
the probability distribution of a given dataset with only the dataset itself to
work with, no assumptions of shape or belonging parameters are made. There
are several reasons to why nonparametric density estimation is a central
subject in this thesis.

1. The methods we are dealing with are unsupervised, i.e in principle we
know nothing about the data.

2. All of the information theoretic measures mentioned requires an esti-
mate of the probability density to be calculated.

3. The non-parametric estimator called the Parzen window (or kernel den-
sity estimator) can in some cases actually be viewed as a kernel func-
tion and thus creates a strong connection between information theoretic
learning and kernel methods.

We will start with a crude, but widely used estimator, namely the histogram.

4.2.1 The histogram

The histogram is a straightforward non-parametric estimator which simply
counts the number of observations occurring in some interval surrounding a
given set of equidistant points. We adopt the formal definition given in [26].

Given origin x0 and a point-surrounding interval h, the bins of the histogram
is given as [x0 +mh, x0 + (m+ 1)h], m ∈ Z, yielding the density estimate

f̂(x) =
1

Nh
(# of xi in the same bin as x). (4.9)

Here we see that we have a set of points, e.g xm = x0 +mh+ h
2
, and simply

count the number of observations inside the interval xm ± h
2
.

The histogram has been predominantly used as a visualization tool for uni-
,bi- and in some cases trivariate densities, as it has poor analytical properties
being a discontinuous estimator. But is simple to compute and gives a quick
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way to visualize the densities. Because of this it has not been used extensively
in methods requiring density estimates. Another problem with the histogram
is that we have to chose both bin width, h, and origin, x0 which in many
cases can give drastically different results. We will not go into further details,
but they can be found in [26].

4.2.2 The naive density estimator

The naive density estimator is a density estimator stemming from the defi-
nition of calculating probability from a density function, that is

f(x) = lim
h→∞

1

2h
P (x− h < X < x+ h). (4.10)

From this equation it is intuitive that we can choose an interval h and, as
with the histogram, count the number of observations inside the interval for
each x in f(x). In [26] the following definition is given

f̂(x) =
1

N

N∑
i=1

1

h
w(
x− xi
h

), (4.11)

where

w(x) =

{
1
2

; |x| < 1
0 ; otherwise

. (4.12)

To give a quick interpretation of this we see that we place a box over each of
the data points and the density estimate, f̂(x), is the sum of the contributions
of all boxes at a given point x. The naive estimator can give better results
than the histogram, though in a special case it gives exactly the same, but
the estimation is still discontinuous and therefore we move directly on to the
generalization called the Parzen window and leave the further details of the
naive estimator that can be found in [20],[26] and [30].
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4.2.3 The Parzen window/kernel density estimator

In the Parzen window density estimator the w(x) in (4.11) is replaced with a
more general kernel function K, or Parzen window, which satisfies a number
of conditions [20],[26]. The most notable conditions,[30], are that if

∫ ∞
−∞

K(x) = 1, (4.13)

i.e the kernel function is a probability density itself, and

K(x) ≥ 0 (4.14)

then the density estimate

f̂(x) =
1

Nh

N∑
i=1

K(
x− xi
h

) (4.15)

will be a true density function. The kernel is also generally assumed to be
symmetric [23]. Exact mathematical details can be found in [20]. If we take
a quick look at the intuition behind this estimator we see that is the same as
with the naive estimator, but now instead of placing a box on each observa-
tion we place an almost ’true’ density function on each observation, the only
difference is that they are ’weighted down’ so all of them sum to a total of
one. Different choices of the density kernel used can be found in [20]. One
problem with this approach is that the ’density bumps’ are placed on every
observation regardless of where in the distribution it is, and therefore in e.g
long tailed distributions problems with noise in the tails can occur [26]. An-
other disadvantage with the Parzen window, which also applies to the other
two estimators, is that if we are to estimate a multivariate distribution, the
number of observations relative to the dimensionality decreases drastically as
the dimension increases, so what we in effect are doing is just placing some
bumps on a few points which would not sum up to anything but scattered
noise[21],[23]. A bivariate Parzen window estimator, with a straightforward
extension to multivariate densities, is given in [23] as

f̂(x, y) =
1

N

N∑
i=1

Khx(x− xi)Khy(y − yi), (4.16)
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Figure 4.3: Three estimations of a mixture of Gaussians distribution using
10 observations, in 4.3(d) we see the true density function

where Khx(x−xi) = K(x−xi
hx

). The problem of sparsity in higher dimension is
apparent for density estimation as we would like to get as much of the support
of the distribution included in the estimate, but this is not a major problem
when dealing with entropy because as previously mentioned it gives a good
description of the ’volume’ of densities in higher dimensions. Seen in this
context it means that the entropy measure is not as dependent on covering
as much of the support as possible as the density estimation techniques are.

In Figure 4.3 we see the estimation of a mixture of Gaussians distribution
by a histogram, the naive estimator and the Parzen window method. In this
example only 10 data points are used for illustration purposes, which in a
real situation would probably be insufficient, but we see the general idea.
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4.3 The Kernel Entropy Component Analy-

sis transformation

The kernel entropy component transformation is the main goal of this article.
From Chapter 2 we remember the issues of the regular PCA transformation,
and in Chapter 3 we dealt with the problem of nonlinear data. With these
notions in hand it is clear that an intuitive way of improving the principal
components way of thought is to exchange the estimation of covariance in
PCA and KPCA with an estimation of entropy, which is exactly what kernel
entropy component analysis does [15]. The particular choice of entropy mea-
sure is the quadratic Renyi entropy from Chapter 4 as it has a nice estimator
given by the Parzen window density estimator.

The derivation of kernel entropy component analysis is not very similar to
the derivations of PCA and KPCA, the starting point is completely different
and it is actually quite surprising that it leads to a method so similar to
KPCA, but we will dive straight in and rather give some comments on the
similarities and differences later in Section 4.3.1.

We start by expressing an estimate of the continuous Renyi’s quadratic en-
tropy based on the kernel density estimator.

Renyi’s quadratic entropy is given by:

H(p) = − log

∫
p2(x)dx. (4.17)

For estimation purposes one can consider the simplified expression since the
logarithm is a monotonic function.

V (p) =

∫
p2(x)dx. (4.18)

Assume x = {x1, x2, · · · , xN} is a stochastic variable. To estimate p(x) in
(4.18) a Parzen window estimator is used.

If we look back to Chapter 3 we remember that a kernel function has to be
positive semi definite to obey the conditions in Mercer’s theorem. So from
this we notice that if the Parzen window, or now more appropriately called
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kernel function, is chosen to be positive semi definite function, the Parzen
window estimator is in fact a realization of the kernel trick, that is, it can be
viewed as a sum of inner products calculated in the unknown feature space
[14]. Using this we can rewrite the Parzen window estimator using the kernel
notation used in Chapter 34.

p̂(x) =
1

Nσ

N∑
i=1

K

(
x− xi
σ

)
=

1

N

N∑
i=1

kσ(x,xi) (4.19)

where kσ(x,xi) is the kernel of the Parzen window estimator and σ is the
kernel size.

As we remember V (p) can be viewed as E{p(x)} and if the sample mean is
used as an estimator for E{·}, we get the following estimate.

V̂ (p) =
1

N

N∑
i=1

p̂(xi) =
1

N2

N∑
i=1

N∑
j=1

kσ(xi,xj) (4.20)

=
1

N2
[kσ(x1,x1) + kσ(x1,x2) + · · ·+ kσ(x1,xN)] (4.21)

+ · · ·+ [kσ(xN ,x1) + kσ(xN ,x2) + · · ·+ kσ(xN ,xN)] (4.22)

=
1

N2
1TK1, (4.23)

where K is the Kernel matrix as stated in section 3.1. The kernel matrix can
be expressed as the eigendecomposition K = EΛET which, when inserted in
(4.23) gives

V̂ (p) =
1

N2
1TK1 (4.24)

=
1

N2
1TEΛET1. (4.25)

(4.26)

4We also exchange the h in the Parzen window with a σ for notation purposes.
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The eigenvector matrix E contains, similar as in the kernel PCA derivation,
the eigenvectors αi of K as its columns.

To get a full understanding we rewrite (4.26) as

V̂ (p) =
1

N2
1TEΛET1 (4.27)

=
1

N2

[
1 1 · · · 1

] [
α1 α2 · · · αN

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN



αT

1

αT
2
...

αT
N




1
1
...
1


(4.28)

=
1

N2

[
λ11

Tα1 λ21
Tα2 · · · λN1TαN

]

αT

1 1
αT

2 1
...

αT
N1

 =
N∑
i=1

(
√
λiα

T
i 1)2.

(4.29)

From this we see that the entropy estimate consist of a sum of all the compo-
nents contained in the individual kernel principal component axes,

√
λkα

T
k ,

of the input data as seen in (3.24) which again is summed up to create the
total entropy estimate. If we think of each element in the sum in (4.29) as an
entropy component similar to the principal component in PCA and KPCA,
and the fact that the eigenvectors in 4.26 are the same used in KPCA we
can denote the Kernel Entropy Component transformation by using the top
k eigenvectors that contribute to the entropy estimate as the projecting vec-
tors. It is straightforward to see that using this will keep as much entropy
as possible after the transformation from (4.29).

Using the k’th entropy contributing eigenvector to transform an arbitrary
point in the feature space gives the following transformation.

vTkHΦ(x) =
1√
λkH

N∑
i=1

αi,kHΦ(xi)
TΦ(x) =

1√
λkH

N∑
i=1

αi,kHκ(xi,x), (4.30)



43

where the subscript kH denotes the entropy preserving component as opposed
to the principal components from the KPCA expression (3.24). Similarly if
we only use the input points, the transformation reduces to

vTkHΦ(xj)
∀j
=
√
λkHα

T
kH

(4.31)

To conclude this section we present the Kernel entropy component analysis
algorithm we will use to create examples and conduct experiments.

Algorithm 2 Kernel entropy component analysis dimensionality reducing
algorithm

Input: The complete set of data, X = {x1,x2, · · · ,xN}

1: Calculate the kernel matrix, K, with elements Kij = k(xi,xj.
2: Calculate the eigenvectors, α, of K.

3: Calculate the entropy components of K using
N∑
i=1

(
√
λiα

T
i 1)2

Output: Chose the eigenvectors corresponding to the largest d entropy com-
ponents for a d dimensional output.

4.3.1 Comments, observations and examples

Component selection

The first thing we notice is a clear difference with respect to the principal
components methods, in kernel entropy component analysis we see that if
we are to do a projection onto the most dominant feature we have to look
at the component which contributes most to the entropy measurement. This
difference lies in the fact that the entropy measure for each feature con-
tains the sum of the components in the individual eigenvectors, not only the
corresponding eigenvalue. This results in not necessarily choosing the top
eigenvectors of the kernel matrix.
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Input space vs feature space

Another very important thing we have to note are the starting points of
the two methods. The KPCA started with transforming the data to some
possibly infinite dimensional feature space and then projecting the data onto
the axes which keeps as much of the variance in that space as possible via the
kernel trick. The KECA on the other hand, started simply with a measure
of entropy in the input space using Renyi’s entropy and a Parzen window
estimate. So we see that the KECA transformation with the top n entropy
components can be viewed as an entropy preserving transformation in the
input space as opposed to the KPCA which, keeping n principal components,
is a variance preserving tranformation in an unknown feature space.

4.3.2 Comparative illustrations

We now look at some examples of data transformed using both the well
known kernel PCA method and the kernel ECA method. We start with
approximately the same data set as used in Section 3.2.1 and do the KECA
and KPCA transformations with the Gaussian kernel, as stated in (3.6), and
two different kernel sizes, 1 and 0.3. In Figure 4.4 and Figure 4.5 we see that
the result is exactly the same for both KPCA and KECA with kernel size,
σ = 1. This is also reflected in the component choices. With this kernel size
the entropy preserving and variance preserving axes are the same.

On the other hand, in Figure 4.6 and Figure 4.7 we see that the results
from the KECA and KPCA are not the same. In this example the entropy
contribution was highest in the first and fourth axis. The same Gaussian
kernel is used, but the kernel size is changed to σ = 0.3. As we see the
KECA has projected the data more along the axes, whereas the KPCA has
gathered the Gaussian blob of data in the origin while we see the ring spread
out in the right side of the figure.

These examples show us that the choice of kernel size is very important, and
as it turns out, there is no well established practical way of choosing the
kernel size [30]. So the fact that the Kernel Entropy Component Analysis
performs different from kernel principal component analysis on some choices
of kernel size can be very useful [15].
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Figure 4.4: Kernel entropy component analysis of toy data in Figure 3.1 with
Gaussian kernel and kernel size 1. The entropy is highest in the first and
second kernel principal axis.

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.5: Kernel principal component analysis of toy data in Figure 3.1
with Gaussian kernel and kernel size 1.
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Figure 4.6: Kernel entropy component analysis of toy data in Figure 3.1 with
Gaussian kernel and kernel size 0.3. The entropy is highest in the first and
fourth kernel principal axis.
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Figure 4.7: Kernel principal component analysis of toy data in Figure 3.1
with Gaussian kernel and kernel size 0.3.
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As a final example of the transformations we include the KECA and the ECA
performed on a data set from the UCI machine learning repository5 [1]. The
data set consists of the chemical analysis of three different wines from the
same region in Italy6. We do the transformation with the Gaussian kernel
and two different kernel sizes, σ = 0.91 and σ = 1.1.

Using the σ = 0.91 kernel we see in Figure 4.8 that the two projections
have created different results. The KECA used the first, second and fourth
eigenvector. Since we know from before that this data set contains three
classes, the KECA result gives much more sense compared to the KPCA.

With the kernel size changed to σ = 1.1 in Figure 4.9 we notice that the
KPCA and the KECA gives the same result, confirmed with the KECA
choosing the first, second and third kernel principal axis.

In these examples we have seen that the Kernel Entropy Component Analysis
transformation in some cases gives the same result as with Kernel Principal
Component Analysis and some times completely different results. The differ-
ence often arises when the kernel sizes are small, as can be seen in [15]. We
also notice the angular structure of the data after the KECA transformation
seen in all the figures in this section. This property is further illustrated in
[15].

5http://archive.ics.uci.edu/ml/.
6http://archive.ics.uci.edu/ml/datasets/Wine.

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/datasets/Wine
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(a) KPCA on the wine dataset, σ = 0.91
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(b) KECA on the wine dataset, σ = 0.91, kernel PCA axes 1,2 and 4
used in the projection

Figure 4.8: KPCA and KECA on the wine dataset with σ = 0.91 and Gaus-
sian kernel
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(a) KPCA on the wine dataset, σ = 1.1
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(b) KECA on the wine dataset, σ = 1.1, kernel PCA axes 1,2 and 3 used
in the projection

Figure 4.9: KPCA and KECA on the wine dataset with σ = 1.1 and Gaussian
kernel
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Chapter 5

Other spectral dimensionality
reducing data transformations

In this chapter we will introduce two different data transformations which
work similarly to the kernel component transforms (KECA and KPCA), but
has different theoretical starting points, namely the Laplacian eigenmaps [3]
and the Data spectropy [25]. Both of these methods use the eigenvectors of
the kernel matrix.

The latter is originally a clustering algorithm, but it also involves a selection
of eigenvectors from the kernel matrix. It is also is the only other algorithm
than the KECA method which does not necessarily choose the top eigenvec-
tors of the kernel matrix. We begin with the Data Spectroscopy algorithm.

5.1 Data Spectroscopy

The Data Spectroscopy algorithm, or simply DaSpec, bases its foundation
on the spectral properties of the distribution dependent convolution operator
[25], for which the kernel matrix, with some assumptions, is the empirical
version.

Notation-wise this is not in conjunction with the rest of this thesis as we have
only used and dealt with eigenvectors and matrices, but we chose to follow
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the notation of [25] and take note that all the previous methods also have a
theoretical background in the continuous convolution operator.

We start by defining the distribution dependent convolution

KPf(x) =

∫
κ(x, τ)f(τ)p(τ)dτ =

∫
κ(||(x− τ)||)f(τ)p(τ)dτ . (5.1)

As we see this is simply a convolution weighted by the probability density of
the input data.

The motivation for the DaSpec algorithm is based on the eigenfunctions of
this convolution operator and their connection to the underlying distribution
of the data in question. In practice we will only deal with eigenvectors, but
the theoretical base is founded in the continuous eigenfunctions so we will
introduce the very similar eigenfunction/eigenvalue equation:

KPφ = λφ. (5.2)

There are two properties/theorems of this eigenfunction problem listed in
[25] that form the foundation of the DaSpec algorithm. We will not state the
theorems in full, but simply list the implicating properties from them:

• The eigenfunction of KP decays fast when moving away from the high
density regions of P if the tails of the kernel function, K, decays fast
enough.

• The top eigenfunction of the convolution operator is the only with no
sign change on Rd

• The top eigenfunction of the convolution operator is nonzero on the
support of P.

• For a mixture of distributions, which we assume is true in many cases
of classification and clustering, if we chose an appropriate kernel, the
eigenfunctions of each of the mixtures will be contained in the eigen-
functions of the total mixture distribution.

As mentioned in practice we only deal with the empirical equivalents, the
kernel matrix and its eigenvectors, as they under certain conditions converge
to the eigenfunctions and corresponding eigenvalues of the convolution oper-
ator. We will not go further into details, but they can be found in [25].
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Figure 5.1: Top: Histogram of mixture of gaussians with the true density in
red. Middle: The first eigenvector of the Kernel matrix of the mixture data.
Bottom: The second eigenvector of the kernel matrix of the data mixture.

These properties can be seen clearly with a simple Gaussian mixture; 0.5N (−2, 1)+
0.5N(−2, 1). We use a Gaussian kernel, (3.6), and create the kernel matrix
and find its eigenvectors. In Figure 5.1 we see the histogram of the mixture
and the top two eigenvectors of the kernel matrix.

We see that the eigenvectors fulfill the aforementioned properties; no sign
change, nonzero over the support of the mixture components, rapid decay
when the density is low and it is clear that the eigenvectors clearly stems
from each of the mixture components even though they are eigenvectors of
the entire mixture distribution. In [25] the authors have created a clustering
algorithm based on these properties, but this algorithm also contains an
indirect dimensionality reduction which in [28] is used in combination with
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the LASSO1 to create a semi-supervised classifier. We leave out the clustering
part of the algorithm in [25] and use only the dimensionality reducing part,
summarized in Algorithm 3.

Algorithm 3 DaSpec dimensionality reducing algorithm

Input: The complete set of data, X = {x1,x2, · · · ,xN}

1: Calculate the Kernel matrix K from all available data, labeled and un-
labeled.

2: Calculate the eigenvectors of the matrix K.
3: Select all Nε eigenvectors αi of K that has no sign change up to precision
ε.

Output: The eigenvectors form the reduced dataset{αi}Nεi=1

The last and perhaps most important thing we need to notice is that the top
eigenvectors in question does not necessarily correspond to the top eigenval-
ues. This makes the Daspec algorithm comparable to Kernel ECA in that
it also differs from the principal component way of thought, automatically
choosing the eigenvectors corresponding to the top eigenvalues.

5.2 Laplacian eigenmaps

The final data transformation we will present are the Laplacian eigenmaps.
This transformation actually ends up being closely related to Kernel PCA,
but the starting point is a completely different story.

The intuition behind the Laplacian eigenmaps is that we assume that the high
dimensional data lies on a manifold with much lower dimension suspended
in the high dimensional space and try to take advantage of this to reduce
the dimension of the data [3]. To illustrate this idea the so called ’swiss roll’
is often used, seen in Figure 5.2. We see that if we could somehow stretch
out the data lying on the roll we would get a two dimensional data set which
intuitively would seem much easier to work with.

1A least squares classifier with a linear constraint. We will look closer at this in section
7.1.3.
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Figure 5.2: ’Swiss roll’ toy data

The actual transformation tries to preserve the neighborhood structure in
the data when reducing the dimension and in that way keeping the geometric
structure of the underlying manifold [3],[30]. This is done via the Laplacian
of an adjacency graph created on the data. We will not go into further details
of the algorithm as its purpose in this thesis is to serve as a comparison to the
Kernel ECA transformation in the semi-supervised setting. The algorithm is
presented in [3].

We create a simplified version of the algorithms presented in [30] and [3] which
represents how we use the transformation in this thesis shown in Algorithm
4.

The adjacency weight matrix W is for all our intents and purposes exactly
the same as the kernel matrix K used in DaSpec and Kernel ECA/PCA.
This is because we see the graph as a fully connected with a Gaussian kernel
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Algorithm 4 Laplacian eigenmaps dimensionality reducing algorithm

Input: The complete set of data, X = {x1,x2, · · · ,xN}

1: Create a connected graph over all points in the input set.

2: Create the matrices W and D, where Wij = exp
(
− ||xi−xj ||

2

σ2

)
and D

is a diagonal matrix with the sum of each row or column2 of W as the
diagonal elements.

3: Create the matrix L = W−D and solve the eigenvalue problem D−1Ly =
λy

Output: Chose the smallest d+ 1, corresponding to the wanted dimension,
eigenvectors and ignore the smallest one as it represents projecting all
points to a single point.

deciding the weight of the neighborhood between points in the graph. If we
rewrite the eigenvalue problem in Algorithm 4 as

D−1Ly = D−1 (W −D) y = (D−1W − I)y = λy (5.3)

we see that we can choose the largest eigenvectors of D−1W, basically the
kernel matrix with a diagonal term indicating the close relationship to Kernel
PCA.

5.3 Quick summary

This concludes the Theory section of this thesis. We have looked at several
different data transformations and some background theory. In the next
section we will present the algorithms used to test how the transformations
work under the semi supervised setting and take note that we only use the
kernel matrix-based transformations from now on (i.e. all except ordinary
PCA). We have also chosen to define the classifiers we use in the experiment
section instead of the theory section as they can be seen as a set of tools used
to perform the experiments.
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Experiments

57





Chapter 6

Introduction and connection to
Theory part

To summarize what we have presented in the Theory section and connect
it to the semi-supervised scheme presented in the introduction, we note the
following:

• We want to investigate how classification benefits from including unla-
beled data.

Which in this setting implies including the unlabeled points we have available
in the building of the kernel matrix that all the transformations we have
presented are based on, and then apply a classifier on the transformed data.
We will use the LASSO classifier, presented in Section 7.1.3.

Initially the intuition that adding unlabeled data makes sense is perhaps
stronger for the Laplacian eigenmaps and DaSpec method than for the KECA
and KPCA transformations so we try to shed some extra light on this before
we move on to the experiments.

The Laplacian method is a transformation based directly on points lying on
manifolds in the input space, so the intuition that adding extra data points
in the matrix describing the manifold neighborhood helps is quite clear. The
more data, the better description of the manifolds and thus better class
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description1. We note almost the same for the DaSpec algorithm, it searches
for eigenvectors that has a set of properties flagging them as representatives
for mixture components in the data set. From Figure 5.1 it is obvious that
if we have very few (labeled) data points, the algorithm probably would not
be able to find such components.

For the KECA transformation we remember that it is based on a Parzen win-
dow estimate of Renyi’s quadratic entropy. A setting with few labeled points
will give poor entropy estimates probably leading to the KECA transforma-
tion suggesting a basis of eigenvectors containing very little useful informa-
tion. So to include the unlabeled points give meaning in that it hopefully
yields good entropy estimates leading to a choice of eigenvectors that de-
scribes the data well which again could help the classifiers we use. The same
intuition applies for the KPCA, except that we now need the unlabeled data
points to build up the diagonalized covariance matrix in the feature space.

In the rest of this part of the thesis we will conduct different experiments
to illustrate the Kernel ECA Semi-Supervised Learning LASSO classifier,
presented in section 7.1.4. Both toy data and real ’benchmark’ datasets
will be used and we will compare with results based on the other three
dimensionality reducing techniques discussed in the theory section.

1We now assume that each class in a classification problem lies on different manifolds,
not an unreasonable assumption, [6].



Chapter 7

Classification and the
semi-supervised learning
classifiers

Before we can start the actual testing of the KECA transformation in the
semi-supervised learning (SSL) scheme we have to do some choices on what
kind of classification methods we will use. Inspired by [16], [28] and [4]
we choose to use the simple linear ordinary least squares classifier and a
constrained version known as the LASSO which has been shown to give better
results in [28]. We start by giving a short introduction to classification and
a description of the two classifiers with some simple illustrations.

Normally supervised learning is divided into two main categories, regression
and classification. The former tries to learn a function from the data we are
given which can take continuous values, while the latter, classification, tries
to learn a discrete function from the data which separates the data set in
different classes. Common to both are the need for some knowledge about
the data, either as labels indicating classes or patterns in the data, or as a
continuous response representing the output of the function we want to learn.

In this thesis we will only work with classification, but we keep with us the
notion that in practice the only difference is that in regression the function
we try to learn is a continuous function that fits the structure of the data
rather than trying to separate the data in discrete values.
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7.1 Classification

As mentioned the goal of classification is to assign a discrete value to each
data point, and by that assigning each data point to a particular class.

We start by introducing the simplest form of classification: binary classifi-
cation of two well separated groups of data. A typical example of such data
is shown in Figure 7.1 (a). As we see there are two distinct classes in the
data, marked with blue and red, and we want to design a function that tells
us which class, in this case either ’blue’ or ’red’, a new data point from the
same source belongs to. A rough mathematical representation could be:

Given a set of data XTRAINING, XTEST and labels Y ∈ [’red’, ’blue’], we
want to find an f , using XTRAINING and Y , such that

f(XTEST ) ∈ [’red’, ’blue’]. (7.1)

The design of the function f is reffered to as training the classifier. In practice
there are extremely many ways of designing the classifiers, ranging from
simple linear classifiers to advanced multidimensional non-linear networks.
The most well known are perhaps the support vector machine, the naive
Bayes classifier, the least squares classifier and the multilayer perceptron1

[30].

In this thesis we will limit ourselves to only use simple linear classifiers and
use a variant of the least squares (LS) classifier called the LASSO. We start
by defining the LS classifier and then add some constraints to the solution
to obtain the LASSO classifier.

7.1.1 Short introduction to linear classifiers

We follow the concept of linear classifiers given in [30] where the goal of the
classifier is to design a hyperplane which separates the data as best it can.
The hyperplane is defined as:

f(x) = wTx + w0 = wT
a xa = 0. (7.2)

1Also known as a neural network
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(b) The data separated by a line (the ’2-D
equivalent’ of a hyperplane).

Figure 7.1: Typical binary classification

Where the augmented quantities xa =
[
x 1

]
and wa =

[
w w0

]
are intro-

duced for notational simplicity. Later we simply denote xa as x and wa as
w

The hyperplane, w, we design such that points on each side of the plane takes
on values ≷ 0 and exactly 0 if the point lies on the plane. A typical example
can be seen in Figure 7.1 (b). In (7.2) we see that the linear classifier is simply
an inner product with a weight vector w in addition to a threshold w0, which
maps each point to either a positive or negative value. All we have to do
in practice is to utilize the weight vector plus threshold and then check the
sign of the result. The only thing left now is how to find the weight vector.
We start with one of the most basic, but still very widely used classifier: the
least squares classifier.

7.1.2 The least squares classifier

The least squares classifier, [30], is based on the optimization of the following
cost function2:

2We remember the augmented vectors introduced including the threshold w0 in w.
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J(w) =
N∑
i=1

(yi − xTi w)2. (7.3)

Here we see that we measure the squared error of the difference between
the labels, yi, and the classified points xTi w. To optimize this function we
differentiate with respect to w and force the derivative to zero:

dJ(w)

dw
=

N∑
i=1

x(yi − xTi w)
!

= 0 (7.4)

N∑
i=1

(xTi xi)w =
N∑
i=1

xiyi (7.5)

For simplicity we rewrite the sums using matrix notation. The matrix X
is a matrix containing all x as rows and the vector y contains all labels,
yi, associated with the points xi. With this we get the famous closed form
solution for ŵ in the least squares problem [30]:

XTXŵ = XTy (7.6)

ŵ = (XTX)−1XTy (7.7)

This closed form solution gives a hyperplane that separates two classes with
the lowest squared error possible. If we have more than two classes we need
to create one hyperplane for each class separating the class in question from
all the other classes. This is known as the one versus all strategy for multi
class classification problems [30].

7.1.3 The LASSO

When working with large multivariate data sets and least squares classifiers
there are two problems besides the obvious linearity constraints that domi-
nate the results: Prediction accuracy and model interpretation [8][31].
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The most used techniques to deal with these problems are, respectively, ridge
regression and subset selection, [12]. Ridge regression puts a constraint on
the squared sum of the coefficients in the classifying function, while sub-
set selection simply chooses the subset of coefficients which gives the best
performance.

Straight forward subset selection is with most real world data sets compu-
tationally unfeasible as it must iterate through all combinations of features
to find the optimal one. Also, because it is a discrete process that simply
removes features that does not contribute to lower prediction error it does
not do anything with possible noise problems causing large variance in the
predictions.

Ridge regression can give better prediction results by lowering prediction
variance caused by extreme values and noise, but does not exclude any fea-
tures and thus does not leave any room for model interpretation [31].

With these disadvantages with the usual solutions to the problems at hand
the least absolute shrinkage selection operator, or simply LASSO, was intro-
duced [31]. It can be seen as a combination of ridge regression and subset
selection, it shrinks some coefficients and sets some to zero thus excluding
them. The LASSO cost function, [31], is defined as:

β̂ = argmin
β

N∑
i=1

(yi − β0 −
d∑
j=1

xijβj)
2 + λ

d∑
j=1

|βj|, 3 (7.8)

where β is used to avoid confusion with the hyperplane coefficients w of the
least squares classifier. We also note that the shrinkage parameter λ uses the
same symbol as the eigenvalues used different places in the Theory section,
so when we speak of the LASSO the λ means the shrinkage factor of the
coefficients unless otherwise specified.

In this definition we see that the LASSO is simply a constrained version of
the ordinary least squares classifier. Closely related to the square constraints
of ridge regression the LASSO shrinks the parameters of β, but also sets
some to zero. This is due to the absolute constraints of the LASSO creating

3In the LASSO cost function it is not normal to use augmented variables because the
threshold β0 is not included in the optimization as shrinking it would simply move the
hyperplane away from the classification problem.
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Figure 7.2: The least squares solution space contours (red) and the LASSO
constraints shown in cyan. Figure taken from [8].

a nonlinear optimum in the solution space of the least squares cost function,
seen in Figure 7.2 where we see that the solution obeying the absolute con-
straint closest to the LS solution β̂ has one coefficient set to zero. We also
note that the problem posed in (7.8) is a quadratic programming problem
and thus does not have a trivial closed form solution such as the least squares
classifier [8]. In this thesis we will not go into the details of how the LASSO is
optimized, we will use a software package to do the optimization, see Section
8.1.5.

There are several reasons for choosing the LASSO as classificator in this
setting. Firstly it has given good results in [28] combined with DaSpec
algorithm. Secondly the properties of the LASSO predictions are particularly
suited for complementing the data transformations involved in the semi-
supervised setting we are using:
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• It helps prediction error by constraining the parameter vector deciding
the ’tilt’ of the classifying hyperplane preventing extreme points and
outliers from having too much influence.

• When we have transformed the data using some kind of transformation
in many cases the exact dimension/number of eigenvectors to use is
very hard to determine and we have to resort to heuristic methods.
The LASSO can remove unnecessary eigenvectors/dimensions included
by these methods revealing a stronger choice of features used in the
final classifier.

In the rest of the thesis we will refer to the LASSO and least squares classifiers
as the baseline classifiers as they will be compared to the semi-supervised
classification algorithms.

7.1.4 The semi-supervised classifiers

Now that we have presented the least squares classifier and the LASSO clas-
sifier we are ready to define the semi-supervised classifiers we will use. To
simplify things we define two generic * SSL classifiers4 which can be combined
with any of the four kernel based data transformations we have presented in
the Theory part, Kernel ECA, Kernel PCA, Data Spectroscopy and Lapla-
cian eigenmaps:

General SSL LS classifier:

General SSL LASSO classifier:

4The * can be either KECA, DaSpec, Laplacian or KPCA in this setting.
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Algorithm 5 * SSL LS classifier

Input: Given data arranged in a labeled set L and an unlabeled test set U

1: Create the (Gaussian) kernel matrix K, with elements Kij =

exp
(
− ||xi−xj ||

2

σ2

)
, using all input points, L+ U .

2: Based on K, transform the data to a new space, f , using *.
3: Train a least squares classifier in f using the labeled set L.

Output: A least squares classifier in f that has included information from
the unlabeled data in the test set, hopefully improving classification per-
formance.

Algorithm 6 * SSL LASSO classifier

Input: Given data arranged in a labeled set L and an unlabeled test set U

1: Create the (Gaussian) kernel matrix K, with elements Kij =

exp
(
− ||xi−xj ||

2

σ2

)
, using all input points, L+ U .

2: Based on K, transform the data to a new space, f , using *.
3: Train a LASSO classifier in f using the labeled set L.

Output: A constrained least squares classifier in f that has included in-
formation from the unlabeled data in the test set, hopefully improving
classification performance.



Chapter 8

Experiment setup

We will conduct experiments inspired by the work in [28], [25], [4] and [16].
We compare the Kernel ECA SSL LASSO classifier with SSL versions of the
methods reviewed in the Theory part: Kernel PCA, Laplacian Eigenmaps
and the DaSpec algorithm.

In the basic experiment setup we will draw a number of data points at random
from the particular data set we are analyzing and treat them as our labeled
data/training set L. The rest of the data will act as unlabeled data/test set
U. Unless otherwise noted this process is repeated 20 times and average clas-
sification error rates and standard deviations are calculated. It is important
to note that in our case the set U will act as both unlabeled data for testing
and test examples at the same time. This means that different experiments
will have very different statistical properties as the ratio between labeled and
unlabeled data points can vary.

8.1 Setup and parameter choices

Before we start the actual testing we need to define what exactly we want to
test and because of the number of free parameters that can be tweaked we
need to define restrictions on the experiments1.

1E.g. kernel size, number of eigenvectors/dimensions/features to be used, the number
of unlabeled points vs labeled points, the shrinkage factor λ in the LASSO and so on.
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8.1.1 Choice of kernel

In theory any symmetric and positive semidefinite function could be used,
[21], so the choices are almost endless, but we make a choice and use the well
known Gaussian kernel:

κ(x,y) = exp

(
−||x− y||2

σ2

)
. (8.1)

Throughout the experiments this is the only kernel we will use. This choice
is also motivated by the fact that most related work almost exclusively use
this kernel [28], [25], [4], [16].

8.1.2 Statistical normalization

We normalize all the datasets to zero mean and unit variance before we do
any kind of transformations or classifications. This is a common practice
when using spherical kernels such as the Gaussian and also helps scale the
cost function space of the LS solution, making the structure of the data decide
the importance of the coefficients rather than the scaling of the individual
features, an important point when we deal with coefficient manipulating
operators such as the LASSO [16], [9], [30].

8.1.3 Kernel size

Working with the UCI datasets we of course know all the labels of the data,
we only simulate unknown labels. So to make the experiments best reflect
the potential of the methods we will use, we iterate through the data with
an entire spectrum of eigenvalues instead of focusing on single kernel sizes of
different heuristic methods with different outcomes.

8.1.4 The number of dimensions/features/eigenvectors

The number of eigenvectors used in the different data transformation dictates
the dimension of the output and hence the dimension of the space where the
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classification takes place. So it is obvious that the choice of eigenvectors, and
hence the dimension of the output has to be chosen carefully. We have chosen
to both use former empirical observations which has given good results and
straightforward heuristic methods. Below is a list of the different choices we
have included and will use.

• ’Knee method’, suggested for Kernel ECA in [16].

• In [4] an approximate number of eigenvectors of 20% of the number
of labeled data points is suggested as it has given good results in a
number of different experiments using the Laplacian LS SSL method.

• The number of eigenvectors equal to the number of classes, a common
method used in e.g. [15].

If nothing specific is stated in the experiments we use the methods given in
the original papers associated with the different algorithms, i.e.:

• The knee method for the Kernel ECA [16].

• The 20% rule for the Laplacian eigenmaps [4].

• The DaSpec is dictated by the number of eigenvectors fulfilling the
properties listed in Section 5.1, so no choice can be made [28], [25].

For the KPCA SSL classifiers we use the same dimension as used for KECA
because of their close relation and sometimes identical results, as shown in
Section 4.3.1.

8.1.5 LASSO parameters

To do the actual LASSO shrinkage we use the ’glmnet’ package, originally
programmed in R, compiled for MATLAB2, details of the algorithm can be
seen in [9]. The choice of the shrinkage parameter λ is usually found by cross
validation, [31], or some similar technique, but since we already know the full
truth about the data set we can test empirically which λ gives the best results.
Each time the ’glmnet’ package solves the LASSO optimization it gives out a
set of λ values ranging from small, resulting in the LS solution, to very large,
resulting in all parameters reduced to zero. So for each test this λ-set can be

2http://www-stat.stanford.edu/~tibs/glmnet-matlab/

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
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evaluated manually to see which is best. This is not a very practical solution,
but the set does not usually contain more than ∼ 60 different λ values so
it is computationally feasible and lets us show the maximal potential of the
LASSO.

8.1.6 Plotting

In this thesis we have used color as the main separator between different data
in the same plot, so we strongly encourage the reader to view the plots in
color.

8.2 Data sets

In the results section, Section 9, the different classifiers are tested on different
data sets from the UCI machine learning repository [1]. We have chosen the
sets IONOS, ADULT, PIMA, WINE and PEN as they are used in many
similar publications [16], [4], [28]. In Section 9.2 we also use the ’two moons’
toy data set from the introduction and in the last section we use the so called
Frey faces data set also used in [15].



Chapter 9

Results

We begin by comparing the Kernel ECA SSLLASSO classifier to all the
other methods from the theory section: DaSpec SSL LASSO, Laplacian SSL
LASSO and Kernel PCA SSL LASSO.

9.1 Classification error over a range of kernel

values

To look at the general behavior of the classifiers in the semi-supervised setting
using the LASSO, we start by letting the kernel sizes vary over a range of
values and test the classifiers with a different number of labeled points drawn
at random from the original set. The random points are drawn half and half
from each class in binary cases and equal numbers from each class in multi
class settings. The rest of the data is treated as both unlabeled data and
the test set. In this way we get to see the full potential of the methods, not
suppressed by the difficult choice of kernel size we meet in practice.

In figures 9.1, 9.2, 9.3 and 9.4 we see each of the sets, IONOS, PIMA, ADULT
and WINE classified with 20 labeled points for all methods using the both
the SSL LASSO and the SSL LS algorithms. The best results, i.e. lowest
prediction error, for all the data sets with 10, 20 and 30 number of labeled
points and all unlabeled data included in the data transformation are sum-
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marized in Table 9.11. In Appendix C the dimension/number of eigenvectors
and average sparsity of the LASSO for the three binary data sets are shown.

The choice of number of labeled points is inspired by [28], [16] and [4] for
comparisons in addition to the fact that 10, 20 or 30 points is not an unrea-
sonable number of data which an expert could label in a real life case. The
results from the Lasso classifiers are the results of the λ values which gives
lowest prediction error found by brute force iterations over all λ values for
each iteration at each kernel size.

9.1.1 IONOS data set

In Figure 9.1 we see the IONOS data set classified using 20 known labels and
the rest of the data treated as unlabeled test data using all four methods.

For the KECA and KPCA we clearly see a window of kernel sizes in the
range σ ∈ [1, 3] giving the lowest classification errors. For larger kernel sizes
the two methods does not seem to give any improvement over the baseline
LASSO classifier.

The Laplacian classifier seems to work best with larger kernel sizes than the
rest with the best results appearing at σ greater than approximately 3.5.
Results vary much and are sometimes well above the baseline results for the
lower range of the kernel sizes, σ ∈ [1, 4]. An interesting observation is that
this poor performance appears in almost the same range as the KECA and
KPCA algorithms works best and vice versa when the KECA/KPCA works
poorly. In Appendic C, Figure C.1 we can see that the differences in chosen
number of dimensions is highest in this region.

We also observe that for the kernel size range where the Laplacian method
works best, the LASSO also has an obvious effect lowering error, which is
not as evident in the other methods.

The DaSpec classifier has only a small window where it performs better than
the baseline LASSO classifier, but in this area with σ ≈ 0.5 it performs
comparable to the best results of the other methods. For the larger kernel
sizes we assume that the algorithm has problems finding the eigenvectors of
the relevant components in the data explaining the poor results.

1Note that the values in the table are given in %, not error rates as the figures.
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In Table 9.1 we note that the KECA and KPCA seem to have the lowest
classification error for the IONOS data set.
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(d) Kernel PCA SSL classifier

Figure 9.1: IONOS data set: The different SSL classifiers tested over a range
of kernel sizes with 20 known points. Lasso classification results: blue, LS
classification results: red. Baseline ordinary least squares and lasso classifi-
cations with 15 labels are shown in magenta and blue dotted lines.

9.1.2 PIMA data set

Classification results for the PIMA dataset are presented in Figure 9.2.
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The first thing we note is that the baseline LASSO classifier actually per-
forms poorer than the least squares, indicating that the original least squares
classifier gives the best linear result possible in the input space.

We see that both the KECA and the KPCA algorithms perform well with
kernel sizes in the range larger than 5, and poorer in the range 0-2. A spike
in the LS SSL classifiers occur at a kernel size slightly larger than 4, but
with a much better LASSO result. In this case we see that the LASSO has
helped the classifier significantly, we assume that the spike is caused by the
knee method selecting very many dimensions and thus disturbing the least
squares classifier, see Appendix C, Figure C.2. In section 9.4 we study this
spike further.

The Laplacian SSL classifiers performs good with a fairly low classification
error for kernel sizes approximately larger than 2, and generally poorer with
very varied results in the kernel size range 0-2.

The DaSpec algorithm has only a small window where it performs better than
the baseline classifiers in the kernel range around 1-3. Smaller kernel sizes
yield quite poor results, with errors higher than the baseline. We also note
basically no difference between the LASSO and the LS methods, indicating
that the DaSpec only finds one eigenvector thus rendering the LASSO useless.
The latter can be seen in Appendix C, Figure C.2.

In general the LASSO has more impact in the KECA and KPCA cases for
this data set than for the IONOS set, but it still seems to have the greatest
general effect on the Laplacian method.

9.1.3 ADULT data set

Classification results for the ADULT data set are displayed in Figure 9.3.

For the KECA classifier results we see that the prediction error varies ex-
tremely, sometimes well below the baseline classifiers and sometimes far
worse. It is hard to say what causes this, but it is probably related to the
knee method selecting very different numbers of eigenvectors for different
kernel sizes. See Figure C.3 in Appendix C.

The KPCA classifier does not seem to have the same problems with the
extreme variance as the KECA classifier has, which probably is related to
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Figure 9.2: PIMA data set: The different SSL classifiers tested over a range
of kernel sizes with 20 known points. Lasso classification results: blue, LS
classification results: red. Baseline ordinary least squares and lasso classifi-
cations with 15 labels are shown in magenta and blue dotted lines.
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the difference in the eigenvectors chosen compared to the KECA. Given that
we know there are two classes in this data set and assume that they fall under
the cluster assumption there should be at least two eigenvectors with a strong
response over each of the classes [25]. If these two should happen to be the
two top eigenvectors, and the knee method selects 20 eigenvectors as the
dimension, it seems probable that the KPCA method chooses eigenvectors
with less information than the KECA method which can lead to a non-general
classifier or overfitting in the KECA case. In [28] the opposite is proposed;
an extra non-informative KPCA eigenvector can lead to overfitting, but with
the notions presented in the Theory section regarding the variance being a
limited descriptor we leave this question open.

The DaSpec algorithm performs similar as in the IONOS set, a small window
of good and low classification errors at small kernel sizes. The opposite is
true for the Laplacian method, also similar to the IONOS results, a window
of high error rate in the lower kernel size region and stable low error rates as
the kernel size increases.

In these results we notice that the LASSO improves the classifications at
almost all kernel sizes, except for the DaSpec at larger sizes where again only
one eigenvector is chosen.

9.1.4 WINE data set

For the wine data set we see that the KECA method works very well for
almost all kernel sizes with a result far below the baseline results. In the
range from σ ∈ [0.5, 2] we see somewhat higher error rates, but still a good
result.

The KPCA also gives good results, best in the kernel size range above 2. For
lower kernel sizes we see that the KECA result gives lower prediction error
than KPCA, indicating that the KECA has chosen a different set of eigen-
vectors than KPCA as they have the same number of dimension according
to the knee method.

The Laplacian method has good results for kernel sizes greater than approx-
imately 1.5, but in the range below the error rates increase.

DaSpec SSL classification yields a bit higher error than the rest of the meth-
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Figure 9.3: ADULT data set: The different SSL classifiers tested over a range
of kernel sizes with 20 known points. Lasso classification results: blue, LS
classification results: red. Baseline ordinary least squares and lasso classifi-
cations with 15 labels are shown in magenta and blue dotted lines.
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ods and again has a small range of kernel sizes where it works best.

We see that the LASSO improves all classifiers at some points. In the DaSpec
results we note a drastic improvement in the kernel size range of approxi-
mately 1-3. The KECA and KPCA experiences some spikes in the error rates
at σ ∈ [5, 6] removed completely by the LASSO. At kernel sizes greater than
around 3, the LASSO helps the overall classification for all kernel sizes for
the Laplacian and KPCA methods.
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Figure 9.4: WINE data set: The different SSL classifiers tested over a range
of kernel sizes with 21 known points. Lasso classification results: blue, LS
classification results: red. Baseline ordinary least squares and lasso classifi-
cations with 15 labels are shown in magenta and blue dotted lines.
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9.1.5 Summary of comparison results

In all data sets we see that the semi- supervised classifiers performs better
than the supervised baseline LASSO and LS classifiers. The results are of
course very dependent on kernel size, but all methods perform better than
the baseline classifiers at some kernel size indicating that using the unlabeled
test data has improved the classification.

It also seems that our results directly contradicts the results of [28] regarding
the differences between KPCA LASSO and DaSpec LASSO, something that
most likely is related to our choice of conducting these experiments over a
whole range of kernel sizes. In the figures showing the classification results on
the WINE data set, seen in Figure 9.4, we have included kernel size generated
by an automatic algorithm presented in [25]2, marked in cyan color, showing
that the results from [28] gives good meaning for this particular size, but as
far as we can see does not generalize very well.

2Also presented quickly in Appendix A.2.
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9.2 Influence of adding unlabeled data

In the previous section we saw that by including the unlabeled test points
in the data transformations the LASSO SSL classifiers outperformed the
baseline classifiers with at least 10% in all cases, and sometimes much better.
Now we test what effect adding different amounts of unlabeled points in the
transformation has.

Most of the data sets in the previous results are quite small so we introduce
a new data set, the handwritten PEN digits, also from [1], consisting of
handwritten digits 1-9. Besides being a larger data set than the previous
ones, this set is also useful because of the fact that because the classes in
the set consists of handwritten digits it is natural to assume that they fulfill
the cluster assumption, and that adding unlabeled data would improve the
’capturing’ of these clusters in the kernel matrix of the transformation.

To reduce computation time we use an automatic kernel size algorithm from
[25]3, 20 known points and 4 eigenvectors by the 20% rule from [4]. By
doing this we might not get the optimal results classification wise, but we
are mostly interested in showing the effects of using different amounts of
unlabeled data. To get the full effect of adding unlabeled points we average
over 200 repetitions drawing 30+Nunknown points from the dataset each time.
The classification error is calculated and in Figure 9.5 the results are shown
as a function of the number of unlabeled points included. We note that the
number of unlabeled points are also the test points, so the test sets used vary
in size accordingly.

In Figure 9.5 we see that adding more unlabeled data in the KECA LASSO
SSL classifier improves the classification. From only 100 labeled points to
full kernel matrix we see an improvement of about 3%. Compared to the
baseline LASSO classifier which has a classification error of ∼ 60% shown
below, the improvement is drastic.

Baseline LASSO classifier with 50 known points from the PEN data set:

Error: 0.6482
Standard deviation: 0.0018

We also classify the ’two moons’ data set, as seen in the introduction in Figure

3explained briefly in Appendix A.2.
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Figure 9.5: The PEN digits data set with the numbers 4, 5 and 6 classified
with 100, 500, 1000 and 2220 unlabeled test points and 20 labeled points.
2220 unknown points equals full kernel matrix.

1.1, including different numbers of unlabeled points in the kernel matrix. The
set consist of a total of 2500 data points. The same motivation as for the
PEN digits set holds here, perhaps even stronger: the set is clearly divided
into two clusters and the idea of including the unlabeled data should help the
classifier represent the data better. In Figure 9.6 we see the effects of adding
unlabeled data when classifying the set with 50 and 200 labeled points using
the KECA SSL LASSO classifier.

The baseline LASSO classifier gives the following results:

50 known points:
Error: 0.1501
Standard deviation: 0.0283
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Figure 9.6: Two moons data set classified using 50 and 200 labeled points
and varying amounts of unlabeled data.

200 known points:
Error: 0.1366
Standard deviation: 0.0167

In this example we also see the effects of adding more unlabeled data, albeit
on a much smaller scale. We also notice that the error rises a bit with 2000
unlabeled compared to 1000 unlabeled data points, but we address this as
statistical uncertainty as the scale already is quite small.
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9.3 KECA vs KPCA

In this section we look at the differences when using KECA and KPCA to
do the transformations in the SSL algorithms as they are closely related.
We remember that the only practical difference is the choice of eigenvectors
from the kernel matrix of the input data. To simplify things and avoid con-
fusion regarding the number of dimensions chosen we use the same number
of eigenvectors used with the Laplacian SSL LASSO classifier in the previ-
ous section, 20% of the number of known points. Upon manual inspection
during the testing we have noted that the IONOS data set in some cases
favor the KPCA LASSO SSL classifier and in some cases the KECA LASSO
SSL classifier. Because of this we choose examples from the IONOS set as
the basis for the comparisons. In Figure 9.7 we see the classification results
over a range of kernels with 30 labeled points and 6 eigenvectors and we see
that for some kernel sizes there are some significant differences. The KECA
performs best in the area of σ ∈ [0, 2] and the KPCA performs better for
σ ∈ [5, 7].

To compare the methods we manually choose a few kernel sizes where the dif-
ferences are notable and compare the eigenvector choices and the coefficients
chosen by the LASSO and least squares classifiers.

The first value we chose is 6.1466 which gives the classification errors shown
in Table 9.2.

KECA KPCA
Error 0.2736 0.0587

Standard deviation 0.0172 0.0126

Table 9.2: LASSO SSL classification errors with 30 known points drawn at
random, averaged over 20 iterations.

In this case the KPCA SSL LASSO classifier outperforms the KECA SSL
LASSO classifier in terms of lower prediction error. For each calculation of
classification error we have 20 sets of coefficients for both the LASSO and
the LS. The LASSO coefficients are the ones giving the lowest classification
error in each case. In Table 9.3 and 9.4 we see the coefficients averaged over
the 20 sets.

In the tables 9.3 and 9.4 we see that for the KPCA both the LASSO and the
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Figure 9.7: The IONOS data set classified using both the KECA and the
KPCA LASSO SSL classifiers with 30 known points and 6 eigenvectors.

KECA dimension KECA coeffs KPCA dimension KPCA coeffs

1 -0.5670 1 -0.5475
2 0.0081 2 -0.0521
9 -0.0314 3 0.0679
10 0.0021 4 0.5423
11 0.0020 5 0.1397
12 0.0435 6 -0.2384

Table 9.3: Least squares coefficients

KECA dimension KECA coeffs KPCA dimension KPCA coeffs

1 -0.4809 1 -0.4742
2 -0.0055 2 -0.0223
9 -0.0074 3 0.0363
10 0.0125 4 0.4786
11 0.0060 5 0.0859
12 0.0309 6 -0.1748

Table 9.4: LASSO coefficients
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LS places a significant weight on the 4th eigenvector, an eigenvector that is
not chosen at all with the KECA. The KECA coefficients focus mainly on
the first eigenvector, in practice almost creating a one dimensional classifier
on the data projected to the first principal axis of the feature space. This
illustrates that sometimes the KECA transformation can choose eigenvectors
that does not contribute well in a linear classification setting based on least
squares.

To compare the other way around, where the KECA SSL LASSO outperforms
the KPCA SSL LASSO, we use the same experiment as the previous results
and chose a kernel size of 1.8353 which gives the classification errors shown
in Table 9.5.

KECA KPCA
Error 0.1149 0.1353

Standard deviation 0.0240 0.0176

Table 9.5: LASSO SSL classification errors with 30 known points drawn at
random, averaged over 20 iterations.

In this case the KECA performs best and we do a similar analysis as when
the KPCA performed better. The averaged least squares and best LASSO
coefficients can be seen in tables 9.6 and 9.7.

KECA dimension KECA coeffs KPCA dimension KPCA coeffs

1 0.8398 1 -0.8071
3 -0.3315 2 0.1947
2 0.2000 3 -0.3253
6 0.5328 4 0.4761
8 0.1778 5 0.0049
4 0.4401 6 0.5258

Table 9.6: Least squares coefficients

The first thing we notice here is that the weights are generally higher in this
case, i.e. all the 6 dimensions contribute to the classification in the KECA
case. For the KPCA the 5th dimension is weighted down almost completely,
whilst the 5th largest entropy component, corresponding to the 8th KPCA
eigenvector, has a significant weight and thus also an impact on the classifier.
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KECA dimension KECA coeffs KPCA dimension KPCA coeffs

1 0.7758 1 -0.7321
3 -0.2624 2 0.1422
2 0.1565 3 -0.2484
6 0.4820 4 0.4087
8 0.1480 5 0.0070
4 0.3782 6 0.4560

Table 9.7: LASSO coefficients

In this case the LASSO agrees with the eigenvectors chose by the KECA,
indicating that the KECA chosen axes presents a good subset selection which
in combination with a small shrinkage of all coefficients gives the best result
with the chosen kernel size. For the KPCA we see that the 5th eigenvector
has been almost zeroed out, and in addition to the rest of the somewhat
shrunk coefficients the KPCA is left with a subset with a slightly higher
prediction error.

To summarize; the differences between the KECA and KPCA LASSO SSL
algorithms comes as expected from the differences in choices of eigenvectors.
The LASSO itself is of course very sensitive to the choice of eigenvectors
so it will be helpless if the choice of eigenvectors does not contain good
classification properties at all.

The last thing we need to note in this case are the different choices of kernel
sizes, 1.8353 and 6.1466. In practice there exist only heuristic methods for
choosing kernel size and calculating the kernel size based on a selection of
methods presented in [15] and [25] gives:

Method Kernel size
20% of median*: 1.5572
20% of mean*: 1.5039
20% of total range*: 3.6906
Data Spectroscopy kernel size algorithm: 1.3444

* of total euclidean distance range between all input points.

Table 9.8: Different heuristic kernel sizes calculated for the standardized
IONOS data set.
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So in practice we see that the kernel size favoring KECA is the closest to the
sizes created by the heuristic methods implying that practical methods often
will be worse than the best results for each method shown in this thesis.

9.3.1 Comments to differences between KECA and KPCA
shown in Theory section

In [15] as well as our illustrations in Chapter 4 we have seen examples where
the KECA transformation gives distinctly different results than the KPCA
transformation. In many cases, especially the ones where the KECA results
in a very reasonable angular structure, we have inferred that the KECA
transformation reveals more information about the data than the KPCA
transformation. A clustering algorithm based on a cosine cost function after
KECA transformations was presented in [15] using this intuition with good
results. From the results in Section 9.1 we see that when we use the LASSO
and least squares classifiers, these differences does not seem to come in to
play as significantly as expected. In many cases we see that the KECA
performs better at smaller kernel sizes4, but in almost all cases the best
results occurs at larger kernel sizes where the KPCA and KECA yields the
same transformations.

This is further confirmed in Appendix B where we have classified the same
data sets as in the previous section using both algorithms with a fixed number
of eigenvectors equal to the number of classes, the Laplacian 20% method
and a fixed number of 20 dimensions (mainly to let the LASSO decide which
eigenvectors to use). We chose two ways of doing this. First, to illustrate
the tendency of the best LASSO results coming at larger kernel sizes and
creating almost equal reults for KPCA and KECA, we use the same kernel
size range as in the examples in Section 9.1, σ ∈ [0, 10]. In this case we
use 20, 30 and 50 labeled points. Second, we test the two methods with the
different heuristic kernel size methods presented in the previous section with
50 known points. The best results with full kernel size range are presented in
tables B.1, B.2 and B.3. The results from the heuristic kernel size methods
are presented in tables B.4, B.5, B.6 and B.7.

When using eigenvectors equal to the number of classes and full kernel size

4E.g. Figure 9.4 (a) and (c).
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range, Table B.1, KPCA and KECA basically gives the same best LASSO
results, except for the ADULT set where the KECA does slightly worse.
Almost the exact same can be seen for the Laplacian 20% method with
full kernel range, Table B.2: KECA and KPCA has the same best LASSO
results, except for the ADULT set. With both these methods we also note
that KECA does better on the IONOS set when there are only 10 labeled
points. When using 20 eigenvectors and full kernel range, Table B.3, we get
the same results, almost all best results are equal, but now the ADULT set is
as good for the KECA as for KPCA. In this case we would expect the results
to be very similar as we have a total of 20 eigenvectors, and with so many
vectors we assume that both KPCA and KECA have chosen, if not all, at
least very many of the same vectors.

The results using the heuristic kernel size methods give a different picture.
For the WINE data set, Table B.7, the KECA gives consistently better results
except for the largest kernel size (15% of the total median range) and when
20 eigenvectors are used. The ADULT and PIMA set, tables B.5 and B.6,
yields variying results, but mostly the same results for KPCA and KECA.
The IONOS set, Table B.4, behaves much like the wine set, different results
for the smaller kernel sizes, and equal results at the larger kernel sizes and
when 20 eigenvectors are used.

To summarize this section we see that the differences between KECA and
KPCA as presented in Section 4.3.1 and [15] does not seem to be taken full
advantage of when using the LASSO or least squares classifiers. We also note
that in general the best results using the LASSO and all four transformations,
DaSpec, Laplacian eigenmaps, KPCA and KECA, comes from KECA and
KPCA at higher kernel sizes where the chosen eigenvectors are mostly the
same.

In the next section we will further investigate the LASSO and compare cases
where the KECA SSL LASSO and KECA SSL LS perform differently.

9.4 Effects of the LASSO

In this section we will investigate further how the LASSO influences and
works together with the KECA transformation in the KECA LASSO SSL
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classifier. We choose the PIMA data set as we can observe a significant
difference between the LASSO and least squares classification in Figure 9.2
(a) with a kernel size in the range ∼ 4 and redo the same experiment using
only the KECA classifier collecting all LASSO coefficients and errors. To get
a better overview over the individual LASSO coefficient sets we reduce the
averaging from 20 to 3 for each kernel size, the classification result is shown
in Figure 9.8.
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Figure 9.8: Classification error with kernel ECA, 20 known points and 748
unknown points over a range of kernel sizes.

From closer inspection of the classification results we see that a kernel size of
4.086, marked with a data label in Figure 9.8, gives a large difference between
the LASSO and the least squares result:

LASSO: 29.67%
Least squares: 32.97%
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We now take a look at how the shrinkage of the LASSO interacts with the
eigenvectors chosen by the KECA transformation. In Figure 9.9 we see the
coefficients of the LASSO classifier with the chosen kernel size as a function
of the logarithm of shrinkage parameter λ. The coefficient sets with best
prediction errors are marked by thin red lines and can also be seen in Table
9.9.
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Figure 9.9: The coefficents of the LASSO

We also include a stem plot of the coefficients as function of the KECA
eigenvector index seen in Figure 9.10.

From Table 9.9 we see that the LASSO favors eigenvectors 2, 7 and 9. We
also note that four of the dimensions are set to zero and that dimensions
4,5,6 and 12, seen in Figure 9.10 with values below zero, have been shrunk
quite a bit.

In the case of the LASSO used together with the data transformation it is
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λ 0.065 0.059 0.054 0.049

KECA eigenvectors
1 0 0 0 0
2 0.370 0.376 0.381 0.387
4 -0.083 -0.090 -0.097 -0.103
5 -0.028 -0.032 -0.036 -0.041
10 0 0 0 0
7 0.161 0.166 0.171 0.176
8 0 0 0 0.002
6 -0.088 -0.093 -0.097 -0.101
9 0.258 0.263 0.268 0.272
16 0 0 0 0
12 -0.054 -0.058 -0.062 -0.064

Table 9.9: The LASSO coefficients and KECA dimensions at three different
shrinkage factors which gives the best classification error.

most intuitive to focus on the subset selection operator part of the LASSO as
all correlation already has been removed via projecting onto the orthogonal
principal axes of the feature space thus reducing the possible effects of the
shrinkage [8], [31], [9]. But as we have seen in most examples presented in
this thesis all LASSO results showing better results than the least squares
without any dimensions removed have lower coefficients indicating shrinkage.
We will only treat this as an empirical observation and not analyze it further.

The same effects can be seen in a case with the IONOS data set where we test
the KECA SSL classifier over a range of kernel values with 20 known points
and all other used as unlabeled test points. We now include 10 eigenvectors
to show that the LASSO can act as a practical subset selection method. The
test reveals a significant improvement in classification error when using the
LASSO at the kernel size 2.2932:

LASSO: 6.43%
Least squares: 16.08%

There are two sets of coefficients that gives this result shown in Table 9.10.
We have chosen to include the least squares coefficients in the table to get
insight in both the subset selection by setting coefficients to zero and the



95

0 2 4 6 8 10 12 14 16
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Dimension

LA
S

S
O

 c
oe

ffi
ci

en
t v

al
ue

Figure 9.10: The value of the best LASSO coefficients at each KECA di-
mension for the PIMA dataset with a kernel size of 4.086 and 20 labeled
points.

shrinkage of the remaining coefficients compared to the original least squares
result.

Figure 9.11 shows the coefficients as a function of the logarithm of the shrink-
age factor λ.

In this case we see that the LASSO has kept all, but two dimensions, the
7th and 13th eigenvectors. We also in Figure 9.11 combined with Table 9.10
see that all coefficients except the first and third have been shrunk quite
significantly. This we can interpret as the KECA SSL algorithm have taken
full advantage of the LASSO, with both subset selection and shrinkage of
coefficients yielding a lower classification error.

To get a more general idea of how the LASSO interacts with the semi-
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KECA eigenvector index LS coeffs LASSO coeffs LASSO coeffs

1 0.9816 0.8969 0.9040
2 0.6693 0.2816 0.2982
3 -0.5722 -0.5204 -0.5239
5 -1.2779 -0.2805 -0.3473
7 0.3313 0 0
4 1.2222 0.1706 0.2560
9 -0.7303 0.0975 0.0314
8 -0.4274 -0.2540 -0.2752
13 0.3474 0 0
6 -0.5015 -0.2886 -0.3169

Table 9.10: LASSO and LS coefficient for KECA SSL LASSO algorithm on
the IONOS dataset with 10 eigenvectors.
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Figure 9.11: Lasso coefficients for the KECA LASSO SSL classifier with 20
random points acting as labels. The coefficients that give best prediction
error are marked with red vertical lines.
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supervised algorithms we note how many dimensions the LASSO sets to zero
in each case in the experiments in Section 9.1. In Figure 9.12 we see the di-
mension of the algorithm and the average sparsity5 of the best LASSO results
for the particular PIMA example used previously to show the LASSO inter-
action. In the experiments we used the so called ’knee method’ for choosing
the number of eigenvectors for the KECA and KPCA SSL LASSO algorithms
and we clearly see that the number of eigenvectors chosen by this method
varies much, but that the LASSO in most cases suppress much of the extreme
dimension choices. Figure 9.13 shows the same results, knee dimension choice
for the KECA method and average sparsity, for the data sets IONOS, PIMA
and ADULT with KPCA LASSO SSL included for the IONOS set. Plots of
the dimension of all methods for the datasets, IONOS, PIMA and ADULT,
can be seen in Appendix C confirming the LASSO behavior.

We also remember the very strange result with the KECA classifier and the
ADULT data set in Figure 9.3 (a), and note that in very many of the kernel
sizes the results from the LASSO showed significant improvement over the
LS version. In (c) of Figure 9.13 we see that in many cases the dimension
is very high, but the LASSO sparsity forces the dimension down keeping the
best subsets of eigenvectors.

5The number of dimensions set to 0.
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Figure 9.12: The dimension of the KECA transformation as chosen by the
’knee method’ and the average number of dimensions set to zero by the
LASSO.
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Figure 9.13: Knee method-chosen dimension and average sparsity of the best
LASSO solutions.
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9.5 The Frey faces

We conclude the results by doing a simple real world example using the so
called Frey faces data set6. In [15] this data set was clustered using a kernel
ECA based clustering algorithm with good results using a median based
kernel size, taking a kernel size corresponding to 10− 20% of the median of
the euclidean distance between all points. We experimented with different
choices within this kernel size and after standardizing the data set we settled
for kernel size σ ≈ 15. This actually corresponds to closer to 50% of the
median range, but as we will see it gave reasonable results and this is just
an example for illustrational purposes so we choose to leave it as is.

As we have no prior knowledge of the data we have to manually create labels.
We chose 10 smiling faces and 10 ’sour’ faces as our labeled points and opt
for a binary classification dividing the data set in a smiling set and a ’sour’
face set.

(a) The smiling class (b) The sour class

Figure 9.14: The two sets of labeled training points from the Frey faces data
set.

We start by classifying the whole set using the baseline ordinary least squares
classifier. The classification results are shown in figures 9.15 and 9.16, with
the figures showing the happy class and the sour class respectively. Because
of the size of the images, they will extend beyond the margins of the pages
on which they are displayed, but reducing the size further would make them
very hard to read so we chose to leave them as is.

6http://cs.nyu.edu/~roweis/data.html.

http://cs.nyu.edu/~roweis/data.html
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Figure 9.15: The happy faces class as predicted by the baseline least squares
classifier.
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Figure 9.16: The sour faces class as predicted by the baseline least squares
classifier.
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As we see in figures 9.15 and 9.16 the ordinary least squares classifier does
not seem to work very well. There are many smiling and many sour faces in
both images, indicating that our goal of classifying the set into two distinct
classes have failed.

Now we use the KECA LS SSL classifier with 4 eigenvector corresponding
to the 20% rule in [4] and include all images in the kernel matrix. The
classification results are shown in figures 9.17 and 9.18, and we note that the
KECA algorithm chose eigenvectors 1, 6, 2 and 4 of the kernel matrix.

We note a clear improvement when using the KECA LS SSL classifier. Es-
pecially the ’sour’ face class seem to be well separated as the image almost
exclusively contains frowning and more or less serious faces. The smiling
class does also represent a reasonable structure as it seems to have a surplus
of smiling faces.

The last thing we do is test the KECA LASSO SSL classifier with the same
kernel size and number of eigenvectors as before. As we have no labels we
need to find a proper shrinkage factor λ to use with the LASSO. As it turns
out the ’glmnet’ software package we have used to calculate the LASSO
coefficients and shrinkage has a built in cross-validation function. So we
perform a leave-one-out, or 20-fold in this case, cross-validation, [8], and get
λ = 0.0547. Using this value we get the classification results shown in figures
9.19 and 9.20.

Also in the case of KECA SSL LASSO we get much more reasonable results
compared to the baseline classifiers.

Without true labels we cannot calculate prediction errors, so we will not
analyze the figures or differences between the LS SSL and LASSO SSL clas-
sifiers any further except noting that in the LASSO case (almost) removed
two dimensions, seen in Table 9.11.
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Figure 9.17: The happy faces class as predicted by the KECA LS SSL clas-
sifier.
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Figure 9.18: The sour faces class as predicted by the KECA LS SSL classifier.
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Figure 9.19: The happy faces class as predicted by the KECA LASSO SSL
classifier.
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Figure 9.20: The sour faces class as predicted by the KECA LASSO SSL
classifier.
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KECA dimensions LASSO coeffs LS coeffs
1 -2.4597 -2.9899
6 0.0522 0.5413
2 -2.8245 -2.9171
4 0 0.4161

Table 9.11: Coefficients of the LASSO SSL and LS SSL algorithms for the
Frey faces.



Chapter 10

Conclusion

In this thesis we have presented a new semi-supervised classifier combining
the Kernel Entropy Component Analysis transformation developed at the
University of Tromsø with the linear LASSO classifier. The results show
that the classifier is comparable and in many cases even better than the
benchmark work in [28] and [4]. This method is a further development of the
semi-supervised classifier presented in [16] using KECA and least squares,
and we have shown that the LASSO almost exclusively gives better classifi-
cation results.

We have also shed some light on how the LASSO influences the Kernel ECA
transformation and shown that both properties of the LASSO comes into
play when used in practice: subset selection of the eigenvectors of the kernel
matrix and shrinkage of the coefficients.

In the next section we summarize some of the most important observations
made in this thesis.

10.0.1 Important observations

• When there is difference between the KECA and KPCA LASSO SSL
classifiers the difference mostly consist of the eigenvector choices.

• Significant improvement between LASSO and LS results are often due
to subset selection. In most cases the LASSO has removed some of the
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eigenvectors.

• LASSO improves prediction accuracy in almost all cases in the SSL set-
ting. This is not always true in the baseline setting where the ordinary
least squares in some cases outperformed the LASSO in terms of lower
classification errors.

• The LASSO classifier seems to give best results when the KECA and
KPCA yields the same results. This indicates that the favorable prop-
erties of the KECA over the KPCA mentioned in this thesis and in [15]
is not fully utilized by least squares methods.

• The KECA LASSO SSL classifier is comparable and in many cases bet-
ter than benchmark work using the Laplacian eigenmaps and DaSpec
algorithms.

• It seems that the choice of kernel size is by far the most important
parameter choice in all data transformations used in this thesis. All
the methods have kernel size windows where they perform well, but in
most cases these do not overlap at all, and they do not seem to coincide
with known heuristic methods.

10.1 Suggestion for further work

There are many interesting directions the work beyond this thesis could take.
The most obvious is perhaps to move beyond the choice of linear classifiers,
LS and LASSO, and test more advanced classifiers. On the other hand
different versions of the semi-supervised scheme could be tested. We present
a list of things we find interesting as options for further work.

• In [15] it was shown that the Kernel ECA transform in many cases
resulted in a distinct angular structure and a clustering algorithm using
k-means and an angular cosine measure was proposed. From these
results it could be interesting to try the semi-supervised direction called
’self-training’ where the EM1 algorithm has been used. The idea is to
train a classifier using a set of labeled data, classify the unlabeled data
and then train a new classifier based on the newly classified points

1Expectation Maximization algorithm, details can be found in [30].
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[19]. This process is repeated until a convergence criteria is reached,
e.g the classification error does not improve for each iteration. The
k-means is a special case of the EM algorithm so to implement the EM
algorithm in the feature space using an angular cost function could be
of interest. Alternatively one could simply test a classification in the
feature space using some kind of angular cost function as we have seen
that the LASSO does not take advantage of the sometimes distinct
angular axes of the KECA transformation.

• One of the biggest problems with using the Kernel ECA in the semi-
supervised setting is that we have to calculate the eigenvectors of the
kernel matrix. We have used MATLAB which sets the limit at about
5000 data points. In [16] the Epanechnikov kernel is used leading to
a sparse kernel matrix, making the Kernel ECA SSL classifiers capa-
ble of handling much larger data sets. Another possibility is testing
kernel ECA and classification using a nearest neighbor-based entropy
measure yielding a sparse kernel matrix. The latter has not yet been
implemented, but work is being done at the University of Tromsø. This
nearest neighbor setting could also be tested implicitly with the Semi-
definite Embedding version of kernel PCA, presented in [32]2.

• In [31] it is pointed out that for the different true underlying models of
a data set, the LASSO, ridge regression and subset selection will each
have a scenario where they work best, and in [9], which is the basis
of the algorithm used to calculate the LASSO parameters, the ’elastic
net’ is proposed, a combination or compromise between the LASSO
and ridge regression. Implementing this is not more computationally
demanding than the LASSO and because we have shown the LASSO
to improve the classification it would be interesting to see if the elastic
net could improve the classification further.

• The choice of linear and quadratic error based classifiers is perhaps a
strange choice as we in the Theory part of this thesis have proposed
possible drawbacks when using such methods, so classifying with an
entropy based cost function in the KECA feature space would be in-
teresting as the Kernel ECA preserves entropy. In some cases we have

2The connection to entropy is not directly evident as of now and would have to be
explored further, but the matrix is a kernel matrix used for KPCA so the connection to
Kernel ECA should still hold.
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observed that the KPCA based classifiers have outperformed the KECA
based classifiers, something that is perhaps not so strange as it is a vari-
ance preserving transformation and the LASSO and least squares are
based on squared errors.



Appendix A

A selection of extra parameter
estimates

A.1 KECA knee method

In this section we introduce the method of choosing the number of eigenvec-
tors in a KECA data transformation we use. In [16] it is pointed out that in
many cases a notable drop, or ’knee’, can be noted when plotting the entropy
values and an automated procedure for finding this knee is proposed:

• Compute the differences between the entropy values, a discrete first
order derivative.

• Compute the ratio between the derivatives.

• If the ratio when going from entropy value k to k+1 is lower than 15%
a ’knee’ is noted and the dimension is set to k.

• A lower limit of k is set equal to the number of classes in the data
set in classification cases as the drop from the first to second entropy
value can in certain settings be extremely high resulting in only two
dimensions chosen.
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A.2 DaSpec kernel size algorithm

In this section we present a kernel size method from [25].

The idea is that when a kernel operator works on a data point it should cover
at least 5% of the neighbouring points, and this should be the case for as
much of the data as possible, 95% is used in [25]. This is reflected in a length
quantity l such that P (||X|| < l) = 0.95

l can be found as:

• an array of 5% quantile of distance from each point to all other points.

• 95% quantile of this array.

We now look at P (||X|| < l) = 0.95.

• We know that the Gaussian kernel is ∝ N (x, σ2) which gives ||X|| ∝
1
ω
N (
∑√

x, 1) = 1
ω

√
(χ2

d)

• The latter gives, using the inverse χ2
d, l = σ

√
95% quantile of χ2

d

From this we find the kernel size σ = l√
95% quantile of χ2

d



Appendix B

Additional classification results
using KECA and KPCA
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Appendix C

Extra dimensionality plots from
the UCI kernel size full range
experiments
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