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Abstract
Recent research using repeat photography, long-term ecological monitoring and
dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra
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ecosystems. Here, we (1) synthesize these findings, (2) present a conceptual framework that
identifies mechanisms and constraints on shrub increase, (3) explore causes, feedbacks and
implications of the increased shrub cover in tundra ecosystems, and (4) address potential lines
of investigation for future research. Satellite observations from around the circumpolar Arctic,
showing increased productivity, measured as changes in ‘greenness’, have coincided with a
general rise in high-latitude air temperatures and have been partly attributed to increases in
shrub cover. Studies indicate that warming temperatures, changes in snow cover, altered
disturbance regimes as a result of permafrost thaw, tundra fires, and anthropogenic activities or
changes in herbivory intensity are all contributing to observed changes in shrub abundance.

A large-scale increase in shrub cover will change the structure of tundra ecosystems and alter
energy fluxes, regional climate, soil-atmosphere exchange of water, carbon and nutrients, and
ecological interactions between species. In order to project future rates of shrub expansion and
understand the feedbacks to ecosystem and climate processes, future research should
investigate the species or trait-specific responses of shrubs to climate change including: (1) the

temperature sensitivity of shrub growth, (2) factors controlling the recruitment of new
individuals, and (3) the relative influence of the positive and negative feedbacks involved in

shrub expansion.

Keywords: shrubs, vegetation, tundra, Arctic, alpine, climate change, feedbacks, ecosystem

structure, ecosystem function, disturbance

1. Introduction

High-latitude ecosystems have experienced warmer temper-
atures in recent decades, and are projected to continue to
warm in the future [1]. The implications of this warming for
tundra ecosystems are widespread and diverse [2], including
permafrost thaw [3], more frequent tundra fires [4] and
changing tundra vegetation [5]. Climate change is projected
to alter ecosystem boundaries between the various tundra
vegetation communities by increasing the relative abundances
and cover of shrub species (such as birch, willow and alder:
Betula, Salix and Alnus spp. respectively).

Shrubs are woody plants with diverse growth forms
including tall multi-stemmed shrubs (0.4—4.0 m), erect dwarf
shrubs (0.1-0.4 m) and prostrate dwarf shrubs (<0.1 m)
that grow laterally along the ground surface. In this paper
we refer to erect dwarf shrubs and prostrate dwarf shrubs
simply as dwarf shrubs. Shrub species are often the tallest
plants occupying tundra ecosystems upslope or northward
of the treeline ecotone, and can form dense thickets with
closed canopies in suitable habitats. Shrub species differ
in their potential to gain dominance in tundra ecosystems,
and some shrub species have a competitive advantage over
other tundra plants. In warming and fertilization experiments,
woody deciduous shrubs have been reported to increase in
canopy cover and height to dominate treatment plots [6-9].
Certain shrub species such as the dwarf birch Betula nana can
take advantage of more favorable growing conditions, such
as an increase in air temperature and nitrogen availability, by
rapidly elongating ‘short shoots’. These increases in cover and
height potentially restrict the growth of other plant species
by limiting light availability [6, 7, 10, 11]. The formation of
a closed shrub canopy can drastically alter the structure and
function of tundra ecosystems.

Changes to tundra vegetation structure, such as an
increase in tall shrub species, may either mitigate or

exacerbate warming in tundra ecosystems [10]. Shrubs
modify a wide range of ecosystem processes including snow
depth and associated hydrologic dynamics, nutrient exchange
and associated net carbon balance, as well as albedo and
associated energy fluxes. At present there is considerable
uncertainty about the magnitude and direction of these
feedbacks, and it is likely that different processes will drive
feedbacks in opposite directions. However, dramatic changes
to shrub abundance in tundra ecosystems could result in
significant alterations to the global carbon cycle [9], surface
reflectance [12] and tundra disturbance regimes [4]. In this
review, we document current observations of changes in
tundra shrubs, explore ecosystem processes modified by the
shrub increases, and outline research priorities to advance a
more synthetic understanding of the implications of increased
tundra shrub cover.

2. Observations of shrub increase

Increases in shrub biomass, cover and abundance (colloquially
termed shrubification) have been observed in many Arctic,
high-latitude and alpine tundra ecosystems over the past
century (table 1, figure 2) [13], including in northern Alaska
(primarily alder) [14, 15], the western Canadian Arctic
(primarily alder and willow) [16-19, 26], the Canadian High
Arctic (dwarf willow and evergreen shrub species) [20, 21],
northern Quebec (primarily birch) [22] and Arctic Russia
(primarily willow) [23]. Studies in high-latitude mountain and
other alpine ecosystems indicate the upslope advancement
of willow and alder species in Alaska [24], the Yukon
Territory [25], juniper in subarctic Sweden [27] and a variety
of shrub species in the Alps [28-30]. In addition to these
published studies, northern peoples are observing increases in
shrub cover in their traditional lands [31, 32].



I H Myers-Smith et al

Environ. Res. Lett. 6 (2011) 045509

M LYLENTIS9

[8¢1] K op DOND)S X1JPS JO I9A0D J[qeIS pueUaaIn) jseaynog ‘befrser, (1) PUB[UAID)
DoHoAD XIIDS MO[[IM M T6'SL N 88'8L
[12 ‘0T] 8007-1861  JTeMp oy} pue ‘SQNIYS USAISIOAS JTEMP UT ISBAIOU] PUB[S] QIWISI[[H ‘PIOL] BIPULXAY (ET) onory Y3IH uerpeue))
19400 M SEE9 N €9°8S
[LeT] IL 0S~ qnius Jo AJIsuap pasearour pue juowasow adorsd)  InaersieunN ‘gN A JeSuro], yooid eayeN (Z1)
eyep ‘[qndun 93pa[mour| Jop[d [BJ0] UO Paseq SsA1dads qniys
1P 12 191[[0D) MeM3ATS IKQT-¢~ SnotreA Jo Sur[[yur pue JySIoy ur 9SeaIour [eI0|
1monI)s a3e uo paseq
adoysdn juswesow pue ‘@injeradwa) pue yimois
[erpex jo suroped SurSIoAlp ‘sSull Yamois uo M OLT9 N €596
eyep ‘[qndun jv 72 juely, IK (G~ poseq Sejel YIMOIS nsonpun]s pjniag Ul dSLaIou] JnAeISIeUNy ‘ureN ‘Iopeiqe ureyioN (11)
SIS PAlSaI0J-UOU pauTeIp-[[om M OTILN SY'LS
(#3711 I OG~ U0 IOA0D DSOINPUD]S DJNI2g UT ISLAIOU] 20q9NQ) UIAYIION ‘TOATY doejruog (OT)
UOTIEZIUO[Od MAU PUE Sul[[yur M O099 N IL8S
(22 €002-¥961 £q q10q 10A00 DSOjnpun]s pynjag IuISeAIOU] 29g9nQ) urayoN ‘benflnrensbiduey (6) JM0IY URIpBUR)) UI)SBH
SIe)IqRY BIPUN] J1}OIY MO]
Jo Kyatrea e urgyim syuerd vsopnpun)s vinjag jo M LSTTT N LS $9
eyep ‘[qndun ue3oin 119007 Y319y 10U INQ J2A0D PUNOIS UL 9SBAIOUT JUBOYIUSIS LMN ‘e Suure( () J1}01y URIPRUR) [BNUID)
s&a[[ea ureyunow apmyne-y3iy M BTBEI N CCT'I9
[s2l 1K Qg ~ ur (-dds xpg) surqnIys eIpun} Ul ISLIIOU] uor3ax ouenry (L)
o3urd M 88¥CI N €769
[81] IKQG~  Sursde[od e U0 SMO[[IM [[B) JO JOAOD UL ASBIIOU] LMN ‘ensurued A1red (9)
LAN 2y} ur expunj
eiep ‘[qndun zjue| 1K QG ~ puerdn ur sqniys [[e) JO dUBPUNGE PIsSLAIoU]
sdwn[s mey) 9AISSaI301391
pue ‘sIedS oI eIpUn) Ul nsooyntf ‘dsqns sipiiia M SE-S7€ N S'69-89
[LT ‘91] 1K Og~—+ snupy Jo uononpoidar pue yimois paseorouy IAN ‘UotSay] vifo(q arzuayoey (S)
1MUOSPADYILL
x1Jp§' Jo 9zr1s yojed ur sesearour ‘vayond M T168ET N LS 69
l61] 1K 0S—01 X1jp§ JO 12400 pue Y31y Adoued ur sasearou uoyng ‘pue[sy [oyosioH (4) JI101Y URIPRUB)) UIIISIM
QUO0}009 AUI[QNIYS 9} J& JOA0D M YT TSI N9S09
[yl 1K 06~ qnys mau ‘sayojed qniys 19pe jo uorsuedxg BYSE[Y [BIIUOYINOS ‘B[NSUTU] 1eudy| (¢)
sarnjerodwa) A[nf—ounf pue A3o[ouoIyd
eiep ‘[qndun ypm-3ulr snupy oY) udamiaq drysuonear aanisod M 78811 N 20°69
[P 12 S9[AeH-naIpuy IL 06~ jueoyrusis dds snupy Jo aouepunqge ur SASLAIOU| eyse[y jo ado[s yuoN ‘. 1n) 997, ()
ejep ‘qndun M OETST=CS 6ST
v 12 Sunyuyip ‘odeg, -dds vynjag pue “dds xipg ‘vsooyn.f -dsqns N 81°69-S1°89
go3ureH ‘[z€1 ‘ST ‘w1l 1K OG~ sipria snupy jo sayored orqers pue Surpuedxyq Byse[y jo adojS yroN ‘93uey syooig (1) BYSe[y
SOOURIRJOY porurad auiry, PAAIsqo A3ueyd qnIyS s uoIdoy

"sw)sKs009 eapuny ourd[e 10 9pmne[-yS1Y Ul a5Ueyd qnIys JO SUOHBAISSQO JUADY | d[qeL



I H Myers-Smith et al

Environ. Res. Lett. 6 (2011) 045509

[1+1]

lov1]
eiep ‘[qndun
D220)§ pue uaxry ‘Jdim

[0c—8¢]

[¥€]

eep ‘[qndun
1D 32 e seoRA ‘[¢7]

[96]

[eet]

eep ‘[qndun
Ip 12 1_3ut[[ey [6€T ‘LT

eiep ‘[qndun
v 12 19zIng ‘eep ‘[qndun
112 s13(1oM (69 “89]

ejep ‘[qndun j» 32 IpruydS

e1ep Sull PmoIs

saroads qniys
1007-6S6T  JO A19LIeA © JO J9A0D SUnsIX? Jo uorsuedxa [eroje|

aSueyd AJIUNUIWOD UOIIBIOTIA 0)
08—9¢€61 Surpeo] so10ads Jo AJOLIEA € JO JOAOD U SISBAIOU]

1K 001 SUONIBAQ[Q JOYTIY Je Pa1olap sa1oads qniys
93uryo JeWID pUL JUSWUOPULR

IKOS~  puel m saroads qnIys Jo AJOLIBA B UT SISEOIOU]
I9A0D qnIyS

ur soSueyo U0 J[qR[IBAR BJEP ON "DUDU DINjog
pue payopnd x1pg 10§ sarnjerodwd) owwns ALres
Jo 1£ 09~ pue SSULI Y)MOIT [enUUE YIIM SUONB[OIIOD SATIISO]

[ewrex uo

Q)IS JSOWUIAYINOS Y} J& DSOIYNL[ SNUJY pue SIS

IK(QG~  [[® e pypup] X1jpg JO YIMOIS [BNUUE UI SISBIIOU]
SJUQpOI [rews Jo/pue soje[ndun £q AI0AIGIOY WIOI}

8—900C pasesfar uaym ‘dds xzpg Jo ssewolq ur asearou]

UOPaMS UIdYIIOU UT BIPUN] UTRIUNOW ONITY
K0z urwmppodydpuliay wnajadug Jo I9A09 JUISLaIou]
punu

pnag ‘vonv)8 X1vg JO YIMOID) ‘puvu sniadunf

IK(0G~  Jojuawaaow adofsdn pue 9zIs qnIys UT SISLIIOU]

Surwrem [ejuowLIadx
ynm wngipodydouriay dss wni S wnigadusg
Suruadir £119q pue JI3uQ[ J00YS paseaIdu]

puUOSD.LII]
1K Qg ~ ado1ssp) JO 3mo0I13 YITUI[ JOOYs Ul ASeaIoU]
uaxoysnuw Jo Ajsuap Y3y

8007—L661 03 anp A[qeqoid ‘vo110.4p X1]DS UT SBAIOUT NI

Hee9¢ S €871
BI[RNSNY ‘SUTBIUNOIN AMOUS (97)

J169¢ S €LY
BIRIISNY
‘sureq Y31y Suo3og ‘sd1y uerensny (Gg)

says opdnnp ‘sdiy ueadoinyg (+7)

dLY'LyI NT80L
BIIOQTS JSBOYIION “QATSAI JATRIAY] (£7)

dLS°69 N 5789 Pue . 00'89 N 0t'L9
eISSY ‘SN SIQUAN-TeweX (77)
HOT'0€ N 0¢€0L

KemIoN ‘e[nsuruad Iosuerep (17)
HI188I NT0'89

uapam§ ‘expjeleLAaL) (07)

d6v'81 N 1789
uapamg ‘oysIqQV (61)
A78'81 N S£'89
UOPIMS “0NSIQY (81)

HELST NSISL
pIeqeAS ‘usfepud (L)

HE6'TI NT6'8L

pIeq[eAS ‘punsdy-AN pue uswwepsy (91)
MO0 TCNOS YL

PUB[UIID) JSBAYLION] ‘SIoquayoey (G1)

ouidre rejod-uoN

BISSNY ONOIY

onory ueadomnyg

SOOUAINJY

pouad ouuy, PaAIasqo a3ueyd qniys

ang

uo13oy

(‘panunuoD) ' |qeL,



Environ. Res. Lett. 6 (2011) 045509 1 H Myers-Smith et al

a)

Figure 1. The three general categories of shrub increase including (a) infilling of existing patches, (b) increase in growth and (c) an
advancing shrubline.

a)

@ Observations of
increasing shrubs

@ Observations of stable
shrub populations

O Shrub change not known

Figure 2. Map of sites at high latitudes where shrub change has been observed (table 1) and some examples of shrub change. (a) Shrubline
advance of Juniperus nana shrubs, with proliferating patches of Salix glauca and Betula nana in the background on a south slope in the
mountains of North Sweden about 900 m above sea level (©Hallinger, Abisko, Sweden, July 2008). (b) Trampling of ground cover on
caribou trails allows for establishment of Betula glandulosa seedlings (indicated with red arrows) in Northern Québec (©Ropars, Boniface
River, Québec, July 2010). (c) Dieback of Betula nana growing on previously ice-rich palsas with shallow active layers located between wet
graminoid patches. As palsas degrade, Betula nana shrubs are gradually exposed to higher soil moisture and finally drowned in water, while
Eriophorum and Carex species invade the areas. (©Schaepman-Strub, Kytalyk, Indigirka lowlands, NE Siberia, July 2010.) (d) Rock
ptarmigan (Lagopus muta) standing in a patch of Betula gladulosa and next to a patch of Salix pulchra. Ptarmigan feed on buds in spring
and are one of the major herbivores on willow species in the western North American Arctic [55]. (©Myers-Smith, Pika Valley, Yukon
Territory, May 2007.)

Increases in shrub species can be classified into three existing shrubs as well as recruitment between existing
categories involving either a change in clonal growth or seed patches; (b) increase in growth potential, such as a change
recruitment (figure 1). These three categories are: (a) infilling, of growth form including an increase in the canopy height of
an increase in shrub cover through lateral growth of currently  shrub cover; and (c) an advanced shrubline, or colonization
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Figure 3. Potential feedbacks from increased density and cover of shrubs to ecosystems processes and properties. Red arrows indicate
positive relationships, and blue arrows indicate negative relationships between the two connecting factors; gray arrows indicate as yet

undetermined influences.

of areas beyond the previous range limit. Observations of
all three types of shrub expansion have been reported in the
literature (table 1). The low Arctic transition zone between tall
and dwarf shrub tundra is predicted to respond most rapidly
to warming [26, 33]; however, advances of shrub species
northward into the high Arctic or upslope in mountainous
regions are also projected [5].

The ground-based observations of shrub increase are
supported by trends observed with satellite imagery [23,
34-36]. Multi-decadal records of the normalized difference
vegetation index (NDVI), an indicator of vegetation green-
ness, show a greening of the Arctic tundra at sites in
Alaska, western Canada and Siberia [35-42]. However, the
spatial resolution of continuous long-term satellite records
(i.e. AVHRR, MODIS or Landsat) covering timespans
relevant to climate warming is coarse (250 m—8 km) compared
to the spatial heterogeneity of shrub patches in tundra
ecosystems (1-200 m) [26]. Changes in NDVI observed
using these larger pixel sizes integrate various factors at the
landscape scale, including water bodies and changes in NPP
and biomass of all functional groups [43]. Therefore, low
resolution satellite images can provide indirect evidence of
shrub growth, but only when they are validated with high
resolution imagery and in situ ‘ground-truthed’ observations
as have been conducted at sites in Alaska [15, 44], western
Canada [26] and Siberia [23, 34].

Contemporary shrub expansion parallels past episodes
of Arctic vegetation change. Paleoecological records suggest
that shrub species are well adapted to colonize and/or extend
their presence in tundra ecosystems during periods with
favorable growing conditions. Pollen records indicate that
alder, birch and willow species were more widespread in
circumpolar mid and high Arctic ecosystems during periods

after the last glacial maximum that were warmer and wetter
than the present [13, 45-49]. The onset of relatively cool
conditions may have restricted the reproduction of shrubs,
pushing back the distributions of these species to more
southerly limits or to locally favorable environments. For
example, the dwarf birch Betula glandulosa persists clonally
in late snow melt areas at its northern limit on Baffin Island,
but it is unable to reproduce sexually due to loss of pollen
viability [50]. By contrast, as conditions warm, reproduction
can be greatly enhanced. For example, the number of
locations with Empetrum nigrum ssp hermaphroditum (an
erect dwarf evergreen shrub) is increasing markedly on
Svalbard [51] and range extension of this species is expected
with continued climate warming. Together, evidence of
higher shrub abundance and expanded northern distributions
during warmer periods in the past, combined with current
observations of increases in shrub growth and colonization
(table 1), suggest that if growing conditions continue to
improve, shrubs will become widespread across the Arctic
biome [12].

3. Factors influencing shrub increase

Although growth of tundra plants is limited by temperature
in Arctic and alpine environments [52, 53], many other
factors influence shrub growth (figure 3). Incoming solar
radiation, precipitation, soil moisture, nutrient availability,
CO» concentrations, disturbances, snow pack and melt timing,
active layer depth, soil temperatures, and growing season
length interact, making it difficult to pinpoint which specific
factors control the growth and recruitment of shrub species at
a given location. Biotic interactions with herbivores [54, 55],
pollinators [56], pathogens [57] or soil mycorrhizae [58], and
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competing tundra plants [59, 60] add even greater complexity.
In the following sections we explore three key drivers of shrub
change in tundra ecosystems: temperature, soil disturbances
and herbivory.

3.1. Temperature

Temperature limits both the reproduction and growth of shrub
species in tundra ecosystems. Growing season temperatures
are increasing in northern North America and northwestern
Russia [12, 61, 62], and, concurrent with this, the conditions
for recruitment and growth of shrub species are also likely
changing. Observations of low pollen or seed viability in
populations of alder (Alnus viridis subsp. fruticosa), dwarf
birch (Betula glandulosa) and willows (Salix spp.) near
their range limits suggest that temperature limitation of
reproduction may determine the northern extent of many
shrubs in the low Arctic [16, 50, 63]. Studies of age
distributions of shrub species in tundra ecosystems indicate
that recruitment has increased in recent years at sites in the
western North American and European Arctic [16, 25,27, 64].
However, there are currently few studies that link warming
and new recruitment to shrub increase in tundra ecosystems.
Several recent studies have documented significant
positive correlations between ring widths or shoot lengths and
early and mid growing season temperatures for some of the
most common tall [23, 25, 27, 34, 65] and dwarf [66-70]
shrub species found in tundra ecosystems. In some studies,
winter temperatures and snow have been found to correlate
with growth in the following summer [27, 71-73]. Snow
melt timing determines the length of the growing season and
the snowpack provides protection from frost damage during
the winter and spring [74-76]. These analyses suggest that
warmer conditions are likely to promote shrub growth either
directly by altering physiological processes or indirectly by
enhancing soil microbial activities that supply nutrients for
shrub uptake, as long as other factors are not limiting [77].
Also, increased summer temperatures are often accompanied
by greater summer moisture deficits, which could offset
the expected growth increase created by higher summer
temperature alone, as has been observed in boreal trees [78].

3.2. Soil disturbance

Tundra disturbances caused by fire, permafrost degradation,
stream channels, animal burrowing or trampling, or human
activities create and maintain microsites where tall shrubs
can establish and remain dominant for decades to centuries.
Recent evidence indicates that many of these disturbances,
such as fire [4, 79] and permafrost degradation [3, 80—84], are
increasing in high-latitude ecosystems. Increased abundance
and growth of tall shrubs on thaw slumps [17], drained lake
basins [85], pingos [18], tundra fires [16], vehicle tracks [86]
and drilling mud sumps [87] suggest that increases in
natural and anthropogenic disturbance could be contributing
to increased shrub abundance and distribution.

In the low Arctic, disturbances that expose mineral soils
and deepen active layers show rapid changes in functional

group abundance, and after several decades are typically
dominated by tall shrubs [16, 17, 87, 88]. In the short-term,
landscape and soil disturbances are likely to stimulate
more rapid recruitment than warming alone [16, 17]. The
rate of shrub expansion on recently burned tundra sites is
twice as fast as on comparable undisturbed surfaces (Lantz
et al unpubl. data). Caribou and other animal species can
create disturbances by trampling ground cover [89], creating
trails that erode soils resulting in either damaged biomass
and reduced shrub cover or the provision of sites for the
recruitment of shrub seedlings [90]. Soil disturbances could
also be a precondition for shrubs to take advantage of
improved climate conditions and increase in abundance across
the landscape. In contrast, in some ecosystems, landscape
disturbances can also reduce shrub abundance. Decreases in
shrub cover were observed in northwestern Arctic Russia
where willows failed to regenerate in vehicle tracks two
decades after the initial disturbance, due to the development
of a graminoid-dominated sward [91]. Landscape-scale fires
have set back potential shrub increase in Australian alpine
areas for 5-20 yr, except in burn scars where species are
able to re-sprout [92]. In addition, permafrost degradation of
ice-rich palsas in northeast Siberia has resulted in dieback
of large Betula nana patches and a conversion to graminoid
cover (figure 2). Thus, future disturbances and recovery after
disturbance in tundra ecosystems could lead to both increases
and decreases in shrub abundance.

3.3. Herbivory

Herbivores can reduce the survival of shrubs and limit
or reduce shrub patch expansion, as shown by enclosure
and exclosure experiments [54, 93]. Animals such as
sheep, reindeer, muskoxen, lemmings, ptarmigan, moose and
hares have been shown to decrease tundra tree and shrub
abundance and canopy structure in Scandinavia, Greenland
and Alaska [54, 55, 93-96]. However, current knowledge of
the influence of different herbivores on seedling recruitment
is limited, and little is known about the influence of insect
herbivory and seed predation.

The influence of herbivory on shrub abundance in tundra
ecosystems will depend on the size and density of the
herbivore populations, intensity of grazing, palatability of the
shrub species, and plant and herbivore phenologies [95]. Wild
herbivores can migrate over large areas and exhibit cyclic
population dynamics; therefore the influence of herbivory on
shrub populations will likely change over time and space [5].
Shrub abundance has been reduced by mammalian herbivores
in low Arctic Greenland [93] and Norway [96], while no
evidence of reduction in shrub expansion by mammalian
herbivores was found on the Arctic coast of the Yukon [19].

In tundra ecosystems, the dominant herbivores can be
either wild or domesticated. In Fennoscandia and Siberia, land
use is dominated by extensive grazing by reindeer and sheep,
and this has strongly influenced the abundance of woody
species in tundra environments [23, 54, 96, 97]. In northern
Scandinavia, herbivory by sheep or reindeer is thought to be
the primary factor determining the elevational position of the
treeline ecotone [94, 95, 98], and declined use of pastures has
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Table 2. Observed impacts of shrub canopies on tundra ecosystem function.

Ecosystem function

Influence of canopy observed

References

Energy exchanges

Reflectance
Snow melt

Soil temperature
dynamics

Nitrogen cycling

Carbon storage
Carbon flux

Decomposition

Biodiversity

Higher sensible heat fluxes during melt, and reduced
sublimation in winter, from tall shrub canopies

Lower albedo over shrub tundra

Faster snow melt in areas with shrub canopies extending
above the snowpack

Snow trapping and soil warming in winter, shading and soil
cooling in summer under shrub canopies relative to tundra
plots

Greater N availability or faster N-cycling in tall shrub versus
low shrub tundra plots

No difference in NO3 and NH,4 availability during summer
between shrub and tundra plots

No influence of shrub canopies and snow on winter
N-mineralization rates, greater summer N-mineralization
from soils under a high shrub canopy and with snow addition
differences in SOM quality can drive larger differences in net
N-mineralization than changes in soil microclimate

Greater carbon storage in shrub versus tundra plots

No difference in CO; soil respiration between shrub and
tundra plots

More recalcitrant litter from shrub species than other tundra
plants

Greater decomposition rates in tall shrub versus low shrub
tundra plots

Little difference in decomposition rates between shrub and
tundra plots

Lower biomass and diversity of species under shrub canopies

[102, 109]

[12, 102-106, 110], Ménard et al unpubl. data
[12, 102—-104]

[25, 102, 107, 110, 120], Lévesque unpubl. data

[114, 119, 142]
[25]

[120]

[9, 25, 143]
(25]

[113]
[143]
[25]

[122], Myers-Smith and Hik unpubl. data

resulted in increases in shrubs in the Alps [28]. Herbivores
can also influence seed production and seedbed size [89, 99],
transport seeds [100] and fertilize soils, which can in turn alter
recruitment, dispersal, growth and potential rates of shrub
increase.

4. Feedbacks and impacts of shrub increase

Interactions among shrubs, microclimate, litter inputs, carbon
storage, nutrient cycling, organic matter decomposition,
surface reflectance, erosion, ground temperatures, thaw
depth and disturbance have been hypothesized to result in
positive and negative feedbacks to further shrub expansion
(figure 3, table 2) [12]. In the following sections, we explore
feedback mechanisms involving shrubs and albedo, snow
cover, soil temperatures, thaw depth, nutrient availability and
biodiversity.

4.1. Surface energy exchange and soil temperatures

Tundra shrubs can significantly influence the exchange of en-
ergy among the atmosphere, vegetation and soils [101-103].
With an increasing canopy height and density, a higher
fraction of the incoming shortwave radiation is absorbed
by the canopy and less is reflected to the atmosphere and,
therefore, albedo decreases [12, 104-106]. Lower spring
and summer albedo has been observed over shrub versus
shrub-free tundra in Arctic Alaska [12, 105], alpine areas
of the Yukon Territory [102], upland tundra north of Inuvik,
NWT (Lantz et al unpubl. data) and across the tundra
biome [105]. Shrub expansion can therefore significantly alter

the interaction of the atmosphere with vegetation, soil and
permafrost through changes in energy fluxes.

Shrub canopies and snow cover interact to influence
soil and permafrost temperatures. Tundra shrubs can
significantly modify the accumulation, timing and physical
characteristics of snow, thereby influencing the exchanges
of energy and moisture between terrestrial ecosystems and
the atmosphere [101-103]. In winter, snow cover protects
plant buds and tissue from the effects of extreme cold [74,
75]. Shrubs trap snow, leading to localized increases in
snowpack, and also reducing the thermal conductivity of the
snowpack by preventing the formation of highly conductive
wind-compacted snow layers [110]. As a consequence,
winter soil temperatures can be up to 30°C warmer than
air temperatures under shrub canopies [108], whereas soil
temperatures may be almost equal to air temperatures in
adjacent shrub-free sites [25]. The effect of tall shrubs
on snow trapping and albedo can also be moderated by
shrubs bending and being buried in the snowpack under
the weight of snow [102-104]. In spring, snow melt is first
accelerated as a result of the lowered albedo around shrub
branches that protrude above the snowpack, but subsequent
shading by shrub canopies may promote longer duration snow
patches [103, 107, 109]. In summer, shading under shrub
canopies decreases soil temperatures [103] and active layer
depths [107]. Removal of the Betula nana shrub canopy in
experimental plots in Siberia resulted in greater active layer
depths due the loss of soil shading, despite the increase
in surface albedo accompanying shrub removal [107]. Near
surface soil temperatures under shrub canopies were found
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to be ~2°C cooler in summer and ~5 °C warmer in winter
in an experimental canopy manipulation conducted in alpine
tundra of the Kluane Region [25]. The results of these studies
suggest that both the summer soil cooling effect of shading
and the winter soil warming effect of snow trapping must be
considered to determine the year-round effect of changes in
shrub cover on soil temperatures and permafrost conditions.

4.2. Nutrient cycling

Interactions between the abiotic and biotic influences of
shrub canopies can alter tundra nutrient cycling. Fertilization
experiments show that vascular plant productivity is nutrient
limited in tundra ecosystems, as demonstrated by an
increase in shrub biomass after nitrogen and phosphorus
fertilization [6, 9, 111, 112]. Increases in canopy cover
and height of shrub species can increase litter inputs to
soils [113], nitrogen mineralization rates [114] and the amount
of carbon stored in above and below ground biomass [9].
Although deciduous shrub species produce more litter than
other tundra species, this litter is relatively recalcitrant; thus,
increases in shrubs could reduce overall decomposition rates
in tundra soils [113]. In winter, snow trapped by shrub
canopies insulates soils and has been hypothesized to increase
decomposition and nutrient release [108]. Experimental
manipulations demonstrate that greater snow depth and
warmer winter soils under shrub canopies can increase litter
decomposition [115] and nitrogen cycling [114, 116-119].
Recent work at Toolik Lake, Alaska showed a positive effect
of winter snow addition on summer, but not winter, nitrogen
mineralization rates [120]; however, there have not been
experimental tests of the influence of summer canopy shading
on nutrient cycling and decomposition rates. Carbon dioxide
and methane fluxes are likely also altered by shrub canopies.
Differences in growing season carbon dioxide effluxes were
not explained by the presence of a half-meter-tall willow
canopy in alpine tundra in the Kluane region, Yukon
Territory [25]. However, increased evapotranspiration from
greater shrub biomass could dry soils, and has been suggested
to reduce methane emissions and increase carbon dioxide
fluxes in areas with expanding shrub cover [121]. This same
mechanism of soil drying from increased evapotranspiration
when combined with the greater fuel load in shrub tundra
could result in increased frequency and intensity of tundra
fires with increases in shrubs [48].

4.3. Biodiversity and ecosystem services

Increases in shrub abundance could have negative effects on
tundra species richness, through the loss of shade-intolerant
species under shrub canopies [122]. At tundra sites in
northwestern Fennoscandia and the Yamal Peninsula in
Russia, the species richness of vegetation declined with
increasing shrub height and cover [122]. The richness of
herbaceous species decreased significantly over 20 yr with
increasing dwarf shrub cover on an Arctic mountainside in
northern Sweden [123]. Fewer species and lower biomass
of tundra plants, excluding tall shrub canopies, were found

in shrub versus adjacent shrub-free plots in alpine tundra of
the Kluane Region in the Yukon Territory [25]. The loss of
particular species or functional groups may have implications
for tundra food webs and ecosystem services. Lichens have
been shown to decline with increases in shrub cover [8,
124, 125]. As important forage species, lichen decline could
negatively impact caribou and reindeer populations, and thus
influence hunting or herding activities. Increased shrub cover
could also reduce moss biomass, which is an important
soil insulator. Thus, the loss of the moss layer may alter
soil temperatures, active layer depths, and rates of soil
decomposition [126]. Willows are an important forage species
for caribou, moose, ptarmigan and other wildlife species [55,
127, 128], and either increases or decreases in willow cover
may influence the populations of these species. In addition
to the potential impacts on biodiversity, ecosystem function
and wildlife, altered vegetation structure in tundra ecosystems
might influence human access to traditional travel routes,
berry harvesting, reindeer herding or hunting of wildlife
species.

5. Future research needs

Our analysis of the literature indicates that the following
questions must be addressed in order to determine future
patterns and impacts of shrub encroachment on tundra
ecosystems.

5.1. How will shrub species vary in response to climate and
environmental change in tundra ecosystems?

Our review highlights the growing number of observations
of shrub increase around the circumpolar Arctic and in
high-latitude and alpine tundra ecosystems (figure 2 and
table 1); however, the differences in species specific responses
to warming have yet to be adequately quantified within
and between sites. The International Tundra Experiment
(ITEX) tested the response of tundra plots to warming
across the Arctic [129, 130]; however, warming experiments
with larger plots encompassing larger statured shrub species
have only been conducted at a few locations [9, 111, 131].
Understanding the key differences among shrub species
responses to climate warming could improve predictions of
vegetation change across the Arctic. Birch has been the
focus of many experimental field studies [6, 50, 58, 107],
but the potential responses of willow, alder and other shrub
species to changes in environmental conditions are less well
characterized. Furthermore, a whole host of species-level
interactions may determine future shrub distributions, with,
for example, caribou preferentially browsing willow over
birch or alder, birch roots forming an association with
an ectomycorrhizal fungal partner, or alder forming a
symbiosis with nitrogen-fixing bacteria. Species-level studies
are urgently required to evaluate and interpret current patterns
of shrub change, as well as to predict future change.
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5.2. To what extent is the potential expansion of shrubs
across Arctic landscapes constrained by landscape position?

Many of the observations of increasing shrubs are from
discrete locations, and variation in rate of shrub change
is seldom quantified across the landscape (figure 2 and
table 1). Studies that have conducted landscape-level analyses
of shrub change find both increasing and more stable patches
sometimes located in close proximity [15, 132]. Tall shrubs
generally occur in patches across the tundra landscape where
conditions favor enhanced nutrient cycling and productivity,
such as areas of preferential water flow, or areas where snow
accumulates and protects the shoots from winter damage [15].
Topography therefore is likely to be an important constraint on
the potential for increased shrub growth and expansion as the
climate warms. Thus, landscape-scale studies are required to
parameterize realistic models of shrub proliferation and close
examination of the current patterns of shrub expansion for
key species in relation to local hydrology and wind protection
are needed. New applications of remote sensing to measure
shrub distributions and changes in shrub cover and associated
ecosystem processes in greater detail over large areas will
facilitate these avenues of research.

5.3. What controls the recruitment of new individuals that
will lead to range expansion of shrub species?

Much of the current research on shrub expansion focuses on
the factors that control shrub growth (figure 2 and table 1), and
only a few studies have addressed changes in recruitment of
shrub species [16, 17, 99]. Since shifts in abundance and range
expansions will be mediated primarily by the establishment of
new individuals, future research should focus on the factors
controlling pollination, germination, recruitment and survival.
The interactions between warming, disturbance and increased
recruitment of shrub species should also be further explored so
that we can better project future shrub increase. Seed viability
experiments, demographic studies of shrub populations and
experimental studies of seedling establishment would all
contribute to our understanding of shrub recruitment in tundra
ecosystems.

5.4. Can shrubs growing at the latitudinal or elevational
range edge form more dominant and tall canopies if growing
conditions improve?

A growing number of studies have identified increases in
shrub cover at low Arctic sites, but few have investigated
change at the range edge of shrub species (figure 2
and table 1). Many tundra shrub species have very large
geographic ranges, and at higher latitudes these species have
a more diminutive growth form with lower canopy heights
and reduced ground cover [26]. Little is known about whether
individuals growing at the range edge have the ability to
form larger more dominant canopies if growing conditions
improve. The current size and growth form of northern or
high-elevation populations of tall shrub species may represent
genetically-based local adaptation to extremely harsh growing
conditions. The ITEX experiments [129, 130] examined

phenological variation in rates of plant growth between
warmed and control plots. Common garden experiments or
reciprocal transplants [133, 134] have tested how individuals
from different sites at different latitudes grow under the
same conditions. However, further work exploring phenotypic
plasticity, local adaptation and latitudinal clines in size and
fecundity should be conducted to improve our understanding
of future shrub change at the range edge of tundra shrub
species.

5.5. What is the balance between summer and winter
feedbacks to shrub encroachment?

Feedbacks of shrub expansion to abiotic processes remain
poorly understood (figure 3). Several studies have proposed
hypotheses and experimentally tested ecosystem impacts
of increasing shrub cover (table 2); however, studies that
integrate processes across the entire year have yet to
be conducted. Winter biological processes were initially
hypothesized to create positive feedbacks to future shrub
encroachment [108, 109]; however, recent studies have also
highlighted the importance of the summer season [25, 107].
Further observational and experimental work is required to
answer questions, such as what the overall effect is of shrubs
on soil nutrient availability, integrating the influence of soil
temperatures in the summer, winter and shoulder seasons.

5.6. How do feedbacks to shrub encroachment vary across
different densities and canopy heights of shrub cover?

The influence of shrub canopies on ground shading, snow
depth, soil temperatures and biological processes varies
with the cover, height, density and structure of the shrub
canopy [135, 136], but additional research is required
to characterize the nature of these linear or non-linear
relationships. For example, we do not yet know whether shrub
expansion is accelerated by positive feedbacks involving
snow cover and thickness, surface albedo and atmospheric
heating. Nor do we know whether the strength of these
potential feedbacks varies with shrub density, cover and
canopy height. Future investigations using canopy removals,
artificial canopies and other experimental techniques across
variation in shrub cover, density and canopy heights will
improve our understanding of the relative balance of positive
and negative feedbacks to shrub encroachment.

6. Conclusions

Our review highlights the growing number of observations
of increases in shrub species in tundra ecosystems at sites
around the circumpolar Arctic, high-latitude and alpine areas.
These changes are likely to cause significant modifications to
the structure and functioning of tundra ecosystems. Recent
research highlights that: (1) growth in shrub species is
often strongly correlated with growing season temperatures;
(2) disturbances such as fire and permafrost thaw can enhance
shrub expansion; (3) herbivory can control shrub canopy
architecture and limit expansion rates; (4) shrub canopies can
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alter surface albedo and increase atmospheric heating; and
(5) shrub canopies can trap snow and insulate soils in the
winter, yet shade soils and maintain shallower active layer
depths during the summer. There is growing recognition that
increasing rates of shrub encroachment in tundra ecosystems
will be determined by large-scale factors such as atmospheric
heating, regional factors such as altered disturbance regimes
or herbivore populations and site specific factors such as soil
moisture conditions or snow insulation. The prediction of
future shrub patterns in the tundra biome requires continued
monitoring of changes in shrub abundance and research to
identify key drivers of this change. Much of the current
evidence for increasing shrub cover comes from low Arctic
sites in the western North American Arctic, Subarctic
Scandinavia and the eastern European Arctic (figure 2).
Further research on the patterns of shrub increase and the
impacts on ecosystem function at sites across the Arctic biome
will improve circumpolar projections of shrub abundance in
tundra ecosystems and their role in land—surface feedbacks to
climate change.
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