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Abstract

The androgen receptor (AR) has a central role in development and maintenance of the male reproductive system and in the
etiology of prostate cancer. The transcription factor Pax6 has recently been reported to act as a repressor of AR and to be
hypermethylated in prostate cancer cells. SPBP is a transcriptional regulator that previously has been shown to enhance the
activity of Pax6. In this study we have identified SPBP to act as a transcriptional coactivator of AR. We also show that Pax6
inhibits SPBP-mediated enhancement of AR activity on the AR target gene probasin promoter, a repression that was partly
reversed by increased expression of SPBP. Enhanced expression of Pax6 reduced the amount of SPBP associated with the
probasin promoter when assayed by ChIP in HeLa cells. We mapped the interaction between both AR and SPBP, and AR and
Pax6 to the DNA-binding domains of the involved proteins. Further binding studies revealed that Pax6 and SPBP compete
for binding to AR. These results suggest that Pax6 represses AR activity by displacing and/or inhibiting recruitment of
coactivators to AR target promoters. Understanding the mechanism for inhibition of AR coactivators can give rise to
molecular targeted drugs for treatment of prostate cancer.
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Introduction

The androgen receptor (AR) and androgens have a central role

in development and maintenance of the male reproductive system

and in the etiology of prostate cancer [1,2], the most commonly

diagnosed invasive cancer in men in the USA and other western

countries [3]. Since prostate cancers are dependent on androgens

for development, growth and survival, inhibition of AR activity is a

major therapeutic goal for management of the disease (reviewed in

[4]). Unliganded AR is mainly localized to the cytoplasm through

interactions between its ligand binding domain (LBD) and heat-

shock proteins (HSPs). Binding of androgens to the LBD induces

conformational changes that cause dissociation of the HSPs [2].

The receptor subsequently dimerizes and becomes phosphorylat-

ed, before the receptor-steroid complex is imported into the

nucleus. Here it binds with high affinity to specific DNA-

regulatory elements of target genes [1]. The context of the

promoter and the relative levels of coactivators and corepressors

determine the resulting transcriptional outcome of the DNA

bound receptor [5]. AR has four functional domains; the divergent

N-terminal domain (NTD), a central DNA-binding domain

(DBD), a hinge-region, and a C-terminal LBD [1,2]. The NTD

contains poly-glutamine and -glycine repeats as well as the

transcriptional activation function-1 site (AF-1) that is constitu-

tively active independent of androgens [6]. The LBD has a second

activator function site (AF-2) that is only active in the presence of

androgens [2]. Both AF-1 and AF-2 can activate AR, whereas

interactions between them can modulate its activity [7].

Stromelysin-1 PDGF-responsive element Binding Protein

(SPBP) is a 220 kDa nuclear protein displaying structural and

functional properties of a transcriptional regulator. It contains an

N-terminal TAD, three nuclear localization signals (NLS), a DBD

containing an AT-hook motif, and a C-terminal extended plant

homeodomain (ePHD) [8]. SPBP enhances the activity of the

transcription factors c-Jun, Pax6, Sp1 and Ets1 [8,9], and

knockdown of SPBP significantly reduces the expression of the

Ets1 target gene MMP3 in cells [10]. SPBP has also been identified

as an interaction partner for activated Estrogen Receptor a (ERa),

and found to work as a corepressor of this particular steroid

hormone [11]. Further, SPBP is shown to bind and enhance the

activation potential of the transcriptional cofactor RNF4 [12].

RNF4 was originally identified as a coactivator of AR, enhancing

both basal and ligand-induced AR-mediated transcriptional

activity [13].

Pax6 is an evolutionary conserved transcription factor consisting

of two DBDs, the paired domain (PD) and the paired-type

homeodomain (HD), separated by a glycine-rich linker sequence

[14–16]. In addition, a TAD is located in the C-terminal region

[17]. The N-terminal PD is structurally and functionally divided

into the PAI and RED subdomains [18,19]. These subdomains, as
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well as the HD, adopt helix-turn-helix motifs that can bind

independently to DNA [19]. The PD can also bind to the HD of

Pax6, and to other HD containing proteins [20,21]. Pax6 is

important for embryogenesis of the eye, brain, spinal cord,

pancreas, and olfactory epithelium [14,16,22]. The developmental

role of Pax6 and the other Pax family proteins has been established

for quite some time. More recently, it has been acknowledged that

PAX genes are expressed in cancer cells and tissues where they are

not normally found [23]. While most Pax family members are

associated with an unfavorable outcome of the cancer, Pax6 has

been proposed to have a tumor suppressor function in both

glioblastoma [24–28] and prostate cancer [29].

In this study, we have identified SPBP as a transcriptional

coactivator of AR. SPBP interacts with the DBD of AR via its own

DBD. We also mapped the interaction between AR and the AR

repressor and developmental transcription factor Pax6 to involve

their respective DBDs. Importantly, Pax6 inhibited the SPBP-

mediated enhancement of AR activity on the AR targeted probasin

promoter. This repression was partly reversed by increased

expression of SPBP. Chromatin immunoprecipitations showed that

over-expression of Pax6 resulted in less SPBP associated with the

probasin promoter. In vitro binding studies revealed that Pax6 and

SPBP compete for binding to the AR(DBD). This suggests that Pax6

represses AR activity by displacing and/or inhibiting recruitment of

coactivators to AR target promoters.

Materials and Methods

Plasmid constructs
Plasmids and primers used in this study are listed in Tables S1

and S2, respectively. Details on their construction are available on

request. Primers for PCR and DNA sequencing were purchased

from Eurogentec and Operon. PCR amplification of cDNA was

done using either Pfu Turbo (Stratagene) or ExTaq (TaKaRa)

polymerases. Many of the plasmids were made using the Gateway

cloning system (Invitrogen). All constructs were verified by DNA

sequencing with BigDye v3.1 (Applied Biosystems).

Cell lines
HeLa (ATCC CCL2), Du145, and B3 (ATCC CRL-11421) cells

were grown in Eagle’s minimum essential medium (MEM).

HEK293 (ATCC CRL-1573), SKNBe(2), and MEF cells were

grown in Dulbecco’s modified Eagle’s medium (DME). PC3 cells

were grown in Ham’s F12K supplemented with 1.5 g/l sodium

bicarbonate, while Kelly and LNCaP cells were grown in RPMI

1640 medium. The medium for the LNCaP cells were supplement-

ed with 1.5 g/l sodium bicarbonate, 4.5 g/l glucose, 10 mM

HEPES, and 0.1 mM sodium pyruvate. The GFP-AR 3108 cell line

[30] was maintained in DME supplemented with 1 mg/ml G418,

0.55 mg/ml puromycin and 10 mg/ml tetracycline. Stable 36Flag-

Pax6 transfected HeLa cells were generated using the FlpIn

recombinant system (Invitrogen) according to the manufacturer’s

protocol. The HeLa FlpIn 36Flag-Pax6 cells were grown in DME

with 4 mg/ml blasticidin and 200 mg/ml hygromycin. In addition,

the media for all cell lines were supplemented with 10% fetal bovine

serum (Biochrom AG, S0615) and 1% streptomycin-penicillin

(Sigma, P4333). Cultured cells were maintained at 37uC with 95%

air and 5% CO2 in a humidified atmosphere.

Reporter gene assays
Subconfluent HEK293 or LNCaP cells in 24-well tissue culture

dishes (Becton Dickinson) were transiently transfected using

Metafectene Pro (Biontex) according to the manufacturer’s

protocol. The cells were cultured in 5% charcoal treated serum

one day before transfection. Medium with 0.5% charcoal treated

serum and 1027 M synthetic androgen R1881 (Perkin-Elmer) was

(if indicated) added to the cells 1 hour before transfection. All wells

were cotransfected with 75 ng pDestHA-AR, 75 ng of the

luciferase reporter p285PB-Luc [31], and 5 ng pCMV-b-galacto-

sidase (Stratagene). In addition, the HEK293cells were cotrans-

fected with 0–25 ng pDestHA-Pax6, and 50 or 150 ng pDestHA-

SPBP, as indicated in Figure 1A. The LNCaP cells were in

addition cotransfected with 5–200 ng pDestHA-Pax6 as indicated

in Figure 1B. pcDNA3HA (Invitrogen) was used to equalize the

concentration of DNA in each transfection. Extracts were

prepared 20 hours after transfection using a Dual-Light luciferase

and b-galactosidase reporter gene assay system (Tropix), and

subsequently analyzed in a Labsystems Luminoskan RT dual

injection luminometer. The assays were performed in triplicates

and repeated at least three times.

Immunoblotting of whole cell extracts
Whole cell extracts were prepared by adding 400 ml lysis buffer

(1% SDS; 10 mM TrisHCl pH 7.5; 90uC) to confluent cells in

10 cm culture dishes (Nunc). The lysates were sonicated,

centrifuged, and stored at 270uC. The protein concentration

was measured with a BioRad DC protein assay kit. Fifty mg of each

lysate was run on 6 or 12% SDS-polyacrylamide gels (SDS-PAGE)

in Tris-Glycine buffer (25 mM Tris, 250 mM glycine, 0.1% SDS).

Biotinylated Protein Ladder (Cell Signalling) was used as a

molecular weight marker. The proteins were subsequently

immunoblotted on Hybond-ECL nitrocellulose membranes

(Amersham) in Towbin buffer (25 mM Tris, 192 mM glycine,

20% methanol) at 100 V for 1 hour. The membranes were

blocked in 5% non-fat dried milk for 1 hour at room temperature.

Primary antibody was added overnight at 4uC. The primary

antibodies used were rabbit anti-Pax6 (1:1.000, Millipore), mouse

anti-AR (1:100, Santa Cruz), rabbit anti-SPBP (1:500, [10]),

mouse anti-HA (1:1.000, clone 12CA5, Roche) and rabbit anti-b-

actin (1:1.000, Sigma-Aldrich). Secondary antibodies, HRP-

conjugated anti-mouse or anti-rabbit IgG (1:2.000, Pierce) and

anti-Biotin (1:2.000, Cell Signalling), were added for 1 hour at

room temperature. Detection was performed using Western blot

luminol reagent (Santa Cruz Biotechnology) and a LumiAnalyst

imager (Roche Applied Sciences).

Chromatin Immunoprecipitation
Subconfluent HeLa cells in 10 cm dishes were transiently

transfected with 2.25 mg of p285-PBLUC [31], pDestHA-AR and

pDestHA-SPBP using Metafectene Pro (Biontex). In addition,

some dishes were co-transfected with 300 ng or 1.5 mg pDestHA-

Pax6 as indicated in Figure 1D. Five hours post transfection the

cells were stimulated by 1027 M synthetic androgen R1881

(Perkin-Elmer). Sixteen hours post transfection the cells were

harvested and chromatin immunoprecipitation was performed

essentially as described previously [10]. Primers used to amplify

precipitated probasin promoter were 285PB-Luc-fw and 285PB-

Luc-rev (Table S2).

Real-Time PCR
Subconfluent LNCaP cells in 6 well dishes were tansfected with

20 nM SPBP siRNA [10] or scrambled siRNA [10] using

RNAiMAX (Invitrogen). The cells were stimulated by R1881

(1027 M) for 48 hours post transfection. RNA was isolated using

RNAeasy Plus Minikit (QIAGEN), cDNA made using Transcrip-

tor Universal cDNA Master (Roche), and RT-PCR performed on

a STRATAGENE 6300 amplification system using FastStart

Universal SYBR Green Master (Roche). Primers were PSA-fw,

Mechanism of Pax6-Mediated Repression of AR
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PSA-rev, Actin-fw and Actin-rev (Table S2). The reactions were

run for an initial step at 95uC for 10 min, followed by 40 cycles of

amplification at 95uC for 15 s and 60uC for 1 min. All data were

collected during the extension step, and a melting curve was

obtained at the end of the PCR reaction to verify that only one

product was produced.

Confocal microscopy
GFP-AR expression was induced from the GFP-AR 3108 cell

line by removing the tetracycline from the medium 3 days before

the experiments were performed. G418 and puromycin were also

removed from the medium to improve the expression. The cells

were cultured in 8-chambered cover slides (Nunc) and transiently

transfected with 100 ng pDestCherry-Pax6 or 150 ng pDestCh-

erry-SPBP using TransIT-LT1 (Mirus Bio) according to the

manufacturer’s protocol. As described previously, the cells were

starved in medium with charcoal-treated serum and hormone

induced with R1881. Subconfluent HeLa cells in 8-well coverglass

slides were transiently co-transfected with 175 ng pDestEGFP-

SPBP and 25 ng pDestmCherry-Pax6 using TransIT-LT1. Live

cell images were taken the following day after transfection using a

Zeiss LSM510 confocal laser scanning microscope. Colocalization

was studied using the Zeiss LSM 510 software.

Coimmunoprecipitation
For coimmunoprecipitation of AR and Pax6, expression of

36Flag-Pax6 was induced from HeLa FlpIn 36Flag-Pax6 cells by

adding 1 mg/ml tetracycline. Subconfluent cells in 10 cm dishes

(Nunc) were transiently transfected with either pDestEGFP-AR or

pEGFP-C1 using Metafectene Pro (Biontex) according to the

manufacturer’s protocol. R1881 (1027 M) was added to stimulate

the AR. For coimmunoprecipitation of AR and SPBP, 26105 HeLa

Figure 1. Pax6 represses SPBP-mediated enhancement of AR
activity. (A) Pax6 represses AR-mediated expression from the 285PB-Luc
reporter. LNCaP cells were cultured in medium with charcoal treated
serum and cotransfected with 5–200 ng pDestHA-Pax6, 75 ng pDestHA-
AR, 75 ng p285PB-Luc, and 5 ng pCMV-bgal using Metafectene Pro
(Biontex). pcDNA3HA was used to equalize the amount of DNA in each
well. 1027 M synthetic androgen (R1881) was added as indicated. The
mean luciferase/b galactosidase value of AR-mediated expression from
285PB-Luc after stimulation with R1881 was set to 1. The data is based on
the mean values of three independent experiments performed in
triplicate. (B) SPBP enhances AR-mediated expression, a coactivation that
is lost by coexpression of Pax6. HEK293 cells were cultured in medium
with charcoal treated serum and cotransfected with 75 ng pDestHA-AR,
50 or 150 ng pDestHA-SPBP, 0–25 ng pDestHA-Pax6, 75 ng p285PB-Luc,
and 5 ng pCMV-bgal. The experiment was performed and data obtained
as described in A. (C) Chromatin Immunoprecipitation assays show that
both SPBP and AR associate with the probasin promoter, and that
overexpression of Pax6 decreases the amount of SPBP associated with
the promoter. Extracts from HeLa cells cotransfected with 285PB-Luc,
pDestHA-SPBP, pSG5-AR, and/or increasing amounts of pDestHA-Pax6
were immunoprecipitated with preimmune serum, polyclonal anti-SPBP
antibody or polyclonal anti-AR antibody. PCR analyses on the immuno-
precipitated chromatin were carried out using primers flanking the
probasin promoter (upper panel). Primers aligning to position -3351 and -
3069 of the cathepsin D promoter were used as control (lower panel).The
1 kb DNA ladder is shown to the left. (D) SiRNA knock down of
endogenous SPBP in R1881 stimulated LNCaP cells reduces the
expression of the AR target gene PSA. LNCaP cells were transfected with
SPBP siRNA or scrambled siRNA, stimulated with R1881 for 48 hours
before harvesting. RT-PCR reactions were run on PSA and b-actin mRNA.
The average amount of PSA mRNA correlated to b-actin mRNA based on
four independent experiments are shown with standard deviations. The
right panel shows the knock-down of SPBP expression in LNCaP cells
transfected with SPBP siRNA compared to scramled siRNA transfected
and untransfected LNCaP cells.
doi:10.1371/journal.pone.0024659.g001
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cells were seeded in 10 cm dishes in MEM supplied with 5%

charcoal treated serum, and incubated for 18–20 hours. The cells

were then transiently cotransfected with 3 mg pDestEGFP-AR and

7 mg pDestHA-SPBP, using the Calcium Phosphate transfection

procedure [32]. 3–4 hours after transfection, the cells were

stimulated using R1881 (1027 M). The cells from both experiments

were harvested 20 hours post transfection and immonoprecipitaed

essentially as described [10]. Primary antibodies used in the western

blot were mouse anti-Flag M2 (1:5.000; Stratagene), rabbit anti-

SPBP (1:500, [10]) or rabbit anti-GFP (1:1.000; Abcam).

For in vitro coimmunoprecipitation assays, expression vectors

pDestHA-SPBP and pDest53-AR were in vitro translated in the

presence of 35S-methionine and immunoprecipiated as described [10].

Fluorescence resonance energy transfer (FRET)
FRET with photobleaching of the acceptor was done using a

Zeiss LSM510 META confocal microscope as described [20].

HeLa cells were cotransfected with 50 ng of both CFP- and YFP-

tagged expression constructs using LipofectAmine PLUS (Invitro-

gen). Three to five cell nuclei expressing a 1:1 ratio of the CFP-and

YFP-tagged proteins were examined per protein pair. A CFP-YFP

fusion protein with a linker of 52 residues (pDestECFP-re7-EYFP),

and a CFP-Pax6-YFP fusion protein (pDestECFP-Pax6-EYFP)

were used as positive FRET controls. The following protein pairs

were used as negative controls: CFP (pDestECFP-C1) and YFP

(pDestEYFP-C1), CFP-AR (pDestECFP-AR) and YFP, and CFP

and Pax6-YFP (pDestPax6-EYFP). Percent FRET efficiency

between CFP- and YFP-tagged proteins was calculated as the

difference between CFP fluorescence before and after bleach using

the formula: ((A1–A0)/A1)–((B1–B0)/B1)/BkYFP-Pax66100%.

A1 and A0 are CFP emission in the region of interest (ROI) in

the bleached cell after and before photobleaching, while B1 and

B0 are CFP emission in a non-bleached ROI in a control cell after

and before photobleaching, respectively [33]. The bleach constant

Bk for YFP-Pax6 was experimentally found to be 0.68.

GST and MBP pulldown assays
GST and GST fusion proteins were expressed in Escherichia coli

BL21STAR (lDE3) pLysS (Novagen) and purified from extracts

using glutathione-sepharose 4 fast flow beads (Amersham

Biosciences). MBP and MBP fusion proteins were expressed in

E. coli DH5a and purified on amylose resin (New England

Biolabs). In vitro translation and dilution of 35S-labeled proteins

were performed as described for in vitro coimmunoprecipitation.

GST or MBP bound to beads were added to the samples for

30 minutes at 4uC on a rotating wheel to remove unspecific

binding. The supernatants were subsequently mixed with 1–2 mg

of the indicated fusion proteins immobilized on beads and

incubated at 4uC for 1 hour. After 5 times washing in NET-N

buffer, the beads were resuspended in 26SDS gel loading buffer

and boiled for 5 minutes. If indicated, 1027 M synthetic androgen

R1881 was added to the reactions. The samples were separated on

10% SDS-PAGE gels together with a molecular weight marker

(New England Biolabs #P7703S), stained with Coomassie brilliant

blue (CBB) and vacuum dried. Signal from 35S-labeled proteins

was detected with a Fujifilm bioimaging analyzer FUJI-BAS5000.

Results

Pax6 represses SPBP-mediated enhancement of AR
activity

Recent reports show Pax6 to be a repressor of AR activity [29],

and the PAX6 gene to be hypermethylated in prostate cancer cells

[34]. p285PB-Luc contains a fragment of the AR targeted rat

probasin promoter upstream of the luciferase gene [31]. Using

p285PB-Luc as a reporter, we confirm that Pax6 represses AR-

mediated transactivation in LNCaP prostate cancer cells

(Figure 1A). These results correlate well with other reports

suggesting Pax6 to have a tumor suppressor function [24–28].

We have previously found that the nuclear protein SPBP acts as a

coactivator of Pax6 [8]. Interestingly, SPBP also interacts with

phosphorylated ERa and represses its transcriptional activity [11].

These results encouraged us to investigate whether Pax6 and SPBP

together would have any impact on AR activity. To this end,

luciferase reporter gene assays were performed in HEK293 cells

using p285PB-Luc as a model system. Figure 1B shows that SPBP

alone enhanced the transcriptional activity of AR in a dose

dependent manner, hence acting as a transcriptional coactivator of

AR. Coexpression of SPBP and increasing concentrations of Pax6

resulted in corresponding increased repression of the SPBP-

mediated enhancement of AR activity. However, increasing ectopic

expression of SPBP seems to partly restore the activity suppressed by

Pax6, suggesting a competitional recruitment to AR.

Chromatin immunoprecipitation assays were performed to

investigate whether SPBP was recruited to the AR target promoter

probasin, and if Pax6 could affect this recruitment. In order to

obtain expression of the three proteins in the same cells, with

varying amounts of Pax6, HeLa cells were cotransfected with the

probasin-luciferase promoter construct and vectors expressing AR,

SPBP and/or Pax6. The results presented in Figure 1C (upper

panel) clearly show that SPBP and AR are associated with the

same fragment of the probasin promoter. Furthermore, expression

of increasing amounts of Pax6 reduces the amount of SPBP

associated with the promoter. An upstream fragment of the

Cathepsin D promoter was amplified on the same samples to

verify specificity (Figure 1C, lower panel). Hence, Pax6 seems to

inhibit recruitment of SPBP to the AR target probasin promoter.

As shown in Figure 1B, SPBP enhances AR activity only modestly

in reporter gene assays using exogenous proteins. To determine

whether SPBP has an effect on the expression of an endogenous AR

target gene, SPBP siRNAs were transfected into LNCaP cells

followed by monitoring the expression level of PSA mRNA by RT-

PCR. SPBP expression is highly knocked down by the SPBP

siRNAs (Figure 1D, right panel). Importantly, PSA mRNA is

reduced to approximately 40% in the SPBP knock down cells

compared to scrambled siRNA (Figure 1D, left panel). These results

show that SPBP enhances expression of AR target genes also in an

endogenous system. The modest effect of SPBP in the reporter gene

system may be due to low expression levels of exogenous SPBP

compared to exogenous Pax6 and AR (Figure S1).

Together, these results show that SPBP acts as a potent

transcriptional coactivator of AR, while Pax6 acts as a repressor

inhibiting recruitment of SPBP to the AR target promoter and

thereby reduces the SPBP-mediated enhancement of AR activity.

AR, SPBP and Pax6 display a very similar nuclear
distribution pattern in androgen stimulated cells

To further evaluate the putative association among Pax6, SPBP

and AR, their nuclear distribution patterns were investigated by

confocal laser scanning microscopy. The mammary adenocarci-

noma cell line GFP-AR 3108 stably expressing GFP-AR [30] was

transiently transfected with plasmids expressing Cherry-Pax6 or

Cherry-SPBP (Figure 2A and 2B, respectively). Both Cherry-Pax6

and Cherry-SPBP strongly colocalized with GFP-AR in the

nucleus of nearly all 3108 cells upon synthetic androgen (R1881)

stimulation. The proteins are located throughout the nucleus

except from the nucleolus, in a subnuclear localization pattern we

have previously denoted as chromatin-rich, nuclear territories

Mechanism of Pax6-Mediated Repression of AR
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[35]. Similar distribution patterns were observed in HeLa cells

overexpressing EGFP-AR and Cherry-Pax6 or Cherry-SPBP (data

not shown). In line with this, Pax6 and SPBP were found to

colocalize almost completely in the nucleus of all transfected HeLa

cells (Figure 2C). Lack of available Pax6 and SPBP antibodies that

work well in immunostaining, made it difficult to study the

distribution pattern of the endogenous proteins. However,

colocalization was assayed on cells that displayed moderate levels

of the exogenous proteins. Furthermore, calculation of the

Pearson’s correlation coefficient of several cells resulted in an

average correlation coefficient of 0.7 for Pax6 and AR, SPBP and

AR, and Pax6 and SPBP (Figure 2D). Taken together, these results

strongly suggest that AR, Pax6 and SPBP are enriched in the same

chromatin-rich territories of R1881 stimulated human cells.

Figure 2. Colocalization and coexpression of AR, Pax6 and SPBP. (A) and (B) Colocalization between GFP-AR and Cherry-Pax6 or Cherry-SPBP,
respectively. The GFP-AR 3108 expressing cell line [30] was transiently transfected with 100 ng pDestCherry-Pax6 or 150 ng pDestCherry-SPBP using
TransIT-LT1 (Mirus Bio). The cells were stimulated with synthetic androgen R1881 and live cell images obtained using a Zeiss LSM510 confocal laser
scanning microscope. Scale bars: 10 mm. (C) Colocalization between GFP- and Cherry-tagged SPBP and Pax6. HeLa cells were transiently cotransfected
with either 175 ng pDestEGFP-SPBP and 25 ng pDestCherry-Pax6, or 25 ng pDestEGFP-Pax6 and 175 ng pDestCherry-SPBP using TransIT-LT1 (Mirus
Bio). Live cell images were obtained as in A. Scale bars: 10 mm. (D) Pearson’s correlation coefficients support the colocalization of GFP-AR with
mCherry-SPBP and mCherry-Pax6 shown in A and B. The correlation is based on the average of 5–10 independent cells, with standard deviations
shown. The nuclear correlation between mCherry-Pax6 and nuclear GFP, and GFP-Pax6 and nuclear mCherry, were used as negative controls. (E)
Coexpression of Pax6, SPBP and AR in mammalian cell lines. Approximately 50 mg proteins from each of the whole cell extracts were separated on 6
and 12% SDS-polyacrylamide gels, followed by immunoblotting using anti-Pax6 (Chemicon), anti-AR (Santa Cruz), anti-SPBP [10] and anti-actin
(Sigma) antibodies. Actin was used as a loading control. The cell lines used were HeLa (human epithelial), HEK293 (human embryonic kidney), MEF
(mouse embryonic fibroblast), Kelly and SKNBe(2) (human neuroblastoma), and Du145, PC3 and LNCaP (human prostate cancer).
doi:10.1371/journal.pone.0024659.g002

Mechanism of Pax6-Mediated Repression of AR
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To investigate whether Pax6, SPBP and AR are coexpressed in

cells, whole cell extracts from nine different cell lines were

analyzed by immunoblotting using antibodies against Pax6, SPBP

and AR. The blots in Figure 2E show that SPBP is expressed in all

of the cell lines tested, while Pax6 is expressed in HeLa, HEK293,

B3 and PC3 cells. Expression of Pax6 in the B3 cell line was not

unexpected, given that it is a human lens epithelial cell line. We

also detected Pax6 at very low levels in Du145 and the human

neuroblastoma cell line SKNBe(2), while no expression was

detected in the mouse embryonic fibroblasts (MEFs) or the human

prostate cancer cell line LNCaP. In contrast, high expression of

AR was, as expected, detected in the latter cell line. Human

Du145 and PC3 prostate cancer cells are frequently used as AR

negative control cells, but we detected some expression of AR in

these cell lines as well. AR was also expressed in HeLa, HEK293,

Kelly and B3 cells at very low levels, but was not detected in the

MEF or SKNBe(2) cell lines. In summary, Pax6, SPBP and AR are

coexpressed in the B3 lens epithelial and PC3 prostate cancer cell

lines. Interestingly, SPBP is highly expressed in the AR positive

prostate cancer cell line LNCaP. SPBP is also expressed in

glandular cells of the prostate and in 30% of prostate cancer

samples in the Human Protein Atlas (www.proteinatlas.org). This

correlates well with the expression pattern of AR and several AR

target genes such as PSA, Elk4 (Sap-1a) and the AR-coactivator

LSD1 (www.proteinatlas.org, [36]).

FRET analysis reveals a direct interaction between AR and
Pax6 in cells

Recently, an association between Pax6 and AR in COS-1 cells

has been reported [29]. To evaluate if this interaction is direct in

human cells, FRET experiments were performed using the

acceptor photobleaching method as previously described [20,33].

HeLa cells were cotransfected with expression constructs for Pax6

and AR tagged with yellow (YFP) and cyan (CFP) fluorescent

proteins, respectively. With the CFP and YFP fluorescent proteins,

FRET only occurs within a distance of 10 nm [37]. The CFP-AR

and Pax6-YFP fusion proteins are schematically illustrated in

Figure 3A before and after photobleaching. As shown in Figure 3B,

Figure 3. Pax6 and AR interact directly in vivo. (A–C) FRET between Pax6 and AR. HeLa cells transiently expressing a 1:1 ratio of CFP-AR
(pDestECFP-AR) and YFP-Pax6 (pDestPax6-EYFP) were subjected to FRET as described in the methods section. A schematic illustration of CFP-AR and
YFP-Pax6 before and after acceptor photobleaching is presented in A. The cell images in B are visualized in pseudo-colors before and after acceptor
photobleaching. The YFP acceptor was bleached, and FRET detected as decreased YFP-emission at 532 nm and a corresponding increased CFP-
emission at 479 nm in the bleached area. The graphical display in B shows the emission spectrum of CFP-AR together with YFP-Pax6 at 479 and
532 nm, respectively, before (blue) and after (red) acceptor photobleaching. (C) Percent FRET between CFP-AR and Pax6-YFP compared with FRET
between CFP-YFP, CFP-Pax6-YFP, and CFP-Pax6 - Pax6-YFP. The FRET efficiency was calculated as described in the methods section. Each bar
represents the mean of 3–5 experiments. (D) Coimmunoprecipitation of GFP-AR and 36Flag-Pax6. HeLa FlpIn 36Flag-Pax6 cells were induced to
express 36Flag-Pax6 and subsequently transfected with pDestEGFP-AR or pEGFP-C1 using Metafectene Pro (Biontex). A GFP-antibody (Abcam) was
used to immunoprecipitate GFP-AR-36Flag-Pax6 complexes from the cells. The upper right gel shows the 0.5% input of 36Flag-Pax6 and the lower
right gel the 0.5% input of GFP and GFP-AR. The upper left gel shows that 36Flag-Pax6 was immunoprecipitated together with GFP-AR, but not with
the GFP control.
doi:10.1371/journal.pone.0024659.g003
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strong FRET was detected between Pax6 and AR in the nuclei of

HeLa cells. Figure 3C shows the calculated percent FRET

efficiencies. A FRET efficiency of 2163.7% was detected between

the CFP-Pax6 and Pax6-YFP fusion proteins, while the FRET

efficiency between Pax6-YFP and CFP-AR was 14.861.5%. A

CFP-YFP fusion protein with a linker of 52 non-specific amino

acids separating CFP and YFP was used as a positive control,

yielding a FRET efficiency of 27.560.4%. Another positive

control, CFP-Pax6-YFP, gave a FRET efficiency of 23.362.9%.

CFP versus YFP, CFP-AR versus YFP, and CFP versus Pax6-YFP

were used as negative controls and displayed little or no FRET

(data not shown). The results from the FRET experiments clearly

show that Pax6 and AR bind directly to each other in the nucleus

of living human cells. This was further confirmed by coimmuno-

precipitation of EGFP-AR and 36Flag-Pax6 from HeLa FlpIn

cells (Figure 3D). Expression of Flag-tagged Pax6 was induced by

adding tetracycline to the medium, before the cells were

transiently transfected with plasmids expressing EGFP-AR. AR

was stimulated by adding synthetic androgen to the medium, and

a GFP-antibody was used to immunoprecipitate GFP-AR-36Flag-

Pax6 complexes from the cells. The upper left panel in Figure 3D

shows that 36Flag-Pax6 was immunoprecipitated with GFP-AR,

but not with the GFP alone. This further confirms the AR-Pax6

interaction established with the FRET assays.

The PD of Pax6 binds to the DBD of AR
Next, pulldown assays were performed in order to map the

interacting regions of AR and Pax6. The various domains of both

proteins, as indicated in Figure 4A and C, were expressed as GST or

MBP fusion proteins in E. coli, while the full-length proteins were in

vitro translated in the presence of 35S-methionine. The GST

pulldown assay in Figure 4B shows that AR binds to both the

isolated PD and the HD of Pax6, but with highest affinity to the PD.

Adding synthetic androgen (R1881) did not affect the interactions

significantly. Neither did addition of benzonase (Figure S2). Hence,

the interactions are not dependent on DNA-binding.

To map the region of AR responsible for mediating the

reaction, three various AR deletions were constructed; the 500

amino acids long NTD (N-term), the 180 amino acids long central

part including the DBD and the hinge region (Central), and the

239 amino acids long C-terminal LBD (C-term) (Figure 4C). The

GST pulldown assay in Figure 4D shows that full-length Pax6

interacts strongly with the central part of AR. Again, adding

synthetic androgen did not affect the binding. The interaction

between AR(central) and Pax6 is further strengthened by pulldown

assays showing that also other Pax proteins interact with this part

of AR (Figure S3).

The central region of AR was further split in the 50 amino acids

N-terminal to the DBD (N-DBD), the 90 amino acids long DBD,

Figure 4. Mapping of the Pax6-AR interaction in vitro. (A) Schematic illustration of Pax6. Pax6 consists of two DNA-binding domains (DBDs), the
N-terminal paired domain (PD), the paired-type homeodomain (HD) and a C-terminal transactivation domain (TAD). (B) AR interacts with the DBDs of
Pax6. GST, GST-Pax6(PD) and GST-Pax6(HD) were immobilized on glutathione-sepharose beads and used to pull down in vitro translated 35S-
methionine labeled AR in the presence or absence of 1027 M R1881. The samples, 1% input, and a molecular weight marker (MWM) were run on 10%
SDS-polyacrylamide gels and stained with Coomassie brilliant blue (CBB) (lower panel). Signal from 35S-labeled proteins was detected with a Fujifilm
bioimaging analyzer FUJI-BAS5000 (upper panel). (C) Schematic illustration of AR. The N-terminal domain (NTD), the central DBD, and the C-terminal
ligand-binding domain (LBD) are illustrated. The arrows indicate the different deletion constructs made, with their size in number of amino acids
given in parenthesis. (D) Pax6 binds to the central part of AR. GST, GST-AR(N-term), GST-AR(Central) and GST-AR(C-term) immobilized on glutathione
sepharose beads were used to pull down in vitro translated 35S-methionine labeled Pax6 in the presence or absence of 1027 M R1881. Upper panel
shows the amount of 35S-labeled Pax6 pulled down, and the lower panel shows the CBB staining of the GST fusion proteins. (E) Further mapping of
the Pax6-AR interaction shows that Pax6 interacts with the DBD of AR. The interaction is reduced by deleting the PD of Pax6, but not by deleting the
HD. The indicated AR constructs fused to MBP were used to pull down in vitro translated 35S-methionine labeled Pax6, Pax6DPD and Pax6DHD as
described. The upper gel pictures show the detected signal from 35S-labeled proteins, and the lower gel pictures show the CBB staining of the MBP
fusion proteins. All results are representative of three independent experiments.
doi:10.1371/journal.pone.0024659.g004
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and the 52 amino acids hinge region (Figure 4C). MBP fusion

proteins of the three constructs were used to pull down in vitro

translated Pax6. Compared to the flanking regions, full-length

Pax6 interacted strongly with the DBD of AR (Figure 4E, upper

panels). Deleting the PD of Pax6 (Pax6DPD) reduced this

interaction significantly (Figure 4E, middle panels), while deleting

the HD (Pax6DHD) did not affect the interaction (Figure 4E,

lower panels). In conclusion, the interaction between AR and Pax6

is mainly between the DBD of AR and the PD of Pax6, and is

neither dependent on androgens nor DNA.

SPBP interacts with the DBD of AR
Since SPBP is reported to interact with ERa and here is found to

function as a coactivator of AR, we asked whether SPBP was able to

associate with AR in cells. HeLa cells were transiently cotransfected

with EGFP-AR and HA-SPBP expressing plasmids. An anti-GFP

antibody was used to precipitate EGFP-tagged AR from cell lysates,

and immunoblotting performed using an anti-SPBP antibody [10].

The upper panel in Figure 5A shows that SPBP coprecipitates with

EGFP-AR in HeLa cells stimulated with R1881, but not in

unstimulated HeLa cells. The lower panel in Figure 5A confirms

precipitation of EGFP-AR in extracts both from stimulated and

unstimulated HeLa cells. This strongly suggests that SPBP interacts

with AR in the nucleus of human cells.

The interaction between the full length proteins were confirmed

by coimmunoprecipitation of in vitro translated proteins (Figure 5B),

followed by mapping of the interacting regions using pulldown

assays. First, various regions of AR (schematically illustrated in

Figure 4C) were expressed and purified from E. coli as GST or

MBP fusion proteins while full-length SPBP were produced in vitro

in the presence of 35S-methionine. The pulldown assays in

Figure 5B and 5C show that SPBP, like Pax6, interacts with the

central region, and more specifically the DBD, of AR. A weak

interaction between SPBP and the C-terminal part of AR was also

detected. The interactions are not affected by the presence or

absence of synthetic androgen.

SPBP was then split in parts, as indicated in Figure 5D, in vitro

translated and used in pulldown assays together with the central

part of AR fused to GST. The results of these pulldowns show that

amino acids 1333–1666 of SPBP exclusively interacted with

AR(Central) (Figure 5E). Interestingly, the 1333–1666 region of

SPBP contains its DBD and also the region (1576–1601) that

mediates the interaction with ERa [11]. In addition, this region

encompasses three highly conserved motifs (D-box, E-box, and

AT-hook). To determine whether DNA binding was important for

the SPBP-AR interaction to take place, benzonase was included in

some of the GST pulldown assays. However, adding this

endonuclease did not have any impact on the binding (Figure

S2). Hence, here we have mapped a DNA-independent interaction

between AR and SPBP, mediated by the DBD of AR and the

1333–1666 region of SPBP containing its DBD.

Pax6 and SPBP compete for binding to AR(DBD)
The findings that coexpression of Pax6 repressed SPBP-

mediated transactivation of AR activity, inhibited association of

SPBP with an AR target promoter, and that both SPBP and Pax6

interacted with the same domain of AR, prompted us to

investigate whether there could be a competition between Pax6

and SPBP for AR(DBD) binding. In an attempt to study this, MBP

pulldown assays were performed with increasing amounts of

SPBP(1333–1960) together with constant amounts of full length

Pax6 and MBP-AR(DBD) immobilized on amylose resin. The

1333–1960 region of SPBP binds equally well to AR(DBD) as the

full length protein (data not shown), and was therefore used in this

assay to reduce the migration differences between Pax6 and SPBP.

As shown in Figure 6, Pax6 and SPBP may in fact compete for

binding to AR(DBD). Increasing amounts of SPBP reduce the

amount of Pax6 coprecipitated with MBP-AR(DBD) while the

amount of SPBP binding to AR(DBD) is increased. On the other

hand, presence of Pax6 reduces the amount of SPBP bound to

AR(DBD) (Figure 6B, right). Taken together, these results suggest

that there is a competition between Pax6 and SPBP for binding to

AR, and that this competition is a possible mechanism for the

repressive effect Pax6 has on SPBP-mediated transactivation of

AR activity.

Discussion

AR is critically dependent on recruitment of coactivators and

corepressors for transcriptional regulation of its target genes. The

differential interaction of AR with various cofactors appears to

control the fine balance between proliferation and differentiation

important for maintenance of the normal prostate. Changes in

cofactor levels may shift the balance between suppressing or

facilitating cancer progression (reviewed in [38–40]). In this study,

we have identified the transcriptional coregulator SPBP as a

coactivator of AR, stimulating AR-mediated transcription of the

probasin promoter and enhancing the expression of the AR target

gene PSA in androgen stimulated LNCaP cells. SPBP is expressed

in most cell lines, but highly expressed in the androgen dependent

cancer cell line LNCaP. In normal prostate tissue, both SPBP and

AR are found in glandular cells (www.proteinatlas.org), and we

show that overexpressed AR and SPBP have very similar nuclear

distribution patterns in cells stimulated with androgen. Interest-

ingly, 30% of the prostate cancer samples in the Human Protein

Atlas (www.proteinatlas.org) display a significant enrichment of

nuclear SPBP. Since coregulators of nuclear hormone receptors

often have the ability to influence the activity of multiple receptors

[38], the AR-SPBP association is strengthened by the previously

reported interaction between SPBP and phosphorylated ERa [11].

The developmental transcription factor Pax6 was recently

reported to act as a repressor of androgen stimulated AR activity

[29]. Here we show that Pax6 in addition inhibits SPBP-mediated

stimulation of AR activity and the association of SPBP with an AR

target promoter. Both Pax6 and SPBP were found to associate

with AR in androgen stimulated cells, and their distribution

patterns in the cell nucleus were completely overlapping. Mapping

of interacting regions revealed that all three proteins use their

DBDs to mediate the interactions. Pax6 contains two DBDs, the

PD and the HD. Although both domains are able to interact with

AR, the PD seems to bind more strongly. The interaction between

Pax6 and AR(DBD) correlates well with the fact that other Pax

proteins also interact with the central region of AR. It also

correlates with a recent report showing that the HD protein

HoxB13 represses AR activity by interacting with the AR(DBD)

[41]. The interacting region was in this case mapped using

AR(DBD) point mutations in a mammalian two-hybrid assay.

Interestingly, our in vitro competition assays indicated that SPBP

and Pax6 compete for AR(DBD) binding. Several AR coactivators

are reported to interact with the AR(DBD) (reviewed in [38,39]).

Our results suggest that the inhibitory effect of Pax6 on AR-

mediated transcriptional activity is obtained by masking coacti-

vator binding sites in or displacing coactivators binding to the

DBD of AR. This is in line with recent reports on the

homeoproteins HOXB13 [41] and HOXC8 [42]. Both proteins

act as repressors of AR-mediated transcriptional activity.

HOXB13 significantly reduced the recruitment of AR coactivators

to specific AR target genes, while HOXC8 was shown to block
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Figure 5. AR and SPBP interact in cells and in vitro. (A) SPBP coprecipitates with AR in R1881-stimulated HeLa cells. pDestEGFP-AR and
pDestHA-SPBP were cotransfected into HeLa cells grown in medium with or without R1881. The proteins were precipitated using an anti-GFP
antibody (Abcam), separated by SDS-PAGE and visualized by anti-SPBP antibody [10] (upper panel) and anti-GFP antibody (lower panel). (B) SPBP and
AR interact in vitro. HA-SPBP and GFP-AR were in vitro translated in the presence of 35S-methionine and immunoprecipitated using anti-SPBP
antibody or preimmune serum. Precipitated complexes and 10% input of the in vitro translated proteins were resolved by SDS-PAGE. (C) SPBP
interacts with the central part of AR. The indicated AR deletion constructs were expressed as GST fusion proteins, and used to pull down in vitro
translated 35S-methionine labeled SPBP. Upper panel shows the 35S-labeled proteins, and lower panel CBB staining of the GST fusion proteins. (D)
SPBP interacts with the AR(DBD). The central part of AR was divided into three; DBD, N-DBD and hinge. MBP fusions of the indicated AR constructs
were used to pull down 35S-methionine labeled SPBP. Upper panel shows 35S-labeled SPBP, while lower panel shows CBB staining of the MBP fusion
proteins. (E) Schematic illustration of SPBP. SPBP contains an N-terminal TAD, a DBD containing an AT-hook motif (AT), a C-terminal extended plant
homeodomain (ePHD), three nuclear localization signals (NLS) and two glutamine rich regions (Q1 and Q2). The boxes labeled A-G represent
conserved regions. SPBP constructs used in this study are indicated with arrows and number of amino acids. (F) Amino acids 1333–1666 of SPBP
interact with the central part of AR in vitro. The indicated regions of SPBP were in vitro translated and used in pull down assays with GST or GST-
AR(Central). Coprecipitations were detected as described in D. All results are representative of three independent experiments.
doi:10.1371/journal.pone.0024659.g005
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AR-dependent recruitment of the coactivators SRC-3 and CBP.

They also found that overexpression of SRC-3 reverses the

HOXC8-mediated blockage. This is similar to our results,

demonstrating that increased SPBP expression partly restores the

Pax6-mediated inhibition.

Understanding the detailed mechanisms and mapping the

specific amino acids important for these interactions and

competitions may have a potential in the future development of

targeted therapies against prostate cancer. AR plays an important

role in both early and advanced stages of prostate cancer etiology.

Formation of active AR-directed transcription complexes occurs

via a sequential recruitment of coactivators [38–40] and alteration

in expression and function of an expanding number of cofactors

are suggested to underlie pathological conditions. Hence, targeting

coregulators for new therapeutics represent a new opportunity

(reviewed in [38]). Importantly, cofactors have been suggested to

play important roles in the development of androgen insensitive

prostate cancer [43], by enhancing the ability of AR to maintain

sufficient function in a low androgen environment for mainte-

nance of cell growth and survival. A putative strategy to inhibit or

diminish recruitment of coactivators to the receptor is to mimic the

AR-Pax6 interaction in cancer cells. One possibility may be to use

peptides representing the Pax6 interaction surface. A promising

study using a peptide that mimics the function of the short splice

variant of the coregulator MTA1 is shown to sequester ERa in the

cytoplam [44]. The MTA1s peptide had the ability to inhibit ERa-

mediated transactivation, estrogen-dependent proliferation, an-

chorage-independent growth and in vivo tumor progression [45].

This indicates that development of peptides abrogating receptor-

coactivator interactions may have therapeutical opportunities.

We found that Pax6 and SPBP colocalized with AR in the

nucleus of androgen stimulated cells overexpressing the proteins.

But since the expression of Pax6 and AR in various tissues is very

restricted, few tissues coexpress them both. AR is highly expressed

in the epithelium of the tear producing lachrymal glands

surrounding the eyes [1], where also Pax6 is found. The expression

patterns of AR and PAX6 during development of the pituitary have

a transient overlap along the midline border [46,47]. Since the

pituitary is the superior hormone-producing gland of the body, a

possible common function for Pax6 and AR in this organ is to

coparticipate in expression of hormones. Likewise, AR is

coexpressed with Pax6 in distinct pyramidal neurons of the

hippocampus [48,49], in neurons and astrocytes of the developing

and adult forebrain [50,51], as well as in the dopamine-producing

substantia nigra of the midbrain [52,53]. Furthermore, our data

show that Pax6 and AR are coexpressed in the androgen

insensitive prostate cancer cell line PC3, the lens epithelial cell

line B3, in addition to the cancer cell lines HEK293 and HeLa.

Hence, the Pax6-mediated repression of AR activity may be

important and relevant in certain tissues, and also in specific

cancer cells aberrantly expressing both proteins.

In conclusion, SPBP and Pax6 modulate AR activity by using

their DBDs to interact with the DBD of AR. Elucidating the

specific mechanisms involved in the competition between Pax6

and SPBP for binding to AR, may result in important knowledge

in the field of targeting AR coregulators for new cancer

therapeutics.

Supporting Information

Figure S1 Expression levels of exogenous HA-AR, HA-
SPBP and HA-Pax6 in HEK293 cells. Subconfluent HEK293

cells in a 6 well dish (Nunc) were cotransfected with pDestHA-AR

(375 ng), pDestHA-SPBP (1.5 mg), and pDestHA-Pax6 (250 ng),

and stimulated with 1027 M R1881. The cells were harvested in

26SDS gel loading buffer approximately 20 hours after transfec-

tion, proteins separated by SDS-PAGE and visualized by Western

Blotting using mouse anti-HA (1:1.000, clone 12CA5, Roche)

antibody. Stars indicate unspecific bands.

(TIF)

Figure S2 The interaction between Pax6 and AR or
SPBP and AR is not dependent on DNA. GST, GST-

AR(Central), and GST-AR(DBD) immobilized on glutathione

sepharose beads were used to pull down in vitro translated 35S-

labeled Pax6 (A) and SPBP (B) in the presence or absence of

benzonase. The strength of the interactions is unaffected by

removing DNA from the reactions.

(TIF)

Figure 6. Pax6 and SPBP compete for binding to AR(DBD). (A)
MBP-AR(DBD) immobilized on amylose resin beads were incubated with
constant amounts of 35S-labeled HA-Pax6 and increasing amounts of
HA-SPBP(1333–1960). The upper gel picture shows the signal detected
for the 35S-labeled proteins, and the lower gel picture shows the
amount of MBP fusion proteins (CBB staining). The numbers above the
upper gel picture indicate how many ml that were used of each in vitro
translated protein. The presented result is representative of three
independent experiments. (B) Quantification based on the average fold
binding of three independent experiments. The quantification was
performed using Image Gauge version 4 from FUJI. Left panel: The
amount of Pax6 bound to MBP-AR(DBD) was set to 1 fold binding.
Increasing the concentration of SPBP while keeping the amount of Pax6
constant, results in reduced binding of Pax6 to the AR(DBD). Right
panel: The amount of SPBP bound to MBP-AR(DBD) was set to 1 fold
binding. Coincubation of Pax6 and SPBP with AR(DBD) reduces the
amount of SPBP bound to AR. The binding is rescued by increasing
amounts of SPBP, while keeping the input of Pax6 constant.
doi:10.1371/journal.pone.0024659.g006
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Figure S3 Members from all subgroups of the Pax
family interact with the central region of AR. GST and

GST-AR(Central) immobilized on glutathione sepharose beads

were used to pull down in vitro translated 35S-labeled members of

the Pax family. The results show that all Pax proteins tested bind

to the central region of AR.

(TIF)

Table S1 Plasmids used in this study.

(DOC)

Table S2 Oligonucleotides used in this study.

(DOC)
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