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Synthetic Aperture Focusing of Ultrasonic Data from
Multilayered Media Using an Omega-K Algorithm
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Abstract—The synthetic aperture focusing technique
(SAFT) is used to create focused images from ul-
trasound scans. SAFT has traditionally been applied
only for imaging in a single medium, but the recently
introduced Phase Shift Migration (PSM) algorithm has
expanded the use of SAFT to multilayer structures.
In this article we present a similar focusing algorithm
called MULOK (MUlti-Layer Omega-K), which com-
bines PSM and the ω−k algorithm to perform multilayer
imaging more efficiently. The asymptotic complexity is
shown to be lower for MULOK than for PSM, and
this is confirmed by comparing execution times for
implementations of both algorithms. To facilitate the
complexity analysis, a detailed description of algorithm
implementation is included, which also serves as a
guide for readers interested in practical implementa-
tion. Using data from an experiment with a water-
plexiglas-aluminium structure, we show that there is
essentially no difference in image quality between the
two algorithms.

I. Introduction

Synthetic aperture as a concept is used within both
radar, sonar, seismic and ultrasound imaging. The tech-
nique is based on emitting a wave into a region of in-
terest, recording the backscattered echoes, and repeating
this for several positions. Recorded data are subsequently
combined to create a large synthetic aperture, yielding a
high-resolution image of the reflectivity in the region.

Within the field of seismic imaging, synthetic aperture
techniques are known as migration techniques. Computer-
based processing of seismic data started in the 1970s [1],
and the initial methods were limited to time-space domain
processing. In 1978, Stolt [2] introduced what is now called
the frequency-wavenumber, or ω−k, algorithm, perform-
ing all processing in the temporal and spatial frequency
domain. This approach proved to be significantly faster
than the other methods available at the time, and it
has since become widely used in many related fields. Its
main disadvantage is that it requires the wave velocity
of the propagating medium to be constant. In the same
year, Gazdag [3] introduced the Phase Shift Migration
(PSM) algorithm, which also operates in the frequency-
wavenumber domain. Although not as fast as the ω−k
algorithm, it allows the wave velocity to vary with depth.

Both the ω−k and the PSM algorithm are based on
extrapolating the backscattered wavefield from the plane
in which it is recorded, and down into the region to be
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imaged. In Fourier analysis of wave fields this is also known
as angular spectrum propagation [4], [5].

Building on previous work within sonar and radar imag-
ing, synthetic aperture focusing was introduced to the field
of NDT ultrasonics in the 1970s, and came to be known
as the Synthetic Aperture Focusing Technique (SAFT)
[6]. Although the time-domain delay-and-sum method was
the starting point, frequency domain algorithms were soon
adopted by the ultrasonic community [7], [8], [9], [10],
[11], and in recent years there has also been a grow-
ing interest in adapting such algorithms for arrays [12],
[13]. Researchers have mainly focused on imaging in a
single, constant-velocity medium, but some time-domain
methods for multilayer structures have been developed
[14], [15], and recently Olofsson [16] introduced the use
of the frequency-domain PSM algorithm for processing
multilayer data.

There are several applications for ultrasound imaging of
multilayer structures. One very important case is that of
immersion scans, in which an object is immersed in water
and a number of pulse-echo measurements are performed
by scanning the transducer in the water layer above
the object. The main advantages of immersion scans,
as opposed to contact scans, are that the water layer
acts as a good and uniform couplant for the acoustic
waves, and that there is no friction causing transducer
wear. The transducer used in immersion scans is usually
geometrically focused to provide a good lateral resolution
in the transducer focal zone. Synthetic aperture techniques
represent an alternative that can be used to obtain a high
lateral resolution that is independent of depth.

As previously mentioned, the ω−k algorithm has proven
to be very efficient for single-layer processing, while the
PSM algorithm is capable of imaging structures where
the wave velocity varies with depth. In 1989, Kim [17]
introduced a method for seismic imaging which combines
the advantages of both algorithms. He assumed that the
geological structure of the earth can be approximated as
a finite number of layers with constant wave velocity and
used the PSM algorithm to extrapolate the wavefield down
to the interfaces between the layers. He then used the ω−k
algorithm to effectively image the interior of each layer. In
this paper, we demonstrate that the same approach can
be used for ultrasonic imaging of multilayer structures,
and we will refer to this as the MUlti-Layer Omega-K
algorithm (MULOK). The algorithm is compared to the
PSM algorithm in terms of both computational complexity
and image quality.

To simplify the treatment of the algorithms, a two-
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dimensional geometry is considered here, but an extension
to three dimensions is straightforward. A real ultrasound
application is usually three-dimensional by its own nature,
but if the region of interest is homogenous along one
direction, a two-dimentional approximation can be made
without any loss of information.

In order to compare the asymptotical complexity of the
PSM and MULOK algorithms, a detailed description of
the algorithm implementations has been included. As an
added benefit, the description also serves as a guide for
practical implementation.

The remainder of this article is organized as follows: In
Section II, the theory of the PSM and MULOK algorithms
is presented, and in Section III, the asymptotic complexity
of each algorithm is analyzed and compared with actual
execution times. An experiment illustrating the imaging
performance of both algorithms is presented in Section IV,
before we state our conclusions in Section V. Details of
algorithm implementation and complexity analysis have
been placed in appendices A-E to maintain the flow of the
article for the general reader.

II. Theory

A. The exploding reflector model

Derivation of migration algorithms for the monostatic
case are often based on the exploding reflector model
[18], [19], which simplifies the inverse imaging problem.
It reduces the two-way pulse-echo scenario to a one-way
scenario where we assume that the scatterers themselves
are sources of acoustic energy.

Figure 1(a) illustrates a B-scan of a two-layer geometry,
where a transducer is scanned along the x axis and a
pulse-echo measurement is performed for each x position.
A scatterer is present in the second layer, and because
the two layers have different wave velocities, both the
transmitted and the reflected wave is refracted at the
interface between the layers.

Figure 1(b) shows how the exploding reflector model is
applied to the same geometry. The scatterer explodes and
creates a wave which travels towards an array of trans-
ducer positions, undergoing the same refraction as for the
pulse-echo case. In order for the time delay of the pulses
to remain the same under the exploding reflector model as
for the actual pulse-echo measurement, an effective wave
velocity of half the actual velocity must be assumed,

ĉl = cl

2 , (1)

where l is the layer index. The model is general and can
be applied for an arbitrary number of layers.

In most ultrasonic measurements, there are multiple
reflectors, and the wave field measured by the transducer
is then approximated as a superposition of waves from
several exploding reflectors. This assumption holds as long
as multiple reflections between scatterers can be neglected.
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(b) Exploding reflector model.

Figure 1: Pulse-echo measurements and exploding reflector
model.

B. Extrapolation of wave field in Fourier domain
For migration algorithms, the purpose of wave field

extrapolation is to calculate the wave field at an arbitrary
depth from measurements performed at a given depth,
here denoted by Z. In the following derivation we will
assume that all scatterers are located in the half-space
z > Z.

Let p(t, x, z) denote the wave field generated by a set of
exploding reflectors. The wave field has to obey the scalar
wave equation[

∂2

∂x2 + ∂2

∂z2 −
1
ĉ2
∂2

∂t2

]
p(t, x, z) = 0, (2)

where the sound speed ĉ = c/2 is used because the
exploding reflector model is assumed. Solutions to the
wave equation are in the form of plane harmonic waves,

p(t, x, z) = Pei(kxx+kzz−ωt), (3)

where ω is the angular frequency, kx and kz are the
horizontal and vertical wavenumbers, and P is the complex
amplitude for the plane wave. Applying Eq. (2) to Eq. (3),
we find that ω, kx and kz are related through the equation

ω2

ĉ2
= k2

x + k2
z . (4)

If ω is positive, a harmonic plane wave travels in the
direction of the wavenumber vector [kx, kz] as time in-
creases. If ω is negative, the wave travels in the opposite
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direction. Since the wave field is measured at z = Z,
and all scatterers are located in the half-space z > Z, all
recorded waves are travelling in the negative z direction.
We can also see from Eq. (4) that only two of the three
variables ω, kx and kz are independent. Choosing kz as
the dependent variable, we rearrange Eq. (4) to obtain

kz(ω, kx) = −sgn(ω) ·
√
ω2

ĉ2
− k2

x, (5)

where the sign function ensures that the kz value repre-
sents an upgoing wave.

The general solution for an arbitrary wave field can be
expressed as a sum of plane waves of the form given in Eq.
(3),

p(t, x, z) =
∞∫∫

−∞

P (ω, kx)ei(kxx+kz(ω,kx)z−ωt) dkx dω, (6)

where P (ω, kx) denotes the complex amplitude for the
independent pair (ω, kx). Defining

P (ω, kx, z) ≡ P (ω, kx)eikz(ω,kx)z, (7)

we can rewrite Eq. (6) as

p(t, x, z) =
∞∫∫

−∞

P (ω, kx, z)ei(kxx−ωt) dkx dω. (8)

Equation (8) represents an inverse Fourier transform of
P (ω, kx, z) from coordinates (ω, kx) to (t, x). The corre-
sponding forward transform is given by

P (ω, kx, z) = 1
4π2

∞∫∫
−∞

p(t, x, z)e−i(kxx−ωt) dx dt, (9)

where 1/(4π2) is a normalization constant. Thus,
P (ω, kx, z) is the Fourier transform of the wavefield in the
x plane at depth z. Let P (ω, kx, Z) denote the Fourier
transform of the wavefield recorded at depth Z. Inserting
this into Eq. (7) and solving for P (ω, kx), we get that

P (ω, kx, z) = P (ω, kx, Z)eikz(z−Z), (10)

where the explicit dependency of kz on ω and kx has been
omitted for ease of notation. Defining ∆z as the offset
z − Z, and inserting Eq. (10) into Eq. (8), we obtain a
general expression for wave field extrapolation,

p(t, x, Z+ ∆z) =
∞∫∫

−∞

P (ω, kx, Z)eikz∆z ei(kxx−ωt) dkx dω.

(11)

C. Imaging condition
Given an expression for the wave field p(t, x, z), an

imaging condition is needed to obtain an image I(x, z) of
the exploding reflectors. For the exploding reflector model,
the imaging condition is to set t = 0 [19], so that

I(x, z) = p(t=0, x, z). (12)

The wave field emitted from a scatterer is maximally
concentrated in space at the time of explosion (t=0), and
thus the above imaging condition is chosen to produce a
maximally focused image.

D. Imaging using Phase Shift Migration
Applying the imaging condition of Eq. (12) to Eq. (11),

we get the following expression:

I(x, Z+∆z) =
∞∫∫

−∞

P (ω, kx, Z)eikz∆zeikxx dkxdω. (13)

Note that inserting t = 0 into Eq. (11) reduces the inverse
transform with respect to ω to a simple integral over ω. Eq.
(13) can be used iteratively to create an image line by line,
by applying it for all depths Z+∆z to be imaged. In seismic
processing, this is called Phase Shift Migration (PSM),
referring to the phase shift given by the term eikz∆z.

E. Imaging through Stolt transform
Equation (13) is very similar to an inverse Fourier

transform of P (ω, kx, Z), but it has an eikz∆z kernel rather
than an e−iωt kernel. It can be recast into a proper inverse
Fourier transform by a change of variables from ω to
kz. Integrals in the form of Fourier transforms are of
particular interest, as they can be calculated using the
computationally efficient Fast Fourier Transform (FFT)
and its inverse counterpart (IFFT).

We obtain an expression for ω by using the relation
given in Eq. (4), and assuming, as in Section II-B, that
ω and kz have opposite signs, so that

ω(kz, kx) = −sgn(kz) · ĉ
√
k2

x + k2
z . (14)

By substituting Eq. (14) into Eq. (13), we get

I(x, Z+∆z) =
∞∫∫

−∞

P (kz, kx, Z)eikz∆zeikxx dkxdkz, (15)

where

P (kz, kx, Z) = A(kz, kx) · P (ω(kx, kz), kx, Z), (16)

and
A(kz, kx) = ∂ω(kz, kx)

∂kz
= ĉ√

1 + k2
x

k2
z

. (17)

We see here that relative to the original wave field
P (ω, kx, Z), the substitution of variables leads to a mul-
tiplication with an amplitude factor A(kz, kx) and a shift
in ω given by ω(kz, kx).

F. Adaptation to multilayer case
Assume now that we have several layers with potentially

different wave velocities, as illustrated in Fig. 2. Let the
layers be numbered with l = 1, 2, ..., L, and let dl and cl

denote the thickness and wave velocity of layer l. The top
of the uppermost layer is denoted by Z1, and the interfaces
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Figure 2: Illustration of horisontally layered geometry

between the layers are denoted by Zl, so that the top of
layer l is given by Zl = Z1 +

∑l−1
m=1 dm.

We know from Eq. (10) that in a medium with constant
sound speed, the wave field P (ω, kx, z) can be calculated
by multiplying a reference wave field P (ω, kx, Z) with a
phase factor eikz∆z. In the multilayer case, the field cannot
be extrapolated through several layers directly, since kz is
a function of the medium velocity ĉl,

kzl = −sgn(ω) ·

√
ω2

ĉ2l
− k2

x, (18)

where the layer dependence is indicated by index l. How-
ever, extrapolation within each layer is still possible,

P (ω, kx, Zl + ∆z) = P (ω, kx, Zl) · eikzl∆z, ∆z < dl, (19)

where P (ω, kx, Zl) denotes the field at interface Zl, and
P (ω, kx, Zl + ∆z) denotes the field at depth z = Zl + ∆z.

If the wave field is to be extrapolated to more than
one layer, the transmission of waves through the layer
interfaces has to be considered. The transmission factor
between different media is generally a complex func-
tion, dependent on both incident angle and the acoustic
impedances of the media [20]. However, for most com-
monly available ultrasound transducers, the directivity
of the transducer limits the emitted and received wave
fields to a relatively small angle interval. We will therefore
assume that the transmission factors are approximately in-
dependent of incident angle, so that the wave fields directly
above and directly below an interface are proportional;

P (ω, kx, Z
−
l ) ∝ P (ω, kx, Z

+
l ), (20)

where the plus and minus signs are used to indicate the
upper and lower side of the interface, respectively. Since
we are mainly interested in relative amplitudes within
each layer, the amplitude scaling effect imposed by the
interfaces is here considered to be unimportant to the
imaging problem.

Assuming proportonality across interfaces, the wave
field at an arbitrary interface Zl can, within a scaling

factor, be calculated from the wave field measured at Z1,

P (ω, kx, Zl) ∝ P (ω, kx, Z1) · e
i

l∑
m=1

kzmdm

. (21)

The equations (19) and (21) constitute the basis for
PSM imaging of several layers. The imaging procedure for
layer l can be summarized as follows:

1) Calculate the wave field at the top of the layer
interface, P (ω, kx, Zl), using Eq. (21)

2) For each depth ∆z to be imaged within the layer:
a) Shift the wave field downwards with ∆z by

multiplying with a phase factor, according to
Eq. (19), to obtain P (ω, kx, Zl + ∆z)

b) Create an image line I(x, Zl + ∆z) by integrat-
ing with regard to ω and inverse transforming
with regard to kx, according to Eq. (13).

Instead of creating an image of each layer line by line,
the Stolt transform introduced in Section II-E can be
adapted to the multilayer case, to enable imaging of an
entire layer through a single inverse Fourier transform.
This approach is what we call the Multi-Layer Omega-
K algorithm (MULOK). The complete image for layer l is
then given by

Il(x,∆z) =
∞∫∫

−∞

P (kz, kx, Zl)e−ikz∆zeikxx dkxdkz, ∆z < dl,

(22)
where

P (kz, kx, Zl) = Al(kz, kx) · Pl(ωl(kx, kz), kx, Zl), (23)

Al(kz, kx) = ĉl√
1 + k2

x

k2
zl

, and (24)

ωl(kz, kx) = −sgn(kzl) · ĉl

√
k2

x + k2
zl. (25)

The imaging procedure to create an image of layer l can
be summarized in the following way:

1) Calculate the wave field at the top of the layer,
P (ω, kx, Zl), using Eq. (21)

2) Use Eq. (23) – (25) to perform the variable transfor-
mation from ω to kzl.

3) Inverse transform to obtain the image within the
layer, Il(x,∆z), using Eq. (22)

G. Comments on theoretical resolution
The lateral resolution of an synthetic aperture image is

dependent on the bandwidth of the kx spectrum [21], and
this bandwidth is limited by the effective length L of the
transducer. A common rule of thumb for the single-layer
case is that this makes the maximum lateral resolution
approximately L/2 [11]. Here we will argue that this limit
is also relevant for the multilayer case.

According to Snell’s law, the kx wavenumber of a wave
incident on a layer interface must remain the same after
transmission into the next medium. Thus, the refrac-
tion of the wave does not in itself alter the horizontal
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wavenumber, but the transmission factors between media
are generally dependent on incident angle, making the
interface a filter for the kx spectrum. The bandwidth
of the kx spectrum is only maintained as long as the
transmission factors are approximately uniform within
the divergence angle of the transducer, but in practice,
this requirement is fulfilled for many transducer designs
and material combinations of interest. For example, for
a immersion scan of copper using a 2.25 MHz 10 mm
diameter transducer, the echo transmission factor varies by
only approximately 6% within the transducer beam [16].
As long as the kx spectrum bandwidth can be assumed to
be the same for the single-layer and multilayer case, the
theoretical lateral resolution of L/2 is also the same.

III. Algorithmic complexity
A. Aymptotic complexity

The effectiveness of an algorithm is often quantified by
analyzing how the number of operations grow as the size of
the input data tends towards infinity, and this asymptotic
complexity is denoted using Big O notation. In the case
of the PSM and MULOK algorithms, the size of the input
data is given by the number of time samples, N , the
number of measurement positions, M , and the number of
layers, L.

The asymptotic complexities for each individual step of
the algorithms are analyzed in appendix E, and listed in
tables II and III. The overall complexity of each algorithm
is given by the algorithm step with the highest order
complexity. To analyze this, we consider the complexities
with regard to N , M and L separately, assuming that the
two remaining variables are kept constant. The highest
order complexities are summarized in Table I. MULOK is
seen to have a lower complexity than PSM with regard to
N , since N logN < N2, while the complexity with regard
to M and L is the same for both algorithms.

Algorithm N M L
PSM O(N2) O(M logM) O(L)
MULOK O(N logN) O(M logM) O(L)

Table I: Asymptothic complexities PSM and MULOK, re-
garding N , M and L separately.

B. Empirical evaluation of execution times
To do a realistic comparison of the two algorithms,

a number of simulated processings were performed in
Matlab. Matrices with random numbers were used instead
of ultrasonic scans. The number of measurement positions,
M , was set to 128, and the processing times were measured
for different number of time samples, N . The simulations
were performed on a dual-core 2 GHz laptop with 2 GB
RAM, running a 64-bit Linux version of Matlab R2009b

The resulting execution times are plotted in Fig. 3. Note
that both the x and the y axes of the plots are logarithmic.
Figures 3(a) and 3(b) show the execution times as function
of N when the number of layers L is 2 and 5, respectively.
To compare the asymptotic complexities with the execu-
tion times of the simulation, lines corresponding to N2
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Figure 3: Execution time simulation results.

and N logN have been added to the plot, normalized to
intersect with the execution time for the highest value of
N.

We find from figures 3(a) and 3(b) that PSM has a
lower execution time than MULOK for small N, but that
MULOK is much faster as N grows larger. For example,
for L = 5 and N = 16384, MULOK is approximately 15
times faster than PSM, and for L = 2 and N = 16384,
MULOK is approximately 30 times faster. Comparing the
results for L = 2 and L = 5, we see that the execution
time of the PSM algorithm is approximately the same for
both cases, while the time for the MULOK algorithm is
significantly higher for L = 5. Thus, a higher number of
layers shifts the crossover point between the algorithms to
a higher N value. The reason that MULOK is more heavily
influenced by L than PSM can be found by comparing the
complexities for each algorithmic step, listed in Table II
and Table III. PSM has only one step whose complexity is
proportional to L, while almost all steps in MULOK are
have complexities proportional to L.

The exection times are seen to correspond well to the
asymptotic complexities indicated by the dashed lines,
particularly as N grows larger. This indicates that the
general trends seen here can be assumed to be valid
in general, even if the given execution times presented
here are valid only for one specific implementation of the
algorithms.
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Figure 4: Experiment setup

IV. Experiment
In Section III it was shown that the asymptotical

complexity of MULOK is lower than that of PSM with
regard to N. To validate that MULOK is also capable of
producing the same image quality as PSM, an experiment
with a three-layer structure was conducted.

Two test blocks with side-drilled holes were placed on
top of each other and immersed in a water tank, and an
array of four steel pins was placed over the two blocks, as
shown in Fig. ??. A B-scan of the arrangement was per-
formed using a 2.25 MHz transducer with 6 mm diameter,
moved in steps of 1 mm, with a sampling frequency of 12.5
MHz. N = 1040 time samples were recorded in each of the
M = 111 measurement positions.

The upper and lower block consisted of plexiglas and
aluminium, and were 31 and 50 mm thick, respectively.
Each of the blocks had four side-drilled holes, which were
all 1.6 mm in diameter and 30 mm deep. The vertical
spacing between the holes was 6 mm in the plexiglas block
and 10 mm in the aluminium block, while the horizontal
spacing was 20 mm for both blocks. The blocks were also
shifted horizontally approximately 10 mm, so that the
upper holes would not create a dominating “shadow” for
the lower holes. The steel pins were 0.3 mm in diameter,
with a vertical spacing of 5 mm and a horizontal spacing
of 20 mm. The scan line was centered over the holes and
pins in the y direction.

To compensate for limited dynamic range in the ultra-
sonic aquisition system, a time-dependent damping/ampli-
fication was applied during the scan. The water-plexiglas
interface echo was damped -10 dB, and the echoes from
the aluminium layer were amplified by +20 dB.

The envelope of the B-scan was calculated using the
Hilbert transform, and the resulting raw data image is
shown in the two leftmost plots of Fig. 5, plotted with both

a 25 dB and a 50 dB dynamic range. Two different dynamic
ranges were used emphasize the difference between high-
amplitude and low-amplitude effects. The front echo from
the water-plexiglas interface is seen as a horizontal line
at approximately 100 µs, and echoes from the plexiglas-
aluminium and the aluminium-water interfaces are visible
at approximately 123 and 137 µs, respectively.

The wave velocity for water, plexiglas and aluminium is
approximately 1480 m/s, 2730 m/s and 6320 m/s, and the
difference in velocity can be seen clearly in the B-scan, as
the appearent thickness of the layers on the time axis is
far from their actual thickness. The echoes from the steel
pins and the side-drilled holes are seen as four reflections
in each of the layers, and the width of the reflections
increases with depth because of the divergence of the
emitted transducer pulse. There are also some weaker
reflections cluttering the image in both the plexiglas and
aluminium layers. These are caused by multiple reflections
of the scattterers.

The raw data was processed with both the MULOK and
the PSM algorithms, and the resulting images are shown
in Fig. 5, plotted with absolute value on a dB intensity
scale. Like the raw data, the images are shown with both
25 dB and 50 dB dynamic ranges.

Although there are some slight differences between the
PSM and MULOK images, these differences are very
low in amplitude, and the overall impression is that the
two images are visually identical. This indicates that for
practical purposes, PSM and MULOK will be equvivalent
in terms of image quality.

The reflections from the scatterers have been focused,
resulting in an improved lateral horizontal resolution that
is approximately the same for all scatterers, independent
of depth or layer. Multiple reflections have been partially
focused or defocused, depending on how close they are in
time to their original scatterers. For example, the reflection
seen at approximately t = 130 µs, x = 30 mm in the raw
data appears to be caused by a scatterer in the aluminium
layer, but it is actually a multiple reflection of the leftmost
scatterer in the water layer. In the focused images, the
reflection has been defocused into a curve, since it did not
originate in the aluminium layer.

The improvement in lateral resolution can be seen more
clearly in Fig. 6, which shows the raw data and MULOK
focused image for the rightmost scatterer in each layer.
The -6dB width of the response from each scatterer was
found, after interpolation to finer x resolution, to be
approximately 3 mm, 3 mm and 3.6 mm, from top to
bottom. This corresponds quite well to the theoretical
resolution of approximately half the transducer diameter,
indicating that the assumptions discussed in Section II-G
are valid in this case.

V. Discussion and conclusions
We have presented a new algorithm for processing of ul-

trasonic data from multilayer structures, called MULOK,
and compared it with the PSM algorithm. Both algorithms
represent an extension of the SAFT concept to the case
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Figure 5: Comparison of raw data and images focused by PSM and MULOK, displayed on a dB intensity scale. The dynamic
range of the top and bottom row is 25 and 50 dB, respectively.

where the imaged geometry consists of layers with differing
wave velocities.

In theory, the algorithms can focus through an arbi-
trary number of layers. However, since the transmission
factor between layers is generally lower than one, both
the transmitted pulse and the backscattered echo will be
significantly damped at each interface. Thus, the signal-
to-noise ratio is likely to limit the number of layers that
can be imaged in practice. In addition, multiple reflections
from within the first layers may interfere with echoes from
layers further down.

We have shown, both theoretically and by numeri-
cal simulation, that the MULOK algorithm has a lower

asymptotic complexity than the PSM algorithm. However,
the simulations also indicated that the effectiveness of
the MULOK algorithm decreases as the number of layers
increases, while the execution time of the PSM algorithm
is more or less independent of number of layers.

We have also demonstrated that the image quality and
lateral resolution is approximately the same for both algo-
rithms. Note however that if the interpolation step of the
MULOK algorithm is not performed accurately enough,
the focused image will contain visible artefacts. Thus, the
accuracy of the interpolation should be adjusted according
to the image quality required. There are also variations
of the ω − k algorithm which do an approximate but
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Figure 6: Zoomed-in plot of rightmost scatterers in each layer.
Raw data in left column, focused image in right. The
-6dB width of the focused scatterers is, from top to
bottom, 3 mm, 3 mm, and 3.6 mm.

efficient mapping from ω to kz without any interpolation,
for example using the chirp z-transform [22]. Modifying
MULOK to accommodate such methods is seen as a
subject for future work.

Taking all factors into account, we see that the choice
between PSM and MULOK relies both on the geometry to
be imaged and the resources available for implementation.
If the number of input samples is relatively large, the num-
ber of layers is low, and the interpolation between ω and
kz can be executed efficiently and accurately, MULOK can
produce the same image quality as PSM in a much more
efficient manner. If these requirements are not fulfilled,
PSM may be a better alternative.

Appendix

A. Matrix representation of discrete data

In Section II, the theory was outlined for the case of
continuous signals, and it was also assumed that wavefield
in the measurement plane is known for all x and t. In prac-
tice, the boundary condition must be sampled discretely
both in time and space, for a finite time period and over
a finite section of the x axis.

We assume that each measurement position, a pulse is
emitted, and Nt time samples are recorded, corresponding
to time instants t1, t2, . . . , tNt

. The measurement is per-
formed at M different x positions, x1, x2, . . . , xM . Time
samples are equally spaced with ∆T = 1/fs, where fs is
the sampling frequency, and the x positions are equally
spaced with ∆X. Assuming that the measurement is done
at depth Z1, the discrete data set can be organized in a
matrix Ptx[Z1], with element pij corresponding to time

instant ti of the pulse-echo measurement at position xj :

Ptx[Z1] =

x1 x2 . . . xM

t1
t2
...

tNt


p11 p12 . . . p1M

p21 p22
...

...
. . .

...
pNt1 . . . . . . pNtM

 . (26)

Note that some zero-padding of Ptx in the x direction
may be required to avoid spatial aliasing in the focused
image [23]. The discrete Fourier transform of Ptx[Z1] is
also an Nt times M matrix, and we denote this matrix
P̂ωkx

[Z1]. The elements of P̂ωkx
[Z1] correspond to ω in

the range [−πfs, πfs], but only elements that correspond
to the transducer passband are significantly different from
zero. Because the frequency spectra of real valued sig-
nals are symmetric, we can also limit the processing to
positive ω values. Denoting the upper and lower cutoff
frequency for the transducer by fmin and fmax, we de-
fine Pωkx

[Z1] as the subset of P̂ωkx
[Z1] corresponding to

ω ∈ 2π[fmin, fmax]:

Pωkx
[Z1] =

kx1 kx1 . . . kxM

ω1
ω2

...
ωNω


P11 P12 . . . P1M

P21 P22
...

...
. . .

...
PNω1 . . . . . . PNωM

 , (27)

where ω1 = 2π
⌊
Nt

fmin
fs

⌋
, ωNω

= 2π
⌈
Nt

fmax
fs

⌉
, and the

step size is ∆ω = 2πfs/Nt. The relationship between Nω

and Nt is given by the ratio of transducer bandwidth to
sampling frequency:

Nω/Nt ≈ (fmax − fmin)/fs. (28)

Also, assuming that the Fourier transform output is
arranged so that the zero wavenumber is centered, and
that M is even, the kx wavenumbers are given by

kx = 2π
∆X ·M · [−M/2,−M/2 + 1, · · · , 0, · · · ,M/2− 1] .

(29)

B. Wave field extrapolation
We know from Eq. (18) and Eq. (19) that a wavefield

at depth Zl can be shifted to an arbitrary depth Zl + ∆z
within layer l by multiplication with a complex exponen-
tial eikzl∆z, where kzl is given by

kzl = −sgn(ω) ·

√
ω2

ĉ2l
− k2

x. (30)

The frequency-wavenumber spectrum should be limited
to propagating waves, corresponding to real-valued kzl,
and this requirement is fulfilled as long as the square root
argument of Eq. (30) is positive. All elements of Pωkx for
which ω2

ĉ2
l

− k2
x < 0 should therefore be set to zero.

Let Kzl be the discrete matrix representation of kzl. It
is an Nω times M matrix given by
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Figure 7: Interpolation points in ω − kx domain

Kzl =

 kzl(ω1, kx1) . . . kzl(ω1, kxM )
...

. . .
...

kzl(ωNω , kx1) . . . kzl(ωNω , kxM )

 . (31)

The extrapolation from depth Zl to depth Zl + ∆z is
performed with an entrywise multiplication:

Pωkx
[Zl + ∆z] = Pωkx

[Zl] ◦ exp (iKzl∆z) (32)

C. Stolt transformation of variables
We know from Section II-F that the transformation from

the (ω, kx) domain to the (kz, kx) domain is given by

P (kz, kx, Zl) = Al(kz, kx) · Pl(ωl(kz, kx), kx, Zl) (33)

where

Al(kz, kx) = ĉl√
1 + k2

x

k2
zl

, and (34)

ωl(kz, kx) = −sgn(kzl) · ĉl

√
k2

x + k2
zl (35)

The discrete version of P (ω, kx, Zl), Pωkx
[Zl], is com-

puted for a finite, equally spaced set of ω values. Similarly,
the discrete version of P (kz, kx, Zl), denoted by Pkzkx [Zl],
should be computed for a equally spaced set of kz. How-
ever, the mapping given by ωl(kz, kx) does not in general
coincide with the equispaced values of ω, and therefore a
interpolation step is needed. The situation is illustrated
in figure 7, where the original ω − kx grid is indicated as
black dots. For each discrete value of kx, the spectrum has
to be interpolated to a new set of ω values, indicated with
gray crosses.

Using Eq. (35), we find that for a given kxj , the ω values
to be interpolated for are given by the vector

ωip
l (j) = ĉl ·

√
k2

xj + k2
zl, (36)

where the sign function is omitted because only positive
ω values are included in the processing. kzl denotes the
vector containing the discrete kz values, and it is squared
element by element. The interpolated values also have to

be scaled according to Eq. (34), and the amplitude factors
for kxj are given by

al(j) = ĉl√
1 + k2

xj/k
2
zl

. (37)

Assuming that all kz values are negative, the kzl vector
is given by

kz,l = −∆kz,l · [0, 1, . . . , Nkz
−1]T . (38)

∆kz,l is the step size between each value, and Nkz
is the

total number of values, and these should be chosen to cover
the range of possible kz values and also avoid any aliasing.
This is fulfilled if

∆kz,l ≤
2π
ĉl
· fs

Nt
, (39)

and
Nkz
≥ 2πfmax/ĉl

∆kz,l
. (40)

D. Algorithm description
Figure 8 illustrates the flow of the PSM and the MU-

LOK algorithms, from the input ultrasonic data (denoted
by Ptx[Z1]) to the focused image (denoted by Izx). Ptx[Z1]
is first Fourier transformed, and the elements correspond-
ing to the transducer passband are extracted. Then, for
each layer, the wavefield is multiplied with the phase factor
exp

(
i
∑l−1

m=1 Kzmdm

)
to shift it from Z1 down to the

top of the layer l, given by Zl. For the first layer, the
phase factor is set equal to 1, resulting in zero phase
shift. The shifted wavefield is a common starting point for
both algorithms, and the subsequent steps for PSM and
MULOK are shown on the left and the right side of the
flowchart, respectively.

The PSM algorithm is based on forming an image line
i(Zl+∆z) for each depth to be imaged. The first operation
is to compute Pωkx [Zl + ∆zl] by multiplying with the
additional phase factor exp (iKzl∆zl). An image line is
then formed by summing over all ω and inverse Fourier
transforming the resulting vector.

For the Stolt imaging algorithm, the next step after
calculating Pωkx

[Zl] is to interpolate from the original
ω−kx grid to the kx−kz grid. This is done by looping
through all kz values, interpolating for each column of
Pωkx [Zl] with the ω values given by the ωip

l (j) vector,
and multiplying with the al(j) vector. Only part of the
result corresponds to z values within the layer, that is,
∆z ∈ [0, dl]. For each layer, this part is cut out and saved
as the local image Izx[l].

When all the layers have been processed, the subimages
Izx[l] are stacked on top of each other to form the complete
image of all the layers.

E. Asymptotic complexity
Having defined both the PSM and the MULOK im-

plementations, it is possible to study the computational
complexity of the two. Big O notation is used to describe
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Figure 8: Flowchart for Stolt and Phase Shift algorithms

the growth rate of operations as function of the size of
the input data. As described in Section D, the raw data
Ptx[Z1] is a Nt times M matrix, corresponding to Nt

time samples and M measurement positions. After Fourier
transforming the data, a Nω times M submatrix of the
result is extracted for use in the subsequent processing,
where Nω is proportional to Nt. The number of z lines for
the PSM algorithm, denoted by Nz, and the number of kz

values for the MULOK algorithm, denoted by Nkz , are also
proportional to Nt. For the sake of asymptotic complexity
analysis, we can ignore all such proportionality constants,
and set Nt = Nω = Nz = Nkz

= N . The number of layers
is denoted by L.

The initial Fourier transform, from (t, x) to (ω, kx),
is a two-dimensional transform with complexity
O(MN logMN). The following multiplication with
a phase factor to calculate Pωkx

[Zl] is a entrywise
multiplication that is performed L − 1 times. The
complexity of this operation is thus O(NML).

For the phase shift migration algorithm, the wave field
is multiplied with yet another phase factor. This multi-
plication is performed N times, once for each image line,
and thus the complexity for all image lines is O(MN2). The
summation over ω is also perfomed N times, resulting in a
total complexity of O(MN2). Finally, the last operation is
the inverse Fourier transform of an M-length vector, which
is O(MN logM). The complexities of the individual steps
of the PSM algorithm are summarized in Table II.

Operation Complexity
Initial Fourier transform O

(
MN logMN

)
Phase shift to Zl O(LMN)
Phase shift to Zl + ∆zl O(MN2)
Summation over ω O(MN2)
Inverse transform (kx) O(MN logM)

Table II: Complexity for the individual steps of the PSM
algorithm

For the MULOK algorithm, the calculation of Pωkx
[Zl]

is followed by an interpolation step. The complexity of
this step depends on the type of interpolation utilized,
but in this work, the following method was used: Pωkx [Zl]
was first interpolated to a denser rectangular grid by
inverse Fourier transforming, zeropadding, and Fourier
transforming back again. This operation is O(MN logN).
The final interpolation was subsequently performed by
linear interpolation between points on this denser grid.
This operation consists of a search to find the two closest
ω values and calculating a weighted sum of P for these
values, and the corresponding complexity is O(MN logN).
Since the 2-D interpolation is performed once for each
layer, the overall complexity is then O(LMN logN). Mul-
tiplication with the amplitude factors al(j) is O(LMN),
and the inverse Fourier transform to produce the image is
O(LMN logMN). The complexities of the different steps
of the MULOK algorithm are summarized in Table III.
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Operation Complexity
Initial Fourier transform O

(
MN logMN

)
Phase shift to Zl O(LMN)
Interpolation from ω to kz O(LMN logN)
Amplitude scaling O(LMN)
Inverse Fourier transform O

(
LMN · logMN

)
Table III: Complexity of the individual steps of the MULOK

algorithm
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