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Summary

The general objective of this thesis was to collect improved knowledge about the target

strength (TS) of capelin (Mallotus villosus) through experimental studies, as well as to

undertake adequate observations of behaviour of capelin during surveying situations,

including the effect of different depth distributions and of vessel avoidance.

Pre- and post-spawning capelin from the Balsfjord and the Barents Sea stock were

observed in a net pen and in a submersible rig with a calibrated 38-kHz scientific split-

beam echo sounder. The net pen experiment showed that the acoustic TS of capelin

depended on swimbladder length. In females, TS tended to be negatively influenced by

condition. The experiments in the submersible rig demonstrated that the TS of capelin

depends on the tilt-angle distribution and ambient pressure.

The avoidance reactions of Barents Sea capelin to Norwegian research vessels were studied

by means of the Bergen Acoustic Buoy (BAB), which was equipped with a 38 kHz echo

sounder. BAB experiments were carried out in the capelin’s feeding area in the Barents Sea

in the autumn, and on its spawning grounds in Varangerfjord in North Norway in early

spring. There was no significant influence of the avoidance reactions of capelin to survey

vessels on the volume scattering coefficient, either in the feeding area or on the spawning

grounds. However, there were indications of changes in the centre of depth distribution

(diving) before the pass, especially in dense concentrations on the spawning grounds.

The findings of this thesis indicate that differences in vertical distribution of capelin in

different areas and seasons, or between years with differences in oceanographic conditions

or predation, may bias absolute estimates of stock abundance of capelin if the depth

distribution of the fish is not taken into consideration. It is therefore recommended that the

effects of ambient pressure are included in the TS equation used in surveys in order to

make the acoustic stock size estimate of capelin in the Barents Sea a better absolute

estimate of the stock abundance.
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1. Introduction

The capelin (Mallotus villosus, Müller) is a small, silvery, pelagic schooling species and a

member of the family Osmeridae. It is considered a cold-water species that occurs

throughout the Northern Hemisphere (Carscadden and Vilhjálmsson, 2002). Capelin are in

the lower range of the marine food web and are generally preyed upon by larger fish,

marine mammals and seabirds (Gjøsæter, 1998; Vilhjálmsson, 2002). The capelin has a

physostomous gas bladder that opens into the oesophagus. The capelin’s swimbladder has

limited or no ability for gas secretion (Fahlèn, 1968). It can therefore traverse depths

rapidly at the expense of being negatively buoyant at greater depths. It is likely that the

depth at which they are found is one that represents, for that given point in time and space,

the most advantageous combination of temperature, food supply, competition and predation

risk (Mowbray, 2002; Stensholt et al., 2002) or mating opportunity (Sars, 1879; Sætre and

Gjøsæter, 1975). An example of diurnal vertical migration of capelin is shown in Figure 1.

The Barents Sea capelin stock is potentially the largest capelin stock in the world, its

biomass in some years reaching 6-8 million tonnes (Gjøsæter, 1998). It is the largest stock

of pelagic fish in the Barents Sea and has been exploited since the 1950s (Olsen, 1968).

Since the acoustic surveys started on a regular basis in 1973, the stock has undergone large

fluctuations in abundance with major collapses in stock size in 1985-1989, 1993-1997 and

in 2003 (Gjøsæter, 1998; Anon, 2003). So far, acoustic surveys and information from catch

statistics have provided the only information available on stock status (Toresen et al.,

1998). According to Ushakov and Prozorkevich (2002), exploitation of the capelin stock

should be effected with an expectation of keeping the spawning stock biomass sufficiently

large as well as maintaining an adequate food supply for other species. 

The method of fish stock abundance estimation from acoustic data combined with

biological samples of size distribution (Gjøsæter, 1999) inherently contains a series of

assumptions. The reliabilities of acoustic abundance estimates depend on proper survey

designs and statistics for estimating fish abundance (Aglen, 1989; Gundersson, 1993;

Rivoirard et al., 2000). The measurement platform, usually a survey vessel, should not

affect the object to be measured (Gundersson, 1993), assuming no vessel avoidance

reactions. The interpretation of the acoustic measurements and species identification may
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be affected by avoidance and trawl selection (Larsen, 1985; Godø, 1998), but can be

improved by acoustic methods using multiple frequencies (Korneliussen, 2002).

In the method of fish abundance estimation by echo integration, the mean acoustic target

strength (TS) in decibels is related to the average fish density (ρa) and the nautical area

scattering coefficient (sA) as:

sA = ρa × 4π 100.1 TS (MacLennan et al., 2002) (1)

where the relationships between fish length and mean TS are usually species specific. The

relation of TS to fish length at 38 kHz currently applied in the assessment of the Barents

Sea capelin is the one recommended by Dommasnes and Røttingen (1984):

TSsurvey = 19.1 log10(length, cm) – 74 (2)

which was derived from measurements of maximum TS (Dalen et al., 1976) and mean TS

estimated by echo trace counting and echo integration (Midttun and Nakken, 1971, 1977;

Dalen and Nakken, 1983). Several authors have acknowledged the importance of TS in

relating echo integrator signal intensity to fish density (Dalen and Nakken, 1983;

Dommasnes and Røttingen, 1984; Rose, 1998; O’Driscoll and Rose, 2001), and the

assumed impact of behaviour on TS (Foote, 1980c; Olsen, 1990). In spite of this, relatively

few experiments (Olsen and Angell, 1983; Olsen et al., 1983a; Olsen and Ahquist, 1989)

have dealt with the effects of fish behaviour on capelin TS.

It may thus be expected that variability in echo intensities from fish is caused by physical

factors associated with the transmission of sound through water and through the fish

targets, and by biological factors associated with the ontogeny, physiology and behaviour

of the fish (Horne, 2003; Horne and Clay, 1998). 
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Figure 1: Vertical migration of capelin recorded on board RV “Johan Hjort” during an acoustic
survey in the Barents Sea, 20-21 September 2002 in an area at about 76°30’N and 29°20’E. The left
panel shows capelin at 30-60 m depths during nighttime, and the right panel shows capelin at 125-
175-m depths during daytime. The bottom depth is 240-255 m.

Experiments at acoustic frequencies spanning from 25 to 200 kHz show that the TS of

tethered fish changes with aspect angle (Midttun and Hoff, 1962; Nakken and Olsen, 1977;

Foote and Ona, 1985; Miyanohana et al., 1990). The consequence of the observed

directivity in the reflection of fish is that the TS of wild fish will vary with fish behaviour,

i.e., with aspect angle distribution (Olsen, 1979; Foote, 1980b, 1980c). 

Fish behaviour is known to change both seasonally and diurnally (Huse and Ona, 1996;

Fréon and Misund, 1999), and to be affected by noise from the vessel (Olsen, 1969, 1971a,

1976, 1981, 1990) or by additional noise from fishing gear (Engås et al., 1995; Handegard

et al., 2003). Vessel avoidance has been observed to affect acoustic abundance estimates

among various species, especially at rather shallow depths at night (Olsen et al., 1983a;

Fréon and Misund, 1999; Vabø, 1999; Vabø et al., 2002). On the basis of sonar

observations, it has been the general opinion that capelin do not avoid research vessels

(Misund et al., 1993). A lack of avoidance during pelagic trawling (Gjøsæter pers. com.)

and purse seine operations (skipper Gunnvald Wagelid, pers. com.), and other essentially
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anecdotal observations of the behaviour of capelin in the presence of ships (Sars, 1879),

support the view of capelin as a fish that apparently takes little notice of vessels and fishing

gear.

Earlier direct experiments on capelin, however, have given indications of diving behaviour

of capelin in the presence of a survey vessel, and possible implications for acoustic

abundance estimates have been discussed in the 1980s (Olsen and Angell, 1983; Olsen et

al., 1983a, 1983b). 

At echo sounder frequencies, the swimbladder is the major cause of scattering from fishes

with a gas bladder (Haslett, 1962; Foote, 1980a). Empirical studies show that ambient

pressures, variations in fat content and gonad development may influence the swimbladder

dimensions (Ona, 1990; Machias and Tsimenides, 1995) and  also the echo returned from

fish (Olsen and Ahlquist, 1996; Ona et al., 2001; Ona, 2003). In the past, it has been

discussed whether the main role of the swimbladder of physostomous fish is to confer

neutral buoyancy to the fish by maintaining its volume at some optimum value (Alexander,

1966; Sundnes and Bratland, 1972; Knudsen and Gjelland, 2003), or whether the

swimbladder is required to be gas filled because it plays important roles in hearing and

sound production (Blaxter and Batty, 1990; Wahlberg and Westerberg, 2003). To obtain a

deeper understanding of the nature of the acoustic scattering process from fish, Midttun

(1984) suggested that attention should be called to studies on the bladder itself, its form and

deformations by varying pressure changes, and to comparisons of the acoustic wavelength

with dimensions of the swimbladder. Changes in mean TS with increasing depth cannot

only be attributed directly to a change in swimbladder volume (Ona, 1990; Mukai and Iida,

1996; Gorska and Ona, 2003a), but also to the possible change in the tilt-angle distribution

due to under-buoyant “head up” swimming behaviour (Olsen and Ahlquist, 1996).

This thesis focuses on the effects of behaviour on the TS of capelin. The initial general

objective was to collect improved knowledge about the TS of capelin through experimental

studies, as well as to undertake adequate observations of behaviour of capelin during

surveying situations, including the effect of different depth distributions and of vessel

avoidance. The final objective was to develop improved parameters to algorithms applied

in data processing routines, in order to improve the precision in stock abundance estimates

obtained by echo integration.
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2. Methodological aspects

The effects of different depths (5 to 50 m) on the TS of capelin were investigated ex situ in

cage experiments by Olsen and Ahlquist (1989), but their study did not include detailed

knowledge of the effects of different tilt-angle distributions on TS. Investigations

performed to determine the effects of tilt angle on the TS of capelin have been performed

by ex situ measurements (Dalen et al. 1976, Olsen and Angell, 1983) and by modelling

backscattering from swimbladder models (Gauthier and Horne, 2002). The above-

mentioned TS – tilt-angle approaches have, however, been limited to pressures close the

surface (0 to 5 m depth). The experiments in this thesis were designed to focus on the

combined effects of different ambient pressures and tilt-angle distributions on capelin TS,

as well as the possible effects of differences in the physiological condition on the TS.

Experimental measurements of the TS of individual capelin were carried out with a 38-kHz

split-beam echo sounder system on free-swimming fish kept in an enclosure (Papers I and

II) and in a submersible measuring rig (Paper IV). Studies were undertaken for somewhat

small mature capelin from the local Balsfjord stock (Paper I) and larger mature capelin

from the Barents Sea stock (Paper II and IV). The relation between TS and tilt angle was

studied in a specially designed submersible rig (Paper IV) or by relating the TS of free-

swimming fish and tracking its echo trace (Papers I and II). In addition to measurements of

depth, length, weight and gonad weight (Papers I, II and IV), swimbladder lengths (Papers

II and IV) were also recorded. 

Each rig experiment was of rather short duration (35 to 75 minutes) compared to the net

pen experiment (4 to 30 hours), and in the rig the fish was continuously observed at close

range by underwater television. 

The TS of dispersed capelin have been assessed from echo integration combined with echo

trace counting (Midttun and Nakken, 1977; Dommasnes and Røttingen, 1984) and from

direct in situ TS measurements (Rose, 1998; O’Driscoll and Rose, 2001). The possible

effects of ambient pressures have, however, not been properly addressed yet, even though

Olsen and Angell (1983) did an experiment with echo integration combined with echo trace

counting in different depth channels. 
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New field experiments involving possible vessel avoidance and in situ TS were planned

and performed in the Barents Sea as a part of this thesis. The field experiments were carried

out under true echo surveying conditions by studying backscattering characteristics of

capelin and its behaviour. Vessel avoidance was studied in the feeding area during the

autumn of 2001 and on the spawning grounds during the spring of 2002 by a stationary

echo sounder platform, observing possible avoidance reactions (Paper III). TS observations

and fish behaviour were attempted obtained by use of the hull-mounted transducer during

the acoustic surveys for capelin in the Barents Sea in 2000, 2001 and 2002. However, the in

situ TS measurements were difficult to interpret due to too high fish densities or inclusion

of different species of 0-group fish at shallow depths and are not treated in detail in this

thesis. Some measurements done with a submersible transducer in 2001 are described in

Jørgensen et al. (2002), but a more intensive experimental approach for measuring in situ

TS during the autumn 2002 were disrupted by a technical malfunction in the submersible

transducer.

3. Results and discussions

3.1 Target strength

3.1.1 Tilt-angle dependence 

The results from the net pen (Papers I and II) and rig experiments (Paper IV) show that the

TS of capelin changes significantly with tilt angle. At about 5-m depth, the TS showed

greatest variation with respect to tilt angle among large capelin (Paper II and IV). In small

capelin (Paper I), the TS tended to change only slightly (<5 dB) with tilt angle.  Compared

with saithe Pollachius virens, the TS of capelin was less influenced by tilt angle (see Figure

2), which indicates that a change in the tilt-angle distribution of capelin will have less

impact on the backscattered echo energy than a similar change in the tilt-angle distribution

of saithe (see Paper IV). 
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Figure 2: Mean target strength (TS) as a function of tilt angle at 5-m depth for capelin (n = 10) with
mean length of 18.5 cm and saithe (n = 3) with mean length of 23 cm. Tilt angles range from 10°
(head up) to -30° (head down). The data are from Paper IV. Gas bladder sizes are indicated as white
areas.

The ratio of the swimbladder length to the total length of the fish (SBL/L) varies between

species. Capelin observed in Papers II and IV had SBL/L between 0.08 and 0.19.

According to data from Paper IV and other sources (Jørgensen, 1998; Foote and Ona,

1985), SBL/L of saithe (n=28) have been observed to vary between 0.29 and 0.44, and

pollack Pollachius Pollachius (n=13) between 0.25 and 0.37. Gorska and Ona (2003b) set

SBL/L of mature herring Clupea harengus to 0.26, while data from Haslett (1962) give

SBL/L between 0.23 and 0.25 for several different species (e.g. sprat Sprattus sprattus,

herring, haddock Melanogrammus aeglefinus and cod Gadus morhua). Thus, capelin tend

to have lower SBL/L than the other mentioned fish species, and combined with the small

size of capelin, this does have implications for capelin regarding maximum TS and the TS

directivity with respect to different tilt angles at 38 kHz.

In the experiments, the ratio between total length and the acoustic wavelength at 38 kHz

(L/λ) varied between 2.9 and 5.0 for capelin (Papers I, II and IV) and between 3.4 and 6.0

for saithe (Paper IV). Horne and Clay (1998) recommend frequencies be chosen to restrict

values of L/λ from 2 to 10. As L/λ increases, the influence of tilt angle on TS generally

increases. 

The influence of tilt angle on TS is indirectly related to total length because only a limited

part of the fish body, the swimbladder, is the major source of the backscattered sound. The

L/λ of saithe in Figure 2 is 5.9, only 28% higher than in capelin (L/λ = 4.6). However, the
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ratio between swimbladder length and the acoustic wavelength at 38 kHz (SBL/λ) of the

saithe is 2.2, about 175% greater than in the capelin (SBL/λ =0.8). Thus, the lesser

maximum TS and the weaker tilt-angle dependence of the TS of capelin as compared to

saithe (Paper IV) are explained by differences in SBL/λ.

3.1.2 Pressure effects

Capelin often undertake considerable vertical migrations, which apparently may lead to

both compression of the swimbladder and to hydrostatic under-buoyancy. Both these

effects have an impact on the acoustic backscattering of capelin and may lead to differences

in estimated abundance when the capelin are positioned at different depths.

The negative depth dependence of the TS of capelin observed in Paper IV is significantly

stronger than that observed in herring and under-buoyant saithe. This may be due to

differences in swimbladder design. The relatively long and slender gas bladder of the

physoclistous saithe is attached to the vertebra column and the long and slender gas bladder

of the physostomous herring is stretched out between the anterior bullas and the posterior

anal duct (Blaxter and Tytler, 1978). When the pressure increases rapidly, the volumes of

the gas bladders decrease in accordance with Boyle’s Law, but the designs of the herring

and saithe swimbladders may lead to compression in width rather than in length (Ona,

1990; Gorska and Ona, 2003b). However, the shorter gas bladder of the physostomous

capelin does not possess an anal duct and is loosely attached to the surrounding organs. It

is, however, firmly attached anteriorly to the oesophagus (Fahlén, 1968). It may therefore

be more easily compressed in length than the gas bladder of herring and saithe, leading to a

stronger depth dependence of maximum TS of capelin (see Figure 3).

If we adapt the 23.3 log10(L) length dependence for TS as proposed by O’Driscoll and Rose

(2001) for capelin (5 to 14 cm), and a tilt-angle distribution of free-swimming capelin as

observed by Carscadden and Miller (1980), the contraction rate that accounts for the

decrease in mean TS with pressure will be γ =  -0.49. According to Paper IV, the pressure-

dependent change in the mean backscattering cross section (σbs) at depth z is described by:
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Figure 3: TS plotted against tilt angle for a 19.6-cm capelin at 5 m depth (left), 20 m depth (middle)
and 40 m depth (right). The TS values are based on σbs smoothed by using a probability density
function (PDF) with a rather narrow tilt-angle distribution  (sθ = 2.5°) around each tilt angle.

σbs z = L2.33 10-7.43 (Pz)-0.49, (3)

TSz = 23.3 log10(L) – 74.3– 4.9 log10(Pz), (4) 

where Pz is the ambient pressure in atm.

The maximum TS is, however, higher than the mean TS, and the pressure-dependent

change in maximum TS may be slightly different than for mean TS. In the case of capelin,

we use the contraction rate γmax=  -0.57 for maximum TS (see Paper IV), and a 23.3

log10(L) length dependence would give:

TSmax = 23.3 log10(L) – 70.3– 5.7 log10(Pz), (5)
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Figure 4: TS normalised by 20 log10(L) is called b20. Results on males from the rig experiment are
computed with an assumed tilt-angle distribution of N(-3, 13), and are labelled “*male”  (n=10).
Results from males in the net pen experiment are labelled “male” (n = 12). Results on maturing (n =
10) and spent females (n=5) are from the net pen experiment.

3.1.3 Physiological aspects

The measured swimbladder lengths of mature Barents Sea capelin ranged from 1.3 to 3.0

cm in the net pen experiment (Paper II), and from 2.6 to 3.8 cm in the rig experiment

(Paper IV). The swimbladder lengths of capelin observed in the net pen experiment were

significantly lower than observed in the rig experiment (Mann-Whitney test, p=0.001,

n=20). 

Variation in physiological state may influence the swimbladder shape and thus influence

the echo returned from the fish (Ona, 1990). Among female capelin within a length of 15.5

to 18 cm, mean TS was significantly negatively related to fish weight (Paper II), indicating

that increasing condition leads to lower mean TS. Maturing females have eggs in the body

cavity that may possibly squeeze the swimbladder. There were, however, no significant

differences in the normalised backscattering cross section, σbs L-2 (Haslett, 1965; Horne
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and Clay, 1998) between maturing females, spent females and males at the rather low

sampling sizes in Paper II. Even though no significant differences were observed, it can be

noted that the maturing females tended to have lower normalised TS (b20) than spent

females and males, and that the results on males from the rig experiment support this trend

(Figure 4).

Another possible explanation of the variation in swimbladder length could be that when the

enclosed net pen was slowly lowered, some capelin ejected a substantial amount of gas in

panic, as has previously been observed in panic reactions among salmon (Fänge, 1983) and

herring (Nøttestad, 1998; Wahlberg and Westerberg, 2003). Even though gas ejection was

not observed during the net pen experiments, it would, however, have consisted of a few

rather small gas bubbles that are somewhat difficult to observe with the bare eye.

The maximum TS of capelin observed in a net pen (Papers I and II) and in a submersible

rig (Paper IV) were always lower (0.5 to 10 dB) than the maximum TS for clupeiform fish

as predicted by Dalen et al. (1976). This is probably due to the fact that Dalen et al. (1976),

in addition to capelin, included TS from herring, salmon (Salmo salar) and sprat in their

equation. Herring and sprat also have a higher maximum TS than capelin (Nakken and

Olsen, 1977; Ona, 2003; Papers I, II and IV). 

Present studies (Papers II and IV) and Dalen et al. (1976) observed mature capelin with a

rather narrow range in length (15 to 20 cm), and found rather large variations in maximum

TS. A major part of the variation in TS is explained by variations in swimbladder length

(Paper II and IV). The strong correlation between the logarithm of swimbladder length and

maximum TS also applies when data from the physoclistous fish species saithe and pollack

are merged with the capelin data (see Figure 5). 

When fish density is estimated using echo integration, a species-specific relationship is

usually used to estimate mean TS from fish length distributions sampled, e.g. by pelagic

trawl (MacLennan and Simmonds, 1992). Even though the relationship between maximum

TS and fish length also tends to be species specific (McClatchie et al., 1996), the results in

this thesis suggest that there might be a more general species independent relationship

between maximum TS and the swimbladder length. 
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Figure 5: Maximal TS plotted against the logarithm of swimbladder length (SBL). TS data from
capelin with intact swimbladders measured in net pen (n=12) and in submersible rig (n=8). TS
measurements on live saithe in submersible rig at 5 m depth from Paper IV (n=5), Jørgensen (1998)
(n=19), and Jørgensen and Olsen, unpublished data (n=2). TS measurements on two stunned saithe
and 13 pollack at 2 m depth from Foote and Ona (1985).

The variation in maximum TS that is not explained by variations in swimbladder length

may be due to variation of volume, width or curvature of the swimbladder, and

methodological aspects (different freezing techniques and calibration procedures). Linear

regression shown with the logarithm of swimbladder length as independent variable and

maximum TS (TSmax) as dependent variable gives a strong argument that TS data from

capelin and other fish species are comparable in terms of swimbladder length rather than

total length (Paper IV). Data on swimbladder length and TSmax for capelin from the net pen

and the rig experiment gave:

TSmax capelin = 23.5 log10(SBL) - 54.1, (R2 = 0.83, n=20), (6)

and for merged data from capelin, saithe and pollack at 38 kHz gave:

TSmax all = 22.2 log10(SBL) - 53.7, (R2 = 0.96, n=61), (7)
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The level of maximum TS of capelin appears therefore to be explained mainly by the

swimbladder length. If we assume that the SBL does not change significantly due to the

change in pressure from the depth of the experiment (P=1.5 atm) to the surface where the

capelin was frozen, it is possible to estimate the ratio of swimbladder length to total length

of capelin at different ambient pressures. Combining equations 5 and 6 gives the average

SBL/L at pressure P for the capelin in the rig experiment (Paper IV):

SBL/L ≈ 0.20 P-0.24 (8)

Equation 8 predicts SBL/L of 0.18 for capelin at 5 m, 0.14 at 40 m and 0.11 at 100 m

depths. Thus, in the future it could be worthwhile to try to solve the problem of how to

implement maximum TS, SBL/L and SBL/λ from empirical measurements, as well as

different tilt-angle distributions of the fish into models predicting the mean TS.

3.2 Behaviour and acoustic abundance estimation

Changes in tilt-angle distribution or changes in vertical distribution may occur as a result of

natural behaviour (Olsen, 1971b; Huse and Ona, 1996). The vertical distribution may also

affect whether or not all fish in an area are detected. When the fish are close to the bottom

or near the sea surface, conditions for acoustic abundance estimation are unfavourable due

to acoustic dead zones (Midttun and Nakken, 1977; MacLennan et al, 2004). However,

estimated fish density may also be affected by the capelin TS being dependent on changes

in pressure and tilt-angle distribution during the vertical migration.

3.2.1 Vessel avoidance

Vessel avoidance and its effect on acoustic abundance estimates is well known for several

species of fish, including herring (Olsen, 1990; Vabø, 1999; Ona and Korneliussen, 2000).

The vessel avoidance experiments on capelin presented in Paper III did not demonstrate

any significant influence of avoidance reactions to survey vessels on the volume scattering

coefficient (estimated fish density), either in the feeding area or on the spawning grounds.

There were, however, indications of changes in the centre of depth distribution (diving)
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before the pass in dense concentrations at the spawning grounds. This is supported by

observations made by Olsen et al. (1983a) at 70 kHz, which indicated that capelin even in

deeper layers reacted to an approaching vessel by swimming downwards, although the total

estimated density of fish in the water column was unaffected. Significant diving (changed

tilt angle) might lead to changes in the mean volume backscattering coefficients due to

changes in target strength. At 38 kHz, however, the drop in target strength attributable to

moderate changes in tilt angle is expected to be rather small for capelin with the degree of

polarisation in swimming behaviour that has been observed among free-swimming capelin

(see Paper I, II and IV).

Barents Sea capelin are under the selective pressures of marine mammals (Sars, 1879;

Christensen et al., 1992; Gjøsæter, 1998) that produce sounds within the frequency

spectrum of vessel noise (Richardson et al., 1995). When exposed to vessel noise, the

capelin may choose a behavioural option that has maximised fitness for the species in

similar situations throughout evolutionary time. In the cold waters of the Barents Sea,

capelin have a rather low swimming speed (He, 1993; Misund et al., 1993) as compared to

the warm-blooded predators that might be associated with low frequency sound in a natural

feeding situation (Whitehead and Carlson, 1986). Therefore, flight responses at somewhat

short range in response to a large moving object producing low frequency sounds, like a fin

whale (Balaenoptera physalus) or a survey vessel, may be less distinct for capelin than for

faster swimmers like herring (Vabø and Nøttestad, 1997; Nøttestad et al., 2002). Thus, in

general, the selective process acting on capelin may for instance favour maximising its

fitness by investing in feeding and reproduction rather than in predator (or vessel)

avoidance.

The behavioural options that maximise the fitness of capelin at different life stages may,

however, lead to different strategies in predator avoidance, and thus vessel avoidance.

Capelin might avoid detection by predators by using more “passive” avoidance, such as

horizontal or diurnal vertical migration in the feeding area (Gjøsæter, 1998; Shackell et al.,

1994; Stensholt et al., 2002). At the rather shallow spawning grounds in Varangerfjord,

however, there were indications of changes in the centre of depth distribution (diving) of

capelin in dense concentrations exposed to vessel noise (Paper III). This might be

interpreted in terms of the capelin being a bit more vigilant on the spawning grounds than

in the feeding area.
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3.2.2 Implications of vertical migration for acoustic abundance estimation

In Figure 6 are shown TS of capelin for 5, 10, 15 and 20 cm fish size calculated by the TS

equation used in the Barents Sea capelin surveys today expressed as horizontal dotted lines

and compared with the pressure dependent TS given by equation 4 (page 14). The

difference in TS between small (Paper I) and large (Paper II) mature capelin tend to be

smaller when normalized with the use of a 23.3 log10(L) length dependence as suggested by

O’Driscoll and Rose (2001), than with  19.1log10(L), thus supports the use of the former.

However, TS predicted from equation 4 is 1.5 to 1.8 dB higher than measured for small

(Paper I) and large (Paper II) mature capelin, and 2.3 dB higher than measured for

immature capelin (Jørgensen et al., 2002). In contrary TS predicted by equation 4 tend to

be 0.2 to 1.0 dB lower than the measurements of O’Driscoll and Rose (2001) and Olsen and

Angell (1983). Halldorsson and Reynisson (1983) measured capelin TS 4 to 10 dB lower

than predicted by equation 4. The results of Halldorsson and Reynisson (1983) are closest

to TS of capelin individuals with very low swimbladder length and volume in Paper II.

For capelin with a length on about 5 cm (0-group) the commonly used TS equation

(TSsurvey, see equation 2 page 7), gives TSsurvey values equal to equation 4 at about 25 m

depth. Capelin with about 10 cm length (1-group) will be given a “correct” TSsurvey at about

50 m depth, while older capelin (2-, 3- and 4-groups) as the length increases will be given a

“correct” survey TS at greater depths (50 to 100 m). Below the depths (Dlim) where

equation 4 and the TSsurvey for a certain fish size are equal, the fish density estimated by

using TSsurvey may be underestimated due to the pressure effects on TS, while above Dlim

the corresponding fish density may be overestimated. 
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Figure 6: b23.3 is mean TS normalised according to a length dependence of 23.3 log10(L) plotted
against log10(pressure atm) from the sea surface to 110 m depth. The solid line shows b23.3 estimated
from measurements (points) in the submersible rig. The horizontal dotted lines show the level for
TS from the survey equation used during the capelin survey today normalised according to a length
dependence of 23.3 log10(L) for 5- to 20-cm capelin (lower). The arrows indicate the hypothetical
depth under which the survey equation underestimates the biomass and above which the survey
equation overestimates the biomass for different sizes of capelin. Also plotted are b23.3 (calculated
from mean σbs L-2.33) from Paper I (triangle), Paper II (diamond), O’Driscoll and Rose (2001)
(square), Jørgensen et al. (2002) (plus) and Olsen and Angell (1983) (cross).

When the acoustic survey of pelagic fish in the Barents Sea takes place in September, 0-

group capelin are usually found close to the surface at daytime and at the depth of the

thermocline (20-30 m) at dark (Beltestad et al., 1975). According to Figure 6, the survey

equation will give the best estimates at 25 m depth. 0-group densities at shallower depths

might be underestimated due to the acoustic dead zone near the surface, but equation 4

points to the possibility of an underestimated TS outweighing some of the loss due to the

acoustic dead zone.

The immature and adult capelin are known to make extensive vertical migration in the

autumn (Gjøsæter, 1998) and winter (Stensholt et al., 2002). In general, according to
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equation 4 the estimated fish densities are likely to be correct or underestimated at

nighttime during acoustic surveys of pelagic fish in the Barents Sea and underestimated

during daytime. Adult capelin have frequently been observed to be densely packed near the

bottom (125 to 175 m depths), especially in areas where humpback whales are present

(Anon, 2002). Under these conditions, the estimated fish densities are likely to be

underestimated both through using the to high TSsurvey and because some fish are not

detected due to the bottom dead zone.

4. Conclusions and future suggestions

The equations for capelin presented in this paper are based on measurements of fish with

rather limited range in size and observed in a limited depth range. The results therefore

ought to be verified by in situ and ex situ TS measurements that cover a range in fish length

and depth representative of length distributions and the vertical distribution in acoustic

surveys of the Barents Sea capelin. However, it is strongly recommended to include the

effects of ambient pressure in the TS equation used in surveys in order to make the acoustic

stock size estimate of capelin in the Barents Sea a better absolute estimate of the stock

abundance. Differences in vertical distribution of capelin may occur in different areas and

seasons, or between years with differences in oceanographic conditions or predation. As

this may bias absolute estimates of stock abundance of capelin, more effort should be

diverted towards these questions.
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