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Abstract 

 

The study area covers the northern sidewall of the Storegga slide located at the southern 

limit of the Vøring Plateau. The water depth at mid-Norwegian margin varies approximately 

between 500 and 1500m.  The mid-Norwegian margin area has been known to be prone for 

submarine sliding and is therefore a key location for studying morphological features to 

improve our understanding of slide mechanisms. The master thesis aims to investigate fluid 

migration into the Naust formation from deeper reservoirs and its potential role in slope 

failure. The 3-D seismic dataset GH01 allowed mapping and visualizing of three slides at the 

northern sidewall of the Storegga slide. Fluid migration from deeper sources through 

polygonal and extensional faults and acoustic pipes, gives rise to fluid accumulations under 

impermeable glacigenic debris flow deposits within Naust formations. The role of fluid flow 

for slope failures is difficult to decipher. Acoustic pipes north of northern sidewall of the 

Storegga slide indicate focused fluid flow and a possible active fluid migration system. The 

layer-bound polygonal faults within Brygge and Kai formations and their extension to the 

lower Naust formation may be caused by rapid loading adding to the fluid migration 

pathways to the Naust formation. Thus migrated fluids have been documented to 

accumulate within the slide prone Naust formations. The three slides identified at the 

northern flank of the Storegga slide have their basal surface on the marine clays indicating 

the slope failure on marine deposits. Fluid flow is not considered solely responsible for slope 

failures but the presence of faults down to the headwall of each slide does support an 

important buildup of zones of weakness for fluid migration contributing to slope failure. 
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1. INTRODUCTION 

 

1.1 Objectives 

The main objectives of this thesis are to map out submarine slides and their morphology 

along with the fluid migration and gas accumulation within the giant Storegga slide complex. 

This master thesis presents the result of my interpretation of a 3D seismic cube (GH01), 

which covers a portion of northern escarpment of the Storegga slide focusing on the 

southern part of Helland Hansen Arch (HHA) (Fig. 1).   

 1.2 Motivation 

Submarine slides have been discovered in both active and passive continental margins (e.g. 

Mienert et al., 2005b) around the world oceans. Sliding of the material downslope 

continental margins takes place when the shear stress within sediments exceeds the shear 

strength of the material thereby causing failure which initiates the movement of materials 

downwards. Sliding materials include rock, soil mud and mixtures of all these three (Locat 

and Lee, 2002). The Storegga slide (mid Norwegian margin) is one of the largest known 

submarine slides in the eastern Atlantic (Fig. 2). Its headwall lies only approx.120 km 

offshore the western coast of mid Norway (Bugge, 1983) (Figs.1 and 3). 

There is an increasing need for a better understanding of submarine mass wasting process 

because of the ongoing development activities towards deep-water hydrocarbon 

exploration, coastal zone development and underwater communication cable routes.  Some 

reasons for the increased research on sub marine mass movements includes; a) hydrocarbon 

exploration in offshore regions where slides are common, b) global climate change impacts 

on gas hydrate and upper margin stability c) earthquakes triggering downslope movement of 

sediments and tsunamis, and d) large amount of sand transport across shelf regions. Sub 

marine slides are a potentially dangerous marine geohazard. Therefore, a detailed 

investigation has been carried out by many scientists in Orman Lange gas field area, the 

second largest gas field on the mid Norwegian margin, located within the slide scar of the 

Storegga slide.   
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The advent of new technology has made a better understanding of submarine slides, their 

deposits and the processes involved possible. The use of 3D seismic data acquisition and 

seismic processing technology has led to the discovery of many previously unknown features 

on the seafloor and beneath it. As a result of many possibilities inherent to new technology, 

different group of scientists have focused their study on different aspects of submarine 

slides and their processes.  This master thesis concentrates on the distribution  of fluid flow 

and gas accumulation in today’s Storegga slide scar.  Some projects that have been carried 

out to investigate the Storegga slide are; STRATAFORM (1995-2001) and COSTA (Continental 

Slope Stability, 2000-2004). 

 

Figure 1. Locations of different submarine slides in the Atlantic investigate by the COSTA project (Mienert, 

2004) The Gebra slide is located off the northern tip of the Antarctic Peninsula (from Canals et al., 2004) 

1.3 Study area 

The Storegga slide is a large submarine slide on the Norwegian continental margin about 120 

km off the western coast of Norway (Bugge, 1983) (Fig.2).This slide took place 8200 years 
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before and has removed around 3500km3 of sediments from the slide scar areas (Haflidson 

et al., 2005). 

 

Figure 2.  Colored relief map from part of the mid-Norwegian continental margin. The study area is outlined in 

the red square on the northern slide scar of the Storegga Slide. The yellow frame marks the area investigated 

by Solheim et al. (2004). The Storegga Slide is outlined in darker colors. The total outline of the slide, including 

distal turbidites, is marked in white in the inlet map in the upper right corner. The Ormen Lange gas field is 

marked in red and lies inside the Storegga Slide scar. Figure from Solheim et al. (2005). 

This slide has generated a strong tsunami that hit the west coast of Norway, Scotland, 

Shetland and Faroes (Bondevik et al., 2003). Sediments deposited by tsunami have revealed 

that waves reached elevation to at least 20m above the contemporary sea level (Bondevik et 
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al., 2003). The main concern about the Storergga slide is about its long history of slope 

instability related to cyclic sediment deposition by interchanging glacial and interglacial 

climatic oscillations (Solheim et al., 2005). Proximal glacial till (on the shelf), glacial debris 

flow (on continental slope), glacigenic debris flow deposits deposited during the peak of 

glaciations time period is interlayered with hemipelagic, contouritic and glacial marine 

sediments deposited during interglacial time period (Berg et al., 2005). Excess pore pressure 

due to rapid deposition of the glacial deposits reduced the effective shear strength in the 

underlying clays and preconditioned this region to fail during interglacial periods in the last 

0.5Ma (Bryn et al., 2003; Berg et al., 2005). Bungum et al., 2005 have also provided the 

increased seismicity resulted from post glacial isostatic rebound as a possible trigger 

mechanism for the submarine slope failure. 

1.3.1 Tectonic Setting of the Study Area 

 

The Study area is located on the southern edge of the Vøring Plateau partly covering the 

undeformed seabed north of northern sidewall of the Storegga slide and extending 95 km 

southward. The tectonic build up of this area is best described by the tectonic setting of the 

basins on the mid-Norwegian continental margin. 

The Møre and Vøring basins (Fig 2) are the two prominent basins in the mid-Norwegian 

margin formed as a result of several rifting episodes until late paleoccene/ early Eocene 

continental break up (crustal thinning) and subsequent thermal subsidence (Skogseid and 

Eldholm, 1989; Brekke, 2000). The north-south oriented dome structures were developed 

from the moderate compression that took place between the Eocene and middle Miocene 

times (Bunz et al., 2004). 

 

The present structural make up of the Norwegian Continental margin can be traced back to 

Permo-carboniferous tectonic time periods (Bukovics and Ziegler, 1985). The tectonic 

activities at different geological time units can be discerned into three phases as; 

Carboniferous to Permian, Late mid-Jurassic to Early Cretaceous and Late Cretaceous to 

Early Eocene (Brekke, 2000).  In general, these phases of tectonic development comprise a 

long period of extension and rifting from Late Paleozoic to Early cretaceous which is then 

followed by continental separation at Early Eocene.  

Chapter 1 Introduction



5 
 

Carboniferous to Early Cretaceous time period is identified as the extension phase related to 

continental rifting. These extensional tectonics were related to with-in plate continental 

rifting. The tertiary extensional phase were more directly influenced by the relative 

movements along plate boundaries just before and during the continental break up and 

onset of seafloor spreading in the North Atlantic (Brekke, 2000).  

 

 
Figure 3. Regional two-dimensional (2D) seismic profile (KWF98-206) showing the stratigraphy of the study 
area. The density and neutron porosity logs illustrate the variations in sediment properties of the Plio-
Pleistocene Naust formation. From Hustoft et al., 2010. 
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Figure 4.  Structural map of Norwegian Sea Continental margin. GIH, Giske High, GNH, Gnausen High;SH, Selje 

High. From Brekke, 2000. 

 

 During the Late Palaeozoic to Mid-Jurassic a broad zone was affected by tensional faulting. 

During the Late Jurassic and Cretaceous the Trondelag Platform was little affected by 

faulting whilst major rift systems in the Møre and Vøring Basins subsided rapidly and their 
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shoulders became concomitantly upwarped. During the latest Cretaceous and Early 

Palaeogene terminal rifting phase only the western Møre and Vøring Basins were affected by 

intrusive and extrusive igneous activity. Following the Early Eocene crustal separation and 

the onset of sea floor spreading in the Norwegian-Greenland Sea, the Vøring segment of the 

Mid-Norway marginal basin subsided less rapidly than the Møre segment. During the Early 

and Mid Tertiary, minor compressional deformations affected the Vøring Basin and to a 

lesser degree the Møre Basin. Tensional forces dominated the Late Palaeozoic to Early 

Cenozoic evolution of the Mid-Norway Basin and effected strain mainly in the area where 

the crust was weakened by the previous lateral displacements. The lithosphere thinned 

progressively and the effects of the passively upwelling hot asthenospheric material became 

more pronounced. Massive dyke invasion of the thinned crust preceded its rupture 

(Bukovics and Ziegler, 1985).  

 

Several episodes of crustal movements on the Mid-Norwegian margin throughout the 

Cenozoic have led to the development of regional highs that have later been covered by the 

Cenozoic sediments over these regional highs. Helland Hansen Arch( 70km north), Orman 

Lange dome (40km south) are such regional highs nearby the Grip high which are the result 

of seafloor spreading in the North Atlantic. Basically, there are two schools of thoughts 

about the formation of such highs in the mid Norwegian margin. One believes that the plates 

on each side of the spreading ridge were pushed apart and folded against areas of bedrock 

during the seafloor spreading thereby forming regional highs. Another believes that these 

were formed due to Jurassic movements at deeper crust affecting the younger layer on their 

tops as well. These highs seem to be elevated in different episodes in between 70 to 100 Ma 

with respect to their size and age. These differences in size in terms of time of formation 

show the different geological process for their evolution. 

1.3.2 Stratigraphy and Sedimentation:  

The two major regional basins of the Norwegian Continental margin are Møre and Vøring 

basins which are the result of crustal thinning and subsequent thermal subsidence along the 

main axis of rift movements. The main Campanian-Palaeocene rifting and seafloor spreading 

took place to the west of these basins (Brekke et al., 2000). These two deep basins are 

characterized by thick Cretaceous sedimentary succession of 6-9 km thick and Cenozoic 
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sedimentary succession of 2-3 km (Bukovics and Ziegler, 1985). This thick succession of 

Cretaceous basin fill is because of high degree of subsidence in the Cretaceous following the 

Mid-Jurrassic-Early Cretaceous extensional phase (Brekke, 2000).  

 

Since there is no well drilled through the whole Cretaceous succession, the lower 

Cretaceous stratigraphy of the deep basin is not well known so far but sand-rich deltaic and 

fluvial deposits occur along the basin margins. Drilled wells on the Vøring margin have 

shown that the sediments contain clay and silt with some proportion of sand (Hjelstuen et 

al., 1999). The provenance for the Early Cretaceous sediments is East Greenland which 

infilled the Norwegian Sea Basin notably the outer Vøring Basin. Most of the Møre and 

Southernmost part of the Vøring Basins consist of thick units of Late Cretaceous marine mud 

(Fjellanger et al., 2004; Lien, 2005). The Møre Basin consists of bio-turbated mudstone along 

with some sandy turbidites (Swiecicki et al, 1998).  

 

During Paleocene, the main depocenters were located to the central and western part of the 

Vøring Basin with the main source from the Vøring high (located to the westernmost part of 

Vøring Basin) and fault blocks. The thickness of these depocenters goes on decreasing 

eastwards and sometimes absent over some regional highs (Hjelstuen et al., 1999). 

 

Eocene and Oligocene mega sequence comprising the Brygge formation lies over the 

Cretaceous and Paleocene deposits. After regional uplift during the Palaeocene with shallow 

marine conditions and subaerial exposure of large areas, the entire margin subsided and the 

sea transgressed the margin and part of the mainland. The Brygge Formation was deposited 

in this period and is clay-dominated on the present day shelf and ooze-dominated in the 

distal, deeper marine Møre and Vøring basins. Deposition was concentrated in the Møre 

Basin and the outer part of the Vøring Basin, with thicknesses of 600-1000 m and  500-700 

m, respectively (Norwegian Deepwater Programme 2004). The Eocene sediments over some 

highs are sometimes absent as these have been eroded to a large extent and did act as the 

source area for nearby depositional systems. Oligocene deposits mostly occur south of the 

Helland-Hansen Arch which is not present over the topographic high as that of Eocene 

deposits (Hjelstuen et al., 1999). 
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The Neogene succession of the mid Norwegian continental margin can be studied under two 

divisions; Miocene to Lower Pliocene as Kai Formation and Late Pliocene to recent as Naust 

Formation (Dalland et al., 1988). After the Mid Miocene uplift, sedimentation resumed on 

the outer and middle part of the margin. Clay-dominated sediments belong to this Kai 

Formation (Eidvin et al., 2007). This clayey ooze deposits are rich in siliceous and calcareous 

microfossils with glacial flour and fine grained minerals as a consequence of physical erosion 

(Forsberg and Locat, 2005).  The change in sedimentation of Naust formation after Late 

Pliocene are attributed to glacially derived material transported from the Norwegian 

mainland areas and inner shelf and deposited in the form of prograding sediment wedges 

(Rise et al., 2005). 

 

This overlying Naust formation inferred to be after 2.7 Ma and afterwards, encompasses 

sediments of the Pliocene-Pleistocene glacial-interglacial cycles that significantly changed 

the sedimentation pattern, yielding a thick wedge of clastic sediments on the shelf (Stuevold 

and Eldholm, 1996; Hjelstuen et al., 1999). Within this formation, current-controlled drift-

sediments (contourites) deposited along slope during deglaciation and interglaciations 

commonly interlayer the glaciogenic downslope-transported debris flows (Rokoengen et al., 

1995; Laberg et al., 2001; Evans et al., 2003; Vorren et al., 1998). 

 

The deposits of Naust Formation are overlying the thick siliceous oozes of the Kai and Brygge 

formations. During the periods from the 54 to 2.5 Ma fine-grained oozes and shales of the 

Brygge and Kai Formations dominated the sedimentation. In most of the Storegga and North 

Sea Fan regions, Brygge formation has thickness of 600-1000m. Within Kai formation, the 

main depocenter is about 1000m of contourite deposit on the northern flank of the Storegga 

slide. In the central parts of the Storegga area and at dome structures the sediments of Kai 

formation are very thin or absent (Bryn et al., 2005). This multiphase submarine slides 

remobilized the sediments of Naust Formation, partly removing up to 450m of sedimentary 

strata. The eastern headwall runs north to south and reaches a height of up to 300m. The 

northern sidewall is up to 100m high and runs roughly east to west along the border 

between Vøring and Møre basins.  
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According to Bryn et al., 2005, the Naust Formation comprises five main seismic units 

separated by an equal number of high amplitude and laterally continuous reflectors. These 

five sequences (Naust W, U, S, R and O) with their boundaries can be traced throughout the 

Mid-Norwegian Margin. Each sequence may contain more than one shelf glaciations. Naust 

S, R and O units have been subdivided into 16 sub-units in the Ormen Lange area, based on 

seismic data, and supported by geological and geotechnical analyses of the sediment 

samples and from the results of borehole geophysics. 

The nomenclature of Naust formation has been followed after Rise et al., 2006 (Fig. 4) 

throughout this dissertation works hereafter. On the basis of this recent nomenclature, the 

Naust formation has also been divided into five main sequences as Naust N (Oldest), A, U, S 

and T.  Though most of the sediments for Naust formation are of glacigenic origin, 

glaciomarine, contouritic and hemipelagic sediments occur intermittently. The rate of 

sediment deposition after 2.8 Ma was significant (Rise et al., 2005).  

The mid Norwegian margin received large quantities of sediments from the Norwegian 

mainland and inner shelf areas, which prograded into a basin with water depths inferred to 

be in the order of 500–1000 m. This increase in sediments is resulted from the mainland 

upliftment and glaciations of Scandinavia in combination. Seismic sections have proved that 

the crest of Helland-Hansen Arch reduced the dispersal of sediments towards the Vøring 

Basin thereby forming a barrier in the sediment distribution westwards. As a result, the 

continental shelf prograded upto 200km westwards,, leaving behind a thick sediment 

package of 1-1.5 km on the outer shelf and upper slope (Rise et al., 2006). Deeply weathered 

crystalline bedrock and/or unconsolidated Tertiary sediments were easily eroded in early 

Naust time. Additionally, the inner part of the shelf was uplifted,and the pronounced 

truncation of westerly dipping sedimentary rocks indicates that much material was removed 

and transported farther west (Rokoengen et al., 1995; Riis, 1996; Stuevold and Eldholm, 

1996; Henriksen and Vorren, 1996; Rise et al., 2005). 
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Figure 5. Diagram showing the Naust stratigraphic scheme (NDP, unpublished data, 2004a). Correlation with 

previous terminologies and subdivisions in and north of the Storegga Slide is shown (NDP, unpublished data, 

1999; Berg et al., 2005). The proposed ages for the Naust N, A and U sequences are uncertain. From Rise et al., 

2006. 

 

Large amounts of sediment were deposited along the mid-Norwegian margin during Naust 

N-time (suggested age 2.8–1.5 Ma BP) because of the glacial erosion and transportation 

activities on the uplifted mainland that is evident from the iceberg plough marks on seismic 

data.  During Naust A times (suggested age 1.5–0.6 Ma BP), marine ice sheets occasionally 

reached the palaeo-shelf edge (Rise et al., 2005). During Naust U time (suggested age 0.6–

0.4 Ma BP), several cycles of glacigenic debris-flow deposition occurred. The Naust S 

sediments were probably rapidly deposited during an extensive phase of the Elsterian 

glaciations (Rise et al., 2006).  

In general, the margin has had repeated advances and withdrawals of major ice sheets in the 

last 500ka with a period of 100ka for each cycle. The thick till deposits at the shelf deposited 

by fast ice-stream eventually released further down slope in the form of debris flow and 

turbidites (Solheim et al., 2005).  During 'ice-free' periods, hemipelagic and contouritic 
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sediments were deposited on the slope. These kinds of sediments are most common in the 

Storegga Slide area, where they hosted glide planes beneath the major slides (Rise et al., 

2005). The thickest Naust formation is found at Vøring Plateau and in the North Sea fan 

where thickness is approximately 1500-1750ms (TWT) (Fig. 5) (Berg et al., 2005). 

 

 

 
 
Figure 6. Seismic stratigraphy of the Ormen Lange area, and a north-south running regional seismic section 
through the northern part of the Storegga Slide. DF and CD in the interpreted section mark debris flow deposits 
and contourite deposits, respectively. From Berg et al., 2005.  

1.4 Processes influencing submarine land sliding 

There are few processes that have direct impact on the shear strength properties of the 

slope material in combinations. Slope failure takes place when the applied force to the 

material exceeds the shear strength of the material. The shear strength is directly related to 

the pore pressure of the material. Whenever pore pressure increases, effective stress on the 

material decreases. At a critical point of increment of pore pressure, slope failure takes 

place. Triggering factors are an external stimulus that changes or tends to change any one of 

the parameters responsible for slope instability (Sultan et al., 2004a). 

Mechanisms that increase the pore pressure include sedimentation rates that are high 

enough to trap fluids, wave loading, earthquake loading and localized transport and 
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accumulation of gas and fluids (Mienert et al., 2005b).  Dissociation of gas hydrate may take 

place on the continental slope because of the changes in sea level or increase in the bottom 

water temperature and produce large amount of free gas within the sediment layers 

(Mienert et al., 1998, Bouriak et al., 2000). Thus produced free gas will eventually decrease 

the bulk shear strength of the slope material within the sediment column and lead to the 

slope failure (Paull et al., 1996; Mienert et al., 1998). Likewise, bottom water current may 

erode the base of the slope as in deltaic environment and increases the slope instability.  

Long et al., 2003 from the study of slope failure on Faroe-Shetland Channel has concluded 

that the dominant contouritic sediments deposited along the slope are more porous than 

the intervening glacial deposits and possesses lower shear strength. These kinds of 

sediments are more susceptible to liquefaction under dynamic loading. This may create 

plane of weakness and increases the pore pressure to the surrounding cohesive sediments 

and reduces the shear strength of the materials thereby causing the slope failure.  

1.5. Features characterizing submarine slides 

The characteristic features of a sub marine slide includes headwall and scar as upslope 

termination of the slope failure, glide plane as a surface along the sliding of a slab takes 

place and a disrupted or chaotic sediment and morphology with debris flow material down-

slope.  

The headwall is the most characteristic seabed feature caused by extensional movement 

that is represented by headwall scarps as extensional failure surfaces. Headwall scarps have 

been developed in many slides like the Storegga slide as the failure spreads upslope thereby 

creating several headwall scarps (Gauer et al., 2005). These kinds of failures spread upslope 

are termed as retrogressive slide (e.g. Mienert, 2008, Storegga slide). The dimension of 

headwall scarps vary from one slide to another; with headwall scarps ranging from a few 

meters to more than  hundred  meters. The Storegga slide shows a headwall scarp that is 

250 m high and 300 km long (Bryn et al., 2005b). Crown cracks more often found on 

headwall scarps, which are linear elongated depressions created in the headwall strata. 

These cracks have been formed because of the extensional stress applied to the material as 

a result of downslope movement of materials (e.g. Bull et al., 2009a).  

Chapter 1 Introduction



14 
 

Glide planes are the basal shear surface along which the materials slide downslope. In most 

of the cases these planes are more or less parallel and continuous to the sedimentary 

bedding. Glide planes in some cases may make ramps (discordantly cut part across the 

bedding) and flats (parts parallel to bedding plane) (Solheim et al., 2005a, Bull et al., 2009a) 

(Fig.7). 

Ridges

Remnant blocks

Ramps and flats

Outrunner 
blocks

Folds and thrusts

 

Figure7. A schematic representation of a submarine slide and occurrence of headwall domain, gliding plane 

(basal shear surface) and failed material. From Bull et al., (2009a). 

The displaced materials can be recognized within seismic sections in the form of disrupted 

and chaotic patterns of reflections. Sometimes, several blocks of coherent sediments have 

been observed within and in front of slide deposits. These blocks are clearly identifiable 

because of their concordant and continuous reflection in comparison to surrounding chaotic 

reflection. The sizes of these blocks vary greatly; from a few meters to a few km wide and a 

few hundred meters of high (e.g. Vanneste et al., 2006) .  
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Figure 8. Schematic representations of the different stages of slide development from slope failure to 

turbidites. From Bryn et al., (2005). 

A cohesive force between particles remains to some extent at the initial phase of the block 

sliding. However,  blocks and slabs detach tend to detach from the parent rock. In the course 

of moving downslope, these blocks further break down into smaller fragments and flow with 

more fluid content in the form of debris flows (Fig. 8). Debris flows are slurry like flow which 

contains sediments of varying grain size concentration, velocity and internal dynamics 

(Leeder, 2006). This matrix of debris flow consists of fine grained sediments to grains of all 

sizes. The debris flow transform into surge-like turbidity flow along their upper edges by 

turbulent separation (Hampton, 1972).Turbidity flows basically takes place as a result of 

changes in densities between local fluid and surrounding fluids (Leeder, 2006). This density 

difference arises due to the content of the material suspended in the turbidity current (Fig. 

8). These turbidity currents carry the suspended material to a large distance downslope into 

the basin (sometimes hundreds of kilometer) until they lose their energy so that the 

suspended material can settle down. 

Run out distance for a submarine slide is the horizontal distance between the upper edge of 

the slide headwall and the most distal point of sediment deposition including the turbidity 

current (Canals et al., 2004). Actually this run out distance depends upon the in-situ stress, 
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sediment properties and local morphology. The run out distance vary from one slide to 

another on the basis of its nature of mode of occurrence; for instance, Storegga slide has a 

run out distance of 770km, Canary slide has 600km, the Traenadjupet slide has 200km 

(Canals et al., 2004), Arctic Hinlopen slide has ~ 300km (Vanneste et el., 2006). 

1.6 Fluid migration and gas accumulation systems 

The advent of three dimensional seismic data has significantly improved our estimation of 

lateral and vertical distribution of fluids. It has also improved the understanding of fluid 

migration from deep reservoirs to shallow subsurface (Heggland, 1997, 1998; Løseth et al., 

2001). The 3D seismic data (GH01) used in this master thesis encompasses the northern 

escarpment of the Storegga slide in the north to Grip high in the south (Fig. 2). Different sizes 

of gas accumulation systems and fluid migration pathways will be mapped and interpreted in 

the proceeding chapters. The introduction of different aspects of the petroleum system and 

the process involved are described in the following.  

1.7 The Petroleum System 

A petroleum system is defined as a natural system that encompasses an active source rock 

and all related hydrocarbon accumulations in the reservoir rock, which all the geologic 

elements and processes that are essential if a hydrocarbon accumulation is to exist 

(Magoon, 2003). 

Basic elements for the petroleum system are: source rock, reservoir rock, seal rock and 

overburden rock. The basic processes are trap formation and the migration-accumulation 

period of hydrocarbon, which basically concerns temperature and pressure evolutions. 

Source Rock:  

A source rock contains large amount of organic material and can produce hydrocarbons (oil 

and gas) if it undergoes a maturation at high enough temperature and pressure under the 

suitable depth. Organic materials are the main constituents, which sink down to the seabed, 

lake or river together with mineral particles in anoxic water column conditions. Typical 

environments for these kind of organic materials would be nutrient rich coastal upwelling, 

swamps, shallow seas and lakes (Gluyas and Swarbrick, 2004). Organic sediments deposited 

would be preserved only when the water column above is anoxic and prevents the oxidation 
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of organic materials.  Preservation especially takes place at shallow water depths, high 

sedimentation rates and the absence of benthic organisms and bioturbation. 

 

 
 

Figure 9. Maturation paths of the three different types of Kerogen with their origin (Selley, 1998). 

 

1-5% of the initial organic compounds (mainly lipids and lignin) undergoes chemical changes 

and transform into source rock organic matter, which later produces hydrocarbon under 

thermal maturation. This thermal maturation indicates that the end product (hydrocarbon) 

of the source rock is mainly dependent on temperature along with other various minor 

factors. Kerogene which is a complex hydrocarbon is left after the removal of methane, 

carbondioxide and water from the source rock organic matter (Selley, 1998). With increasing 

maturity of this Kerogene, first oil and then gas are expelled but nothing (neither oil nor gas) 

is produced when it is over mature (Selley, 1998). Significant amount of oil is generated on 

lower temperatures (60-120°C) and significant amount of gas in between 120-225°C. Above 

225°C, the remaining carbon transforms into Graphite through a metamorphic process (Fig. 

9) (Selley, 1998). The hydrocarbon generated depends on the origin of organic material and 
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can be classified into different types of Kerogen determined on organic source and Hydrogen 

Index (Fig. 9) (Hunt, 1996). 

Reservoir Rock  

 

A reservoir rock is a permeable subsurface rock that contains moveable fluids. Reservoir 

rocks are dominantly sedimentary (shales, sandstones and carbonates) as they do possesses 

interconnected pore spaces for the fluid migration within them.  A reservoir rock can also be 

called an aquifer (Fig. 10)  

 

Traps (Seal rock) 

A seal rock is in basic a rock that is impermeable. Orton (1889) has defined traps as "stocks 

of oil and gas that might be trapped in the summits of folds or arches found along their way 

to higher ground". Traps are the place where oil and gas are barred from further movements 

laterally and vertically (Levorsen, 1967). Fluids reside into the traps cannot migrate further 

because of the sealing of impermeable rocks on top. However, traps are limited in extent 

and may have a spill point. There are several types of traps; stratigraphic traps, structural 

traps, diapiric traps, hydrodynamic traps and a combination of the two.  

1.8. Fluid migration 

On the basis of the mode of migration, fluid migration is often separated into three different 

categories: primary migration, secondary migration and tertiary migration (Gluyas and 

Swarbrick, 2004; Tissot and Welte, 1984) (Fig. 10).  
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Figure 10. Descriptive sketch of the basics between source- reservoir- cap rock and primary- and secondary 

migration. (from Tissot and Welt 1984) 

Basically, the movement of fluid from source rock to reservoir rock is primary migration. 

Tissot and Welte (1984) has defined the primary migration as the release of petroleum 

compounds from kerogen, and their transport within and through the capillaries and narrow 

pores of a fine-grained source rock (Fig. 10). Primary migration is a complex phenomenon 

and its mechanism is not fully understood yet.  

 

The subsequent movement of oil and gas within the permeable carrier beds and reservoir is 

referred to as secondary migration of fluids (Showalter, 1979; England, 1994). This 

movement of petroleum compounds through rocks with high enough permeability allows 

free migration of hydrocarbons within the carrier beds and reservoir and its accumulation 

into a trap. The secondary migration occurs because of buoyancy due to different densities 

of the respective fluids in water-saturated porous rocks, low capillary pressure which is 

forced downwards since the pressure is higher in the pore throats than in pore space and 

hydrodynamic fluid flow (Tissot and Welte, 1984).  
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Minescu et al., 2010 have defined the fluid movement that takes place after reservoir 

abandonment as tertiary movement. Tertiary migration is basically defined as leakage, 

seepage, dissipation and alteration of hydrocarbon as it reaches the Earth’s surfaces 

escaping from an already accumulated reservoir. Typical features of tertiary migration are 

gas chimneys, gas hydrate layers, pockmarks, mud volcanoes and live “tar oil” and gas 

seepages at the sediment surface. Tertiary migration is different from the secondary 

migration because of its rapid supply of hydrocarbon products (Gluyas and Swarbrick, 2004). 

1.9. Gas Hydrates 

 

Gas hydrate have been considered as unconventional source of energy, which is an ice-like 

substance composed of gas molecules (guest compound) caged within  a crystal structure 

composed of water molecules (host compounds) (Sloan, 1998) (Fig. 11). Usually the trapped 

gas within the water molecule is mainly methane. Thus, gas hydrates naturally occur when 

methane gas saturates the pore fluid within the marine sediments under specific 

temperature and pressure conditions, which is typically found in ocean floor sediments at 

water depths greater than 500 m (Brown et al., 2006). Gas hydrates often behave as 

cementing material in the pore space of sediments that are found in the form of lamina, vein 

and nodules of pure hydrates (e.g. Boswell and Collett, 2010; Collett et al., 2011).  

  

Gas hydrates occur worldwide in both active and passive continental margins and in high 

latitude permafrost regions (Boswell and Collett, 2010; Collett et al., 2011). Kvenvolden 

(1993) has suggested that gas hydrate deposits contain the largest reservoir of methane on 

Earth.  
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Figure 11. Gas hydrate recovered from an embedded hydrate structure of a sediment ridge offshore Oregon, 

USA. Gas Hydrates are not stable under atmospheric pressure and will release gas and water if not kept under 

high pressure and low temperature (picture from: http://feww.wordpress.com/category/east-siberian-arctic-

shelf/). 

 

Temperature and pressure are the important physical factors for the formation of gas 

hydrate where abundant methane supply takes place from beneath the base of the gas 

hydrate stability zone (BGHSZ). Typical conditions for the formation of gas hydrates within 

the marine sediment down the seabed are when temperatures is less than 300K and 

pressure more than 0.6 MPa (e.g. Chand and Minshull, 2003). Along with these two 

parameters; temperature and pressure, the amount of gas (methane) supply and water 

present within the sediment pore spaces control the mechanism of formation of gas 
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hydrate. So far, natural gas hydrates have been found to contain both biogenic and  

thermogenic gas; biogenic gas is produced from the microbial activity through the 

degradation of organic matter whereas thermogenic gas is produced by chemical reactions 

that takes place at high temperature and burial depths (e.g. Rice and Claypool, 1981). 

 

 
 

Figure 12. Basic phase diagram indicating the transition state from gas hydrates to free gas. Gas 

hydrates released to the water column will due to positive buoyancy rise and dissociate before 

reaching sea level. Gas hydrates created below seafloor will be trapped and can make up a constant 

layer. Temperature is mainly affected by the geothermal gradient below seafloor. Figure is from Chand 

and Minshull ( 2003) and based on polar marine conditions. 

 

 

 

 

 

D
ep

th
 b

el
o

w
 S

ea
 le

ve
l (

m
) 

Chapter 1 Introduction



23 
 

Gas Hydrate Stability Zone (GHSZ)  

 

The stability of gas hydrate persists until and unless the physical and chemical criteria do not 

change significantly.  The zone within gas hydrates are stable is called the gas hydrate 

stability zone (GHSZ) (Fig. 12). GHSZ is referred as a geological section where gas hydrates 

exists under in-situ conditions (Ginsburg and Soloviev, 1997). The dissociation of gas hydrate 

is due to a change in pressure and/or temperature which is greatly affected by the change in 

both water temperature and sea level (Dickens, 2001). An increase in temperature and 

decrease in pressure affects the stability and will cause the hydrate to dissociate and release 

free gas that may escape through sediments to the seabed into the water column.  

 

The GHSZ is limited in particular by the geothermal gradient, pressure, gas composition, pore 

water salinity, bottom water temperature and the physical properties of the host sediment 

(Buenz et al., 2003). The thickness of the GHSZ varies according to these parameters. The 

thickness will increase with increasing water depth due to increasing pressure. The dissolved 

salt and small pore volumes within the sediments decease the surface energy enough in 

order restrict the formation of gas hydrates. Higher order gases such as ethane, butane and 

propane will increase the GHSZ thickness as well.  A higher geothermal gradient will cause a 

decrease of the GHSZ thickness (Sloan, 1998c). 

 

 

Identification of gas hydrates in reflection seismic sections  

 

The presence of gas hydrates and free gas beneath it is recognized from the presence of a 

bottom-simulating reflector (BSR) on the seismic section which has a distinct characteristic 

reflection pattern. These anomalous signatures include high amplitude and reverse polarity 

if compared to the seafloor (Fig. 32). The BSR runs sub-parallel to the seafloor (Shipley et al., 

1979). The base of the gas hydrate bearing sediment follow iso-temperature lines that is why 

it is sub-parallel to the seafloor. Gas hydrates fill the pore space of the host sediments 

thereby increasing its bulk and shear modulus, which in turn causes an increase in both P-

and S-wave velocities within the hydrate bearing sediments (Chand and Minshull, 2003). The 

interval P-wave velocities (Vp) for hydrate bearing sediment is ~1700-2400 m/s (Andreassen 

et al., 1990). The formation of gas hydrate within the pore space of the host sediments 
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reduces both porosity and permeability and makes the sediments within the gas hydrate 

stability zone (GHSZ) more or less impermeable. Free gas often accumulates in layers of 

varying thickness below the BSR. The base of gas hydrate stability zone (BGHZ) may act as a 

seal for upward moving fluids. The increase in both density and velocity within the BHGZ and 

the low velocity just below the BHGZ with the free gas zone, which lowers the P-wave 

velocity within it, creates a distinct change in acoustic impedance and thus a strong 

reflection coefficient. This distinct impedance contrast at the transitional margin is easily 

traced on seismic data as a bottom-simulating reflection (BSR) (Buenz and Mienert, 2004) 

(Fig. 32).  
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2.  BASICS OF REFLECTION SEISMIC 

 

2.1 Basic theory of reflection seismic  

Seismic waves transmit through fluids (P-wave), solids (P- and S wave) and porous solids. On 

the basis of knowledge of mechanical and acoustic properties of rocks, a reflection seismic 

image of the subsurface can be created and 

interpreted afterwards.  

The seismic source, for example an air gun, produces 

pulses of seismic energy which propagates down to 

the subsurface layers and reflects back from the 

seafloor and subsurface interfaces to hydrophones 

(streamers) in the water column. When a wavefront 

explained by a seismic raypath travels through a 

sedimentary succession it is bent, reflected, 

refracted, diffracted, scattered and attenuated 

through different sedimentary features which will 

decrease the signal amplitude. Spherical divergence 

or geometric spreading due to an expanding 

wavefront will cause the amplitude to decrease 

proportionally with the radius of the propagating wave front sphere (e.g. Andreassen, 2009). 

The resolution and penetration of the seismic wave is related to its frequency. The higher 

the frequency the higher the resolution becomes but the lower the penetration and vice 

versa (e.g. Andreassen, 2009).  

 

Important basic terms in reflection seismic are:  

 

Acoustic impedance (Z) = density x velocity …………………. Equation 1  

Reflection coefficient (R) = (Z2-Z1) / (Z2+Z1)…………………….Equation 2 

Where the density is defined and calculated by formula:  

 = () + m (1-) ……………………………………………..Equation 3  

  Figure 13. Schematic view of polarity convention      

(Sheriff and Robert, 1995) 
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The reflection of a seismic wave takes place only when it encounters the interface of two 

layers with different acoustic impedances. This impedance contrast may bedue to 

lithological variations, faults or fluid densities of the sediment formation. The reflection 

coefficient (R) of a layer can be positive or negative depending on the velocity of the wave 

within this layer and its density (Fig.14). The energy reflected back and the energy 

transmitted into next layer is determined by Snell’s law (Fig.14) 

Sinᵩinc /V1 = sinᵩtrans/V2 = sinᵩref/V1…………………………..Equation 4 

 

Figure 14. Acoustic sound waves are affected by velocity and density of medium (acoustic impedance which 

results in the reflection coefficient). P and S-wave generation is ignored for this figure. Figure from Andreassen 

(2009).  

 

Compressional (P) wave and shear (S) wave propagates differently in the subsurface and have 

different velocity which can be calculated based on the empirical formulas from Gassman (Gassman, 

1951):  

         
 

Equation 5     Equation 6  
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2.2. Seismic Resolution 

Resolution is defined as the ability to separate two features that are close together or in 

other words the minimum separation of two boundaries before their individual identities are 

lost in a cross-section (Sheriff, 2006).  

 

Generally the resolution of a seismic trace decreases in response to its depth as wavelength 

of seismic wave increases with depth of penetration (Fig.15). There are several reasons for 

the increase in wavelength while penetrating deeper into the subsurface. Main reasons for 

the decrease in the amplitude, energy and frequency are: Spherical divergence or 

geometrical spreading, which causes the seismic energy to decrease proportionally with the 

increasing radius of the travelling wavefront sphere (Andreassen, 2009).  

Vertical resolution: 

It concerns the minimum thickness of a bed that can be resolved, which means that a 

reflection from the top and bottom of the bed is 

discernible.  One can distinguish between a bed of 

finite thickness from a single reflecting interface. 

Vertical resolution is determined by ¼ of a wavelength 

(Badley, 1985; Brown, 1999).  

λ = / ………………………………Equation 7  

This means that it is possible to distinguish the top and 

base of the layers that are thicker than ¼ of the 

wavelength.  

 

Tuning thickness is determined as the lowest possible 

thickness of a layer to have an effect of the seismic 

signal. Tuning thickness is generally defined as 1/30 λ 

(Badley, 1985). Tuning thickness or limit of visibility for 

most cases is not 1/30 λ because of background noise, 

so it is determined from s/n ratio of dataset (Bulat, 

2005). 

 

 

Figure 15. Sketch of the general relation 

between frequency, velocity and wavelength. 

Velocity and wavelength increases with depth 

and frequency decreases. Figure from Brown 

(1999). 
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Horizontal resolution:  

Horizontal resolution is determined in terms of the Fresnel zone. In order to distinguish 

lateral features in the seismic data it has to be wider than the Fresnel zone. Two features 

that lie within the radius of the Fresnel zone are not visible within the seismic data.  

The Fresnel zone is a function of depth, velocity and dominant frequency (Eq.8). The 

horizontal resolution decreases with depth, increased velocity and lower frequency, which 

justifies that a deeper-lying features need a larger areal extent to produce the same effect as 

that of a smaller and shallower features (Badley 1985) (Fig.16). 

The Fresnel zone of 3D is greatly reduced in comparison to 2D allowing a much higher 

resolution of objects within 3D seismic data. Migration of 3D seismic data collapses all the 

diffractions back to their point of origin thereby reducing the radius of the Fresnel zone and 

increasing the horizontal resolution. The extent of the horizontal resolution will be around ¼ 

λ in all directions on 3D seismic data (Brown, 1999; Bulat, 2005, Yilmaz, 2001). 

 

Figure 16. Demonstrating the principle of the Fresnel zone which determines the horizontal resolution of 

unmigrated seismic data. Figure is  from Bulat (2005) and it is based on the principles from Yilmaz (2001). 
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rf = (/2) × (t/)………………………………..Equation 8 

rf = radius of Fresnel zone  

v = velocity  

t = TWT of Z (time to reflector)  

f = dominant frequency 

2.3 Fluid identification  

There are several methods to recognize fluid flow pathways and fluid accumulation areas.  

Fluid flow features are commonly separated into two categories (Løseth et al., 2009);  

 

1. Fluid flow processes that have permanently changed sediment sequence and caused 

permanent deformations and / or created a new permanent “syn leakage” feature.  

2. Changes in pore fluid densities show changes in the seismic response though sediment 

bedding remains constant without deformation. 

 

2.3.1 Reflections associated with changes in pore fluid density  

Hydrocarbon fluids within the pores of host sediment cause a change in p-wave velocity due 

to changes in pore fluid density (Fig. 17).  

If hydrocarbons substitute water of a highly 

permeable rock the acoustic wave velocity will 

be reduced within the rock formation. The 

effect can be calculated by the Gassman 

equation (Gassman, 1951) (simplified in 

equation 5). This equation is based on several 

empirical approximations. Based on 

sandstones the bulk modulus and shear 

modulus are used and one can calculate 

expected synthetic velocities of both shear (Vs)- 

and compressional (Vp) wave velocity (Eq.5-6).  

 

Figure 17. Compressional seismic velocity as a function 

of gas saturation and pore pressure where 

temperature is constant at 48°C. Figure from Arntsen 

et al. (2007). 
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Accumulation of gas will show the most distinct decrease in seismic velocities (Andreassen, 

2009).  

Common indicators of gas accumulations are (Andreassen, 2009):  

 

1. Amplitude anomalies (Fig. 18, 19)  

i. Bright Spot  

ii. Dim Spot  

2. Flat spot (Fig 18, 19)  

3. Polarity reversal (Fig. 18, 19)  

4. Velocity effects (Fig.17)  

5. Loss of high frequencies  

6. Diffractions  

7. Masking and piping  

 

1. Amplitude anomalies show a difference in amplitude along a continuous reflector. An 

amplitude anomaly can be strong and positive, strong and negative or weak (Figs. 18 and 

19). The description of a reflector as positive or negative is done in terms of reflector.  

 
Figure 18.  a,b) Illustrating the basic theory behind flat spot, bright spot and dim spot. Notice the polarity 

convention. Figure from (Andreassen, 2009). 
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2.  A flat spot (Figs. 18 and 19) can be observed in both the gas and oil contact. The 

difference in pore fluid density is the basic theory behind the occurrence of a flat 

spot. Sufficient acoustic impedance contrast at the gas-oil or gas-water filled portion 

of a reservoir causes a flat spot to appear at the base of gas. A flat spot will often 

overprint the original sedimentary structure and it will always have positive 

reflection coefficients. Velocity difference effects can cause the reflection not to 

appear horizontal. Flat spots are usually found shallower than 2.5 km because the 

effect of gas on velocity below this depth is less marked and doesn't provide a good 

reflection from a gas contrast (Andreassen, 2009).  

 
Figure 19. Classical example of bright, dim and flat spots. Phase reversal is also indicated. From (Løseth et al., 

2009). 

 

3. Polarity (phase) reversal is due to changes in the reflection coefficient. It occurs when 

the phase shifts by 180° along a continuous reflector. Figure 18b) illustrates this 

effect. Figure 19 shows a seismic example.  

 

4. A sufficient thick gas or fluid zone may create a push-down effect on underlying 

horizons. This effect can be recovered by applying depth conversion mode into the 

seismic data. One important thing that we have to bear in mind is that the velocity 

effects (push down) are not solely related to the presence of gas and thus a decrease 

in p-wave velocity only. It may sometimes arise due to combination of other effects 

too.  
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5. When seismic energy travels through gas bearing sediments, absorption of energy 

within the gas bearing sediment causes the loss of frequencies within it. The 

absorption depletes the signal of higher frequencies. Loss of these high frequencies 

can be observed beneath bright spots.  

 

6. Diffractions can be seen on flanks of gas/fluid pockets, which is due to a significant 

acoustic impedance contrast.  

 

7. Acoustic masking can occur along fault zones and pipes.  

 

 

2.3.2. Seal bypass system (SBS)  

 

Seal bypass systems (SBS) are  geological structures that have infringed sealing sequences of 

low permeable lithofacies and that acts as a conduit for fluid flow vertically or sub vertically 

across the sealing rocks (Cartwright et al., 2007). What we should bear in mind is the 

intrinsic permeability of all types of rocks, even if it is a seal rock. Because of this property 

seals may also be permeable and petroleum migrates through sealing sequences if one 

considers only a long enough time period (Cartwright et al., 2007). The rate of leakage is 

controlled by the relative permeability of the sealing sequences. This leakage takes place 

through resulting fractures when the pore pressure within the seal rock is sufficiently high 

enough to cause mechanical failure (Grauls and Cassingnol, 1992; Gaarenstroom et al., 

1993). 

 

SBS is classified into three main groups on the basis of seismic interpretation criteria 

(Cartwright et al., 2007): (i) fault-related, (ii) intrusion related, and (iii) pipe related. 

Fault bypass can be subdivided into two families:  

i. Trap, where a fault defines and delimits trap within a lateral component of sealing 

succession (Fig. 20).  

ii. Supratrap, where a fault is embedded within the sealing sequence. It causes a 

constrained flow through the sealing sequence, but does not necessarily imply an 

empty reservoir. A polygonal fault system is classified as a supratrap. These polygonal 
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fault planes transmit fluids though they do not posses fault gouge along the fault 

plane and the static permeabilities of this slip zone at the vicinity are lower than in 

adjacent wall rocks (Cartwright et al., 2007). 

 

Figure 20. Seismic section of a large tilted fault block where arrow indicates different vertically 

distributed amplitude anomalies defined as hydrocarbon leakage zone and trap to be a major trap-

defining fault. There is also indicated a bottom simulation reflector (BSR) which is relevant to 

hydrocarbon leakage. Figure modified from (Cartwright et al., 2007) 

 

2.3.3. Intrusive bypass systems (IBS) 

 

Intrusive bypass are intrusive structures breaching the integrity of a sealing sequence. Thus 

intruded material possesses a markedly higher permeability in comparison to sealing 

sequence and focused fluid flow takes place through this intrusion. IBS can be classified into 

four groups: 

 

i. Sandstone Intrusions is a regional scale fluid flow in basin with a significant mode of 

seal failure in which the flow is not restricted to the period of the intrusion event 
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(could be only a few days). The intruded sandstone may remain as a high permeable 

conduit for millions of years allowing fluid flow through SBS until the vertical 

continuity is broken by deformation or the pore space is cemented (Hurst et al., 

2003;Husse et al., 2004; Jonk et al., 2005). Typical flow rate is 1-2 cm/s (Shoulder, 

2005).  

 

ii. Igneous Intrusions may have lower permeability than the host sealing rocks. 

Intrusion of hot magma at greater than 1000°C into cold and wet sediments results in 

a major change in host rock properties for tens of meters around the immediate 

contact of intrusive body (Einsele et al., 1980). Different fracture sets develop in 

association to forceful injection of intrusive body, prograded metamorphism, 

hydrothermally driven fluid loss from surrounding sediments (Einsle et al., 1980) and 

thermal contraction during cooling of intrusive body. Thus created fractures 

increases the fracture permeability within and surrounding the intrusive body that 

actually provides a bypass system in sealing rocks sequence (Cartwright et al., 2007).   

 

iii. Mud diaparism and mud volcanism liquefy parent fine-grained sedimentary unit 

because of inflation, in-situ overpressuring and external vibrations (like earthquake). 

Thus liquefied mud then ascends rapidly and comes out to the surface with different 

rate according to conduit geometry and viscosity of mud itself. Fractures and fault 

systems are well developed around the mud volcanoes zones because of forceful 

injection, stopping of mud, caldera style collapse of mud chambers (Kopf, 2002; 

Morley, 2003; Davies and Stewart, 2005). Thus developed fractures provide 

additional means for upward fluid flow.   

 

 

iv. Salt diapirs often occur in hydrocarbon provinces and that involve forced folding 

and concentric faulting. These folding and faulting mechanisms create complex 

fracture networks in the immediate contact zone between the salt body and the 

forcibly intruded host sediments and in the carapace just immediately above the 

crest of the diapir too (Alsop et al., 2000; Davison et al., 2000).  The fault and fracture 

networks surrounding the salt diaper are permeable for finite time periods. The 
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alterations brought into the local aquifers and seals by salt diapir may have a 

potential to change the local hydrogeological settings and finally can lead to seal 

failure due to excess pressure heads (Evans et al., 1991) 

 

 

2.3.4 Pipe bypass systems (PBS) 

 

Pipe bypass are defined on reflection seismics in terms of columnar zones of disturbed 

reflections that could be associated with sub vertically stacked amplitude anomalies 

(Cartwright et al., 2007). In some cases, these deformed reflections might be related to 

minor folding and faulting. Even if there is no visible systematic offset of reflections, analogs 

suggests intense fracturing within the pipe structures (Løseth et al., 2001, 2003). The 

fracturing is responsible for augmenting the permeability and loss of seal integrity (Bryner, 

1961). Cartwright et al. (2007) have subdivided pipe bypass into four families; dissolution 

pipes, hydrothermal pipes, blowout pipes and seepage pipes. 

i. Dissolution of rock minerals at depth causes the overburden to collapse as it forms 

subsurface cavities (Stanton, 1966; Cooper, 1986) and is likely to occur in areas 

where evaporites and karst exist (Cartwright et al., 2007). The collapse of overburden 

creates tall cylindrical zones of sagging, intense faulting and fracturing through which 

vertical migration of fluids takes place (Bertoni and Cartwright, 2005). The dimension 

of dissolution pipes are governed by the dimensions of solution cavity, overburden 

strength and heterogeneity of materials (Branney, 1995). 

 

ii. Hydrothermal pipes are formed by the release of high influx of hydrothermal fluid 

(Svensen et al., 2004) derived from magma that is related to igneous intrusions. 

These pipes are characterized as columnar or steep-sided, downward-tapering 

conical zones of distributed or collapsed stratigraphic reflections. They may be 

formed in direct connection with an igneous sill layer too (Cartwright et al., 2007). 

 

iii. Blowout pipes are columnar zones of disturbed reflections or vertically stacked 

localized amplitude anomalies. They are distinguished on the basis of their 

association with surface or paleopockmarks (Løseth et al., 2001). The driving 

processes involved in the development of blowout pipes are extremely energetic and 
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the fracturing of the conduit takes place by the expansion of gas before migrating the 

fluids.  

 

iv. Seepage pipes may form under the same conditions as blowout pipes, but they 

lack blowout craters (pockmarks) at the upper pie termination. This type of pipe is 

mainly seem to occur in sand or silt-dominated sequences. The higher bulk 

permeability of this sequence allows fluid seepage through pore networks thereby 

reduces the overpressure buildup. This reduction in overpressure terminates the pipe 

within the subsurface before reaching to host-rock fracture gradient (Cartwright et 

al., 2007). 
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3. DATA AND SEISMIC INTERPRETATION TOOLS 

3.1 Data  

The 3D dataset (GH01) used in my master thesis is an already processed 3D seismic cube, 

and the interpretation is based on seismic reflection and imaging techniques to identify gas 

accumulation and fluid migration pathways along and across different strata. 

The 3D seismic dataset GH01 covers a part of northern escarpment of the Storegga slide 

extending south to Grip High (Fig. 2). This 3D dataset covers an area of 98.6×24.9 km2 which 

falls within the slide area of the giant Storegga slide and has a recording length of 4 s. The 

dataset consists of 998 inlines and 3946 crosslines. The bin spacing is 25 m and thus gives a 

very good spatial resolution. 

The Processing software “Promax” provided by Landmark was used for frequency analysis. 

Inline 2536 was exported as a 2D line (SEGY format) and imported into Promax for 

performing a spectral analysis to determine the dominant frequency. This analysis shows a 

dominant frequency of 27 Hz while frequencies ranging from 24-35 Hz are also dominant.  
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Figure 21. A) Display of seismic inline 2536 in Promax seismic processing program where red rectangle is the 

area selected for a spectral analysis. B) Display of spectral analysis of area marked in A. The dominant 

frequency is found to be 27 Hz.  

3.2 Seismic interpretation tools (Petrel)  

The analysis for the 3D data set GH01 for the purpose of acquiring the set objective for this 

thesis was carried out using Petrel® 2011 software at the University of Tromsø (UiT). Petrel® 

2011, Schlumberger, is seismic to simulation software which helps to develop multi-

disciplinary integrated workflows for streamline processes (Schlumberger, 2011).  

3.2.1 Interpretation of 3D data  

Seismic interpretation is used for interpreting seismic horizons. The first step for seismic 

interpretation is to create a seismic horizon and then to set the parameters for further 

interpretation from these horizons. In creating horizons, autotracking allows one to interpret 

A 

 

B 
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a continuous reflector. But before applying this tool, it is necessary to determine which part 

of the signal is to be interpreted, the trough or the peak, upper or lower zero crossings (Fig. 

22). In petrel, there are two options; manual and automatic for interpreting the horizons. In 

manual, one can choose freely where to interpret while in automatic interpretations 

parameters can be set. There are three options for automatic interpretation of horizons; 

guided autotracking, seeded 2D autotracking and seeded 3D autotracking. The tool is based 

on values of amplitudes in a seismic trace and will follow the given reflector determined by 

the continuity and signal strength. There are several parameters where the interpreter can 

chose different constrains of the seismic signal to be followed. For a good continuous 

reflector like seafloor, one can set loose constraints whereas for a chaotic event as in slide 

deposits, a more strict constraint is suggested.  

 

 

Figure 22. The peak, trough, upper-and lower-zero crossings of a seismic signal. The peak is displayed in red, 

the trough in blur and the zero crossings in white. 

 

3.2.2 Seismic Attributes 

Seismic attributes give more details and specific knowledge about the research interests. 

Chopra, 2005 has defined a seismic attribute as a quantitative measure of a seismic 

characteristic of interest. The advanced computer technology has aided the attribute 

analysis more easy and successful.  The attribute analysis carried out in this thesis has been 

grouped under two divisions: volume based attributes and surface based attributes. 

Trough 

Upper zero crossing 

Lower zero crossing 

Peak 
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The color scale has been adjusted to each seismic section in order to define the anomalous 

area distinctly.  

3.2.3 Volume Based Attributes 

Volume attributes are extracted data from a specific seismic volume where different physical 

properties of the seismic traces with different values are calculated and displayed in a 

volume window. There are a number of volume attributes available in Petrel that can be 

applied to a specific seismic volume but few attributes that are useful for this present thesis 

are described here underneath.  

3.2.4 Structural smoothing  

Structural smoothing for a given volume locally smoothens the input data thereby increasing 

the continuity of seismic reflections (Schlumberger, 2011).  It also helps to identify flat spots 

for a given seismic volume.  

 3.2.5 RMS  

RMS amplitude is the square root of the sum of the squared amplitudes within a desired 

volume interval divided by the number of live samples in interval. RMS amplitudes are only 

positive and shows the strength of amplitude over a given volume interval. Changes in 

amplitude pattern vertically and horizontally are apparent in RMS amplitude map.  

 

RMS amplitude =                                            where k is the number of live samples.  

 

The color scale for the RMS amplitude map has been adjusted to each RMS amplitude map 

in order to define the anomalous area distinctly.  
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3.2.6 Chaos  

The chaos attribute demonstrate the “chaoticness or the lack of organization” of the seismic 

data within a given volume. The chaos attributes picks the regions of low consistency seismic 

traces and that can be correlated to geological features like faults or discontinuities, gas 

migration pathways, salt body intrusions, reef textures, channel infill etc. which have lack of 

organization in dip and azimuth.  

3.2.7. Variance  

Variance is similar to Chaos attribute which displays the variance in the seismic signal. It 

indicates the lateral continuity of a seismic reflector.  It is used for imaging discontinuities 

based on the difference in where fault planes are laterally separating data which can be 

auto-tracked using voxel-picking algorithms. Lack of continuity indicates the presence 

structures like faults or slide deposits. Both chaos and variance attribute cubes are based on 

the edge detection method.  

3.2.8. Surface Based Attributes 

Surface attributes can be generated at different intervals relating to a single surface, 

between two surfaces or in a constant time window.  RMS surface attribute visualizes the 

RMS volume along a certain surface of interest. Lateral changes in seismic amplitudes are 

apparent in this method and helps to identify the area of interest easily and accurately.   
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4. RESULTS 

 

The study mainly focus on the potential impact of fluid flow on the Storegga slide with 

special focus on the northern escarpment along with the high amplitude anomalies (possible 

gas accumulations) within different units of  Brygge, Kai and Naust formations. For this 

purpose, fluid migration pathways, high amplitude anomalies (possible gas accumulations) 

and sildes near the northern sidewall of the Storegga slide have been mapped and 

evaluated.  

4.1 Potential fluid migration pathways and accumulation areas 

Polygonal faults along with some major faults in the form of polygonal fault extension are 

the major pathways for the fluid migration within the study area.  

4.1.1 Polygonal faults  

3D seismic profiles and time slices have been analyzed to get an overview of polygonal faults 

within the study area. The polygonal faults are found to be widely distributed within Brygge, 

Kai and lower sequence of the Naust formation. Within the study area, they have variable 

extensions showing that upper and lower terminations of adjacent faults do not occur at the 

same stratigraphic level. So many small offset faults have been confined within the bound 

layer while some of the major faults have extended to the lower sequence of Naust 

formation (Fig. 23a).  
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Figure 23.  a) Seismic section of inline 2496 of 3D seismic survey GH01 showing polygonal faults within Brygge 

formation. b) Time slice variance map at 2600 ms as indicated by a black straight line in (a) passing throughout 

the Brygge formation showing polygonal faults within the Brygge formation. c) Enlarged view of polygonal 

faults in a plan view within a rectangle in Fig. 23b.  

At the top of the Brygge formation within 2400-2900ms TWT, layer bound polygonal faults 

are characterized by small displacement of around 20ms, steep slopes of 50-85 with 

average spacing of 1km (Fig 24a). In a time slice, they appear in the form of polygon with 

curvilinear outlines (Fig. 24b and c). The polygonal faults have greater vertical extent 

towards south of the study area where thick succession of Kai formation exists but towards 

north they have less vertical extent due to the thinning out of the Kai formation (Fig. 23a). In 

NW part of the study area where Kai formation has pinched out over the HHA, some of the 

faults have reached close to the seafloor (Fig. 23a). 

HHA 

Fig. 23 b 

Fig. 23 c 
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Figure 24. a) Interpreted seismic section showing the distribution of polygonal faults within the Brygge 

formation. b) Variance map showing corresponding polygonal faults in comparison to seismic section (see a).  c) 

Polygonal fault in 3D showing their shape and vertical extent. Location of figures a and b is shown in inset Fig. 

b. 

4.1.2 Acoustic Pipes  

Laterally narrow (20-200m wide), elliptical to circular zones (Fig. 25b, 25c) of up bending, 

low amplitude reflectors termed as acoustic pipes of various sizes are observed to the north 

of the northern escarpment of the Storegga slide (Fig. 25). Two prominent pipes (Fig. 25a) on 

the northernmost part of the inline 2596 show the upward bending reflectors because of 

their blowout nature. Both pipes show approx. 25 ms upward bending reflector. Most of the 

pipes show their root between 1600-1700ms TWT (Fig. 25a). They have originated at the top 

the southern flank of the Helland Hansen Arch (HHA) (Fig. 25a). The upper termination of 

these pipes is at different stratigraphic levels within the Naust formation or at the seabed 

resulting pockmarks (e.g. Berndt et al., 2003) (inset figure of 25a). Some pipes show down 

bending reflectors, which are interpreted to be the result of velocity pull down possibly 

indicating active fluid expulsion (Berndt et al., 2003, Plaza Faverola et al., 2012). These 

seismic indicators fluid flow pipes are common near the northern headwall of the Storegga 

slide and are not found downwards within the study area.  

2km 
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Figure 25. a) Interpreted seismic section of inline 2596 showing two prominent pipes at the northernmost part 

of the survey. b) Time slice at 1268ms passing through the two pipes showing circular and elliptical pipes. Most 

of these pipes concentrate at the north of northern escarpment of the Storegga slide. Inset figure in (a) shows 

pockmarks on the seabed. c) Time slice of variance map at 1296ms showing the sub seabed distribution of 

pipes.  

4.2 Amplitude anomalies 

Seismic profiles within GH01 3D survey reveal high amplitude anomalies within Brygge, Kai 

and sub-units of Naust formations (Fig. 26). The amplitude anomalies have reverse polarity if 

compared to seafloor (Fig. 26 and Fig. 27) indicating acoustic impedance contrast with the 

sediments in which they are embedded. The high amplitude anomalies on certain layers 

seem to be continuous and extend for several kilometers (Fig. 28a, 30a, 30d) and are as thick 

as 24-80m (assuming sound velocity 2000m/s). Majority of high amplitude anomalies are 

discontinuous (Fig. 26, Fig. 27, Fig. 34) and these single features are about 0.2-1.8km wide 

(Fig. 28a). High lateral resolution of the 3D survey with advance 3-D interpretation 

techniques help to map out the distribution of these high amplitude seismic anomalies. RMS 
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amplitude map for certain volume window have been applied for imaging and mapping out 

them in different sedimentary units. Lateral distribution of high amplitude anomalies within 

each sedimentary unit of the study area have been described underneath.   

 

Figure 26. Interpreted seismic section of inline 3350 showing bright spots and wipeout zone. These bright spots 

may be the zones of gas accumulations. The bright spots have been recognized within Brygge, Kai, Naust N & A 

and Naust U units.   

 
 

Figure 27. Interpreted southern part of seismic section of inline 2900 showing bright spots, flat spots, phase 

reversal and push down and pull up effects.  
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4.2.1 Acoustic anomalies  within Brygge Formation: 

Brygge formation occurs within the whole study area (Fig. 36). The RMS amplitude map for a 

window of 50ms below the top of Brygge formation south of HHA shows the distribution of 

high acoustic anomalies in the form of bow-tie shape (Fig. 28b). These amplitude anomalies 

seem to be continuous in a seismic profile but are separated into small patches by polygonal 

faults crossing them. They are confined within 2600-2750ms TWT (Fig. 28a). Towards west of 

the study area, each anomaly have lateral extension 250-1040m and towards east it is 220-

1860m.  

High amplitude anomalies on the southern limb of HHA within the study area lies within 150-

200ms TWT down the top of Brygge formation. RMS amplitude map for a window of 50ms 

(150-200ms down the Brygge top) shows the distribution of acoustic anomalies towards 

west which is  20km long and 12 km wide (Fig. 29a, 29b).  

4.2.2 Acoustic anomalies within Kai Formation: 

The Kai formation is thinning towards west to HHA. In a N-S oriented seismic profile (Fig 

30a), high amplitude anomalies seem to be continuous reflector at the top of the Kai 

formation that lies within 2250-2450ms TWT down. This reflector is also cut by polygonal 

faults into many smaller single features. The offset of these single features have been 

reported 10-30ms. The whole Kai formation looks transparent in comparison to its 

surroundings. RMS map calculated for 30 ms window below the top of the Kai fm (Fig. 30a) 

indicates the distribution of acoustic anomalies on the southwestern part of the study area 

(Fig. 30c). The total length for this anomaly is 30km and is 10 km wide. This amplitude 

anomaly might have further extended westwards out of the study area.  
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Figure 28. a) Seismic section of inline 2300 south of HHA showing high amplitude with negative anomalies at 

the top of the Brygge formation for a 50 ms window. The window is shaded with light blue. b) RMS amplitude 

map of 50ms window below top of Brygge formation (light blue shaded in a). Sky blue dotted line in b shows 

the inferred high amplitude anomalies at southern limit of the study area. 
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Figure 29. a) RMS amplitude map for 50ms window (Top Brygge to 150-200ms TWT) showing high amplitude 

with polarity reversal  on the southern flank of HHA and on the middle part of the survey that are outlined by a 

white dotted line. b) The interpreted seismic section corresponding to a black line in (a) shows a high amplitude 

reflector with reversed polarity within 50ms shaded window. 
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Figure 30. a) Seismic inline 2900 shows the stratigraphic units. Pale yellow shaded region represents the 30ms window from the top of the Kai formation. b) RMS amplitude 

map of Kai-30 ms (shaded portion in a) shows  high amplitudes  at southeastern part of the survey area. c) The enlarged portion of RMS map at b shows  the survey with 

corresponding seismic line in d. d) Seismic line indicated by a black line in c shows high amplitude negative reflector within 30ms of window. 
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4.2.3 Acoustic anomalies within Naust N and A units: 

The two units have a more or less uniform thickness throughout the study area (Fig. 36). The 

prominent reflector lies at the top of Naust A unit that lies within 20ms window from the top 

of Naust A unit. RMS amplitude map for a window of 20ms down the top of Naust A unit 

shows the distribution of acoustic anomalies on northeast, central east and southwest of the 

study area (Fig. 31 a-e). This reflector is more or less continuous within the seismic profile 

and is found to be embedded in marine sediments.  

4.2.4 Acoustic anomalies within Naust U unit. 

Naust U unit in a seismic profile contains both chaotic and continuous reflector. The most 

prominent high amplitude reflector lies in a 80ms window (30-110 ms down the top of Naust 

U unit) (Fig. 33). A seismic reflector at the upper part of this unit on the northern 

undisturbed part is parallel to the seafloor and is interpreted as bottom simulating reflector 

(BSR).  

BSR and Gas hydrate  

At 200ms TWT below the seafloor, a high amplitude reflection parallel to seafloor and 

characterized by a reverse polarity if compared to seafloor reflection (Fig. 32) is interpreted 

as a Bottomm simulating Reflector (BSR). It can be observed only on the north of northern 

flank of the Storegga slide within the study area which is extended further northwards. 

Within the study area, BSR on the western part is found at greater depth than at the eastern 

part. In the westernmost part of the study area, it is documented at 1400ms TWT but 

towards east part it is documented at 1280ms TWT. The most extension of the BSR is found 

at the northwestt part of the study area which extends about 10km within the seismic 

profile (Fig. 32). It is not observed after inline 3000 where the survey doesn't cover the 

undisturbed part towards east. BSR is found at the upper part of the Naust U unit within the 

contouritic drift deposits (Fig. 32).  It indicates the base of the gas hydrate stability zone 

(BGHS) (Bouriak et al., 2000). Gas hydrate is found within the sediment just above it while 

the transparent zone just beneath it represents the free gas. The present BSR on the 

northern flank of the Storegga slide is located under the water column of 700m.  
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RMS amplitude map for a window of 80ms (30-110ms down the top of Naust U unit) shows 

the distribution of high amplitude anomalies on the northernmost undisturbed part of the 

study area and under the slide mass on the central east region of the study area (Fig. 33b). 

The high amplitude reflector on the northern part lies within a continuous reflector while on 

other parts they are associated to some chaotic reflection (Fig 33a). The zone just below this 

high amplitude reflector on the northern part within this unit is transparent thereby 

indicating the absorption of seismic energy. 

4.2.5 Acoustic anomalies within Naust S:  

There are no remarkable amplitude anomalies within this unit except at the southeastern 

base within 1350-1450ms (Fig 34).  These amplitude anomalies occur on both flanks and top 

of a velocity pull up zone. RMS amplitude map for 80ms at the bottom of this unit shows the 

distribution of acoustic anomaly at the southeastern limit of the study area (Fig 34 a-d).  
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Figure 31. a) RMS amplitude map for 

Naust A with corresponding seismic 

sections (b-e).b-e) Seismic sections 

indicated high amplitude  anomalies and 

phase reversals. 
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Figure 32. Seismic section of inline 2640 showing BSR at the upper part of Naust U unit. The small insets within circles show corresponding wiggle trace as 

indicated by arrowline. The inset on the right bottom corner shows the time slice RMS amplitude map at 1348ms pasing through the BSR. White dotted line 

indicates the base of gas hydrate stability zone (BGHS).  
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Figure 33. a) Seismic inline 2596 showing a shaded window for 80ms (from top of Naust U and 30-110 ms downward) b) RMS amplitude map for shaded volume shows the 

inferred distribution of gas accumulation at the northern and central part of the study area. c-f) Seismic sections as indicated in b showing acoustic anomalies. 
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Figure 34. Southernmost part of seismic inline 3944 showing a shaded window (80ms of pale yellow) above top 

Naust U. Acoustic anomalies are within the window and are located at the southeastern part of the study area 

as shown in figure b. b) RMS amplitude map for the shaded volume showing the prominent high amplitudes at 

the southeastern part of the study area. c-d) Seismic sections as indicated in (b) showing acoustic anomalies. 
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4.3. Storegga Slide region 

4.3.1 Seismic Stratigraphy 

The nomenclature for the stratigraphy of the study area is based on the work by Rise et al. 

(2006).  

The study area covers the southern part of Helland Hansen Arch (HHA) (Fig 35). The 

representative seismic units for this region are presented from the southern part of HHA in a 

3D seismic view (Fig 35). It shows the Brygge, Kai and Naust formations. The Neogene 

succession of the Naust Formation has been subdivided into five sub-units as Naust N 

(oldest), A, U, S and T. These units are identified on the basis of seismic facies parameters 

and provided isochron surfaces from the northern part of the survey area. They are 

correlated based on the seismic data to the whole survey area.  

 

 

Figure 35. Representative 3D view of south part of HHA showing all stratigraphic units used in this study. 
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Figure 36. Seismic inline 2596 showing all stratigraphic units. Helland Hansen Arch (HHA) and Grip High are also 

shown within this seismic section.  Opal A/CT boundary marked by positive reflection is present at about 2.4 S 

TWT is indicated by a dotted white line. Green Dash line at 1400ms indicated high amplitude negative 

reflection is BSR.  

The strong positive reflection at 1.8s TWT (Fig 36) marks the top of the Brygge formation 

which dates back to Eocene and Oligocene times (Eidvin et al., 2007). This formation exists 

throughout the whole survey area from N to S. The northern limit covers the southern part 

of HHA which is obvious in the seismic strata as a regional high (fig 36). Within the Brygge 

formation, the Opal A/CT boundary occurs at 2.4s TWT indicated by white dotted line. The 

Kai formation overlies the Brygge formation which shows significant thickness variations 

throughout the survey area. This formation is thin and becomes partly absent over the HHA. 

The HHA has acted as a barrier for the sediments preventing them to be transported 

towards the west.   

The uppermost 800ms TWT represents the Neogene succession of the Naust formation. The 

significant thickness over the Brygge and Kai formation is mainly due to the high sediment 

deposition rates during the last 2.8 Ma in this area (Rise et al., 2006). 
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4.3.2 Identification of Submarine Slides at the northern escarpment of the Storegga slide 

Potential submarine slide areas within the Naust sediment formation exists at the northern 

escarpment of the Storegga slide. One of the best seismic section showing step-back 

paleoslides within Naust U unit and a recent slide at Naust T unit is presented in Fig. 37 along 

with their features. These slides are characterized by chaotic internal seismic reflection 

patterns with a laterally continuous reflector at the base of the slides, which marks the glide 

plane of the downward moving material (Fig 37). The chaotic masses terminate upslope at a 

headwall at which the sliding ends. Rotated blocks lie near to the headwall where listric 

faults are seen as well (Fig.37). The blocks collapsed at the time of the initiation of the slide 

and converted into chaotic masses after detachment from the headwall moving to a greater 

downslope distance. The topmost sequence of submarine slides occurs at the seafloor (Fig. 

37). 

The mass movement material gives rise to chaotic reflections above a continuous glide plane 

at the base (Fig. 37). The characteristic of such slides have been identified beneath the 

northern escarpment of the Storegga slide (Haflidason et al., 2004). The glide planes are 

normally identified by a continuous, parallel and undeformed reflector which is in contrast 

to the defomed material above it. The escarpments correspond to extensional failure 

surfaces and are similar to extensional faults. The three slides within the Naust formation  at 

the northern escarpment of the Storregga slide show all very clearly a headwall, block 

faulting, chaotic material and relatively short run out distances of approx < 5 km (Fig. 37). 
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Figure 37.  An interpreted seismic section (line) across the northern escarpment of the Storegga slide showing several slides within the NAUST formation with their 

corresponding glide planes and headwalls.  
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4.3.3 Sediment Architecture of slides at the northern escarpment of the Storegga slide 

Sediment architecture describes the internal details of the seismic strata within the Storegga 

slide to infer possible slide mechanisms and processes.  A seismic profile perpendicular to 

the major headwall shows the important morphology of the sediments showing troughs and 

ridges (Fig 38). The troughs and ridges represent the blocky and irregular nature of the slide 

material.  

 

Figure 38. a) Seabed morphology of the study area. b) The northeastern part of the study area showing 

distinctive ridges and troughs on the seafloor. c) The southern part of the study area with widespread ridges 

and troughs. d) Seismic section (indicated in b by sky blue line) through the headwall and blocky material. The 

failed material is indicated in pale yellow. Inset figure in (d) is the enlarged portion of slide mass as indicated by 

a rectangle.  

d 
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The groups of subseabed reflections interpreted as blocks are separated from (Sky blue color 

on inset Fig. 38d). Considering average P wave velocity as 1700m/s (Micaleff et al., 2007), 

the dip of these reflectors on average is 25. The blocks are rhomboid or trapezoid in shape 

with top or base of approx. 220m long. The mean thickness of the block is around 30 ms 

TWT (i.e. 25m considering Vp = 1700m/s).  The blocks morphology is best observed near 

the headwall while it becomes obscured because of the reorientation and further 

disintegration of material at a greater distance. They become also more widely spaced and 

more tilted with greater distance from the headwall. The upslope dipping reflectors for the 

blocks are interpreted as shear planes developed as a result of extension by virtue of its dip 

angle as expected for Mohr Coulomb Failure for these kinds of sediments (Kvalstad et al., 

2005b).  In order to accommodate the material extension, the blocks translated downslope 

so that their surface is steeper than the basal shear surface indicating that the blocks have 

tilted downslope. The observed ridges and troughs are the results of this tilting mechanism 

of the blocks where only their top parts are exposed in stair-case pattern in the form of 

ridges. The greater the distance of movement the greater the extension in the blocks. 

Eventually, spreading of sediments within the northern escarpment of the Storegga slide has 

created ridge and trough morphologies which are discussed in chapter 5.  
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5. DISCUSSION 

5.1 Fluid Migration 

The discussion is based on 3D seismic interpretations to document potential relationships 

between fluid migration, gas accumulation and areas of slope instability. The migration of 

fluid has taken place through polygonal faults pervasive on the top of Brygge and Kai 

formation. Some of these faults have been extended to the base of Naust formation too. 

Some other faults reported within the study area acted as pathways for fluid migration. 

5.1.1 Polygonal faults within the study area. 

The uppermost Brygge and Kai formation in seismic profile show small offset, steeply dipping 

(50-85) normal extensional faults. Time slice reveals these small offset faults a polygonal 

shape in plan view (Fig. 23b, 23c, 24b and 24c) so why are termed as polygonal faults. These 

polygonal faults have different orientation within a seismic profile thereby lacking a 

dominant strike direction (Berndt et al., 2003). Within the study area, these polygonal faults 

occur into two tiers in the uppermost Brygge and in the Kai formations (Fig. 39). In general, 

these faults are found to be bounded within a certain layer suggesting typical properties of 

the material within the sediment formation. Similar layer bound, steeply dipping and closely 

spaced, planar normal faults have been identified by Berndt et al., 2003 at the top of Kai 

formation in most part of the Vøring basin. These layer bound polygonal faults have variable 

extent showing their upper and lower terminations at different stratigraphic level (Fig. 40) 

(Berndt et al., 2003). This variable extension suggests their vertical extent not exclusively 

controlled by the stratigraphy.  

In a seismic profile (Fig. 40), the fault frequency is much higher in the lower part than in the 

upper part of the successions as found by the Berndt et al., 2003 on mid-Norwegian margin. 

Some major faults have cut the whole tier whereas many smaller faults have confined to the 

lower part of the tier and have terminated to a major fault (Fig.39).  

The uppermost Brygge and Kai formation comprise fine grained hemipelagic oozes. The two 

formations are overlain by Plio-Pleistocene glacially derived debris flows of the Naust 

formation and interglacial sediments consisting of contourites (Blystad et al., 1995; 

Rokoengen et al., 1995). Even though the lower Naust formation has different sediment 
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composition than that of Brygge and Kai formation, some polygonal faults have extended to 

lower sequence of Naust formation (Fig. 39 and 40). This kind of extension of polygonal 

faults may be due to the instantaneous compaction caused by the rapid loading of debris 

flow deposits during submarine sliding. This loading might have reactivated the polygonal 

faults within the underlying Brygge and Kai formation and have caused their propagation 

within the base of the Naust formation (Gay and Berndt, 2007).  

 

Figure 39. Seismic section on the middle part of the Storegga slide showing the upper Brygge and Kai 

formations are characterized by numerous polygonal faults terminating at different stratigraphic levels and 

sometimes to major faults at deeper part.  

It is noteworthy to explain here about the origin of polygonal faults within the ooze 

sediments of Brygge and Kai formation. Polygonal faults systems occur frequently in fine 

Polygonal faults 
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grained fill of sedimentary basins (Cartwright and Dewhurst, 1998). Cartwright and Lonergan 

(1996) have suggested that the formation of polygonal fault systems is related to sediment 

contraction and fluid expulsion.  The three possible processes involved in polygonal fault 

development are; 

- Syneresis of colloidal sediments (Dewhurst et al, 1999) 

- Rayleigh-Taylor instabilities caused by density inversions and gravity collapse 

(Watterson et al, 2000) 

- Faulting controlled by residual shear strength and low coefficients of friction (Goulty, 

2001) 

 

During the syneresis process, spontaneous volumetric contraction and fluid expulsion takes 

place (Scherer, 1986; Van Vliet et al, 1991), which causes the mud dominated sediment 

sequence to shrink more (Cartwright and Lonergan, 1996; Dewhurst et al, 1999). The 

amount of shrinkage of a layer of fine grained sediment increases with an increase amount 

of smectite content (Dewhurst et al, 1999). The clayey ooze dominated Kai formation in the 

Vøring basin with high smectite content exhibits a typical shrinkage upon freeze-drying 

thereby creating voids in weak zones (Forsberg and Locat, 2005). Though this process 

initiates at a microscale it may explain the contraction of the mud-dominated Kai formation, 

which caused the formation of normal faults at a large scale. According to Gay et al, (2004), 

polygonal faults are the result of vertical loading.  

5.1.2 Fluid flow through polygonal faults 

Polygonal fault system is widespread within 2400-2900ms TWT down specially including 

upper part of Brygge and Kai formation within the study area (Fig 23a and 40). Polygonal 

fault system within the Kai and Brygge formation sediment itself acts as a source for fluids 

(Berndt et al, 2003). The faults act as fluid migration pathways for pore fluids and fluids 

migrating from deeper parts (Gay et al, 2004). However, the fluid flow indicators are not as 

strong as for other fault systems. A diffusive fluid flow from the polygonal fault system is not 

observable unless fluids get trapped either by less permeable and hydrate cemented 

sediments or by less permeable debris flows (Berndt et al, 2003). Pockets of gas may develop 

with elevated pore pressure and eventually fluids may be expelled episodically, after these 
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pockets exceed the yield strength of the trap. This expulsion causes to form acoustic pipes 

within the seismic section (Fig 25a).  

 

North of the northern escarpment of the Storegga slide fluid-escape features exists. 

Polygonal faults terminate at an area of increased reflectivity layer shown in the seismic 

sections (Fig 40). These layers suggest the accumulation of gas within the pore space of 

sediments. This spatial relationship between faults that cut the fluid/gas rich Brygge and Kai 

formation and local high reflection amplitudes within the Naust unit (Fig. 40) indicates the 

gas escapes from lower units (Brygge and Kai or further deep sources) and migrate upwards. 

Seismic facies with high amplitude anomalies (Fig. 40) has succeeded vertically across the 

debris flow deposits from deeper strata at 2150ms on part A and B to shallower strata at 

1600ms (for part A) and at 1800ms (for part B) in figure 40 suggesting the lateral fluid 

migration within the marine clays until they find a faulted or fractured weak zone. The 

faulted and fractured zone at both part (part A and part B in Fig.40) provide the conduits for 

further upward migration of gas.  

 

 

Figure 40. Lateral fluid migration within the marine clays in a seismic section of 2596 inline into two parts (A 

and B). The extension of polygonal faults has provided the vertical conduits for gas migration from deeper 

source. Faulted and fractured zone on the upper part of the Naust unit forms a fluid escaping pathways to the 

seafloor. 
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Two prominent pipes (Figs. 25a) at the northernmost part of the study area initiate at the 

upper termination of polygonal faults suggesting preferential pathways for fluid migration. 

Buenz et al (2003) considered thermogenic hydrocarbon leakage from deep reservoirs into 

overlying gas-hydrate systems in the uppermost Naust formation through the polygonal fault 

systems (Fig. 41). Deeper fluids are preferentially driven up through the triple junction of 

three contiguous polygonal faults (Gay et al, 2004; Hansen et al, 2005). This interconnected 

network of polygonal faults at the top of Brygge, Kai and Lower units of Naust formation 

allow deeper fluids to migrate upwards reaching to the base of the debris flow deposit in the 

upper Naust formation (Gay and Berndt, 2007) (Fig. 42).  

5.2 Acoustic pipes: 

Acoustic pipe structures are commonly associated with focused migration of fluids (Hustoft 

et al., 2007). Acoustic pipes at the north of the northern escarpment show pull up effects 

(Fig 25a). They may be associated with locally high velocity zones caused by gas hydrate 

plugs (e.g. Hustoft et al., 2007; Westbrook et al., 2008; Plaza-Faverola et al., 2010 and Rajan 

et al., 2012). The termination of some pipe structures beneath the seafloor suggests that 

they are either a paleostructure or they do not possess enough overpressure to reach the 

seafloor (Rajan et al., 2012). As mentioned by Berndt et al., 2003, these pipes have their 

origin above the Kai formation. At the study area the pipes originate from the suggested free 

gas zone within the Naust U unit beneath the gas hydrate zone (Fig 25a and 32). 

5.3 High amplitude anomalies 

High amplitude anomalies are widely distributed at the top of the Brygge formation within 

the study area (Figs.28, 41), which shows reverse polarity (onset figure in fig 41) if compared 

to the seabed. The Kai formation provides a seal for vertical migrating fluids and forms a 

structural trap (Rokoengen et al., 1995; Stuevold et al., 2003; Hustoft et al., 2010). The 

polygonal faults developed in this area provide conduits for the deeper fluids (thermogenic 

gas) migrating upwards to the top of the Brygge formation and accumulated there in the 

form of traps. The transparent zone 300ms below the Brygge top could be caused by 

homogenous sediments and/or by gas, because of frequency decreases due to the presence 

of gas (Fig 41). 
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Figure 41. Accumulation of gas at the top of the Brygge formation (southern part of inline 2400) due to the 

sealing properties of Kai oozes at its top. Polygonal faults throughout this region provide conduits for fluid 

migrating upwards from the deeper thermogenic sources (?). The inset figure shows the reverse polarity as 

compared to the seabed. Transparent zone at the bottom of the figure shows gassy sediment. 

 

The high amplitude anomalies at the crest of the HHA within the study area (Fig 42) may 

represent zones of gas accumulations. These zones occur with polygonal faults below the 

acoustic transparent zones (fig 52) 
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Figure 42. Accumulation of gas at the southernmost limb of the Helland Hansen Arch (HHA). The gases are 

accumulated at the top of the Bryge formation below which transparent zone is distinct. The gas accumulating 

zones are feeding with polygonal faults.  Some polygonal faults have been extended to upper Naust unit.  

A continuous high amplitude negative anomaly is obvious at the top of the Kai formation 

throughout the study area (Figs. 30a, 30c, 41). The Kai formation is composed of ooze-

dominated fine sediments (Eidvein et al., 2007) overlain by Naust formation of highly 

compacted glacigenic debris-flow and slide deposits. Because of this difference in sediment 

properties, acoustic impedance difference at their interface gives rise to high amplitude 

anomalies. Since the acoustic impedance decreases at the interface from Naust to Kai 

formations, negative amplitude anomalies are produced.  

Debris flow deposits contain large blocks or slabs of nearly compact sediments (Gay and 

Berndt et al., 2007). The slide deposits and glacigenic debris flow (GDF) deposits consist of 

stiff material (Dimakis et al., 2000; De Blasio et al., 2004a). GDF deposits are composed of 

unsorted grain-size material distribution and have a higher plasticity index with lower water 

content (Mitchel, 1993) than its surrounding sediments (Gay and Berndt et al., 2007). 

Because of these properties, the glacigenic debris flow deposits act as a seal for trapping the 

upward migrating fluid from deeper levels. The high amplitude anomalies at different 

sections within the Naust sequence (specially within Naust N & A, Naust U and at the base of 

the Naust S unit) can be explained by the impedance contrast between an overconsolidated 

and impermeable thick debris-flow deposit and a gas charged layer beneath it (Fig.32, 33, 

43). 

HHA 
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Figure 43. Seismic section of crossline 8284 nearby the northern headwall showing accumulations of gas within 

different units of Naust sequence. Gas accumulation at the crest of the HHA that liesjust beneath the top of the 

Bryge formation. Gas accumulations within different sections of the Naust unit occur beneath the glacigenic 

debris flow (GDF) deposits. Faults and Acoustic masking zones are the conduits for deeper fluids migrating 

upwards. Yellow arrowlines indicate the direction of fluid migrating upwards into different sections within the 

Naust formation. Large yellow arrow indicates the direction of glacigenic debris flow (from east to west).  

BSR and Gas Hydrate 

BSR is located around 180m below the seafloor by considering the average P wave velocity 

as 1800m/s as suggested by Plaza Faverolla et al., 2010 on the northern flank of the Storegga 

slide. This depth is nearly equivalent to depth (180m) suggested by Andreasson et al., 1990 

and Mienert and Posewang, 1998. A layer of approx. 50-100m (100m suggested by Plaza 

Faverola et al., 2010 and 50-80 m by Buenz et al., 2004 are correlable to this present study 

too) above the BSR shows a slightly higher than normal velocity (1880m/s) refers to the gas 

hydrate. Velocity inversion of approx. 500m/s just below the BSR, as defined by the Low 

Velocity zone (LVZ1), Plaza Faverolla et al., 2010, is attributed to free gas zone which is 

supported by previous work based on shear wave analysis (e.g. Buenz et al., 2004; 

Chapter 5 Discussion



71 
 

Westbrook et al., 2008a). BSR and the LVZ1 with free gas lie within the Naust U unit (Fig. 32). 

The BSR lies at the upper part of the Naust U unit within the contouritic drift deposits at the 

northern part of the study area which provides a favorable environment for the formation of 

gas hydrate. The northern flank of the Storegga slide is the only place on the margin where 

continuous contourite sediments have been built up (Buenz et al., 2003) by S-N oriented 

warm North Atlantic Current (NAC) during interglacial time period. The BSR is quite 

observable for 10km length within the seismic profile where the area is unaffected by 

glacigenic debris flow (Fig 32). This infers that it is not observed other elsewhere in the 

disturbed part of study area. The existence of a BSR north of the Storegga escarpment and 

its extension is geologically controlled by the termination of debris flow deposits (Buenz et 

al., 2003). The presence of debris flow on the margin of south Vøring may hinder gas hydrate 

build-up on south of northern escarpment of the Storegga slide. 

The exact origin of free gas below the BGHS (Fig 32) isn't well understood but it might have 

resulted either from methanogenesis within Naust formation sediments, or from hydrate 

recycling (Paull et al., 1994) or from advection from deeper strata or sometimes 

combinations of all these three processes. Buenz et al., 2003 have suggested that hydrate 

recycling and methanogenesis within Naust formation sediments haven't contributed 

significantly because of its average organic carbon content. Polygonal fault system within Kai 

formation and some of their extension to Naust formation supports the origin of gas at 

deep-seated hydrocarbon reservoir as hypothesized by Buenz et al., 2003. The content of 

water molecule needed for the development of hydrate might have been supplied from the 

expulsion of water during the formation of polygonal faults. 

5.4 Fluid flow impact on Slope failure: 

The distribution of BSR and gas hydrate within the study area has been found north of 

northern escarpment of the Storegga slide and is not found elsewhere down in the disturbed 

area (Fig. 32). This occurrence of BSR and gas hydrate has left a space for discussion to relate 

the gas hydrate and slope failure. Gas hydrate are sensitive to temperature and pressure 

(Mienert et al., 1998; Mienert and Posewang, 1998; Buenz et al., 2003). As a consequence of 

increase in temperature just before the occurrence of Storegga slide, gas released due to 

decomposition of gas hydrate increased the internal pressure and contributed to cause the 
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slope failure (Mienert et al., 1998) along a glide plane on marine clay. The glide plane for 

Storegga slide is 50ms TWT i.e.18.75m by considering the average velocity 1500m/s within 

the sediment. This depth is equivalent to the depth of weak layer  at 19m as described by 

Haflidason et al., 2003 and sultan et al., 2004. The composition of sediments from the 

geotechnical study (liquid limit 35 and clay content 26%) (Sultan et al., 2004) has also 

supported the weak layer sensitive to liquefaction (Andrews and Martin, 2000).  

According to Sultan et al., 2004b the failure interface is initiated at the top of the hydrate 

layer and not at the bottom of hydrate stable zone (HSZ). The glide plane under the headwall 

of the Storegga slide is 100m (assuming Vp = 1800m/s for 110ms TWT hydrate bearing 

sediment, Plaza Faverola et al., 2010) high above the present BSR (Fig. 32) which is supposed 

to be the top of hadrate bearing sediment (Plaza Faverola et al., 2010). This has supported 

the formation of glide plane at the top of the hydrate layer. In addition to this, the melting of 

gas hydrate induces a decrease of hydrate fraction within sediment and generates excess 

pore pressure at the top of the hydrate layer (Sultan et al., 2004b). This excess pressure 

decreases the soil resistance and makes sediments more susceptible to cause failure.  

From the observations made at submarine slides, sediment blocks and elongated ridges are 

indicators of down-slope flow of sediments as observed in many geological settings (Urgeles 

et al., 1997; Laberg and Vorren, 2000; Lastras et al., 2002; Buenz et al., 2005). Potential gas 

accumulations in the area suggest a possible relationship between fluids that leak from the 

reservoir and slope instabilities in the sediment above the reservoir (Buenz et al., 2005).  

The retrogressive nature of the Storegga slide may be a result of excess pore pressure within 

the marine clay (Bryn et al., 2005). Solheim et al., 2005 have outlined the variation of 

sediments, till and glacial debris flows overlying fine grained drift deposits. It is the most 

important prerequisite for the slide development as rapid loading causes excess pore 

pressure in marine deposits thereby reducing effective strength with potential instability as a 

result. Solheim et al., 2005 consider pore pressure build-up and a strong earthquake as a 

possibly process for triggering the slides in the Storegga region. The intensive polygonal 

faults under the slides are considered as indicators to support the developed instability in 

this area.  
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Figure 44. a) 3 slides (Slide S, Slide R and Storegga slide) within the study area are shown in a map of  7 pre-

Holocene slides in the Norwegian continental margin (inset figure). The Storegga slide, Slide R and Slide S are 

marked by red, blue and green lines respectively. Yellow line on the northern sidewall of the Storegga slide 

represents a seismic section shown in Fig b with corresponding three slides. (Figure from Solheim et al., 2005). 

b) Seismic section on the northern sidewall of the Storegga slide showing three slides corresponding to the 

slides in figure (a) within Naust units.  

 

The seafloor morphology from the Ormen Lange area is characterized by three prominent 

headwalls which are associated with three slide stages identified by Bugge et al., 1998. 

Similar to this observation, three headwalls (fig 37, 44b) are clearly visible in a seismic 
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section near the northern sidewall of Storegga slide. The basal shear surface (glide plane) of 

each slide occurs in the fine grained marine clay of contourite currents (Fig 37 and 44) (Bryn 

et al., 2003). Bryn et al, 2003 have considered excess pore pressure development in the 

marine clays, which is enhanced by the rapid deposition of the glacigenic debris flow units 

over the contourite deposits. In fig 37 and 44b, a sub-vertical fault is present just below the 

headwall 2 and 3 which may supply fluid from deeper reservoirs. Small offset of sedimentary 

strata is documented nearby the headwall 3. Some extensional polygonal faults beyond the 

lower Naust sequence (Fig 39) are responsible for driving the fluids into the slide rich Naust 

U unit, which enhances the pore pressure build-up within the sediment and make it more 

susceptible to failure. 

 

The three slides are clearly visible with characteristic features of submarine slides in a 

seismic section on the northern sidewall of the Storegga slide (Fig. 44b). These slides are 

well correlable to three slides (Slide S, R and Storegga slide) provided by Solheim et al., 2005 

on the mid-Norwegian margin (Fig. 44a). The older slide (Slide 3) is correlable to slide S, slide 

2 to slide R and slide 1 to recent Storegga slide (Fig 44a and 44b).  

 

Kvalstad et al., 2005 have presented some simulation results of excess pore pressure caused 

by the rapid deposition during glacial times. Rapid deposition of glacigenic debris flow is a 

potential mechanism that could have driven fluid expulsion from previously overpressured 

shallow gas reservoirs in Nyegga (Hustoft et al., 2010). This upward moving fluid enhances 

the pore pressure within the sediment formation, which makes the sediment sequence 

(within an influenced region) viable to cause slope failure on any sort of strong likely trigger.  

5.5 Spatial Distribution of Spreading 

Ridge and trough morphology found within the Storegga slide are indicative of material 

movements, which can be identified by a repeated extensional pattern orientated 

perpendicular to the direction of mass movement (e.g. Micaleff et al., 2007). 3D seismic data 

GH01 has been analyzed along with published geological information to determine the 

spatial distribution of material spreading within the Storegga slide (fig 45). Mass movements 

are analyzed on the basis of morphology and their internal structure. Within the study area, 

Chapter 5 Discussion



75 
 

we can see spreads and translational slide (Fig 45) along with rotational slides and debris 

flow. Turbidity currents lie towards the west of the study area. Spreads can easily be seen in 

the vicinity of headwalls and further downslope to the central part of the study area (Fig. 

45).  

 

 

Figure 45. Distribution map of various types of mass movements within the Storegga Slide. Study area is 

indicated by dotted polygon. Pink arrows indicate the corresponding points on the seabed. The area bounded 

within white dotted line is spreading, area within yellow line is window, area within red are translational slide 

and are within pink polygon is spreading (Figure modified from Micallef et al., 2007). 

 

Sediment mobilizations are concentrated along the main headwall. The spreading occurs at 

the northern and southern part of the study area (Fig. 45). Translational slide of 80km2 is 

observed at the central part of the study area which has side wall of 48 m high. The upslope 

extent of this translational slide is beyond the study area. Some windows of irregular shape 

are present at the north of the translational slides that expose the underlying basal shear 
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surface. Spreading is mainly caused by extensional processes but some of the ridges and 

troughs are formed by local events of compression. Windows are located downslope of such 

compressional ridges and troughs.  

5.6 Ridge and Trough Morphology 

The spreading of sediment material has created ridge and trough morphology in the vicinity 

of the headwall (Fig. 46a). They are repetitive and parallel to sub parallel to headwall. In 

proximity to the headwall, the ridges are quite continuous and linear and that possesses 

concave downslope structure as found by Micallef et al., 2007 near the eastern headwall 

around the Orman Lange (Fig. 46b). Downslope they are discontinuous and less distinctive. 

While spreading downslope, blocks disintegrate into smaller non-linear discontinuous ridges. 

In some places, they might have been aligned into a convex-downslope pattern similar to the 

pattern found by Micallef et al., 2007 at approx 10km west from the headwall (Fig. 46b). 

Ridges and troughs can be observed within the study area especially on the northern and 

southern part. Some are seen on the central part of the study area too but they are short 

discontinuous and sparse. Ridges and troughs can be observed in water depth down to 

1500m. Just below the northern headwall within the study area the ridge length and spacing 

are around 1300m and 243m respectively and the trough depth is around 10m. Ridges upto 

4 km long are found on the northeastern part of the study area. Ridges on the southern part 

of the study area (Fig. 46c) are widely distributed and some of them are up to 2.5 km long. 

Ridge spacing and trough depth increase with distance from the headwall. The 

morphological change demonstrates that the spreading of blocks undergo increasing 

displacement, deformation, defragmentation and tilting with distance downslope.  
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Figure 46. a) 3D shaded relief map map of seabed showing the ridge and trough morphology near the proximity 

to northern headwall of Storegga slide. Concave-downslope and convex-downslope ridges are noted. Red 

square in fig d represents the fig a. b) Different kinds of ridge system in Ormen Lange area whose location is 

shown in black square in fig d. c) Seabed images showing straight N-S oriented ridges on the southern part of 

the study area whose location is indicated by yellow square in fig d. d) The eastern part of the Storegga slide 

showing the respective location of a, b and c. e) Seismic section as indicated in fig a showing the ridge and 

trough morphology near the northern headwall of the Storegga slide. (Figure b and d from Micallef et al., 

2007). 
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5.7 Present Day Seabed Morphology 

The overall outline of the Storegga slide scar corresponds to a basin-like geometry with a 

320km long headwall along the present day continental shelf break (Haflidason et al., 2005). 

Haflidason et al., 2005 have determined the slope gradients along the failure planes are on 

average only 1.1-1.4. The slope gradients closest to the shelf area are found to be around 

20, in some cases it is up to 45. The area immediately below the slide scar is commonly 

approx.  4 steep. The central slide scar of the Storegga Slide is dominated by blocky debris 

flows and the upper headwall with lateral spreads (Bryn et al., 2005).  

The slide scar within the study area occupies approximately 70 km2. The seabed just above 

the slide escarpment is smooth while below the escarpment it is rough because of the 

presence of blocks and slided debris. The seafloor depth changes by 50-150m down from the 

undisturbed northern part of the slide scar (Fig. 47A and 48A). Several sediment blocks have 

been identified on the seafloor within the Storegga slide (fig 48 A).  The variance map for the 

seafloor (Fig. 48A) has clearly shown several seemingly rectangular blocks and more 

continuous ridge like features. Down the escarpment, these blocks and ridges show a 

staircase-like pattern that is especially visible in the eastern and northwestern sidewall of 

the intact blocks (Fig. 47A). The ridges near the headwalls show less deformation, while they 

got deformed more at greater distances from the headwall. The blocks near the escarpment 

have almost the same orientation and are massive but they are becoming increasingly 

disoriented and decrease in size with an increase in distance from the sidewall.  The 

orientation of the blocks and ridges on either side of the intact blocks are different. The 

blocks or ridges nearby the headwall have an orientation along their long axis E-W but on 

the southern part of the study area they have oriented their long axis almost N-S (Fig. 46C). 

The identified blocks have dimensions up to 50m high and 100m long. The ridges nearby the 

headwall are up to 4 km long and 243m wide while in the southern part of the survey, they 

are 2.5km long. As shown in fig 38, the translational slide on the middle part of the study 

area has formed a channel like feature that is 3840m wide with 48m high sidewall on both (N 

and S) directions. Within the study area two windows exist north of the translational slide 

that clearly show the basal shear surface of the slide. At the lower window, one can notice 

some irregular shaped sized blocks.  
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The southern seafloor within the study area is very rough because of the sediment spreading 

from the eastern headwall of the Storegga slide. Sediments seem to have been moved and 

trends along N-S at present. The direction of movement is E-W. The orientation of ridges or 

blocks is perpendicular to the direction of movement (Fig. 38). 

 

 

Figure 47. A display a depth-map of the northern part of seafloor of survey GH01 with prominent 

morphologies. B display a seismic section as indicated in A showing northern escarpment, intact blocks and 

ridges. 
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Figure 48. A) Display a variance map of seafloor showing northern part of the survey GH01 with clear 

indications of ridges and blocks beneath the northern escarpment. B and C display the seismic sections as 

indicated in A showing morphology and features underneath. 
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6. CONCLUSIONS 

 

 3D seismic data and the use of petrel software allowed visualizing and mapping fluid 

migration pathways, gas accumulation zones and the impact of fluid flow on slope 

failure on the northern flank of the giant Storegga slide.  

 Potential fluid migration has taken place vertically through polygonal faults and 

acoustic pipes and laterally along permeable strata.  

 A high density of layer bound polygonal faults exists within 2400-2900ms TWT (within 

Brygge and Kai formations) with small fault offsets of 20 ms TWT, steep slopes of 

50-85 and an average spacing of 1km.  

 Laterally narrow (20-200m wide), elliptical to circular (in plan view) acoustic pipes are 

found north of northern flank of the Storegga slide that provide conduits for vertical 

fluid migration. Roots occur between 1600-1700ms TWT and the upper terminations 

at various stratigraphic levels but within Naust formations or at the seabed resulting 

in pockmarks.  

 The accumulation of fluids in different units of  the Naust formation are inferred to 

be the result of trapping of upward migrating fluid beneath impermeable  glacigenic 

debris flow deposits.  

 The continuous high amplitude anomaly at the top of the Kai formation is the result 

of an acoustic impedance difference at the interface between sediments of different 

physical properties.  

 The three identified slides (two consecutive slides in Naust U units and one slide in 

Naust T unit) at the northern flank of the Storegga slide have their basal surface in 

marine sediments suggesting excess pore pressure built up during rapid sediment 

loading by glacigenic sediments on top. 

  The three slides show all a very clearly Common features of the three mapped slides 

are a headwall, block faulting and chaotic material with relatively short run out 

distances of < 5km.  

 Based on the investigations fluid flow appears to be not solely responsible for the 

slope failures but the presence of faults down the headwall of each slide may 

indicate the role of fluid migration on cracking slope failure. 
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