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Abstract

Graphic Processing Units have during the recent years evolved into inexpensive
high-performance many-core computing units. Earlier being accessible only by
graphic APIs, new hardware architectures and programming tools have made
it possible to program these devices using arbitrary data types and standard
languages like C.

This thesis investigates the development process and performance of image and
video processing algorithms on graphic processing units, regardless of vendors.
The tool used for programming the graphic processing units is OpenCL, a rela-
tively new specification for heterogenous computing. Two image algorithms are
investigated, bilateral filter and histogram. In addition, an attempt have been
tried to make a template-based solution for generation and auto-optimalization
of device code, but this approach seemed to have some shortcomings to be usable
enough at this time.
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Chapter 1

Introduction

1.1 Background

The computing world is moving towards parallel computing and hardware, not
only for computational demanding areas like weather forecasts but also to ap-
plications that exist on consumer handheld devices. Conventional central pro-
cessing units (CPU) are reaching the limits for how high the clock frequencies
can go, and the current trend is to increase the number of cores on each CPU to
achieve higher computational throughput. For developers of operating systems
and their applications, utilizing all available cores in the best way possible is
not a trivial task, and during the last years there has been an increasing number
of tools and frameworks intended for easier development of parallel code. This
goes for both shared-memory systems like multi-core processors, where there
are tools like Intel Parallel Studio®, but also for commodity hardware clusters,
like Google’s Mapreduce [15] and its derivatives.

As the CPU has been having trouble keeping its clock frequency growing and
have added more cores to compensate for this, the graphical processing units
(GPU), which have always been parallel hardware made for real-time 3D ren-
derings, have evolved into devices that may also be programmed and used for
general-purpose computing like scientific calculations.

Being driven by the home gaming market means that GPUs have become com-
modity hardware and has resulted in high availability and a very low price
compared to other specialized pieces of hardware. Thus a GPU can be seen
as a very cheap parallel supercomputer, and scientists have been interested in
finding out how this processing power can be harnessed. The graphic rendering
pipeline have gone from a fixed-function to a more programmable pipeline, at
first allowing developers to customize rendering behaviour, but also being uti-
lized by programmers for doing general computations. As GPU hardware has
evolved, so has the software solutions and programming APIs.

The purpose of this thesis is to investigate image and video processing tech-
niques and programmability on the GPU. Issues like video encoding is not in-

lhttp://software.intel.com/en-us/intel-parallel-studio-home/
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vestigated, the focus is raw image and video frames. We will also look into
the current advantages and disadvantages of utilizing the GPU for this domain,
since the graphic processing techniques originally intended for the GPUs are
not equivalent to the algorithms and techniques utilized for image and video
processing.

1.2 Problem definition

This thesis goal is to explore some image processing algorithms and how they
behave on the GPU versus a traditional CPU implementation, regarding both
performance and the implementation process. The image processing algorithms
used must be a selection that uses different memory access patterns like local
neighbourhood iterations, reduction and scatter/gather.

We emphasize programmability of GPUs regardless of vendors. This means that
there must be taken different code approaches to get optimal performance on
different hardware. To achieve the independence of different vendors and for
best and easiest programmability this thesis have focused on OpenCL as the
programming framework for GPU computing.

1.3 Project context

This thesis is written in collaboration with Tandberg ASA.

1.4 Outline

The rest of the thesis is organized as follows. Chapter 2 describes the back-
ground and motivation for general-purpose GPU programming along with cur-
rent programming techniques. Chapter 3 contains image processing concepts
and definitions of the implemented algorithms. Chapter 4 gives a brief intro-
duction to OpenCL concepts needed to understand the rest of this thesis’ work.
The test systems are listed in Chapter 5 along with the measurement tech-
niques used, followed by Chapter 6 containing the algorithm implementation
descriptions. The development process of GPUScribe, a template-based code
generation system for GPU code is described in Chapter 7. Chapter 8 contains
related work followed by discussion in Chapter 9. In Chapter 10 we conclude
our work.



Chapter 2

General-purpose GPU
programming

2.1 Overview

The original purpose of the graphic processing units has been to increase perfor-
mance of real-time 3D rendering. During the recent years, GPUs have had a re-
markable increase in processing power measured in raw computational through-
put. This has been motivated by a market that have needed ever faster GPUs
for many purposes like gaming and real-time visualizations of new buildings or
city plans. The performance increase have been huge with CPUs too, but the
raw computing capabilities have increased most on the GPU. Figure 2.1 and 2.2
shows the recent evolution of computing capabilities in gigaflops and memory
bandwidths of the CPU and GPU.

Figure 2.3 shows the transistor layout of a modern CPU and GPU. The actual
number of transistors on these two chips are not very different. The main
difference is that most of the GPU transistors are used for strict computation
while much of the CPU transistors are used for caching, branch prediction,
out-of-order execution optimalization during runtime and other things that has
become part of the optimizing pipeline for a general-purpose processor. The
reason to this evolution is that the graphic processing units have evolved to do
one thing well, and that is to run the needed graphic rendering pipeline at high
throughput, containing many parallel operations that are totally independent
of each other. Thus, one can say that the GPU excels at data-parallel problems.

Much material and resources for general-purpose gpu computing can be found
on the website gpgpu.org'. As introduction material they recommend some
survey articles [32,33] and some other articles for information on programming
models and the underlying GPU hardware [16,25]. Another good resource for
understanding GPU technologies is found in [24].

Currently there are two dominating hardware vendors in the field of general-
purpose GPU computing — nVidia and AMD. Of these two, nVidia has had the

1Last visited May 2010
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Figure 2.2: CPU and GPU memory bandwidth. nVidia corporation [29]

strongest focus on gpgpu issues when developing their hardware and software,
that has lead to their success of CUDA (see Section 2.3.1) for gpgpu computing.
nVidia have also had the best drivers available for systems other than Microsoft
Windows. AMD, formerly known as ATI before they was acquired by AMD, has
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Figure 2.3: CPU and GPU transistor layouts. nVidia corporation [29]

had its hardware development focus primarily on gaming for the Windows plat-
form. They are also into the gpgpu market with their ATT Stream Technology,
targeting both CPU and GPU development for Windows and Linux platforms.

2.2 Limitations

The gpu is a specialized, highly parallel architecture. It is however not suitable
for all parallel programming techniques, like setting up a pipelined workflow or
using parallel primitives like a producer-consumer queue. In addition, debugging
GPU code can be hard or require some special techniques.

One can say that the term general-purpose GPU computing in itself is some-
what misleading, since the GPU is not very well suited to do general-purpose
computing. For an algorithm to run efficiently on a GPU versus on the CPU,
it must be data-parallel as it is, or be rewritten to a data-parallel version. The
original quicksort algorithm is for instance not suited for the GPU, but has been
made into a version, GPU-Quicksort [13], suited for GPU computing.

2.3 Programming techniques

Until recently it has not been that easy to utilize the power of the GPU for
general-purpose programming issues. It started with the programmable shaders
that could be customized by graphic developers to alter steps in the default
rendering pipeline, at first vertex and fragment shaders. This was also used
for general-purpose programming, but then the input data had to be camou-
flaged as graphics and the final output data was also represented as graphics.
nVidia released their CUDA SDK (see Section 2.3.1) in early 2007 that allowed
a general-purpose C-style programming of their hardware.

Below are given descriptions of some of the tools currently available with short
descriptions. Figure 2.4 shows the current techniques and where they are in
the landscape considering level of abstraction and portability between differ-
ent devices and/or vendors. Note that HLSL and DirectCompute (both part
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of Microsoft DirectX) are only available for the Microsoft Windows operating
system. The other systems are available to more platforms, see Table 2.1 for de-
tails. GLSL can also be used on other X window systems besides Linux. nVidia
has drivers available for FreeBSD and Solaris.

4 Vendor specific

PTX assembly
Ati CAL/IL CUDA

Py
-

Low level High level

OpenCL GLSL
DirectCompute HLSL

. Microsoft Windows only

O Multi-platform Neot vendor specific

Figure 2.4: Current GPGPU programming languages

Table 2.1: Platforms supported by gpgpu tools

Tools Microsoft Windows | Linux | Mac OS X
CUDA, PTX Assembly X X X
OpenCL X X X

Ati CAL, Ati IL X X

GLSL X X X
HLSL X

All these programming tools are rather similar, meaning that when one is fa-
miliar with one of them and have gotten the head around programming in a
very data-parallel fashion, it is not hard to understand and use the others.
An exception may be when a graphic programming framework, like OpenGL or
Direct3D, is used for gpgpu computing, since they have quite different program-
ming styles? and everything happens in a graphic context. In Figure 2.4, GLSL
and HLSL are placed at high-level tools since the GPU code written using these
languages is device agnostic, hence not needing detailed knowledge of the host
GPU.

20penGL is a state machine and Direct3D is not.
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The tools intended for gpgpu programming consist of host code running on
CPU and separate code snippets that are compiled for the current system’s
GPU. The host code orchestrates allocation and deallocation of memory buffers
on the GPU, executing programs and copying data to and from the device.
None of these tools are really high-level, and none of them is as easy to program
as making a standard C program on the CPU. There are however frameworks,
utilizing tools like CUDA and OpenCL, giving higher abstractions at the cost
of fine-grained optimalization. More details and comparisons on the basic pro-
gramming model is found in Chapter 4. Descriptions of some of the higher level
tools available are found in Chapter 8.

2.3.1 CUDA

CUDA is nVidia’s proprietary system for doing gpgpu computation and it has
been a great success and has been put to use for many different scientific dici-
plines. Reasons for this may be among others:

e [t was the first high-level programming environment using a familiar, C-
style syntax for code that should run on the device itself, supporting ar-
bitrary data types.

e It provides good debugging tools (see Section 4 for details).

e Every CUDA device has a CUDA compute capability number, giving de-
velopers information about what exactly the device can do and how to
best optimize the code for the device available.

For more details on CUDA, see [29].

2.3.2 Ati CAL

CAL is short for Compute Abstraction Layer. This is AMD’s proprietary sys-
tem for doing gpgpu computations on their GPU hardware. The host code
is equivalent to the one used in CUDA, but the device code must be written
in model-specific assembly or using the ATI Intermediate Language (see Sec-
tion 2.3.5 ). See [19] for more details about Ati CAL.

2.3.3 OpenCL

This is an open and royalty-free standard for performing heterogenous comput-
ing. It was initiated by Apple and is now maintained by the Khronos group.
This is the main tool used in this thesis for programming GPUs so it is given a
more throughout description in Section 4. The programming models of OpenCL
and CUDA are quite similar, except that OpenCL also has support for task par-
allel programming and is made for running on many different kinds of devices,
not just GPUs. Its specification can be found in [27].
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2.3.4 DirectCompute

This is part of Microsoft’s DirectX 11 API, and is available only on the Win-
dows platform. It allows gpgpu programming on all DirectX 10 and 11 capable
devices.

2.3.5 Other

The shader languages GLSL and HLSL are also used for gpgpu computing.
GLSL was introduced as a core part of OpenGL version 2.0, and is working
on many devices and operating systems. It has been much used for gpgpu
computing, but this may be less common with the release of OpenCL. HLSL is
equivalent to GLSL, but being part of Microsoft Direct3D makes it only available
for the Microsoft Windows platform.

Both nVidia and AMD have their own low-level, intermediate gpgpu languages,
respectively PTX assembly [31] and Ati IL (intermediate language) [18]. None
of these represent actual opcodes on GPU hardware. The benefit of having these
languages is easier compiling from high-level languages for different generations
of devices. The actual translation from PTX assembly to GPU machine code
is probably done by the graphics driver, but this issue is not documented by
nVidia.
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Image Processing

3.1 Introduction

Image processing issues discussed in this thesis is on uncompressed frames only.
This means that we are not interested in optimizing things like jpeg image
encoding and decoding, and in the case with video we do not investigate things
like the H.264 video encoding standard. We limit the scope to the processing of
raw pixel data, preferably at such speed that we can use the techniques for real-
time video processing at high frame rates. Examples of such filter applications
are

e Color transformations, like sepia and grayscale.

e Sharpen and blur effects.

e Dynamic range processing.

e Removing transform coding artifacts, also called deblocking.

e Image statistics, like histogram and median value.

We are also interested in interframe processing algorithms, meaning algorithms
that uses several sequential video frames to produce a single output frame. This
is for instance done in video encoding, which is outside the scope of this thesis,
but can be used for other problems like noise removal, as shown in [11].

From [22] we can read:

FFT, convolution, and histogram are three important kernels that
form the building blocks of many image processing applications. Op-
timizing these kernels will provide performance benefit to all appli-
cations that utilize them.

FFT (Fast Fourier transform) is kept outside this thesis’ scope, but we will in-
vestigate and implement histogram and bilateral filters, described in Section 3.3.
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Bilateral filters are by definition not convolutions, but stencils which is a super-
set of convolutions.

An in-depth introduction to the area of image processing can be found in [6].
Note that these slides are intended for signal processing students and require
some mathematical knowledge like fourier transformations and complex analy-
sis. It is also a benefit being MATLAB proficient to fully understand all exam-
ples.

3.2 Image representations and color spaces

In this thesis, images pixels are represented by uncompressed RGBA or RGB
pixel values. The symbol A denotes the alpha channel, used for describing a
pixel’s transparency. This can be used when having several layers of images on
top of each other, making them blend correctly. It can also be used to exclude
parts of an image from being visible, for making special effects. In this thesis’
work the alpha channel is not being considered and images are always fully
visible.

The RGB color space is a linear, additive, device-dependent color space. Each
value is usually represented as unsigned integers in the range from 0 to 255,
giving a total color depth of 3 -8 = 24 bits. Different color examples are shown
in Table 3.1. Being a device-dependent color space means that a specific color
will not look identical on all monitors or printers, and the percepction of the
color may vary depending on background lightning.

An example of a device-independent color space is SRGB, described in [39].

Table 3.1: RGB color examples

Color Red | Green | Blue
Black 0 0 0
White 255 255 255
Yellow 255 255 0
Dark green 0 100 0

Color space transformations done related to work in this thesis is done by ex-
ternal libraries. Interpretation of jpg image files into RGBA arrays are for
instance done by Mac OS X libraries. When reading from video formats, the
needed transformations are done by gstreamer plugins. Compression standards
for video and image data tend to use color spaces that are better suited for
compression, based on human perception and efficient encoding and decoding,
like YCpCg.

One issue related to color perception done manually in this thesis is finding a
pixel’s intensity based on its RGB values. The intensity I is calculated by

I=03R+0.59G +0.11B (3.1)

10
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This is the same method used for calculating the Y value when converting from
RGB to YCgCgr. Note that the weights have a total sum of 1.

3.3 Image processing algorithms

To test different techniques, some filters have been examined in detail. Below
are descriptions of these filters and what makes them interesting for gpgpu
experimentation.

3.3.1 Bilateral filter
Basic definition

The bilateral filter was originally introduced in [41]. Exploration of bilateral fil-
ters was chosen because they are based on local neighbourhood calculations and
have many application areas. The bilateral filter is by definition not a convolu-
tion, as wanted in Section 3.1, but a stencil, that is a superset of convolutions.
They are however both using local neighbourhood calculations.

A nice introduction to bilateral filters is found in [36]. To understand bilateral
filters it is best to know the basic gaussian blur. A gaussian blur filtered image,
GB, is defined below. Equations are from [36]. The notation I, means the
image value at position p. The entire spatial domain of the image is denoted
by S, meaning every possible pixel position. Spatial distance between pixel
positions p and q is given by ||p — q||.

GB[I]p =Y Go(llp —al)lq (3-2)

q€eSs

where G is the gaussian kernel:

1 _ =2 . .
G(z) = We 207 1 dimension (3.3)
22442
G(z,y) = ! e 3ot 2 dimensions (3.4)
T 902

Since the area of interest is 2-dimensional images, equation 3.4 is used as the
gauss kernel in this context. The gaussian blur gives a smooth blur effect without
any disturbing artifacts.

The difference from bilateral filtering to gaussian blur is that the bilateral filter
also take into account the intensity of each of the surrounding pixels when
calculating the current pixel’s weight. The result is that we have a filter that in
practice is a gaussian blur with edge detection. Note that the image intensity
threshold can be adjusted on the filter, say be set so large that the bilateral
filter behaves just like the gaussian blur.

The definition of the bilateral filter, BF', is

1
BF|lp = 7 3 Go.(
q€eS

Ip—al)Go, (Ip — Ig|) g (3.5)

11
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where W is a normalization factor, given by

Wy = Xgagxnp—qn)%(up—Iql) (3.6)

In this case, |I, — I4| denotes the intensity difference between the pixels at
positions p and q. The function Gy, is given by Equation 3.3 and G, is given
by Equation 3.4.

It is common practice to ignore neighbour pixels that are more than 2 spatial
standard deviances away since their weight become negligible, thus the filter
kernel size is directly dependent on the spatial standard deviance (o5). The
algorithm definitions are originally meant for gray scale images, but can be
used on color images too by either running the algorithms separately on each
color channel or calculating each pixel’s intensity using Equation 3.1. How the
filter was actually implemented to run on the GPU is explained in Section 6.2.1.

An example of the effect of gaussian blur and bilateral filter is shown in Fig-
ure 3.1. Notice that the bilateral filter example (Figure 3.1c) is a mostly blurred
image, but edges like the whiskers and eye of the cat are preserved. Changing
the values of o, and o5 will give different results.

Applications
The bilateral filter has many applications (from [36]):

e Denoising

e Texture and illumination separation, tone mapping, retinex and tone man-
agement

e Data fusion

e Three-dimensional fairing

Variants and optimizations

The bilateral filter defined above is known as the brute-force variant. A dis-
advantage of this implementation is that the algorithm order has complexity
O(n?), dependent on the spatial standard deviation .

Because of its many applications there has been done much research on al-
ternatives for implementing the bilateral filter and other edge detection algo-
rithms [7, 8,14, 35,37,42,43]. These approaches are interesting, because they
introduce data structures and concepts useful for image processing applications
that are not so easily mapped to the current memory- and programming models
of graphics hardware. Examples are the use of KD-trees [8], bilateral grid [14]
and permutohedral lattice [7]. Implementing a tree structure on GPU is cur-
rently a challenge, since there is no such thing as C’s malloc function for dy-
namic memory allocation during runtime and the GPU hardware is not very
efficient at accessing small data-structures that are not aligned sequentially in
its global memory. There has been done research on issues like real-time kd-tree
generation [44] and parallel hashing [9] performed on graphics hardware.

12
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3.3.2 Histogram

Definition

int h64[64];
int h256[256]; // all array values must initially be set to 0

for (pixel in image) {
i = intensity (pixel);
h64[i >> 2] += 1;
h256 [i] += 1;

Listing 3.1: Histogram examples

Listing 3.1 shows a pseudocode implementation of two image histograms with
64 and 256 bins. This implementation assumes that the intensity function in
the code returns a value in the range 0,255. Notice that to get the correct bin
counter increased in the 64-bin histogram, the intensity value is divided by 4 or
bitshifted 2 positions to the right. This code example only uses the intensity of
a pixel, but it is also possible to have separate histograms for each of the three
RGB color channels.

In short, the histogram is a statistic collection keeping the occurency count
of each colors intensity level, or specific ranges of intensity levels. How the
histogram was implemented on the GPU is shown in Section 6.3.1.

Applications

When working with digital images, the histograms are very valuable image
statistics that can give information like amount of contrast and whether a pho-
tograph is under- or overexposed. When applied on a video stream from a
camera, the histogram can given information about needed compensations for
brightness and contrast.

13
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OpenCL

4.1 Overview

OpenCL is a framework made for doing heterogenous computing across different
devices like CPUs, GPUs and other hardware. It was initiated by Apple and
the specification and header files was released Desember 2008 [5]. The specifi-
cation has had some updates since then, see [27] for the currently latest one.
The OpenCL specification is maintained by the Khronos Group', an industry
consortium that also maintain other open standards like OpenGL and WebGL.

Although GPU computing is the most emphasized usage of OpenCL, it is unlike
the other tools described in Section 2.3 not only intended for GPU computing.
It can be used to orchestrate and run code for CPU, GPU and also other devices
that supports the OpenCL specification. Examples are the IBM Cell processor
and Intel Larrabee. The OpenCL specification supports both data-parallel and
task-parallel programming paradigms. This thesis focuses on GPU computing,
that is suited for the data-parallel paradigm, but the task-parallel features of
OpenCL can be used nonetheless, as explained in Chapter 9.

The first implementation made public was as part of Apple’s new operating sys-
tem Snow Leopard, being released August 2009. Since then, other major vendors
like nVidia and AMD has made OpenCL a part of their gpgpu programming
frameworks for general-purpose GPU computing.

The following parts og this chapter describes the parts of OpenCL being nec-
essary to understand the remaining chapters of this thesis. The specification
document for OpenCL is 308 pages, so this is a brief description of the con-
cepts and programming models it supports. Being only a specification, it is the
hardware vendor’s responsibility to provide correct OpenCL support for their
devices according to the specification.
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Host
Platform Platform
[ \

Figure 4.1: OpenCL architecture

4.2 Architecture

Figure 4.1 shows the architecture of OpenCL. The host is the entity that controls
and orchestrates everything, using OpenCL API calls. If the current system has
several OpenCL implementations available, like if using both an nVidia and an
AMD card, these implementations are represented as different platforms. This
was not a part of the initial specification, but became a part of it at a later time
and is now supported by both nVidia and AMD’s implementations. Before this
standard was implemented, the host could ask for the current system’s GPU
devices directly, but now it has to query each platform respectively about its
devices.

4.3 OpenCL devices

The architecture of an OpenCL device is shown in figure 4.2. It has a finite
number of compute units with 1 or more processing elements and each compute
unit has its own memory, only visible to the processing elements.

In Listing 4.1 is given the output of nVidia’s device query example that is
bundled with the CUDA developer SDK. This shows that this device has 30
compute units. It also shows information about nVidia-only attributes like the
number of CUDA cores, telling us that this device has 20 = 8 processing

30
elements for each compute unit.

Ihttp://www.khronos.org/
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OpenCL

Compute unit 1 Compute unit N

Processing
elements

Shared memory | | Shared memory

Global memory

Figure 4.2: Conceptual view of an OpenCL device

Device GeForce GIX 295

CL_DEVICE NAME: GeForce GTX 295

CL DEVICE VENDOR: NVIDIA Corporation
CL DRIVER VERSION : 195.36.15

CL DEVICE TYPE: CL_DEVICE TYPE GPU

CL DEVICE "MAX COMPUTE " UNITS: 30

CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS: 3
CL_DEVICE_MAX_WORK_ITEM_SIZES: 512 / 512 / 64
CL_DEVICE MAX_WORK_GROUP SIZE: 512

CL_DEVICE MAX_CLOCK_FREQUENCY: 1242 MHz
CL_DEVICE ADDRESS BITS: 32

CL DEVICE MAX MEM ALLOC SIZE: 223 MByte

CL_DEVICE_GLOBAL_MEM _SIZE: 895 MByte
CL_DEVICE_ERROR. CORRECTION SUPPORT: no
CL_DEVICE LOCAL MEM TYPE:  local

CL_DEVICE LOCAL MEM SIZE: 16 KByte
CL_DEVICE_MAX CONSTANT BUFFER SIZE: 64 KByte
CL DEVICE QUEUE PROPERTIES:

CL_QUEUE_OUT_OF_ ORDER_EXEC MODE_ ENABLE
CL_DEVICE_QUEUE_PROPERTIES: CL_QUEUE_PROFILING ENABLE
CL_DEVICE IMACE_SUPPORT: 1
CL_DEVICE_MAX READ IMAGE ARGS: 128
CL_DEVICE_MAX_ WRITE IMAGE ARGS: 8
CL_DEVICE_SINGLE_FP_CONFIG : INF—quietNaNs round—to—nearest

round—to—zero round—to—inf fma

CL_DEVICE IMAGE <dim> 2D MAX WIDTH 8192

2D MAX HFIGHT 8192
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3D MAX WIDTH 2048
3D_MAX_HEIGHT 2048
3D MAX DEPTH 2048

CL_DEVICE EXTENSIONS: cl _khr byte addressable store
cl _khr icd
cl _khr gl sharing
cl _nv_compiler options
cl nv_ device attribute query
cl _nv_pragma unroll
cl_khr global int32 base atomics
cl _khr global int32 extended atomics
cl_khr local int32 base atomics
cl _khr local int32 extended atomics
cl_khr_ fp64

CL_DEVICE_COMPUTE_CAPABILITY NV: 1.3

NUMBER OF MULTIPROCESSORS: 30

NUMBER OF CUDA CORES: 240

CL_DEVICE_REGISTERS PER_BLOCK NV: 16384

CL_DEVICE_WARP_SIZE_NV: 32

CL_DEVICE_GPU OVERLAP NV:  CL TRUE

CL_DEVICE_KERNEL, EXEC_TIMEOUT NV: CL_TRUE

CL_DEVICE_INTEGRATED MEMORY NV: CL_FALSE

CL_DEVICE_PREFERRED VECTOR WIDTH <t> CHAR 1, SHORT 1, INT 1,
LONG 1, FLOAT 1, DOUBLE 1

Listing 4.1: nVidia GTX 295 device information

4.4 Programming model

To execute programs on the GPU, a source file containing OpenCL device code
must be compiled with a just-in-time compiler using the host APIs, similar to
the technique used by GLSL. This program is called a kernel. To run it in
the GPU, a n-dimensional kernel has to be invoked, and this can be 1, 2 or 3
dimensional. Visualizations of the kernel dimensions are shown in Figure 4.3,
4.4 and 4.5. A kernel consists of work items, equivalent to threads, divided in
work groups.

The OpenCL programming model supports both task- and data parallelism.
Example of a data-parallel OpenCL kernel is shown in Listing 4.2. This code
is run by every thread. The get_global_id(0) function tells this work item
its index in the first dimension, making it address the correct input and output
values.

__kernel void (_ _global float xinput_ values, _  global float =x
output values)

{
int i = get global id(0);
output values[i]| = input values[i] * 2;

}

Listing 4.2: OpenCL basic kernel
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workgroup 0  workgroup 1 workgroup 2 workgroup 3

DDod oy bood oogd

Figure 4.3: 1-dimensional NDKernel

Note that it is not possible to dynamically allocate memory in an executing
kernel. All kernel memory allocations are statically allocated at compile time.

4.5 Data types and functions

The common datatypes from the C language are supported. In addition they
are available in vector version of length 2, 4, 8 and 16.

Many of the functions in the OpenCL programming language work with different
vector lengths, or just scalar variables.

Using the vector datatypes can make the code more readable, but it it also good
to achieve optimization. If the code is compiled with x86 as target device, this
can result in code using the SSE or new AVX instruction set in the machine
code. The ATI optimization guide [21] says programmers should use float4
instead of float on code for both the CPU and GPU.

4.6 Optimalization issues

Both AMD and nVidia have released guides on how to optimize OpenCL code
for their GPUs [20, 21, 28|.

Floating point computational throughput is the great strength of GPUs, and
is preferred over integer arithmetics. There are however hardware accelerated
integer functions like mad24(a,b,c) that calculates a*b-+c, where a*b is 24-bit
integer division.

The x86 architecture implicitly does a great deal of hardware optimalization
through branch predictions, out-of-order executions and utilization of its cache
hiearchy. Knowledge of the cacheline length can be a benefit for the developer
for instance when manually optimizing multithreaded code, so many concurrent
writes to the same cachelines are avoided.

When programming for graphic processing units, much utilization of the mem-
ory hiearchy must be done manually by developer. One thing is correct place-
ment of data to the correct memory locations, but also important with both
nVidia and AMD is using optimal methods for writing and reading to and from
both local and global memory. How to do this is explained in the programming
guides from Ati and nVidia [20, 30].
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Figure 4.4: 2-dimensional NDKernel

4.7 Image processing techniques

When using OpenCL the developer has the choice of representing images plain
C-style arrays or using OpenCL’s image2d_t datatype. There are benefits of
using the image2d datatype for the purpose of image processing:

e Image reads are optimized for 2-dimensional spatial locality.

e The image datatype handles what is returned when reads happen outside
of the image bounds.

e Images are stored in the GPU’s global texture memory, meaning that it
also utilizes the texture cache.

As can be seen from this list, many of these benefits are implicitly using features
of the GPU hardware that are not possible to use with C-style arrays, like the
texture cache. The benefits of having images in C-style arrays are:

e No need to use special functions to access pixels.

e Can represent pixels using arbitrary color spaces.
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Figure 4.5: 3-dimensional NDKernel

e Image support is not always available for any given device

The color spaces supported by OpenCL are only linear RGB variants that are

device dependent, but it is of course possible for vendors to make extensions

that support more color spaces.
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Methodology

5.1 Test systems

During the work on this thesis, three different test systems have been used for
development and testing, shown in Table 5.1, 5.2 and 5.3. Test system I is a
MacBook , and test systems II and III are desktop workstations.

Table 5.1: Test system I

CPU Intel Core 2 Duo @ 2 GHz
Operating System | OS X Snow Leopard
System Memory 4 GB

GPU nVidia GeForce 9400m

Table 5.2: Test system II

CPU Intel Penium 4 @ 3.2 GHz
Operating System | Ubuntu Linux 9.04 64-bit
System Memory 1 GB

GPU nVidia GTX 295

Table 5.3: Test system III

CPU Intel Core 2 Duo @ 2.66 GHz

Operating System | Ubuntu Linux 9.04 64-bit

System Memory 6 GB

GPU nVidia GeForce 88000GT, ATI Radeon HD 5850

The theoretical memory bandwidths of the different GPUs are shown in Ta-
ble 5.4. This bandwidth tells us how fast the cards can move data internally
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and can be of help while optimizing kernels. The GTX 295 card has two identi-
cal chips, hence the 2x before the bandwidth number. The memory bandwidths
when transferring data from host to the GPUs over the PCI bus is not a part of
this number. When utilizing the GPUs, the PCI data transfer is an expensive
process and should be kept at a minimum. It is however possibly, as long as the
driver supports it, to move data asynchronously over the PCI bus as a kernel
executes. The nVidia 9400m shares its memory with the host, and that may be
the reason to why no memory bandwidths number was given. These numbers
are collected from the specification websites of the various cards.

Table 5.4: GPU memory bandwidths

GPU Memory bandwidht (GB/sec)
nVidia GTX 295 2x 111.9
nVidia 8300 GT 57.6
nVidia 9400m ?
ATT Radeon HD 5850 128

It was not physically possible to have the nVidia GeForce 8800 GT and AMD
Radeon HD 5850 cards in test system III’s cabinet at the same time. The ATI
card was not available for use until february 2010. Initial tests on system III
were done on the nVidia GeForce 8300 GT and later it was replaced with the
ATT card. Therefore some test data is not available for the 8800 GT card.

5.2 Measurement technique

This thesis’ focus is the development process for optimizing GPU kernels, so the
main interest for measurements is the execution time of individual kernels. The
measurements were done by using the profiling option in OpenCL, which can
return 4 different timestamps for every event that is placed in a profiling-enabled
queue. These are when the event was placed in a queue, when it was submitted
to the device, when the execution started and when the execution finished. We
only used the timestamps for when the execution started and finished. Initially,
some test loops were run to see if these values could be trusted, and it seemed
so. It was probably a benefit using this technique since the test systems were
so different, regarding CPU architectures and mainboard characteristics.

When a kernel using approximately 5 milliseconds is run on an idle machine,
the results of several simulatenous runs with identical input data is +- 100
microseconds. Since this variance is so small, only the average time of 5 runs is
shown in the results.
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5.3 Calculating theoretical and effective memory
bandwidths

When optimizing code it may be hard to know if there is reason to tweak the
code further than it already is. Analyzing code and counting how many flops
the code has can be time-consuming and unprecise, unless there is some profiler
programs that can do this during runtime. A good guide when optimizing
is the effective memory throughput achieved versus the theoretical maximum
bandwidth possible on the given hardware. The following formulas are found
in [28].

If specifications for the hardware is available, the maximum theoretical band-
widht is

lock rate (Hgz) . memory interface width
bandwidth (GBs) — Jemory clock rate ( 13)9 8 (5.1)

When using DDR (double data rate) RAM, as current GPUs do, this number
must be calculated by 2 (see [28, p. 13]), giving the new equation

9. memory clock rate (HZ) . memory interface width

bandwidth (GB/s) = 109 8 (5.2)
The effective bandwidth can be calculated by
Effective bandwidth (GB/s) = ((B, + B,,)/10°)/elapsed time (5.3)

where B, are number of bytes read and B,, are number of bytes written.

These examples define a gigabyte as 10? bytes. In [28], there is no clear definition
of wheter a gigabyte is defined as 10° or 10243 bytes, as long as users are concise
of which one is used.
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Algorithm implementations
and observations

6.1 Overview

This chapter will describe how the brute-force bilateral filter and histogram,
described in Section 3.3, were implemented and optimized. In addition, we
will describe how the bilateral filter was applied on videos in real-time using
gstreamer [3].

While developing the filter kernel code, we had a jpg test image with resolution
1280x720. This can also be representative for a single frame in a video stream.
Two utilities were made for OS X. The first one read and parsed an image file
and then wrote the raw data buffer to a file. This tool supports all image types
supported by the NSImage class, which are all the common formats. The other
tool read the data buffer from disk and created a tiff image file that were saved
to disk. The raw image buffer were saved to disk as a plain bitmap as showed in
Figure 6.1, where each value is an unsigned byte in the range [0,255]. The first
pixel in the file is the pixel in the upper left corner of the image. Each image
row is written sequentially, so the last portions of the file is the lowest pixel row
in the image. The saved file holds no metadata like image size or color space, so
that must be known outside the file. When saving a 1280x720 image this way
we get a file that has a size of 1280 - 720 - 4 = 3686400 bytes.

First pixel
R|G|B A)R cle|A

Figure 6.1: Bitmap representation saved to disk
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For experimenting on the OpenCL kernels, a Python utility were written using
the PyOpenCL! library. This library is a Python wrapper for OpenCL, and
makes it easier to write the OpenCL code in a more Pythonic way. Some
benefits are:

e There is no need to check return values. Exceptions are thrown in case of
errors.

e Allocated GPU resources are automatically garbage collected.

e Setting kernel arguments and running the kernel is done in one call,
OpenCL uses one call for setting each kernel argument.

In this way the host code could quickly be adjusted to new kernel versions during
development. PyOpenCL read the plain bitmap buffer from disk and copied it
to the GPU. After the execution on the GPU, the results were copied back to
the host and written to file. The implementatino correctness, as long as there
was no runtime errors or syntax errors in the device code, had to be checked
manually by controlling the output image.

For measuring the kernel performance, we used the profiling option when making
the OpenCL command queue. After the kernel run, we asked the kernel event
about its profiling information, more specifically the timestamps for when the
kernel started and stopped the execution.

Although the nVidia GTX 295 contains two GPUs, only one of them are utilized
by the OpenCL kernels in this thesis. The OpenCL specification has the option
to set execution offset numbers when invoking kernels, so in theory two kernels
with different offsets could have been executed on each GPU. The specification
states that this is a not supported issue yet, but it is not tested whether any
of the implementations used support them. This approach would have needed
another handling of memory transfers too, since the two GPUs on the GTX 295
do not share any global memory at all.

6.2 Bilateral filter

6.2.1 Implementation

The bilateral filter is described in Section 3.3.1.

To initially implement the bilateral filter, we just wrote Equation 3.5 as an
OpenCL kernel. This implementation is shown in Listing 6.1. The difference
from the equation is that we do not use neighbour pixels more than 2 standard
deviances away. Since we used the Image 2D type as input argument, no extra
logic were needed for handling reads outside the image bounds. This is implicitly
handled by OpenCL according to the image sampler definition, named s in the
code. The kernel was run with a 2-dimensional NDKernel with work group size
equal to the image size, thus each thread’s result was only one output pixel.

lhttp://mathema.tician.de/software/pyopencl
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__kernel void bilateral filter (
~_read only image2d t input,
__write_only image2d t output,
float spatial sigma,
float range sigma)

{
const sampler t s = CLK_NORMALIZED COORDS FALSE |
CLK_FILTER_NEAREST | CLK_ADDRESS CLAMP TO EDGE;
int x get global id(0);
int y get global id(1);
int spatial end point = (int) (spatial sigma * 2);
float4 divisor = (float4)(255.0f);
uint4 origo color i = read imageui(input, s, (int2)(x,y));
float4 origo color = native divide(convert float4 (
origo color i), divisor);
int i,j;
float4 weight, tmp color;
uint4 tmp color i;
float4 new color = (float4)(0.0f);
float4 normalization factor = (float4) (0.0f);
normalization factor.w = 1.0f; // To avoid divide—by—zero
error.
for (j = — spatial end point; j <= spatial end point; ++j) {
for (i = — spatial end point; i <= spatial end point; ++i)
{
tmp color i = read imageui(input, s, (int2)(x—i,y—j));
tmp color = native divide(convert float4 (tmp color i),
divisor);
weight .x = exp(— (pown(fabs(tmp color.x—origo color.x)
,2) / (2*pown(range sigma,2))) — ((pown(fabs ((float
)i),2) + pown(fabs ((float)j),2)) / (2+pown(
spatial sigma ,2))));
weight .y = exp(— (pown(fabs(tmp color.y—origo color.y)
,2) / (2*pown(range sigma,2))) — ((pown(fabs ((float
)i),2) + pown(fabs ((float)j),2)) / (2+pown(
spatial sigma ,2))));
weight .z = exp(— (pown(fabs(tmp color.z—origo color.z)
,2) / (2*xpown(range sigma,2))) — ((pown(fabs ((float
)i),2) + pown(fabs ((float)j),2)) / (2%pown(
spatial sigma ,2))));
normalization factor += weight;
new color += weight * tmp color;
}
new color /= normalization factor;
new_color.w = 1.0f;
tmp color i = convert uint4 (new color % 255.0f);
write imageui(output, (int2)(x,y), tmp color 1i);
}

Listing 6.1: Bilateral filter, initial device code
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Then the following steps were done to optimize the implementation:

e Division was done using the native_divide function.

e The initial implementation calculated each color plane separately, result-
ing in 3 weights and 3 normalization factors. This was changed to have
just 1 weight and 1 normalization factor for the entire pixel. To get this
correct, each pixel’s intensity was calculated using Equation 3.1.

e The gauss constants for spatial and intensity ranges were calculated once
at startup and sent as arguments to the kernel.

e The intensity constant weights were quantized into a lookup table with 11
elements.

e All pixel values and intensity values for each work group and the needed
surrounding neighbourhood were stored in the local memory.

e The inner loop was manually unrolled.

e Different work group sizes were tried. Using the two-dimensional work
group with size 16 - 16 = 256 gave often best results.

Using only one color plane and quantizing the intensity difference weights will
affect the filter’s final result, but can be adequate for many purposes. Figure 6.2
shows two output images of the bilateral filter run with a kernel size of 21x21
and intensity sigma 0.25, one version using one intensity per pixel and the other
version using all color channels. Note that the pixel values must be converted
from unsigned chars to floats and back upon reading and writing from the
image. This is due to that the image is defined with UNSIGNED_INT8 as the
color channel type. With nVidia, using the read_imagef function on this image
type returned 0.0, so read_imageui had to be used instead. This is correct
behaviour according to the OpenCL specification.

The fast local memory is a limited resource, so when it is utilized the work
group size and the amount of local memory available must be taken into con-
sideration. For experimentation, the bilateral filter implementation using the
local memory for optimization was hand-tuned for the nVidia GTX 295 that
has a local memory size of 16 kB2. It was also hardcoded for a filter kernel size
of 9x9. Before calculations were performed, the threads should do the readings
from global to local memory. In addition, it should read 4 pixels outside the
work group’s own pixel area. The work group size was set to 16-24 = 384, then
the whole area read has size (16 + (4-2)) - (24 + (4-2)) = 24 - 32 = 768. Since
768 is the double of 384, all the local memory values is filled in two operations
by each thread. A float uses 4 bytes of storage and the values stored in local
memory are red, green, blue and intensity, thus this will need 768 -4 -4 = 12288
bytes total, that is below the 16 kB boundary.

2This is the local memory size on all nVidia cards prior to the Fermi architecture
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(a) Bilateral filter, separate color calculations

(b) Bilateral filter, not separate color calculations

Figure 6.2: Comparison of intensity treatment using the bilateral filter

__kernel void

bilateral filter all optimizations (
~_read only image2d t input,
__write only image2d t output,
float spatial sigma,
float range sigma,
__constant float xspatial constants,
__constant float xrange constants,
int spatial box width,
int spatial end point,
__local float intensities[32][24],
__local float red[32][24],
~_local float green[32][24],
__local float blue[32][24]

Listing 6.2: Bilateral filter optimized kernel declaration
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The fastest running kernel declaration is shown in Listing 6.2. Notice that the
local memory arrays are defined as 2-dimensional arrays in the kernel code, but
the host code just sets these kernel arguments as local memory buffers with
size of 32 - 24 = 3072 bytes. The nVidia compiler handles the necessary two-
dimensional arithmetic when table lookups are done. This array declaration
worked faster than using a 1-dimensional array and manually doing the lookup
like this:

[Value = array|y * width + x|; }

The mad24 function was also tried:

[Value = array [mad24(y,width,x) |; ]

but did not work faster than the two-dimensional declaration. Pointers to point-
ers is not allowed in kernel arguments by the specification, but in this case nVidia
has some smart table handling involved under the hood. It is worth noticing
that the two-dimensional array declarations worked fastest on nVidia, but is not
allowed by the Ati compiler that was tested later when the ATI card became
available. It seems that the Ati compiler only tolerates pointer declarations as
kernel arguments, not arrays.

During this work it became clear that small code changes could have a rela-
tively large impact on performance compared to when programming for the x86
architecture. This may be due to more mature compilers and behaviours of the
x86 processor.

Not all optimalizations could be run on every device. The GeForce 8800 GT
could not handle the version where the code were manually unrolled. The run-
time just gave an out-of-resources error, so it probably lacked enough registers
or code capacity on the compute units. It was the same case with the nVidia
9400m card. The Ati card did not accept the array arguments, so it could not
run the local memory optimized version. In addition, Ati did not support using
image datatypes until April 2010, and then there was not found time to rewrite
the arithmetics of the code.

6.2.2 Results

Table 6.1: Bilateral filter runtimes

Vendor | Model Time
nVidia GTX 295 4.8 ms
nVidia Geforce 8800 GT 14 ms
nVidia 9400m 200 ms
Ati Radeon HD 5850 8.2 ms
Intel Core 2 Duo, 2 GHz 24

Table 6.1 shows the achieved execution times after optimization. These runtimes
are on a picture with dimensions 1280x720. The OpenCL code was also run a
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Intel Core 2 Duo using OS X Snow Leopard. Both cores on the CPU are utilized,
but it is not checked if any SSE vector instructions are used. For comparison,
the initial implementation in Listing 6.1 had a runtime of 440 ms on the nVidia
GTX 295, so the optimization steps achieved a speed up factor of approximately
100.

6.2.3 Discussion

The usage of GPUs seems beneficial for image processing algorithms performing
local neighbourhood calculations (stencils). By comparing the CPU runtime to
the fastest GPU runtime achieved we see a speed up factor of % = 500.
Comparing by the slowest GPU runtime give a speed up factor of Fi00 =12,

which is also a good result.

An image of size 1280x720 contains 1280 - 720 - 4 = 3686400 bytes of data, also
counting the alpha channel. Thus, total number of bytes read from and written
to global memory is 2 - 3686400 = 7372800 bytes. The effective bandwidths
achieved are listed in Table 6.2. These values are far from the theoretical max-
imum bandwidhts from Table 5.4. The reasons for this must be the 9x9 kernel,
forcing 81 iterations with multiplications, addition and several reads from local
memory. We know that the float addition and multiplication operations are
cheap on GPU hardware, but the impact of just unrolling the inner loop (not
documented) was quite large, so the iterations are expensive. The latest nVidia
OpenCL release® has a #pragma unroll preprocessor directive, probably for a
good reason.

Table 6.2: Bilateral filter effective bandwidths

Vendor | Model Effective bandwidth (GB/s)
nVidia GTX 295 1.54
nVidia Geforce 8800 GT 0.53
nVidia 9400m 0.04
Ati Radeon HD 5850 0.90

Processing more than one pixel per thread were not tested. Using any of the
optimization approaches from Section 3.3.1 could have given better results.

6.3 Histogram

6.3.1 Implementation
The definition of a histogram is in Section 3.3.2. We implemented code that
collected three 256-bin histograms, one for each color channel.

A histogram is a sort of reduction operation, except that the memory areas, or
histogram counters, that must be accessed is dependent of the input values. This

3As of May 2010

33



Chapter 6

makes it harder to implement a histogram than a reduce function on a GPU,
because we either need support for atomic writes, or each thread must start
working on a thread-private histogram. The behaviour when several threads
add values to the same local memory address simultaneously is not specificed.*

The implementation is dependent on two extensions:

e cl_khr_global_int32_base_atomics

e cl_khr_local_int32_base_atomics

These extensions make it possible to do atomic addition, subtraction, increase,
decrease and memory exchange on global and local memory respectively. The
extension for global-memory atomic functions is found on all GPUs used in this
thesis, but the atomic local-memory functions are only available on the nVidia
GTX 295 and ATI Radeon HD 5850.

The implementation uses work groups with size 256, same as the number of
bins in the histogram. There were made versions using both the conventional
buffer and the image type. The conventional buffer version was a 1-dimension
NDKernel with work-group size of 256. The image version used a 2-dimensional
NDKernel with workgroup size 16x16. Every workgroup has its own local his-
tograms. The code for the image version is shown in Listing 6.3.

4nVidia later released an OpenCL histogram version, using knowledge of hardware be-
haviour to implement a version with write conflicts. They knew that only one of the conflicting
threads would make a successful memory transaction.
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__kernel _ attribute  ((reqd work group size(16,16,1)))

void histogram256 image_version(__read only image2d t input,
__global uint histogram r[256],
__global uint histogram g[256],

_global uint histogram b[256],

_local uint partial histogram r[256],

__local uint partial histogram g[256],

__local uint partial histogram b [256]

)

const sampler t s = CLK NORMALIZED COORDS FALSE |

CLK_FILTER NEAREST | CLK ADDRESS CLAMP TO EDGE;

int x = get global id(
int y = get global id(
int 1x = get local id(
int ly = get local id(
int lwidth = get local size(0);

int tid = mad24(ly ,lwidth ,1x); // calculating local id

DE
DE
E
)

)

0
1
0
1

/* Resetting local memory */
if (tid < 256) {

partial histogram r[tid] = 0;
partial histogram g[tid] = 0;
partial histogram b|[tid] = 0;

}
barrier (CLK LOCAL MEM FENCE) ;

uint4 origo color = read imageui(input,s,(int2)(x,y));

atom inc(&partial histogram r[(uchar)origo color.x]);
atom inc(&partial histogram g|[(uchar)origo color.y]);
atom inc(&partial histogram b [(uchar)origo color.z]);
barrier (CLK_LOCAL MEM FENCE) ;

/* Copying from local memory to global memory */

atom add(&histogram r[tid], partial histogram r[tid]);
atom add(&histogram g[tid], partial histogram g[tid]);
atom add(&histogram b[tid], partial histogram b[tid]);

Listing 6.3: Histogram code, image version

We also made two other code versions where each thread processed more than
one input pixel. The conventional buffer version processed 4 pixels per thread,
and the image version processed 2 pixel per thread. This was achieved by modi-
fying the code and reducing the global work size accordingly. The image version
could not have a version using 4 pixels per thread. Then the 2-dimensional global
work size would be

(imageQWidth’ imagtheight> _ (122807 7;“) — (640, 360) (6.1)

and this was not possible with a work group size of 16x16, since 16 does not
divide 360. Altering the work group size may not be so smart since image reads
often are hardware optimized for 2d spatial locality.

The worst-case scenario of this implementation is if the input image has all
identical pixels, leading to queues on the corresponding memory elements banks.

35



Chapter 6

A small C program was made to compare the GPU runtimes with a CPU version.
An unsigned char array, representing an RGB image, is created and filled in
with random values in the range [0,255]. This was run on an Intel Core 2 Duo
2GHz. It ran only a single thread.

6.3.2 Results

The achieved runtimes for the different histogram versions is shown in Table 6.3.
It is only run on the GPUs that support the required c1_khr_local_int32_base_atomics
extension. The execution time of the CPU program was 3328 ps.

Table 6.3: Histogram runtimes

GPU Image datatype | Pixels per thread Time
nVidia GTX 295 Image 2D 1 3305 us
Ati Radeon HD 5850 | Image 2D 1 1388 us
nVidia GTX 295 Buffer 1 3439 us
Ati Radeon HD 5850 | Buffer 1 1862 us
nVidia GTX 295 Image 2D 2 2101 ps
Ati Radeon HD 5850 | Image 2D 2 599 us
nVidia GTX 295 Buffer 4 3431 ps
Ati Radeon HD 5850 | Buffer 4 1551 us

6.3.3 Discussion

The runtimes show no significant differences in execution times. The single-
threaded CPU version is as fast as the buffer versions, but all the image versions
run faster. It is clearly a benefit utilizing the image datatype for this thesis’
domain. The highest speed up factor is approximately 5, so it may not be worth
the cost of PCI data traffic unless the histogram kernel is one of many kernels
of a GPU image processing pipeline.

Altering the image could have given other results. An all white image would
lead to many sequential instead of parallel writes. This was not tested.

The reason for the high speed on the CPU may be that CPUs are optimized
for low latency, while GPUs are optimized for processing sequential memory
elements with high computational throughput.

There is a glHistogram function available in OpenGL, but according to [38] it
is not hardware-optimized by nVidia.

6.4 Gstreamer visualization

By using gstreamer [3] it was possible to visualize the bilateral filter developed
with OpenCL in real-time. Gstreamer has a pipelined architecture, making it
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possible to make multimedia applications in an easy way. See [12,40] for more
details.

To utilize the GPU with gstreamer, we used the gst_plugins_gl package that
consists of several OpenGL plugings that perform image processing on the GPU.
The filters are implemented using GLSL. We rewrote a plugin and its Makefiles
to make it utilize OpenCL in addition to OpenGL.

For development, we used the existing glfiltersobel plugin and redefined
many of its callback functions. All gstreamer plugins consist of initialization
and finalization code. When intializing the plugin we created an OpenCL con-
text. The video input to the effect plugins in the gst_plugins_gl package is an
OpenGL framebuffer object that exists in the GPU memory. To make this work,
we used the OpenGL/OpenCL sharing APIs that was implemented by nVidia at
this time.®> On every frame, the plugin used the clEnqueueAcquireGLObjects
call to aquire the framebuffer object from OpenGL. On the first frame, an
OpenCL 2-dimensional image object was made, the same size as the framebuffer
object. This was necessary since reading from and writing to the same image
is not allowed by OpenCL kernels. This image object was used on every con-
secutive frame. To apply the filter, two kernel executions were necessary. The
first one, called identity , copied the acquired framebuffer object to the OpenCL
image object, and the second one applied the filter kernel, reading from the tem-
porary image object and writing the result back into the acquired framebuffer
object. When the OpenCL kernels were finished, c1EnqueueRelaseGLObjects
were run, handling the object back to OpenGL.

Instead of using the identity kernel for copying, the function c1EnqueueCopyImage
was tried but did not work. This have probably not lead to any noticeable per-
formance loss.

Our custom OpenCL filter was placed
in the gstreamer pipeline, as can be
seen in Figure 6.3. The pipeline does
the following steps (according num-
bers are in the figure):

1 filesrc

2 qtdemux

1. Read the video from file.

demux.video_00

2. Separate video and audio from
the Quicktime container (this
example uses quicktime movies).

queue

3 decodebin
3. Select correct codec and decode
the video stream 4 |fmEcocsionbecs
4. Do necessary color space con- queue
version.
5 glupload
5. Transfer the stream to the
GPU. 6 OpenCL filter
6. Apply custom filter, all process- . —— !

ing done on the GPU.

5December 2010

Figure 6.3: Gstreamer pipeline
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7. Show the result on screen.

The audio stream, if existent, is ig-
nored. Note that the pipeline is only
using already existing elements, ex-
cept for the filter that was custom
made for utilizing the interoperability
between OpenCL and OpenGL. The
purpose of the queue elements is to
force the use of multiple threads. They behave as producer-consumer queues,
and forces the entire pipeline to spawn several threads. The pipeline in Fig-
ure 6.3 has 2 queue elements, making it use a total of at least 3 threads, more if
any of the plugins spawns more threads. This gave a much better result, prob-
ably since the video visualization was run on a Linux machine with a quad-core

processor. The GPU was an nVidia GTX 260.

By using gstreamer it was quite easy to visualize the result of applying filters
to video in real-time. In addition, it was not necessary to write a dedicated
application to set up the pipeline and plugin attributes. Gstreamer has a utility
called gst-launch that can be used to run arbitrary pipelines from the command
line using the current system’s available gstreamer plugins. This is done by the
command showed in Listing 6.4. Using gst-launch was also very beneficial for
debugging purposes while developing the OpenCL plugin.

gst—launch filesrc location=<filename> ! gtdemux name—=demux
demux.video 00 ! queue ! decodebin ! ffmpegcolorspace ! queue !
glupload ! glopenclfilter spatial std dev=2 intensity std dev
=0.25 ! glimagesink

Listing 6.4: Using gst-launch to run a gstreamer pipeline

GStreamer is implemented using glib%, hence utilizes the GLib Object System.
This is a library that allows object-oriented programming in C, but more similar
to Objective-C than C++. These objects support introspection, making it
possible to ask an object about its properties. Every gstreamer plugin is a
GObject, and by using the gst-inspect utility from the command line, it is
possible to see all properties of a plugin, like the media types it is expecting as
input and output streams and which color spaces it supports. When a gstreamer
pipeline is initialized, for instance by gst-launch, the plugins negotiate with the
neighbours about stream media types and adjusts their input and output types
accordingly. If two consecutive plugins can not agree about the data stream
format, this is reported as an error and the pipeline can not be initialized. It is
also possible to set plugin attributes, as showed with the glopenclfilter plugin
in Listing 6.4. This means that if the OpenCL code for the filter kernel is written
correctly, no filter attributes or video resolutions have to be hardcoded. If no
attributes are set, the plugin’s default values, defined by the plugin developer,
are used.

The result was that we had the bilateral filter applied to a video with resolution
1280x720 and frame rate of 24 fps running smoothly. When applied to a video

6http://library.gnome.org/devel/glib/
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with the same frame rate and resolution 1680x1050 the result was not quite as
good and some frames were lost. We tried to set this up with videos at frame
rates of 30 and 60 fps, but they were not encoded and hence very large, so the
hard drive could not read fast enough from disk. These videos were made for
testing the noise reduction capabilities of the bilateral filter. We heard that
lossy encodings of the video would implicitly remove the noise, so we tried to
use gstreamer to encode the video using a lossless coding algorithm but this was
not successful. Using a live camera feed was not tested.

6.5 Observations

During the initial implementations, some issues became apparent. The OpenCL
implementation with OS X Snow Leopard was just released when this thesis’
work started, and it became obvious that these were new and immature imple-
mentations. These issues are worth mentioning because it has to do with code
portability. The initial implementations were initially done on Snow Leopard,
and later moved to nVidia and AMD compilers.

6.5.1 Compiler behaviour

For instance

float4 weights = (float4)(0.3f, 0.6f, 0.1f, 1.0f);
result = weights / 3.0f;

worked with Snow Leopard compiler, but not on nVidia. Then had to use

float4 weights = (float4)(0.3f, 0.6f, 0.1f, 1.0f);
result = weights / (float4)(3.0f);
which work on all tested implementations. Another example is using
[77c0nstant float gauss weights [HEIGHT | [WIDTH] ]
instead of
[77constant float *gauss weights }

as kernel argument was fastest on nVidia cards, instead of having to manually
calculater the index of an 1-dimensional by using mad24 () function. This does
not work with the Ati compiler.

The initial compiler that was shipped with Snow Leopard also gave very bad
error output, sometimes nothing at all even if the faults were plain syntax errors.
This complicated the development process.

6.5.2 Driver updates
Most of the image processing was done using OpenCL’s image_2d data type.

How good this was implemented varied. At one point, the nVidia drivers were
updated leading to that the bilateral filter used one third of the earlier runtime.
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The implementation provided by Apple on Snow Leopard changed the number
of compute units on the nVidia 9400m from 16 to 2, without changing the driver
version number. These numbers may be due to the fact that nVidia hardware
have 8 stream processors in each compute unit.

6.5.3 Debugging

Code debugging can be hard. When a kernel runs on the GPU, it is not possible
to set breakpoints in the code. This is possible on CUDA, and CUDA also has
a function cuPrintf that can be used in the code running on the GPU that
prints status messages to the console. To have some sort of debugging, we had
a global array in the device’s memory where we had one thread responsible for
storing debugging status variables. When the kernel was finished executing, this
array was read back from the GPU and printed out by the host application.
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GPUScribe

7.1 Motivation

The results from chapter 6 shows that utilization of graphic processing units can
achieve great speedups for some image processing applications. The work needed
to achieve this also showed that optimalization tuning had to be manually done
by the developer according to his or her hardware. After talking to people who
are developing image processing logic for a living at Tandberg ASA it became
clear that there should be a better way of testing and developing filters without
having to do so much manual tweaking. In addition, it should be easy to find
out exactly what are the strengths and weaknesses of the hardware that the
developer is currently working on and what the device support.

It is important to have in mind that usage of the GPU is not intended when
developing the algorithms for image or video filtering, but it is supposed to be
a implementation tool for achieving best possible runtimes of already defined
algorithms. Thus the filter development can be done in for instance MATLAB,
using its Image Processing Toolbox. The purpose of our tool is to help port
these filters for execution on the GPU, and we are always interested in having
the fastest possible runtime. This means we want to have a result that can be
easily put into a C or C++ program, or a C/C++ utility library that can be
part of the system. The reason for not considering languages like Java is that the
specification and OpenCL host calls is made for and implemented in C, and can
be used also in C++ code directly. When not using any language bindings we
get all features available for each implementation. Wrappers like PyOpenCL can
lead to that we miss some features of the available implementations, like some
of nVidia’s proprietary extensions that are not defined in the official OpenCL
specification. Mail correspondences with the author of PyOpenCL made it
obvious that this was a deliberate choice.

At the time when this devlopment process started, there were no tools for auto-
optimizing code for devices from different vendors. There were projects for
nVidia CUDA, like Qilin [26], hiCuda [17] and PyCUDA [23], but no projects
that auto-optimalized code for GPUs from different vendors.
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7.2 Wanted features

The algorithms mentioned in Section 3.3 give us some hints about what we need
for making a system for helping develop image filters in general, especially if
we want to take benefit of the optimizations and data structures used by the
examples in Section 3.3.1. The scope of this solution was limited to only help
optimize the kernel code, since those are the building blocks that have most
impact on execution time.

This was the wanted functionality:

1. The system should optimize OpenCL kernels for the current system’s hard-
ware, GPUs only.

2. Kernels should be annotated or have templates that would help generate
the optimal code.

3. The tool had to be usable from a C or C++ context, so it could be used
for running code at highest possible performance.

4. There may be need for special data-structures, like a hash table imple-
mentation for using the permutohedral lattice [7]. We can assume that
these data structures will be frequently updated in-place or rebuilt from
scratch, maybe for every frame in a video stream.

5. The kernels may need several input frames for interframe processing.
6. Should be able to optimize chaining of image filters.

7. It should be possible to represent images both as OpenCL 2D images or
normal arrays.

8. Must be able to generate filter constants, like a convolution filter matrix,
or define such constants in another way. These constants must either
be used as __constant arguments to the kernel or be hardcoded in the

generated code.

9. Test variants of generated kernels with representative test data and use
the one with the best runtime.

7.3 Implementation

7.3.1 Initial framework

The intention was to make GPUScribe a tool with expandable template func-
tionality, focusing only on the OpenCL device code. For a clean syntax, it was
considered making GPUScribe as a code generator converting from Python code
to OpenCL device code, using the Python abstract syntax trees, but this was
considered being a too complicated task for the remaining time.!

1An implementation working this way, Clyther [1], was later made public late April 2010.
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A bottom-up approach was taken on the development. At first were made some
microbenchmarks that tested various characteristics of the current hardware.
The following issues could be measured/tested:

e The effect of using vector load and store functions.
e Effective bandwidht, using identity kernels.

e The effect of using asynchronous copies between local and global memory.
This is supported by the OpenCL specification, but not necessarily by the
current device.

e The effect of using the prefetch function, if any.
e Give each thread more work, like outputting four pixels instead of one.

e Speed benefits from using hardware native functions, will then lose the
IEEE-754 compliance.

e Effects of using different build options.

e Effects of loop unrolling.

e Effects of using pinned memory for data transfers between host and device.
e Effect of reading from image2d datatype versus using a normal array.

e Effect of different access patterns for global memory reads and writes.

e Concurrent kernel support.

e Whether using normalized coordinates affects performance.

e Effect of having consecutive reads from the same pixel, using the read_imagef
function.

Because of the remaining timeframe, the code was written using PyOpenCL
instead of using the native OpenCL calls directly from C or C++. This was
due to the neeed amount of text processing and template processing where
Python has an advantage of the language itself and many template frameworks
compared to C. After having seen at several templating systems for Python,
Jinja2? was chosen.

The procedure followed by GPUScribe is as follows:

1. Input is a template file, should be support for other intermediate data
buffers.

2. Find GPU devices on the system.
3. For each device:

(a) Run microbenchmarks and save the results.

%http://jinja.pocoo.org/2/
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4. Process template file according to results from step 3a, if possible in several
versions.

5. Do test runs of the different versions.

6. Pick the fastest version from step 4.
In this way, GPUScribe was an open-ended tool where the available templates
and necessary microbenchmarks could be added as they were developed. In

addition, being able to use the Jinja2 template system in a OpenCL kernel file
could be an advantage in itself.

7.3.2 Template functionalities

Filter chain

Figure 7.1: Example of pixel aggregation with a filter chain

In many real-life applications, image processing is done by running several filters
sequentially. Running several iterations with one filter can also give wanted
effects.

With the success of using the OpenCL image datatype for image processing,
a filter chain helper was made. Its behaviour is illustrated in Figure 7.1. The
purpose is to run several image filters as parts of the same kernel, thus saving the
overhead needed for invoking several kernels. An example template file is given
in Listing 7.1. This approach resulted in functions automatically knowing from
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where they should read their input pixels and filter constants are calculated
by Python and hardcoded in the generated output code. We tried to make
it possible to run several iterations of the same filter, but this was not made
possible. This approach give a depth-first traversion of the functions called,
begin a benefit because of the texture cache utilization.

-~
{% macro gauss_const(x,y,spatial sigma) —%}
{{ (1.0/(2.0 % numpy.pi * spatial sigma=xx2)) * math.exp(—(((x]
abs)*x2+ (y|abs)xx2)/(2*spatial sigma=xx2))) }}
{%— endmacro %}
{% set spatial sigma = 2 %}
{% set blurFilter = Filter (’gaussian_ blur’, filter size=(9,9)) %}
{% set grayFilter = Filter (’grayscale’) %}
{% set filterChain = FilterChain (blurFilter ,grayFilter) %}
inline float4 gaussian blur(__read only image2d t source image,
const sampler t s, int2 coord)
{
float4 sum = (float4)(0.0f);
int2 tmp_coord;
{% for x,y in blurFilter.point list %}
tmp coord.x = coord.x + ({{ x }});
tmp coord.y = coord.y + ({{ v }});
sum += {{ blurFilter.get pixel(’source image’, ’s’, ’
tmp coord’) }} % {{ gauss const(x,y,spatial sigma) }};
{% endfor %}
return sum;
}
inline float4 grayscale(__read only image2d t source image, const
sampler t s, int2 coord)
{
float4 pixel value = {{ grayFilter.get pixel(’source image’, ’s’
, ’coord’) }};
float intensity = native divide(pixel value.x 4 pixel value.y +
pixel value.z, 3.0f);
return (float4)(intensity ,intensity ,intensity ,1.0f);
}
/* Main kernel that run the filter chain %/
__kernel
void imageread gen vec test(_ read only image2d t input image,
__write_only image2d t output image)
{
const sampler t s = CLK NORMALIZED COORDS FALSE |
CLK FILTER NEAREST | CLK ADDRESS CLAMP TO EDGE;
int idX = get global id(0);
int idY = get global id(1);
float4 res = gaussian_blur (input image, s, (int2)(idX,idY));
// TODO: Autogenerate this function call!!
res.w = 1.0f; // just in case...
write imagef(output image, (int2)(idX,idY), res);
}
Y,

Listing 7.1: Filter chain template example
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7.4 Discussion

Only one template functionality is not much, and the syntax shown in Listing 7.1
feels quite chaotic and is not very helpful. The filter chain worked, but it did
not feel like a helpful tool. In addition, it does not use any of the collected
hardware profiling information.

The problem with GPUScribe was the bottom-up approach to the design and
implementation. When the GPUScribe development process started, there was
not chosen a template engine and there were not defined any syntax definitions
initially that could have been guiding this process. In this way we could have
discovered at an earlier point that this was not a good idea needing further
investigations. In addition, the difference found in the OpenCL implementations
from Ati and nVidia were not known at the point when this process started, as
the Ati card was not yet available. The template-based approach we tried had
too may things outside of its control and too many possibility permutations
for optimizing code, in addition to a lacking system to verify correctness of
the generated output, compared to any of the other output alternatives. Often
there are tradeoffs between optimalization and correctness of the result. The
bilateral filter implementation, for instance, used only one value representing
the intensity of a pixel instead of using calculating on the RGB color channels
separately. This approach gave a result we could accept while reducing the total
number of needed calculations.

Too much time was also used trying to solve running several iterations of the
same filter.

Functionality that could have been implemented is using arbitrary data types, as
discussed in [23]. Another functionality could have been to input a convolution
matrix and auto-generate the code performing the convolution, maybe checking
first if the convolution is separable and if so, optimize accordingly.
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Related work

Much related work was published during the work on this thesis, due to general-
purpose GPU computing being a popular research area at the current time.
These are tools for utilizing GPUs in various ways:

e Runtime frameworks using CUDA: Qilin [26], PyCUDA [23] and hiCUDA
[17].

e Sample programs bundled with the SDKs from Ati and nVidia.
e GAtlas [2], auto-optimization of linear algebra routines for OpenCL

e CLyther [1], generating OpenCL code from Python using abstract syntax
trees.

e GpuCV [10], GPU implementation of OpenCV.
e FCUDA [34], generates FPGA code from CUDA.
e Core Image, part of Mac OS X. Implicitly using GPUs.

e Intel Ct [4], data-parallel runtime development framework. There are
plans for future GPU support using OpenCL or GLSL.!

Thttp://www.youtube.com/watch?v=hX-ectOgAso
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Discussion

This chapter is an overall discussion of this thesis’ work. The discussions re-
garding the specific implementations are found in Section 6.2.3, 6.3.3 and 7.4.

During this tesis’ work, it has become apparent that OpenCL suffers from being
a relatively new specification. The implementations we have tried have had
several issues:

e Not following the specification at all details. An example is that nVidia’s
implementation

e Difference in device code acceptance.

e Profiling and debugging tools, if any, are primarily available for the Win-
dows platform.

e Very sparse output when syntax errors are found in the device code, if any
at all.

The development process could have been simplified by using only CUDA. Avail-
able debugging tools are better, making it possible to set breakpoints in the GPU
device code. In addition, the hardware variations would have been limited.
Nonetheless, this thesis’ focus was to explore GPU programmability regardless
of vendors.

We have only focused on the device code itself, but a new approach for helping
developers could have been to make a C or C++ runtime that takes care of
all the host API calls. This approach would assume that development and
optimalization of OpenCL kernels is the developer’s work, and optimizations is
done manually using testing and failure. The API calls in OpenCL are quite
low level. C++ bindings have made them easier to program without losing
performance. This tool could have been used to place events on a command
queue in an intuitive way, making it possible to quickly test different attributes of
a OpenCL pipeline, like whether a host memory buffer is pinned in the operating
system and testing different work group sizes and build parameters for compiling
the device code. This runtime could get a task-graph description in xml or json,
being exported by a GUI utility used for setting up the various events and

49



Chapter 9

buffers. Making this runtime vendor-independent will probably be easier than
modifying the OpenCL kernel code, as we have tried.
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Conclusion

We have investigated several properties of utilizing graphic processing units from
different vendor for image and video processing. Algorithms using local neigh-
bourhood calculcations like the bilateral filter did achieve calculation speedup
factors of 500, not considering data traffic latency on the PCI bus. Histogram
calculations had a maximum speed up improvement of 5. There are, however,
many image processing techniques requiring data types like kd-trees and hash
tables that are not very well suited for the current memory model of the graph-
ics hardware, especially not for real-time performance. The usage of OpenCL’s
image2d datatype has both made the development process easier and it also
achieved the best results. For prototyping OpenCL kernel code, PyOpenCL
has been a very valuable tool making it faster to change parameters like kernel
arguments and memory buffers.

The filters have been successfully applied and visualized on videos at real-time
using gstreamer.

The development process suffered from OpenCL being an immature framework
where not all implementations did follow the specification good enough for code
to be portable without making significant changes. In addition, the profiling
tools are mainly available on the Windows platform, that was not utilized when
working on this thesis.

Attempts on making a template-based solution, GPUScribe, for creating OpenCL
GPU kernels have been tried, but this did not seem like a good approach at this
time due to differences in OpenCL compiler behaviours and the existence of
other, maybe better alternatives, like Clyther, PyCUDA or the C++ template
support provided by CUDA. Much of these techniques came along while work-
ing on this thesis. In addition it was hard to settle for template functionalities
that actually helped the developers instead of cluttering their code and adding
unnecessary levels of abstraction. All in all the wanted result was a high enough
speedup factor in C/C++ applications that it is worth the data traffic latency
on the PCI Express bus. The effenciency of OpenCL kernels is also dependent
of work group sizes and build parameters, being outside of GPUScribe’s control.
In addition, there are coming vendor-specific extensions that further complicates
this approach.
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Many transistors devoted to

Using GPU for real-time
video processing

Presented by Bgrge Lanes

Outline

GPU Architecture

gpGPU programming APls
OpenCL in depth

My work

Demo

How is this possible?

Almost all transistors devoted
logic and branching to floating point processing

About me

30 years old

Working on master thesis in computer
science at University of Tromsg

Interested in parallel programming and
concurrency issues

Thesis delivery due |5th of May 2010

Floating point operations
per second
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GPU Architecture

Multiprocessor | Multiprocessor oee Multiprocessor

Global memory Texture memory Constant memory

Current GPGPU
Programming Issues

All threads and multiprocessors run identical code

Branched execution is expensive within a
multiprocessor

Architecture is optimized for single-precision float
operations

To-be-released Fermi architecture will allow
developers to run different code on different
multiprocessors simultaneously

OpenCL

Open Computing Language
Maintained by Khronos group

Initiated by Apple, many industry leading
participants

Has many similarities with CUDA

Correctly written code can run on any OpenCL
device regardless of vendor

GPU Architecture

Processing units

\ Texture cache Constant cache

Global memory Texture memory Constant memory

Current gpgpu
programming APls

CUDA - nVidia’s proprietary environment
DirectCompute - part of DirectX |1
OpenCL

OpenGL shading language, data must be
camouflaged as graphics

OpenCL participants

30LABS  aaveos Biz) AMDZIlU  ARM
Yoodephy  ERICSSON 2 Frreescale @,
nokia
NVIDIA.
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OpenCL programming
model

Data-parallel and task parallel programming
models

GPUs are well suited for data-parallel
model

Supports proprietary extensions

Devices can be queried about their
capabilities

OpenCL programming
language

C99 based with some restrictions - recursions not
allowed

|IEEE-754 compliant floating point instructions
Can use native hardware functions

Vector data types and operations

Examples of special
functions

® T native divide(T a,T b);
® mad24(a,b,c) = (a * b) + ¢
@iz lo, i hi B xioddiaxieven

® float dot(float4 a, float4 b);

OpenCL programming
model

Host orchestrates creation of context and
device global memory allocations

OpenCL code is compiled during
application runtime with customizable build
parameters

Host CPU can also run OpenCL-code
OpenCL/OpenGL interoperability

OpenCL kernel
example

kernel void rgb_permutation (

{

i _only |t input,
__write only image2d t output)

floatd color; float intensity;
sampler_t s = CLK_NORMALIZED_COORDS_FALSE |
CLK_FILTER NEAREST | CLK CLAMP_TO_EDGE;

int x = get_global id(0);

int y = get global id(1);

floatd color = read_imagef(input, s, (int2)(x,y));:
color.yzx = color.xyz;

write_imagef (output, (int2)(x,y), color);

Memory usage

® Local memory (shared by work group) is
much faster than global memory

® Threads must use correct memory access
patterns for optimal performance
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My work so far Bilteral filter times

® Have used Snow ® PyOpenCL used during .
Leopard and Linux as development & Smgle frame, 1280x720

development platforms
® gstreamer framework ® 9x9 kernel

Devices tested: used for video-filter

visualization nVidia GTX 295

nVidia 9400m

——— i nVidia GTX 260
nVidia GTX 295  Brute-force bilateral filter nVidia 8800 GT
Intel Core2 duo ® Histogram nVidia 9400m

Experiences Challenges

Using native functions ® Hard to develop code ° Hardware-optimized features may not be
greatly increases speed - that runs optimal on

but we loose EEE-754 different GPUs known by developer, dependent of
compliance hardware and its OpenCL driver

PyOpenCL is a good implementation
Hardware optimized for tool for kernel
texture memory usage development and testing Y Hiding OpenCL device source code

Work-group size is very Compilers behave without SN hardware-dependent
important differently precompiled binaries

® Debugging is not easy ® Data transfers over PCI-b

Example Example

Original image Bilateral filter 40x40 kernel
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My future work

Investigate templating or metaprogramming
to ease developing and maintenance, and also
do qualified selections of optimalization
parameters

Try to implement data structures like kd-
trees or bilateral grid

Write thesis ;-)

Other suggestions?

Questions?
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