REVISED MANUSCRIPT

Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis.

Jorunn Pauline Cavanagh ${ }^{1 *}$, Claus Klingenberg, ${ }^{1,2}$ Anne-Merethe Hanssen ${ }^{\mathbf{3}}$, Elizabeth
Aarag Fredheim ${ }^{1}$, Patrice Francois ${ }^{4}$, Jacques Schrenzel ${ }^{4}$, Trond Flægstad ${ }^{1,2}$ and
Johanna Ericson Sollid ${ }^{5 *}$.
${ }^{1}$ Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science,
University of Tromsø, Tromsø, Norway,
${ }^{2}$ Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway,
${ }^{3}$ Department of Medical Biology, Faculty of Health Science, University of Tromsø, Tromsø,
Norway ${ }^{3}$
${ }^{4}$ Genomic research laboratory, University of Geneva Hospitals, Geneva, Switzerland
${ }^{5}$ Research group for host-microbe interactions, Department of Medical Biology, University
of Tromsø, Tromsø, Norway.
*Corresponding author.
Johanna Sollid, Research group for host-microbe interactions, Department of Medical
Biology, University of Tromsø, 9037 Tromsø, Norway. Phone: +47 77644663. Fax: 47
77645350. E-mail: johanna.e.sollid@uit.no

Jorunn Pauline Cavanagh, Pediatric Research Group, Department of Medical Biology, University of Tromsø, 9037. Tromsø, Norway. Phone; + 47 77646950. Fax: 4777645350. E-mail: pauline.cavanagh@uit.no

Abstract

The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID] = 0.877) and MLVF resolved 14 repeat types (SID = 0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes.

1. Introduction

Staphylococcus haemolyticus belongs to the group of coagulase-negative staphylococci (CoNS) and is part of the human normal flora of skin and mucous membranes. It is also an opportunistic pathogen and the second most frequently CoNS isolated from human blood cultures (Falcone et al., 2006). S. haemolyticus is primarily associated with infections in immunocompromised patients, e.g. patients with haematological disease and immature infants (Nouri et al., 2008). The ability to produce biofilm and the notoriously multiresistance to antimicrobial agents, including glycopeptides, favours S. haemolyticus as an emerging cause of nosocomial infections (de Allori et al., 2006, Falcone, et al., 2006, Fredheim et al., 2009, Froggatt et al., 1989, Hiramatsu, 1998, Hope et al., 2008, Koksal et al., 2009, Schwalbe et al., 1987).

Reliable phenotypic species identification of S. haemolyticus is challenging (Shittu et al., 2004). Misidentification, or failure of identification of S. haemolyticus by conventional biochemical methods has been reported (De Paulis et al., 2003). This observation might result from structural rearrangements in the chromosome due to the presence of IS elements (Watanabe et al., 2007). Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently proven to provide a reliable and rapid tool for identification of Staphylococcus species (Benagli et al., 2011, Dubois et al., 2010). In a comparative study of the genomes of S. haemolyticus (JCSC 1435), S. epidermidis and S. aureus an average sequence identity of 78% in genes found as orthologues were detected (Takeuchi et al., 2005). In particular, the oriC environ contained regions common for all three species (e.g. the staphylococcal cassette chromosome -SCC) but also regions unique to
each species. Sequence similarity between resistance genes suggests that resistance determinants are readily transferred between these staphylococcal species (Froggatt, et al., 1989). When comparing different S. haemolyticus isolates, large scale chromosomal inversions in the oriC environ were reported (Watanabe, et al., 2007).

Molecular typing methods are mandatory for population structure analyses in both local and global settings. Defining the population structure and dynamics is important to detect both outbreaks of pathogenic strains as well as the establishment and spread of antimicrobial resistant clones. Feasibility of molecular typing methods depends on discriminatory power, possibility for inter-laboratory comparison and laboriousness. The current molecular typing method available for S. haemolyticus is genome restriction fragment pattern analysis after pulsed field gel electrophoresis (PFGE) (Ben Saida et al., 2009, Burnie et al., 1997, Tabe et al., 1998). PFGE is considered a very useful method for short term investigation of an outbreak situation. However, PFGE is labour intensive and interlaboratory comparisons of results are difficult to achieve due to technical differences and subjective interpretation of band patterns (Murchan et al., 2003, te Witt et al., 2010, Tenover et al., 1995).

Molecular population studies of pathogenic strains using multi locus sequence typing (MLST) utilize genetic diversity based on changes in relative slowly evolving housekeeping genes. The variation observed is generally due to point mutations and/or recombination (Pérez-Losada et al., 2006). Isolates with identical profiles are grouped as related, or clonal. Information of changes introduced to the slowly evolving housekeeping genes are used to describe patterns of evolution and global spread.

Multi locus variable number of tandem repeats (VNTR) analysis (MLVF) takes advantage of variation in repetitive DNA, which is found at multiple loci in most bacteria. The individual pattern of repeat units and sequence heterogeneity is a useful phylogenetic marker. Strain relatedness is based on varying number of tandem repeats and found to be an appropriate tool for investigation of short term bacterial evolution and epidemiological typing (van Belkum, 1999). Compared to PFGE and MLST, MLVF is an attractive typing method due to its simplicity, rapidity and high discriminating power (Francois et al., 2008, Francois et al., 2005, Lindstedt, 2005).

This work aimed to find a molecular typing method with a discriminatory power suitable for molecular epidemiology analyses of clinical isolates of S. haemolyticus, in order to answer basic questions concerning the population structure. In this report we describe the development of a MLST and a MLVF scheme, and the observation of a conserved core genome in S. haemolyticus (Koksal, et al., 2009).

2. Materials and methods

2.1 Strain collection

A total of 172 S. haemolyticus isolates were obtained from national and international collaborators. The isolates were collected during the period 1989 to 2010. The collection comprised 164 human clinical isolates (isolated in connection with clinical diagnostics), four human community acquired isolates and four isolates of veterinary clinical origin. The isolates were defined as community acquired if they were recovered within 48 hours of
hospitalisation or isolated from healthy individuals without prior hospitalisation the past year (Kaplan et al., 2005). Geographically the isolates originated from Norway ($\mathrm{n}=74$), Switzerland ($n=50$), Japan ($n=17$), Germany ($n=13$), United Kingdom ($n=12$), Spain ($n=3$), Belgium ($\mathrm{n}=2$) and Greece $(\mathrm{n}=1)$.

2.2 PFGE

All 172 isolates were typed by PFGE using a previously described method (Hanssen et al., 2004). The PFGE patterns were analyzed using Gel Compar software version 2.5 (Applied Maths, Ghent, Belgium). The Dice band-based similarity coefficient was calculated with a band position tolerance of 1.0\%. The overall genetic relationship was determined creating a dendrogram by the unweighted pair group method with arithmetic means (UPGMA) logarithm. The isolates were assigned to different groups, where groups were defined as two or more isolates with $>80 \%$ similarity (Carrico et al., 2005). The discriminatory ability of the novel MLST and MLVF schemes was calculated on a restricted collection of diverse isolates ($\mathrm{n}=45$). Selection criteria were, different PFGE profiles, temporal spread and different geographic origin (Figure 1). In order to study possible geographic related clones we selected a small collection of isolates from the same geographic origin. In addition we also selected some isolates with similar PFGE band patterns. We also included veterinary and community acquired isolates in order to further evaluate the discriminatory ability. The selected isolates were investigated further as outlined below.

2.3 Species identification

Species identification was reconfirmed using a polyphasic approach. First by Gram staining, catalase test and coagulation assay by Staphaureux plus® (BioMerieux, Marcy l’Etoile, France) followed by partial 16S rRNA gene or rpoBgene sequencing (Drancourt and Raoult, 2002, Pettersson et al., 1997).

2.4 Antimicrobial susceptibility testing

Antimicrobial susceptibility testing to penicillin, gentamicin, erythromycin, tetracycline, vancomycin, rifampicin, and oxacillin was performed using Etest according to the manufacturer’s description (AB BIODISK, Solna, Sweden). The antimicrobial breakpoints were interpreted according to the EUCAST guidelines (EUCAST, 2011).

2.5 Biofilm quantification

The biofilm producing ability of the isolates was determined by a semi-quantitative assay as described previously (Christensen et al., 1985, Klingenberg et al., 2005). Briefly, overnight cultures were diluted 1:100 in Tryptic Soy Broth (TSB, Becton Dickinson, Puls AS, Norway) with 1% glucose and incubated for 24 hours at $37^{\circ} \mathrm{C}$ in polystyrene microtiter plates (Nunclon, Roskilde, Denmark). The biofilm was washed $3 x$ in phosphate buffered saline (PSB), fixed at $55^{\circ} \mathrm{C}$ for one hour and stained with crystal violet. Before detection the stain was dissolved with an ethanol/acetone (70:30) mixture. Optical density (OD) was measured in an ELISA reader, and isolates with an $\mathrm{OD}_{570} \geq 0.25$ were defined as biofilm positive. S.
epidermidis RP62A was included as a positive control and S. haemolyticus 51-03 was included as a negative control (Fredheim, et al., 2009, Yang et al., 2006).
2.6 DNA isolation, PCR conditions and sequencing

Template DNA was prepared by boiling, as previously described (Hanssen, et al., 2004). Purified DNA was stored at $-20^{\circ} \mathrm{C}$. PCRs for MLST and MLVF were performed with $25 \mu \mathrm{l}$ reaction volumes, comprising $0.4 \mathrm{pmol} /$ sample of each primer, $3 \mu \mathrm{l}$ template DNA and 12.5 $\mu \mathrm{l}$ of ReddyMix (Cat. no. AB-0815, ABgene, Surrey, UK). MgCl_{2} was added to a final concentration of 4.5 mM . MLST and MLVF PCRs were performed as previously described (Francois, et al., 2008, Thomas et al., 2007), apart from the MLVF PCR annealing temperature which was set to $55^{\circ} \mathrm{C}$. Cycle sequencing of both strands was performed as previously described using the Big Dye Terminator (version 3.1) cycle sequencing kit (Applied Biosystems, Warrington, UK) and analyzed on an ABI Prism 377 sequence analyzer.

2.7 Design of a novel MLST scheme for S. haemolyticus

Internal segments of 18 genes were initially tested on five geographically diverse S. haemolyticus isolates in order to find appropriate variability for the MLST scheme. The 18 genes tested were, i) equivalents of six of the seven loci used in the S. epidermidis MLST scheme (arc, aroE, gtr, mutS, pyrR, tpi) (Thomas, et al., 2007), ii) glp from the S. aureus MLST scheme (Enright et al., 2000) iii) equivalents of additional loci with reported higher
sequence divergence than the traditional MLST genes studied in S. aureus ($p b p B$, leuB, hemH, luxS, SH2038, SH1200, SH0328) (Cooper and Feil, 2006) and iv) four additional genes Ribose ABC, SH 1431, cfxE and SH 0871 selected from S. haemolyticus JCSC 1435 (Takeuchi, et al., 2005). Equivalents of Ribose $A B C$ and SH 1431 were not found in the genomes of S. epidermidis and S. aureus based on comparative basic local alignment search tool (BLAST) (Altschul SF, 1990) searches. For the genes selected from the S. epidermidis /S. aureus MLST-schemes, equivalent primers were designed from the published genome of JSCS 1435 (accession number AP006716) (Takeuchi, et al., 2005). The seven gene segments that gave the highest variability were used to perform MLST on the 45 selected isolates. The primers used in the final MLST are listed in Table 1. Isolate 5MB 278-10 was excluded from the MLST analysis due to failure in amplification of one of the target genes.

2.7.1 DNA Sequence analysis

The nucleotide sequences were aligned by using Bio Edit sequence alignment editor (version 7.0.9.0) (Hall, 1999) and compared to the published sequence of JCSC 1435 in the GenBank database by using BLAST.

2.7.2 Phylogenetic analysis

Each of the selected isolates was defined by a seven digit allelic profile where each unique allelic profile defines a sequence type (ST). eBURST V3 (http://eburst.mlst.net) was used to determine the most putative relationship between isolates (Feil et al., 2004, Spratt BG, 2004).

Clonal complexes (CC) were defined using the default setting where STs that have diversified recently from a common founder and share six of seven alleles with at least one other ST in the group, are grouped in a clonal complex (Feil et al., 2003).

All analyses were performed using Molecular Evolutionary Genetics Analysis (MEGA) 4 (Tamura K, 2007). Neighbour joining (NJ) dendrograms for the individual MLST loci were created and maximum likelihood (ML) phylogentic trees were constructed for the concatenated MLST sequences of six of the seven loci (hemh, $c f x E$, Ribose ABC, SH 1431, leuB and SH 1200) using the general time reversible (GTR) model with 2000 bootstrap resampling replications (Lanave C, 1984). The nucleotide diversity within the major and minor CC, defined by eBURST, was calculated.

2.8 Design of a novel MLVF scheme for S. haemolyticus

Tandem repeat regions were detected in the published genome of JSCS 1435 (accession number AP006716) using the tandem repeats finder (http://tandem.bu.edu/trf/trf.html) (Benson, 1999). The number of putative target genes was in total 45 . Nine of them contained tandem repeats and were selected for the assay. Nine PCR primer pairs targeting conserved flanking regions of repeat containing genes (orfs SH 0326, SH 0326b, SH 0999, SH 0040, SH 0040b, SH 2426, SH 01184, SH 0324 and SH 1645) were designed using Jellyfish (version 1.3 Biowire). The nine primer pairs were initially tested on five S. haemolyticus isolates from diverse geographical origins to find appropriate variability for the MLVF scheme. Four of the primer pairs did not generate amplicons in all strains, the remaining five
primer pairs were used to perform MLVF on the 45 selected isolates. The primers used in the final MLVF scheme are listed in Table 2.

2.8.1 DNA analysis

The PCR products were separated on a 1% agarose gel (SeaKem ${ }^{\circledR}$ LE, Takara) with $0,5 \mathrm{x}$ TBE (Tris-borate-EDTA) buffer for 50 min at $80 \mathrm{~V} / \mathrm{cm}$. MLVF bands were visualized on an UV transilluminator, photographed and scanned. The MLVF patterns were then visually evaluated using the criteria by Sabat et al. (Sabat et al., 2003). Two MLVF patterns differing by one or more bands were considered distinct types.

2.8.2 Population structure

Arbitrary numbers were assigned to the different MLVF band patterns observed. The combination of numbers gives a unique fingerprint tag, or repeat type (RT) number. The results were analyzed by using the eBURST V3 algorithm (Feil, et al., 2004) (http://eburst.mlst.net/). Clonal complexes were defined as RTs that have diversified recently from a common founder sharing four of five alleles with at least one other RT in the group.
2.9 Discriminatory ability and clustering concordance

Simpson's index of diversity (SID), indicating the probability of two strains sampled randomly from a population belonging to different types, was calculated to compare the discriminatory ability of MLST, MLVF and PFGE (Carrico et al., 2006, Grundmann et al.,

2001, Hunter and Gaston, 1988). Adjusted Rand (AR) indices were calculated to determine the overall concordance between the methods, corrected for the presence of chance agreement. The Wallace (W) coefficient was calculated to determine the probability that two isolates classified as the same type by one method would be classified as the same by using another typing method (Carrico, et al., 2006, Pinto et al., 2008). The concordance of the different typing techniques was calculated using the software described by (Carrico, et al., 2006) using the online tool (http://darwin.phyloviz.net/ComparingPartitions).

3.0 Results

3.1 Antimicrobial resistance and biofilm formation

Analyses of antimicrobial susceptibility and biofilm formation were included to find phenotypic similarities or differences between the isolates that could reflect genetic relationship. The results of antimicrobial susceptibility testing and the biofilm assay are presented in Figure 1. Forty of the 45 isolates displayed resistance to three or more antimicrobial agents tested and 18 were resistant to five different antimicrobial agents. Three isolates originating from Germany, Norway and the UK (MB 278-10, 22633461 and CN 1197) were susceptible to all antimicrobial agents tested and two isolates originating from the UK and Norway (51-72 and CN1138) were susceptible to all antimicrobial agents tested except tetracycline. Biofilm was formed by 30 of the 45 isolates according to our definition.

3.2 PFGE

The PFGE results are shown in Figure 1. Thirty eight separate PFGE types were defined among the 45 isolates. Among these 38 PFGE types there were six groups (A-F). The largest group (B) contained three isolates from Switzerland. The remaining five groups contained two isolates each; Group A (both UK), C (both UK), D (both Germany), E (from Norway and Greece) and F (both Belgium). The isolates that did not cluster in any defined group ($\mathrm{n}=32$) were considered unrelated when using an 80% cut-off value.

3.3 MLST analysis

MLST of the 44 isolates resulted in 17 unique STs. eBURST grouped the isolates in one major group or clonal complex (CC), two minor CCs and six singletons. CC1 comprised 25 isolates (ST 1, 2, 3, 10 and 15), representing human clinical isolates from all eight countries included in the study and both veterinary isolates from Belgium. CC2 comprised eight isolates (ST 8, 9 and 14) from Japan and the UK including three of the community acquired non-clinical isolates from Japan and one isolate from the UK. CC3 comprised five isolates (ST 4 and 13) representing isolates from Spain, Norway and Switzerland. Six isolates (ST 6, $7,11,12,16$ and 17) were defined as singletons. The veterinary isolate $278-10$ was not included in the eBURST analysis as no PCR product was obtainable for one of the alleles (Ribose ABC) in the MLST scheme. The MLST results are summarized in Figure 1.

3.4 MLVF analysis

We defined, by visual categorization of band patterns, fourteen unique RTs among the 45 isolates. eBURST grouped all isolates, except one of the veterinary isolates (2263-3461) in one CC. Sixteen isolates originating from the UK, Norway, Switzerland, Japan and Greece shared the same RT. One RT was a singleton. The MLVF results are summarized in Figure 1.
3.5 Phylogenetic analysis of MLST data

NJ dendrograms created for the individual genes used in the MLST scheme showed good congruence (data not shown). All isolates except three (MB 278-10, 2263-3461 and CN 1197) were grouped in one large cluster by all genes. Apart from $\operatorname{arc} C$ which grouped only one isolate (CN 1197) differently. The ML tree based on the concatenate sequences of six genes, excluding arcC, grouped the isolates in one large cluster (Figure 2). As for the NJ trees, isolates MB 278-210, 2263-3461, and CN1197 were grouped separately supported by a 99\% bootstrap value. The global agreement between the evolutionary trees for the individual MLST genes and the ML tree from the concatenated sequences suggests a low degree of recombination. Comparison of the clustering obtained by eBURST and the ML tree also showed a global agreement. Two minor clusters comparable to CC2 and CC3 defined by eBURST were also defined in the ML tree but they were not supported by significant bootstrap values (54 \% and 41\%; Figure 2) indicating that the clustering made by eBURST might not be correct. Calculation of nucleotide diversity based on the concatenated sequences within the three eBURST CCs shows a low nucleotide diversity of 0.00035 , supporting the uniform clustering of isolates.
3.6 Discriminatory power and clustering concordance of typing methods

The SID revealed that PFGE in our study had a higher discriminatory power than MLST and MLVF (Table 3). The overall concordance (the probability that two methods cluster two isolates similarly) of the different typing methods was low (Table 4). AR indices ranged from $0.029-0.084$. The highest concordance was found between MLST and MLVF ($\mathrm{AR}=0.084$). Wallace (W) coefficients were calculated to determine the directional agreement between the typing methods. There was a low probability $(\mathrm{W}=0.333)$ that two isolates with the same PFGE type had the same MLST type. The directional agreement between PFGE and MLVF was also low ($\mathrm{W}=0.444$). Finally, the probability of MLST to predict MLVF type and vice versa was very low with a $W=0.254$ and $W=0.186$, respectively.

4. Discussion

The mainstay for studying molecular epidemiology of S. haemolyticus has been PFGE. To our knowledge this is the first study reporting MLST and MLVF schemes for this species and to compare these typing techniques with PFGE. The discriminatory ability of the suggested MLST and MLVF schemes was assessed using a diverse collection of S. haemolyticus. Both clinical human and veterinary isolates were included. Compared with PFGE, MLST and MLVF had an inferior discriminatory ability. The MLST results may even suggest that all 45
S. haemolyticus isolates were closely related. However, we believe it is unlikely that these 45 isolates are clonally related due to their diverse geographic origin and temporal spread.

MLST discriminated well between the isolates of human origin and two of the isolates of veterinary origin. Two veterinary isolates, originating from Norway (MB 278-10) and Germany (2263-3461), displayed a high degree of variation compared to the human isolates. In contrast, the two Belgian veterinary isolates clustered together with the human clinical isolates. The Belgian veterinary isolates also grouped together with the human clinical isolates when comparing susceptibility to antimicrobial agents, i.e. defined as multiresistant, whereas the Norwegian and German veterinary isolate were susceptible to all antimicrobials tested. An unexpected relationship was found between one isolate from the UK and three community acquired isolates from Japan which all were of the same ST. Phylogenetic analysis of our MLST data indicates a clonal population structure as there is global congruence between the ML tree from the concatenated MLST sequences and between the individual gene trees in the MLST scheme where six out of seven trees grouped the isolates similar to the concatenated ML tree. The isolates were grouped in one main cluster, with three isolates forming a separate cluster. The main cluster was divided in two smaller clusters comparable to the CC defined by eBURST. However, low bootstrap values for the smaller clusters in the ML tree indicate that the CC identified by eBURST might not be correct. The low nucleotide diversity value reflects the high degree of sequence conservation and suggests low levels of recombination. S. epidermidis and S. aureus, two species that are closely related to S. haemolyticus, clearly show a different population evolution. MLST population analyses of S. epidermidis has shown an epidemic population that evolves by recombination (Miragaia et al., 2007). Analysis of S. aureus MLST sequence
data reveals a more clonal population evolving mainly by point mutation (Feil, et al., 2003). Our MLST data might indicate that S. haemolyticus has a population evolution more comparable to S. aureus. However, some caution must be applied when interpreting these results as our analysis is based on a restricted number of isolates. Reports of low polymorphism in housekeeping genes resulting in limited discriminatory power of MLST has previously been reported for species such as Salmonella enterica, serovar Typhi, Mycoplasma pneumonia and Escherichia coli (Degrange et al., 2009, Dumke et al., 2003, Fakhr et al., 2005, Noller et al., 2003).

Molecular typing by MLVF has shown to effectively discriminate homogenous bacterial populations (Noller et al., 2003, Octavia and Lan, 2009). The application of MLVF for epidemiologic studies of S. aureus and S. epidermidis has previously shown a resolution comparable to PFGE and MLST (Francois, et al., 2008, Holmes et al., 2010, Pourcel et al., 2009). The tandem repeat loci selected for MLVF are believed to be more variable than housekeeping genes for MLST due to a more diversifying selective pressure (van Belkum et al., 1997). However, in the present study the MLVF scheme was not able to discriminate between isolates of different origin. MLVF resulted in 14 RTs compared to 17 MLST STs and 38 PFGE types. Using MLVF all isolates were grouped together in one CC, except one veterinary isolates. The selection of our strain collection is biased, based on isolates which differs by PFGE. This has previously been reported to affect the discriminatory ability of MLVF (Holmes, et al., 2010, Luczak-Kadlubowska et al., 2008). Furthermore, a better resolution might have been obtained if we had targeted more than five tandem repeat loci. The search for tandem repeat loci was restricted as only one fully sequenced genome of Staphylococcus haemolyticus is presently available for automatic search. We found 45
putative target genes, but most of these were duplicated, poorly reliable, too short or showed a number of repeat of only one. The initial 9 primer pairs selected were considered as the maximum available number of tandem repeats containing genes for S. haemolyticus.

However, previously published schemes using five tandem repeat loci in Chlamydia abortus (Laroucau et al., 2009), S. epidermidis (Johansson et al., 2006), and Salmonella enterica (Lindstedt et al., 2004) have shown satisfactory discrimination. Other studies comparing MLVF to MLST have also shown a good concordance between type assignment made by the two methods (Malachowa et al., 2005). In contrast, Tenover et.al reported that MLVF can not be used to predict PFGE type (Tenover et al., 2007).

Different bacterial populations exhibit varying rates of genetic change. In populations where no or little recombination has taken place the population will appear as clonal whereas highly recombining strains will appear as non-clonal (Spratt and Maiden, 1999). A major challenge for molecular typing methods is to select molecular markers that are sufficiently diverse enabling identification of variants of closely related bacteria (Maiden, 2006). In the present, study only four of the 45 isolates was clustered together by all three methods and we found very low values for the AR and the Wallace coefficient. We believe that the low variability observed by MLST and MLVF reflects a high degree of core genome conservation in S. haemolyticus, indicating a low rate of recombination. A diversifying selection may instead be due to accumulation of point mutations. The lack of congruence between the typing methods can also be explained by different detection levels. PFGE displays variation found in the total genome, whereas MLST and MLVF reveal variation found in short fragments of the core genome.

The observed core genome conservation contradicts the previously reported genome plasticity of S. haemolyticus indicated by the rapid acquisition of resistance genes as well as phenotypic variability (Watanabe, et al., 2007). Sequencing of S. haemolyticus JCSC 1435 revealed a large proportion of IS elements which is believed to contribute to the large scale inversions and deletions observed in JCSC 1435, mostly associated with the oriC environ (Takeuchi, et al., 2005, Watanabe, et al., 2007). This region contains integrated copies of SCC and IS elements. If genetic diversity mainly depends on mobile genetic elements and rearrangements in discrete regions (e.g. oriC environ) the changes will be detected by PFGE but not by MLST and MLVF, as the selected genes used in the MLST and MLVF schemes are not located in the oriC environ.

The results from this study show that neither the MLST nor the MLVF scheme could resolve the population structure of the S. haemolyticus collection. We suggest that there is potential for MLST and MLVF as epidemiologic tools by inclusion of more variable genes, in order to increase their discriminatory power. However, comparative genome analyses and the possibility to detect genes with higher variation are limited by the fact that there currently still is only one fully sequenced genome published (Takeuchi, et al., 2005). Full genome sequence based analysis is now possible for bacterial populations exhibiting levels of nucleotide diversity too low for resolution by MLST (Baker et al., 2010). Further molecular studies, including deep sequencing of the entire bacterial genome, are needed to provide high-resolution spatial and genetic data on S. haemolyticus epidemiology.

Acknowledgements

We thank the following for kindly providing isolates to this study: Dr. Holger Rohde, Universitätsklinikum Hamburg-Eppendorf, Germany; Dr. Stefan Schwarz Friedrich- Loeffler - Institutt, Neustadt-Mariensee, Germany; Dr. Marianne Sunde, Veterinærinstituttet, Oslo, Norway; Dr.Russel Hope at the Bacteraemia Resistance Surveillance Programme (BSAC), GB; Dr. Teruyo Ito, Department of Microbiology and Infection Control Science, Juntendo University, Tokyo, Japan; Dr. Rafael Cantón, Microbiologia Hopital Ramón y Cajal, Madrid, Spain; Dr. Nuno Cerca, Centre of Biological Engineering, Institute of Biotechnology and Bioengineering. University of Minho, Portugal; Dr. Jerry Pier, Medicine, Microbiology and Molecular Genetics Brigham and Women’s Hospital, Harvard Medical School, USA, and Dr. Wannes Vanderhaegen, Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Poultry diseases, Belgium and Sandie Rodrigo-Humair, Genomic research laboratory, University of Geneva Hospitals, Geneva, Switzerland. We also thank Ed Feil for critically commenting on results and manuscript.

REFERENCES

Altschul SF, G.W., Miller W, Myers EW, Lipman DJ, 1990. Basic local alignment search tool. Journal of Molecular Biology. Oct 5;215, 403-410.
Baker, S., Hanage, W.P., Holt, K.E., 2010. Navigating the future of bacterial molecular epidemiology. Current Opinion in Microbiology. 13, 640-645.
Ben Saida, N., Marzouk, M., Ferjeni, A., Boukadida, J., 2009. A three-year surveillance of nosocomial infections by methicillin-resistant Staphylococcus haemolyticus in newborns reveals the disinfectant as a possible reservoir. Pathologie Biologie. 57, e29-e35.
Benagli, C., Rossi, V., Dolina, M., Tonolla, M., Petrini, O., 2011. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Identification of Clinically Relevant Bacteria. PLoS ONE. 6, e16424.
Benson, G., 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucl. Acids Res. 27, 573-580.
Burnie, J., Naderi-Nasab, M., Loudon, K., Matthews, R., 1997. An epidemiological study of blood culture isolates of coagulase- negative staphylococci demonstrating hospital-acquired infection. J. Clin. Microbiol. 35, 1746-1750.
Carrico, J.A., Pinto, F.R., Simas, C., Nunes, S., Sousa, N.G., Frazao, N., de Lencastre, H., Almeida, J.S., 2005. Assessment of Band-Based Similarity Coefficients for Automatic Type and Subtype Classification of Microbial Isolates Analyzed by Pulsed-Field Gel Electrophoresis. J. Clin. Microbiol. 43, 5483-5490.
Carrico, J.A., Silva-Costa, C., Melo-Cristino, J., Pinto, F.R., de Lencastre, H., Almeida, J.S., Ramirez, M., 2006. Illustration of a Common Framework for Relating Multiple Typing Methods by Application to Macrolide-Resistant Streptococcus pyogenes. J. Clin. Microbiol. 44, 2524-2532.
Christensen, G.D., Simpson, W.A., Younger, J.J., Baddour, L.M., Barrett, F.F., Melton, D.M., Beachey, E.H., 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 22, 996-1006.
Cooper, J.E., Feil, E.J., 2006. The phylogeny of Staphylococcus aureus - which genes make the best intra-species markers? Microbiology. 152, 1297-1305.
de Allori, M.C., Gaudioso, Jure, M.A., Romero, C., de Castillo, M.E.C., 2006. Antimicrobial Resistance and Production of Biofilms in Clinical Isolates of Coagulase-Negative
Staphylococcus Strains. Biological \& Pharmaceutical Bulletin. 29, 1592-1596.
De Paulis, A.N., Predari, S.C., Chazarreta, C.D., Santoianni, J.E., 2003. Five-Test Simple Scheme for Species-Level Identification of Clinically Significant Coagulase-Negative Staphylococci. J. Clin. Microbiol. 41, 1219-1224.
Degrange, S., Cazanave, C., Charron, A., Renaudin, H., Bebear, C., Bebear, C.M., 2009.
Development of Multiple-Locus Variable-Number Tandem-Repeat Analysis for Molecular Typing of Mycoplasma pneumoniae. J. Clin. Microbiol. 47, 914-923.
Drancourt, M., Raoult, D., 2002. rpoB Gene Sequence-Based Identification of Staphylococcus Species. J. Clin. Microbiol. 40, 1333-1338.

Dubois, D., Leyssene, D., Chacornac, J.P., Kostrzewa, M., Schmit, P.O., Talon, R., Bonnet, R., Delmas, J., 2010. Identification of a Variety of Staphylococcus Species by MatrixAssisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Journal of Clinical Microbiology. 48, 941-945.
Dumke, R., Catrein, I., Pirkl, E., Herrmann, R., Jacobs, E., 2003. Subtyping of Mycoplasma pneumoniae isolates based on extended genome sequencing and on expression profiles. International Journal of Medical Microbiology. 292, 513-525.
Enright, M.C., Day, N.P.J., Davies, C.E., Peacock, S.J., Spratt, B.G., 2000. Multilocus Sequence Typing for Characterization of Methicillin-Resistant and Methicillin-Susceptible Clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008-1015.
EUCAST, T.E.C.o.A.S.T.-. 2011. Breakpoint tables for interpretation of MICs and zone diameters v 1.3, EUCAST.
Fakhr, M.K., Nolan, L.K., Logue, C.M., 2005. Multilocus Sequence Typing Lacks the Discriminatory Ability of Pulsed-Field Gel Electrophoresis for Typing Salmonella enterica Serovar Typhimurium. J. Clin. Microbiol. 43, 2215-2219.
Falcone, M., Giannella, M., Raponi, G., Mancini, C., Venditti, M., 2006. Teicoplanin use and emergence of Staphylococcus haemolyticus: is there a link? Clinical Microbiology and Infection. 12, 96-97.
Feil, E.J., Cooper, J.E., Grundmann, H., Robinson, D.A., Enright, M.C., Berendt, T., Peacock, S.J., Smith, J.M., Murphy, M., Spratt, B.G., Moore, C.E., Day, N.P.J., 2003. How Clonal Is Staphylococcus aureus? J. Bacteriol. 185, 3307-3316.
Feil, E.J., Li, B.C., Aanensen, D.M., Hanage, W.P., Spratt, B.G., 2004. eBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data. J. Bacteriol. 186, 1518-1530.
Francois, P., Hochmann, A., Huyghe, A., Bonetti, E.-J., Renzi, G., Harbarth, S., Klingenberg, C., Pittet, D., Schrenzel, J., 2008. Rapid and high-throughput genotyping of Staphylococcus epidermidis isolates by automated multilocus variable-number of tandem repeats: A tool for real-time epidemiology. Journal of Microbiological Methods. 72, 296-305.
Francois, P., Huyghe, A., Charbonnier, Y., Bento, M., Herzig, S., Topolski, I., Fleury, B., Lew, D., Vaudaux, P., Harbarth, S., van Leeuwen, W., van Belkum, A., Blanc, D.S., Pittet, D., Schrenzel, J., 2005. Use of an Automated Multiple-Locus, Variable-Number Tandem Repeat-Based Method for Rapid and High-Throughput Genotyping of Staphylococcus aureus Isolates. J. Clin. Microbiol. 43, 3346-3355.
Fredheim, E.G.A., Klingenberg, C., Rohde, H., Frankenberger, S., Gaustad, P., Flægstad, T., Sollid, J.E., 2009. Biofilm formation by Staphylococcus haemolyticus. J. Clin. Microbiol., JCM.01891-01808.
Froggatt, J.W., Johnston, J.L., Galetto, D.W., Archer, G.L., 1989. Antimicrobial resistance in nosocomial isolates of Staphylococcus haemolyticus. Antimicrob. Agents Chemother. 33, 460-466.
Grundmann, H., Hori, S., Tanner, G., 2001. Determining Confidence Intervals When Measuring Genetic Diversity and the Discriminatory Abilities of Typing Methods for Microorganisms. J. Clin. Microbiol. 39, 4190-4192.
Hall, T.A., 1999. Bio Edit:a user -friendly biological sequence alignment editor and analysis program for windows 95/98/NT, Nucl.acids.Symp.ser. 41:95-98.
Hanssen, A.-M., Kjeldsen, G., Sollid, J.U.E., 2004. Local Variants of Staphylococcal Cassette Chromosome mec in Sporadic Methicillin-Resistant Staphylococcus aureus and

Methicillin-Resistant Coagulase-Negative Staphylococci: Evidence of Horizontal Gene Transfer? Antimicrob. Agents Chemother. 48, 285-296.
Hiramatsu, K., 1998. Vancomycin resistance in staphylococci. Drug Resistance Updates. 1, 135-150.
Holmes, A., Edwards, G.F., Girvan, E.K., Hannant, W., Danial, J., Fitzgerald, J.R., Templeton, K.E., 2010. Comparison of Two Multilocus Variable-Number Tandem-Repeat Methods and Pulsed-Field Gel Electrophoresis for Differentiating Highly Clonal MethicillinResistant Staphylococcus aureus Isolates. J. Clin. Microbiol. 48, 3600-3607.
Hope, R., Livermore, D.M., Brick, G., Lillie, M., Reynolds, R., 2008. Non-susceptibility trends among staphylococci from bacteraemias in the UK and Ireland, 2001-06. Journal of Antimicrobial Chemotherapy. 62, ii65-ii74.
Hunter, P.R., Gaston, M.A., 1988. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J. Clin. Microbiol. 26, 2465-2466. Johansson, A., Koskiniemi, S., Gottfridsson, P., Wistrom, J., Monsen, T., 2006. MultipleLocus Variable-Number Tandem Repeat Analysis for Typing of Staphylococcus epidermidis. J. Clin. Microbiol. 44, 260-265.

Kaplan, S.L., Hulten, K.G., Gonzalez, B.E., Hammerman, W.A., Lamberth, L., Versalovic, J., Mason, E.O., 2005. Three-Year Surveillance of Community-AcquiredStaphylococcus aureus Infections in Children. Clinical Infectious Diseases. 40, 1785-1791.
Klingenberg, C., Aarag, E., Ronnestad, A., Sollid, J.E., Abrahamsen, T.G., Kjeldsen, G., Flaegstad, T., 2005. Coagulase-negative staphylococcal sepsis in neonates. Association between antibiotic resistance, biofilm formation and the host inflammatory response. Pediatr Infect Dis J. 24, 817-822.
Koksal, F., Yasar, H., Samasti, M., 2009. Antibiotic resistance patterns of coagulase-negative staphylococcus strains isolated from blood cultures of septicemic patients in Turkey. Microbiological Research. 164, 404-410.
Lanave C, P.G., Saccone C, Serio G, 1984. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution. 20, 86-93.
Laroucau, K., Vorimore, F., Bertin, C., Yousef Mohamad, K., Thierry, S., Hermann, W., Maingourd, C., Pourcel, C., Longbottom, D., Magnino, S., Sachse, K., Vretou, E., Rodolakis, A., 2009. Genotyping of Chlamydophila abortus strains by multilocus VNTR analysis. Veterinary Microbiology. 137, 335-344.
Lindstedt, B.-A., 2005. Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis. 26, 2567-2582.
Lindstedt, B.-A., Vardund, T., Aas, L., Kapperud, G., 2004. Multiple-locus variable-number tandem-repeats analysis of Salmonella enterica subsp. enterica serovar Typhimurium using PCR multiplexing and multicolor capillary electrophoresis. Journal of Microbiological Methods. 59, 163-172.
Luczak-Kadlubowska, A., Sabat, A., Tambic-Andrasevic, A., Payerl-Pal, M., KrzysztonRussjan, J., Hryniewicz, W., 2008. Usefulness of Multiple-Locus VNTR Fingerprinting in detection of clonality of community- and hospital-acquired ;Staphylococcus aureus isolates. Antonie van Leeuwenhoek. 94, 543-553.
Maiden, M.C.J., 2006. Multilocus Sequence Typing of Bacteria. Annual Review of Microbiology. 60, 561-588.
Malachowa, N., Sabat, A., Gniadkowski, M., Krzyszton-Russjan, J., Empel, J., Miedzobrodzki, J., Kosowska-Shick, K., Appelbaum, P.C., Hryniewicz, W., 2005.

Comparison of multiple-locus variable-number tandem-repeat analysis with pulsed-field gel electrophoresis, spa typing, and multilocus sequence typing for clonal characterization of Staphylococcus aureus isolates. J Clin Microbiol. 43, 3095-3100.
Miragaia, M., Thomas, J.C., Couto, I., Enright, M.C., de Lencastre, H., 2007. Inferring a Population Structure for Staphylococcus epidermidis from Multilocus Sequence Typing Data. J. Bacteriol. 189, 2540-2552.

Murchan, S., Kaufmann, M.E., Deplano, A., de Ryck, R., Struelens, M., Zinn, C.E., Fussing, V., Salmenlinna, S., Vuopio-Varkila, J., El Solh, N., Cuny, C., Witte, W., Tassios, P.T., Legakis, N., van Leeuwen, W., van Belkum, A., Vindel, A., Laconcha, I., Garaizar, J., Haeggman, S., Olsson-Liljequist, B., Ransjo, U., Coombes, G., Cookson, B., 2003. Harmonization of Pulsed-Field Gel Electrophoresis Protocols for Epidemiological Typing of Strains of Methicillin-Resistant Staphylococcus aureus: a Single Approach Developed by Consensus in 10 European Laboratories and Its Application for Tracing the Spread of Related Strains. J. Clin. Microbiol. 41, 1574-1585.
Noller, A.C., McEllistrem, M.C., Pacheco, A.G.F., Boxrud, D.J., Harrison, L.H., 2003. Multilocus Variable-Number Tandem Repeat Analysis Distinguishes Outbreak and Sporadic Escherichia coli O157:H7 Isolates. J. Clin. Microbiol. 41, 5389-5397.
Noller, A.C., McEllistrem, M.C., Stine, O.C., Morris, J.G., Jr., Boxrud, D.J., Dixon, B., Harrison, L.H., 2003. Multilocus Sequence Typing Reveals a Lack of Diversity among Escherichia coli O157:H7 Isolates That Are Distinct by Pulsed-Field Gel Electrophoresis. J. Clin. Microbiol. 41, 675-679.
Nouri, L.B.Z., Caitriona, M.G., Fitzgerald, J.R., 2008. Pathogenomics of the staphylococci: insights into niche adaptation and the emergence of new virulent strains. FEMS Microbiology Letters. 289, 1-12.
Octavia, S., Lan, R., 2009. Multiple-Locus Variable-Number Tandem-Repeat Analysis of Salmonella enterica Serovar Typhi. J. Clin. Microbiol. 47, 2369-2376.
Pérez-Losada, M., Browne, E.B., Madsen, A., Wirth, T., Viscidi, R.P., Crandall, K.A., 2006. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infection, Genetics and Evolution. 6, 97-112.
Pettersson, B., Andersson, A., Leitner, T., Olsvik, O., Uhlen, M., Storey, C., Black, C., 1997. Evolutionary relationships among members of the genus Chlamydia based on 16S ribosomal DNA analysis. J. Bacteriol. 179, 4195-4205.
Pinto, F.R., Melo-Cristino, J., Ramirez, M., 2008. A Confidence Interval for the Wallace Coefficient of Concordance and Its Application to Microbial Typing Methods. PLoS ONE. 3, e3696.
Pourcel, C., Hormigos, K., Onteniente, L., Sakwinska, O., Deurenberg, R.H., Vergnaud, G., 2009. Improved MLVA assay for Staphylococcus aureus providing a highly informative genotyping technique together with strong phylogenetic value. J. Clin. Microbiol., JCM.3121-3128.
Sabat, A., Krzyszton-Russjan, J., Strzalka, W., Filipek, R., Kosowska, K., Hryniewicz, W., Travis, J., Potempa, J., 2003. New Method for Typing Staphylococcus aureus Strains: Multiple-Locus Variable-Number Tandem Repeat Analysis of Polymorphism and Genetic Relationships of Clinical Isolates. J. Clin. Microbiol. 41, 1801-1804.
Schwalbe, R.S., Stapleton, J.T., Gilligan, P., 1987. Emergence of vancomycin-resistance in coagulase-negative staphylococci. N Engl J Med. 316, 927-931.

Shittu, A., Lin, J., Morrison, D., Kolawole, D., 2004. Isolation and molecular characterization of multiresistant Staphylococcus sciuri and Staphylococcus haemolyticus associated with skin and soft-tissue infections. J Med Microbiol. 53, 51-55.
Spratt BG, H.W., Li B, Aanensen DM, Feil EJ, 2004. Displaying the relatedness among isolates of bacterial species -- the eBURST approach. FEMS Microbiol Lett. Dec 15, 129134.

Spratt, B.G., Maiden, M.C.J., 1999. Bacterial population genetics, evolution and epidemiology. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 354, 701-710.
Tabe, Y., Nakamura, A., Oguri, T., Igari, J., 1998. Molecular characterization of epidemic multiresistant Staphylococcus haemolyticus isolates. Diagnostic Microbiology and Infectious Disease. 32, 177-183.
Takeuchi, F., Watanabe, S., Baba, T., Yuzawa, H., Ito, T., Morimoto, Y., Kuroda, M., Cui, L., Takahashi, M., Ankai, A., Baba, S., Fukui, S., Lee, J.C., Hiramatsu, K., 2005. Wholegenome sequencing of staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol. 187, 7292-7308.
Tamura K, D.J., Nei M \& Kumar 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , Molecular Biology and Evolution 24:1596-1599, (Publication PDF at http://www.kumarlab.net/publications)
te Witt, R., van Belkum, A., MacKay, W., Wallace, P., van Leeuwen, W., 2010. External quality assessment of the molecular diagnostics and genotyping of meticillin-resistant Staphylococcus aureus. European Journal of Clinical Microbiology \& Infectious Diseases. 29, 295-300.
Tenover, F., Arbeit, R., Goering, R., Mickelsen, P., Murray, B., Persing, D., Swaminathan, B., 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 33, 2233-2239.
Tenover, F.C., Vaughn, R.R., McDougal, L.K., Fosheim, G.E., McGowan, J.E., Jr., 2007. Multiple-Locus Variable-Number Tandem-Repeat Assay Analysis of Methicillin-Resistant Staphylococcus aureus Strains. J. Clin. Microbiol. 45, 2215-2219.
Thomas, J.C., Vargas, M.R., Miragaia, M., Peacock, S.J., Archer, G.L., Enright, M.C., 2007.
Improved Multilocus Sequence Typing Scheme for Staphylococcus epidermidis. J. Clin. Microbiol. 45, 616-619.
van Belkum, A., 1999. Short sequence repeats in microbial pathogenesis and evolution. Cellular and Molecular Life Sciences. 56, 729-734.
van Belkum, A., Scherer, S., van Leeuwen, W., Willemse, D., van Alphen, L., Verbrugh, H., 1997. Variable number of tandem repeats in clinical strains of Haemophilus influenzae. Infect. Immun. 65, 5017-5027.
Watanabe, S., Ito, T., Morimoto, Y., Takeuchi, F., Hiramatsu, K., 2007. Precise Excision and Self-Integration of a Composite Transposon as a Model for Spontaneous Large-Scale Chromosome Inversion/Deletion of the Staphylococcus haemolyticus Clinical Strain JCSC1435. J. Bacteriol. 189, 2921-2925.
Yang, X.-M., Li, N., Chen, J.-M., Ou, Y.-Z., Jin, H., Lu, H.-J., Zhu, Y.-L., Qin, Z.-Q., Qu, D., Yang, P.-Y., 2006. Comparative proteomic analysis between the invasive and commensal strains of Staphylococcus epidermidis. FEMS Microbiology Letters. 261, 32-40.

Gene loci	Primer sequence 5` \(\rightarrow\) 3`	Amplicon size (bp)	Ref.
Arc ${ }^{\text {a }}$	F AGTGACTCAAGTTGAA	520	This study
	R AATCTTACCATCTAGG		
SH $1200{ }^{\text {b }}$	F CGGTAATGTAACACACGCAGT	450	This study
	R TCTTCCTAGTAGCTGACCAG		
hemH ${ }^{\text {c }}$	F CTGATCGTCAAGCTGAAGCAT	450	This study
	R GTACCTGTGTGACCCTCAGA		
$l e u B{ }^{\text {d }}$	F AGCCATAGATTCGCATGGTGT	450	This study
	R CCTAATGAACCTGGAATGGTAG		
SH 1431 ${ }^{\text {e }}$	F TCAGACCAATTCCCAACC	450	This study
	R CTTTAGCGTCACGATGGTCG		
$c f x E^{f}$	F GAAGCACAAATTGATGGTCTGC	450	This study
	R TCTGCCCCATTATCAACACA		
Ribose ABC	F GAGACGATTCAGCTAAGCAA	450	This study
	R CGCCTTTCATTAGGCCATTA		
${ }^{\text {a arc, carbamate kinase; }}{ }^{\text {b }}$ SH 1200, Ser A; D-3 -phosphoglycerate dehydrogenase; ${ }^{\text {c }}$			

Orf	Repeat position ${ }^{\text {a }}$	Primer sequences ($\mathbf{5}^{`} \rightarrow \mathbf{3}^{\text { }}$)
SH0999	406--624	SH0999_F ${ }^{\text {b }}$
		CATCAATCTGATACCCAAGATTCAACTGAATTAG
		SH0999_R ${ }^{\text {c }}$
		TCCAGTGTCTGGTTTACCTGAATCATTG
SH0324	251--809	SH0324_F
		GATGCTTTTCAGCATAGCCA
		SH0324_R
		GGTCAACCAATTACATCCCA
SH1184	46-235	SH1184_F
		ATATAATCGCGACGCATTTG
		SH1184_R
		CAGCTGAACCGATTAAAGCA
SH1645	300--357	SH1645_F
		ATAATAACAAAAATAATGCCAAAA
		SH1645_R
		AGCTGCCGGTTTGTTATTTT
SH0326	2221-2575	SH0326_F
		CAAGTGCAAGCACATCATTG
		SH0326_R
		CTTGCACTTGTTGAATCGCT

Table 2. Primers and repeat sequences used in the MLVF scheme

[^0]Table 3. Discriminatory power of three molecular typing methods evaluated with 45 S . haemolyticus isolates.

Method	No. of types		SID (95\% CI) ${ }^{\mathbf{a}}$
PFGE	38	0.991	$(0.983-0.999)$
MLST	17	0.877	$(0.813-0.940)$
MLVF	14	0.831	$(0.749-0.914)$
${ }^{\text {a Simpson's index of diversity (SID); CI, confidence interval }}$			

Table 4. Concordance of PFGE, MLST and MLVF for the 45 S. haemolyticus isolates.

	Adjusted Rand			Wallace coefficient		
Methods	PFGE	MLST	MLVF	PFGE	MLST	MLVF
PFGE				0.333	0.444	
MLST	0.029		0.025		0.254	
MLVF	0.029	0.084		0.024	0.186	

Figure legends, Fig. 1-2:

Fig. 1.
Isolate information and type assignment made by PFGE, MLST and MLVF.

Fig. 2. ML dendrogram from the concatenated sequences of six MLST genes (SH 1200, hemH, leuB, SH 1431, cfxE and Ribose ABC) for the 45 isolates included in the study

Dice (0 pt: 0.80%) (T ol 1.0\%-1. 0\%) ($\mathrm{H}>0.0 \% \mathrm{~S}>0.0 \%$) [0.0\%-1 00.0%]
S. haemolyticus

FIG. 2. ML dendrogram from the concatenated sequences of six MLST genes (SH 1200, hemH, leuB,

SH 1431, cfxE and Ribose $A B C$) for the 45 isolates included in the study.

[^0]: ${ }^{\mathbf{b}}$ F, Forward primer, ${ }^{\mathbf{c}}$ R, reverse primer.

