Errata to Almost Complex Homogeneous Spaces with Semi-Simple Isotropy

Henrik Winther

May 31, 2013

Two of the entries in the tables of "Almost Complex Homogeneous Spaces with Semi-Simple Isotropy" are missing some parameters. The purpose of this text is to introduce what was missing. The new parameters allow the almost complex structure J to be deformed such that the Nijenhuis tensor N_{J} is non-degenerate. The new parameters occur in those cases where \mathfrak{g} has an 8 d semi-simple subalgebra and $\mathfrak{h}=\mathfrak{s u}(1,1)$ or $\mathfrak{h}=\mathfrak{s u}(2)$. The notations used here are explained in the parent text.
$\mathfrak{h}=\mathfrak{s u}(1,1), \mathfrak{m}=V^{\mathbb{C}} \oplus \mathbb{C}$
Let V be the tautological representation of $\mathfrak{s l}_{2} \simeq \mathfrak{s u}(1,1)$. Then the complexification $V^{\mathbb{C}}$ is the tautological representation of $\mathfrak{h}=\mathfrak{s u}(1,1)$. Let $\mathfrak{m}=V^{\mathbb{C}} \oplus \mathbb{C}$. We will use the following basis of \mathfrak{m}.

$$
x, y, i x, i y, z, i z
$$

Let \hat{x} be the element in the real dual basis which corresponds to x, etc. The following operators are a basis of \mathfrak{h}.

$$
\begin{aligned}
& A=\hat{y} \otimes x-\hat{x} \otimes y+i \hat{y} \otimes i x-i \hat{x} \otimes i y \\
& B=\hat{y} \otimes x+\hat{x} \otimes y+i \hat{y} \otimes i x+i \hat{x} \otimes i y \\
& C=\hat{x} \otimes x-\hat{y} \otimes y+i \hat{x} \otimes i x-i \hat{y} \otimes i y
\end{aligned}
$$

Thus $\langle x, y\rangle$ and $\langle i x, i y\rangle$ are submodules and A, B, C satisfy the following relations

$$
\begin{aligned}
& {[A, B]=2 C} \\
& {[A, C]=-2 B} \\
& {[B, C]=-2 A}
\end{aligned}
$$

We are interested in the case when the bracket component $\Lambda^{2} \mathfrak{m} \rightarrow \mathfrak{h}$ is non-zero. This gives the following Lie Brackets on \mathfrak{m}.

$$
\begin{aligned}
& {[x, y]=\alpha z} \\
& {[i x, i y]=\beta z} \\
& {[x, i x]=(A+B)} \\
& {[x, i y]=-C} \\
& {[i x, y]=C} \\
& {[y, i y]=(A-B)} \\
& {[z, x]=(-3 / \beta) i x} \\
& {[z, i x]=(3 / \alpha) x} \\
& {[z, y]=(-3 / \beta) i y} \\
& {[z, i y]=(3 / \alpha) y}
\end{aligned}
$$

If $\alpha \beta>0$ then $\mathfrak{g}=\mathfrak{u}(2,1)$, and if $\alpha \beta<0$ then $\mathfrak{g}=\mathfrak{g l}_{3} . \alpha \beta=0$ is not allowed. The Nijenhuis tensor is

$$
\begin{aligned}
& N_{J}(x, y)=(\beta-\alpha) z \\
& N_{J}(x, z)=-3 \frac{\alpha-\beta}{\alpha \beta} i x \\
& N_{J}(y, z)=-3 \frac{\alpha-\beta}{\alpha \beta} i y
\end{aligned}
$$

$\mathfrak{h}=\mathfrak{s u}(2), \mathfrak{m}=W \oplus \mathbb{C}$
Let W be the tautological representation of $\mathfrak{s u}(2)$. Let $\mathfrak{m}=W \oplus \mathbb{C}$. We will use the following basis of \mathfrak{m}.

$$
x, y, i x, i y, z, i z
$$

Let \hat{x} be the element in the real dual basis which corresponds to x, etc. The following operators are a basis of \mathfrak{h}.

$$
\begin{aligned}
u & =\hat{x} \otimes i x-\hat{y} \otimes i y-i \hat{x} \otimes x+i \hat{y} \otimes y \\
k & =\hat{y} \otimes x-\hat{x} \otimes y+i \hat{y} \otimes i x-i \hat{x} \otimes i y \\
m & =\hat{x} \otimes i y+\hat{y} \otimes i x-i \hat{x} \otimes y-i \hat{y} \otimes x
\end{aligned}
$$

u, k, m satisfy the following relations.

$$
\begin{aligned}
& {[u, k]=2 m} \\
& {[u, m]=-2 k} \\
& {[k, m]=2 u}
\end{aligned}
$$

We are interested in the case when the bracket component $\Lambda^{2} \mathfrak{m} \rightarrow \mathfrak{h}$ is non-zero. Let $\alpha^{2}+\beta^{2}+\gamma^{2}=1$. This gives the following Lie brackets on \mathfrak{m}.

$$
\begin{aligned}
& {[x, y]=-\delta k+\beta z} \\
& {[x, i x]=\delta u+\gamma z} \\
& {[x, i y]=\delta m+\alpha z} \\
& {[i x, y]=-\delta m+\alpha z} \\
& {[i x, i y]=-\delta k-\beta z} \\
& {[y, i y]=-\delta u+\gamma z} \\
& {[x, z]=3 \delta(-\gamma i x-\beta y-\alpha i y)} \\
& {[i x, z]=3 \delta(\gamma x-\alpha y+\beta i y)} \\
& {[y, z]=3 \delta(\beta x+\alpha i x-\gamma i y)} \\
& {[i y, z]=3 \delta(\alpha x+\gamma y-\beta i x)}
\end{aligned}
$$

If $\delta>0$ then $\mathfrak{g}=\mathfrak{u}(3)$, and if $\delta<0$ then $\mathfrak{g}=\mathfrak{u}(1,2) . \delta=0$ is not allowed. The Nijenhuis tensor is

$$
\begin{aligned}
& N_{J}(x, y)=-2(\beta+\alpha i) z \\
& N_{J}(x, z)=6 \delta(\beta+\alpha i) x \\
& N_{J}(y, z)=-6 \delta(\beta+\alpha i) y .
\end{aligned}
$$

