Errata to Almost Complex Homogeneous Spaces with Semi-Simple Isotropy

Henrik Winther

May 31, 2013

Two of the entries in the tables of "Almost Complex Homogeneous Spaces with Semi-Simple Isotropy" are missing some parameters. The purpose of this text is to introduce what was missing. The new parameters allow the almost complex structure J to be deformed such that the Nijenhuis tensor N_J is non-degenerate. The new parameters occur in those cases where \mathfrak{g} has an 8d semi-simple subalgebra and $\mathfrak{h} = \mathfrak{su}(1, 1)$ or $\mathfrak{h} = \mathfrak{su}(2)$. The notations used here are explained in the parent text.

 $\mathfrak{h} = \mathfrak{su}(1,1), \ \mathfrak{m} = V^{\mathbb{C}} \oplus \mathbb{C}$

Let V be the tautological representation of $\mathfrak{sl}_2 \simeq \mathfrak{su}(1,1)$. Then the complexification $V^{\mathbb{C}}$ is the tautological representation of $\mathfrak{h} = \mathfrak{su}(1,1)$. Let $\mathfrak{m} = V^{\mathbb{C}} \oplus \mathbb{C}$. We will use the following basis of \mathfrak{m} .

x, y, ix, iy, z, iz

Let \hat{x} be the element in the real dual basis which corresponds to x, etc. The following operators are a basis of \mathfrak{h} .

$$\begin{split} A = &\hat{y} \otimes x - \hat{x} \otimes y + i\hat{y} \otimes ix - i\hat{x} \otimes iy \\ B = &\hat{y} \otimes x + \hat{x} \otimes y + i\hat{y} \otimes ix + i\hat{x} \otimes iy \\ C = &\hat{x} \otimes x - \hat{y} \otimes y + i\hat{x} \otimes ix - i\hat{y} \otimes iy \end{split}$$

Thus $\langle x,y\rangle$ and $\langle ix,iy\rangle$ are submodules and A,B,C satisfy the following relations

$$\begin{split} [A,B] &= 2C \\ [A,C] &= -2B \\ [B,C] &= -2A \end{split}$$

We are interested in the case when the bracket component $\Lambda^2 \mathfrak{m} \to \mathfrak{h}$ is non-zero. This gives the following Lie Brackets on \mathfrak{m} .

$$\begin{split} & [x, y] = \alpha z \\ & [ix, iy] = \beta z \\ & [x, ix] = (A + B) \\ & [x, iy] = -C \\ & [ix, y] = C \\ & [y, iy] = (A - B) \\ & [z, x] = (-3/\beta)ix \\ & [z, ix] = (3/\alpha)x \\ & [z, y] = (-3/\beta)iy \\ & [z, iy] = (3/\alpha)y \end{split}$$

If $\alpha\beta > 0$ then $\mathfrak{g} = \mathfrak{u}(2,1)$, and if $\alpha\beta < 0$ then $\mathfrak{g} = \mathfrak{gl}_3$. $\alpha\beta = 0$ is not allowed. The Nijenhuis tensor is

$$N_J(x, y) = (\beta - \alpha)z$$
$$N_J(x, z) = -3\frac{\alpha - \beta}{\alpha\beta}ix$$
$$N_J(y, z) = -3\frac{\alpha - \beta}{\alpha\beta}iy$$

 $\mathfrak{h} = \mathfrak{su}(2), \ \mathfrak{m} = W \oplus \mathbb{C}$

Let W be the tautological representation of $\mathfrak{su}(2)$. Let $\mathfrak{m} = W \oplus \mathbb{C}$. We will use the following basis of \mathfrak{m} .

Let \hat{x} be the element in the real dual basis which corresponds to x, etc. The following operators are a basis of \mathfrak{h} .

$$u = \hat{x} \otimes ix - \hat{y} \otimes iy - i\hat{x} \otimes x + i\hat{y} \otimes y$$

$$k = \hat{y} \otimes x - \hat{x} \otimes y + i\hat{y} \otimes ix - i\hat{x} \otimes iy$$

$$m = \hat{x} \otimes iy + \hat{y} \otimes ix - i\hat{x} \otimes y - i\hat{y} \otimes x$$

u, k, m satisfy the following relations.

$$\begin{split} [u,k] &= 2m \\ [u,m] &= -2k \\ [k,m] &= 2u \end{split}$$

We are interested in the case when the bracket component $\Lambda^2 \mathfrak{m} \to \mathfrak{h}$ is non-zero. Let $\alpha^2 + \beta^2 + \gamma^2 = 1$. This gives the following Lie brackets on \mathfrak{m} .

$$\begin{split} [x,y] &= -\delta k + \beta z \\ [x,ix] &= \delta u + \gamma z \\ [x,iy] &= \delta m + \alpha z \\ [ix,y] &= -\delta m + \alpha z \\ [ix,iy] &= -\delta k - \beta z \\ [y,iy] &= -\delta u + \gamma z \\ [x,z] &= 3\delta(-\gamma i x - \beta y - \alpha i y) \\ [ix,z] &= 3\delta(\gamma x - \alpha y + \beta i y) \\ [y,z] &= 3\delta(\beta x + \alpha i x - \gamma i y) \\ [iy,z] &= 3\delta(\alpha x + \gamma y - \beta i x) \end{split}$$

If $\delta > 0$ then $\mathfrak{g} = \mathfrak{u}(3)$, and if $\delta < 0$ then $\mathfrak{g} = \mathfrak{u}(1,2)$. $\delta = 0$ is not allowed. The Nijenhuis tensor is

$$N_J(x, y) = -2(\beta + \alpha i)z$$

$$N_J(x, z) = 6\delta(\beta + \alpha i)x$$

$$N_J(y, z) = -6\delta(\beta + \alpha i)y.$$