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Abstract

We classify the almost complex structures on homogeneous spaces
M = G/H of DimR(M) ≤ 6 with semi-simple isotropy group H.
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1 Introduction

1.1 Almost complex structures

An almost complex structure J on a manifold M is a vector bundle isomorphism
TM → TM such that J2 = −1. This means that J induces the structure of
a complex vector space on the tangent space TxM for every point x ∈ M (and
so dim(M) must be even). The most basic example of such a structure is the
following

Example: almost complex structure on Cn. If zα are complex coordi-
nates on Cn, the holomorphic tangent space TxCn has basis ∂zα , and an almost
complex structure is given by J∂zα = i∂zα . Alternatively one might identify
the tangent space TxCn with Cn and let J be multiplication by i. These two
approaches result in the same structure J .

The main invariant of almost complex structures is called the Nijenhuis
tensor. The Nijenhuis tensor NJ of an almost complex structure J is given by

NJ(X,Y ) = −[X,Y ]− J [JX, Y ]− J [X, JY ] + [JX, JY ]

where X,Y ∈ TxM , and the brackets on the right hand side denote Lie brackets
of arbitrary extensions of X,Y to vector fields which are then evaluated at the
point x. All other invariants of J arise as jets of NJ [6], and it is a major
theorem by Newlander-Nirenberg that if and only if NJ = 0 then J is induced
by local holomorphic coordinates [9]. The almost complex structure J called
integrable in this case.

The Nijenhuis tensor NJ can be considered as a map Λ2
CTxM → TxM which

is anti linear with respect to J . The case when dim(M) = 2dimC(M) = 6 is
particularly interesting because dim(Λ2

CTxM) = dim(TxM), so it is possible for
NJ to be a linear isomorphism. When this is the case, we call both NJ and J
non-degenerate.

Example: Calabi structure on S6. Let O denote the normed non-associative
algebra of octonions, and =(O) the subspace of imaginary octonions. Identify
the set of imaginary octonions of unit length with the sphere S6. The tangent
space TxS

6 for x ∈ S6 is then identified with the orthogonal complement of x
in =(O), denoted x⊥. Multiplication by x preserves x⊥ so for each x ∈ S6
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define J : TxS
6 → TxS

6, y 7→ xy. This J is an almost complex structure
because x2 = −1. There exists a complex basis x1, x2, x3 of TxS

6 such that
NJ(x1, x2) = x3, NJ(x1, x3) = −x2, NJ(x2, x3) = x1, and since NJ is complex
anti-linear this means that Ker(NJ) = 0 so J is non-degenerate.

A symmetry of J is a diffeomorphism of M which leaves J invariant. The
space of symmetries is a Lie group.

1.2 Homogeneous spaces

A homogeneous space for a Lie group G is a manifold M such that G has a
smooth and transitive action on M . Every homogeneous space is equivalent to
a coset space G/H where H is the stabilizer, also called the isotropy subgroup,
of some point x ∈ M . Moreover G acts smoothly and transitively on G/H for
any Lie subgroup H [10]. Therefore the classification of homogeneous spaces is
equivalent to classifying Lie subgroups H of G. This can be done on the Lie
algebra level by considering Lie subalgebras h of g, and the Lie algebra h has a
natural representation on TxM = m = g/h called the isotropy representation.
The homogeneous space M has a G-invariant almost complex structure J if and
only if the isotropy representation is a complex representation. If this is the
case, then G is contained in the symmetry group of J .

1.3 Motivation and goals

According to the Erlangen program of F.Klein, a geometry is specified by a
transitive Lie group action [3]. Though this was generalized and relaxed by
E.Cartan, we would like to approach almost complex geometry from this clas-
sical viewpoint. The problem is that not many non-integrable almost complex
manifolds are known which have transitive symmetry group. In the literature
the most well known example is the Calabi structure on S6 [2] [5] [12], and
except for this the non-integrable examples are almost all left invariant on Lie
groups. Thus it is important to find examples of highly symmetric almost com-
plex structures. It was shown in [8] that if J is non-degenerate, the maximal
symmetry group is 14d, and the almost complex structure which achieves this
is unique in the sense that all such structures J are locally equivalent to the
Calabi structure. We call the non-degenerate structure J , and also its symmetry
group, sub-maximal when the symmetry group is of the second highest possi-
ble dimension. The sub-maximal symmetry group was expected to be 8d, but
in this text we exhibit many examples of non-degenerate J with 9d symmetry
algebra. Our means of producing such symmetric structures is to provide a com-
plete classification of almost complex homogeneous spaces M with semi-simple
isotropy group H of dim(M) ≤6.

1.4 Previous work

All homogeneous spaces with irreducible isotropy representation were classified
by J.Wolf in 1968 [11]. A portion of this work is devoted to almost complex ho-
mogeneous spaces. However this is purely algebraic, and Wolf does not provide
neither geometric information about integrability nor concise examples in his
classification. Moreover many interesting homogeneous spaces are not isotropy
irreducible, and thus not contained in his list.
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1.5 Methods

The direct approach to finding almost complex homogeneous spaces would be
to first classify Lie algebras g and also their subalgebras h, and then check-
ing which geometric structures are preserved by the isotropy representation of
h. The advantage of this approach would be that it is complete, any almost
complex homogeneous space would show up on the list. However brute force
classification of Lie algebras has been performed only up to dimension 6 [1] and
improving upon this would require a disproportionally great effort compared
to our goals, especially considering that we already know about an interesting
example with 14d symmetry algebra (the Calabi structure). In addition, there
are homogeneous spaces M = G/H with unrestricted dim(G), so this approach
works with a priori unbounded data. See [4] for examples of 2d homogeneous
spaces with arbitrary dim(G). We will therefore explore an another, more re-
strictive but also more realistic, approach.

Given a Lie algebra h and representation m, define the Lie bracket on h to
be the given one and let the bracket between h,m be given by the module
structure,

[h,m] = hm

for h ∈ h and m ∈ m. We may then look for maps

[, ] : Λ2m→ h⊕m

such that the Jacobi identity is satisfied. This is a Lie algebra structure on
g = h ⊕ m. We get the Jacobi identity between elements h1, h2,m for free -
it is equivalent to saying that m is an h-module. The Jacobi identity between
elements h,m1,m2 however imposes a restriction

[h, [m1,m2]] + [m2, [h,m1]] + [m1, [m2, h]] = 0

which rewrites as

[hm1,m2] + [m1, hm2] = h[m1,m2]

This means that the map [, ] must be equivariant with respect to the natural
h-module structure on Λ2m (we consider h as a module over itself). One way
to find such equivariant maps is to decompose both m and Λ2m into irreducible
submodules, and to make this feasible we will restrict our considerations to
semi-simple Lie algebras h. See [10] for details about representations of semi-
simple Lie algebras.

Our plan of attack is now to systematically treat each pair (h,m) where h is
semi-simple and m is a representation with an h-invariant complex structure
and dim(m) ≤ 6. The set of such pairs is finite. We will decompose Λ2m to
look for submodules which either appear in m or the adjoint representation of
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h. Provided that such submodules exist, we parameterize the equivariant maps
and compute the only Jacobi identity left which is between 3 elements of m.
This yields equations for the parameters of the maps, and the solution sets are
the parameters for the desired Lie algebra structures on g.

Note that taking the bracket on m to be the zero map is always possible and it
satisfies the Jacobi identity, but this is not interesting because it corresponds to
a vector space Cn with the given linear action of H which is the Lie group of h.
The complex structure is the standard one, which is integrable. We will refer
to the zero map as the flat case for this reason, and they are excluded from our
table of results.

Each Lie algebra g corresponds to at least one Lie group G such that h corre-
sponds to a Lie subgroup H. We may thus create the coset space M = G/H, and
as a homogeneous space M has a G-invariant almost complex structure J . This
J is defined by left translation of the complex structure on m = TeG/TeH = g/h
by G, and the left translation is well defined because J commutes with h.

1.6 Computing the Nijenhuis tensor

It is easy to compute the Nijenhuis tensor of J in the case when m is a Lie
subalgebra of g. For elements X,Y ∈ m, we may simply use the formula

NJ(X,Y ) = −[X,Y ]− J [JX, Y ]− J [X, JY ] + [JX, JY ]

where the brackets are the ones we defined. This corresponds to extending
X, JX, Y, JY to their respective left invariant vector fields on M and taking
the commutator, which is then evaluated at m. Since M is homogeneous, NJ
at any other point is the same. If m is not a subalgebra, ie. the bracket has
some h-component, we may use the same formula, but now projecting to m after
taking each bracket.

2 Table of results

Theorem 1. If M = G/H is a homogeneous space of dim ≤ 6 equipped with
a G-invariant almost complex structure J and the isotropy group H is semi-
simple, then g is isomorphic to one of the Lie algebras in the following section
and the isomorphism preserves both isotropy algebra h and complex structure.

Note that for h = su(2, 1), sl3, sl3(C) only the flat case is realized so these are
exempt from the tables. The complex dimension of the kernel of the Nijenhuis
tensor is given in the ”Notes” column, with the notation DGk meaning a k−dim
kernel. For more information about this notation and the possible types of
Nijenhuis tensors see [7].

2.1 h = su(2)

2.1.1 m = W , the tautological representation

Only the flat case of C2 with the standard su(2)-action is realized.
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2.1.2 m = AdC = Ad⊕Ad

In this section u, k,m are the generators of su(2) = h. They satisfy

[u, k] = 2m

[u,m] = −2k

[k,m] = 2u

We use the real basis u1 = (u, 0), k1 = (k, 0),m1 = (m, 0), u2 = (0, u), k2 =
(0, k),m2 = (0,m) for m. The action of h is the obvious one. The complex
structure J is given by

J(h, 0) = (−rh, th)

for some real r and real t 6= 0.

[, ] NJ Notes
[u1, k1] = 2m1 NJ(u1, k1) = −2(r2 + 1)m1 + 2(t2 + 2rt)m2 m ' su(2)⊕ su(2)
[u1,m1] = −2k1 NJ(u1,m1) = 2(r2 + 1)k1 − 2(t2 + 2rt)k2 Non-degenerate
[k1,m1] = 2u1 NJ(k1,m1) = −2(r2 + 1)u1 + 2(t2 + 2rt)u2 h is the diagonal subalgebra
[u2, k2] = 2m2 in g = su(2)3.
[u2,m2] = −2k2
[k2,m2] = 2u2
[u1, k1] = 2m1 NJ(u1, k1) = 2(r2 + 1− t2)m1 − 4trm2 m ' sl2(C)
[u1,m1] = −2k1 NJ(u1,m1) = −2(r2 + 1− t2)k1 + 4trk2 NJ vanishes for r = 0, t = ±1,
[k1,m1] = 2u1 NJ(k1,m1) = 2(r2 + 1− t2)u1 − 4tru2 non-degenerate else
[u2, k2] = −2m1 h is a diagonal subalgebra
[u2,m2] = 2k1 in g = su(2)⊕ sl2(C).
[k2,m2] = −2u1
[u1, k2] = 2m2

[u1,m2] = −2k2
[k1,m2] = 2u2
[u2, k1] = 2m2

[u2,m1] = −2k2
[k2,m1] = 2u2
[u1, k1] = 2m1 NJ(u1, k1) = −2(r2 + 1)m1 + 4rtm2 m ' su(2)⊕ R3

[u1,m1] = −2k1 NJ(u1,m1) = 2(r2 + 1)k1 − 4rtk2 Non-degenerate
[k1,m1] = 2u1 NJ(k1,m1) = −2(r2 + 1)u1 + 4rtu2

[u1, k1] = 2m2 NJ(u1, k1) = − 4(r3+r)
t m1 + 2(3r2 − 1)m2 Non-degenerate

[u1,m1] = −2k2 NJ(u1,m1) = 4(r3+r)
t k1 − 2(3r2 − 1)k2

[k1,m1] = 2u2 NJ(k1,m1) = − 4(r3+r)
t u1 + 2(3r2 − 1)u2

2.1.3 m = W ⊕ C

We use the real basis x, ix, y, iy for W and z, iz for C. A basis of h is given by

u = x̂⊗ ix− ŷ ⊗ iy − ix̂⊗ x+ iŷ ⊗ y
k = ŷ ⊗ x− x̂⊗ y + iŷ ⊗ ix− ix̂⊗ iy
m = x̂⊗ iy + ŷ ⊗ ix− ix̂⊗ y − iŷ ⊗ x
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where x̂, ix̂, ŷ, iŷ is the dual basis. The complex structure J acts in the obvious
manner.

[, ] NJ Notes
[x, ix] = [y, iy] = λ1z NJ(x, y) = −2λ2z − 2λ3iz NJ vanishes for λ2 = λ3=0,
[x, y] = −[ix, iy] = λ2z NJ(x, z) = 2β(λ3y − λ2iy) DG2 for β = 0,
[ix, y] = [x, iy] = λ3z NJ(y, z) = 2β(λ3x− λ2ix) otherwise non-degenerate.

[x, iz] = δ
2x+ β(λ1ix+ λ2y + λ3iy) δ = 0 or δ = 1

[ix, iz] = δ
2 ix− β(λ1x− λ3y + λ2iy)

[y, iz] = δ
2y − β(λ2x+ λ3ix− λ1iy)

[iy, iz] = δ
2 iy − β(λ3x− λ2ix+ λ1y)

[z, iz] = δz
[x, ix] = [y, iy] = λ1z + L1iz NJ(x, y) = 2(L3 − λ2 − iL2 − iλ3)zNJ vanishes for λ2 = λ3=0,
[x, y] = −[ix, iy] = λ2z + L2iz NJ(x, z) = 0 DG2 else.
[ix, y] = [x, iy] = λ3z + L3iz NJ(y, z) = 0
[x, z] = βx NJ(x, y) = 0 semi-direct product
[ix, z] = βix NJ(x, z) = 2(λ3y − λ2iy) W oC
[y, z] = βy NJ(y, z) = 2(λ3x− λ2ix) NJ vanishes for λ2 = λ3=0,
[iy, z] = βiy DG1 else.
[x, iz] = αx+ (λ1ix+ λ2y + λ3iy)
[ix, iz] = αix− (λ1x− λ3y + λ2iy)
[y, iz] = αy − (λ2x+ λ3ix− λ1iy)
[iy, iz] = αiy − (λ3x− λ2ix+ λ1y)
[x, iz] = αx+ (λ1ix+ λ2y + λ3iy) NJ(x, y) = 0 semi-direct product
[ix, iz] = αix− (λ1x− λ3y + λ2iy) NJ(x, z) = 2(λ3y − λ2iy) W oC
[y, iz] = αy − (λ2x+ λ3ix− λ1iy) NJ(y, z) = 2(λ3x− λ2ix) NJ vanishes for λ2 = λ3=0,
[iy, iz] = αiy − (λ3x− λ2ix+ λ1y) DG1 else.
[z, iz] = z
[x, ix] = β(u+ 3z) NJ = 0
[x, y] = −βk
[x, iy] = βm
[ix, y] = −βm
[ix, iy] = −βk
[y, iy] = β(3z − u)
[z, x] = ix
[z, ix] = −x
[z, y] = iy
[z, iy] = −y

2.2 h = su(1, 1)

2.2.1 m = V C, the tautological representation

Only the flat case of C2 with the standard su(1, 1)-action is realized.

2.2.2 m = AdC = Ad⊕Ad

In this section A,B,C are the generators of su(1, 1) = h. They satisfy
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[A,B] = 2C

[A,C] = −2B

[B,C] = −2A

We use the real basis A1 = (A, 0), B1 = (B, 0), C1 = (C, 0), A2 = (0, A), B2 =
(0, B), C2 = (0, C) of m. The complex structure J is given by

J(h, 0) = (−rh, th)

for some real r and real t 6= 0.

[, ] NJ Notes
[A1, B1] = 2C1 NJ(A1, B1) = −2(r2 + 1)C1 + 2(t2 + 2rt)C2 m ' su(1, 1)⊕ su(1, 1)
[A1, C1] = −2B1 NJ(A1, C1) = 2(r2 + 1)B1 − 2(t2 + 2rt)B2 Non-degenerate
[B1, C1] = −2A1 NJ(B1, C1) = 2(r2 + 1)A1 − 2(t2 + 2rt)A2 h is the diagonal subalgebra
[A2, B2] = 2C2 in g = su(1, 1)3.
[A2, C2] = −2B2

[B2, C2] = −2A2

[A1, B1] = 2C1 NJ(A1, B1) = 2(r2 + 1− t2)C1 − 4trC2 m ' sl2(C)
[A1, C1] = −2B1 NJ(A1, C1) = −2(r2 + 1− t2)B1 + 4trB2 NJ vanishes for r = 0, t = ±1,
[B1, C1] = −2A1 NJ(B1, C1) = −2(r2 + 1− t2)A1 + 4trA2 non-degenerate else
[A2, B2] = −2C1 h is the diagonal subalgebra
[A2, C2] = 2B1 in g = su(1, 1)⊕ sl2(C).
[B2, C2] = 2A1

[A1, B2] = 2C2

[A1, C2] = −2B2

[B1, C2] = −2A2

[A2, B1] = 2C2

[A2, C1] = −2B2

[B2, C1] = −2A2

[A1, B1] = 2C1 NJ(A1, B1) = −2(r2 + 1)C1 + 4rtC2 m ' su(1, 1)⊕ R3

[A1, C1] = −2B1 NJ(A1, C1) = 2(r2 + 1)B1 − 4rtB2 Non-degenerate
[B1, C1] = −2A1 NJ(B1, C1) = 2(r2 + 1)A1 − 4rtA2

[A1, B1] = 2C2 NJ(A1, B1) = − 4(r3+r)
t C1 + 2(3r2 − 1)C2 Non-degenerate

[A1, C1] = −2B2 NJ(A1, C1) = 4(r3+r)
t B1 − 2(3r2 − 1)B2

[B1, C1] = −2A2 NJ(B1, C1) = 4(r3+r)
t A1 − 2(3r2 − 1)A2

2.2.3 m = V C ⊕ C

We use a real basis x, ix, y, iy for V C such that x, y and ix, iy are submodules,
and z, iz for C. A basis of h is given by

A = ŷ ⊗ x− x̂⊗ y + iŷ ⊗ ix− ix̂⊗ iy
B = x̂⊗ y + ŷ ⊗ x+ ix̂⊗ iy + iŷ ⊗ ix
C = x̂⊗ x− ŷ ⊗ y + ix̂⊗ ix− iŷ ⊗ iy
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Here x̂, ŷ, ix̂, iŷ means the real dual basis. The complex structure J acts in the
obvious manner.

[, ] NJ Notes
[x, y] = λ1z NJ(x, y) = (λ3 − λ1)z − 2λ2iz λ1λ3 6= λ22,
[x, iy] = [ix, y] = λ2z NJ(x, z) = r(λ3 − λ1)x− 2rλ2ix NJ vanishes if
[ix, iy] = λ3z NJ(y, z) = r(λ3 − λ1)y − 2rλ2iy λ1 = λ3, λ2 = 0,
[x, iz] = r(λ2x− λ1ix) non-degenerate else.
[ix, iz] = r(λ3x− λ2ix)
[y, iz] = r(λ2y − λ1iy)
[iy, iz] = r(λ3y − λ2iy)
[x, y] = −β2z NJ(x, y) = (β2 − α2)z − 2αβiz Non-degenerate
[x, iy] = [ix, y] = αβz NJ(x, z) = (l − ik)(αx+ βix)
[ix, iy] = −α2z NJ(y, z) = (l − ik)(αy + βiy)
[x, iz] = k(αx+ βix)
[ix, iz] = l(αx+ βix)
[y, iz] = k(αy + βiy)
[iy, iz] = l(αy + βiy)
[x, y] = −β2(γz + iz) NJ(x, y) = −(α+ iβ)2(i+ γ)z Non-degenerate
[x, iy] = αβ(γz + iz) NJ(x, z) = r(−α− iβ)(αx+ βix)
[ix, y] = αβ(γz + iz) NJ(y, z) = r(−α− iβ)(αy + βiy)
[ix, iy] = −α2(γz + iz)
[x, iz] = r(βαx+ β2ix)
[ix, iz] = r(−α2x− αβix)
[y, iz] = r(βαy + β2iy)
[iy, iz] = r(−α2y − αβiy)
[x, z] = γx NJ(x, y) = 0 Semi-direct product
[ix, z] = γix NJ(x, z) = (λ2 + λ3 + iλ4 − iλ1)x V C oC
[y, z] = γy NJ(y, z) = (λ2 + λ3 + iλ4 − iλ1)y DG1 unless
[iy, z] = γiy λ2 = −λ3, λ1 = λ4
[x, iz] = λ1x+ λ2ix in which case NJ = 0.
[ix, iz] = λ3x+ λ4ix
[y, iz] = λ1y + λ2iy
[iy, iz] = λ3y + λ4iy
[x, y] = λ1z + L1iz NJ(x, y) = (λ3 − λ1 + 2L2)z + (L3 − L1 − 2λ2)izDG2 but NJ = 0 for
[ix, iy] = λ3z + L3iz NJ(x, z) = 0 λ1 − λ3 = 2L2,
[x, iy] = λ2z + L2iz NJ(y, z) = 0 L3 + L1 = 2λ2
[ix, y] = λ2z + L2iz
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[, ] NJ Notes
[x, y] = λ1z NJ(x, y) = (λ3 − λ1)z − 2λ2iz λ1λ3 6= λ22,
[x, iy] = λ2z NJ(x, z) = r(λ3 − λ1)x− 2λ2ix non-degenerate unless
[ix, y] = λ2z NJ(y, z) = r(λ3 − λ1)y − 2λ2iy λ1 = λ3, λ2 = 0,
[ix, iy] = λ3z which gives NJ = 0.

[x, iz] = 1
2x+ r(λ2x− λ1ix)

[ix, iz] = 1
2 ix+ r(λ3x− λ2ix)

[y, iz] = 1
2y + r(λ2y − λ1iy)

[iy, iz] = 1
2 iy + r(λ3y − λ2iy)

[z, iz] = z
[x, y] = −β2z NJ(x, y) = −(α+ iβ)2z Non-degenerate
[x, iy] = αβz NJ(x, z) = (−iα+ β)(k + il)x
[ix, y] = αβz NJ(y, z) = (−iα+ β)(k + il)y
[ix, iy] = −α2z

[x, iz] = 1
2x+ k(αx+ βix)

[ix, iz] = 1
2 ix+ l(αx+ βix)

[y, iz] = 1
2y + k(αy + βiy)

[iy, iz] = 1
2 iy + l(αy + βiy)

[z, iz] = z
[x, y] = −β2z NJ(x, y) = −(α+ iβ)2z kα+ lβ = 1
[x, iy] = αβz NJ(x, z) = (α+ iβ)(l − i(k − r(a− b))x non-degenerate unless
[ix, y] = αβz NJ(x, z) = (α+ iβ)(l − i(k − r(a− b))y l = 0, k = r(a− b),
[ix, iy] = −α2z which gives DG2

[x, z] = r(αβx+ β2ix)
[ix, z] = r(−α2x− αβix)
[y, z] = r(αβy + β2iy)
[iy, z] = r(−α2y − αβiy)

[x, iz] = 1
2x+ k(αx+ βix)

[ix, iz] = 1
2 ix+ l(αx+ βix)

[y, iz] = 1
2y + k(αy + βiy)

[iy, iz] = 1
2 iy + l(αy + βiy)

[z, iz] = z

[x, z] = r(αx− α2

β ix) NJ(x, y) = 0 β 6= 0

[ix, z] = r(βx− αix) NJ(x, z) = (αβ + i(1 + 2rα))x Semi-direct product

[y, z] = r(αy − α2

β iy) NJ(x, z) = (αβ + i(1 + 2rα))y V C oC
[iy, z] = r(βy − αiy) DG1

[x, iz] = (γ + 1
2 )x− α

β ix

[ix, iz] = (γ − 1
2 )ix

[y, iz] = (γ + 1
2 )y − α

β iy

[iy, iz] = (γ − 1
2 )iy

[z, iz] = z
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[, ] NJ Notes
[x, iz] = λ1x+ λ2ix NJ(x, y) = 0 Semi-direct product
[ix, iz] = λ3x+ λ4ix NJ(x, z) = −(λ2 + λ3)x+ (λ1 − λ4)ix V C oC
[y, iz] = λ1y + λ2iy NJ(y, z) = −(λ2 + λ3)y + (λ1 − λ4)iy DG1 unless
[iy, iz] = λ3y + λ4iy λ2 = −λ3, λ1 = λ4
[z, iz] = z which gives NJ=0
[x, y] = −3αz NJ = 0
[ix, iy] = −3αz
[x, ix] = α(A+B)
[y, iy] = α(A−B)
[x, iy] = −αC
[ix, y] = αC
[z, x] = ix
[z, ix] = −x
[z, y] = iy
[z, iy] = −y

2.3 h = sl2(C)

2.3.1 m = W , the tautological representation

Only the flat case is realized.

2.3.2 m = Ad

We use the basis u, iu, k, ik,m, im of m, which are copies of the basis of h
satisfying

[u, k] = 2m

[u,m] = −2k

[k,m] = 2u

and the brackets are complex linear. The complex structure on m is the one
inherited from the complex Lie algebra structure, and it acts in the obvious
manner.

[, ] NJ Notes
[u, k] = −[iu, ik] = 2m NJ = 0 g = sl2(C)⊕ sl2(C)
[u,m] = −[iu, im] = −2k
[k,m] = −[ik, im] = 2u
[u, ik] = [iu, k] = 2im
[u, im] = [iu,m] = −2ik
[k, im] = [ik,m] = 2iu

2.3.3 m = W ⊕ C

We use the basis x, ix, y, iy with x, y the standard complex basis of C2.
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[, ] NJ Notes
[x, z] = βx NJ = 0
[ix, z] = βix
[y, z] = βy
[iy, z] = βiy
[x, iz] = αx+ γix
[ix, iz] = αix− γx
[y, iz] = αy + γiy
[iy, iz] = αiy − γy
[x, iz] = αx+ γix NJ = 0
[ix, iz] = αix− γx
[y, iz] = αy + γiy
[iy, iz] = αiy − γy
[z, iz] = z
[x, y] = αz + βiz NJ(x, y) = −2(α+ η)z + 2(γ − β)iz DG2 unless
[ix, iy] = −αz − βiz NJ(x, z) = 0 α = −η, γ = β
[x, iy] = γz + ηiz NJ(y, z) = 0 which gives NJ = 0.
[ix, y] = γz + ηiz

2.4 h = su(3)

2.4.1 m = W , the tautological representation

We use the basis x1, ix1, x2, ix2, x3, ix3 of m. A basis of su(3) = h is given by

ui11 = (3x̂1 ⊗ ix1 − 3ix̂1 ⊗ x1 − J)

ui22 = (3x̂2 ⊗ ix2 − 3ix̂2 ⊗ x2 − J)

u12 = x̂1 ⊗ x2 − x̂2 ⊗ x1 + ix̂1 ⊗ ix2 − ix̂2 ⊗ ix1
u13 = x̂1 ⊗ x3 − x̂3 ⊗ x1 + ix̂1 ⊗ ix3 − ix̂3 ⊗ ix1
u23 = x̂2 ⊗ x3 − x̂3 ⊗ x2 + ix̂2 ⊗ ix3 − ix̂3 ⊗ ix2
ui12 = x̂1 ⊗ ix2 + x̂2 ⊗ ix1 − ix̂1 ⊗ x2 − ix̂2 ⊗ x1
ui13 = x̂1 ⊗ ix3 + x̂3 ⊗ ix1 − ix̂1 ⊗ x3 − ix̂3 ⊗ x1
ui23 = x̂2 ⊗ ix3 + x̂3 ⊗ ix2 − ix̂2 ⊗ x3 − ix̂3 ⊗ x2

Here x̂1, ix̂1, x̂2, ix̂2, x̂3, ix̂3 denotes the dual basis. The complex structure J
acts in the obvious manner.
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[, ] NJ Notes
[x1, ix1] = 2ui11 NJ(x1, x2) = −8x3 g = g2,
[x2, ix2] = 2ui22 NJ(x1, x3) = 8x2 the compact form of the
[x3, ix3] = −2(ui11 + ui22) NJ(x2, x3) = −8x1 exceptional Lie algebra.
[x1, x2] = 3u12 + 2x3 Non-degenerate.
[x1, x3] = 3u13 − 2x2
[x2, x3] = 3u23 + 2x1
[ix1, x2] = −3ui12 − 2ix3
[x1, ix2] = 3ui12 − 2ix3
[ix1, x3] = −3ui13 + 2ix2
[x1, ix3] = 3ui13 + 2ix2
[ix2, x3] = −3ui23 − 2ix1
[x2, ix3] = 3ui23 − 2ix1
[ix1, ix2] = 3u12 − 2x3
[ix1, ix3] = 3u13 + 2x2
[ix2, ix3] = 3u23 − 2x1

3 Possible Isotropy Algebras

We are only interested in those representations on which the isotropy subgroup
acts effectively, ie. we exclude sub-algebras acting trivially. To ensure an almost
complex structure on the homogenous space we consider only real modules with
compatible complex structures. Moreover we can restrict ourselves to those
isotropy algebras h which have such modules m of dimension Dim(m) ≤ 6. These
algebras have semi-simple part su(2), su(1, 1) ' sl2, sl2(C), su(2, 1), su(3), sl3 or
sl3(C). Sometimes we will also augment these semi-simple algebras by allowing
a one dimensional center R ⊂ h.

3.1 Modules

3.1.1 su(2)

The 4 dimensional tautological representation W has a complex structure. It
is irreducible over the reals, but not absolutely irreducible as its complexifica-
tion splits over C into two submodules each isomorphic to W . W can also be
identified as the spinor representation of so(3).

We may complexify the adjoint representation Ad. This gives us a 6d module
AdC, which splits into Ad ⊕ Ad over the reals. This module is isomorphic to
S2
CW , another obvious candidate.

The last module we consider is W ⊕C, where C is considered as a 2d trivial
module.

3.1.2 su(1, 1)

In contrast with the previous case the 4d tautological representation is not
irreducible over the reals. It can be identified with V C ' V ⊕V , where V is the
2d irreducible representation of sl2.

We may add a trivial 2d module to this to obtain V C ⊕ C.
The adjoint representation Ad can be identified with S2V , the symmetric

tensor square of V , and this module can be complexified to obtain S2V C which
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splits into S2V ⊕ S2V over the reals.

3.1.3 sl2(C)

The representations are the same as for su(2), except Ad is irreducible, complex
and 6 dimensional in this case.

3.1.4 sl3

The tautological representation V is of real dimension 3, so the complexification
V C is 6 dimensional. It splits into V C ' V ⊕ V over the reals. The complexifi-
cation of the dual representation V ∗ is also eligible.

3.1.5 su(2, 1)

This algebras have a natural complex structure on the tautological representa-
tion, which is of real dimension 6 and irreducible. The dual representation is
equivalent to the tautological rep. over the reals, but not over complex numbers.

3.1.6 su(3)

We have a natural complex structure on the tautological representation, which
is of real dimension 6 and irreducible. The dual representation is equivalent to
the tautological rep. over the reals, but not over complex numbers.

3.1.7 sl3(C)

We have a natural action on the complexification of the tautological represen-
tation V of sl3 and its dual V ∗.they are irreducible over the reals in this case
because we enlarged the algebra.

4 Homogeneous spaces and calculation of Nijen-
huis Tensors

4.1 su(2)

4.1.1 m = W

The skew symmetric real tensor product Λ2W can be computed easily by first
noting that the complexified Lie algebra sl2(C) has a natural representation
on W (the representation is not absolutely irreducible), ie. we do not need to
complexify the representation as would usually be the case. We then make use
of the natural embedding of su(1, 1) in sl2(C) to represent the former on W as
well. This identifies W ' V ⊕V (under different algebras). The right hand side
consists of a direct sum of highest weight representations, which allows us to
compute the decomposition of the tensor product easily.

Λ2(V ⊕ V ) = ε⊕ C⊕ S2V

The decomposition of W should consist of irreducible components of the same
dimensions, and we get
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Λ2W = ε⊕ C⊕Ad

The standard complex basis x, y of W extends to a real basis x, y, ix, iy. We
can write the decomposition concretely in terms of this basis

〈x ∧ ix+ y ∧ iy〉 ' ε
〈x ∧ y − ix ∧ iy, x ∧ iy + ix ∧ y〉 ' Λ2

CW = C
〈x ∧ iy − ix ∧ y, x ∧ y + ix ∧ iy, x ∧ ix− y ∧ iy〉 ' Ad

This allows for an equivariant map Λ2m→ h, and hence opens up the possibility
of an algebra structure on h⊕m. Write x̂, ŷ, ix̂, iŷ for the dual basis of x, y, ix, iy.
The following set of complex operators

u = x̂⊗ ix− ŷ ⊗ iy − ix̂⊗ x+ iŷ ⊗ y
k = ŷ ⊗ x− x̂⊗ y + iŷ ⊗ ix− ix̂⊗ iy
m = x̂⊗ iy + ŷ ⊗ ix− ix̂⊗ y − iŷ ⊗ x

is a basis of h with commutation relations

[u, k] = 2m

[u,m] = −2k

[k,m] = 2u

We solve for the brackets

[x, ix] = αu

[x, y] = −αk
[x, iy] = αm

[ix, y] = −αm
[ix, iy] = −αk
[y, iy] = −αu

Attempting to compute the Jacobi identity for elements x, ix, y shows that it
fails unless g is flat:

[x, [ix, y]] + [y, [x, ix]] + [ix, [y, x]] = 3αiy

Here α is the free parameter corresponding to choice of equivariant map. This
calculation implies a trivial algebra structure on m and hence a vanishing Ni-
jenhuis tensor.

We now attempt to add a radical R to the Lie algebra, yielding h = su(2)⊕
R. The radical term could in principle be represented by any subalgebra of
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Endh(W ), the operators that commute with h. Endh(W ) is isomorphic to the
quaternions as an algebra. We demand that our isotropy algebra is C-linear, ie.
it must commute with the complex structure. The space of C-linear operators
form a subalgebra of Endh(W ). This subalgebra is isomorphic to C and is
generated by 1, J , Suppose r is a basis of R represented by βJ + γ. Note that
by the previous Jacobi identity, we need to have β non-zero so we can cancel
out the iy-term. If β is nonzero this makes the C term in the decomposition of
Λ2W irreducible, so the only option is to map ε→ R. Solving for the brackets
and computing the Jacobi identity from before we obtain

[x, [ix, y]] + [y, [x, ix]] + [ix, [y, x]] = (3α− β)iy − γy

Checking that the other identities are verified as well gives a non-flat homoge-
nous space for γ = 0, β = 3α. Since su(2) is embedded in g, g must be either
su(3) or su(2, 1). The Nijenhuis tensor is zero since the bracket has no m-
component.

4.1.2 m = AdC

Now let m = AdC. Abstractly the possible semi-simple algebra structures on
h⊕m are g = su(2)⊕ su(2)⊕ su(2) and g = su(2)⊕ sl2(C).

In the case g = su(2)3, we know from the nontrivial module decomposition
that h corresponds to the diagonal subalgebra (It acts nontrivially on each copy
of su(2)). Each term in the abstract description is also an ideal, so we can find
two submodules Ad1, Ad2 ⊂ m such that

[Ad1, Ad2] = 0

[Ad1, Ad1] = Ad1

[Ad2, Ad2] = Ad2

which corresponds to the equivariant map

Ad1 ⊗Ad2 → 0

Λ2Ad1 → Ad1

Λ2Ad2 → Ad2

Now consider the complex structure on AdC ' Ad⊗RC ' Ad⊕Ad. The splitting
of m into Ad1 ⊕Ad2 may not be compatible with the splitting Ad⊕ iAd. If we
use the first splitting, J can look like any equivariant map m→ m with square
J2 = −1,

J(Ad1) = {(−rh, th)}
J(h, 0) = (−rh, th)

for some real r and real t 6= 0. Now we have enough information to compute
the Nijenhuis tensor.
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NJ((h, 0), (v, 0)) = (−(r2 + 1)[h, v], (t2 + 2rt)[h, v])

This is non-degenerate because the bracket [h, v] vanishes only when h, v are
proportional.

The second case is g = su(2) ⊕ sl2(C). In this case h must also correspond
to a diagonal subalgebra, with the component in the sl2(C) term consisting of
a choice of real su(2) (but all choices are equivalent). In this case the bracket
on m = Ad⊕Ad is given by

[(h1, v1), (h2, v2)] = ([h1, h2]− [v1, v2], [h1, v2] + [v1, h2])

and J is given by

J(h, 0) = (−rh, th)

which gives the Nijenhuis tensor

NJ((h, 0), (v, 0)) = ((r2 + 1− t2)[h, v],−2tr[h, v])

The coefficients have r = 0, t = ±1 as a common root, which corresponds to
the natural complex structure on sl2(C) regarded as a complex Lie algebra. All
r 6= 0 give a non-degenerate NJ .

There are two possible cases where g is not semi-simple but the semi-simple
part Q ⊂ g strictly contains h. We may attempt to extend to either Q = sl2(C)
or Q = su(2)⊕ su(2), both with an abelian radical I = R3. Since we know that
I must be a Q-module, the former case is easily disqualified due to the lack of
nontrivial su2(C)-actions that extend the known su(2)-action on I.

In the latter case Q = su(2)2 we must also have a Q-action on I, and the
kernel of this action will be an ideal and hence also a submodule. Denote this
submodule by Ad1 = {(h, 0)}. It is su2 as a Lie algebra. As usual we have

J(Ad1) = {(−rh, th)}
J(h, 0) = (−rh, th)

and we can compute the Nijenhuis tensor for (h, 0), (v, 0) ∈ Ad1

NJ((h, 0), (v, 0)) = (−(r2 + 1)[h, v], 2tr[h, v])

This is non-degenerate since the polynomial coefficients do not vanish simulta-
neously.

Finally we have the case of m being a solvable radical. Split AdC ' Ad1 ⊕Ad2,
and let the Lie bracket be given by
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[(h1, v1), (h2, v2)] = (0, [h1, h2])

This is the only non-flat solvable structure on m, as the other possibilities violate
the Jacobi identity. As before the almost complex structure will in general be
given by

J(Ad1) = {(−rh, th)}
J(h, 0) = (−rh, th)

for some real r and real t 6= 0. We compute the Nijenhuis tensor

NJ((h, 0), (v, 0)) = (−2(r3 + r)

t
[h, v], (3r2 − 1)[h, v])

It is always non-degenerate because the polynomial coefficients have no common
zeroes.

The case r = 0, t = ±1 can be identified with the following construction: Identify
su(2) ' so(3) and Ad ' V , where V denotes the 3d tautological representation
of so(3). We can identify V ' Λ2V as modules. Define m = V ⊕ Λ2V , and let
the Lie bracket be given by the wedge product

[v, w] = v ∧ w

Now the Hodge-∗ operator

V → Λ2V

Λ2V → V

is precisely the equivariant almost complex structure we wanted.

It is interesting to note that all of the non-zero Nijenhuis tensors on m = Ad⊕Ad
have the same pointwise type, ie. all of them can be transformed to the form of
any other at a given point. Of course, this transformation does not necessarily
respect the homogeneous structure.

4.1.3 m = W ⊕ C

The last case to consider is m = W ⊕ C. We have

Λ2m = Λ2W ⊕W ⊗R C⊕ Λ2C = C⊕Ad⊕ R⊕WC ⊕ R

and we know that W is not absolutely irreducible, which means that WC '
W ⊕W (over C). The decomposition of Λ2W is given by
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〈x ∧ ix+ y ∧ iy〉 ' ε
〈x ∧ y − ix ∧ iy, x ∧ iy + ix ∧ y〉 ' Λ2

CW = C
〈x ∧ iy − ix ∧ y, x ∧ y + ix ∧ iy, x ∧ ix− y ∧ iy〉 ' Ad

Let Endsu(2)W denote the space of equivariant maps W →W . As an operator
ring it is naturally isomorphic to the quaternions H. A ∈ Endsu(2)W can be
written as A = α1 + βB with B2 = −1, so B is an equivariant complex struc-
ture on W . The space of such structures is a 2-sphere in Endsu(2)W . They are
all equivalent, so we fix our complex structure to be the standard one. Note
that since H is a division algebra, every non-zero operator in Endsu(2)W is in-
vertible. Traceless operators correspond to imaginary quaternions under our
isomorphism.

To begin we assume that the bracket has no h-component. The bracket Λ2W →
C is given by a C-valued h-invariant 2-form σ. The bracket W ⊗ C → W is
given by a map A : C→ Endsu(2)W such that

z 7→ Az

[X, z] = AzX

In addition to this C can have a 2d Lie algebra structure, either abelian or
non-abelian solvable. We can write all our brackets

[X,Y ] = σ(X,Y )

[X, z] = AzX

z ∧ iz 7→ [z, iz]

for X,Y ∈W, z ∈ C. We compute the Jacobi identities

Aσ(Y,Z)X +Aσ(X,Y )Z +Aσ(Z,X)Y = 0

[Az, Aiz] = −A[z,iz]

[σ(X,Y ), z] = σ(AzX,Y ) + σ(X,AzY )

for X,Y, Z ∈W, z ∈ C. The third identity suggests that we look for equivariant
symmetries of σ, which will be useful in at least the case of abelian C (and also
in the non-abelian case). We can write our vector valued form as the sum of its
components in some basis

σ(X,Y ) = σz(X,Y )z + σiz(X,Y )iz

such that σz, σiz are h-invariant real valued forms. The symmetries of σ will
then be the intersection of the symmetries of σz, σiz, so we start by computing
the symmetry algebra of the scalar valued forms.
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The algebra h preserves a hermitian form H on W . The real part of this form is
an invariant real inner product. Denote it by g = <H. Any invariant scalar form
σ can be written as σ(X,Y ) = g(BX,Y ) for some operator B. Since both σ and
g are invariant, B ∈ Endsu(2)W . If B contains a non-zero identity component,
σ will not be skew symmetric. On the other hand, σ is skew symmetric if B is
an imaginary quaternion, so we have a bijection between imaginary quaternions
and skew symmetric invariant 2-forms. Therefore we will denote

ωB(X,Y ) = g(BX,Y )

for imaginaryB. Since non-zeroB is an invertible operator ωB is non-degenerate,
and therefore the symmetries are traceless. We easily see that B is contained
in the symmetry algebra of ωB , because

ωB(Bx, y) + ωB(x,By) = β2(g(x, y)− g(x, y)) = 0

for β such that B2 = −β2. On the other hand, if we take A ∈ Endsu(2)W
imaginary and not proportional to B, we get

ωB(Ax, y) + ωB(x,Ay) = 2g(=(BA)x, y) = 2ω=(BA)(x, y)

which is non-zero if A,B are non-zero. We have shown that for non-zero B

Symh(ωB) = 〈B〉

Let’s apply this to compute the algebra structures. Suppose first that both
A 6= 0, σ 6= 0. From the identity

[Az, Aiz] = −A[z,iz]

we see that A takes values in a 2d Lie subalgebra with the same structure as C.
However all 2d Lie subalgebras of EndhW are isomorphic to the complex num-
bers as associative algebras and are therefore abelian Lie algebras. Therefore
we can find z ∈ C such that Az is proportional to the identity (possibly Az = 0)
and

[z, iz] = δz

Here δ = 0 if C is abelian (in which case z is not fixed), δ = 1 if C is non-abelian
(z is fixed up to scaling in this case). σ splits into components

σ(X,Y ) = ωB(X,Y )z + ωC(X,Y )iz

(we have changed our notation from the last time this decomposition was used,
to indicate symmetries) and the third Jacobi identity becomes
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ωC(AzX,Y ) + ωC(X,AzY ) = 0

ωC(AizX,Y ) + ωC(X,AizY ) = 0

which must hold in all cases, and additionally for abelian C we have

ωB(AzX,Y ) + ωB(X,AzY ) = 0

ωB(AizX,Y ) + ωB(X,AizY ) = 0

or for non-abelian C we get

ωB(AzX,Y ) + ωB(X,AzY ) = −ωC(X,Y )

ωB(AizX,Y ) + ωB(X,AizY ) = ωB(X,Y )

If C is abelian, Az and Aiz must be symmetries of both ωB and ωC , so it follows
from our discussion of symmetries above that there is some z such that Az = 0,
Aiz = B and ωB , ωC are proportional. If C is non-abelian, Az = 0 because
Az, Aiz is an anti-representation of C. In either case we get z ∈ Ker(A). We
insert this into the first Jacobi identity, which becomes

ωC(Y,Z)AizX + ωC(X,Y )AizZ + ωC(Z,X)AizY = 0

We claim that ωC = 0. If ωC is non-zero, it is non-degenerate and for any
Z ∈ Wwe can find non-zero X,Y ∈ W such that ωC(Y,Z) = ωC(X,Z) =
0, ωC(X,Y ) = 1, and so we must have AizZ = 0, but non-zero Aiz is injective.
Now we get

δωB(X,Y )z = (ωB(AizX,Y ) + ωB(X,AizY ))z

which means that

Aiz =
δ

2
1 + βB

Now all the Jacobi identities are satisfied. The algebra structures are

[X,Y ] = g(BX,Y )z

[X, iz] =
δ

2
X + βBX

[z, iz] = δz

Here X,Y ∈ W , z ∈ C, β ∈ R, B ∈ Endsu(2)W,Tr(B) = 0 and δ is 0 or 1. The
Nijenhuis tensor is given by
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NJ(x, y) = g(J [J,B]x, y)z + g([J,B]x, y)iz

NJ(x, z) = β[B, J ]x

NJ(y, z) = β[B, J ]y

in terms of the complex basis x, y, z of m we defined earlier. Note that this is
a function of [J,B], and therefore vanishes if B is proportional to J . We may
also write these brackets and the Nijenhuis tensor in terms real parameters by
writing

Bx = λ1ix+ λ2y + λ3iy

and extending it uniquely to B ∈ Endsu(2)W . This is done by noting that if z
a basis element other than x, we can find a unique h ∈ h such that z = hx and
so we must have

Bz = Bhx = hBx

which shows uniqueness of the extension of B. The brackets are then

[x, ix] = [y, iy] = λ1z

[x, y] = −[ix, iy] = λ2z

[ix, y] = [x, iy] = λ3z

[x, iz] =
δ

2
x+ β(λ1ix+ λ2y + λ3iy)

[ix, iz] =
δ

2
ix+ β(−λ1x+ λ3y − λ2iy)

[y, iz] =
δ

2
y + β(−λ2x− λ3ix+ λ1iy)

[iy, iz] =
δ

2
iy + β(−λ3x+ λ2ix− λ1y)

[z, iz] = δz

and the Nijenhuis tensor is

NJ(x, y) = −2λ2z − 2λ3iz

NJ(x, z) = 2β(λ3y − λ2iy)

NJ(y, z) = 2β(λ3x− λ2ix)

In addition to this we have the cases when A = 0 or σ = 0. If A = 0 we can
write the brackets

[X,Y ] = ωB(X,Y )z + ωC(X,Y )iz

[z, iz] = δz
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The only Jacobi identity in this case is

[ωB(X,Y )z + ωC(X,Y )iz, w] = 0

for w ∈ C, so we see that if δ = 1, B = C = 0. Otherwise there are no
restrictions. The Nijenhuis tensor is

NJ(x, y) = g((J [J,B]− [J,C])x, y)z + g(([J,B] + J [J,C])x, y)iz

NJ(x, z) = 0

NJ(y, z) = 0

it vanishes if =(JB − C) is proportional to J . If we write

Bx = λ1ix+ λ2y + λ3iy

Cx = L1x+ L2y + L3iy

as before this becomes

[x, ix] = [y, iy] = λ1z + L1iz

[x, y] = −[ix, iy] = λ2z + L2iz

[ix, y] = [x, iy] = λ3z + L3iz

with Nijenhuis tensor

NJ(x, y) = 2(L3 − λ2)z − 2(λ3 + L2)iz

NJ(x, z) = 0

NJ(y, z) = 0

If σ = 0 we get that Az, Aiz is any anti-representation of C. We can have abelian
C, in which case we get the brackets

[X, z] = βX

[X, iz] = αX +BX

or non-abelian C with the brackets

[X, iz] = αX +BX

[z, iz] = z

The Nijenhuis tensor is the same in both cases

NJ(x, y) = 0

NJ(x, z) = [B, J ]x

NJ(y, z) = [B, J ]y
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In terms of parameters this can be written

[x, z] = βx

[ix, z] = βix

[y, z] = βy

[iy, z] = βiy

[x, iz] = αx+ (λ1ix+ λ2y + λ3iy)

[ix, iz] = αix− (λ1x− λ3y + λ2iy)

[y, iz] = αy − (λ2x+ λ3ix− λ1iy)

[iy, iz] = αiy − (λ3x− λ2ix+ λ1y)

in the case of abelian C, and

[x, iz] = αx+ (λ1ix+ λ2y + λ3iy)

[ix, iz] = αix− (λ1x− λ3y + λ2iy)

[y, iz] = αy − (λ2x+ λ3ix− λ1iy)

[iy, iz] = αiy − (λ3x− λ2ix+ λ1y)

[z, iz] = z

for non-abelian C. The Nijenhuis tensor is

NJ(x, y) = 0

NJ(x, z) = 2(λ3y − λ2iy)

NJ(y, z) = 2(λ3x− λ2ix)

Let’s now consider the possibility of g with nonzero h-component. If h is not
contained in a strictly bigger semi-simple subalgebra, then by Levi decompo-
sition m is conjugate to the radical of g. Since the radical is an ideal, h is
conjugate in g to another subalgebra h′ ' h such that the bracket has vanishing
h-component. This means that the homogenous space is equivalent to a space
considered previously.

If h is strictly contained in a semi-simple subalgebra Q ⊂ g, Q must have
dimension 6, 8 or 9. Since W must be contained in Q, it is at least dim 7. All
options of dim 9 contain ideals which would necessarily also be submodules, and
such submodules are not present. So we are left with dim 8.

This was explored in the section for m = W , h = su(2) ⊕ R, with a subset
〈z〉 = ε ⊂ C playing the role that was earlier taken by the center in h. This
process yields Q isomorphic to su(3) or su(2, 1). Since these algebras have no
non-trivial 1d representations, g = Q ⊕ R. NJ = 0 because [x, y] ∈ h and the
action of z is complex linear. The brackets are
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[x, ix] = β(u+ 3z)

[x, y] = −βk
[x, iy] = βm

[ix, y] = −βm
[ix, iy] = −βk
[y, iy] = β(3z − u)

[z, x] = ix

[z, ix] = −x
[z, y] = iy

[z, iy] = −y

where u, k,m is the basis for h we described earlier. We may rescale our basis
to make β = ±1. β = −1 gives g = su(3)⊕R and β = 1 gives g = su(2, 1)⊕R.

4.2 su(1, 1)

4.2.1 m = V C

Let m = V C, the tautological representation of h = su(1, 1). Choose a Borel
subalgebra b ⊂ h. Pick an element x ∈ V C which is annihilated by b. Then
x, ix generates the real splitting V C = V ⊕ V . We may pick an element y from
the submodule generated by x such that the the following complex operators is
a basis of h, and x, y, ix, iy is a real basis of V ⊕ V .

A = ŷ ⊗ x− x̂⊗ y + iŷ ⊗ ix− ix̂⊗ iy
B = x̂⊗ y + ŷ ⊗ x+ ix̂⊗ iy + iŷ ⊗ ix
C = x̂⊗ x− ŷ ⊗ y + ix̂⊗ ix− iŷ ⊗ iy

Here x̂, ŷ, ix̂, iŷ means the real dual basis. The commutation relations are

[A,B] = 2C

[A,C] = −2B

[B,C] = −2A

Note that if V ⊕ V is identified with W from the previous section as a vector
space, the respective choices of complex basis x, y are different. In particular
x, y in the su(1, 1)-sense is not the standard basis, and if we denote the basis
from the su(2)-section by X,Y we can write

x = JX + Y

y = X + JY

For the rest of this section, capital letters will denote arbitrary elements of V C

while x, y means the basis we defined above. Abstractly the decomposition of
Λ2m is
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Λ2m = ε⊕ C⊕Ad

We note immediately that because there is no possible bracket with nonzero
m-component, every Nijenhuis tensor in this section will vanish. The decompo-
sition can be written concretely

〈x ∧ y + ix ∧ iy〉 ' ε
〈x ∧ iy + ix ∧ y, x ∧ y − ix ∧ iy〉 ' Λ2

Cm = C
〈x ∧ ix+ y ∧ iy, x ∧ ix− y ∧ iy, x ∧ iy − ix ∧ y〉 ' 〈A,B,C〉 = Ad

The identification with C of the second term is done because the Lie algebra
action of J on Λ2m maps the two submodules into each other, and so this piece
is irreducible with respect to J . It trivial and not irreducible with respect to h.
We solve for the brackets and introduce a parameter α for the map V ⊗ V → h

[x, y] = 0

[ix, iy] = 0

[x, ix] = α(A+B)

[y, iy] = α(A−B)

[x, iy] = −αC
[ix, y] = αC

Attempting to compute the Jacobi identity for elements x, ix, y shows that it
fails unless g is flat.

[x, [ix, y]] + [y, [x, ix]] + [ix, [y, x]] = −3αx

As before we attempt to extend h by a 1d center, so now h = su(1, 1) ⊕ R.
The center can in principle be represented by any element r of Endsu(1,1)m,
which is isomorphic to Mat2x2(R) as an algebra. The isomorphism can be man-
ifested by picking an action on the 2d subspace 〈x, ix〉 ⊂ m, and extending by
su(1, 1)-equivariance. The result of this is 4x4 matrices containing two identical
2x2 blocks. We demand that the center is complex linear, which reduces the
possibilities to complex scalar operators. This means that the center must be
represented by

r = γ1 + βJ

By the Jacobi identity above, the representation of the center needs to map x
to something proportional to ix. Therefore we set

r = J
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The new brackets must be equivariant with respect to J , and since 〈J〉 is a 1d
algebra this means we must map the first term in the decomposition of Λ2m to
J . This gives the brackets

[x, y] = βr

[ix, iy] = βr

which makes our Jacobi identity become

[x, [ix, y]] + [y, [x, ix]] + [ix, [y, x]] = −(3α+ β)x = 0

This and all other identities are satisfied if we set

β = −3α

The algebra structure of g depends on the sign of α. Since su(1, 1) is non-
compact and the algebra structure we just defined is semi-simple, it must be
either sl3 or su(2, 1).

4.2.2 m = AdC

Now consider the m = Ad ⊕ Ad case. Everything is perfectly analogous to
the su(2)-case, and we proceed by considering sequentially smaller semi-simple
extensions of h. The possible extensions Q are su(1, 1) ⊕ su(1, 1) ⊕ su(1, 1),
su(1, 1)⊕ sl2(C) and su(1, 1)⊕ su(1, 1).

The splitting m = Ad1⊕Ad2 will depend on the structure of g, but the possible
almost complex structures J depend only on the module decomposition. We
can therefore write

J(Ad1) = {(−rh, th)}
J(h, 0) = (−rh, th)

for some real r, t with t 6= 0.

In the case of maximal Q we know that h must be conjugate to a diagonal subal-
gebra because of the nontrivial h-module decomposition of g. For Q = su(1, 1)3

this yields the brackets

[(h1, v1), (h2, v2)] = ([h1, h2], [v1, v2])

and the Nijenhuis tensor

NJ((h, 0), (v, 0)) = (−(r2 + 1)[h, v], (t2 + 2rt)[h, v])
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For Q = su(1, 1)⊕ sl2(C) we get the brackets

[(h1, v1), (h2, v2)] = ([h1, h2]− [v1, v2], [h1, v2] + [v1, h2])

with corresponding Nijenhuis tensor

NJ((h, 0), (v, 0)) = ((r2 + 1− t2)[h, v],−2tr[h, v])

Once again we note that there is precisely one integrable case which is when J
is the natural complex structure on sl2(C).

Suppose now that g contains the abelian radical I = Ad2. Since sl2(C) lacks a
nontrivial action on I, we get Q = su(1, 1)⊕ su(1, 1) with the second summand
corresponding to the kernel of the Q-action. The brackets are

[(h1, v1), (h2, v2)] = ([h1, h2], 0)

with corresponding Nijenhuis tensor

NJ((h, 0), (v, 0)) = (−(r2 + 1)[h, v], 2tr[h, v])

There is only one algebra structure g with m solvable, and it is given by the
brackets

[(h1, v1), (h2, v2)] = (0, [h1, h2])

The Nijenhuis tensor is

NJ((h, 0), (v, 0)) = (−2(r3 + r)

t
[h, v], (3r2 − 1)[h, v])

It is worth noting that except for the single case that was mentioned, every
Nijenhuis tensor in this section was found to be non-degenerate and of the same
pointwise type.

4.2.3 m = V C ⊕ C

Finally let m = V ⊕ V ⊕ C. We compute

Λ2m = ε⊕Ad⊕ C⊕ (V ⊕ V )⊗ C⊕ ε

Define

m0 = V ⊕ V
A ∈ Hom(C,R)⊗ Endhm0

Az = ιzA
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If we suppress the possible h-component the brackets can be given by

[X,Y ] = σ(X,Y )

[X, z] = Az(X)

z1 ∧ z2 7→ [z1, z2]

with X,Y ∈ m0 and σ takes values in C. There exists a basis z, iz of C such
that the last bracket is given by either

[z, iz] = 0 or

[z, iz] = z

We may write the form σ, given by e1, e2, e3 ∈ C, in terms of the basis x, y, ix, iy
we defined earlier

[x, y] = e1

[ix, iy] = e3

[x, iy] = e2

[ix, y] = e2

The brackets give the Jacobi identities

Aσ(Y,Z)X +Aσ(X,Y )Z +Aσ(Z,X)Y = 0

[Az, Aiz] = A[iz,z]

[σ(X,Y ), b] = σ(AbX,Y ) + σ(X,AbY )

for X,Y, Z ∈ m0, b ∈ C. We start by treating the case where C is abelian. The
Jacobi identities change to

Aσ(Y,Z)X +Aσ(X,Y )Z +Aσ(Z,X)Y = 0

[Az, Aiz] = 0

σ(AbX,Y ) + σ(X,AbY ) = 0

Note that 〈Az, Aiz〉 is a commutative subalgebra contained in the intersection
Endhm0 ∩ sym(σ). Let’s use the isomorphism Endhm0 ' Mat2×2(R) ' R⊕ sl2
to compute the symmetry algebra of σ.

First we suppose that σ is a scalar form proportional to a vector v ∈ C
(which can be taken to be v = z), because if dim(Im(σ)) = 2 we can write
σ = σ1z+σ2iz, and the symmetry algebra is the intersection of the symmetries
of the scalar forms σ1, σ2. Write ei = λiz. σ always has the symmetry A

A(x) = λ2x− λ1ix
A(ix) = λ3x− λ2ix
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If σ is non-degenerate then all symmetries must be traceless and A is a basis
for the symmetry algebra. σ is degenerate if and only if

λ1λ3 = λ22

In this case σ has a kernel, which is h-invariant and therefore generated by a
highest weight vector αx+ βix. This means that up to sign

λ1 = −β2

λ2 = αβ

λ3 = −α2

The symmetry algebra is 2d and generated by B,C such that

B(x) = αx+ βix

B(ix) = 0

C(x) = 0

C(ix) = αx+ βix

In particular the symmetry A from above is

A = βB − αC

The basis B,C satisfies the commutation relation

[B,C] = αC − βB

From now on, denote the scalar form σ and the operators A,B,C corresponding
to λi by σλ, Aλ, Bλ, Cλ. Earlier we used A,B,C to denote a basis of h, but there
is no relation.

Let’s apply this to our brackets. A maximal abelian symmetry algebra is 1
dimensional. Therefore Az and Aiz are linearly dependent, so we can write

Ab = θ(b)A0

for some fixed θ ∈ Hom(C,R), A0 ∈ Endhm0. We assume θ 6= 0, so it must have
a 1d kernel. Suppose z ∈ C is a basis of Ker(θ). Write σ = σλz + σLiz. The
first Jacobi identity then becomes

A0(σL(X,Y )Z + σL(Z,X)Y + σL(Y,Z)X) = 0

A0 is a symmetry of σL. If σL is non-degenerate then its symmetry algebra
is generated by AL, which is invertible. This leads to A0 = 0, so σL must be
degenerate and if it is non-zero then Ker(σL) = Ker(A0), which means that
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A0 is proportional to AL = βBL − αCL. AL must also be a symmetry of σλ
so σL and σλ must be proportional because the traceless part of the symmetry
algebra determines L, λ up to scaling. This means that Im(σ) is 1d. We may also
have σλ degenerate and non-zero, σL = 0. In that case we lose the restriction
A0 = rAλ. Another alternative is that σL = 0, σλ is non-degenerate and

θ(Im(σ)) = 0

The case of non-degenerate σλ has the following brackets

[x, y] = λ1z

[x, iy] = [ix, y] = λ2z

[ix, iy] = λ3z

[x, iz] = r(λ2x− λ1ix)

[ix, iz] = r(λ3x− λ2ix)

[y, iz] = r(λ2y − λ1iy)

[iy, iz] = r(λ3y − λ2iy)

Here λ1λ3 6= λ22, and r ∈ R. The Nijenhuis tensor is

NJ(x, y) = (λ3 − λ1)z − 2λ2iz

NJ(x, z) = r(λ3 − λ1)x− 2rλ2ix

NJ(y, z) = r(λ3 − λ1)y − 2rλ2iy

and it is non-degenerate unless λ1 = λ3, λ2 = 0. In the case when σL = 0 but
σλ is degenerate, the brackets are

[x, y] = −β2z

[x, iy] = [ix, y] = αβz

[ix, iy] = −α2z

[x, iz] = k(αx+ βix)

[ix, iz] = l(αx+ βix)

[y, iz] = k(αy + βiy)

[iy, iz] = l(αy + βiy)

which gives the Nijenhuis tensor

NJ(x, y) = (β2 − α2)z − 2αβiz

NJ(x, z) = (l − ik)(αx+ βix)

NJ(y, z) = (l − ik)(αy + βiy)

It is non-degenerate. The brackets when σλ = γσL, σL 6= 0 are both degenerate
are
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[x, y] = −β2(γz + iz)

[x, iy] = αβ(γz + iz)

[ix, y] = αβ(γz + iz)

[ix, iy] = −α2(γz + iz)

[x, iz] = r(βαx+ β2ix)

[ix, iz] = r(−α2x− αβix)

[y, iz] = r(βαy + β2iy)

[iy, iz] = r(−α2y − αβiy)

which gives the Nijenhuis tensor

NJ(x, y) = (γ(β2 − α2) + 2αβ)z + (β2 − α2 − 2γαβ)iz

NJ(x, z) = r(−α− iβ)(αx+ βix)

NJ(y, z) = r(−α− iβ)(αy + βiy)

It is non-degenerate.

We must also consider the two possibilities σ = 0 and θ = 0. The choice
σ = 0 gives us

[X, z] = γX

[X, iz] = C(X)

such that C ∈ Endhm0, γ = 1 or γ = 0, with Nijenhuis tensor

NJ(x, y) = 0

NJ(x, z) = [C, i]x

NJ(y, z) = [C, i]y

The other option θ = 0 gives

[x, y] = e1

[ix, iy] = e3

[x, iy] = e2

[ix, y] = e2

without any restrictions on e1, e2, e3 ∈ C, and thus gives Nijenhuis tensor

NJ(x, y) = e3 − e1 − 2ie2

NJ(x, z) = 0

NJ(y, z) = 0

32



Suppose now that C is non-abelian. The Jacobi identities become

Aσ(Y,Z)X +Aσ(X,Y )Z +Aσ(Z,X)Y = 0

[Az, Aiz] = −Az
[σ(X,Y ), b] = σ(AbX,Y ) + σ(X,AbY )

Let’s write σ = σλz + σLiz, where σλ, σL are scalar forms as defined earlier.
The third Jacobi identity becomes

[σλ(X,Y )z + σL(X,Y )iz, b] = (σλ(AbX,Y ) + σλ(X,AbY ))z + (σL(AbX,Y ) + σL(X,AbY ))iz

Since the iz-component of the right hand side must vanish, we get Ab ∈ sym(σL)
for all b. From [z, iz] = z we get

σλ(X,Y ) = σλ(AizX,Y ) + σλ(X,AizY )

σλ(AzX,Y ) + σλ(X,AzY ) = −σL(X,Y )

and we know that Az is traceless because it is the commutator of Aiz, Az. Since
the symmetry algebra of non-degenerate σL would be commutative, we have
that Az = 0 in this case, a contradiction. Therefore σL must be degenerate and
Az is proportional to AL if σL 6= 0. For degenerate σL, A2

L = 0, so by inserting
the second of the two equations above into

σL(ALX,Y ) + σL(X,ALY ) = 0

we obtain

σλ(ALX,ALY ) = 0

for all X,Y . This shows that the image of AL, which is Ker(σL), is an isotropic
subspace for σλ. If the kernels coincide, the forms are proportional and thus
share their symmetry algebra. This is not possible, so Ker(σL) 6= Ker(σλ).
Thus σλ must be non-degenerate, because if it had a kernel distinct from its 2d
isotropic submodule, it would be a 2d submodule and their direct sum would
be isotropic as well. We also have

σλ(X,Y ) = σλ(AizX,Y ) + σλ(X,AizY )

which makes it clear that the kernel of Aiz is another isotropic submodule and

Aiz =
1

2
1 + S

for some symmetry S ∈ Sym(σλ). Given a module decomposition V C =
Ker(Az) ⊕ Ker(Aiz) and the knowledge that both of these are isotropic, σλ is
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determined up to scaling as it must be contained in Ker(Az)⊗Ker(Aiz) which
contains only a 1d trivial module component. Aiz can be written as

Aiz = kBL + lCL

which means that

Ker(Aiz) = 〈−lx+ kix〉h

The other expression for Aiz above gives the additional condition

kα+ lβ = 1

because S is traceless so Tr(Aiz) = Tr( 1
21). We write the equations for isotropy

of the kernels of Az, Aiz and the tensor product being non-zero:

σλ(αx+ βix,−ly + kiy) = γ

σλ(αx+ βix, αy + βiy) = 0

σλ(−lx+ kix,−ly + kiy) = 0

where γ is an arbitrary scaling factor. This system is linear in λ1, λ2, λ3, and
writing it in terms of these yields

− αlλ1 + (αk − βl)λ2 + βkλ3 = γ

α2λ1 + 2αβλ2 + β2λ3 = 0

l2λ1 − 2lkλ2 + k2λ3 = 0

The solution is

λ1 = −2γβk

λ2 = γ(αk − βl)
λ3 = 2γαl

We will also write

Az = rAL = r(βBL − αAL)

and consider again the equation

σλ(AzX,Y ) + σλ(X,AzY ) = −σL(X,Y )

It is clear that the right and left hand side are proportional, because we know
from previous considerations that they have the same kernel. We determine the
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constant of proportionality γ by inserting X = −lx+ kix, Y = −ly + kiy. This
gives

− 2rγ = 1

γ =
−1

2r

The equation

Aiz =
1

2
1 + S

Is satisfied as well, which we can verify by checking that

S = −rAλ

We also have the commutation relation

[Az, Aiz] = −Az

which holds because kα + lβ = 1. The only Jacobi identity left to be satisfied
is then

Aσ(Y,Z)X +Aσ(X,Y )Z +Aσ(Z,X)Y = 0

which becomes

Az(σλ(Y,Z)X + σλ(X,Y )Z + σλ(Z,X)Y )+

+Aiz(σL(Y, Z)X + σL(X,Y )Z + σL(Z,X)Y ) = 0

There are two cases to consider: X,Y ∈ Ker(Az), Z ∈ Ker(Aiz) and Z ∈
Ker(Az), X, Y ∈ Ker(Aiz). It is easy to check that the former case vanishes by
using kernels and isotropy with respect to σλ. The latter case yields

Az(σλ(Y,Z)X + σλ(Z,X)Y ) +Aiz(σL(X,Y )Z) = 0

and trying for example X = −lx+ kix, Y = −ly + kiy, Z = αx+ βix gives

Az(σλ(Y, Z)X + σλ(Z,X)Y ) +Aiz(σL(X,Y )Z) = −3

2
(αx+ βix)

which shows that it fails unless α = β = 0, which we take to mean σL = 0. Many
of the restrictions that were placed on σλ were caused by assuming σL 6= 0, these
will no longer be valid. The Jacobi identities are now
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Az(σλ(Y, Z)X + σλ(X,Y )Z + σλ(Z,X)Y ) = 0

[Az, Aiz] = −Az
σλ(X,Y ) = σλ(AizX,Y ) + σλ(X,AizY )

σλ(AzX,Y ) + σλ(X,AzY ) = 0

The third and fourth identities say that Az is a symmetry of σλ and Aiz = 1
21+S

where S is another symmetry. The second identity says that if σλ is non-
degenerate, then Az = 0 because the symmetry algebra is 1d and commutative
in this case. This satisfies all other Jacobi identities as well. The Lie algebra
structures in this case is

[x, y] = λ1z

[x, iy] = λ2z

[ix, y] = λ2z

[ix, iy] = λ3z

[x, iz] =
1

2
x+ r(λ2x− λ1ix)

[ix, iz] =
1

2
ix+ r(λ3x− λ2ix)

[y, iz] =
1

2
y + r(λ2y − λ1iy)

[iy, iz] =
1

2
iy + r(λ3y − λ2iy)

[z, iz] = z

with λ1λ3 6= λ22, the condition for non-degeneracy. The Nijenhuis tensor is

NJ(x, y) = (λ3 − λ1)z − 2λ2iz

NJ(x, z) = r(λ3 − λ1)x− 2λ2ix

NJ(y, z) = r(λ3 − λ1)y − 2λ2iy

If we keep Az = 0, the Jacobi identities are still satisfied for degenerate σλ with
kernel generated by αx+βix. There are now two parameters k, l for determining
the symmetry S. The algebra structures are then given by
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[x, y] = −β2z

[x, iy] = αβz

[ix, y] = αβz

[ix, iy] = −α2z

[x, iz] =
1

2
x+ k(αx+ βix)

[ix, iz] =
1

2
ix+ l(αx+ βix)

[y, iz] =
1

2
y + k(αy + βiy)

[iy, iz] =
1

2
iy + l(αy + βiy)

[z, iz] = z

with corresponding Nijenhuis tensor

NJ(x, y) = (β2 − α2)z − 2αβiz

NJ(x, z) = (lα+ kβ)x+ (lβ − kα)ix

NJ(y, z) = (lα+ kβ)y + (lβ − kα)iy

Finally we have the case Az = rAλ 6= 0. In this case Aiz 6= 0 as well, and we
get the condition kα + lβ = 1 from their commutation relation. The algebra
structures are

[x, y] = −β2z

[x, iy] = αβz

[ix, y] = αβz

[ix, iy] = −α2z

[x, z] = r(αβx+ β2ix)

[ix, z] = r(−α2x− αβix)

[y, z] = r(αβy + β2iy)

[iy, z] = r(−α2y − αβiy)

[x, iz] =
1

2
x+ k(αx+ βix)

[ix, iz] =
1

2
ix+ l(αx+ βix)

[y, iz] =
1

2
y + k(αy + βiy)

[iy, iz] =
1

2
iy + l(αy + βiy)

[z, iz] = z
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with Nijenhuis tensor

NJ(x, y) = (β2 − α2)z − 2αβiz

NJ(x, z) = (lα+ kβ − 2rαβ)x+ (lβ − kα+ r(α2 − β2))ix

NJ(y, z) = (lα+ kβ − 2rαβ)y + (lβ − kα+ r(α2 − β2))iy

In the case σλ = 0 we get

[X, z] = AX

[X, iz] = BX

[z, iz] = z

such that A,B ∈ Endhm0 satisfy [A,B] = −A. This yields the Nijenhuis tensor

NJ(x, y) = 0

NJ(x, z) = −(i[A, i] + [B, i])x

NJ(y, z) = −(i[A, i] + [B, i])y

Let’s now consider the possibility of g with nonzero h-component. If h is not
contained in a strictly bigger semi-simple subalgebra, then by Levi decompo-
sition m is conjugate to the radical of g. Since the radical is an ideal, h is
conjugate in g to another subalgebra h′ ' h such that the bracket has vanishing
h′-component. This means that the homogenous space is equivalent to a space
considered previously.

If h is strictly contained in a semi-simple subalgebra Q ⊂ g, Q must have
dimension 6, 8 or 9. Since only the bracket between two different copies of V
can go to h, both of them must be in Q and this would make Q at least dim 7.
All options of dim 9 contain ideals which would necessarily also be submodules,
and such submodules are not present. So we are left with dim 8.

This was explored in the section for m = V ⊕ V , h = su(1, 1) ⊕ R, with a
subset ε ⊂ C playing the role that was earlier taken by the center in h. This
process yields Q isomorphic to sl3 or su(2, 1). Since these algebras have no non-
trivial 1d representations, g = Q⊕ R. NJ = 0 because [x, y] ∈ h. The brackets
are

[x, y] = −3αz

[ix, iy] = −3αz

[x, ix] = α(A+B)

[y, iy] = α(A−B)

[x, iy] = −αC
[ix, y] = αC

[z, x] = ix

[z, ix] = −x
[z, y] = iy

[z, iy] = −y

Where A,B,C means the basis of h given earlier.
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4.3 sl2(C)
4.3.1 m = W

Denote the tautological representation of h on C2 by W , and let n = 〈A,B,C〉
be a real subalgebra of type su(1, 1). W restricted to n is of type V C, so
we produce the basis x, y, ix, iy with respect to n as described in the section
h = su(1, 1). A,B,C, iA, iB, iC is a basis of h. The last three elements act as the
first three composed with J . Note that the subalgebra 〈A, iB, iC〉 = 〈u,m, k〉
is of type su(2) and precisely the same operators as we described in the section
h = su(2),m = W . An endomorphism of a sl2(C)-module is equivariant if and
only if it is equivariant with respect to both the real forms su(1, 1), su(2) that
we specified. Now we may decompose

Λ2
RW = U ⊕ C

U is the tautological representation of so(3, 1) ' sl2(C), and it is irreducible
but not isomorphic to W . C is a trivial module. The concrete decomposition is

〈x ∧ iy + ix ∧ y, x ∧ y − ix ∧ iy〉 ' C
〈x ∧ ix+ y ∧ iy, x ∧ ix− y ∧ iy, x ∧ iy − ix ∧ y, x ∧ y + ix ∧ iy〉 ' U

Since no bracket Λ2
RW → h⊕m is possible g must be flat.

4.3.2 m = Ad

For m = Ad, the isotropy representation is irreducible. This means that a non-
flat algebra structure, if one exists, is unique at least up to a change of sign on all
equivariant maps. g must therefore either be flat or be of type sl2(C)⊕ sl2(C),
which is stable under a sign change. Since the Lie algebra is complex and the
complex structure on the module is unique, the non-flat structure is integrable.
The bracket is the same as on sl2(C).

4.3.3 m = W ⊕ C

By the earlier decomposition of Λ2W , there is no possibility for a bracket to
h. Thus m must be a solvable ideal. Since h contains both su(2) and su(1, 1)
and these are represented in the same way as in their respective sections, the
algebra structure on m must be equivariant with respect to both of these. The
endomorphism ring EndhW is only complex scalars in this case. Following the
development in the section about su(2), we get the following assuming that both
brackets Λ2W → C and W ⊗ C→W are non-zero.

[X,Y ] = g(BX,Y )z

[X, iz] =
δ

2
X + βBX

[z, iz] = δz

Here X,Y ∈ W , z ∈ C, β ∈ R, B ∈ Endsu(2)W,Tr(B) = 0 and δ is 0 or 1. g is
the real part of the su2 invariant hermitian form. B must now be proportional
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to J because the endomorphism ring is smaller. g is not invariant under su(1, 1)
while J is, so these brackets are not sl2(C) invariant. Therefore one of the
brackets must vanish, and we get either a semi-direct product W o C or the
derived subalgebra of m is contained in C. The first case is either

[X, z] = βX

[X, iz] = αX + γJX

or

[X, iz] = αX + γJX

[z, iz] = z

which corresponds to respectively abelian or non-abelian C. The Nijenhuis
tensor vanishes in both cases. Finally we may have an invariant skew-symmetric
form on W taking values in C. Following the su(2) development again, we must
then have abelian C. We use the decomposition of Λ2W given earlier to write
the brackets

[x, y] = −[ix, iy] = v

[x, iy] = [ix, y] = w

for some v, w ∈ C. The Nijenhuis tensor is then

NJ(x, y) = −2v + 2iw

NJ(x, z) = 0

NJ(y, z) = 0

4.4 sl3

4.4.1 m = V C

We have that for the tautological representation V , V C = V ⊕ V . We compute

Λ2m = Λ2V ⊕ Λ2V ⊕ V ⊗ V
Λ2V = V ∗

V ⊗ V = U6 ⊕ V ∗

where U6 is irreducible. Thus there is no bracket to g = h⊕m

4.4.2 m = (V ∗)C

We have that for the dual representation V ∗, (V ∗)C = V ∗ ⊕ V ∗. We compute

Λ2m = Λ2V ∗ ⊕ Λ2V ∗ ⊕ V ∗ ⊗ V ∗

Λ2V ∗ = V

V ∗ ⊗ V ∗ = U6 ⊕ V

where U6 is irreducible. Thus there is no bracket to g = h⊕m
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4.5 su(2, 1)

The Lie algebra h = su(2, 1) has two non-isomorphic complex representations
of dimension 3. These are the tautological representation, which we denote by
W , and its dual representation W ∗. Since h preserves a hermitian form on W ,
we have an equivariant C-anti-linear map from W to W ∗. Therefore they are
equivalent as real representations, and since only the real module structure is
interesting for determining real Lie algebra structures we need only treat one of
them. Our choice will be W .

The endomorphism ring Endh(W ) is isomorphic to the complex numbers. This
is important because any bracket may be post-composed with an endomorphism.

To compute the decomposition of Λ2m, note that

(Λ2
RW )C = Λ2

C(WC) = Λ2
C(W ⊕W ∗) = (W ⊕W ∗ ⊕W ⊗C W

∗) = (W ⊕ u(2, 1))C

Here u(2, 1) means the module Ad ⊕ ε. Let xk, k = 1, 2, 3 be the standard
complex basis of W . Then xk, ixk, k = 1, 2, 3 is a real basis with dual basis
x̂k, ix̂k, k = 1, 2, 3. Denote the real part of the invariant hermitian form h by g
and the imaginary part by ω. The projection

Λ2W → u(2, 1)

is given by contraction with the tensor

g ⊗ 1 + ω ⊗ J

and removing trace gives the map to su(2, 1), which is

x ∧ y 7→ γ(ιxg ⊗ y − ιyg ⊗ x+ ιxω ⊗ Jy − ιyω ⊗ Jx−
2

3
ω(x, y)J)

for arbitrary x, y. This is the h-component of our bracket, and can be written
in terms of our basis as

[x1, ix1] = 2γ(x̂1 ⊗ ix1 − ix̂1 ⊗ x1 −
1

3
J)

[x2, ix2] = 2γ(x̂2 ⊗ ix2 − ix̂2 ⊗ x2 −
1

3
J)

[x3, ix3] = 2γ(−x̂3 ⊗ ix3 + ix̂3 ⊗ x3 +
1

3
J)

[x1, x2] = [ix1, ix2] = γ(x̂1 ⊗ x2 − x̂2 ⊗ x1 + ix̂1 ⊗ ix2 − ix̂2 ⊗ ix1)

[x1, x3] = [ix1, ix3] = γ(x̂1 ⊗ x3 + x̂3 ⊗ x1 + ix̂1 ⊗ ix3 + ix̂3 ⊗ ix1)

[x2, x3] = [ix2, ix3] = γ(x̂2 ⊗ x3 + x̂3 ⊗ x2 + ix̂2 ⊗ ix3 + ix̂3 ⊗ ix2)

[ix1, x2] = −[x1, ix2] = γ(−x̂1 ⊗ ix2 − x̂2 ⊗ ix1 + ix̂1 ⊗ x2 + ix̂2 ⊗ x1)

[ix1, x3] = −[x1, ix3] = γ(−x̂1 ⊗ ix3 + x̂3 ⊗ ix1 + ix̂1 ⊗ x3− ix̂3 ⊗ x1)

[ix2, x3] = −[x2, ix3] = γ(−x̂2 ⊗ ix3 + x̂3 ⊗ ix2 + ix̂2 ⊗ x3− ix̂3 ⊗ x2)
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There is a 6d real submodule corresponding to Λ2
CW . This must be isomorphic

to W as a real module because it has an invariant complex structure.

〈xm ∧ xk − ixm ∧ ixk, ixm ∧ xk + xm ∧ ixk〉 'W

for k,m ∈ {1, 2, 3}, k 6= m. This means that the m-components of the brackets
are

[x1, x2] = −[ix1, ix2] = (α+ iβ)x3

[x1, x3] = −[ix1, ix3] = −(α+ iβ)x2

[x2, x3] = −[ix2, ix3] = (α+ iβ)x1

[x1, ix2] = [ix1, x2] = −i(α+ iβ)x3

[x1, ix3] = [ix1, x3] = i(α+ iβ)x2

[x2, ix3] = [ix2, x3] = −i(α+ iβ)x1

Note that the m-component of the bracket is C-anti-linear in both arguments.
We compute Jacobi identities

[x1, [ix1, x2]] + [x2, [x1, ix1]] + [ix1, [x2, x1]] = 2(
4γ

3
− α2 − β2)ix2 = 0

[x3, [ix3, x1]] + [x1, [x3, ix3]] + [ix3, [x1, x3]] = 2(−4γ

3
− α2 − β2)ix2 = 0

The only solution is α = β = γ = 0 so g is flat.

4.6 su(3)

4.6.1 m = W

The Lie algebra h = su(3) has two non-isomorphic complex representations of
dimension 3. These are the tautological representation, which we denote by
W , and its dual representation W ∗. Since h preserves a hermitian form on W ,
we have an equivariant C-anti-linear map from W to W ∗. Therefore they are
equivalent as real representations, and since only the real module structure is
interesting for determining real Lie algebra structures we need only treat one of
them. Our choice will be W .

The endomorphism ring Endh(W ) is isomorphic to the complex numbers. This
is important because any bracket may be post-composed with an endomorphism.

To compute the decomposition of Λ2m, note that

(Λ2
RW )C = Λ2

C(WC) = Λ2
C(W ⊕W ∗) = (W ⊕W ∗ ⊕W ⊗C W

∗) = (W ⊕ u(3))C

Here u(3) means the module Ad⊕ε. Let xk, k = 1, 2, 3 be the standard complex
basis of W . Then xk, ixk, k = 1, 2, 3 is a real basis with dual basis x̂k, ix̂k, k =
1, 2, 3. Denote the real part of the invariant hermitian form h by g and the
imaginary part by ω. The projection
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Λ2W → u(3)

is given by contraction with the tensor

g ⊗ 1 + ω ⊗ J

such that

xm ∧ xk 7→ x̂m ⊗ xk − x̂k ⊗ xm + ix̂m ⊗ ixk − ix̂k ⊗ ixm

and projection to su(3) is then only a matter of removing trace. The trivial
submodule is then

〈x1 ∧ ix1 + x2 ∧ ix2 + x3 ∧ ix3〉

so the full projection to su(3) is

x ∧ y 7→ γ(ιxg ⊗ y − ιyg ⊗ x+ ιxω ⊗ Jy − ιyω ⊗ Jx−
2

3
ω(x, y)J)

for arbitrary x, y. This is the h-component of our bracket, and can be written
in terms of our basis as

[x1, ix1] = 2γ(x̂1 ⊗ ix1 − ix̂1 ⊗ x1 −
1

3
J)

[x2, ix2] = 2γ(x̂2 ⊗ ix2 − ix̂2 ⊗ x2 −
1

3
J)

[x3, ix3] = 2γ(x̂3 ⊗ ix3 − ix̂3 ⊗ x3 −
1

3
J)

[x1, x2] = [ix1, ix2] = γ(x̂1 ⊗ x2 − x̂2 ⊗ x1 + ix̂1 ⊗ ix2 − ix̂2 ⊗ ix1)

[x1, x3] = [ix1, ix3] = γ(x̂1 ⊗ x3 − x̂3 ⊗ x1 + ix̂1 ⊗ ix3 − ix̂3 ⊗ ix1)

[x2, x3] = [ix2, ix3] = γ(x̂2 ⊗ x3 − x̂3 ⊗ x2 + ix̂2 ⊗ ix3 − ix̂3 ⊗ ix2)

[ix1, x2] = −[x1, ix2] = γ(−x̂1 ⊗ ix2 − x̂2 ⊗ ix1 + ix̂1 ⊗ x2 + ix̂2 ⊗ x1)

[ix1, x3] = −[x1, ix3] = γ(−x̂1 ⊗ ix3 − x̂3 ⊗ ix1 + ix̂1 ⊗ x3 + ix̂3 ⊗ x1)

[ix2, x3] = −[x2, ix3] = γ(−x̂2 ⊗ ix3 − x̂3 ⊗ ix2 + ix̂2 ⊗ x3 + ix̂3 ⊗ x2)

There is a 6d real submodule corresponding to Λ2
CW . This must be isomorphic

to W as a real module because it has an invariant complex structure.

〈xm ∧ xk − ixm ∧ ixk, ixm ∧ xk + xm ∧ ixk〉 'W

for k,m ∈ {1, 2, 3}, k 6= m. This means that the m-components of the brackets
are
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[x1, x2] = −[ix1, ix2] = (α+ iβ)x3

[x1, x3] = −[ix1, ix3] = −(α+ iβ)x2

[x2, x3] = −[ix2, ix3] = (α+ iβ)x1

[x1, ix2] = [ix1, x2] = −i(α+ iβ)x3

[x1, ix3] = [ix1, x3] = i(α+ iβ)x2

[x2, ix3] = [ix2, x3] = −i(α+ iβ)x1

Note that the m-component of the bracket is C-anti-linear in both arguments.
The only non-trivial Jacobi identities are those with 2 out of 3 subscripts equal,
for example

[x1, [ix1, x2]] + [x2, [x1, ix1]] + [ix1, [x2, x1]] = 2(
4γ

3
− α2 − β2)ix2 = 0

so we set γ = 3
4 (α2 + β2). This satisfies the other identities as well. We may

make a change of basis by complex multiplication such that

α = 2

β = 0

γ = 3

which makes the Lie algebra structure

[x1, ix1] = (6x̂1 ⊗ ix1 − 6ix̂1 ⊗ x1 − 2J)

[x2, ix2] = (6x̂2 ⊗ ix2 − 6ix̂2 ⊗ x2 − 2J)

[x3, ix3] = (6x̂3 ⊗ ix3 − 6ix̂3 ⊗ x3 − 2J)

[x1, x2] = 3(x̂1 ⊗ x2 − x̂2 ⊗ x1 + ix̂1 ⊗ ix2 − ix̂2 ⊗ ix1) + 2x3

[x1, x3] = 3(x̂1 ⊗ x3 − x̂3 ⊗ x1 + ix̂1 ⊗ ix3 − ix̂3 ⊗ ix1)− 2x2

[x2, x3] = 3(x̂2 ⊗ x3 − x̂3 ⊗ x2 + ix̂2 ⊗ ix3 − ix̂3 ⊗ ix2) + 2x1

[ix1, x2] = 3(−x̂1 ⊗ ix2 − x̂2 ⊗ ix1 + ix̂1 ⊗ x2 + ix̂2 ⊗ x1)− 2ix3

[x1, ix2] = −3(−x̂1 ⊗ ix2 − x̂2 ⊗ ix1 + ix̂1 ⊗ x2 + ix̂2 ⊗ x1)− 2ix3

[ix1, x3] = 3(−x̂1 ⊗ ix3 − x̂3 ⊗ ix1 + ix̂1 ⊗ x3 + ix̂3 ⊗ x1) + 2ix2

[x1, ix3] = −3(−x̂1 ⊗ ix3 − x̂3 ⊗ ix1 + ix̂1 ⊗ x3 + ix̂3 ⊗ x1) + 2ix2

[ix2, x3] = 3(−x̂2 ⊗ ix3 − x̂3 ⊗ ix2 + ix̂2 ⊗ x3 + ix̂3 ⊗ x2)− 2ix1

[x2, ix3] = −3(−x̂2 ⊗ ix3 − x̂3 ⊗ ix2 + ix̂2 ⊗ x3 + ix̂3 ⊗ x2)− 2ix1

[ix1, ix2] = 3(x̂1 ⊗ x2 − x̂2 ⊗ x1 + ix̂1 ⊗ ix2 − ix̂2 ⊗ ix1)− 2x3

[ix1, ix3] = 3(x̂1 ⊗ x3 − x̂3 ⊗ x1 + ix̂1 ⊗ ix3 − ix̂3 ⊗ ix1) + 2x2

[ix2, ix3] = 3(x̂2 ⊗ x3 − x̂3 ⊗ x2 + ix̂2 ⊗ ix3 − ix̂3 ⊗ ix2)− 2x1
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It is easy to compute the Nijenhuis tensor because it only depends on the m-
component, which is anti-linear. Thus we have

NJ(x1, x2) = −8x3

NJ(x1, x3) = 8x2

NJ(x2, x3) = −8x1

We can identify this Lie algebra as g = g2, the compact form of the exceptional
Lie algebra. The simply connected version of G2 gives us the homogeneous
space G2/SU(3) = S6, and J is the Calabi structure.

4.7 sl3(C)
The representations are the same as for sl3, and this is embedded in sl3(C).
Only the flat case was realized under the smaller isotropy algebra. Therefore
sl3(C) has no non-flat cases as well.
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