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Abstract

In this thesis a set of regularized boundary integral equation are introduced that
can be used to calculate the Casimir force induced by a two dimensional scalar
field. The boundary integral method is compared to the functional integral
method and mode summation where possible. Comparisons are done for the
case of two parallel plates, two concentric circles and two adjacent circles.

The results indicate that the boundary integral method correctly predicts
the geometry dependence of the Casimir force on the test problems, but that its
value is missing a factor of two compared to the functional integral method and
mode summation. After applying various validation procedures on the numer-
ical implementation including a powerful test based on artificial sources, it is
concluded that with high probability the missing factor of two is lost somewhere
in the theory leading up to the regularized boundary integral equations.
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Introduction

The Casimir effect was first predicted by Casimir and Polder in 1948 [1]. The
effect is only measurable on small length scales and is often seen as an attractive
force between objects with no charge. The first reported experimental measure-
ment of the Casimir effect was in 1958 by M.J. Sparnaay [2]. He tried to measure
the force between two parallel plates. Due to systematic errors his results had
100% uncertainty. It was first in 1997 that S.K. Lamoreaux [3] completed the
first successful measurement of the Casimir force, between a plate and a sphere,
with only 5% uncertainty. In 1998 U. Mohideen and Anushree Roy [4] measured
the Casimir force between a plate and a sphere with only 1% uncertainty.

Both the Casimir force and the van der Waals forces are quantum effects
that can cause attraction between neutral bodies. The van der Waals force can
induce a dipole moment between two nonpolar molecules and at short distances
(<10nm) cause attractive forces. The primary difference between these two
theories is that van der Waals forces are non-relativistic in nature. The van der
Waals forces disappear at larger separations (100nm) where relativistic effects
must be considered. At these separations the Casimir effect dominates the van
der Waals forces and are the primary source of attraction or repulsion.[5; 6]

As nanotechnology finds more and more applications the need to understand
physics at the micro- or nano- scales will increase. Microelectromechanical sys-
tems (MEMS) are small electrical systems that can function as actuators, sen-
sors or routers. Examples of these are: Accelerometers and gyroscopes in cars
or smartphones. At these small scales the Casimir force can cause components
to stick together and be a hindrance, or it could provide new functionality such
as produceing levitation under certain conditions. [7; 8]

There are several methods that can be used to calculate the Casimir energy,
a few of these are: Mode summation with the argument theorem [9; 10], Finite
Difference Time Domain (FDTD) methods [11] and functional integral methods
[12; 13].

The method of mode summation with the argument principles has been
very successful in calculating the Casimir effect. Its primary application is
on systems with a symmetry such as for two parallel plates or concentric cir-
cles/spheres/cylinders. For applications such as designing a MEMS it is im-
possible to only be restricted to symmetrical designs. Thus there is a need for
methods that calculate the Casimir effect for arbitrary configurations.

The FDTD methods are grid based methods that discretize the problem
space into a finite grid. The relevant functions are then evaluated on the grid
and time is iterated forward. This method can handle arbitrary configurations as
long as the equations allow for such a solution method. These types of methods
are very popular in areas such as electrodynamics, fluid mechanics, geology and
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weather prediction.
Methods based on functional integrals are able to handle arbitrary configu-

rations of objects. This theory is based on Feynmann’s idea to integrate over
weighted classical paths, the problem is then to solve these infinite dimensional
integrals. These can either be solved using some numerical scheme or by func-
tional determinants.

The object of this thesis is to use the boundary integral method to calculate
the Casimir force for an arbitrary configuration of objects. This method is most
efficient when used on linear equations and boundaries with piecewise linear
material coefficients. This is exactly the situation that will be examined in
this thesis. This method avoids a lot of unnecessary calculations because the
equations are only solved on the boundaries. For multiple objects with varying
distances it is possible to ignore the empty space between objects. Methods
based on FDTD will not have this option because they must grid the entire
problem space. The boundary integral method will in addition regularize the
singularities before the method is implemented, thus providing stability to the
calculations.

The boundary integral method outputs the force on each discretized piece
of every object. This provides valuable visual information on how the forces are
affecting each object. It is also possible to simplify the equations if there exists
isometric transformations on some objects.

The relationships between force and energy always require us to find the
change in energy with respect to a parameter. Thus a minimum of two eval-
uations of the energy is required to find an estimate for the force. When the
problem size is large, the computational time will be considerable, and it would
be advantageous to have a direct method for finding the force. The boundary
integral method presented in this thesis calculates the Casimir force directly
for any compact geometry. Computationally this method is based on filling
and solving a set of linear equations and these type of operations scale well on
clusters.

Chapter 1 presents the theory behind using the boundary integral method
to find the Casimir force on an object. The boundary integral method uses
Green’s functions to calculate the Casimir force directly. Chapter 2 introduces
the functional integral method that will be used to verify the boundary integral
method. This method uses the theory of functional integrals to calculate the
energy of the system. Chapter 3 gives an algorithmic overview of the two meth-
ods and their complexity. In order to validate the boundary integral method the
results will be compared to two other methods. For the symmetric situations
the method of mode expansion and the argument principle can be used to find
a simple formula for the Casimir energy. This is done with parallel plates and
concentric circles in chapter 4. Chapter 5 explains how the Casimir force is
calculated from the Casimir energy. The Casimir force can be calculated either
directly from the boundary integral method or through the Casimir energy with
the functional integral method. Chapter 6 introduces the test cases and the test
results, these include: parallel plates, concentric circles and adjacent circles. A
conclusion is drawn in chapter 7 on the validity of the boundary integral method
and all the test results from chapter 6 are summarized in chapter 7. Appendix
A and B contains an implementation of the boundary element and functional
integral methods to zero dimensional parallel plates on the line. This test case
is only included for comparisons. Appendix C contains calculations where an
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attempt is made to find the Casimir energy for two parallel plates using the
method of mode summation with a similar regularization as was used in section
4.2
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Chapter 1

Boundary integral method

The first step is to produce an equation for the Green’s function. The Green’s
function will then be related to the stress tensor by point splitting and through
this the force on an object will be defined. The next step is to use the equation
for the Green’s function to produce an integral relation for compact objects.
The relation must be regularized because of the singularities in the Green’s
functions. Through a regularized limiting process the integral equations are
derived. These equations are solved using the method of moments and the
boundaries are discretized in order to calculate the necessary matrix elements.
The boundary integral method is implemented and the output will be the stress
on each object.

1.1 Green’s function
Consider a massless neutral scalar field ϕ̂ with field equation

ϕ̂tt − c2∇2ϕ̂ = 0

ϕ̂|Qj = 0
(1.1)

The equal time bosonic commutation relations are

[ϕ̂(x, t), ϕ̂(x′, t)] = 0

[ϕ̂t(x, t), ϕ̂(x′, t)] = i~δ(x− x′)
(1.2)

The generators for the algebra of observables are ϕ̂(x) and the time evolution
of the scalar field is given by

ϕ̂(x, t) = ei
t
~ Ĥ ϕ̂(x)e−i

t
~ Ĥ (1.3)

where Ĥ is the Hamiltonian for the system. Extend the field operators into
complex time with the rotation t = −is. This will change the partial derivative
into

∂t = ∂s
ds

dt
= i∂s (1.4)

and the field equation above changes into

ϕ̂ss + c2∇2ϕ̂ = 0

ϕ̂|Qj = 0
(1.5)
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with the commutation relations.

[ϕ̂(x, s), ϕ̂(x′, s)] = 0

[ϕ̂s(x, s), ϕ̂(x′, s)] = δ(x− x′)
(1.6)

Select units such that ~ = c = k = 1, where k is the Boltzman constant. The
basic Green’s function is described by the time ordered product

D(x, s,x′, s′) =< T[ϕ̂(x, s)ϕ̂(x′, s′)] > (1.7)

where it is assumed that the quantum field is in a state of thermal equilibrium
at temperature T. Letting β = 1/T results in

D(x, s,x′, s′) = Tr(
1

Z
e−βĤT [ϕ̂(x, s)ϕ̂(x′, s′)]) (1.8)

By defining
D+(x, s,x′, s′) =< ϕ̂(x, s)ϕ̂(x′, s′) >

D−(x, s,x′, s′) =< ϕ̂(x′, s′)ϕ̂(x, s) >
(1.9)

the Green’s function can be reformulated as

D(x, s,x′, s′) =

{
D+(x, s,x′, s′) s > s′

D−(x, s,x′, s′) s < s′
(1.10)

First observe that the Green’s function is periodic in β:

D+(x, s+ β,x′, s′) = Tr
(

1

Z
e−βĤe(s+β)Ĥ ϕ̂(x)e−(s+β)Ĥ ϕ̂(x′, s′)

)
= Tr

(
1

Z
esĤ ϕ̂(x)e−sĤe−βĤ ϕ̂(x′, s′)

)
= Tr

(
1

Z
ϕ̂(x, s)e−βĤ ϕ̂(x′, s′)

) (1.11)

A property of the trace is that: Tr(ABC) = Tr(CAB) = Tr(BCA). Thus the
operators can be moved to the right to show that

D+(x, s+ β,x′, s′) = Tr
(

1

Z
e−βĤ ϕ̂(x′, s′)ϕ̂(x, s)

)
= D−(x, s,x′, s′) (1.12)

The same argument works for D−(x, s,x′, s′ + β). Thus

D+(x, s+ β,x′, s′) = D−(x, s,x′, s′)

D−(x, s,x′, s′ + β) = D+(x, s,x′, s′)
(1.13)

These are the Kubo-Martin-Schwinger (KMS) boundary conditions. Since Ĥ is
independent of s it is possible to show that

D+(x, s,x′, s′) = Tr
(

1

Z
e−βĤ ϕ̂(x, s)ϕ̂(x′, s′)

)
= Tr

(
1

Z
e−βĤesĤ ϕ̂(x)e−sĤes

′Ĥ ϕ̂(x′)e−s
′Ĥ

)
= Tr

(
1

Z
e−βĤe(s−s′)Ĥ ϕ̂(x)e−(s−s′)Ĥ ϕ̂(x′)

)
= D+(x, s− s′,x′, 0)

(1.14)
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similarly for D−(· · · )

D−(x, s,x′, s′) = · · · = D−(x, s− s′,x′, 0) (1.15)

Introduce a new Green’s function based on the above properties

D(x,x′, s) =

{
D+(x, s,x′, 0) s > 0
D−(x, s,x′, 0) s < 0

(1.16)

for the new Green’s function

D(x,x′, s− s′) = D+(x, s− s′,x′, 0) = D+(x, s,x′, s′) s > s′

D(x,x′, s− s′) = D−(x, s− s′,x′, 0) = D−(x, s,x′, s′) s < s′
(1.17)

and thus
D(x,x′, s− s′) = D(x, s,x′, s′) ∀s, s′ (1.18)

Let us explore some properties for the new Green’s function. Let |n > be a
complete set of eigenstates for Ĥ.

First for s > 0

D(x,x′, s) = D+(x, s,x′, 0)

= Tr
(

1

Z
e−βĤesĤ ϕ̂(x)e−sĤ ϕ̂(x′)

)
=
∑
n

< n| 1

Z
e−βĤesĤ ϕ̂(x)e−sĤ ϕ̂(x′) |n >

=
∑
nn′

1

Z
e−(β−s)Ene−sEn′ < n|ϕ̂(x)|n′ >< n′|ϕ̂(x′) |n >

(1.19)

thus D(x,x′, s) only exists for 0 ≤ s ≤ β.
For s < 0

D(x,x′, s) = D−(x, s,x′, 0)

= Tr
(

1

Z
e−βĤ ϕ̂(x′)esĤ ϕ̂(x)e−sĤ

)
=
∑
n

< n| 1

Z
e−βĤ ϕ̂(x′)esĤ ϕ̂(x)e−sĤ |n >

=
∑
nn′

1

Z
e−(β+s)EnesEn′ < n|ϕ̂(x′)|n′ >< n′|ϕ̂(x) |n >

(1.20)

thus D(x,x′, s) only exists for −β ≤ s ≤ 0.
It is clear that D(x,x′, s) only exists for s ∈ [−β, β]. With the KMS bound-

ary conditions

D(x,x′, s+ β) = D+(x, s+ β,x′, 0) = D−(x, s,x′, 0) = D(x,x′, s) (1.21)

Thus D(x,x′, s) is determined by its values in the interval −β ≤ s ≤ 0. Observe
that D(x,x′, s) is a Green’s function for the operator defining equation (1.5).

First note that

D(x,x′, s) = θ(s) < ϕ̂(x, s)ϕ̂(x′, 0) > +θ(−s) < ϕ̂(x′, 0)ϕ̂(x, s) > (1.22)
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where θ(s) is the Heavyside step function. Differentiate once with respect to s
to get

∂sD(x,x′, s) = δ(s) < ϕ̂(x, s)ϕ̂(x′, 0) > +θ(s) < ∂sϕ̂(x, s)ϕ̂(x′, 0) >

− δ(s) < ϕ̂(x′, 0)ϕ̂(x, s) > +θ(−s) < ϕ̂(x′, 0)∂sϕ̂(x, s) >
= δ(s)[ϕ̂(x, s), ϕ̂(x′, 0)] + θ(s) < ∂sϕ̂(x, s)ϕ̂(x′, 0) >

+ θ(−s) < ϕ̂(x′, 0)∂sϕ̂(x, s) >
= θ(s) < ∂sϕ̂(x, s)ϕ̂(x′, 0) > +θ(−s) < ϕ̂(x′, 0)∂sϕ̂(x, s) >

(1.23)

Where the commutation relations for bosons in (1.6) were applied. With a
second partial derivative this becomes

∂ssD(x,x′, s) = δ(s) < ∂sϕ̂(x, s)ϕ̂(x′, 0) >

+ θ(s) < ∂ssϕ̂(x, s)ϕ̂(x′, 0) > −δ(s) < ϕ̂(x′, 0)∂sϕ̂(x, s) >
+ θ(−s) < ϕ̂(x′, 0)∂ssϕ̂(x, s) >

= δ(s)[∂sϕ̂(x, s), ϕ̂(x′, 0)] + θ(s) < (−∇2
x)ϕ̂(x, s)ϕ̂(x′, 0) >

+ θ(−s) < ϕ̂(x′, 0)(−∇2
x)ϕ̂(x, s) >

= δ(s)δ(x− x′)−∇2
xD(x,x′, s)

(1.24)

Where the defining equation in (1.5) and the commutation relations from (1.6)
were used. The Green’s function satisfies the equation

∂ssD(x,x′, s) +∇2
xD(x,x′, s) = δ(s)δ(x− x′) (1.25)

This equation is valid for any temperature T and, the Green’s function D(x,x′),
is periodic in s with period β = 1/T . Thus D(x,x′, s) can be written as a
Fourier series where the frequencies are called Matsubara frequencies. However
the problems of this thesis will only consider the case where T → 0. Thus the
period of the Fourier series will be infinite and a Fourier transform in s will
produce

∇2
xD(x,x′, ω)− ω2D(x,x′, ω) = δ(x− x′)

D(x,x′, ω)|Qj = 0
(1.26)

1.2 Force
The Lagrangian for the classical wave equation ϕtt −∇2ϕ = 0 is given by

L =
1

2
ϕ2
t −

1

2
(ϕ2
x + ϕ2

y) (1.27)

The stress-energy tensor is calculated from

Tµν =
∂L

∂(∂µϕ)
∂νϕ− δµνL (1.28)

using a signature ηµν = {1,−1,−1} will give

T 00 =
1

2
ϕ2
t +

1

2
(ϕ2
x + ϕ2

y)

T 11 = −1

2
ϕ2
t +

1

2
(−ϕ2

x + ϕ2
y)

T 22 = −1

2
ϕ2
t +

1

2
(ϕ2
x − ϕ2

y)

T 01 = ϕtϕx

T 02 = ϕtϕy

T 10 = −ϕxϕt
T 12 = −ϕxϕy
T 20 = −ϕyϕt
T 21 = −ϕyϕx

(1.29)
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From this the conservation equations are given by

∂tT
0ν + ∂xT

1ν + ∂yT
2ν = 0 (1.30)

where µ = 0 gives energy conservation and µ = 1, 2 gives momentum conserva-
tion. The equation for energy conservation is

∂t(
1

2
ϕ2
t +

1

2
(ϕ2
x + ϕ2

y)) + ∂x(−ϕxϕt) + ∂y(−ϕyϕt) = 0 (1.31)

or
∂tρe +∇ · Se = 0 (1.32)

where
Se = −ϕt∇ϕ (1.33)

is the energy flux tensor and

ρe =
1

2
ϕ2
t I +

1

2
Tr(∇ϕ∇ϕ)I (1.34)

is the energy density. The equations of momentum conservation are

∂t(ϕtϕx) + ∂x(−1

2
ϕ2
t +

1

2
(−ϕ2

x + ϕ2
y)) + ∂y(−ϕyϕx) = 0

∂t(ϕtϕy) + ∂x(−ϕxϕy) + ∂y(−1

2
ϕ2
t +

1

2
(ϕ2
x − ϕ2

y)) = 0

(1.35)

or
∂tρ+∇ · S = 0 (1.36)

where ρ is the momentum density given by

ρ = ϕt∇ϕ (1.37)

and S is the momentum flux. The momentum flux can be written as follows

S(x, t) = −∇ϕ∇ϕ+
1

2
Tr(∇ϕ∇ϕ)I− 1

2
ϕ2
t I (1.38)

where the dyadic product of vectors has been used to simplify the notation. The
quantum stress tensor is defined by point splitting

Ŝ(x, t) = lim
x′→x
t′→t

(
−∇x∇x′ +

1

2
Tr(∇x∇x′)I−

1

2
∂t∂t′I

)
ϕ̂(x, t)ϕ̂(x′, t′) (1.39)

and find the expectation value of the ordered product to get

Sq(x, t) = lim
x′→x
t′→t

(
−∇x∇x′ +

1

2
Tr(∇x∇x′)I−

1

2
∂t∂t′I

)
D(x, t,x′, t′) (1.40)

Where D(x, t,x′, t′) is the Green’s function defined earlier. Using the definitions
in the previous section: t = −iu, t′ = −iu′ and s = u− u′ this changes Sq into

Sq(x) = lim
x′→x
s→0

(
−∇x∇x′ +

1

2
Tr(∇x∇x′)I−

1

2
∂ssI

)
D(x,x′, s) (1.41)
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Figure 1.1: Illustration of the objects with shaded interiors and marked bound-
aries Qi.

The Fourier transform in time results in

Sq(x, ω) = lim
x′→x

(
−∇x∇x′ +

1

2
Tr(∇x∇x′)I +

1

2
ωI
)
D(x,x′, ω) (1.42)

and the quantum stress tensor is given by the Fourier transform evaluated at
zero

Sq(x) =

∞∫
−∞

dω

2π
Sq(x, ω) (1.43)

Figure 1.1 illustrates the situation and for object i with volume Vi and boundary
Qi the net force from this object is

Fi =
∂P

∂t
= ∂t

∫
Vi

dV ρ(x, t) = −
∫
Vi

dV ∇ · Sq(x, t)

= −
∮
Qi

dl Sq · n
(1.44)

where n is a normal vector pointing out of Qi and into V0. Because the total
system is stationary the sum of all forces is zero:

∑
j Fj = 0

The unit normal and tangent vectors, n and t, span R2 at any point along
the curves Qi. With respect to this basis the unit vector are

ex = (ex · t)t + (ex · n)n
ey = (ey · t)t + (ey · n)n

(1.45)
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The gradient changes into

∇x → (t · ∇x)t + (n · ∇x)n = t∂t + n∂n (1.46)

and the double gradient is given by

∇x∇x′ = tt′∂tt′ + tn′∂tn′ + t′n∂t′n + nn′∂nn′ (1.47)

Because D(x,x′, ω) = 0 when x,x′ ∈ Qj the tangential derivatives are

∂tD|Qj = ∂t′D|Qj = 0 (1.48)

Thus for x,x′ ∈ Qj

∇x∇x′D(x,x′, ω)→ nn′∂nn′D(x,x′, ω) (1.49)

The stress tensor defined in equation (1.42) will for points on Qj be

Sq(x, ω) = lim
x′→x

(
1

2
Tr(nn′)I− nn′

)
∂nn′D(x,x′, ω) (1.50)

and the force will be given by

Fi = −
∮
Qi

dl Sq · n = − 1

2π

∮
Qi

dlx

∞∫
−∞

dω Sq(x, ω) · n

= − 1

2π

∮
Qi

dlx

∞∫
−∞

dω lim
x′→x

(
1

2
Tr(nn′)I− nn′

)
∂nn′D(x,x′, ω) · n

= − 1

2π

∮
Qi

dlx

∞∫
−∞

dω

(
1

2
Tr(nn)I− I

)
n · ∂nnD(x,x, ω)

=
1

4π

∮
Qi

dlx

∞∫
−∞

dω n · ∂nnD(x,x, ω)

(1.51)

Where Tr(nn) = 1 for unit normals. The force on each object from the vacuum
is thus given by

Fi =

∮
Qi

dlx
1

4π

∞∫
−∞

dω n(x) · ∂nn′D(x,x, ω)

=

∮
Qi

dlx n(x) · p(x)

(1.52)

Where the normals n are directed out of each compact object.

1.3 Regularized boundary integral equations
Finding the force Fi has now been reduced to finding the double normal deriva-
tive of the Green’s function D(x,x, ω). Take the gradient of equation (1.26) with
respect to the primed variable in order to find an equation for this quantity.

∇2
xE(x,x′, ω)− ω2E(x,x′, ω) = ∇x′δ(x− x′) (1.53)
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where E(x,x′, ω) = ∇x′D(x,x′, ω). This equation has the same boundary con-
ditions as equation (1.26), that is

E(x,x′, ω) = 0 when x ∈ Qi (1.54)

Consider the operator L given by

L = ∇2 − ω2 (1.55)

The equation for our free Green’s function is

LD0(x,x′′, ω) = δ(x− x′′) (1.56)

A Green’s function that satisfies this is equation is given by

D0(x,x′′, ω) = − 1

2π
K0(ω||x− x′′||) (1.57)

Where K0 is a modified Bessel function.
The Divergence theorem and Green’s second identity are required to produce

the integral formulation of the boundary value problem 1.53 and 1.54∫
V0

dV (D0LE − ELD0) =

∫
V0

dV (D0∇2E − E∇2D0)

...

= −
∑
α

∮
Qα

ds (D0∇E − E∇D0) · n

(1.58)

The normal vector n should point out of each compact object Qα and into V0.
Inserting equations (1.53) and (1.56) into the above relation gives∫
V0

dV (D0∇x′δ(x−x′)−Eδ(x−x′′)) = −
∑
α

∮
Qα

ds (D0∇E −E∇D0) ·n (1.59)

Notice that ∇x′ is independent of the integration variable x, this can then be
extracted from the integral and basic delta function identities gives

∇x′D0(x′,x′′)− E(x′′,x′) = −
∑
α

∮
Qα

ds (D0∇E − E∇D0) · n (1.60)

Because of the boundary condition E(x,x′) = 0 when x ∈ Qα the integral will
be simplified into

∇x′D0(x′,x′′)− E(x′′,x′) = −
∑
α

∮
Qα

dsD0(x,x′′)∇xE(x,x′) · n (1.61)

This integral relation is valid for any x′,x′′ ∈ V0.
Take the limit of the above relation when x′ and x′′ approach the boundaries

Qj . How this limit is performed is the first part of our regularization. Start by
letting x′′ → Qi. Because of the boundary conditions equation (1.61) turns into

∇x′D0(x′,x′′) = −
∑
α

∮
Qα

dsD0(x,x′′)∇xE(x,x′) · n (1.62)

8



Figure 1.2: Illustration of the contour around each singularity of D0(x,x′′)

The integral on the right hand side pass right through a singularity of the Green’s
functionD0(x,x′′). This problem is handled by extending the contour to include
these points as shown in figure 1.2. These extensions will be parametrized as
circles with radius ε. To get back to the original contour it is simply a matter
of letting the radius go to zero.

Qεα : γ(θ) = x′′ + ε(cos(θ), sin(θ)) θ ∈ [0, π] (1.63)

With this contour the integral will give a finite contribution for all these singu-
larities The line integral is split into the contribution from integrating around
Qα and the extensions Qεα

∇x′D0(x′,x′′) = −
∑
α

PVx′′

∫
Qα

dsD0(x,x′′)∇xE(x,x′) · n

+ lim
ε→0

∫
Qεα

dsD0(x,x′′)∇xE(x,x′) · n


(1.64)

The contribution from integrating along the Qεα is given by

∫
Qεα

dsD0(x,x′′)∇E(x,x′) · n =

π∫
0

(εdθ)D0(γ(θ),x′′)∇E(γ(θ),x′) · n (1.65)
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Where γ(θ) was defined in equation (1.63). Thus the limit

lim
ε→0

εD0(γ(θ),x′′) = lim
ε→0
− 1

2π
εK0(ω||γ(θ)− x′′||)

= lim
ε→0
− 1

2π
εK0(ωε)

(1.66)

Since limε→0 εK0(ωε) = 0 the contribution from εD0(γ(θ),x′′) → 0. Thus
all contributions from the extended contour vanish and the following equation
remains

−∇x′D0(x′,x′′) =
∑
α

PVx′′

∫
Qα

dsD0(x,x′′)∇xE(x,x′) · n (1.67)

Where the Cauchy principal value integrals are to be taken around each of the
singularities in D0(x′,x′′)

The problem is now how to take the limit x′ → Qi. If x′ → y where y ∈ Qi
but y 6= x′′ there is no problem. Since the right side is defined by a Green’s
function it is obvious that there is a singularity when x′ → x′′. Let us start by
investigating what happens if x′ approaches x′′ along some arbitrary path x′(t)
close to x′′ but still inside V0. Define

x′(t) = x′′ + tẋ′(0) +
1

2
t2ẍ′(0) + . . . (1.68)

With this the left side of equation (1.67) will be

∇x′D0(x′,x′′) =
ω

2π

x′ − x′′

||x′ − x′′||
K1(ω||x′ − x′′||)

≈
x′→x′′

ω

2π

ẋ′(0)

||ẋ′(0)||
K1(ωt||ẋ′(0)||)

(1.69)

From a small argument the Bessel function approximates to K1(x) ≈ 1/x thus

∇x′D0(x′,x′′) ≈ 1

2π

ẋ′(0)

t||ẋ′(0)||2
(1.70)

Thus when t→ 0 this will diverge. To regularize this limit: first let x′ → Qi and
then let x′ → x′′ along this curve. The equations are regularized by stipulating
that the limit is to be taken along only a small subset of possible curves through
x′′.

Consider what happens to equation (1.53) when x′ → x′′ along the curve Qi.
First observe that given a complete set of eigenfunctions ϕn(x) for the Helmholz
equation in (1.26) any reasonable function can be expressed as

f(x) =
∑
n

cnϕn(x) =
∑
n

∫
dVx′ f(x′)ϕn(x′)ϕn(x) (1.71)

Thus formally
δ(x− x′) =

∑
n

ϕn(x′)ϕn(x) (1.72)

The eigenfunctions satisfy the boundary conditions such that ϕn(x) = 0 when
x→ Qi. Let us expand our gradient in terms of normal and tangent derivatives
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∇x′ → t′∂t′ + n′∂n′ . The boundary conditions imply that ∂t′ϕn(x′) = 0 and
thus the gradient on the right hand side of equation (1.53) will be

∇x′δ(x− x′) =
∑
n

∇x′ϕn(x′)ϕn(x)→
∑
n

(t′∂t′ + n′∂n′)ϕn(x′)ϕn(x)

=
∑
n

n′∂n′ϕn(x′)ϕn(x) = n′∂n′δ(x− x′)
(1.73)

Thus as x′ approach the curve Qi the gradient on the right hand side of the
equation changes into a normal derivative and equation (1.67) changes into

−n′∂n′D0(x′,x′′) =
∑
α

PVx′′

∫
Qα

dsD0(x,x′′)∇xE(x,x′) · n (1.74)

As x′ → x′′ along Qi the left side will now be given by

n′ · ∇x′D0(x′,x′′) =
ω

2π

n′ · (x′ − x′′)
||x′ − x′′||

K1(ω||x′ − x′′||)

≈ 1

2π

n′ · (x′ − x′′)
||x′ − x′′||2

(1.75)

Let the function Θ(t) parametrize the curve. Assuming that t′ and t′′ are defined
by

Θ(t′) = x′ Θ(t′′) = x′′ (1.76)

The tangent at x′ is given by Θ′(t′) and naturally the tangent satisfies the
relation n′ ·Θ′(t′) = n(Θ(t′)) ·Θ′(t′) = 0.

Expand around x′′ as x′′ ≈ x′ and define ∆t = t′′−t′. From the parametriza-
tion it is clear that

x′ − x′′ = Θ(t′′ + ∆t)−Θ(t′′)

≈ Θ(t′′) + Θ′(t′′)∆t+
1

2
Θ′′(t′′)∆t2 −Θ(t′′)

= Θ′(t′′)∆t+
1

2
Θ′′(t′′)∆t2

(1.77)

so
n′ · (x′ − x′′) ≈ 1

2
n(Θ(t′′)) ·Θ′′(t′′)∆t2 (1.78)

And for the norm

||x′ − x′′||2 ≈
(

Θ′(t′′)∆t+
1

2
Θ′′(t′′)∆t2

)
·
(

Θ′(t′′)∆t+
1

2
Θ′′(t′′)∆t2

)
≈ Θ′(t′′) ·Θ′(t′′)∆t2

(1.79)

Thus when x′ → x′′ along the curve Qi

n′ · ∇x′D0(x′,x′′) =
ω

2π

n′ · (x′ − x′′)
||x′ − x′′||

K1(ω||x′ − x′′||)

≈ 1

2π

n′ · (x′ − x′′)
||x′ − x′′||2

≈ 1

4π

n(Θ(t′′)) ·Θ′′(t′′)
Θ′(t′′) ·Θ′(t′′)

(1.80)
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Thus the proposed regularization has canceled the singularity on the left hand
side of equation (1.67). The factor that appears above is proportional to the
curvature of the curve at the point x′′.

The unknown in equation (1.67) is ∇xE(x,x′), but it is ∂nnD(x,x) that is
required to compute the force in equation (1.52). Changing the basis to the
normal and tangent vectors at each point gives ∇x → t∂t + n∂n and ∇x′ →
t′∂t′ + n′∂n′ for the primed variables. Thus

n · ∇xE(x,x′) = n · ∇x∇x′D(x,x′)
→ n · (t∂t + n∂n)(t′∂t′ + n′∂n′)D(x,x′)
= n′∂nn′D(x,x′)

(1.81)

And equation (1.74) changes into

−n′∂n′D0(x′,x′′) =
∑
α

PVx′′

∫
Qα

dsD0(x,x′′)n′∂nn′D(x,x′) (1.82)

Note that n′ is common on both sides and can be canceled

−∂n′D0(x′,x′′) =
∑
α PVx′′

∫
Qα

dsD0(x,x′′)∂nn′D(x,x′) x′′∈Qi
x′∈Qj (1.83)

The problem has now been reduced to finding a scalar function. This will then
later be multiplied by the the normals to produce the force on each line segment.
Observe that when ω → ∞ the free Green’s function D0(x,x′′) → 0. This will
make the equations decouple and the resulting system is

−∂n′D0(x′,x′′) = PVx′′
∫
Qi
dsD0(x,x′′)∂nn′Di(x,x′)

x′′,x′ ∈ Qi
i ∈ 1 . . . r

(1.84)

These equations will be called the self stress equations. To regularize the force in
equation (1.52) the solution to the self stress equation will be subtracted. This
will remove the high frequency contribution from the force and the resulting
force will be redefined as the correct force for this problem.

Define the regularized density as ∆i(x,x′)

∆i(x,x′) = ∂nn′D(x,x′)− ∂nn′Di(x,x′) x,x′ ∈ Qi (1.85)

When the regularized density is inserted back into equation (1.83) it is conve-
nient to separate the equations based on the points x′ and x′′

PVx′′

∫
Qi

dsD0(x,x′′)∆i(x,x′)

+
∑
α,α6=i

∫
Qα

dsD0(x,x′′)∂nn′D(x,x′) = 0

x′′,x′ ∈ Qi (1.86)

PVx′′

∫
Qi

dsD0(x,x′′)∆i(x,x′)

+
∑
α,α6=i

∫
Qα

dsD0(x,x′′)∂nn′D(x,x′)

= −∂n′D0(x′,x′′)−
∫
Qi

dsD0(x,x′′)∂nn′Di(x,x′)

x′′ ∈ Qj
x′ ∈ Qi
j 6= i

(1.87)
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1.4 Discretization

To solve equations (1.86) and (1.87) the integrals will discretized. The resulting
sums can then be organized into matrix form and the matrix can then be inverted
to find the solution.

The integral equation will be solved using the method of moments. Each
smooth curve Qi will be approximated by a piecewise linear curve. There are
other options that could be used, but this is the simplest. Let Iik be the kth

linear piece of the piecewise linear curve that approximate Qi. The integrals
are then changed into∫

Qi
dsD0(x, sk′′)∂nn′D(x, sk′) ≈

∑
k

∫
Iik
dsD0(x, sk′′)∂nn′D(x, sk′)

≈
∑
k ∂nn′D(sk, sk′)

∫
Iik
dsD0(x, sk′′) =

∑
k x

ij′

kk′a
ij′′

kk′′

(1.88)

where sk is the midpoint of the line element Iik
For this approximation to be good it is required that Iik is small enough such

that ∂nn′D(x, sk′) is approximately constant in each subinterval Iik. Approxi-
mate functions defined on the curve Qi by their values at the midpoints of the
line elements Iik.

To simplify the matrix formulas the following definitions will be helpful

xijkk′ =

 ∂nn′D(sk, sk′) sk ∈ Qi, sk′ ∈ Qj , j 6= i

∆i(sk, sk′) sk, sk′ ∈ Qi
(1.89)

aijkk′′ =


∫
Iik
dlxD0(x, sk′′) sk′′ ∈ Qj , j 6= i

PVsk′′
∫
Iik
dlxD0(x, sk′′) sk′′ ∈ Qi

(1.90)

and for the right side

yijk′k′′ = −∂n′D0(sk′ , sk′′) sk′ ∈ Qi, sk′′ ∈ Qj (1.91)

bijkk′ = ∂nn′Di(sk, sk′) sk, sk′ ∈ Qi (1.92)

To form a system of equations there are two options: Either let x′ → Qi and
then let x′′ → Qj for ∀j 6= i or let x′′ → Qi and then let x′ → Qj for ∀j 6= i.
The above calculations are unaffected by this limit and the only place where the
limit might cause a problem is in the Green’s function ∂nn′D(x,x′). Observe
that from equation (1.7)

D(x, t,x′, t′) =< T[ϕ̂(x, t)ϕ̂(x′, t′)] >=

{
< ϕ̂(x, t)ϕ̂(x′, t′) > t > t′

< ϕ̂(x′, t′)ϕ̂(x, t) > t < t′
(1.93)

Thus there there is no problem in interchanging (x, t)↔ (x′, t′).
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Consider x′′ → Qj and then x′ → Qi for ∀j 6= i.

When there are r objects equations (1.86) and (1.87) will give the system

∑
k

a11
kk′′x

1i
kk′ + . . .+ ai1kk′′x

ii
kk′ + . . .+ ar1kk′′x

ri
kk′ = yi1k′k′′ −

∑
k

ai1kk′′b
ii
kk′

...∑
k

a1,i−1
kk′′ x

1i
kk′ + . . .+ ai,i−1

kk′′ x
ii
kk′ + . . .+ ar,i−1

kk′′ x
ri
kk′ = yi,i−1

k′k′′ −
∑
k

ai,i−1
kk′′ b

i,i
kk′∑

k

a1i
kk′′x

1i
kk′ + . . .+ aiikk′′x

ii
kk′ + . . .+ arikk′′x

ri
kk′ = 0∑

k

a1,i+1
kk′′ x

1i
kk′ + . . .+ ai,i+1

kk′′ x
ii
kk′ + . . .+ ar,i+1

kk′′ x
ri
kk′ = yi,i+1

k′k′′ −
∑
k

ai,i+1
kk′′ b

ii
kk′

...∑
k

a1r
kk′′x

1i
kk′ + . . .+ airkk′′x

ii
kk′ + . . .+ arrkk′′x

ri
kk′ = yirk′k′′ −

∑
k

airkk′′b
ii
kk′

(1.94)

and the self stress equation in (1.84) for object i is

∑
k

aiikk′′b
ii
kk′ = yiik′k′′ (1.95)

Let us express this as the product of block matrices, to do this the variables are
transposed: Aij = (aijkk′′)

T , Xij = xijkk′ , Y
ij = (yijk′k′′)

T and Bii = biikk′ . Thus
the sums become the regular matrix products and the equations are represented
as



A11 · · · Ai1 · · · Ar1

...
. . .

...
...

A1i · · · Aii · · · Ari

...
...

. . .
...

A1r · · · Air · · · Arr





X1i

...
Xii

...
Xri

 =



Y i1 −Ai1Bii
...

Y i,i−1 −Ai,i−1Bii

0
Y i,i+1 −Ai,i+1Bii

...
Y ir −AirBii


(1.96)

These are r block matrix equations for r block matrix unknowns. For the case
of two object equation (1.96) simplifies into[

A11 A21

A12 A22

] [
X11

X21

]
=

[
0

Y 12 −A12B11

]
(1.97)

and [
A11 A21

A12 A22

] [
X12

X22

]
=

[
Y 21 −A21B22

0

]
(1.98)
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Consider x′′ → Qi and then x′ → Qj for ∀j 6= i.

Write down equations (1.86) and (1.87) for a total of r objects where the goal
is the force on object i∑
k

a1i
kk′′x

11
kk′ + . . .+ aiikk′′x

i1
kk′ + . . .+ arikk′′x

r1
kk′ = y1i

k′k′′ −
∑
k

a1i
kk′′b

11
kk′

...∑
k

a1i
kk′′x

1,i−1
kk′ + . . .+ ai−1,i

kk′′ x
i−1,i−1
kk′ + . . .+ arikk′′x

r,i−1
kk′ = yi−1,i

k′k′′ −
∑
k

ai−1,i
kk′′ b

i−1,i−1
kk′∑

k

a1i
kk′′x

1i
kk′ + . . .+ aiikk′′x

ii
kk′ + . . .+ arikk′′x

ri
kk′ = 0∑

k

a1i
kk′′x

1,i+1
kk′ + . . .+ ai+1,i

kk′′ x
i+1,i+1
kk′ + . . .+ arikk′′x

r,i+1
kk′ = yi+1,i

k′k′′ −
∑
k

ai+1,i
kk′′ b

i+1,i+1
kk′

...∑
k

a1i
kk′′x

1r
kk′ + . . .+ aiikk′′x

ir
kk′ + . . .+ arikk′′x

rr
kk′ = yrik′k′′ −

∑
k

arikk′′b
rr
kk′

(1.99)

and the self stress equation in (1.84) for object i is∑
k

aiikk′′b
ii
kk′ = yiik′k′′ (1.100)

These are r linear block matrix equations for r2 unknowns xijkk′ . If the equations
for the force on the other r − 1 objects are included there will be a total of r2

equations for r2 unknowns.
For r = 2 objects the force on object i = 1 is given by∑

k

a11
kk′′x

11
kk′ + a21

kk′′x
21
kk′ = 0∑

k

a11
kk′′x

12
kk′ + a21

kk′′x
22
kk′ = y21

k′k′′ −
∑
k

a21
kk′′b

22
kk′

(1.101)

and i = 2 ∑
k

a12
kk′′x

11
kk′ + a22

kk′′x
21
kk′ = y12

k′k′′ −
∑
k

a12
kk′′b

11
kk′∑

k

a12
kk′′x

12
kk′ + a22

kk′′x
22
kk′ = 0

(1.102)

Let us express this as the product of block matrices, to do this the variables are
transposed: Aij = (aijkk′′)

T , Xij = xijkk′ , Y
ij = (yijk′k′′)

T and Bii = biikk′ . Thus
the sums become the regular matrix products and the equations are represented
as 

A11 0 A21 0
0 A11 0 A21

A12 0 A22 0
0 A12 0 A22



X11

X12

X21

X22

 =


0

Y 21 −A21B22

Y 12 −A12B11

0

 (1.103)

It is clear that rows 1 and 3 form the same equations as for object 1 in the
previous limit and rows 2 and 4 are the same equations as for object 2 in the
previous limit.
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1.5 Applications

The goal is to find the force on object i from equation (1.52) with the renormal-
ized force.

Fi =

∮
Qi

dlx n(x) · 1

4π

∞∫
−∞

dω∆i(x,x, ω) (1.104)

Where the normals should point out of each compact objectQi and ∆i(x,x, ω) is
the renormalized density that can be found from equation (1.96). The equation
that define the problem in the case of two objects is[

A11 A21

A12 A22

] [
X11

X21

]
=

[
0

Y 12 −A12B11

]
(1.105)

and [
A11 A21

A12 A22

] [
X12

X22

]
=

[
Y 21 −A21B22

0

]
(1.106)

Where the self stress B11 and B22 is given by

A11B11 = Y 11

A22B22 = Y 22
(1.107)

From the above equations it is clear that, for each ω, the self stress is found by
solving for B11 and B22. After this the matrices X11 and X22 are solved with
the given right hand side.

1.6 Matrices

The problem is to investigate compact objects that will be defined through a
piecewise linear parametrization. Given an object with points Pik ∈ R2, k ∈
1 · · ·N along the border of the object. Define the piecewise linear parametriza-
tion of object i as

γi(s) = Pik−1 + (Pik −Pik−1) s−αk−1

∆ s ∈ Jk = [αk−1, αk] (1.108)

Where the total parametrization interval for γi(s) is [−L/2, L/2], divided into
N sections Jk. The edges of each parametrization interval and their centers are
defined as

αk = −L/2 + k ·∆ k = 0 . . . N

sk = −L/2 + (k − 1/2) ·∆ k = 1 . . . N
(1.109)

where ∆ = L/N = αk − αk−1. The number of discretization intervals is N and
the discretization parameter α ∈ [−L/2, L/2] for some k. The length, eik, of
each piece of the piecewise linear curve approximating Qi is

eik ≡
∫
Ik

dlx =

αk∫
αk−1

ds
1

∆
||Pik −Pik−1|| = ||P

i
k −Pik−1|| (1.110)

16



The next step is to calculate the matrix elements, these are given by formula
(1.90) and (1.91)

aijkk′′ =


∫
Iik
dlxD0(x, sk′′) sk′′ ∈ Qj , j 6= i

PVsk′′
∫
Iik
dlxD0(x, sk′′) sk′′ ∈ Qi

(1.111)

yijk′k′′ = −∂n′D0(sk′ , sk′′) sk′ ∈ Qi, sk′′ ∈ Qj (1.112)

Consider these in turn.

1.6.1 Matrix elements: yijk′k′′

The matrix elements yijk′k′′ elements from equation (1.91) will in general be

yijk′k′′ = −∂n′D0(sk′ , sk′′) = −n′ · ∇sk′D0(sk′ , sk′′)

=
1

2π
n′ · ∇sk′K0(ω||sk′ − sk′′ ||)

= − ω

2π

n′ · (sk′ − sk′′)
||sk′ − sk′′ ||

K1(ω||sk′ − sk′′ ||)

(1.113)

The only point where this could pose a problem is when i = j and k′ = k′′. For
small arguments the Bessel functions are approximated by K1(x) ≈ 1/x and
thus

yiik′k′′ ≈ −
1

2π

n′ · (sk′ − sk′′)
||sk′ − sk′′ ||2

(1.114)

But this problem has already been solved. Thus with equation (1.80) it is easy
to see that the the diagonal elements are equal to

yiikk ≈ −
1

4π

n(Θ(t′′)) ·Θ′′(t′′)
Θ′(t′′) ·Θ′(t′′)

(1.115)

1.6.2 Matrix elements: aijkk′′

In general the matrix elements are

aijkk′′ = PVsk′′

∫
Iik

dlxD0(x, sk′′) = − 1

2π
PVsk′′

∫
Iik

dlxK0(ω||x− sk′′ ||) (1.116)

where sk′′ ∈ Cj .
This integral can be solved by using a center approximation or some quadra-

ture in all cases but when i = j and k = k′′. Observe first that for this case

||x(s)− sk′′ || = ||Pik−1 + (Pik −Pik−1)
s− αk−1

∆

−Pik−1 − (Pik −Pik−1)
sk′′ − αk−1

∆
||

= ||(Pik −Pik−1)
s− sk′′

∆
|| = eik

|s− sk′′ |
∆

(1.117)
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where eik is the length of the parametrized line element. Thus the above integral
is

aiikk = − 1

2π
PVsk′′

∫
Iik

dlxK0(ω||x− sk′′ ||)

= − 1

2π
PVsk′′

αk∫
αk−1

(
eik
∆
ds

)
K0(|s− sk′′ |ωeik/∆)

= − eik
2π∆

PVsk′′

αk∫
αk−1

dsK0(|s− sk′′ |B)

(1.118)

Where the constants are gathered in B = ωeik/∆. Make a change to coordinates
such that our integration interval is small

θ(s) = −∆/2 + s− αk−1

dθ = ds
(1.119)

and thus it is then possible to use the small argument approximation: K0(x) ≈
C − log(x). Where C = log(2) − γem and γem = 0.577215.. is the Euler-
Mascheroni constant.

aiikk ≈ −
eik

2π∆
PV0

∆/2∫
−∆/2

dθ (C − log(|θ|B))

= − eik
2π∆

C∆− PV0

∆/2∫
−∆/2

dθ log(|θ|B)


= − eik

2π∆
lim
ε→0

C∆−
−ε∫

−∆/2

dθ log(−θB)−
∆/2∫
ε

dθ log(θB)


= − eik

2π∆
lim
ε→0

C∆−
∆/2∫
ε

dθ log(θB)−
∆/2∫
ε

dθ log(θB)


= − eik

2π∆
lim
ε→0

C∆− 2

∆/2∫
ε

dθ log(θB)


= − eik

2π∆
lim
ε→0

C∆− 2

B

∆B/2∫
Bε

dy log(y)


= − eik

2π∆

(
C∆−∆ log

(
1

2
B∆

)
+ ∆

)
= − e

i
k

2π

(
C + 1− log

(
1

2
ωeik

))

(1.120)

These are the diagonal elements of the matrix aiikk.
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1.7 Symmetry simplifications
Given that D(x,x′) is the unique solution to equation (1.83)

−∂n(x′)D0(x′,x′′) = PVx′′

∫
Q

dsD0(x,x′′)∂n(x)n(x′)D(x,x′) (1.121)

where Q = ∪αQα and x′,x′′ ∈ Q.
Introducing a new varable

P (x,x′) = ∂n(x)n(x′)D(x,x′) (1.122)

where P (x,x′) is a solution to

−∂n(x′)D0(x′,x′′) = PVx′′

∫
Q

dsD0(x,x′′)P (x,x′) (1.123)

If g is an isometry that preserves Q then B(x,x′) = P (g−1x, g−1x′) is also a
solution to equation (1.123).

From the right hand side

PVx′′

∫
Q

dsD0(x,x′′)∂n(x)n(x′)B(x,x′)

= PVg−1x′′

∫
Q

dsD0(g−1x, g−1x′′)P (g−1x, g−1x′)

= PVg−1x′′

∫
Q

dsD0(y, g−1x′′)P (y, g−1x′)

= − ∂n(g−1x′)D0(g−1x′, g−1x′′)

= −∇(g−1x′)D0(g−1x′, g−1x′′) · n(g−1x′)

(1.124)

because the isometric transformation preserves the norm such thatD0(gx, gx′′) =
D0(x,x′′)

From the chain rule

∇x′D0(g−1x′, g−1x′′) = (∇yD0(y, g−1x′′))|y=g−1x′D(g−1)(x′) (1.125)

and for

∇g−1x′D0(g−1x′, g−1x′′) = ∇x′D0(g−1x′, g−1x′′)Dg(g−1x′) (1.126)

Observe that
x′ = g(g−1x′)

I = Dg(g−1x′)D(g−1)(x′)
(1.127)

Thus the above equation simplifies into

PVx′′

∫
Q

dsD0(x,x′′)∂n(x)n(x′)B(x,x′)

= −∇(g−1x′)D0(g−1x′, g−1x′′) · n(g−1x′)

= −∇x′D0(g−1x′, g−1x′′) ·Dg(g−1x′)n(g−1x′)

= −∇x′D0(g−1x′, g−1x′′) · n(x′)
= −∇x′D0(x′,x′′) · n(x′)

(1.128)

19



Because the solution is unique

P (x,x′) = B(x,x′) (1.129)

and thus
P (x,x′) = P (g−1x, g−1x′) (1.130)

or
P (x, gx′) = P (g−1x,x′) (1.131)

With the solution of equation (1.123) at one point x′ it is possible to find the
solution at another point gx, connected by the isometry g. If such an isometry
is found it would greatly decrease the time required to find the force.

1.8 Source test
In order to test for possible human or numerical errors in the boundary element
solver the problem can be modified slightly. This modification should be small
and make the transition back into the original equations natural. Start with a
modification of equation (1.26):

∇2
xD(x,x′)− ω2D(x,x′) = ρ(x,x′) (1.132)

where D(x,x′) = 0 when x,x′ ∈ Q and ρ(x,x′) is arbitrary. Using the same
procedure as above will result in the following equation instead of equation
(1.83).

−
∫
V0

dV D0(x,x′′)∂n′ρ(x,x′) =
∑
α

PVx′′

∫
Qα

dsD0(x,x′′)∂nn′D(x,x′) (1.133)

For x′′ ∈ Qi,x′ ∈ Qj and where the volume integral is over the whole domain
V0 modulo the interior volumes Vi.

Because the source, ρ(x,x′), is arbitrary the regularization in equation (1.73)
will impose a condition. To get the above equation the source must satisfy
∂t′ρ(x,x′) = 0. This will be resolved if ρ(x,x′) = 0 when x′ ∈ Qj

After discretization the equation for object 1 will be[
A11 A21

A12 A22

] [
X11

X21

]
=

[
H11

H12

]
(1.134)

and for object 2 [
A11 A21

A12 A22

] [
X12

X22

]
=

[
H21

H22

]
(1.135)

where the right hand side is given by

Hij = −
∫
V0
dV D0(x,x′′)∂n′ρ(x,x′) x′′ ∈ i,x′ ∈ j (1.136)

The above equations are very similar to the ones that are solved in the original
problem. The main difference is that it does not take into account the self
stress, but this is only a minor difference since the goal here is to test the
equation solver. Alternatively the self stress regularization could be included
in this problem, but this would remove any exact solution that could be found
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here. Thus the code from the original solver can be used on this problem with
minimal modifications.

The parallel plate geometry from section (6.1) will be used to test the code
with the following function

D(x,x′) = cos
(πx
a

)
cos

(
πx′

a

)
e−(y2+y′2) (1.137)

where each plate is located at x = ±a/2 and has length L.
This satisfies the boundary conditions D(x,x′) = 0 when x,x′ are on the

plates. From this function the source is found to be

ρ(x,x′) = ∇2D(x,x′)− ω2D(x,x′)
...

= −
(
ω2 +

(π
a

)2

+ 2
(
1− 2y2

))
D(x,x′)

(1.138)

and

∂n′ρ(x,x′)

= − n′x
π

a

(
ω2 +

(π
a

)2

+ 2
(
1− 2y2

))
cos
(πx
a

)
sin

(
πx′

a

)
e−(y2+y′2) (1.139)

With this on the right side the solution will be

∂nn′D(x,x′) = n2
x∂xx′D(x,x′)

= n2
x

(π
a

)2

sin
(πx
a

)
sin

(
πx′

a

)
e−(y2+y′2) (1.140)

When this expression is evaluated on either plate it is reduced to

∂nn′D(x,x′) =
(π
a

)2

e−2y2 (1.141)

and if it is evaluated at y = 0

a2∂nn′D(x,x′) = π2 (1.142)

Thus as a test for the code it is possible to solve the above system using the
given source for a few values of a and then compare this to the exact solution
above. Figure (1.3) shows the result of running the source conditions through
the solver and figure (1.4) shows more details on the error.
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Figure 1.3: The output of the solver using the source initial conditions for a few
values of a. The exact solution is π2 for all a.
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Figure 1.4: The relative error in the output of the solver using the source initial
conditions in figure (1.3) for a few values of a.
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Chapter 2

Functional Integral method

A method used to calculate the Casimir energy using functional integrals is
developed by T. Emig, N. Graham, R.L. Jaffe and M. Kardar [12]. Their ar-
ticle was used as a basis for the implementation of this method. The primary
difference between the method described in the article and the following imple-
mentation is the use of a spherical basis in the former.

In the following sections the theory needed to calculate the functional inte-
grals will be developed. The object is to show that the energy can be expressed
as a functional integral of an exponential. Finally a well known formula will be
used to solve the integral.

The final formula for the Casimir energy will involve calculating a determi-
nant of a matrix that contains all the information relating to the geometry of
the problem. This geometry will be defined by discretizing the boundary of each
object.

2.1 Background
Consider the Lagrangian density

L(ϕ) =
1

2
(ϕ2
t −∇ϕ2) (2.1)

and two field configurations ϕ(x, t′) = a(x) and ϕ(x, t) = b(x). The action
associated with these field configurations are defined in terms of the Lagrangian
density by

S[ϕ] =

t∫
t′

ds

∫
R3

d3xL(ϕ(x, s)) (2.2)

The probability of ending up in configuration b(x) when starting in a(x) is
found by summing over all possible connecting paths. The propagator is this
transition probability amplitude and is given by

G(b, t, a, t′) =

∫
Dϕe

i
~S[ϕ] (2.3)

Take note that for S[ϕ] of order 1 the primary contribution to the propagator
will come from the stationary path. This is the classical path found by taking
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the variation of the action and setting this equal to zero. If S[ϕ] is of order ~,
the propagator will be considerably influenced by paths that vary substantially
from the classical path. Note that a scaling of the Lagrangian will influence this
directly, but if ~ is scaled this will alter the results from all possible measurable
quantities, since they are calculated as expectation values. This is why it is
important to make sure to use the proper scaling. The models in thesis only have
to be consistent as no result will be compared to any physical measurements.

The interesting configurations are a(x, t′) = b(x, t) = 0. This restriction will
be implemented on the set of paths by considering all paths that start at the
zero configuration and connects back to the zero configuration during a time T
and then in the end let T →∞. The possible fields will further be restricted by
boundary conditions on some space time boundary C.

After these constraints it is clear that the integration should be over T-
periodic fields that satisfy the boundary conditions on C. Denote this transition
probability amplitude by

Z[C, T ] =

∫
DϕC,T e

i
~S[ϕ] (2.4)

Consider a scalar quantum field ϕ̂ that is a quantization of the scalar field ϕ.
The field equation for ϕ̂ is given by

ϕ̂tt −∇2ϕ̂ = 0 (2.5)

The field ϕ̂ satisfies the equal time commutation conditions for bosons

[ϕ̂(x, t), ϕ̂(x′, t)] = 0

[ϕ̂t(x, t), ϕ̂(x′, t)] = i~δ(x− x′)
(2.6)

Let Ĥ be the energy operator and {Ψα} be a complete set of energy eigenstates
for the scalar field.

ĤΨα = EαΨα (2.7)

Assuming completeness the configuration basis {Ψϕ} can be formally expanded
in an energy basis Ψα.

Ψϕ =
∑
α

Ψϕ[α]Ψα (2.8)

Where Ψϕ[α] is a functional on the space of classical configurations. Let Ψ0 be
the ground state of the field. The vacuum to vacuum transition amplitude is
then given by

Z[C, T ] = (Ψ0, e
− i

~ Ĥ(t−t′)Ψ0)

=
∑
α,β

Ψ∗0[α]Ψ0[β](Ψα,Ψβ)e−
i
~EβT

=
∑
α

Ψ∗0[α]Ψ0[α]e−
i
~EαT

(2.9)

Observe that if this functions is rotated into the complex plane with T = −is

Z[C,−is] =
∑
α

Ψ∗0[α]Ψ0[α]e−
s
~Eα (2.10)
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Assume that there exists a lowest energy state E0 and that all other Eα are
higher (and thus contribute less to the sum for large s). In other words it is
assumed that the spectrum of the energy operator is bounded from below.

Z[C,−is] ≈ Ψ∗0[0]Ψ0[0]e−
s
~E0 (2.11)

Take the logarithm on both sides to get

ln (Z[C,−is]) ≈ ln |Ψ0[0]|2 − s
~E0 s >> ~/E0 (2.12)

When s is large the constant factor will disappear and the only remaining part
is the propagator

E0 = − lim
s→∞

~
s

lnZ[C,−is] (2.13)

E0 is the lowest energy level possible for the quantum system. This level is
called vacuum energy, ground state energy or Casimir energy. The plan is to
find an expression for lnZ[C, T ] for large T and evaluate this at T = −is.

2.2 Spatial boundary conditions
It is necessary to define how the boundary conditions in the functional integral
will be implemented. Consider functions on the plane ϕ(x) and a functional
integral ∫

DϕK[ϕ] (2.14)

Where K[ϕ] is some functional. Let C be some curve in the plane and assume
that the integration should be restricted to functions such that ϕ|C = 0.

Define a parametrization of the curve C by

γ : [a, b]→ C (2.15)

Discretize the curve C with N+1 points chosen as

αj = a+ j∆t j = 0, 1, . . . N (2.16)

where ∆t = b−a
N .

Let tj ∈ Ij = [αj−1, αj ], j = 1, · · ·N be the midpoints of each interval Ij .
Then

tj = a+ (j − 1

2
)∆t (2.17)

Let ϕj = ϕ(γ(tj)). Inserting a product of delta functions into the integral in
equation (2.14) will give ∫

Dϕ

N∏
j=1

δ(ϕj)K[ϕ] (2.18)

Thus the only contribution to the integral is when ϕj = ϕ(γ(tj)) = 0. When
N →∞ the parametrization will be dense on C and the integral will be restricted
to functions such that ϕ|C = 0. Define the functional delta function δ(ϕ|C) by

lim
N→∞

∫
Dϕ

N∏
j=1

δ(ϕj)K[ϕ] ≡
∫
Dϕδ(ϕ|C)K[ϕ] (2.19)
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For each j the standard delta representation is

δ(ϕj) =
1

2π

∫
daje

iajϕj (2.20)

so
N∏
j=1

δ(ϕj) =

N∏
j=1

1

2π

∫
daj e

iajϕj =

∫  N∏
j=1

daj
2π

 ei
∑
j ajϕj (2.21)

Take a step back and look at a function α, defined on C by

α(γ(tj)) =
aj

||γ′(tj)||∆t
(2.22)

On the curve C parametrized by γ the derivative can be approximated by the
backwards difference.

The norm of the derivative is

||γ′(tj)|| ≈
1

∆t
||γ(αj)− γ(αj−1)|| (2.23)

inserting this into the product formula above gives

N∏
j=1

δ(ϕj) =

∫ N∏
j=1

( ||γ(tj)||∆t
2π

)
dα(tj)e

i
∑
j α(γ(tj))ϕ(γ(tj))||γ′(tj)||∆t (2.24)

formally ∏N
j=1

(
||γ(tj)||∆t

2π

)
dα(tj)→ Dα N →∞ (2.25)

Thus the final formal expression for the delta functional is

δ(ϕ|C) =

∫
Dαei

∫
C
dsαϕ (2.26)

Inserting this expression into equation (2.19) to get a formal expression for the
functional integral with boundary conditions∫

DϕDαei
∫
C
dsαϕK[ϕ] (2.27)

The same approach can be used to define delta functions δ(ϕ|C′) where C ′ is a
space time boundary.

The boundary conditions in equation (2.4) are now changed to

Z[C, T ] =

∫
DϕTDJT e

i
~ (S[ϕ]+

∫
C
dsJϕ) (2.28)

Where the exponent of the delta functional is measured in units of ~ for conve-
nience.
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2.3 Periodic boundary conditions
The differentials DϕT and DJT indicates that the integration is over T-periodic
functions. Since ϕ and J are T-periodic they can be expanded as Fourier series.

ϕ(x, t) =

∞∑
n=−∞

ϕn(x)e2πint/T

J(x, t) =

∞∑
n=−∞

Jn(x)e2πint/T

(2.29)

Note that if the fields are real the coefficients satisfy ϕ−n = ϕ∗n and J−n = J∗n.
This will be used later when considering a real scalar field. The result of this
simplification will be that the resulting Casimir energy is half of the one found
from using complex fields.

Their differentials are

DϕT =

∞∏
n=−∞

Dϕn

DJT =

∞∏
n=−∞

DJn

(2.30)

There should be a Jacobian here, but this will be canceled later when the Casimir
energy is renormalized.

All boundaries will be fixed in time, so the domain is given by C = Q×[0, T ].
Start with the integral inside the exponential in equation (2.28).

i

~

∫
C

dsϕ(x, t)J(x, t) =
i

~

∫
C

ds
∑
m,n

ϕn(x)Jm(x)e2πi(n+m)t/T

=
i

~
∑
m,n

∫
Q

dAϕn(x)Jm(x)

T∫
0

dt e2πi(n+m)t/T

=
iT

~
∑
n

∫
Q

dAϕn(x)J−n(x)

(2.31)

This extra term modifies the action S[ϕ] to account for boundary conditions.
Consider S[ϕ] defined by equation (2.2) with the real massless scalar field given
by equation (2.1)

S[ϕ] =

t∫
t′

ds

∫
R2

d2xL(ϕ(x, s)) =

T∫
0

ds

∫
R2

d2x
1

2
(ϕ2
t −∇ϕ∇ϕ)

=

T∫
0

ds

∫
R2

d2x
1

2

∑
n,m

(
2πin

T

2πim

T
ϕn(x)ϕm(x)e2πi(n+m)t/T

− ∇ϕn(x)∇ϕm(x)e2πi(n+m)t/T
)

=
∑
n

∫
R2

d2x
T

2

((
2πn

T

)2

ϕn(x)ϕ−n(x)−∇ϕn(x)∇ϕ−n(x)

)
(2.32)
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Including the above calculations in the propagator given by equation (2.28).

Z[Q,T ] =

∫
DϕTDJT e

i
~ (S[ϕ]+

∫
C
dsJϕ)

=

∫ ∞∏
m=−∞

DϕmDJme
iT
~
∑
n

(∫
dV 1

2

(
( 2πn
T )

2
ϕn(x)ϕ−n(x)

− ∇ϕn(x)∇ϕ−n(x))+
∫
Q
dAϕnJ−n)

=

∞∏
n=−∞

∫
DϕnDJne

iT
~

(∫
dV 1

2

(
( 2πn
T )

2
ϕn(x)ϕ−n(x)

− ∇ϕn(x)∇ϕ−n(x))+
∫
Q
dAϕnJ−n)

(2.33)

so

lnZ[Q,T ] =

∞∑
n=−∞

ln

∫
DϕnDJne

iT
~

(∫
dV 1

2

(
( 2πn
T )

2
ϕn(x)ϕ−n(x)

− ∇ϕn(x)∇ϕ−n(x))+
∫
Q
dAϕnJ−n)

(2.34)

Consider this sum for large T and introduce a continuous variable k discretized
by kn = 2πn/T and the spacing ∆kn = 2π/T << 1. Then the sum becomes an
integral

∞∑
n=−∞

fn =
1

∆kn

∞∑
n=−∞

∆kn fn ≈
T

2π

∞∫
−∞

dk fk (2.35)

Then for large T

lnZ[Q,T ] =
T

2π

∞∫
−∞

dk ln

∫
DϕkDJke

iT
~ (
∫
dV 1

2 (k2ϕk(x)ϕ−k(x)

− ∇ϕk(x)∇ϕ−k(x))+
∫
Q
dAϕkJ−k)

=
T

2π

0∫
−∞

dk ln

∫
DϕkDJke

iT
~ (
∫
dV 1

2 (k2ϕk(x)ϕ−k(x)

− ∇ϕk(x)∇ϕ−k(x))+
∫
Q
dAϕkJ−k)

+
T

2π

∞∫
0

dk ln

∫
DϕkDJke

iT
~ (
∫
dV 1

2 (k2ϕk(x)ϕ−k(x)

− ∇ϕk(x)∇ϕ−k(x))+
∫
Q
dAϕkJ−k)

=
T

2π

∞∫
0

dk ln

∫
DϕkDJkDϕ

∗
kDJ

∗
ke

iT
~ (
∫
dV (k2ϕk(x)ϕ∗k(x)

− ∇ϕk(x)∇ϕ∗k(x))+
∫
Q
dA (ϕk(x)J∗k (x)+ϕ∗k(x)Jk(x))+c.c.)

(2.36)

This can be summarized into a few simple formulas:

lnZ[Q,T ] =
T

2π

∞∫
0

dk lnBQ(k) (2.37)
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where
BQ(k) =

∫
DϕkDJkDϕ

∗
kDJ

∗
ke

iT
~ Ŝ[ϕk,ϕ

∗
k,Jk,J

∗
k ] (2.38)

and the modified action Ŝ[. . .] is

Ŝ[ϕk, ϕ
∗
k, Jk, J

∗
k ] =

∫
dV

(
k2ϕk(x)ϕ∗k(x)−∇ϕk(x)∇ϕ∗k(x)

)
+

∫
Q

dA (ϕk(x)J∗k (x) + ϕ∗k(x)Jk(x)) + c.c.
(2.39)

It will be necessary to evaluate Z[C, T ] on the imaginary time axis T = −is.

lnZ[C,−is] = − is
2π

∞∫
0

dk ln BQ(k)|T=−is (2.40)

Assuming that BQ(k) has no poles in the complex plane it is possible to rotate
the integration curve to the imaginary axis with k = iκ

lnZ[C,−is] =
s

2π

∞∫
0

dκ ln BQ(iκ)|T=−is (2.41)

This is the current expression for the propagator. The next step is to examine
how the boundary conditions modify the action.
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Figure 2.1: Illustration of the objects with marked interiors for the problem.

2.4 Modified action

Consider a type of problem where there are α = 1, . . . , ..r disjoint compact
pieces each with volume Vα and surface Qα. V0 is the complement of all objects,
V0 = (∪iVi)c, this will be the exterior for this problem. Figure 2.1 illustrates the
situations. Denote the source on the surface Qα as Jαn . The calculations that
lead up to equations (2.38) and (2.39) are modified slightly to include multiple
disjoint boundaries Qα.

This results in

BQ(k) =

∫
DϕkDϕ

∗
k

r∏
α=1

DJαkDJ
α∗
k e

iT
~ Ŝ[ϕk,ϕ

∗
k,{J

α
k }α,{J

α∗
k }α] (2.42)

and
Ŝ[ϕk, ϕ

∗
k, {Jαk }α, {Jα∗k }α]

=

∫
dV

(
k2ϕk(x)ϕ∗k(x)−∇ϕk(x)∇ϕ∗k(x)

)
+

r∑
α=1

∫
Qα

dA (ϕk(x)Jα∗k (x) + ϕ∗k(x)Jαk (x)) + c.c.

(2.43)

In order to find the classical field solution ϕcl,k for the action one should take
the variational derivative of Ŝ[. . .] from equation (2.43) with respect to ϕ∗k.
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Consider a variation from the classical solution

Ŝ[ϕcl,k, ϕ
∗
cl,k + δϕ∗k, {Jαk }, {Jα∗k }]

=

∫
Rn

dV
(
k2ϕcl,k(x)

(
ϕ∗cl,k + δϕ∗k

)
(x)−∇ϕcl,k(x)∇

(
ϕ∗cl,k + δϕ∗k

)
(x)
)

+

r∑
α=1

∫
Qα

dA
(
ϕcl,k(x)Jα∗k (x) +

(
ϕ∗cl,k(x) + δϕ∗k(x)

)
Jαk
)

+ c.c.

= Ŝ[ϕcl,k, ϕ
∗
cl,k, {Jαk }, {Jα∗k }]

+

∫
Rn

dV
(
k2ϕcl,k(x)δϕ∗k(x)−∇ϕcl,k(x)∇δϕ∗k(x)

)
+

r∑
α=1

∫
Qα

dA δϕ∗k(x)Jαk (x) + c.c.

= Ŝ[ϕcl,k, ϕ
∗
cl,k, {Jαk }, {Jα∗k }]

+

∫
V0

dV
(
k2ϕcl,k(x)δϕ∗k(x)−∇ϕcl,k(x)∇δϕ∗k(x)

)
+

r∑
α=1

∫
Vα

dV
(
k2ϕcl,k(x)δϕ∗k(x)−∇ϕcl,k(x)∇δϕ∗k(x)

)
+

r∑
α=1

∫
Qα

dA δϕ∗k(x)Jαk (x) + c.c.

(2.44)

Use Green’s identity to change the volume integrals into boundary integrals.

∫
V

dV ∇f∇g =

∫
∂V

dA∂nf · g −
∫
V

dV ∇2f · g (2.45)

Where the normal n should be oriented to point out of the volume V . In order
to define the normal derivative on the boundaries Qα it is helpful to separate
the solutions in V0 and Vα with

ϕ−(t) = lim
x→t
x∈Vα
t∈Qα

ϕcl,k(x)

ϕ+(t) = lim
x→t
x∈V0
t∈Qα

ϕcl,k(x)
(2.46)
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Thus

Ŝ[. . . , ϕ∗cl,k + δϕ∗k, . . .]

= Ŝ[. . .] +

∫
Rn

dV
(
k2ϕcl,k(x) +∇2ϕcl,k(x)

)
δϕ∗k(x)

+

r∑
α=1

∫
Qα

dA∂nϕ+(x)δϕ∗k(x)−
r∑

α=1

∫
Qα

dA∂nϕ−(x)δϕ∗k(x)

+

r∑
α=1

∫
Qα

dA δϕ∗k(x)Jαk (x) + c.c.

= Ŝ[. . .] +

∫
Rn

dV
(
k2ϕcl,k(x) +∇2ϕcl,k(x)

)
δϕ∗k(x)

+

r∑
α=1

∫
Qα

dA (Jαk (x)−∆∂nϕcl,k(x)) δϕ∗k(x) + c.c.

(2.47)

Where ∆∂nϕcl,k(x) = ∂nϕ−(x)− ∂nϕ+(x). Since δϕ∗ is arbitrary

∇2ϕcl,k + k2ϕcl,k = 0 x /∈ Qα
∆ϕcl,k = 0 x ∈ Qα

∆∂nϕcl,k = Jαk x ∈ Qα
(2.48)

Thus the stationary field ϕcl,k satisfy a scattering problem with fixed sources Jαk
on the curves Qα. Use the solution ϕcl,k to change variables in the functional
integral.

ϕk = ϕcl,k + θk

ϕ∗k = ϕ∗cl,k + θ∗k
(2.49)

The action from equation (2.43) is changed into

Ŝ[ϕcl,k + θk, ϕ
∗
cl,k + θ∗k, {Jαk }, {Jα∗k }]

=

∫
Rn

dV
(
k2(ϕcl,k + θk)(ϕ∗cl,k + θ∗k)−∇(ϕcl,k + θk)∇(ϕ∗cl,k + θ∗k)

)
+
∑
α

∫
Qα

dA
(
Jα∗k (ϕcl,k + θk) + Jαk (ϕ∗cl,k + θ∗k)

)
+ c.c.

(2.50)

Since ϕcl,k is a solution to (2.48) the action simplifies into

Ŝ[ϕcl,k + θk, ϕ
∗
cl,k + θ∗k, {Jαk }, {Jα∗k }]

= Ŝ[. . .] +

∫
Rn

dV
(
k2θkθ

∗
k −∇θk∇θ∗k

)
+
∑
α

∫
Qα

dA (Jα∗k θk + Jαk θ
∗
k) + c.c. (2.51)

Notice that the second part is geometry independent and will later cancel when
the regularized Casimir energy is calculated. The same applies to the first part
of the action itself in equation (2.43) and it is advantageous to redefine the
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action in order to only account for the geometry dependent integrals.

Ŝ[ϕcl,k, ϕ
∗
cl,k, {Jαk }, {Jα∗k }] =

∑
α

∫
Qα

dA
(
Jα∗k ϕcl,k + Jαk ϕ

∗
cl,k

)
+ c.c. (2.52)

The functional integrals in equation (2.42) will only involve integrals over the
sources Jαk and Jα∗k . Everything else will cancel when the energy is renormalized.
Redefine BQ(k) here for reference.

BQ(k) =

∫ r∏
α=1

DJαkDJ
α∗
k e

iT
~ Ŝ[ϕk,ϕ

∗
k,{J

α
k }α,{J

α∗
k }α] (2.53)

2.5 Scattering solutions

The equations in (2.48) are linear and thus the solution can be written as a
linear superposition.

ϕcl,k =
∑
β

ϕβ (2.54)

Where ϕβ is the solution when Jαk = 0 for α 6= β and in effect there is a single
scattering object Qβ . The action Ŝ[. . .] from equation (2.52) can be written as

Ŝ[ϕcl,k, ϕ
∗
cl,k, {Jαk }, {Jα∗k }] =

∑
αβ

Sαβ (2.55)

where

Sαβ =

∫
Qα

dA
(
Jα∗k ϕβ,k + Jαk ϕ

∗
β,k

)
(2.56)

For each object Vα choose a coordinate system Oα with coordinates denoted xα.
The origin of the coordinate system is inside Vα. With respect to Oα choose
a complete set of functions {aαiα(xα)} defined on the curve Qα. In general iα
will be a multi index. For a complete set of functions, aαiα(xα), any reasonable
function f on Qα can be written as

f(xα) =
∑

iα fiαa
α
iα(xα) xα ∈ Qα (2.57)

Let Gα(xα,x′α) be the Green’s function for the operator L = ∇2 +k2 (outgoing
at infinity) in the coordinate system Oα.

Thus

LαGα(xα,x′α) = −δα(xα − x′α) (2.58)

where Lα and δα are the operator L and the delta distribution in the the coor-
dinates Oα.

The plan is to expand the action Sαβ in the basis aαiα(xα). Consider the two
cases Sαα and Sαβ , for α 6= β, separately.
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2.5.1 Expanding ϕα over Oα
Expand all functions connected to object Vα in the basis Oα.

By completeness this implies

Jα(xα) =
∑
jα

zαjαa
α
jα(xα) (2.59)

and
Gα(xα,x′α) =

∑
iα

Gαiα(x′α)aαiα(xα) (2.60)

The properties of the Green’s functions let us us write the each ϕα in (2.54) as

ϕα(xα) =

∫
Qα

dAx′α G
α(xα,x′α)Jα(x′α) (2.61)

Combine this to get

ϕα(xα) =

∫
Qα

dAx′α

∑
iα

Gαiα(x′α)aαiα(xα)
∑
jα

zαjαa
α
jα(x′α)

=
∑
iα,jα

zαjαa
α
iα(xα)

∫
Qα

dAx′α G
α
iα(x′α)aαjα(x′α)

=
∑
iα,jα

Gαiαjαz
α
jαa

α
iα(xα)

(2.62)

where
Gαiαjα =

∫
Qα

dAx′α G
α
iα(x′α)aαjα(x′α) (2.63)

With this the integrals in our action can be expanded∫
Qα

dAxα J
α∗
k (xα)ϕα(xα)

=

∫
Qα

dAxα

∑
iα

zα∗iα a
α∗
iα (xα)

∑
jα,kα

Gαjα,kαz
α
kαa

α
jα(xα)

=
∑

jα,iα,kα

zα∗iα G
α
jα,kαz

α
kα

∫
Qα

dAxα a
α∗
iα (xα)aαjα(xα)

=
∑

jα,iα,kα

zα∗iα D
α
iα,jαG

α
jα,kαz

α
kα

=
∑
iα,kα

zα∗iα H
α
iαkαz

α
kα

(2.64)

where
Dα

iαjα =

∫
Qα

dAxα a
α∗
iα (xα)aαjα(xα) (2.65)
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and
Hα

iαkα =
∑
jα

Dα
iαjαG

α
jαkα (2.66)

Note that if the basis is orthonormal this will result in

Dα
iα,jα = δiα,jα (2.67)

2.5.2 Expanding ϕα over Oβ
Evaluate the field ϕα in coordinates system Oβ by evaluating the basis functions

ϕα(xβ) ≡ ϕα(xα(xβ)) (2.68)

And complete the same evaluation as in the previous section.
First from ϕα in equation (2.61)

ϕα(xβ) = ϕα(xα(xβ)) =

∫
Qα

dAx′α G
α(xα(xβ),x′α)Jα(x′α) (2.69)

Define
Gβα(xβ ,x′α) = Gα(xα(xβ),x′α) (2.70)

where the series expansion is given by

Gβα(xβ ,x′α) =
∑
iβ

Gβαiβ (x′α)aαiβ (xβ) (2.71)

Use this in the integral (2.69) to get

ϕα(xβ) =

∫
Qα

dAx′α

∑
iβ

Gβαiβ (x′α)aβiβ (xβ)
∑
jα

zαjαa
α
jα(x′α)

=
∑
iβ ,jα

Gβαiβjαz
α
jαa

β
iβ (xβ)

(2.72)

where
Gβαiβjα =

∫
Qα

dAx′α G
βα
iβ (x′α)aαjα(x′α) (2.73)

Expand the integrals in our action∫
Qα

dAxα J
α∗
k (xα)ϕβ(xα)

=

∫
Qα

dAxα

∑
iα

zα∗iα a
α∗
iα (xα)

∑
jα,kβ

Gαβjαkβz
β
kβa

α
jα(xα)

=
∑

iα,jα,kβ

zα∗iα G
αβ
jαkβz

β
kβ

∫
Qα

dAxα a
α∗
iα (xα)aαjα(xα)

=
∑

iα,jα,kβ

zα∗iα D
α
iαjαG

αβ
jαkβz

β
kβ

=
∑
iα,kβ

zα∗iα K
αβ
iαkβz

β
kβ

(2.74)
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where Dα
iαjα

was defined in equation (2.65).
And

Kαβ
iαkβ =

∑
jα

Dα
iαjαG

αβ
jαkβ (2.75)

Thus

S =
∑
α

Sαα +
∑
α,β
α6=β

Sαβ

=
∑
α

∑
iα,kα

zα∗iα H
α
iα,kαz

α
kα +

∑
α,β
α6=β

∑
iα,kβ

zα∗iα K
αβ
iαkβz

β
kβ + c.c.

(2.76)

The action is comprised of two parts: the interaction, Kαβ
iαkβ , and the self energy

Hα
iα,kα . These matrices contain the integrals of the Green’s function with the

basis functions given by (2.63) and (2.73). When the frequency, k, is large the
interaction part of the action will disappear and the action will only depend on
the self energy.

Thus
S → S∞ ≡

∑
α

∑
iα,kα

zα∗iα H
α
iα,kαz

α
kα + c.c. (2.77)

It is important to note that the integrals defining BQ(iκ) in equation (2.53) are
Gaussian. This is the only functional integral that can be solved exactly.

2.6 Gaussian Integrals
This elementary 1D-integral is found in any textbook [14] (p. 271)

∞∫
−∞

dx e−
ax2

2 =

√
2π

a
(2.78)

a product of integrals with different coefficients aj and variables xj will be

∫
Rn

dx e−
1
2

∑
j ajx

2
j = (2π)n/2

√∏
j

aj

−1/2

(2.79)

Let A be a n×n diagonal matrix with the coefficients aj on the diagonal. Then

< x, Ax >=
∑
j

ajx
2
j (2.80)

and det(A) =
∏
j aj . The above integral is∫

Rn

dx e−
1
2<x,Ax> = (2π)n/2det(A)−1/2 (2.81)

This will hold for any real symmetric matrix. Because any such matrix can be
reduced to diagonal form with an orthogonal change of variables.
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How to define this relation for functional integrals? First define a inner
product of two functions φ(x) and ψ(x) by.

< ϕ,ψ >=

∫
dxϕ(x)ψ(x) (2.82)

Let A be a self-adjoint operator and consider∫
Dϕe−

1
2<ϕ,Aϕ> (2.83)

Since A is self-adjoint there is a complete set of orthonormal eigenfunctions {ϕi}
with corresponding eigenvalues {λi}. From a change of variables

ϕ =
∑
i

aiϕi (2.84)

Then
< ϕ,Aϕ >=

∑
i

λia
2
i (2.85)

assuming that A is a positive operator such that that all λi > 0 for all i. Denote
the Jacobian as J and thus under a linear change of variables then∫

Dϕe−
1
2<ϕ,Aϕ>

= J

∫ ∏
i

dai e
− 1

2λia
2
i = J

∏
i

∫
daie

− 1
2λia

2
i

= J
∏
i

(2π)1/2

(∏
i

λi

)−1/2

∝ det(A)−1/2

(2.86)

for complex variables there is a similar result.
Multiplying equation (2.78) with itself using two different integration vari-

ables. The resulting formula is∫ ∫
dxdy e−

a
2 (x2+y2) =

2π

a
(2.87)

now change the variable to z and z∗ by

z = 1√
2
(x+ iy) z∗ = 1√

2
(x− iy)

dx = 1√
2
(dz + dz∗) dy = 1√

2i
(dz − dz∗)

(2.88)

The volume element changes into

dx ∧ dy =
1

2i
(dz + dz∗) ∧ (dz − dz∗) = −i dz ∧ dz∗ (2.89)

and the integral changes into∫
dz∗√
2πi

dz√
2πi

e−az
∗z =

1

a
(2.90)

By introducing complex fields ϕ,ψ with a standard complex inner product.
Then with a similar reasoning as above it is possible to show that for a self
adjoint positive operator∫

DϕDϕ∗ e−<ϕ
∗,Aϕ> = det(A)−1 (2.91)
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2.7 Casimir energy
Everything is now ready to produce a formula for the Casimir energy. It is
convenient to first reorganize the action in equation (2.76) into

S =
∑
α

(∑
iαkα

zα∗iα H
α
iαkαz

α
kα + c.c.

)
+
∑
αβ
α 6=β

∑
iαkβ

zα∗iα K
αβ
iαkβz

β
kβ + c.c.


=
∑
α

(∑
iαkα

zα∗iα H
α
iαkαz

α
kα + zαiαH

α∗
iαkαz

α∗
kα

)

+
∑
αβ
α6=β

∑
iαkβ

zα∗iα K
αβ
iαkβz

β
kβ + zαiαK

αβ∗
iαkβz

β∗
kβ


=
∑
α

∑
iαkα

zα∗iα
(
Hα

iαkα +Hα∗
kαiα

)
zαkα

+
∑
αβ
α6=β

∑
iαkβ

zα∗iα

(
Kαβ

iαkβ +Kβα∗
kβiα

)
zβkβ

=
∑
α

∑
iαkα

zα∗iα T
α
iαkαz

α
kα +

∑
αβ
α6=β

∑
iαkβ

zα∗iα U
α
iαkαz

β
kβ

(2.92)

where
Tαiαkα = Hα

iαkα +Hα∗
kαiα

Uαβiαkβ = Kαβ
iαkβ +Kβα∗

kβiα

(2.93)

Note that the Tαiαkα and Uαβiαkβ are self adjoint.
Evaluate the functional integral from equation (2.53) with the above action

BQ(iκ) =

∫ r∏
α=1

DJαDJα∗ e
iT
~ S
∣∣∣
T=−is

(2.94)

and make a linear change of variables of the form

Jα(xα) =
∑
iα

zαiαa
α
iα(xα) (2.95)

and thus equation (2.91) will result in

BQ(iκ) = J

∫ r∏
α=1

∏
iα

DzαiαDz
α∗
iα e
−<zα∗,Azα> ∝ det(AQ(iκ))−1 (2.96)

Where the Jacobian, J , is constant and the matrix A is

AQ(iκ) =
s

~



−T 1 −U12 · · · −U1r

−U21 . . .
...

...
−Ur−1,r

−Ur1 · · · −Ur,r−1 −T r

 (2.97)
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Subtract the high frequency part to regularize the Casimir energy. At high
frequencies, the only contribution to the energy will be from the self energy
of each object. Thus it is convenient to subtract this contribution because
the interesting part is the interaction energy. Let E∞ denote the self energy
calculated using only the high frequency contribution S∞ from equation (2.77).

The functional integral that will have to be solved for the high frequency
part is

B∞(iκ) =

∫ r∏
α=1

DJαDJα∗ e
iT
~ S∞

∣∣∣
T=−is

(2.98)

and after a linear change of variables the integrals can be calculated as

B∞(iκ) = J

∫ r∏
α=1

∏
iα

DzαiαDz
α∗
iα e
−<zα∗,Azα> ∝ det(A∞(iκ))−1 (2.99)

Where the Jacobian J is constant and the matrix A is

A∞(iκ) =
s

~

 −T
1 · · · 0

...
. . .

...
0 · · · −T r

 (2.100)

The regularized Casimir energy can now be calculated from the ground state
energy in equation (2.41)

E = E0 − E∞

= − lim
s→∞

 ~
2π

∞∫
0

dκ lnBQ(iκ)− ~
2π

∞∫
0

dκ lnB∞(iκ)

∣∣∣∣∣∣
T=−is

= − lim
s→∞

~
2π

∞∫
0

dκ ln
BQ(iκ)

B∞(iκ)

∣∣∣∣
T=−is

= − lim
s→∞

~
2π

∞∫
0

dκ ln
det(AQ(iκ))−1

det(A∞(iκ))−1

= lim
s→∞

~
2π

∞∫
0

dκ ln
det(AQ(iκ))

det(A∞(iκ))

(2.101)

Using the relation
det(A)
det(B) = det(A)det(B−1) = det(B−1A) det(B) 6= 0 (2.102)

and since A∞(iκ) is diagonal the energy is simplified into

E =
~

2π

∞∫
0

dκ lndet(MQ(iκ)) (2.103)

where

MQ(iκ) =

 1 · · · (T 1)−1U1r

...
. . .

...
(T r)−1Ur1 · · · 1

 (2.104)
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For the special case of two objects this will be

E =
~

2π

∞∫
0

dκ lndet(1− (T 1)−1U12(T 2)−1U21) (2.105)

2.8 Applications
To calculate the Casimir energy given in equation (2.103)

E =
~

2π

∞∫
0

dκ ln det(MQ(iκ)) (2.106)

From the formula of MQ(iκ) is dependent on the matrices T i and U ij given by
equation (2.93). For real fields these are

Tαiαkα = Hα
iαkα +Hα∗

kαiα = Hα
iαkα +Hα

kαiα

Uαβiαkβ = Kαβ
iαkβ +Kβα∗

kβiα = Kαβ
iαkβ +Kβα

kβiα

(2.107)

Look to equations (2.66) and (2.75) to calculate Hα
iα,kα and Kαβ

iαkβ

Hα
iαkα =

∑
jα

Dα
iαjαG

α
jαkα

Kαβ
iαkβ =

∑
iα

Dα
iαjαG

αβ
jαkβ

(2.108)

Where the Dα
kα,jα

is the inner product matrix given by equation (2.65) as

Dα
iαjα =

∫
Qα

dAxα a
α∗
iα (xα)aαjα(xα) (2.109)

Gαjα,kα and Gαβjαkβ are given by their definitions in equation (2.63) and (2.73)

Gαjαkα =

∫
Qα

dAx′α G
α
jα(x′α)aαkα(x′α)

Gβαjβkα =

∫
Qα

dAx′α G
βα
jβ

(x′α)aαkα(x′α)

(2.110)

Insert the definitions of Gαjα(x′α) and Gβαjβ (x′α) to get a clear formula. These
are defined as the coefficients of the series for the Green’s function in the basis
aαjα(x′α). Choose the basis such that Dα

iαjα
= δiαjα then the coefficients are

found with the usual method.

Gαjα(x′α) =

∫
dAxα G

α(xα,x′α)aαjα(xα)

Gβαjβ (x′α) =

∫
dAxβ G

α(xβ ,x′α)aβjβ (xβ)

(2.111)
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Thus the double integrals

Gαjαkα =

∫
Qα

∫
Qα

dAx′αdAxα a
α
jα(xα)Gα(xα,x′α)aαkα(x′α)

Gβαjβkα =

∫
Qα

∫
Qβ

dAx′αdAxβ a
β
jβ

(xβ)Gα(xβ ,x′α)aαkα(x′α)

(2.112)

The last thing that is needed is the Green’s functions Gα and the basis functions
aαiα . The Green’s function for this problem is given by equation (2.58) and the
two dimensional solution to this equation is a modified Bessel function.

Gα(xα,x′α) = − 1

2π
K0(κ||xα − x′α||) (2.113)

2.9 Discretization

Consider compact objects whose boundary curves Qi will be approximated by
a piecewise linear curve. The piecewise linear curve is determined by N points
Pik placed on the curve Qi. A parameterization for this piecewise linear curve
is

γi(s) = Pik−1 + (Pik −Pik−1) s−αk−1

∆ s ∈ Ik = [αk−1, αk] (2.114)

The edges of each parametrization interval and their centers are defined as

αk = −L/2 + k ·∆
sk = −L/2 + (k − 1/2) ·∆

(2.115)

where ∆ = L/N = αk − αk−1. The number of discretization intervals is N and
the discretization parameter α ∈ [−L/2, L/2] for some k. Integrating over a
single parametrization interval gives

∫
Ck

dl =

αk∫
αk−1

ds
1

∆
||Pik −Pik−1|| = ||P

i
k −Pik−1|| ≡ eik (2.116)

Where the length of each parametrization interval is defined as eik.
Select some basis on our object and to keep everything simple use an or-

thonormal basis on each parametrization interval.

θik(x) =

{
1/
√
eik x ∈ γi(Iik)

0 x ∈ γi(Ii
′

k ), i′ 6= k
(2.117)

At this point it is possible to use some spherical basis, as might be convenient
in some situations, but the above basis will simplify several integrals and our
matrix. With this basis the matrix Dα

kα,jα
from equation (2.65) will be

Di
kk′ =

∫
Qi

dAxi θik′(x)θik(x) = δkk′ (2.118)
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From equation (2.112) it is simple to calculate what the Green’s function matrix
will contain.

Gαjαkα =

∫
Qα

∫
Qα

dAx′αdAxα a
α
jα(xα)Gα(xα,x′α)aαkα(x′α)

Gβαjβkα =

∫
Qα

∫
Qβ

dAx′αdAxβ a
β
jβ

(xβ)Gα(xβ ,x′α)aαkα(x′α)

(2.119)

Do each of these in turn

2.9.1 Matrix elements Gα
jαkα

and Gβα
jβkα

The discretization is organized with a singe variable k = 1, . . . , N and for α 6= β

Gβαkk′ =

∫
Qα

∫
Qβ

dAx′dAx a
β
k(x)Gα(x,x′)aαk′(x

′)

= − 1

2π
√
eαk e

β
k′

∫
Iαk

∫
Iβ
k′

dAx′dAxK0(κ||x− x′||)
(2.120)

This double integral can be approximated using a midpoint rule or a 2D Gaus-
sian quadrature. Whatever methods is used, this integral is non singular and
will contribute to the off diagonal block matrices in MQ(iκ)

The next integral will involve integrating over the singularities in the Green’s
function so it will be necessary to use the Cauchy principal integral.

Gαkk′ =

∫
Qα

∫
Qα

dAx′dAx a
α
k (x)Gα(x,x′)aαk′(x

′)

= − 1

2π
√
eαk e

α
k′

∫
Iαk

∫
Iα
k′

dAx′dAxK0(κ||x− x′||)
(2.121)

There are now two cases, if k 6= k′ then K0(. . .) will be a smooth function
without any singularities. Any numerical integration routine can be used to
calculate the double integral.

But if k = k′

Gαkk = − 1

2πeαk
PVx

∫
Iαk

∫
Iαk

dAx′dAxK0(κ||x− x′||) (2.122)

Note that
||x− x′|| = ||Pαk−1 + (Pαk −Pαk−1)

s− αk−1

∆

−Pαk−1 − (Pαk −Pαk−1)
s′ − αk−1

∆
||

= ||(Pαk −Pαk−1)(
s− s′

∆
)|| = |s− s

′|
∆

eαk

(2.123)
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Thus when the parametrization is inserted into the integrals

Gαkk = − 1

2πeαk
PVs

∫
Iαk

∫
Iαk

eαkds
′

∆

eαkds

∆
K0(κ

|s− s′|
∆

eαk )

= − eαk
2π∆2

PVs
∫
Iαk

∫
Iαk

ds′dsK0(κ
|s− s′|

∆
eαk )

(2.124)

Change the variable of integration

θ(αk−1) = − 1
2∆ θ′(αk−1) = − 1

2∆

θ(αk) = 1
2∆ θ′(αk) = 1

2∆

θ(s) = −∆/2 + s− αk−1 θ′(s′) = −∆/2 + s′ − αk−1

dθ = ds dθ′ = ds′

(2.125)

The integral is now

Gαkk = − eαk
2π∆2

PVθ

∆/2∫
−∆/2

∆/2∫
−∆/2

dθ′dθK0(κ
|θ − θ′|

∆
eαk ) (2.126)

As ∆→ 0 the integration will be over a vanishing square and the parametriza-
tion points will be dense on the surface Qα. The Taylor expansion of K0(x)
for small arguments is K0(x) = C − log(x) where C = log(2) − γem and
γem = 0.577215.. is the Euler-Mascheroni constant.

With this

Gαkk = − eαk
2π∆2

PVθ

∆/2∫
−∆/2

∆/2∫
−∆/2

dθ′dθ (C − ln(κeαk |θ − θ′|/∆)

= − eαk
2π∆2

∆2C − PVθ

∆/2∫
−∆/2

∆/2∫
−∆/2

dθ′dθ ln(κeαk |θ − θ′|/∆)


= −Ce

α
k

2π
+

eαk
2π∆2

PVθ

∆/2∫
−∆/2

∆/2∫
−∆/2

dθ′dθ ln(κeαk |θ − θ′|/∆)

= −Ce
α
k

2π
+

eαk
2π∆2

1

B

∆/2∫
−∆/2

dθ lim
ε→0

 B(θ+∆/2)∫
Bε

dy ln(y)

+

B(∆/2−θ)∫
Bε

dz ln(z)



(2.127)
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Where B = κeαk/∆, y = B(θ − θ′) and z = B(θ′ − θ)

Gαkk = −Ce
α
k

2π
+

eαk
2π∆2

1

B

∆/2∫
−∆/2

dθ (B(θ + ∆/2) ln(B(θ + ∆/2))

−B(θ + ∆/2) +B(∆/2− θ) ln(B(∆/2− θ))−B(∆/2− θ))

= − (C + 1)eαk
2π

+
eαk

2π∆2

 ∆/2∫
−∆/2

dθ (θ + ∆/2) ln(B(θ + ∆/2))

−
∆/2∫
−∆/2

dθ (∆/2− θ) ln(B(∆/2− θ))


= − (C + 1)eαk

2π
+

eαk
2π∆2

2

B2

B∆∫
0

dy y ln(y)

(2.128)

where y = B(θ + ∆/2) and z = B(∆/2 − θ) and then the two integral were
joined by setting z = y.

Thus

Gαkk = − e
α

2π
(C + 1− ln(B∆) + 1/2) = − e

α

2π
(C + 3/2− ln(κeαk )) (2.129)

Every matrix component of MQ(iκ) has now been calculated.
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Chapter 3

Implementation

All the coding was done in C using phread for parallel support. The implemen-
tation of both the boundary element method and the functional integral method
have many similarities. This is because both methods use Greens functions: the
free Greens function in the boundary integral method and the scattering Greens
function in the functional integral method. The primary difference between the
two methods is that one solves a linear system and the other calculates a deter-
minant.

Boundary integral method

The boundary integral method is about computing surface integrals by solving
a linear system of equations and there are three parts to this algorithm: Filling
matrices, multiplying matrices and solving the linear systems. The first two are
simple to parallelize and if it is possible to avoid memory races the scaling will
be excellent using multiple processors. Solving a linear system of equations in
parallel could be done using an iterative method such as generalized minimal
residue method (GMRES).

If any geometric symmetries are exploitable by the boundary integral method
this would significantly reduce the computational time.

The primary algorithm used in the program is the LU-decomposition (Crout’s
algorithm) with pivoting. This is a good solver since the methods calls for us to
solve the same linear system for several different input vectors. Thus the LU-
factorization can be calculated once and the input can be varied without the
need to recalculate the matrix. For small matrices this algorithm is fast, but for
larger matrices it might be better to use an iterative algorithm such as GMRES.
But due to the limited matrix size of our problems, the LU-decomposition will
be more than sufficient.

If there are r objects all discretized usingN points (for simplicity, in practical
problems this might vary for different objects), then the algorithm requires the
following steps to evaluate the density function once.

• Fill r(r + 1) block matrices of size N ×N

• Solve r linear systems of size N ×N with N different r.h.s. each

• Compute r − 1 block matrix multiplications of size N ×N
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• Solve a single rN × rN linear system for N different r.h.s.

Functional integral method

To calculate the density function this method has to find a determinant of a
matrix. This matrix is comprised of smaller block matrices that must first be
inverted and multiplied. Since all the matrices will be relatively small it is
possible to use LU-decomposition for all relevant matrix operations.

If there are r objects all discretized using N points, then the algorithm
requires the following steps to evaluate the density function once.

• Fill r2 block matrices of size N ×N

• Solve r(r − 1) linear systems of size N ×N for N different r.h.s each but
where there are only r different matrices on the left.

• Find the determinant of a rN × rN block matrix

Comparisons

Since both methods are based on Greens functions, the main matrices will be
filled by similar elements. Start by comparing the differences in the above
procedures:

• Fill the r.h.s. of the boundary integral method. This requires that r
additional block matrices be filled.

• The functional integral method has to solve r(r − 2) more linear systems
of size N ×N for N different r.h.s. each

• The boundary integral method has to multiply r − 1 block matrices.

• Either solve a linear system or find a determinant.

Using LU-factorization it is possible to efficiently solve the equations for
multiple r.h.s. by performing the LU-factorization once for each matrix and
using back substitution for each r.h.s. This method can also be used to calculate
the determinant of a matrix. For the LU algorithm the complexity for large N is
in the order of (2/3)N3. The back substitution is performed with an asymptotic
complexity in the order of 2N2.

A comparison of the asymptotic complexity in each method (if the LU-
factorization is used) yields

• Boundary integral method

– Fill block matrices: cr(r + 1)N2 where c is some constant

– Solve linear systems: ((2/3)r3 + 2r2)N3 + (8/3)rN3

– Matrix multiplication: (r − 1)N3 (standard formula)

– Total: (2r3 + 6r2 + 11r − 3)N3/3

• Functional integral method

– Fill block matrices: cr2N2 where c is some constant
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– Solve linear systems: r(2/3)N3 + 2r2(r − 1)N3

– Determinant: (2/3)(rN)3

– Total: (8r3 + 6r2 − 4r)N3/3

Thus it is clear that both of these methods have very similar asymptotic
complexity at least when it is reasonable to use the LU-factorization in both
methods. For very large matrices on clusters or similar the LU-decomposition
will be unpractical. In this regime iterative methods such as GMRES will prob-
ably be the most efficient method for solving linear system.
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Chapter 4

Mode summation

A common method to find the Casimir energy is mode summation. In situations
with a high degree of symmetry it is possible for finding the Casimir energy using
this method. The exact solutions can then be compared to the other methods.

4.1 Parallel plates

Consider two parallel non-dispersive plates separated by a distance a, the defin-
ing equation for a scalar field is the wave equation. In each separate region let
c(x) be constant

ϕtt(x, t)− c(x)2∇2ϕ(x, t) = 0 (4.1)

where

c(x) =

{
c1 x ∈ (0, a)
c2 else (4.2)

and

ϕ(x) =

 ϕ2(x) x ∈ (−∞, 0)
ϕ1(x) x ∈ (0, a)
ϕ2(x) x ∈ (a,∞)

(4.3)

At each boundary the solution ϕ should be continuous.

lim
x→0−

ϕ2(x) = lim
x→0+

ϕ1(x)

lim
x→a−

ϕ1(x) = lim
x→a+

ϕ2(x)
(4.4)

and that no energy is deposited into the boundaries. This condition comes from
the energy flux found in equation (1.33)

Se = −c(x)2ϕt∇ϕ (4.5)

Assuming that the normal component of Se is continuos across each boundary
then

lim
x→0−

−c22ϕ2t∂nϕ2(x) = lim
x→0+

−c21ϕ1t∂nϕ1(x)

lim
x→a−

−c21ϕ1t∂nϕ1(x) = lim
x→a+

−c22ϕ2t∂nϕ2(x)
(4.6)
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Assuming that ϕt is continuos across the boundary

lim
x→0−

−c22∂nϕ2(x) = lim
x→0+

−c21∂nϕ1(x)

lim
x→a−

−c21∂nϕ1(x) = lim
x→a+

−c22∂nϕ2(x)
(4.7)

And assuming that the same boundary conditions apply to the quantum fields.
Starting with a Fourier transform in the time domain.

ω2ϕ(x) + c(x)2∇2ϕ(x) = 0 (4.8)

and then another Fourier transform with wavenumber k will give

−ϕ′′(x) +

(
k2 −

(
ω

c(x)

)2
)
ϕ(x) = 0 (4.9)

Divide the space into three regions

I → x < 0

II → 0 < x < a

III → x > a

The following equations are found for each region

I −ϕ′′(x) + q2
2ϕ = 0

II −ϕ′′(x) + q2
1ϕ = 0

III −ϕ′′(x) + q2
2ϕ = 0

where q2
j =

(
k2 − (ω/cj)

2
)
. The solution in each region is

I ϕ(x) = Aeq2x +Be−q2x

II ϕ(x) = Ceq1x +De−q1x

III ϕ(x) = Eeq2x + Fe−q2x

In order to get a mode of frequency ω it is necessary to have E = B = 0. The
boundary conditions give us for x = 0

A = C +D

c22q2A = c21q1(C −D)
(4.10)

and for x = a
Ceq1a +De−q1a = Fe−q2a

c21q1

(
Ceq1a −De−q1a

)
= −c22q2Fe

−q2a
(4.11)

Eliminate A and F will result in

C +D =
c21q1

c22q2
(C −D)

Ceq1a +De−q1a = −c
2
1q1

c22q2

(
Ceq1a −De−q1a

) (4.12)
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define α =
c21q1
c22q2

and the following system emerges[
(1− α) (1 + α)

(1 + α)eq1a (1− α)e−q1a

] [
C
D

]
=

[
0
0

]
(4.13)

This will have a non trivial solution only if the determinant is zero.

f(ω, k) = (1− α)2e−q1a − (1 + α)2eq1a = 0 (4.14)

or equivalently

g(ω, k) = e−q2a
(
(c21q1 + c22q2)2eq1a − (c21q1 − c22q2)2e−q1a

)
= 0 (4.15)

This relation determines the possible frequencies ω. But in order to derive the
Lifshitz formula, the system must be dispersive. Since any amount of dispersion
is sufficient, the high frequency contribution to the force will be modified. Since
this contribution will be negligible it is possible to set ci = ci(ω) and c1(ω) →
c2(ω) = 1 at high frequencies.

The energy can be expressed as

E =
~
2

∞∫
−∞

dk

2π

∑
n

ωn(k) (4.16)

Where ωn(k) are the zeros of g(ω, k). As g(ω, k) has no poles use the argument
principle to evaluate this sum.

It states that for an analytic function h(z) with no poles inside the contour
C and a meromorphic function f(z) with no poles or zeros on C. Then

1

2πi

∮
C

dz h(z)
f ′(z)

f(z)
=
∑
n

mnh(z0
n)− knh(zpn) (4.17)

where z0
n are zeros, and zpn are poles of f(z) inside the contour and mn, kn are

their respective multiplicity.
Use h(z) = z and an analytic continuation of g(ω, k) from equation (4.15)

to get a sum over the zeros ωn∑
n

ωn(k) =
1

2πi

∮
C

dω ω
g′(ω, k)

g(ω, k)
(4.18)

Using this the energy is given by

E =
~

8π2i

∞∫
−∞

dk

∮
C

dω ω
g′(ω, k)

g(ω, k)
(4.19)
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Figure 4.1: The integration contour C = C1∪CR used in the argument principle
for the parallel plates.

Where the contour is given in figure 4.1

E =
~

8π2i

∞∫
−∞

dk lim
R→∞

 −iR∫
iR

dω ω
g′(ω, k)

g(ω, k)
+

∫
CR

dω ω
g′(ω, k)

g(ω, k)

 (4.20)

Observe that when for large ω

g(ω, k) ≈ (c21q1 + c22q2)2e(q1−q2)a ≈ −(c1 + c2)2ω2ei(
1
c1
− 1
c2

)ωa → −4ω2

g′(ω, k)→ −8ω
(4.21)

Thus ωg′(ω, k)/g(ω, k)→ 2 along C∞. The energy will then be given by

E =
~

8π2i

∞∫
−∞

dk

− lim
R→∞

iR∫
−iR

dω ω
d

dω
log(g(ω, k)) + 2

∫
C∞

dω

 (4.22)

The dominating contribution to the energy for large ω is

g∞(ω, k) = (c21q1 + c22q2)2e(q1−q2)a (4.23)

The energy associated with this contribution is

E∞ =
~

8π2i

∞∫
−∞

dk

− lim
R→∞

iR∫
−iR

dω ω
d

dω
log(g∞(ω, k)) + 2

∫
C∞

dω

 (4.24)
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Define the regularized Casimir energy as

E = E − E∞ = − ~
8π2i

∞∫
−∞

dk lim
R→∞

iR∫
−iR

dω ω
d

dω
log

(
g(ω, k)

g∞(ω, k)

)
(4.25)

And modify this slightly with a partial integration

E =
~

8π2i

∞∫
−∞

dk lim
R→∞

iR∫
−iR

dω log

(
g(ω, k)

g∞(ω, k)

)
(4.26)

The change of variables ω = iy will result in

E =
~

8π2

∞∫
−∞

dk

∞∫
−∞

dy log

(
g(iy, k)

g∞(iy, k)

)
(4.27)

where
g(iy, k)

g∞(iy, k)
= 1− c21q1 − c22q2

c21q1 + c22q2
e−2q1a

∣∣∣∣
ω=iy

(4.28)

Take the limit c1 → 1 and c2 → 0 to simulate a perfect conductor. Then

g(iy, k)

g∞(iy, k)
→ 1− e−2q1a

∣∣
ω=iy

= 1− e−2
√
k2+y2a (4.29)

Change to polar coordinates and the energy is given by

E =
~

8π2

∞∫
−∞

dk

∞∫
−∞

dy log

(
g(iy, k)

g∞(iy, k)

)

=
~

2π2

∞∫
0

dk

∞∫
0

dy log
(

1− e−2
√
k2+y2a

)

=
~

2π2

∞∫
0

dr

π/2∫
0

dθ r log
(
1− e−2ra

)
=

~
4π

∞∫
0

dr r log
(
1− e−2ra

)

=
~

4π

∞∫
0

du

2a

u

2a
log
(
1− e−u

)
=

~
16πa2

∞∫
0

duu log
(
1− e−u

)

(4.30)

For two plates with a separation a the Casimir energy is given by

E(a) =
~

16πa2

∞∫
0

duu log
(
1− e−u

)
= − ~ζ(3)

16πa2
≈ −0.0239142

~
a2

(4.31)

This coincides with the results of Ambjørn and Wolfram [15](p.4 with d=2).
Using equation 5.9 it is simple to can calculate the pressure from the energy

p1 =
dE(a)

da
=

~ζ(3)

8πa3
≈ 0.0478283

~
a3

(4.32)
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4.2 Concentric circles
Consider the problem of two concentric circles. The two circles have radius r1

and r2 such that r1 < r2. The defining equation in the annulus between the two
circles is

ϕ̂tt(x, t)− c2∇2ϕ̂(x, t) = 0

ϕ̂(x, t)|Qj = 0
(4.33)

First take a Fourier transform in the time domain.

ω2ϕ̂(x) + c2∇2ϕ̂(x) = 0 (4.34)

In polar coordinates this is

∇2 =
1

r
∂r(r∂r) +

1

r2
∂θθ = ∇r +

1

r2
∇θ (4.35)

The new equation is

ω2ϕ̂(r, θ) + c2∇rϕ̂(r, θ) + c2
1

r2
∇θϕ̂(r, θ) = 0 (4.36)

This equation is linear and can be solved by defining the solution as

ϕ̂(r, θ) =

∞∑
m=−∞

Rm(r)Θm(θ) (4.37)

Thus

ω2Rm(r)Θm(θ) + c2Θm(θ)∇rRm(r) + c2
1

r2
Rm(r)∇θΘm(θ) = 0 (4.38)

Simplify this into

−r2k2 − r2∇rRm(r)

Rm(r)
=
∇θΘm(θ)

Θm(θ)
= −m2 (4.39)

where k = ω/c is some constant. These two equations will be solved one by one.
First the angular equation

∇θΘm(θ) = −m2Θm(θ) (4.40)

The solution is
Θm(θ) = Ame

imθ +Bme
−imθ (4.41)

with the symmetric condition that ϕ̂(r, θ) = ϕ̂(r, θ+2π) the solution is required
to only be valid for m ∈ Z.

The radial equation is given by

∇rRm(r) =

(
m2

r2
− k2

)
Rm(r) (4.42)

where the solution is

Rm(r) = AmJm(kr) +BmYm(kr) (4.43)
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where Jm(kr) is amth order Bessel function and Ym(kr) is amth order Neumann
function. The boundary condition Rm(r1) = Rm(r2) = 0 give

Rm(r1) = AmJm(kr1) +BmYm(kr1) = 0 (4.44)

or
Bm = −AmJm(kr1)/Ym(kr1) (4.45)

Inserted back into the series this gives

ϕ̂(r, θ) =

∞∑
m=−∞

Am

(
Jm(kr)− Ym(kr)

Jm(kr1)

Ym(kr1)

)
Θm(θ) (4.46)

The second boundary condition Rm(r2) = 0 will give a non trivial solution only
if

Jm(kr2)Ym(kr1)− Jm(kr1)Ym(kr2) = 0 (4.47)

Denote the solution to this equation as km for each m. Define a function that
is zero on all km as

f(k) =
∏
m

(Jm(kr2)Ym(kr1)− Jm(kr1)Ym(kr2)) (4.48)

The energy for this system is defined as

E =
∑
m

1

2
~km =

1

2

∑
m

km (4.49)

where ~ = 1.
The plan is to sum over all the zeros of f(k), this can be accomplished by

using the argument principle from complex analysis.
It states that for an analytic function h(z) with no poles inside the contour

C and a meromorphic function f(z) with no poles or zeros on C. Then

1

2πi

∮
C

dz h(z)
f ′(z)

f(z)
=
∑
n

mnh(z0
n)− knh(zpn) (4.50)

where z0
n are zeros, and zpn are poles of f(z) inside the contour and mn, kn are

their respective multiplicity.
Use h(z) = z and an analytic continuation of f(k) from equation (4.48) to

get a sum over the zeros km∑
m

km =
1

2πi

∮
C

dk k
f ′(k)

f(k)
=

1

2πi

∮
C

dk k
d

dk
log(f(k)) (4.51)

Using this the energy is given by

E =
1

4πi

∮
C

dk k
d

dk
log(f(k)) (4.52)
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Figure 4.2: The integration contour C = C1∪C3∪C2∪Cε used in the argument
principle for the concentric circles with the branch cut along the negative real
axis.

Where the contour is given in figure 4.2. The angle φ is there to make the
integral converge and the limit φ→ 0 will be added at the end. Let us remove
the derivative by performing one partial integration.

E = − 1

4πi

∮
C

dk log (f(k))

=
1

4π

∞∫
0

dy
(
eiφ log

(
f(−iyeiφ)

)
+ e−iφ log

(
f(iye−iφ)

))

− 1

4πi
lim
ρ→∞

∫
C3

dk log (f(k))− lim
ε→0

−π/2+φ∫
π/2−φ

εeiθ

4π
dθ log

(
f(εeiθ)

)
(4.53)

Take the limit φ→ 0 in the first and last expression to get

E =
1

4π

∞∫
0

dy (log (f(−iy)) + log (f(iy)))

− lim
ε→0

−π/2∫
π/2

εeiθ

4π
dθ log

(
f(εeiθ)

)
− 1

4πi
lim
ρ→∞
φ→0

∫
C3

dk log (f(k))

(4.54)
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It is possible to show that f(−k) = f(k), so

E =
1

2π

∞∫
0

dy log (f(iy))− lim
ε→0

−π/2∫
π/2

εeiθ

4π
dθ log

(
f(εeiθ)

)
− 1

4πi
lim
ρ→∞
φ→0

∫
C3

dk log (f(k))

(4.55)

Observe that the integrand evaluates f(k) at k = iy. A few relations are required
to simplify this expression

Jn(ix) = inIn(x)

Kn(x) =
π

2
in+1H(1)

n (ix)

H(1)
n (x) = Jn(x) + iYn(x)

(4.56)

Combining these relations results in

Yn(ix) = − 2

π
i−nKn(x) + in+1In(x) (4.57)

Thus

f(iy) =
∏
m

(Jm(iyr2)Ym(iyr1)− Jm(iyr1)Ym(iyr2))

=
∏
m

2

π
(Im(yr1)Km(yr2)− Im(yr2)Km(yr1))

(4.58)

Defining the infinite part of f(iy) as f∞(iy), this is the divergent part of the
energy evaluated along the imaginary axis. Notice that for r2 > r1 the integrand
will evaluate to Im(yr1)Km(yr2)→ 0 and Im(yr2)Km(yr1)→∞ as y →∞.

Thus for some y ∈ R

f∞(iy) ≡
∏
m

− 2

π
Im(yr2)Km(yr1) (4.59)

This is the infinite contribution to the energy along the imaginary axis. If this
is rotated out into the complex plane

f∞(z) =
∏
m

− 2

π
Im(−izr2)Km(−izr1) (4.60)

Simplifying this using the Bessel relations above and the Hankel relation

H(1)
m (x) = (J−m(x)− e−impiJm(x))/(i sin(mπ)) (4.61)
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results in

f∞(z) =
∏
m

− 2

π
Im(−izr2)Km(−izr1)

=
∏
m

− 2

π
i−mJm(zr2)Km(−izr1)

=
∏
m

−iJm(zr2)H(1)
m (zr1)

=
∏
m

−iJm(zr2)(J−m(zr1)− e−impiJm(zr1))/(i sin(mπ))

=
∏
m

−2iJm(zr2)Jm(zr1)(eimπ − e−imπ)/(eimπ − e−imπ)

=
∏
m

−2iJm(zr2)Jm(zr1)

(4.62)

Thus for any complex z it is possible to use the density

f∞(z) =
∏
m

−2iJm(zr2)Jm(zr1) (4.63)

Subtracting the infinite part of the energy will give

E = E − E∞

=
1

2π

∑
m

∞∫
0

dy log

(
1− Im(yr1)Km(yr2)

Im(yr2)Km(yr1)

)

− lim
ε→0

−π/2∫
π/2

εeiθ

4π
dθ log

(
f(εeiθ)

f∞(εeiθ)

)

− 1

4πi
lim
ρ→∞
φ→0

∫
C3

dk log

(
f(k)

f∞(k)

)
(4.64)

Solving the integral over Cε first

lim
ε→0

∫
Cε

dz log

(
f(z)

f∞(z)

)

= lim
ε→0

∑
m

−π/2∫
π/2

εeiθdθ log

(
− Jm(εeiθr2)Ym(εeiθr1)

2iJm(εeiθr2)Jm(εeiθr1)

+
Jm(εeiθr1)Ym(εeiθr2)

2iJm(εeiθr2)Jm(εeiθr1)

)

= lim
ε→0

∑
m

−π/2∫
π/2

εeiθdθ log

(
i
Ym(εeiθr1)

2Jm(εeiθr1)
− i Ym(εeiθr2)

2Jm(εeiθr2)

)

= lim
ε→0

∑
m

−π/2∫
π/2

εeiθdθ Log
∣∣∣∣ Ym(εeiθr1)

2Jm(εeiθr1)
− Ym(εeiθr2)

2Jm(εeiθr2)

∣∣∣∣

(4.65)
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The asymptotic forms of these functions for 0 < x <
√
m+ 1 are

Ym(x) ≈


2
π (log(x/2) + γ) m = 0

−Γ(m)
π

(
2
x

)m
m > 0

Jm(x) ≈ 1

Γ(m+ 1)

(x
2

)m (4.66)

Thus for m = 0∣∣∣∣ Y0(zr1)

2J0(zr1)
− Y0(zr2)

2J0(zr2)

∣∣∣∣ ≈ 1

2

∣∣∣∣ 2π (log(r1z/2) + γ)− 2

π
(log(r2z/2) + γ)

∣∣∣∣
=

1

π
log(r1/r2)

(4.67)

and for m > 0∣∣∣∣ Ym(zr1)

2Jm(zr1)
− Ym(zr2)

2Jm(zr2)

∣∣∣∣ ≈ 1

2

∣∣∣∣∣∣
−Γ(m)

π

(
2
zr1

)m
1

Γ(m+1)

(
zr1
2

)m − −Γ(zr2)
π

(
2
zr2

)m
1

Γ(m+1)

(
zr2
2

)m
∣∣∣∣∣∣

=
1

2

∣∣∣∣∣−Γ(m)Γ(m+ 1)

π

(
2

zr1

)2m

+
Γ(m)Γ(m+ 1)

π

(
2

zr2

)2m
∣∣∣∣∣

=
Γ(m)Γ(m+ 1)

2π

(
2

|z|

)2m
∣∣∣∣∣−
(

1

r1

)2m

+

(
1

r2

)2m
∣∣∣∣∣

(4.68)

For all m the integrand will be a limit of the type ε or ε log ε. As ε → 0 the
integrals will therefore go to zero

lim
ε→0

∫
Cε

dz log

(
f(z)

f∞(z)

)
= 0 (4.69)

The integral over C3 is next

lim
ρ→∞

∫
C3

dk log

(
f(k)

f∞(k)

)

= lim
ρ→∞

∑
m

π/2∫
−π/2

ρeiθdθ log

(
− Jm(ρeiθr2)Ym(ρeiθr1)

2iJm(ρeiθr2)Jm(ρeiθr1)

+
Jm(ρeiθr1)Ym(ρeiθr2)

2iJm(ρeiθr2)Jm(ρeiθr1)

)

= lim
ρ→∞

∑
m

π/2∫
−π/2

ρeiθdθ log

(
− Ym(ρeiθr1)

2iJm(ρeiθr1)
+

Ym(ρeiθr2)

2iJm(ρeiθr2)

)
(4.70)

The asymptotic forms of these functions for x > |m2 − 1/4| are

Ym(x) ≈
√

2

πx
sin
(
x− mπ

2
− π

4

)
Jm(x) ≈

√
2

πx
cos
(
x− mπ

2
− π

4

) (4.71)
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The integrand will be(
Ym(zr1)

−2iJm(zr1)
− Ym(zr2)

−2iJm(zr2)

)
≈ 1

−2i

(
tan

(
zr1 −

mπ

2
− π

4

)
− tan

(
zr2 −

mπ

2
− π

4

))
=

1

−2i
(tan (α1 + iβ1)− tan (α2 + iβ2))

=
1

−2i

(
eiα1−β1 − e−iα1+β1

i(eiα1−β1 + e−iα1+β1)
− eiα2−β2 − e−iα2+β2

i(eiα2−β2 + e−iα2+β2)

)
=

1

2

(
eiα1−β1 − e−iα1+β1

eiα1−β1 + e−iα1+β1
− eiα2−β2 − e−iα2+β2

eiα2−β2 + e−iα2+β2

)
(4.72)

Where αi = ρ cos(θ)ri − mπ/2 − π/4 and βi = ρ sin(θ)ri, but this integrand
does not converge. Thus this method does not fix the divergence, it might be
possible if a cutoff function or another approach altogether is used.

Thus

E =
1

2π

∑
m

∞∫
0

dy log

(
1− Im(yr1)Km(yr2)

Im(yr2)Km(yr1)

)

− 1

4πi
lim
ρ→∞
φ→0

∫
C3

dk log

(
f(k)

f∞(k)

) (4.73)

The same regularization technique was used in appendix C on the parallel plates.
Using this regularization in this chapter resulted i a similar divergent integral
in the energy. But the correct energy was still recovered from the result. While
the lack of cancelation above is troublesome the comparisons in Figure 6.7 and
6.9 agrees with a energy given by

E =
1

2π

∑
m

∞∫
0

dy log

(
1− Im(yr1)Km(yr2)

Im(yr2)Km(yr1)

)
(4.74)

This energy is comparable to the results of F.D. Mazzitelli, D.A.R. Dalvit and
F.C. Lombardo [9] (p. 9).

The pressure on the inner and outer circle can be calculated from the energy
by equation (5.16) and (5.17)

p1 = − 1

2πr1

∂E

∂r1

p2 =
1

2πr2

∂E

∂r2

(4.75)

60



Chapter 5

Virtual Work

Figure 5.1: Illustration of the tranformation dr on each object.

The total energy in a system is a function of several parameters. For instance
in the case of two concentric circles the energy is of the form E(r1, r2) as such a
function of each radii r1 and r2. In general there are n arguments E(r1, . . . , rn)
that control the energy. Let γ(s) = (r1(s), . . . , rn(s)) be an one parameter curve
through the argument space. Then the change in the energy E(γ(s)) will relate
to the parameter s as

dE(γ(s)) = ∇E · γ′(s)ds (5.1)

Given a set of compact objects and the union of the surfaces Q = ∪jQj it is
possible to define the force on a surface element dl on each object as Fj = npjdl,
where n is directed into each compact object, or equivalently with an outwards
pointing normals and define the force as Fj = −npjdl.

Figure 5.1 shows an example of a deformation of an object. The change in
total energy related to the deformation field, dr, is the integral of the force along

61



the deformation.

dE =

∮
Q

F · dr = −
∮
Q

dl pn · dr = −
∑
j

∮
Qj

dl pjn · drj (5.2)

Thus the energy is related to the pressure by

−∇E · γ′(s)ds =

∮
Q

dl pn · dr (5.3)

Example 1. Consider two parallel one dimensional plates with a distance a.
Move each plate separately. How will the pressure on the surface relate to the
energy change of the system?

Answer. Starting with the parameter change. Each plate is determined by its
position along the x-axis. Let the left plate have position x1 and the right position
x2 such that x1 < x2.

Lets look at the left plate. Let the parameters be determined by γ(s) =
(x1 ± s, x2), then the change in energy will be

dE(γ(s)) = ∇E · γ′(s)ds =

(
∂E

∂x1
,
∂E

∂x2

)
· (±1, 0)ds = ± ∂E

∂x1
ds (5.4)

First parametrize the plates to describe the deformation. Let r1(s, t) = (x1±s, t)
describe the deformations of the surface. The normal is given by: n1 = (1, 0).
Then the pressure is related to the energy change by

dE(γ(s)) = −
∮
Q1

dl p1n1 · (±ds, 0)

= ∓ds
∮
Q1

dl p1 = ∓dsLp1

(5.5)

The pressure on the surface is constant, as can be seen from the symmetries of
the problem. If each plate has length L, then the energy per unit of length is
given by

± ∂E
∂x1

ds = ∓ds pa (5.6)

So

p1 = − ∂E
∂x1

(5.7)

For the right plate the sign will be reversed due to the normals having reversed
direction.

p2 =
∂E

∂x2
(5.8)

Or using the relation a = x2−x1 to relate this to the distance between the plates.
The chain rule gives

p1 = p2 =
∂E

∂a
(5.9)
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With the energy from equation (B.11) that was calculated from the boundary
integral method

E(a) = − π

24a
(5.10)

Then the pressure on each surface is

p1 = p2 =
π

24a2
(5.11)

There is an attractive force between the plates and it is in agreement with the
force calculated by the boundary integral method in (A.13).

Example 2. Consider two concentric circles of radii R1 < R2. Change the
radius of each circle separately. How will the pressure on the surface relate to
the energy change of the system?

Answer. Each circle is fully described by its radius. The parameter change for
the inner circle is given by γ(s) = (R1 ± s,R2), and thus

dE = ∇E(R1, R2) · (±1, 0)ds = ± ∂E

∂R1
ds (5.12)

The parametrization of each circle is given by r1(s, t) = (R1±s)(cos(t), sin(t)) =
(R1 ± s)n1. The differential change is given by dr1 = (±ds)n1, thus the force
is given by

dE(γ(s)) = −
∮
Q1

dl p1n1 · (±ds)n1

= ∓ds
∮
Q1

dl p1

(5.13)

By symmetry considerations it is clear that the pressure on each circle is constant
and thus

dE(γ(s)) = ∓2πp1R1ds (5.14)

Combining these to get

± ∂E

∂R1
ds = ∓2πp1R1ds (5.15)

or for the pressure

p1 = − 1

2πR1

∂E

∂R1
(5.16)

and for the outer circle there is a change in sign from the change in direction
of the normals

p2 =
1

2πR2

∂E

∂R2
(5.17)

Example 3. Consider two adjacent circles that are centered in o1 = (x1, 0)
and o2 = (x2, 0) with radius r and minimal separation a = x2 − x1 − 2r > 0.
Change the position of each circle separately. How will the force relate to the
energy change of the system?
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Answer. Move the left circle along the x-axis and the energy will change as

dE = ∇E(x1, x2) · (±ds, 0) = ±ds ∂E
∂x1

(5.18)

The parametrization of the left circle is r1(s, t) = (x1 ± s, 0) + r(cos(t), sin(t)).
The differential change is given by dr1(s, t) = (±ds, 0). Thus

dE(γ(s)) = −
∮
Q1

dl p1n1 · (±ds, 0)

= ∓ds
∮
Q1

dl p1 n1,x = ∓dsF1,x

(5.19)

and the force is given by

F1,x = − ∂E
∂x1

(5.20)

The same result holds for the right circle and it is clear that the total force will
be oriented along the x-axis.
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Chapter 6

Comparison

6.1 Geometries

There are three situations where the methods will be tested. The first two are
symmetric and have exact answers that the results can be compared to. The
final situation is more complicated and will be used to compare the boundary
element and functional integral methods.

6.1.1 Parallel plates

Figure 6.1: Illustration of the parallel plates with the forces on each line segment.
Note boundary effects on the edges.
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Take two 2D plates located at x = ±a/2 of length L with normals pointing
form each plate to the other. Each of these are discretized into N linear line
segments and can easily by integrated into the above program. This case is
special, since it is comprised of two non-compact objects. Figure 6.1 shows the
two plates and the force on each line segment of the plates. Notice that the
boundary effect are minimal.

Since the objects have to be of finite length in our program some boundary
effects are expected. The plates should be long enough so that the boundary
effects are small and constrained to the edges.

Observe that for this case the subtracted self stress is zero, first observe that
for sk′ ∈ Qi and sk′′ ∈ Qj , j 6= i, thus equation (1.114) gives

yijk′k′′ = −∂n′D0(sk′ , sk′′) =
ω

2π

n′ · (sk′ − sk′′)
||sk′ − sk′′ ||

K1(ω||sk′ − sk′′ ||) (6.1)

When sk′ , sk′′ ∈ Qi the objects will always have sk′ − sk′′ at a right angle to n′.
Thus

∂n′D0(sk′ , sk′′) = 0 (6.2)
When sk′ → sk′′ it is clear that in equation (1.115) the diagonal element will be
zero.

This shows that in equation (1.96) the self stress in Bii = 0.

6.1.2 Concentric circles

Figure 6.2: Illustration of the concentric circles with the forces on each line
segment.

Two concentric circles of radii R1 and R2 where R2 > R1. The normals
should be pointing from one circle to the other. Figure (6.2) shows the circles
and the force on each line segment of the circle. The total force is zero on each
circle
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6.1.3 Adjacent circles

Figure 6.3: Illustration of the two adjacent circles with the forces on each line
segment.

Two adjacent circles with radius R that are separated with a minimum dis-
tance of a, where all the normals should be pointing out of the circles. There is
no exact solution for this case, but it will show that the methods can be used
for non-symmetrical situations. Figure 6.3 shows the circles and the force on
each line segment.
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6.2 Results
To calculate the force with the functional integral method1 the first order central
difference will be used with parameter variation h = 0.0001. To be consistent
all objects will use N = 400 discretization points and the integrals

∫
dω will be

solved with an accuracy of 10−6 for both methods. Thus the resolution of each
object will be the same, the only error should be associated with the solvers
themselves.

6.2.1 Parallel plates
For the comparison of the methods the lengths of the plates are set to L = 30
and the distance between them will vary in the range a = 1 . . . 3. The methods
will be compared with the exact formula from equation (4.31). The results are
presented in figure 6.4 and figure 6.5 shows the relative error.

It is surprising to see that all the methods are in agreement. The parallel
plate geometry is non-compact and as such outside of the scope of both the
boundary element and the functional integral method. But as seen from the
results, both methods are accurate even for non-compact objects. The functional
integral method shows an increasing error for larger lengths, this is probably due
to the constant length of the plates. To verify this suspicion the computations
for the functional integral method are repeated in the same range a = 1 . . . 3 but
with the plate lengths L = 30a. This will keep the ration L/a constant during
the computations. Figure 6.6 shows the new error compared to the old. The
new lengths will reduce the resolution in each step and should slightly increase
the error, but this is seen to be of little effect. The new error profile in figure
6.6 is very different from before, the primary difference is that it is no longer
increasing with the separation of the plates.

6.2.2 Concentric circles
For this case there is an exact solution given by equation (4.74). The radius
of the outer circle will be constant R2 = 15 and the radius of the inner circle
will vary in the range R1 = 10 . . . 14. Because of the constant discretization of
N = 400 points on each circle the resolution of the inner circle will change with
the radius. Figure 6.7 and 6.9 compares the three solutions and figure 6.8 and
6.10 shows their difference. All three methods give the same result, with little
deviation.

6.2.3 Adjacent circles
Two circles of radius R = 1 and minimal distance between circles in the range
a = 1 . . . 3 will be used to compare the boundary integral method and the
functional integral method. Figure 6.11 shows the results and figure 6.12 shows
the difference in the solutions.

The break in figure 6.12 reflects that both methods have integrals
∫
dω that

of the same accuracy at these distances (10−6). Since there is no exact solution
it is not possible to say that either method is more accurate. As the results
show, both methods give approximately the same answer.

1The resulting force is multiplied by two so it’s possible to compare it to the other methods.
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Figure 6.4: Results from the boundary element1 and functional integral method
with the exact solution to the parallel plates problem.
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Figure 6.5: Relative error between the numerical solutions and the exact solution
for the parallel plates in Figure 6.4.
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Figure 6.6: Relative error for the parallel plates from figure 6.5 compared to
a new calculation with the functional integral method using a variating length
L = 30a.
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Figure 6.7: Results from the boundary element1 and functional integral method
with the exact solution to the concentric circles problem on the inner circle.
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Figure 6.8: Difference between the numerical solutions and the exact solution
for the concentric circles on the inner circle in Figure 6.7.
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Figure 6.9: Results from the boundary element1 and functional integral method
with the exact solution to the concentric circles problem on the outer circle.
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Figure 6.10: Difference between the numerical solutions and the exact solution
for the concentric circles on the outer circle in Figure 6.9.

72



1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Minimum distance between circles

C
a

s
im

ir
 F

o
rc

e
 [

a
rb

it
ra

ry
 u

n
it
s
]

 

 

BIM

FIM

Figure 6.11: Comparison of numerical results from the boundary element1 and
functional integral method with the exact solution to the adjacent circles.
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Figure 6.12: Difference between the boundary element1 and functional integral
solutions for the adjacent circles in Figure 6.11.
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Chapter 7

Conclusion

In all situations the resulting force produced by the boundary integral method
is off by a factor of two. Aside from this factor, the method correctly predicts
the geometry dependence of each test problem. The location of this error can
be somewhat predicted. In order to generate an exact solution for this problem
the equations were modified in section 1.8. Using this minimal modification the
exact solution could be predicted without modifying the solver to any consid-
erable degree. This would eliminate any error related to the boundary integral
method itself. The results were that the solver was very close to the exact so-
lution, and converged for higher resolutions. While this test did not cover the
subtraction of the self stress, this is only a minor addition to the solver. Without
this restriction it was not possible to compare the results from the solver to an
exact solution. This test shows that the factor of two is located in the theory
or calculations before equation (1.52).

The factor of two could be related to the dimension, this is supported by
the result in appendix A. The method correctly calculates the force on the
two parallel plates in one dimension, but is missing a factor of two when the
calculations are repeated in two dimensions. This could be verified if the method
was implemented in three dimensions and the result was off by a factor of two
(or four).

The renormalization of the equations are twofold: First a limiting process
and then the subtraction of the self stress. If the limit was not taken along the
surface curves, the right side of the equations would diverge. This appears to be
the only possible way to perform this limit. The subtraction of the self energies
is natural since the equations decouple at higher frequencies. This is equivalent
(at least for these equations) to separating all the objects at infinite distances.
The only remaining equation is the self stress equation (1.84) that describes the
Casimir effects interaction from each object onto itself. The Casimir force is
renormalized by subtracting the self interaction from each object, the resulting
force is the interaction Casimir force between the objects.

For the parallel plates and concentric circles the numerical solution is in good
agreement with the exact solution in figure 6.4, 6.7 and 6.9. The error plots in
figures 6.5, 6.8 and 6.10 show that the maximum relative error of the boundary
integral method is less than or approximately equal to 1% for these cases.

There is no exact solution to the Casimir force of the adjacent circles, but
the force calculated from the boundary element- and the functional integral
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methods are very similar as seen in figure 6.11. Figure 6.12 shows that the
difference between the two solutions is less than 10−4 for all distances.

The errors in all solutions are low, but they increase as the objects get
closer. This is natural because the resolution is constant during the tests. The
increasing error from the functional integral method in figure 6.5 is probably an
artifact from the non-compact geometry. A simple experiment where the lengths
of the plates are increased with the separation was used to test the theory. Figure
6.6 shows that the relative error in the boundary integral method will remain
low (≈1.5%) if the plate lengths are increased. As figure 6.5 also shows, there is
no similar increasing error for the boundary integral method. This suggest that
the method might be less sensitive to edge effects than the functional integral
method. Thus for a mixed configuration of both compact and non-compact
objects the boundary integral method might give a more accurate result.

We conclude that the boundary integral method, with the given renormaliza-
tion, correctly calculates the geometry dependence of the force in each problem.
A very important next step is to compare the theory to experiments. To apply
this method to any physical problems it would first have to be expanded to
cover electromagnetic fields.
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Appendix A

Boundary integral method for
zero dimensional parallel
plates

This chapter will cover a less complicated situation where the space is one di-
mensional space and the parallel plates are two points separated by a distance a.
This will both serve to demonstrate the method and provide some comparison.
This chapter follows the calculations of the two dimensional boundary integral
method completed earlier. Figure A.1 gives a clear illustration of the situation
with two zero dimensional parallel plates on the real line.

0 a

Figure A.1: Illustration of the interval with two zero dimensional parallel plates.

There are two options here, use the final results from the chapter 1 or cal-
culate all the theory from scratch. Both options will lead to the same result.

Using results from main chapters

This will be based on the matrix system obtained as the final result in equation
(1.96) [

a11
k′′k a12

k′′k

a21
k′′k a22

k′′k

] [
x11
kk′

x21
kk′

]
=

[
0

y12
k′k′′ −

∑
k a

12
kk′′b

11
kk′

]
(A.1)

and the self stress equation is∑
k

a11
kk′′b

11
kk′ = y11

k′k′′ (A.2)

Use the solution x11
kk′ along with equation (1.52) to find the force

F1 =

∮
Q1

dlx
1

4π

∞∫
−∞

dω n(x)x11(x,x, ω) (A.3)
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Since our surface is a single point it is natural to insert a delta function into
each integral. This will evaluate the Green’s function on the surface. The free
1d-Green’s function is given by

D0(x, x′′, ω) = − 1

2|ω|
e−|ω||x−x

′′| (A.4)

To calculate the primary matrix the Green’s function will be evaluated on each
object. Thus

a11 = − 1

2|ω|

a12 = − 1

2|ω|
e−|ω|a

a21 = − 1

2|ω|
e−|ω|a

a22 = − 1

2|ω|

(A.5)

The normal derivative of the free Green’s function is

∂x′D0(x′, x′′, ω) =

{
1
2e
−|ω|(x′−x′′) x′ > x′′

− 1
2e
−|ω|(x′′−x′) x′ < x′′

(A.6)

The y1j matrix is (note that by convention it is necessary to first have to let
x′′ → Qi and then x′ → Qj)

y11 = −n1

(
1

2

)
= −n1

2

y12 = −n1

(
−1

2
e−|ω|a

)
=
n1

2
e−|ω|a

(A.7)

The self stress equation for object 1 is

a11b11 = y11(
− 1

2|ω|

)
b11 = −n1

2

b11 = |ω|n1

(A.8)

Thus the matrix system is given by[
a11 a12

a21 a22

] [
x11

x12

]
=

[
0

y12 − a21b11

]
[

− 1
2|ω| − 1

2|ω|e
−|ω|a

− 1
2|ω|e

−|ω|a − 1
2|ω|

] [
x11

x12

]
=

[
0

n1e
−|ω|a

] (A.9)

This is simplified into[
1 e−|ω|a

e−|ω|a 1

] [
x11

x12

]
=

[
0

−2|ω|n1e
−|ω|a

]
(A.10)

The solution is
x11 = n1

2|ω|
e2|ω|a − 1

(A.11)
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and from this the force is given by

F1 =

∮
Q1

dlx
n2

1

4π

∞∫
−∞

dω
2|ω|

e2|ω|a − 1
=

∮
Q1

dlx
n2

1

2π

∞∫
0

dω
2ω

e2ωa − 1

=

∮
Q1

dlx
1

4πa2

∞∫
0

du
u

eu − 1

=

∮
Q1

dlx
1

4πa2

∞∫
0

du
π2

6

(A.12)

Thus the density is given by
p1 =

π

24a2
(A.13)

The plates are attracted and this agrees with the results of Milton [16] (p.9 with
d=0) and also Ambjørn and Wolfram [15](p.4 with d=1).

From scratch

Alternatively it is possible to find this solution without using the previous re-
sults. The Green’s function satisfies the equation (1.26) in one spatial dimension.

d

dx2
D(x, x′, ω)− ω2D(x, x′, ω) = δ(x− x′)

D(x, x′, ω)|Qj = 0
(A.14)

The Lagrangian for this dimension is now given as

L =
1

2
ϕ2
t −

1

2
ϕx (A.15)

The stress energy tensor is found to be

Tµν =
∂L

∂(∂µϕ)
∂νϕ− δµνL (A.16)

These are calculated as

T 00 =
1

2
ϕ2
t +

1

2
ϕ2
x

T 11 = −1

2
ϕ2
t −

1

2
ϕ2
x

T 01 = ϕtϕx

T 10 = −ϕxϕt
(A.17)

The conservation equation are given by

∂tT
0ν + ∂xT

1ν = 0 (A.18)

When ν = 1 the momentum equation appears

∂t(ϕtϕx) + ∂x(−1

2
ϕ2
t −

1

2
ϕ2
x) = 0 (A.19)

or
∂tρ+ ∂xS = 0 (A.20)
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where ρ is the momentum density and S is the momentum flux. The momentum
flux is

S(x, t) = −1

2
ϕ2
x −

1

2
ϕ2
t (A.21)

This will define the quantum stress tensor through point splitting.

Sq(x, t) = lim
x′→x
t′→t

(
−1

2
∂x∂x′ −

1

2
∂t∂t′

)
D(x, t, x′, t′) (A.22)

Using the same procedure as before we set: t = −iu, t′ = −iu′ and s = u− u′

Sq(x) = lim
x′→x
s→0

(
−1

2
∂x∂x′ −

1

2
∂ss

)
D(x, x′, s) (A.23)

And a Fourier transform in time gives

Sq(x, ω) = lim
x′→x
s→0

(
−1

2
∂x∂x′ + ω2 1

2

)
D(x, x′, ω) (A.24)

The boundary conditions state that D(x, x′, ω) = 0 on the boundary

Sq(x, ω) = lim
x′→x
s→0

−1

2
∂x∂x′D(x, x′, ω) (A.25)

where

Sq(x) =

∞∫
−∞

dω

2π
Sq(x, ω) (A.26)

The force on the interval can now be calculated as

F =
∂P

∂t
= ∂t

∫
dV ρ(x, t) = −

∫
dV ∂xSq

= −Sq|a0 = Sq(0)− Sq(a)

(A.27)

Thus the force from the left endpoint to the interval is given by

Fleft = Sq(0) =

∞∫
−∞

dω

2π
Sq(0, ω)

= − lim
x′→x

1

4π

∞∫
−∞

dωDxx′(x, x
′, ω)|x=0

(A.28)

To calculate the force on the left plate the sign must be reversed. After the
limit

Fleft =
1

4π

∞∫
−∞

dωDxx(0, 0, ω) (A.29)

For the right endpoint the result will be the same answer except a change in
sign due to the normal vector na = +1.
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To make a boundary element formulation for equation (A.14) it is natural
to start with the integral relation for the opperator L = d2/dx2 − ω2∫

dx (LΦΨ− ΦLΨ)

=

∫
dx

((
d2Φ

dx2
− ω2Φ

)
Ψ− Φ

(
d2Ψ

dx2
− ω2Ψ

))
=

∫
dx

(
d2Φ

dx2
Ψ− Φ

d2Ψ

dx2

)
=

∫
dx

d

dx

(
dΦ

dx
Ψ− Φ

dΨ

dx

)
=

(
dΦ

dx
Ψ− Φ

dΨ

dx

)∣∣∣∣a
0

(A.30)

The free space Green’s function satisfies

LD0(x, x′′, ω) = ∂xxD0(x, x′′, ω)− ω2D0(x, x′′, ω) = δ(x− x′′) (A.31)

where D0(x, x′′, ω) = − 1
2|ω| exp(−|ω||x− x′′|). Define E(x, x′) = ∂x′D(x, x′)

with the equation.

LE(x, x′, ω) = ∂xxE(x, x′, ω)− ω2E(x, x′, ω) = ∂x′δ(x− x′) (A.32)

Use the integral relation above to write out∫
dx (LD0(x, x′′)E(x, x′)−D0(x, x′′)LE(x, x′))

=

∫
dx (δ(x− x′′)E(x, x′)−D0(x, x′′)∂x′δ(x− x′))

= E(x′′, x′)− ∂x′D0(x′, x′′)

(A.33)

The left side of the relation is also equal to∫
dx (LD0(x, x′′)E(x, x′)−D0(x, x′′)LE(x, x′))

= (∂xD0(x, x′′)E(x, x′)−D0(x, x′′)∂xE(x, x′))|a0
(A.34)

Thus
E(x′′, x′)− ∂x′D0(x′, x′′)

= (∂xD0(x, x′′)E(x, x′)−D0(x, x′′)∂xE(x, x′))|a0
= −D0(a, x′′)∂xE(a, x′) +D0(0, x′′)∂xE(0, x′)

(A.35)

When x′′ → {0+, a−} it is obvious from the boundary conditions that E(x′′, x′) =
0. Thus

∂x′D0(x′, x′′) = D0(a, x′′)∂xE(a, x′)−D0(0, x′′)∂xE(0, x′) (A.36)

For x′′ ∈ {0, a}
Note that for high frequencies ω >> 0 the equations will decouple and for

x′ → {0+, a−} this results in

∂x′D0(0+, 0) = −D0(0+, 0)∂xE(0+, 0)

∂x′D0(a−, a) = D0(a−, a)∂xE(a−, a)
(A.37)
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These equations are parallel to the self stress equations that were found in
equation (1.84). It is possible to solve these equation directly and the solution
will be defined as ∂xx′Dj(x, x

′)

∂xE(0, 0) ≡ ∂xx′D1(0, 0) = lim
x′→0+

−∂x′D0(x′, 0)/D0(x′, 0)

∂xE(a, a) ≡ ∂xx′D2(a, a) = lim
x′→a−

∂x′D0(x′, a)/D0(x′, a)
(A.38)

where

∂x′D0(x′, x′′, ω) =

{
1
2e
−|ω|(x′−x′′) x′ > x′′

− 1
2e
−|ω|(x′′−x′) x′ < x′′

(A.39)

and in the limits
lim

x′→0+
∂x′D0(x′, 0, ω) = −1

2

lim
x′→a−

∂x′D0(x′, a, ω) = −1

2

(A.40)

Thus from equation (A.38)

∂xx′D1(0, 0) = |ω|
∂xx′D2(a, a) = |ω|

(A.41)

Use these to regularize the force calculations by subtracting the high frequency
contribution and redefine equation (A.29) appropriately.

∆j(x, x
′) = ∂xx′D(x, x′)− ∂xx′Dj(x, x′) (A.42)

Insert this back into equation (A.36) to get the following system of equations
parallel to eq (1.86) and (1.87)

0 = D0(0, 0+)∆1(0, 0+)−D0(a, 0+)∂xx′D(a, 0+) x′, x′′ → 0

0 = D0(a, a−)∆2(a, a−)−D0(0, a−)∂xx′D(0, a−) x′, x′′ → a
(A.43)

and

∂x′D0(0+, a−) +D0(0, a−)∂xx′D1(0, 0+)

= D0(a, a−)∂xx′D(a, 0+)−D0(0, a−)∆1(0, 0+)
x′→0+

x′′→a−

∂x′D0(a−, 0+)−D0(a, 0+)∂xx′D2(a, a−)

= D0(a, 0+)∆2(a, a−)−D0(0, 0+)∂xx′D(0, a−)
x′→a−
x′′→0+

(A.44)

Insert the known limits into this system and organize to get a better view of
the two systems

0 = −∆1(0, 0) + e−|ω|a∂xx′D(a, 0) x′, x′′ → 0

−2|ω|e−|ω|a = e−|ω|a∆1(0, 0)− ∂xx′D(a, 0) x′→0
x′′→a

(A.45)

and for the second object

0 = −∆2(a, a) + e−|ω|a∂xx′D(0, a) x′, x′′ → a

2|ω|e−|ω|a = −e−|ω|a∆2(a, a) + ∂xx′D(0, a) x′→a
x′′→0

(A.46)
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These can be organized as matrix equations[
−1 e−|ω|a

e−|ω|a −1

] [
∆1(0, 0)

∂xx′D(a, 0)

]
=

[
0

−2|ω|e−|ω|a
]

(A.47)

and [
−1 e−|ω|a

−e−|ω|a +1

] [
∆2(a, a)
∂xx′D(0, a)

]
=

[
0

2|ω|e−|ω|a
]

(A.48)

The solutions are
∆1(0, 0, ω) = − 2|ω|

1− e2|ω|a

∆2(a, a, ω) = − 2|ω|
1− e2|ω|a

(A.49)

Insert this back into equation (A.29)

Fleft =
1

4π

∞∫
−∞

dω∆1(0, 0, ω)

= − 1

π

∞∫
0

dω
ω

1− e2ωa

= − 1

π
(− π2

24a2
)

=
π

24a2

(A.50)

The force on the left endpoint is

Fleft =
π

24a2
(A.51)

This force is directed into the interval and the only difference for the force on
the other endpoint is a change in sign. Thus the plates will be attracted as was
found above in equation (A.13).
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Appendix B

Functional integral method
method for zero dimensional
parallel plates

Consider two zero dimensional plates separated by a distance a along the real
line. This will both serve to demonstrate the method and provide some com-
parison for later. This chapter is a step by step walkthrough of chapter 2.8 for
the functional integral method.

0 a

Figure B.1: Illustration of the interval with two zero dimensional parallel plates.

Figure B.1 illustrates the situation of two zero dimensional "parallel plates"
along the real axis. Each point has a origo O1 = 0 and O2 = a, the basis
functions for each point is 11 = a1

p1 = a2
p2 = 12 = 1 in the respective coordinates

systems. There is only one basis function in each coordinates system so the index
set is p1 = p2 = 1.

The Green’s function for Helmhotz equation in each coordinate system is
given by equation (2.58) and for one dimension it is

G1(xα, xα′) = G2(xα, xα′) = G(xα − xα′)

=
i

2k
eik|xα−xα′ ||k=iκ =

1

2κ
e−κ|xα−xα′ |

(B.1)

for κ ≥ 0
The first goal is to decompose the Green’s function into each basis set. To

find this decomposition one has to evaluate the Green’s function on the surface
of each object, use the formula Gαβ(xα, xβ′) = Gβ(xβ(xα), xβ′)

G11(x1, xβ′) = G1(x1(x1), xβ′) = G1(0, 0) = G(0) = 1
2κ

G22(x2, xβ′) = G2(x2(x2), xβ′) = G2(0, 0) = G(0) = 1
2κ

G12(x1, xβ′) = G2(x2(x1), xβ′) = G2(−a, 0) = G(−a) = 1
2κe
−κa

G21(x2, xβ′) = G1(x1(x2), xβ′) = G1(a, 0) = G(a) = 1
2κe
−κa

(B.2)
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The decomposition is now found directly from the above calculations since
Gαβ(xα, xβ′) =

∑
pα
Gαβpα (xβ′)a

α
pα(xα).

The surface integrals are now

Gαβpαqβ =

∫
Qβ

Gαβpα (xβ′)a
β
qβ

(xβ′) dAxβ′

= Gαβpα (xβ)aβqβ (xβ) =


1

2κ α = β

1
2κe
−κa α 6= β

(B.3)

and
Dα
pαqβ

=

∫
Qα

(aαqα(xα))∗aαpα(xα) dAxα = 1 (B.4)

The matrices are calcualted as
H1 = 1

2κ H2 = 1
2κ

K12 = 1
2κe
−κa K21 = 1

2κe
−κa

(B.5)

and
T 1 = 1

κ T 2 = 1
κ

U12 = 1
κe
−κa U21 = 1

κe
−κa

(B.6)

The final expression of the Casimir energy is found from equation (2.103)

E(a) =
~

2π

∞∫
0

ln (detMQ(iκ)) dκ (B.7)

Where the matrix MQ is given by 1 · · · (T 1)−1U1r

...
. . .

...
(T r)−1Ur1 · · · 1

 (B.8)

Since there are only two objects the energy is reduced to

E(a) =
~

2π

∞∫
0

ln (det (1− (T 1)−1U12(T 2)−1U21))|k=i κ dκ (B.9)

After multiplication the energy is given by

E(a) =
~

2π

∞∫
0

ln (1− e−2ka) dκ (B.10)

This can be solved as

E(a) =
~

2π
(− π2

12a
) = − ~π

24a
(B.11)

This is the Casimir energy for two zero dimensional "parallel plates" along a
line. This coincides with the results found of V.G. Kiselev, Y.M. Shinir and
A.Ya Tregubovich [17] (p.102 and 106) and also Ambjørn and Wolfram [15]
(p.4 with d=1).
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Appendix C

Mode summation for parallel
plates

Consider two parallel plates with separation a. The defining equation for a
massless scalar field is

ϕtt(x, t)− c2∇2ϕ(x, t) = 0 (C.1)

where c = 1 and the field ϕ(x, t) satisfies ϕ(x, t) = 0 when evaluated on either
plate.

Starting with a Fourier transform in the time domain.

ω2ϕ(x) +∇2ϕ(x) = 0 (C.2)

and then another Fourier transform of y with wavenumber k will yield

−ϕ′′(x) +
(
k2 − ω2

)
ϕ(x) = 0 (C.3)

or
−ϕ′′(x) + q2ϕ(x) = 0 (C.4)

where q =
√
k2 − ω2. The solution to this equation is

ϕ(x) = Aeqx +Be−qx (C.5)

The boundary conditions are

ϕ(0) = A+B = 0

ϕ(a) = Aeqa +Be−qa = 0
(C.6)

or as a matrix system [
1 1
eqa e−qa

] [
A
B

]
=

[
0
0

]
(C.7)

The only possibility for a non-trivial solution is if the determinant is zero

e−qa − eqa = 0 (C.8)
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The imposes a restriction on the possible values of ω. Note that for real q there
is only one solution to the above equation: q = 0. This implies that ω2 = k2.
The other possible solutions are for ω2 > k2, this will give

q =
√
k2 − ω2 = i

√
ω2 − k2 = ip (C.9)

Thus for ω2 ≥ k2 equation (C.8) will be

g(ω, k) = e−ipa − eipa = −2i sin(pa) = 0 (C.10)

Note that for all ω2 < k2 this function is non-zero.
The energy can be expressed as

E =
~
2

∞∫
−∞

dk

2π

∑
n

ωn(k) =
~

2π

∞∫
0

dk
∑
n

ωn(k) (C.11)

Where ωn(k) are the zeros of g(ω, k) and units are chosen such that ~ = 1.
As g(ω, k) has no poles it is possible to use the argument principle in order to
evaluate this sum.

It states that for an analytic function h(z) with no poles inside the contour
C and a meromorphic function f(z) with no poles or zeros on C. Then

1

2πi

∮
C

dz h(z)
f ′(z)

f(z)
=
∑
n

mnh(z0
n)− knh(zpn) (C.12)

where z0
n are zeros, and zpn are poles of f(z) inside the contour and mn, kn are

their respective multiplicity.
Use h(z) = z and an analytic continuation of g(ω, k) from equation (C.10)

to get a sum over the zeros ωn∑
n

ωn(k) =
1

2πi

∮
C

dω ω
g′(ω, k)

g(ω, k)
(C.13)

Insert this back into the energy to get

E =
1

4π2i

∞∫
0

dk

∮
C

dω ω
g′(ω, k)

g(ω, k)
(C.14)

With a partial integration this will be

E = − 1

4π2i

∞∫
0

dk

∮
C

dω log(g(ω, k)) (C.15)
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Figure C.1: The integration contour used in the argument principle for the
parallel plates.

where the contour C is given in Figure C.1. The angle φ will help with the
convergence

E = − 1

4π2i
lim
R→∞
ε→0
φ→0

∞∫
0

dk

∫
C1

dω log (g(ω, k)) +

∫
C2

dω log (g(ω, k))

+

∫
Cε

dω log (g(ω, k)) +

∫
CR

dω log (g(ω, k))


(C.16)

The first two integrals give

E = − 1

4π2i
lim
R→∞
ε→0
φ→0

∞∫
0

dk

∫
C1

dω log (g(ω, k)) +

∫
C2

dω log (g(ω, k))



= − 1

4π2i
lim
R→∞
ε→0
φ→0

∞∫
0

dk

 ε∫
R

ie−iφdy log
(
g(iye−iφ, k)

)

+

R∫
ε

(−ieiφdy) log
(
g(−iyeiφ, k)

)
=

1

2π2

∞∫
0

dk

∞∫
0

dy log (g(iy, k))

(C.17)
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Note that the integrand, g(ω, k), is evaluated on the imaginary axis. This will
result in

g(iy, k) = e−i
√

(iy)2−k2a − ei
√

(iy)2−k2a = e
√
y2+k2a − e−

√
y2+k2a (C.18)

It is convenient to define the divergent part as

g∞(iy) = e
√
y2+k2a (C.19)

This can be rotated into the complex plane with ω = iy

g∞(ω) = ei
√
ω2−k2a (C.20)

This is the divergent part of the energy. Thus it is convenient to redefine the
Casimir energy by subtracting this

E = E − E∞

= − 1

4π2i
lim
R→∞
ε→0
φ→0

∞∫
0

dk

−2i

∞∫
0

dy log

(
g(iy, k)

g∞(iy, k)

)

+

∫
Cε

dω log

(
g(ω, k)

g∞(ω, k)

)
+

∫
CR

dω log

(
g(ω, k)

g∞(ω, k)

)
(C.21)

Consider the two final integrals by using the parametrization ω = ρeiθ∫
Cρ

dω log

(
g(ω, k)

g∞(ω, k)

)

=

∫
Cρ

ρeiθdθ log

(
g(ρeiθ, k)

g∞(ρeiθ, k)

)

=

∫
Cρ

ρeiθdθ log

(
e−i
√

(ρeiθ)2−k2a − ei
√

(ρeiθ)2−k2a

ei
√

(ρeiθ)2−k2a

)

=

∫
Cρ

ρeiθdθ log
(
e−2i
√
ρ2e2iθ−k2a − 1

)
(C.22)

On the contour Cε the radius ρ = ε→ 0 and thus∫
Cε

dω log

(
g(ω, k)

g∞(ω, k)

)
=

∫
Cε

εeiθdθ log
(
e−2i
√
ε2e2iθ−k2a − 1

)
→ 0

(C.23)

And on the contour CR the radius ρ = R→∞ and θ ∈ [−π/2 + φ, π/2− φ]∫
CR

dω log

(
g(ω, k)

g∞(ω, k)

)
≈
∫
CR

Reiθdθ log
(
e−2iReiθa − 1

)
=

∫
CR

Reiθdθ log
(
e−2iRa cos(θ)e2Ra sin(θ) − 1

)
→∞

(C.24)

90



If this divergence is ignored the Casimir energy will be given by

E =
1

2π2

∞∫
0

dk

∞∫
0

dy log

(
g(iy, k)

g∞(iy, k)

)

=
1

2π2

∞∫
0

dk

∞∫
0

dy log
(

1− e−2
√
y2+k2a

)

=
1

2π2

∞∫
0

dr

π/2∫
0

dθ r log
(
1− e−2ra

)
=

1

4π

∞∫
0

dr r log
(
1− e−2ra

)

=
1

4π

∞∫
0

du

2a

u

2a
log
(
1− e−u

)
=

1

16πa2

∞∫
0

duu log
(
1− e−u

)

(C.25)

For two plates with a separation a the Casimir energy is given by

E(a) =
~

16πa2

∞∫
0

duu log
(
1− e−u

)
= − ~ζ(3)

16πa2
≈ −0.0239142

~
a2

(C.26)

This coincides with equation (4.31) in section 4.1.
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