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Abstract

In this thesis a set of regularized boundary integral equation are introduced that
can be used to calculate the Casimir force induced by a two dimensional scalar
field. The boundary integral method is compared to the functional integral
method and mode summation where possible. Comparisons are done for the
case of two parallel plates, two concentric circles and two adjacent circles.

The results indicate that the boundary integral method correctly predicts
the geometry dependence of the Casimir force on the test problems, but that its
value is missing a factor of two compared to the functional integral method and
mode summation. After applying various validation procedures on the numer-
ical implementation including a powerful test based on artificial sources, it is
concluded that with high probability the missing factor of two is lost somewhere
in the theory leading up to the regularized boundary integral equations.
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Introduction

The Casimir effect was first predicted by Casimir and Polder in 1948 [1]. The
effect is only measurable on small length scales and is often seen as an attractive
force between objects with no charge. The first reported experimental measure-
ment of the Casimir effect was in 1958 by M.J. Sparnaay [2]. He tried to measure
the force between two parallel plates. Due to systematic errors his results had
100% uncertainty. It was first in 1997 that S.K. Lamoreaux [3] completed the
first successful measurement of the Casimir force, between a plate and a sphere,
with only 5% uncertainty. In 1998 U. Mohideen and Anushree Roy [4] measured
the Casimir force between a plate and a sphere with only 1% uncertainty.

Both the Casimir force and the van der Waals forces are quantum effects
that can cause attraction between neutral bodies. The van der Waals force can
induce a dipole moment between two nonpolar molecules and at short distances
(<10nm) cause attractive forces. The primary difference between these two
theories is that van der Waals forces are non-relativistic in nature. The van der
Waals forces disappear at larger separations (100nm) where relativistic effects
must be considered. At these separations the Casimir effect dominates the van
der Waals forces and are the primary source of attraction or repulsion.|5; 6]

As nanotechnology finds more and more applications the need to understand
physics at the micro- or nano- scales will increase. Microelectromechanical sys-
tems (MEMS) are small electrical systems that can function as actuators, sen-
sors or routers. Examples of these are: Accelerometers and gyroscopes in cars
or smartphones. At these small scales the Casimir force can cause components
to stick together and be a hindrance, or it could provide new functionality such
as produceing levitation under certain conditions. [7; 8]

There are several methods that can be used to calculate the Casimir energy,
a few of these are: Mode summation with the argument theorem [9; 10], Finite
Difference Time Domain (FDTD) methods [11] and functional integral methods
[12; 13].

The method of mode summation with the argument principles has been
very successful in calculating the Casimir effect. Its primary application is
on systems with a symmetry such as for two parallel plates or concentric cir-
cles/spheres/cylinders. For applications such as designing a MEMS it is im-
possible to only be restricted to symmetrical designs. Thus there is a need for
methods that calculate the Casimir effect for arbitrary configurations.

The FDTD methods are grid based methods that discretize the problem
space into a finite grid. The relevant functions are then evaluated on the grid
and time is iterated forward. This method can handle arbitrary configurations as
long as the equations allow for such a solution method. These types of methods
are very popular in areas such as electrodynamics, fluid mechanics, geology and



weather prediction.

Methods based on functional integrals are able to handle arbitrary configu-
rations of objects. This theory is based on Feynmann’s idea to integrate over
weighted classical paths, the problem is then to solve these infinite dimensional
integrals. These can either be solved using some numerical scheme or by func-
tional determinants.

The object of this thesis is to use the boundary integral method to calculate
the Casimir force for an arbitrary configuration of objects. This method is most
efficient when used on linear equations and boundaries with piecewise linear
material coefficients. This is exactly the situation that will be examined in
this thesis. This method avoids a lot of unnecessary calculations because the
equations are only solved on the boundaries. For multiple objects with varying
distances it is possible to ignore the empty space between objects. Methods
based on FDTD will not have this option because they must grid the entire
problem space. The boundary integral method will in addition regularize the
singularities before the method is implemented, thus providing stability to the
calculations.

The boundary integral method outputs the force on each discretized piece
of every object. This provides valuable visual information on how the forces are
affecting each object. It is also possible to simplify the equations if there exists
isometric transformations on some objects.

The relationships between force and energy always require us to find the
change in energy with respect to a parameter. Thus a minimum of two eval-
uations of the energy is required to find an estimate for the force. When the
problem size is large, the computational time will be considerable, and it would
be advantageous to have a direct method for finding the force. The boundary
integral method presented in this thesis calculates the Casimir force directly
for any compact geometry. Computationally this method is based on filling
and solving a set of linear equations and these type of operations scale well on
clusters.

Chapter 1 presents the theory behind using the boundary integral method
to find the Casimir force on an object. The boundary integral method uses
Green’s functions to calculate the Casimir force directly. Chapter 2 introduces
the functional integral method that will be used to verify the boundary integral
method. This method uses the theory of functional integrals to calculate the
energy of the system. Chapter 3 gives an algorithmic overview of the two meth-
ods and their complexity. In order to validate the boundary integral method the
results will be compared to two other methods. For the symmetric situations
the method of mode expansion and the argument principle can be used to find
a simple formula for the Casimir energy. This is done with parallel plates and
concentric circles in chapter 4. Chapter 5 explains how the Casimir force is
calculated from the Casimir energy. The Casimir force can be calculated either
directly from the boundary integral method or through the Casimir energy with
the functional integral method. Chapter 6 introduces the test cases and the test
results, these include: parallel plates, concentric circles and adjacent circles. A
conclusion is drawn in chapter 7 on the validity of the boundary integral method
and all the test results from chapter 6 are summarized in chapter 7. Appendix
A and B contains an implementation of the boundary element and functional
integral methods to zero dimensional parallel plates on the line. This test case
is only included for comparisons. Appendix C contains calculations where an
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attempt is made to find the Casimir energy for two parallel plates using the
method of mode summation with a similar regularization as was used in section
4.2
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Chapter 1

Boundary integral method

The first step is to produce an equation for the Green’s function. The Green’s
function will then be related to the stress tensor by point splitting and through
this the force on an object will be defined. The next step is to use the equation
for the Green’s function to produce an integral relation for compact objects.
The relation must be regularized because of the singularities in the Green’s
functions. Through a regularized limiting process the integral equations are
derived. These equations are solved using the method of moments and the
boundaries are discretized in order to calculate the necessary matrix elements.
The boundary integral method is implemented and the output will be the stress
on each object.

1.1 Green’s function

Consider a massless neutral scalar field ¢ with field equation
@tt - szng =0
¢|Qj =0
The equal time bosonic commutation relations are
[p(x,1), 0(x', )] =0
[Pe(x, 1), p(X', )] = ihd(x — ')

The generators for the algebra of observables are $(x) and the time evolution
of the scalar field is given by

(1.2)

p(x,t) = e FH p(x)e~FH (1.3)
where H is the Hamiltonian for the system. Extend the field operators into
complex time with the rotation t = —is. This will change the partial derivative
into p

S .
0 = 835 = i0;s (1.4)

and the field equation above changes into
Dss + V2P =0
4 v (1.5)
W'Qg‘ =0
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with the commutation relations.

[p(x,8),p(x',5)] =0
[Ps(x, 8), p(x, 8)] = d(x — X) (1.6)

Select units such that A = ¢ = k = 1, where k is the Boltzman constant. The
basic Green’s function is described by the time ordered product

D(x,s,%',8) =< T[@(x,8)p(x, s")] > (1.7)

where it is assumed that the quantum field is in a state of thermal equilibrium
at temperature T. Letting 8 = 1/T results in

1 "
D(x,s,x',s') = Tr(ge_BHT[tﬁ(x s)p(x',s")]) (1.8)
By defining
DF(x,5,%,8") =< o(x,5)p(x', 8) > (1.9)
D™ (x,8,x,s") =< p(x',s")p(x,5) > .
the Green’s function can be reformulated as
Dt (x,s,x',s") s>
AN AN k) )
D(x,s,x',s") = { D~ (x,s,x',5') s < g (1.10)
First observe that the Green’s function is periodic in 3:
1 N " A
Dt (x,s+ B3,x',s') =Tr <Z65He(S+B)H¢(x)e(S+B)H¢(x', s’))
1 ~ ~ ~
=Tr (ZeSHgb(x)e_SHe_ﬁHgf)(x’,s’)) (1.11)

1, —BH »
= (Zgo(x, s)e ﬁHcp(X’,s'))
A property of the trace is that: Tr(ABC) = Tr(CAB) = Tr(BCA). Thus the
operators can be moved to the right to show that
1 ~
Dt (x,s+ B,x',s") =Tr (Ze_ﬂHcﬁ(x’, s )p(x, s)) =D (x,8,x,s) (1.12)

The same argument works for D~ (x, s,x’, s’ + 8). Thus
Dt (x,5+ 3,%x,8) =D (x,s,x,5)

1.13
’Di(xﬂ 57X/7 S/+IB) :D+(X7 S7X,7 Sl) ( )

These are the Kubo-Martin-Schwinger (KMS) boundary conditions. Since H is
independent of s it is possible to show that

1 ~
Dt (x,s,x,8)="Tr (ZGBHcﬁ(X, s)p(x, s’))



similarly for D=(---)
D™ (x,8,%x,8)=---=D" (x,5 — §,%x,0) (1.15)
Introduce a new Green’s function based on the above properties

Dt (x,s,%x',0) s>0
/ _ 3Oy Ay
D(x,x,s) = { D~ (x,s,%x',0) 5<0 (1.16)

for the new Green’s function

D(x,x',s —§') =Dt (x,s — ¢',x',0) =D¥(x,5,x',s) s>

D(X, X/, s — S/) — D_(X,S _ S/,X/,O) _ D_(X, S,X/,S/) s< g (117)

and thus
D(x,x',s —§') =D(x,s,%x',s') Vs,s (1.18)

Let us explore some properties for the new Green’s function. Let |n > be a
complete set of eigenstates for H.
First for s > 0

1 N N N
=3 <l e e p(x)e o p(x) n > (1.19)

thus D(x,x’, s) only exists for 0 < s < 3.
For s <0

D(x,x',8) = D™ (x,5,%',0)
1 N N N
=Tr (Ze'BH@(x/)eSHgb(x)eSH)
1 N N N
=3 <l e P Hp)e  plx)e [ > (1:20)

1
=3 e Ut E <o) 0’ >< /[ (x) In >
nn’

thus D(x,x’, s) only exists for —5 < s < 0.
It is clear that D(x,x’, s) only exists for s € [—/3, 8]. With the KMS bound-
ary conditions

D(x,x',s+ B) =Dt (x,s+ 3,x,0) =D (x,s,x,0) = D(x,x',s) (1.21)

Thus D(x,x’, s) is determined by its values in the interval —3 < s < 0. Observe
that D(x,x’, s) is a Green’s function for the operator defining equation (1.5).
First note that

D(x,x',s) = 0(s) < p(x,5)p(x',0) > +0(—s) < p(x',0)p(x,5) > (1.22)
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where 0(s) is the Heavyside step function. Differentiate once with respect to s
to get

0sD(x,x',8) = §(s) < P(x,8)p(x',0) > +6(s) < O ( ) (x',0) >
= 6(s) < P(x,0)p(x, 8) > +0(—s5) < (x',0)0s ) >
(S)[@( 5), p(x',0)] + 0(s) < 0sp(x, 5) ( ) (1.23)
+0(=s) <p(x',0)0:(x, 5) >
=0(s) < 0s@(x,5)p(x,0) > +0(—s) < 4(x,0)0:p(x, 5) >
Where the commutation relations for bosons in (1.6) were applied. With a
second partial derivative this becomes
05sD(x,x%',8) = 6(s) < 0s9(%,8)p(x',0) >
+0(5) < Oss (%, 8)p(x',0) > =(s) < A(x',0)0:4(x, 5) >
+0(—5) < @(x',0)055(x, 5) >
= 0(5)[0s0(x, 5), p(x', 0)] + O(s) < (=V3)$(x,5)(x',0) >
+0(=s5) < A(x,0)(~=VR)P(x, 5) >
=0(s)d(x — x') — V2D(x,%/, 5)

(1.24)

Where the defining equation in (1.5) and the commutation relations from (1.6)
were used. The Green’s function satisfies the equation

0ssD(x,%/,8) + V2D(x,x, 5) = 6(s)d(x — x') (1.25)

This equation is valid for any temperature T and, the Green’s function D(x, x’),
is periodic in s with period § = 1/T. Thus D(x,x’,s) can be written as a
Fourier series where the frequencies are called Matsubara frequencies. However
the problems of this thesis will only consider the case where T — 0. Thus the
period of the Fourier series will be infinite and a Fourier transform in s will
produce

V2D(x,x',w) — w?D(x, %X, w) = §(x — X')

1.26
D(x,x",w)|q, =0 (1.26)
1.2 Force
The Lagrangian for the classical wave equation ;; — V2p = 0 is given by
1 1
L=5¢t— 5z +wy) (1.27)
The stress-energy tensor is calculated from
oL
T = ——— 0,0 — 64 L (1.28)
A(0up)
using a signature n*¥ = {1, -1, —1} will give
1 1
T =i +5i+e)  T7=ewpy
1 1 T = —p.p;
T — 22 S 2 2
1 1
T = ol + 5t —e) TV =~y
T = ipn ™ = T PyPr



From this the conservation equations are given by
KT™ 4+ 0,T" 4+ 0,T* =0 (1.30)

where p = 0 gives energy conservation and p = 1,2 gives momentum conserva-
tion. The equation for energy conservation is

1 1
3:&(5‘%’? + 5(%03 + %2,)) + 0z (—=pztpr) + Oy (—pypt) =0 (1.31)
or
Ope +V-S.=0 (1.32)
where
Se = -V (1.33)

is the energy flux tensor and
1 51
Pe = §<pt1 + iTr(chVgo)I (1.34)
is the energy density. The equations of momentum conservation are

1 1
Dulrpz) + 0a( =507 + 5 (=05 +23)) + 0y (—pypa) = 0

1 1 (1.35)
Ou(pupy) + 0s(—puipy) + Oy (=508 + 5 (95 = #)) =0
or
where p is the momentum density given by
p=pVe (1.37)
and S is the momentum flux. The momentum flux can be written as follows
1 1
S(x,t) = —=VpVe + 5Tr(wawa)l - §<p§I (1.38)

where the dyadic product of vectors has been used to simplify the notation. The
quantum stress tensor is defined by point splitting

N 1 1
S(x,t) = lim (—vax, + 5 T (Vs Vi )T - 25@,1) o(x, ) @(x', ') (1.39)
X —X
t'—t

and find the expectation value of the ordered product to get

1 1
Sq(x,t) = lim (—VXVX/ + §Tr(VxVx/)I - 2875(%1) D(x,t,x',t")  (1.40)

Where D(x,t,x’,t') is the Green’s function defined earlier. Using the definitions
in the previous section: t = —iu, t’ = —iu’ and s = v — v’ this changes S, into

1 1
Sq(x) = xl/iglx (—vax/ + §Tr(VxVx/)I - 28551) D(x,x', s) (1.41)
s—0



OO@ZO

Qr

Figure 1.1: Illustration of the objects with shaded interiors and marked bound-
aries Q;.

The Fourier transform in time results in

x'—x

1 1
Sq(x,w) = lim (—vaxl + §Tr(VxVx/)I + 2wl> D(x,x',w) (1.42)

and the quantum stress tensor is given by the Fourier transform evaluated at
Zero
[ d
w
S0 = [ 5o8.(x.) (1.43)
i

—o0
Figure 1.1 illustrates the situation and for object 4 with volume V; and boundary
Q; the net force from this object is

F, = %JZ zat/de(x,t) :—/dVV~Sq(x,t)
Vi

Vi
—%dlSq-n

Qi

(1.44)

where n is a normal vector pointing out of @); and into V). Because the total
system is stationary the sum of all forces is zero: } , F; =0

The unit normal and tangent vectors, n and t, span R? at any point along
the curves @@;. With respect to this basis the unit vector are

e, = (e; t)t+ (e, -n)n

e, = (e, -t)t+(ey-n)n (1.45)
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The gradient changes into
Vx = (t-Vx)t + (n-Vy)n =t + ndy, (1.46)
and the double gradient is given by
ViV = tt'0p + tn'Oens + t' N0y + nn’'Opyy (1.47)

Because D(x,x’,w) = 0 when x,x’ € Q; the tangential derivatives are

(9{D‘Qj = 8t/D|Qj =0 (1.48)
Thus for x,x' € Q;
VxVxD(x,x',w) = nn’'Onn D(x, %', w) (1.49)
The stress tensor defined in equation (1.42) will for points on @), be
1
Sy(x,w) = lim <2Tr(nn’)I - nn') O D(x, %', w) (1.50)
x'—=x

and the force will be given by

1 o0
Fi:—%dlSq'n:—%?{dlx /deq(x,w)'n
Qi -0

Qi

x'—x

S j[dlx dw lim <1Tr(nn’)I - nn’) O D(x,x",w) -n
2m 2
o (1.51)

1 1
=5 %dlX / dw (2Tr(nn)1 — I) n - IpnD(x, x,w)

Qi —
I Ood AanD( )
- AT X wn nn X, X, W
Qi —o0

Where Tr(nn) = 1 for unit normals. The force on each object from the vacuum
is thus given by

F, = 7£dlx i /Oo dwn(x) - Onn'D(x, X, W)
Qi > (1.52)
- Qf dlen(x) - p(x)

Where the normals n are directed out of each compact object.
1.3 Regularized boundary integral equations
Finding the force F; has now been reduced to finding the double normal deriva-

tive of the Green’s function D(x,x,w). Take the gradient of equation (1.26) with
respect to the primed variable in order to find an equation for this quantity.

V2E(x, %, w) — wrE(x, %X, w) = Vud(x — X) (1.53)

7



where £(x,x',w) = Vo D(x,x’,w). This equation has the same boundary con-
ditions as equation (1.26), that is

E(x,x',w)=0 when x€Q; (1.54)
Consider the operator £ given by
L=V?—uw? (1.55)
The equation for our free Green’s function is
LDy(x,x",w) =6(x —x") (1.56)
A Green'’s function that satisfies this is equation is given by
Dol(x, X", w) = —%Ko(wa—x”H) (1.57)

Where Kj is a modified Bessel function.
The Divergence theorem and Green’s second identity are required to produce
the integral formulation of the boundary value problem 1.53 and 1.54

/ dV (DoLE — ELD,) = / dV (DoV2E — EV2Dy)
V[) VD

(1.58)

:—Z%ds(DOVE—é‘VDO%n
* Qa

The normal vector n should point out of each compact object @, and into Vj.
Inserting equations (1.53) and (1.56) into the above relation gives

/dV (DoVid(x —x') — E6(x —x")) = —Z?{ds (DoVE —EVDy) -1 (1.59)
Vo % Qa

Notice that Vy is independent of the integration variable x, this can then be
extracted from the integral and basic delta function identities gives

Vi Do(x',x") - E(x",x') = — Z 74 ds (DyVE —EVDy) - n (1.60)
¢ Qa

Because of the boundary condition £(x,x’) = 0 when x € @, the integral will
be simplified into

Vi Do(x',x") — Ex",x") = — Z ?{ ds Do(x,x")VxE(x,x') - n (1.61)
“ Qa

This integral relation is valid for any x',x” € ;.

Take the limit of the above relation when x’ and x” approach the boundaries
Q. How this limit is performed is the first part of our regularization. Start by
letting x” — @Q;. Because of the boundary conditions equation (1.61) turns into

Vx Do(x',x") = — Z ?{ ds Do(x,x")VxE(x,x') - n (1.62)
¢ Qa

8
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) Qo

Figure 1.2: Tllustration of the contour around each singularity of Dy(x,x")

The integral on the right hand side pass right through a singularity of the Green’s
function Dy (x,x"). This problem is handled by extending the contour to include
these points as shown in figure 1.2. These extensions will be parametrized as
circles with radius €. To get back to the original contour it is simply a matter
of letting the radius go to zero.

Q¢ : v(0) = x" + e(cos(8),sin(h)) 6 € (0,7 (1.63)

[

With this contour the integral will give a finite contribution for all these singu-
larities The line integral is split into the contribution from integrating around
Q. and the extensions Q¢

Vi Do(x',x") = — Z PV, /ds Dy (x,x")VxE(x,%x) -n

« Qa
(1.64)

+ lim [ ds Do(x,x")VxE(x,x) -n
e—0
Q5
The contribution from integrating along the Q¢ is given by

™

/ds Do(x,x")VE(x,x') -n = /(edQ)Do(v(ﬁ),X”)Vé’(’y(@),x') ‘n (1.65)
Q4 0



Where 7(0) was defined in equation (1.63). Thus the limit

1
: AN T -
lim eDo(v(6), x") = lim —o—eKo(w[[7(6) — x"])
i (1.66)
= lgr(l) —%eKo(we)
Since lim¢_,o0 eKp(we) = 0 the contribution from eDg(y(0),x”) — 0. Thus
all contributions from the extended contour vanish and the following equation
remains

~Vxr Do(x', x" ZPVX// /dsDo(x, x"\Vx€(x,x') - n (1.67)
QO(

Where the Cauchy principal value integrals are to be taken around each of the
singularities in Dy(x’,x")

The problem is now how to take the limit x’ — @Q;. If X’ — y where y € Q;
but y # x” there is no problem. Since the right side is defined by a Green’s
function it is obvious that there is a singularity when x’ — x”. Let us start by
investigating what happens if X’ approaches x” along some arbitrary path x'(t)
close to x” but still inside V;. Define

X' (t) = x" +tx'(0) + %tzi’(o) +... (1.68)

With this the left side of equation (1.67) will be

w x —x"
2 [[x/ — x"]]
_ w %)
<o [%(0)]]

Vx Do(x',x") = Ky (w]|x —x"]])

(1.69)
e K (X (0)]])

From a small argument the Bessel function approximates to K (z) ~ 1/z thus

1 (0

Vi Do(x',x") = 2 t|[%'(0)]]2

(1.70)
Thus when ¢ — 0 this will diverge. To regularize this limit: first let X’ — @Q; and
then let x’ — x” along this curve. The equations are regularized by stipulating
that the limit is to be taken along only a small subset of possible curves through
x".

Consider what happens to equation (1.53) when x’ — x” along the curve Q.
First observe that given a complete set of eigenfunctions ¢, (x) for the Helmholz
equation in (1.26) any reasonable function can be expressed as

= enal =3 [ v 51000000 (1.71)

Thus formally

5(x —x) Z on(X)pn( (1.72)

The eigenfunctions satisfy the boundary conditions such that ¢, (x) = 0 when
X — Q;. Let us expand our gradient in terms of normal and tangent derivatives

10



Vx' — t/0y + 0’0y The boundary conditions imply that dy ¢, (x’) = 0 and
thus the gradient on the right hand side of equation (1.53) will be

Vi d(x — x') Z Varon (X )on(x) = 3 ('3 + 1/ )0 (X )0 (X)
n (1.73)
—E)M%% )on(x) = 00 §(x — x')

Thus as x’ approach the curve ); the gradient on the right hand side of the
equation changes into a normal derivative and equation (1.67) changes into

—n'0y Dy(x', x" ZPVX// /ds Do(x,x")VxE(x,x') - n (1.74)
Qa
As x' — x” along Q; the left side will now be given by
in/ . (X/ o X//)
2 ||x’ = x"||

1 n- (X/ _ X”)
//H2

n' - Vy Do(x',x") = K (w||x' —x"|])

(1.75)
~or ||x' — x

Let the function O(t) parametrize the curve. Assuming that ¢ and ¢t” are defined
by
ot)=x" o({") =x" (1.76)
The tangent at x’ is given by ©'(¢') and naturally the tangent satisfies the
relation n’ - ©'(#') = n(0(t')) - ©'(¢') = 0.
Expand around x” as x” =~ x’ and define At = t"'—¢'. From the parametriza-
tion it is clear that

x' —x"=0{t" +At) —6(t")
1
~ O(t") +0'(t")At + SO"(t") AL — O(t") (1.77)
1
= O'(t")At + 5@”(t”)At?

SO

n(0(t")) - 0" (t")At? (1.78)

And for the norm

||X/ _ X//||2 ~ (@/(t//)At + ;9”(1‘2”)At2> . (@/(t//)At + ;(__)//(t//)AtZ)

(1.79)
~ @/(t//) . @/(t//)AtQ
Thus when x’ — x” along the curve Q;
w n/ . (X/ _ X//)
n' - VyuDy(x',x") = ————— 2 Ky (w]|x" — X"||)
2m [l = x| (1.80)

1n-(x'—x") 1

L LX) 1 a(00) - 0"(1)
2 ||x! — x"||? dr ©'(t") - ©'(t")

11



Thus the proposed regularization has canceled the singularity on the left hand
side of equation (1.67). The factor that appears above is proportional to the
curvature of the curve at the point x”.

The unknown in equation (1.67) is Vx&(x,x’), but it is OnnD(x,x) that is
required to compute the force in equation (1.52). Changing the basis to the
normal and tangent vectors at each point gives Vi — tdy + nd, and Vi —
t'0y + n’'dy for the primed variables. Thus

n-Vi€(x,x') =n-VxVyeD(x,x')
n - (tdy + ndy)(t'0y + 0’0y )D(x,x) (1.81)
=10'OhnD(x,x)
And equation (1.74) changes into

—n'Op Do(x', x" ZPV " /dsDO(x7x”)n’6,m/D(x,x’) (1.82)
Qa

Note that n’ is common on both sides and can be canceled

—0n Do(x',x") =3, PVyr an ds Do(x, X" Opn D(x, ') ’:/eeg; (1.83)

The problem has now been reduced to finding a scalar function. This will then
later be multiplied by the the normals to produce the force on each line segment.
Observe that when w — oo the free Green’s function Dy(x,x”) — 0. This will
make the equations decouple and the resulting system is

X//7XI c Qz

7an/DO(X/7 X//) = PVx// sz dS DO(X, X//)ann’Di(X’X/) 7 c 1...r

(1.84)

These equations will be called the self stress equations. To regularize the force in
equation (1.52) the solution to the self stress equation will be subtracted. This
will remove the high frequency contribution from the force and the resulting
force will be redefined as the correct force for this problem.

Define the regularized density as A;(x,x")

Ai(%,%X") = Oan' D(x,X) — Onn Di (%, %X")  x,x" € Q; (1.85)

When the regularized density is inserted back into equation (1.83) it is conve-
nient to separate the equations based on the points x’ and x”

va// / ds DO (X, X//)Ai(x, X/)
Qi

x" . x' € Q; (1.86)
+ Z ds Do(x,x")OpnD(x,x) =0
a a;ﬁzQa
PVyr /ds Do(x,x")Ai(x,x)
Qi
X// c Q

a a;ﬁzQa ] 7& i

= —Op Do (x',x") — /ds Do(x,x")Onn Di(x,x")

Qi
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1.4 Discretization

To solve equations (1.86) and (1.87) the integrals will discretized. The resulting
sums can then be organized into matrix form and the matrix can then be inverted
to find the solution.

The integral equation will be solved using the method of moments. Each
smooth curve @); will be approximated by a piecewise linear curve. There are
other options that could be used, but this is the simplest. Let I be the Eth
linear piece of the piecewise linear curve that approximate ;. The integrals
are then changed into

fQi ds Do(X, S )Onn D(X, 810) = >, ff;’;’ ds Do(x, S ) Onn' D(X, Sk/)
(1.88)
~ Zk 8HH/D(S/¢,,S;§/)fI;C ds l)o(X7 Sk//) Zk ikklﬁkk//

where s is the midpoint of the line element I,i

For this approximation to be good it is required that I ,1 is small enough such
that OnnD(X,sk/) is approximately constant in each subinterval I,i. Approxi-
mate functions defined on the curve @; by their values at the midpoints of the
line elements I7.

To simplify the matrix formulas the following definitions will be helpful

Onn'D (s, Si/) sk € Qi,sk €Qy,J £ 1

€, = (1.89)
Ai(sk,skr) Sk, Sk € Qs
B f]i dlxDO(X7sk”) Sk Gth?#Z
ap, = (1.90)
PVs,, fl;i dlx Do(x, sp) sk € Q;

and for the right side

y/i]/‘k// = 7an/DO(sk’;sk”) Sk € Q’iv Sk € Q] (191)
b;:cjk/ = 8nn’Di(Sk7 Sk,/) Sk, Sk’ = Qz (192)

To form a system of equations there are two options: Either let x’ — @Q; and
then let x” — @, for Vj # i or let x” — @, and then let x’ — Q; for Vj # i.
The above calculations are unaffected by this limit and the only place where the
limit might cause a problem is in the Green’s function OnnD(x,x’). Observe
that from equation (1.7)

Dix, t, %, ') =< T[p(x, 1)p(x, t')] >= { P )OO T) > B> g

(x
(x', t)p(x,t) > t <t
Thus there there is no problem in interchanging (x,t) « (x/,').

13



Consider x” — @, and then x’ — Q; for Vj # 1.

When there are r objects equations (1.86) and (1.87) will give the system

E allc}c//l'llgk/ + ...+ a}clk//x?k/ + ...+ a;}{://xzﬁcl = ylzl’k” — E a;’clk// b?k/

K
1,i—1 1 i 1, ri 1
E Qo e+ A T A e = g — Y ag U
K
1 L o
E Qg Tiger + -+« + Qe Thgy + -« + Qg Thger = 0 (1.94)
1,i+1 1 1 i1 1
E kkl’J/r i+ e i o agd e = gt =Y b
k

E a%f];//l'%jc/ + ...+ afg}wz?k/ + ...+ CLZT];//IEZZI = y]?;k// — E a’;:k” b;ﬁlk'

and the self stress equation in (1.84) for object i is

Z a/?k//b?k/ = y;;:i’k:” (195)
k

Let us express this as the product of block matrice$7 to do this the variables are
transposed: AY = (a}, )T, X9 =2, Y9 = (y3,.,)T and B = b¥,,. Thus
the sums become the regular matrix products and the equations are represented
as

il _ Alen
All . Ail . Arl Xli
: .. : : : Yi,i—l _ Ai,i—lBii
Al LAl L g Xi | = 0 (1.96)

. . . . Yiitl _ gbitl gii
Alr .. Air . AT Xm' .
i A’LTB’L’L

These are r block matrix equations for r block matrix unknowns. For the case
of two object equation (1.96) simplifies into

Al 421 xu 0
{ A2 g22 } [ x21 } = [ yi2 _ gl2pil } (1~97)
and

BB

A12 A22 X22 0
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Consider x” — @; and then x’ — Q; for Vj #i.

Write down equations (1.86) and (1.87) for a total of r objects where the goal
is the force on object 4

E aiz//‘ri}c/ + ...+ a;fkulekl + ...+ azzkul'z}c/ = ylyk” — E ak%//bkk/
k

1 1 1 1 1 1 -1 1 1
akk//xké A G T aa T = Y = ) ag
k
E akkuxkk/ .. + a}fkux?k/ + . + azlkulek/ = O (199)
1, +l i+1,4_i+1,i+1 i+1 i+1, i+1,0p9+1,i+1
E :akk”xkkl’ A a e L agea = g = ) age b

E a}CZ//SU}J];/ + ...+ a;gk//xz’}c/ + ...+ G,Z%//l'z’,];/ = yz%k// - E azznbz’é/
and the self stress equation in (1.84) for object 7 is

> At = yig (1.100)
k

These are r linear block matrix equations for 2 unknowns xfg}ﬂ,. If the equations
for the force on the other r — 1 objects are included there will be a total of 72
equations for 72 unknowns.

For r = 2 objects the force on object ¢ = 1 is given by

E aik,,x}v}c/ + ai}v//l’]%}v/ =0
(1.101)
E akk//xkk/ + a/kkuxz%/ = yk kT E akku kk:'

and 7 = 2
E akk//xkk/ + akkuxkk/ = yk k! E akk//bkk/

(1.102)
Zakkul'k.k/ + akk//xkk/ =0

Let us express thls as the product of block matrices, to do this the variables are
transposed: AY = (a,)T, X9 =z}, YV = (yk,k,,) and B" = bt ,. Thus
the sums become the regular matrix products and the equations are represented

as
All 0 A21 0 Xll 0
0 All 0 A21 X12 Y21 _ A21B22
Al2 0 A22 0 x21 = yl2 _ glzgll (1-103)
0 A12 0 A22 X22 0

It is clear that rows 1 and 3 form the same equations as for object 1 in the
previous limit and rows 2 and 4 are the same equations as for object 2 in the
previous limit.
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1.5 Applications

The goal is to find the force on object i from equation (1.52) with the renormal-
ized force.

F, = ]gdlx n(x) - 4i / dw A;(x,%x,w) (1.104)
7r
Qi —oo

Where the normals should point out of each compact object Q; and A;(x,x,w) is
the renormalized density that can be found from equation (1.96). The equation
that define the problem in the case of two objects is

Al g2t x11 0
{ Al2 422 } [ x21 } = [ yi2 _ g12p11 } (1.105)
and
Al g2t x12 y21 _ 42122
[ Al2 422 } [ x22 } = [ 0 } (1.106)

Where the self stress B! and B?? is given by

Al — y1l
A22R22 _ y22 (1.107)
From the above equations it is clear that, for each w, the self stress is found by
solving for B! and B?2. After this the matrices X'! and X?? are solved with
the given right hand side.

1.6 Matrices

The problem is to investigate compact objects that will be defined through a
piecewise linear parametrization. Given an object with points PZ €R% k€
1--- N along the border of the object. Define the piecewise linear parametriza-
tion of object i as

Y(s) = Phoy + (PL =Pl )% s€di=lopp,ap]  (L108)

Where the total parametrization interval for v%(s) is [—L/2, L/2], divided into
N sections Ji. The edges of each parametrization interval and their centers are
defined as

ap=—-L/24+k-A k=0...N

sk=—L/2+(k—-1/2)-A k=1...N (1.109)

where A = L/N = o, — aj—1. The number of discretization intervals is N and
the discretization parameter o € [—L/2,L/2] for some k. The length, e}, of
each piece of the piecewise linear curve approximating @; is

A
7 1 i i i A
ci= = [ dsgIPL-Piol=IPL-PLl (1)
Iy k-1
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The next step is to calculate the matrix elements, these are given by formula
(1.90) and (1.91)

g Jr; dlxe Do (%, s%) sk € Qj,J 71
al, = (1.111)
PVs,, ff?; dlx Do(x,sk) sk € Qi

y;jk” = —an/D()(Sk/,SkH) Sk € Qi»sk” S Qj (1112)

Consider these in turn.

1.6.1 Matrix elements: y,ij/‘k,,

The matrix elements y;j, w €lements from equation (1.91) will in general be

Yy = —Ow Do(swr,sir) = —0' - Vs, Do(sir, s
L,
= 50’ Vs, Ko(wllser — s |l) (1.113)

w n/ . (Sk/ — Sk”)
- K Sk — S
27 5w —ser| 1(wl|sk — sk |])

The only point where this could pose a problem is when ¢ = j and ¥’ = k”. For
small arguments the Bessel functions are approximated by K;(z) ~ 1/x and
thus

1 n/ . (Sk/ — Sk”)

—_—_— 1.114
271' ||Sk/ — S]€//||2 ( )

Yinr

But this problem has already been solved. Thus with equation (1.80) it is easy
to see that the the diagonal elements are equal to
w1 nO")- ")
Yk ~ A7 @/(t“) . @'(t”)

(1.115)

1.6.2 Matrix elements: afk,,

In general the matrix elements are
iy 1
a;jk,, = vak/, /dlx Do(X, Sk//) = 7%1)\/51&/ /dlx Ko(wHX - Sk//”) (1116)
I I

where si» € Cj.
This integral can be solved by using a center approximation or some quadra-
ture in all cases but when ¢ = j and k = k”. Observe first that for this case

i i i §— k-1
l1x(s) = sprl| = [Py + (Pl = Pjoy)—1—
; ; ;\SE — Qg1
~Pi_, - (P - P 2 (1.117)
Cpi Sk ls— sl
=|[(P}, —Pj_4) A || = e} A
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where e}, is the length of the parametrized line element. Thus the above integral
is 1
= 5 PVs,, /dlx Ko(wlix — srll)

I
g .
1 ey, i
:—%PVsk// st KO(|S_Sk”|wek/A) (1118)
Ak —1
€k
- P Ko(|s — s |B
PV, [ dsKalls - s |B)

A —1

Where the constants are gathered in B = cue}€ /A. Make a change to coordinates
such that our integration interval is small

0(s) =—-A/2+ s — ag_1

1.119
df = ds ( )

and thus it is then possible to use the small argument approximation: Ko(z) ~
C — log(x). Where C = 10g(2) — Yom and ~em = 0.577215.. is the Euler-
Mascheroni constant.

A/2
akk ~ —— ]?\/0 u/n d9 log |0|Zg))
—A/2
_ A/2
€k
— A—-P I B
| a—pv / 40 log(|0|B)
—A/2
) AJ2
__ %k
=~"5-A lgl(l) / db log(—6B) /d@ log(6B)
—A/2
, AJ2 A2
€, ..
T9A lgr(l) CA—/dt? log(HB)—/dH log(0B) (1.120)
A2
_ e, _
=~ lim | oA Q/delog(eB)
AB/2
_ ek : 2
~—goxlm|ca- g [ aviosw
Be

1
=g A(CA Alog (2BA>+A>

el 1
= —ﬁ <C +1—log <2wek)>
These are the diagonal elements of the matrix a}jk.
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1.7 Symmetry simplifications
Given that D(x,x’) is the unique solution to equation (1.83)

—On(x Do (x',x") :PVX,//ds Do (%, X" )On(x)nx) DX, X") (1.121)
Q

where Q = U,Q, and x',x" € Q.
Introducing a new varable

P(x,x") = On(x)nx)D(x,%x’) (1.122)
where P(x,x’) is a solution to
—On(x)Do(x',x") = PVyr /ds Do(x,x")P(x,x") (1.123)
Q

If g is an isometry that preserves @ then B(x,x’) = P(g~!x,¢g71x’) is also a

solution to equation (1.123).
From the right hand side

PVyr | ds Do(%,X")On(x)nx) B(%,X')
Q

= PVgﬂxu/dsDO g %, 97 X" P(g %, g7 %)

(1.124)
=PV, 1y /ds Do(y, g~ 'x")P(y, g~ 'x')
Q
= — Jn(g-1x)Dolg™ %, g7'x")

= 7V(g*1x’) (g 1X g 1X,/) (gilxl)

because the isometric transformation preserves the norm such that Dg(gx, gx”') =
DO (X7 XH)
From the chain rule

Vo Dolg™ "X, 07'x") = (Vy Doly. 05" Dly—g1w Dlg )(x)  (1125)
and for

Vy-1xDo(g7 %', g7'x") = VDo (g~ 'x', g7 'x")Dg(g~'x') (1.126)
Observe that

x = Ix!
=g 1)/ o (1.127)
[=Dg(g~x")D(g~")(x')
Thus the above equation simplifies into
PVyr [ ds Do(x,X")On(xyn(x) B(x, X')
Q
= _V(971X’ Do(g 1X 9 1XH) 'n(g_lxl) (1128)

= — Ve Dolg™'x',g7'x") - Dg(g~'x')n(g~'x')
= — Vi Do(g7'x', g7 'x") - n(x')
= — Vi Do(x',x") - n(x")
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Because the solution is unique

P(x,x') = B(x,x) (1.129)
and thus
P(x,x') = P(g7'x,97'x/) (1.130)
or
P(x,gx") = P(g 'x,x/) (1.131)

With the solution of equation (1.123) at one point x’ it is possible to find the
solution at another point gx, connected by the isometry g. If such an isometry
is found it would greatly decrease the time required to find the force.

1.8 Source test

In order to test for possible human or numerical errors in the boundary element
solver the problem can be modified slightly. This modification should be small
and make the transition back into the original equations natural. Start with a
modification of equation (1.26):

V2D(x,x') — w?D(x,%') = p(x,%') (1.132)

where D(x,x’) = 0 when x,x" € @ and p(x,x’) is arbitrary. Using the same
procedure as above will result in the following equation instead of equation
(1.83).

—/dV Do(x,x") 0 p(x,x") = ZPVX// /ds Do(x,x")0nn' D(x,x") (1.133)

Vo @ Qo
For x” € Q;,x’ € @; and where the volume integral is over the whole domain
Vo modulo the interior volumes V.

Because the source, p(x,x’), is arbitrary the regularization in equation (1.73)
will impose a condition. To get the above equation the source must satisfy
Oy p(x,x’) = 0. This will be resolved if p(x,x’) = 0 when x’ € Q;

After discretization the equation for object 1 will be

ALl 421 xu gt
[ Al2 g22 } { x21 } = [ H12 ] (1~134)

ALl g21 x12 2!
[ Al2 pg22 } [ X122 } = [ H22 ] (1.135)

where the right hand side is given by

and for object 2

Hi = = Jy, AV Do(x,x") 0 p(x,x')  x" €i,x" € j (1.136)

The above equations are very similar to the ones that are solved in the original
problem. The main difference is that it does not take into account the self
stress, but this is only a minor difference since the goal here is to test the
equation solver. Alternatively the self stress regularization could be included
in this problem, but this would remove any exact solution that could be found
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here. Thus the code from the original solver can be used on this problem with
minimal modifications.

The parallel plate geometry from section (6.1) will be used to test the code
with the following function

/

D(x,%') = cos (%x) cos (T) e~ (v +v?) (1.137)

where each plate is located at = £a/2 and has length L.
This satisfies the boundary conditions D(x,x’) = 0 when x,x’ are on the
plates. From this function the source is found to be

o, X') = VD(x,x') - w*D(x, x)
: (1.138)
= - (oﬂ + (g)2 +2(1- 2y2)> D(x,x)

and

O p(x,X’)

2 / 2y (1.139
= — n;E (w2 + (I) +2(1- 2y2)> cos (H) sin (m) e~ (v+v7) ( )

a a a a

With this on the right side the solution will be
Onn D(%,%') = 120, D(x,x)
2 ! , 1.140
=n? <z> sin (E> sin <7rx> e~ (WP +v7) ( )
a a a

When this expression is evaluated on either plate it is reduced to

2 2
O D(x,X') = (g) e (1.141)

and if it is evaluated at y = 0
a*Oan D(x,x') = 7 (1.142)

Thus as a test for the code it is possible to solve the above system using the
given source for a few values of a and then compare this to the exact solution
above. Figure (1.3) shows the result of running the source conditions through
the solver and figure (1.4) shows more details on the error.
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Figure 1.3: The output of the solver using the source initial conditions for a few
values of a. The exact solution is 72 for all a.
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Figure 1.4: The relative error in the output of the solver using the source initial
conditions in figure (1.3) for a few values of a.
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Chapter 2

Functional Integral method

A method used to calculate the Casimir energy using functional integrals is
developed by T. Emig, N. Graham, R.L. Jaffe and M. Kardar [12]. Their ar-
ticle was used as a basis for the implementation of this method. The primary
difference between the method described in the article and the following imple-
mentation is the use of a spherical basis in the former.

In the following sections the theory needed to calculate the functional inte-
grals will be developed. The object is to show that the energy can be expressed
as a functional integral of an exponential. Finally a well known formula will be
used to solve the integral.

The final formula for the Casimir energy will involve calculating a determi-
nant of a matrix that contains all the information relating to the geometry of
the problem. This geometry will be defined by discretizing the boundary of each
object.

2.1 Background

Consider the Lagrangian density

L(p) = 3(5 ~ V) (21)

and two field configurations p(x,t') = a(x) and ¢(x,t) = b(x). The action
associated with these field configurations are defined in terms of the Lagrangian

density by
t

Sle] :/ds/d3x£(¢(x,s)) (2.2)
t RS
The probability of ending up in configuration b(x) when starting in a(x) is
found by summing over all possible connecting paths. The propagator is this
transition probability amplitude and is given by

G(b,t,a,t') = /Dgoe%SM (2.3)

Take note that for S| of order 1 the primary contribution to the propagator
will come from the stationary path. This is the classical path found by taking
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the variation of the action and setting this equal to zero. If S[y] is of order #,
the propagator will be considerably influenced by paths that vary substantially
from the classical path. Note that a scaling of the Lagrangian will influence this
directly, but if & is scaled this will alter the results from all possible measurable
quantities, since they are calculated as expectation values. This is why it is
important to make sure to use the proper scaling. The models in thesis only have
to be consistent as no result will be compared to any physical measurements.

The interesting configurations are a(x,t') = b(x,¢) = 0. This restriction will
be implemented on the set of paths by considering all paths that start at the
zero configuration and connects back to the zero configuration during a time T
and then in the end let T' — oco. The possible fields will further be restricted by
boundary conditions on some space time boundary C.

After these constraints it is clear that the integration should be over T-
periodic fields that satisfy the boundary conditions on C'. Denote this transition
probability amplitude by

Z[C,T) = / Dye,r e S1¥] (2.4)

Consider a scalar quantum field ¢ that is a quantization of the scalar field ¢.
The field equation for ¢ is given by

G — V3 =0 (2.5)

The field ¢ satisfies the equal time commutation conditions for bosons
(2.6)

Let H be the energy operator and {U,} be a complete set of energy eigenstates
for the scalar field.

HY, = E,V, (2.7)

Assuming completeness the configuration basis {¥,} can be formally expanded
in an energy basis U,.

U, =) [l (2.8)

Where U, [a] is a functional on the space of classical configurations. Let ¥( be
the ground state of the field. The vacuum to vacuum transition amplitude is
then given by

Z[C,T) = (Wo, e~ #710=w,)
= > [a]Wo[B] (T, Wp)e #ET
a,f3

(2.9)
= Z Ui [a]Wolaje 7 F=T
Observe that if this functions is rotated into the complex plane with 7' = —is
Z[C, —is] = Z Uy la]Wo[a)e 7 Fe (2.10)
(e}
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Assume that there exists a lowest energy state Fy and that all other E, are
higher (and thus contribute less to the sum for large s). In other words it is
assumed that the spectrum of the energy operator is bounded from below.

Z[C, —is] = W[0]Wo[0]e” 7 Fo (2.11)
Take the logarithm on both sides to get
In (Z[C, —is]) =~ In |¥,[0]|* — £ Eo s>>h/Ey (2.12)

When s is large the constant factor will disappear and the only remaining part
is the propagator

Ey = — lim h In Z[C, —is] (2.13)

5—00 §

Ey is the lowest energy level possible for the quantum system. This level is
called vacuum energy, ground state energy or Casimir energy. The plan is to
find an expression for In Z[C, T for large T and evaluate this at T' = —is.

2.2 Spatial boundary conditions

It is necessary to define how the boundary conditions in the functional integral
will be implemented. Consider functions on the plane ¢(x) and a functional
integral

| Dokl (2.14)
Where K|p] is some functional. Let C be some curve in the plane and assume

that the integration should be restricted to functions such that ¢|c = 0.
Define a parametrization of the curve C' by

v:la,b) = C (2.15)
Discretize the curve C with N+1 points chosen as
aj=a+jAt j=0,1,...N (2.16)

where At = }’_T“
Let t; € I; = [oj_1,04], j = 1,--- N be the midpoints of each interval I;.
Then

1
ty=a+(j— ;A (2.17)

Let ¢; = o((t;)). Inserting a product of delta functions into the integral in
equation (2.14) will give

[ peTlonkle) (218)

Thus the only contribution to the integral is when ¢; = o(y(t;)) = 0. When

N — oo the parametrization will be dense on C and the integral will be restricted
to functions such that ¢|c = 0. Define the functional delta function é(p|c) by

N—o0

N
ti_ [ Do [Jo0nKlel = [ Desiolo)kle) (219)
j=1
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For each j the standard delta representation is

1 a0
0(pj) = o /dajewJ‘PJ (2.20)

SO
N | N da
N — — ptaip 2R et e
H5(¢J)7H27r/daje # 7/ H 5 | €7 @ (2.21)
Jj=1 7j=1 J=1
Take a step back and look at a function «, defined on C by

aj

a(y(t))) = B

(2.22)

On the curve C' parametrized by v the derivative can be approximated by the
backwards difference.

The norm of the derivative is

1Y ()] = A%Hz(aj) —(aj-1)]l (2.23)

inserting this into the product formula above gives

N N

£)]| At . ,
e :/H (||7( ;;H )da(tj)ezz,- ot et WIS (9 94)
Jj=1 J=1

formally

I, (W) da(t;) = Da N = oo (2.25)

Thus the final formal expression for the delta functional is

é(plc) = /Daei Jodsae (2.26)

Inserting this expression into equation (2.19) to get a formal expression for the
functional integral with boundary conditions

/ DyDae' Jo 45 Y Klp] (2.27)

The same approach can be used to define delta functions §(p|cr) where C7 is a
space time boundary.
The boundary conditions in equation (2.4) are now changed to

Z[C,T) = /DWDJT@%(SW% ds ) (2.28)

Where the exponent of the delta functional is measured in units of & for conve-
nience.
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2.3 Periodic boundary conditions

The differentials Dypr and DJr indicates that the integration is over T-periodic
functions. Since ¢ and J are T-periodic they can be expanded as Fourier series.

oo

1) = Y pnlxpemin/T

n=—oo

Z I (X)627r1',m‘,/T

n=—oo

(2.29)

Note that if the fields are real the coefficients satisfy ¢_,, = ¢}, and J_,, = J.
This will be used later when considering a real scalar field. The result of this
simplification will be that the resulting Casimir energy is half of the one found
from using complex fields.

Their differentials are

N (2.30)
DJr = H DJ,

There should be a Jacobian here, but this will be canceled later when the Casimir
energy is renormalized.

All boundaries will be fixed in time, so the domain is given by C' = Q x [0, T7.
Start with the integral inside the exponential in equation (2.28).

h/ds p(x,t)J /dsZsOn I ( 2m(n+m)t/T

C
T

h Z/dA SDn /dt 62772(n+m t/T (231)
0

= — /dA o (%) J_pn (%)
"Q

This extra term modifies the action S[y] to account for boundary conditions.
Consider S[y] defined by equation (2.2) with the real massless scalar field given
by equation (2.1)

Sl = / ds / Px L{p(x, 5)) = /T ds [ #x 56t - VoTy)
0 R2

t/

2’7TZTL 2mim )
/ Z T (2.32)

- won(x)v@omx)e?’”("*’")“ )
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Including the above calculations in the propagator given by equation (2.28).

Z[QaT] = /DQDTDJTQ%(S[W]+desJ¢)

:/ ﬁ D@mDJme%Z”(fdvﬂ(%)%n(x)wn(x)

m=—0oo

— Ven(X) Ve n(x)+[o dAen ) (2.33)

H /D<PnDJ eTT Jav 3 ((T) On (%)@ (x)

n=—oo

- thn(X)V(p_n,(x))-‘er dA SOnJ—n)

SO

mn 2
I Z[Q,T] = Z m/D%DJ (v (52 en 000

(2.34)

- vﬂan(x)v@—n(x))""IQ dA (PnJ—n)

Consider this sum for large T and introduce a continuous variable k discretized
by k, = 27n/T and the spacing Ak,, = 27 /T << 1. Then the sum becomes an
integral

Z fank n;)omc an—/dkfk (2.35)

Then for large T

T
o

— 00

— Vor () Ve (x)+ [y dAprd k)

InZ[Q,T) = dk IH/D(kaJkeTT(f dV 3 (K¢ (x)p k(%)

T on / dk 1n/D<kaJke% Jav 3 (KerGoe-s()

= Ver(x)Ve_ir(x)+[q dA@kJ—k)

(2.36)
+ */dk ln/DﬁkaJkeTT Jav 3 (Fer(x)e-k(x)
— Vor() Ve i (x)+ [y dAprJ k)
T Z(fav (Ferei ()
=5 dk In D(kaJkDgakDJke " pr (e
s
0
— Ver(x)Veh(3))+[g dA (pr (%) J; (%) 405 (%) Je (x))+c.c.)
This can be summarized into a few simple formulas:
T o0
nZ[Q,T] = Q—/dk In Bg (k) (2.37)
s

0
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where
Bo(k) = /DgokDJkD@;DJ;e%SW%Jk»JZ] (2.38)

and the modified action S[.. ] is

8Lk 0l Ti Tf] = / AV (K2 pr(x)¢ (%) - Veor(x) Vil (x)

) ) (2.39)
+/dA (pr (%) I (%) + @5 (x) Jk(x)) + c.c.
Q
It will be necessary to evaluate Z[C,T)] on the imaginary time axis T = —is.
In Z[C, —is] = —;i / dk n Bo(k)|p__.. (2.40)
T
0

Assuming that Bg(k) has no poles in the complex plane it is possible to rotate
the integration curve to the imaginary axis with k = ix

(2.41)

—1i5

In Z[C, —is] = 2i /dn In B (k)|
- -
0

This is the current expression for the propagator. The next step is to examine
how the boundary conditions modify the action.
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Qr

Figure 2.1: Illustration of the objects with marked interiors for the problem.

2.4 Modified action

Consider a type of problem where there are a = 1,...,..r disjoint compact
pieces each with volume V,, and surface Q). Vp is the complement of all objects,
Vo = (U; V)¢, this will be the exterior for this problem. Figure 2.1 illustrates the
situations. Denote the source on the surface @), as J. The calculations that
lead up to equations (2.38) and (2.39) are modified slightly to include multiple
disjoint boundaries Q.

This results in

k) = /Dg@kDLp,*c [T DIz DJgre® Stoneis e i el (2.42)
a=1

and
</7k, @k’ {Jk }a» {Jk*} ]

/ AV (K or(x)93 (%) — Veor(x) Vi (x))
(2.43)

S [ 44 (eut g ) + i 7 (9) + e
a=1
Qa
In order to find the classical field solution ¢ i for the action one should take

the variational derivative of 5'[ ..] from equation (2.43) with respect to ¢j.

30



Consider a variation from the classical solution

S[‘/)cl,ka @Zl,k + 590;;’ {Jl(cl}v {J;cl*}]

= /dV (K*@er, k(%) (00 + 601) (X) = Vo r(x)V (phx + 001) (%))
R'VL

+ Z /dA (et k(%) T (%) + (5.1 (x) + 601 (x)) Ji) + c.c.
*=1Q.
= S[‘ﬁcl,k, @Zl,kv {Jl?}7 {Jl?*”

+ /dV (K2 etk (x)0¢5, (%) — Ve (x) Vo (x))
R

+> / dAS59%(x) T (x) + c.c. (2.44)
a=1
Qo
= S[‘ﬁcl,k, @Zl,kv {JI?L {JI?*H

+ / AV (K@t 1(%)005 (%) = Viper s (x) VI (x))

Vo

+ Y [V (Ppar66ix) - ToasxV85i(x)

a=1 v,

+> / dA S50t (x) T (x) + c.c.

a:lQa

Use Green’s identity to change the volume integrals into boundary integrals.

/dVVng:/dAanf~g—/dvv2f.g (2.45)

\4 ov |4

Where the normal n should be oriented to point out of the volume V. In order
to define the normal derivative on the boundaries @, it is helpful to separate
the solutions in Vj and V,, with

(2.46)



Thus

Sl @i+ 005, ]
=S[L.]+ /dV (K?@erk(x) + V@ k(%)) 00 (x)
n
+Z/dA8n<P+ 5@1@ Z/dAanSO &Pk( )
+Z/dA5g0k x)J (x) + c.c. (2.47)
=10,
— 8.1+ / AV (201,(%) + V2 pu (%)) 37 ()
+ 30 [ A (00 - Adnpua0) b + e
=10,

Where AOpperk(X) = Onp—(X) — Onp+(x). Since dp* is arbitrary

V201 + k2@er =0 X ¢ Qa
Ape =0 X € Qg (2.48)
Aan%)cl,k = J]? X € Qa

Thus the stationary field ¢ i satisfy a scattering problem with fixed sources J*
on the curves @),. Use the solution ¢ ; to change variables in the functional
integral.

= Qar+0
905 <P*l,k 1: (2.49)
Ok = Peak T 0k
The action from equation (2.43) is changed into
Slpetk + Ors 9l + 0% AT TN
AV (K> (et + Or) (@l p + 05) — V(eerk + 0x)V (051 + 07))
Rn (2.50)
+30 [ A (U oo+ 000 + T (i + 60) + e
Since @ 1 is a solution to (2.48) the action simplifies into
Sleetn + Ok, 02k + 05, {03 (T2}
=S ]+ /dV (k20,07 — V6,V0;) +Z/dA (J2 0y + J2O) + c.ce. (2:51)

Rn

a

Notice that the second part is geometry independent and will later cancel when
the regularized Casimir energy is calculated. The same applies to the first part
of the action itself in equation (2.43) and it is advantageous to redefine the
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action in order to only account for the geometry dependent integrals.

8lpese Gt TR ATEN =3 / A (i gu s + JEgis) +ec.  (252)
* Qa

The functional integrals in equation (2.42) will only involve integrals over the
sources Ji and J*. Everything else will cancel when the energy is renormalized.
Redefine Bg(k) here for reference.

Bg(k) = / H DJe DJ* et Slen il T Yo (T8 Yol (2.53)

a=1

2.5 Scattering solutions

The equations in (2.48) are linear and thus the solution can be written as a
linear superposition.

Pelk = Z@ﬂ (2.54)
B

Where ¢g is the solution when J* = 0 for o # 3 and in effect there is a single

scattering object Q. The action S[...] from equation (2.52) can be written as
Sleet s Pargor (TR AT N =D Sap (2.55)
apf
where
Sup = [ 44 (" s+ T ) (2.56)
Qo

For each object V,, choose a coordinate system O, with coordinates denoted x,,.
The origin of the coordinate system is inside V,. With respect to O, choose
a complete set of functions {a{’ (x,)} defined on the curve Q,. In general i,
will be a multi index. For a complete set of functions, af (x,), any reasonable
function f on @, can be written as

f(xa) =25, finaf (Xa) %o € Qa (2.57)

Let G*(x4,x,) be the Green’s function for the operator £ = V2 +k? (outgoing
at infinity) in the coordinate system Q.

Thus
LoG(Xa, X)) = =00 (Xq — X)) (2.58)
where L, and §, are the operator £ and the delta distribution in the the coor-
dinates O,,.

The plan is to expand the action S, in the basis af (x,). Consider the two
cases Sqoo and Syg, for a # 3, separately.
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2.5.1 Expanding ¢, over O,

Expand all functions connected to object V,, in the basis O,.

By completeness this implies
J(xq) = 2 ag' (Xa)
jOé

and

*(Xa, X ZGO‘ Xa)

(2.59)

(2.60)

The properties of the Green’s functions let us us write the each ¢, in (2.54) as

palxa) = [ g, 070, ()

QOt

Combine this to get

Po(Xa /dAx/ ZG“ ag’ )Z

Qa Ja
ia.da

- Z Gla.]a Ja )
iasda

where
Gy, = [ di, G, )af ()
Q(l

With this the integrals in our action can be expanded

/ dAx, J2" (Xa)a(Xa)

/dAxa Zza* a* Xoc Z Jm

Josiarka O
— [e %23 (0% OL «
= > ADE .Gk
Ja 101 k(X
— Qack (6% (e}
= E i, Hiaka N
in ko

where

/dAxa ai” (Xa aJO‘ (Xa)

Qa
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aj. (%a)

Z 2 ke Pka /alecx af‘*(xa)aJ (Xa)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)



and
- 01,65 260
Note that if the basis is orthonormal thls will result in

D{ . =6 i (2.67)

iasda

2.5.2 Expanding ¢, over Op
Evaluate the field ¢, in coordinates system Og by evaluating the basis functions

Pa(Xp) = a(Xalxs)) (2.68)

And complete the same evaluation as in the previous section.
First from ¢, in equation (2.61)

Pa(x3) = Palxa(x) = [ A, G (xaloxs) X)) (269)
Qo
Define
G (xp,x;,) = G*(%a(xp), X,) (2.70)
where the series expansion is given by
G (x5,% ZG ag’ (xp) (2.71)

Use this in the integral (2.69) to get

Galxs /dA ZG?:‘ vaJa g (
7ZG15J i )

ig.da

(2.72)

where
G = / Ay, GLO(x),)as (%)) (2.73)
Qa

Expand the integrals in our action

/ s, T2 (%) 05(X0)
Qa

/dA Zza* & (Xa) Z Gfﬁkﬁzkﬁ ajt (Xa)

Qu Ja-ks

> G A, / dAx, a8 (Xo)ast (Xa) (2.74)

ia.da kg Qu

_ ax o af B
- Z Fia Diaja Gjakﬁ Zkﬁ
ia 7ja kB

o a* afp
- Z Kla kg ZkB

ia, kg

35



where Df* ; was defined in equation (2.65).

And
‘akﬁ Z Dla-]a Jak[i (2.75)

Thus

S = Zsaa+25a5

aitb

= Z Z 2 HY g 2 + Z Z a*Klaiﬁsz + c.c.

a igka a,B ia,kg
a#p

(2.76)

The action is comprised of two parts: the interaction, K;" Bk;v and the self energy
H . These matrices contain the integrals of the Green’s function with the
basis functions given by (2.63) and (2.73). When the frequency, k, is large the
interaction part of the action will disappear and the action will only depend on
the self energy.

Thus

S =8¢ = Z Z 2 Hi o 2, tec (2.77)

(ST ¥ 9N

It is important to note that the integrals defining Bg(ix) in equation (2.53) are
Gaussian. This is the only functional integral that can be solved exactly.

2.6 Gaussian Integrals

This elementary 1D-integral is found in any textbook [14] (p. 271)

G.(E2 2
/ dre= 5 =28 (2.78)
a

—0o0
a product of integrals with different coefficients a; and variables x; will be

—1/2

/dxe 3250575 = (2m)"/? /Haj (2.79)
R7l

Let A be a n x n diagonal matrix with the coefficients a; on the diagonal. Then
<x,Ax >= Zajxf (2.80)
J

and det(A) = []; a;. The above integral is

/ dx ™3 <A — (27)"/2det(A) /2 (2.81)
Rn

This will hold for any real symmetric matrix. Because any such matrix can be
reduced to diagonal form with an orthogonal change of variables.
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How to define this relation for functional integrals? First define a inner
product of two functions ¢(x) and 1 (x) by.

<ot o= [ axeoui) (2:82)
Let A be a self-adjoint operator and consider
/ Dy e i<ede> (2.83)

Since A is self-adjoint there is a complete set of orthonormal eigenfunctions {; }
with corresponding eigenvalues {\;}. From a change of variables

Y= Zai% (2.84)

Then
<@, Ap >=> " Naj (2.85)

assuming that A is a positive operator such that that all A; > 0 for all i. Denote
the Jacobian as J and thus under a linear change of variables then

/ Dgo e—%<tp,Ag&>

1 2 1 2
—J dage”2N% =] /d i 2N
/ [aae I1 [ aue 056)
-1/2
= JH(27T)1/2 (H )\i> o det(A)~1/?

for complex variables there is a similar result.
Multiplying equation (2.78) with itself using two different integration vari-
ables. The resulting formula is

a 2
//dxdy e 8@y - 21 (2.87)
a

now change the variable to z and z* by

s= ety 2= ey
(2.88)
dx = %(dz—%—dz*) dy = %(dz—dz*)
The volume element changes into
1
dx Ndy = 2—(dz +dz") A (dz —dz") = —idz NdZ" (2.89)
i
and the integral changes into
dz* d * 1
Z 0% ez o (2.90)
2mi /2 a

By introducing complex fields ¢, with a standard complex inner product.
Then with a similar reasoning as above it is possible to show that for a self
adjoint positive operator

/Dngcp* e <P AY> — det(A)7? (2.91)
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2.7 Casimir energy

Everything is now ready to produce a formula for the Casimir energy. It is
convenient to first reorganize the action in equation (2.76) into

S = Z(Zza*Ho‘ e —i—cc)—i—z Zza*Kf"iﬁzkﬁ—i—c.c.

af inkg
a#B

ok rrox « ok
—§<§Z 1kzk+zia1kzk>

* B Bx B
+ g E 2" Kl“kﬁzkﬁ +ZiO;K|aszkﬁ
b \iaks (2.92)
a#p

=D > AT (Hi, +HES,) 2,

ala(,,

DIDIEA (Kf;iﬁ ) A

B inks
af

_ Z Z Za*Ta Zk + Z Z Zoz* 1(1 azkﬁ

a gk, af ickg
a#f

where
T K, = Hio(ik + Ha*

1o

2.93)
aB aff Ba* (
Uiakg = Kiak,g + K

kg 1o

Note that the 7{*) and Ui’i“ff{l3 are self adjoint.
Evaluate the functional integral from equation (2.53) with the above action

Bo(ir) = / HDJ‘“DJO‘* wSs ‘T:_“ (2.94)

a=1

and make a linear change of variables of the form
= Z 2 a5 (Xa) (2.95)

and thus equation (2.91) will result in

/ H [ Do Dore<="" 45" o det(Aqg(in) ! (2.96)

a=1 i,

Where the Jacobian, J, is constant and the matrix A is

,Tl 7U12 .. 7U1r
_U21 . :
Ao (ir) = % : (2.97)
_UT*].J‘
_UT'l . _Ur,7'—1 _Tr
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Subtract the high frequency part to regularize the Casimir energy. At high
frequencies, the only contribution to the energy will be from the self energy
of each object. Thus it is convenient to subtract this contribution because
the interesting part is the interaction energy. Let E., denote the self energy
calculated using only the high frequency contribution S, from equation (2.77).

The functional integral that will have to be solved for the high frequency
part is

T

Boo(ik) = /HDJO‘DJ“* T S0 (2.98)

T=—1is

and after a linear change of variables the integrals can be calculated as

/ HHDzlaDz e < AZT> o det (Ao (i) T (2.99)

a=1 i,
Where the Jacobian J is constant and the matrix A is
-7t ... 0
Auo (ir) = % SRV (2.100)
0O ... T

The regularized Casimir energy can now be calculated from the ground state
energy in equation (2.41)

E=Ey— Fx
[ee] (oo}
= — lim E/dm In B (i/@)—i/d/i In Boo (ik)
C sooo | 27 @ 2 >
0 T=—1is
= — lim —/dn In
oo 2m T=—is (2.101)
. h det(Ag(ir))~!
=—1 dr 1
et 7T/ T det (Ao (ir))
0
= lim E/d,$ IHM
s—o0 27 det(As(ik))
0
Using the relation
gt = det(A)det(B~1) = det(B~14)  det(B) #0 (2.102)
and since Ay (ik) is diagonal the energy is simplified into
hof .
=5 dk Indet(Mg(ik)) (2.103)
m
where
1 .. (Tl)—lUlr
Mg(ir) = : : (2.104)
(Tr)—lUrl . 1
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For the special case of two objects this will be

E= QE /d/i Indet(1 — (T~ tU*(T*)~U?) (2.105)
™
0

2.8 Applications

To calculate the Casimir energy given in equation (2.103)
h .
&= o dr Indet(Mg(ik)) (2.106)
m

From the formula of Mq(ix) is dependent on the matrices T and U% given by
equation (2.93). For real fields these are

Taka:H-ak +Ha* _H(xk +Hk io

1o

) (2.107)
Look to equations (2.66) and (2.75) to calculate Hy , ~and Kl ks
Z D¢
(2.108)

1 kﬁ ZDlaJa JakB

Where the Dg_; is the inner product matrix given by equation (2.65) as
Di; = /dAxa ai " (Xa)aj (Xa) (2.109)
QOt
G k. and GO‘ "k, are given by their definitions in equation (2.63) and (2.73)

k. = [ 4, G5 (,)ai (<)

Qa

G, = / dAs, G2 (x,)af. ()
Qﬂt

(2.110)

Insert the definitions of G§' (x;,) and Gf:(x;) to get a clear formula. These

are defined as the coefficients of the series for the Green’s function in the basis
af* (x). Choose the basis such that Df; = d;,;, then the coefficients are
found with the usual method.
« / !/ [e%
G () = [ i, G705, x2)
(2.111)
Gy ) = [ A, Go(xa, % )af ()

40



Thus the double integrals

O = / /dAx/adAxa a§' (%a) G (Xas Xy ai,, (X3,)
Q(’C QOC

ik = / / dAx, dAs, af (x5)G* (x5, X )i, (5)
Qa Q[:f

(2.112)

The last thing that is needed is the Green’s functions G* and the basis functions
ai' . The Green’s function for this problem is given by equation (2.58) and the
two dimensional solution to this equation is a modified Bessel function.

1
G* (X, XL,) = —%KO(KHXQ —xL1) (2.113)

e}

2.9 Discretization

Consider compact objects whose boundary curves ); will be approximated by
a piecewise linear curve. The piecewise linear curve is determined by N points
Pj, placed on the curve @;. A parameterization for this piecewise linear curve
is

Yi(s) =Pj_y + (P}, — Pj_,) == s €I, = [agp_1, ] (2.114)

The edges of each parametrization interval and their centers are defined as

ap=-L/2+k-A

sk =—L/2+ (k—1/2)-A (2.115)

where A = L/N = ay — ay—1. The number of discretization intervals is N and
the discretization parameter o € [—L/2,L/2] for some k. Integrating over a
single parametrization interval gives

A
1 i 7 7 % 7
Jar= [ asgIPL =Py = 1IP - Pl =) (216)
Ch Q-1

Where the length of each parametrization interval is defined as €.
Select some basis on our object and to keep everything simple use an or-
thonormal basis on each parametrization interval.

_ _ [ 1e, x € vi(I})
9““(")_{ 0 xem). i £k (2.117)

At this point it is possible to use some spherical basis, as might be convenient
in some situations, but the above basis will simplify several integrals and our
matrix. With this basis the matrix D ; from equation (2.65) will be

Diy = / dAy, Oipr (x)01 (%) = 07, (2.118)
Qi
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From equation (2.112) it is simple to calculate what the Green’s function matrix
will contain.

//dAx/ dAxa aJ (Xa)G (XQ,X )aﬁa(xla)

o Qo (2.119)
G, = [ [ i af 05016 (s <L ek, )
Qa QB
Do each of these in turn
2.9.1 Matrix elements Gy, and Giak
The discretization is organized with a singe variable k = 1,..., N and for o # (8
Gl = / / dAw dAy a} (x)G (%, x)ag, (x')
Qo Qﬁ
] (2.120)
= [ [ atcaa o)
2my/epel i 17

This double integral can be approximated using a midpoint rule or a 2D Gaus-
sian quadrature. Whatever methods is used, this integral is non singular and
will contribute to the off diagonal block matrices in Mg (ix)

The next integral will involve integrating over the singularities in the Green’s
function so it will be necessary to use the Cauchy principal integral.

o ://dAx/dAxag(x)Go‘(x,x’)ag/(x')

Qo Qe (2.121)

dAx Ko(k||x — X'|])

Ay
271'1/ekek,//d

There are now two cases, if k # k' then Ky(...) will be a smooth function
without any singularities. Any numerical integration routine can be used to
calculate the double integral.

But if kK =k
o ___1 oy dAxdAx K, '
=~ e PV x' dAx Ko(k[[x —x'[]) (2.122)
Ie Ie
Note that
o a @ S — Of—1
[ = x| = [Py + (PF = PR_)——
s — g
_ Pg,l . (Pg _ gfl)#n (2123)
a a s— s |875l| a
= [I(Pg — PR () = e
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Thus when the parametrization is inserted into the integrals

eds’ e{ds s—¢
o= gV [ [ EE A g2y
Io Io
| | (2.124)
=k p ds Ko(ri—e2
27rA2 Vs //ds ds o)
Io I
Change the variable of integration
9(0%_1) = —%A 9/(0%_1) = —%A
Olay) = %A 0 () = %A
(2.125)
0(s) = —A/2+5s—ag_ 0'(sy=-A/)2+ 5 — a1
do = ds do’ = ds’
The integral is now
AJ2 AJ2
o € / 0 -0 .
—AJ2-A)2

As A — 0 the integration will be over a vanishing square and the parametriza-
tion points will be dense on the surface @Q,. The Taylor expansion of Ky(x)
for small arguments is Ky(z) = C — log(x) where C = log(2) — Yem and
Yem = 0.577215.. is the Euler-Mascheroni constant.

With this
AJ2 AJ2
= gk PV / / d0'd0 (C — In(rel |0 — 0']/ )
—A/2-A/2
AJ2 AJ2
N eg 2 @
= -5t | A - PV, / / d6'd6 In(kel |9 — ']/ A)
—AJ2=A/2
AJ2 AJ2
_ Cey en / o /
S S / / d40'd0 (ke |0 — 6'] /A) (2.127)
“AJ2-AJ2
A/2 B(6+A/2)
Cek ey .
T o; 27TA2 B d9 lg% / dy In(y)
—A/2 Be
B(A/2-0)
+ / dz In(z)
Be
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Where B = ke /A, y = B(0 —0') and z = B(0' —0)

A2
/ d0 (B(6 + A/2) In(B(6 + A/2)
A2
“B(6+ A/2) + B(A/2— 0)In(B(A/2 — 6)) — B(A/2 — 6))
A2
S R / d40.(0+ AJ2)In(B(O + A/2)

2m 21w A2
A (2.128)

Cef ey 1

kk = T on 2rA2 B

A)2

- / o (A/2 — 0)In(B(A/2 — 0))

—A/2

where y = B(6 + A/2) and z = B(A/2 — 6) and then the two integral were
joined by setting z = y.
Thus
e e
= —2—(0 +1—1In(BA)+1/2) = —2—(0 +3/2 — In(key)) (2.129)
T ™

Every matrix component of Mg (ix) has now been calculated.
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Chapter 3

Implementation

All the coding was done in C using phread for parallel support. The implemen-
tation of both the boundary element method and the functional integral method
have many similarities. This is because both methods use Greens functions: the
free Greens function in the boundary integral method and the scattering Greens
function in the functional integral method. The primary difference between the
two methods is that one solves a linear system and the other calculates a deter-
minant.

Boundary integral method

The boundary integral method is about computing surface integrals by solving
a linear system of equations and there are three parts to this algorithm: Filling
matrices, multiplying matrices and solving the linear systems. The first two are
simple to parallelize and if it is possible to avoid memory races the scaling will
be excellent using multiple processors. Solving a linear system of equations in
parallel could be done using an iterative method such as generalized minimal
residue method (GMRES).

If any geometric symmetries are exploitable by the boundary integral method
this would significantly reduce the computational time.

The primary algorithm used in the program is the LU-decomposition (Crout’s
algorithm) with pivoting. This is a good solver since the methods calls for us to
solve the same linear system for several different input vectors. Thus the LU-
factorization can be calculated once and the input can be varied without the
need to recalculate the matrix. For small matrices this algorithm is fast, but for
larger matrices it might be better to use an iterative algorithm such as GMRES.
But due to the limited matrix size of our problems, the LU-decomposition will
be more than sufficient.

If there are r objects all discretized using N points (for simplicity, in practical
problems this might vary for different objects), then the algorithm requires the
following steps to evaluate the density function once.

e Fill r(r 4+ 1) block matrices of size N x N
e Solve r linear systems of size N x N with N different r.h.s. each

e Compute r — 1 block matrix multiplications of size N x N
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e Solve a single rN x rN linear system for N different r.h.s.

Functional integral method

To calculate the density function this method has to find a determinant of a
matrix. This matrix is comprised of smaller block matrices that must first be
inverted and multiplied. Since all the matrices will be relatively small it is
possible to use LU-decomposition for all relevant matrix operations.

If there are r objects all discretized using N points, then the algorithm
requires the following steps to evaluate the density function once.

e Fill 2 block matrices of size N x N

e Solve r(r — 1) linear systems of size N x N for N different r.h.s each but
where there are only r different matrices on the left.

e Find the determinant of a »IN x rN block matrix

Comparisons

Since both methods are based on Greens functions, the main matrices will be
filled by similar elements. Start by comparing the differences in the above
procedures:

e Fill the r.h.s. of the boundary integral method. This requires that r
additional block matrices be filled.

e The functional integral method has to solve r(r — 2) more linear systems
of size N x N for N different r.h.s. each

e The boundary integral method has to multiply » — 1 block matrices.

e Either solve a linear system or find a determinant.

Using LU-factorization it is possible to efficiently solve the equations for
multiple r.h.s. by performing the LU-factorization once for each matrix and
using back substitution for each r.h.s. This method can also be used to calculate
the determinant of a matrix. For the LU algorithm the complexity for large NV is
in the order of (2/3)N3. The back substitution is performed with an asymptotic
complexity in the order of 2N2.

A comparison of the asymptotic complexity in each method (if the LU-
factorization is used) yields

e Boundary integral method

Fill block matrices: cr(r + 1)N? where c is some constant
— Solve linear systems: ((2/3)r3 4 2r2)N3 + (8/3)rN?3

— Matrix multiplication: (r — 1)N? (standard formula)

— Total: (2r® +6r% + 11r — 3)N3/3

e Functional integral method

— Fill block matrices: cr?N? where ¢ is some constant
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— Solve linear systems: 7(2/3)N? + 2r2(r — 1)N3
— Determinant: (2/3)(rN)>?
— Total: (87% + 612 — 4r)N3/3
Thus it is clear that both of these methods have very similar asymptotic
complexity at least when it is reasonable to use the LU-factorization in both
methods. For very large matrices on clusters or similar the LU-decomposition

will be unpractical. In this regime iterative methods such as GMRES will prob-
ably be the most efficient method for solving linear system.
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Chapter 4

Mode summation

A common method to find the Casimir energy is mode summation. In situations
with a high degree of symmetry it is possible for finding the Casimir energy using
this method. The exact solutions can then be compared to the other methods.

4.1 Parallel plates

Consider two parallel non-dispersive plates separated by a distance a, the defin-
ing equation for a scalar field is the wave equation. In each separate region let
¢(x) be constant

pre(x, 1) — c(x)2V2<p(x, t)=0 (4.1)
where
c1 x€(0,a)
olz) = { ca2 else (4.2)
and

p2(x) x € (—00,0)
p(x) =14 ¢i1(x) x€(0,a) (4.3)
pa(x)  x € (a,00)

At each boundary the solution ¢ should be continuous.

lim @a(x) = xlir(r)l+ v1(x)

x—0— — (4_4)
lim ¢y(x) = lim ps(x)
x—a~ x—at

and that no energy is deposited into the boundaries. This condition comes from
the energy flux found in equation (1.33)

Se = —c(x)?p: Ve (4.5)

Assuming that the normal component of S, is continuos across each boundary
then
lim —c520npa(x) = lim —cf o101 (%)
x—0F

S . ) (4.6)
lm —c]91:0np1(x) = lm —c5¢02:0np2(X)
xX—a~ x—at
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Assuming that ¢4 is continuos across the boundary

= lim —cAonpi(x)

xli>r(()1— —C30npa(x) =
lim —c?0 = lim —c30 (4.7
10np1(x) = lim_ —c30np2(x)

X—a—
And assuming that the same boundary conditions apply to the quantum fields.

Starting with a Fourier transform in the time domain.
w?p(x) + ¢(z)*Vp(x) = 0 (4.8)

and then another Fourier transform with wavenumber k will give

w%m+<ﬁ(£;f)w@o (49)

Divide the space into three regions
I -2<0
II -0<z<a
I - x>a
The following equations are found for each region
I —¢"(2) + a3 =0
II —¢"(z) + i =0
I —¢"(z) + ¢3¢ =0

where ¢ = (k2 — (w/cj)z). The solution in each region is

I p(x) = Ae®2® + Be 2%
II p(z) = CeN® + De™ 017
IIT ¢(z) = Ee®® + Fe @27
In order to get a mode of frequency w it is necessary to have £ = B = 0. The

boundary conditions give us for z =0
A=C+D
) ) (4.10)
c5q2A = ciq1(C — D)

and for z = a
Cet'® + De” 1 = Fe™ ¢
(4.11)

g (Ce®* — De™ %) = —cjgoFe™ ¢

Eliminate A and F' will result in

2
C+D= %(C — D)
2% (4.12)

,@ (Cetha _ Defqla)

Ce™ + De™ 1 = ——
342
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2
define o = ZéZ; and the following system emerges
2

B S |8 B R RS

This will have a non trivial solution only if the determinant is zero.
flw k) =(1—a)?e 1 — (14 )2t =0 (4.14)
or equivalently
g(w,k) = e™™ (a1 + c3a2)%e™ — (clqr — 3g2)%e™ ") =0 (4.15)

This relation determines the possible frequencies w. But in order to derive the
Lifshitz formula, the system must be dispersive. Since any amount of dispersion
is sufficient, the high frequency contribution to the force will be modified. Since
this contribution will be negligible it is possible to set ¢; = ¢;(w) and ¢ (w) —
co(w) =1 at high frequencies.

The energy can be expressed as

E:% / % Zn:wn(k) (4.16)

Where w, (k) are the zeros of g(w, k). As g(w, k) has no poles use the argument
principle to evaluate this sum.

It states that for an analytic function h(z) with no poles inside the contour
C and a meromorphic function f(z) with no poles or zeros on C. Then

IR - S
f(2) *; nh(zn) — knh(z7) (4.17)

where 20 are zeros, and 2F are poles of f(z) inside the contour and m,,, k,, are
their respective multiplicity.

Use h(z) = z and an analytic continuation of g(w, k) from equation (4.15)
to get a sum over the zeros w,

an(k) = i%dwwgl(w’k) (4.18)

g(w, k)
C

Using this the energy is given by

oo

h g'(w, k)
E= 52 / dk j{dwwg(w’ ) (4.19)

— 0o C

o1



Figure 4.1: The integration contour C' = C7; UCR used in the argument principle
for the parallel plates.

Where the contour is given in figure 4.1

o

. —iR
dk lim /dww
iR

g/
~ 8n2i R=00 g(w, g(w, k)

/
k) | /dwwg (w, k) (4.20)
k)
—0o0 CR
Observe that when for large w

g(w, k) ~ (g1 + 3g2)e 792 = —(cy + 02)2w26i(i_%)wa — —40®

g (w, k) = —8w (4.21)

Thus wg'(w, k)/g(w, k) — 2 along Cw. The energy will then be given by

oo iR
h . d
_@/dk — fim / dwwalog(g(w,k))+2/dw (4.22)
- —iR Co

The dominating contribution to the energy for large w is
Goo(w, k) = (3qy + cAqp)?elni®2)a (4.23)
The energy associated with this contribution is
0o iR
h . d
dk [ — lim dw wo log(geo(w, k) +2 [ dw (4.24)
w

e 824 R—o0
—o00 —iR Coo
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Define the regularized Casimir energy as

d g(w, k)
E=E—-Fy=—% dk i d 1 _— 4.25
* 87r i R wwd 8 (goo(w, k)) (4.25)
—iR
And modify this slightly with a partial integration
5 oo iR ( k)
: g\,
= dk 1 dw 1 O 4.26
821 / e _ w08 (goo(w, k)) ( )

The change of variables w = iy will result in

=32 / dk 70dy log (goo Zyﬁi)) (4.27)

g(Zy,k) - 1— Clql - C2(]2 72q1a
Joo iy, k) g+ 3

where

(4.28)

w=1ty

Take the limit ¢; — 1 and ¢y — 0 to simulate a perfect conductor. Then

R e ey (1.20)
Joo i1, K) w=iy '

Change to polar coordinates and the energy is given by

h T gliy, k)
£= g /dk /dy tog <goo(iy7k)

h r 7 —2+/k2+y2%a
:ﬁ/dk/dylogO—e Vi +y )
0 (4.30)

0o /2 0o
h —ora h —a9ra
:ﬁ/dr/dﬁrlog(l—e2 ):E/drrlog(l—e2 )
0 0 0

(o)
e v = h —u
E %%bg( )— 167m2/duulog(1—e )
0 0

For two plates with a separation a the Casimir energy is given by

E(a) =

16ma?

i oy T) h
/duulog (1—e) = ooz~ 00239142 (4.31)
0

This coincides with the results of Ambjgrn and Wolfram [15](p.4 with d=2).
Using equation 5.9 it is simple to can calculate the pressure from the energy

_dB(a) _ w

h
~ 0. 0478283— 4.32
da 8ma3 ( )
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4.2 Concentric circles

Consider the problem of two concentric circles. The two circles have radius 7
and ro such that r; < ry. The defining equation in the annulus between the two

circles is
gﬁtt(x, t) — szng(x, t) =0

) (4.33)
(p(X, t)|Qj =0
First take a Fourier transform in the time domain.
wr(x) + AVAp(x) =0 (4.34)
In polar coordinates this is
9 18 P 1 P 1
v = - (7 r)-l—ﬁ 99=V7«+772V9 (4.35)
The new equation is
1
w?@(r,0) + V. ¢(r, 0) + c2r—2vg¢(r, 0)=0 (4.36)
This equation is linear and can be solved by defining the solution as
p(r.0) = Y Ru(r)Om(0) (4.37)
Thus
1
W2 R (1) (0) + 20, (0) V. Ry (1) + CQT—QRm(r)V(;@m(H) = (4.38)
Simplify this into
ViRun(r) VO, (0)
g2 2 iremA ) m 4.39
L = R (439

where k = w/c is some constant. These two equations will be solved one by one.
First the angular equation

Vo0, (0) = —m?0,,(0) (4.40)

The solution is A A
Om(0) = Ape™ 4 B, e~ ™7 (4.41)

with the symmetric condition that ¢(r,8) = @¢(r, 0 4 27) the solution is required
to only be valid for m € Z.
The radial equation is given by

m2
where the solution is
Rin(r) = AmJm (kr) + B Ym (kr) (4.43)
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where J,, (kr) is a m'" order Bessel function and Y,,, (kr) is a m*® order Neumann
function. The boundary condition R, (r1) = Ry, (r2) = 0 give

or

Bop = — A Jo (k1)) Y (k71) (4.45)

Inserted back into the series this gives

G0 = 30 A () = Vo) PGS

m=—0o0

The second boundary condition R,,(r2) = 0 will give a non trivial solution only
if

Jm(krg)Ym(krl) - Jm(k’f'l)ym(kT'Q) =0 (447)
Denote the solution to this equation as k,, for each m. Define a function that
is zero on all k,,, as

f(k) = H(Jm(krg)Ym(krl) — I (k1) Yo (kr2)) (4.48)

m

The energy for this system is defined as

1 1
E=Y" 5fkm = 5 > km (4.49)
m m

where i = 1.

The plan is to sum over all the zeros of f(k), this can be accomplished by
using the argument principle from complex analysis.

It states that for an analytic function h(z) with no poles inside the contour
C and a meromorphic function f(z) with no poles or zeros on C. Then

1 1'(z) 0 »
= — 4.
77 dz h(z) 702 gn mnh(z,) — knh(2P) (4.50)
where 20 are zeros, and 2P are poles of f(z) inside the contour and my,, k, are

their respective multiplicity.
Use h(z) = z and an analytic continuation of f(k) from equation (4.48) to
get a sum over the zeros k,,

> k= ;rij{dkkj;((:)) = ﬁ fdk kd%log(f(k)) (4.51)
m C C

Using this the energy is given by

d
E= 4% dk k- 1og(f(F)) (4.52)
C
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Figure 4.2: The integration contour C' = C; UC3UC5UC, used in the argument
principle for the concentric circles with the branch cut along the negative real
axis.

Where the contour is given in figure 4.2. The angle ¢ is there to make the
integral converge and the limit ¢ — 0 will be added at the end. Let us remove
the derivative by performing one partial integration.

Ez—ﬁ;%%muﬂm>
C

1 i I —i -
= /dy (e"log (f(—iye'®)) + e " log (f(iye *?))) (4.53)
0
—/24¢
— L tim ([ dk tog (f(k)) — 1im " 16 1og (f(ec™)
Tl p—00 & e—0 47 &
Cs 77/2745
Take the limit ¢ — 0 in the first and last expression to get
1 o0
B = - [ dy Qog (F(~iy) + log (£(in))
0
—m/2 0 . (454)
. ee’ oy L
_ 11_% / g df log (f(ee”)) — pll}lglo dk log (f(k))
71’/2 —0 C3
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It is possible to show that f(—k) = f(k), so

—m/2

1 T . . ee?? i0
B = o [ dylog(#(i) - iy [ G-d0 g (f(ec”)
0 /2 (4.55)
1 .
- 1 dm [ i log (1)
(Z)—)OCS

Observe that the integrand evaluates f (k) at k = iy. A few relations are required
to simplify this expression
Ip(iz) =" L, (x)
Kp(z) = gi"“H,gl)(m) (4.56)
HM () = Ju (@) + Yo (2)

Combining these relations results in
- 2 -—n -n+41
Y, (iz) = —=i "Kp(z) + " 1, (x) (4.57)
T

Thus

fQy) = | | (Um(iyr2) Yo (iyr1) — Jin(iyr1)Ym (iyra))

9 (4.58)
p (Im (yr1) K (yr2) — L (yr2) Km (yr1))

s{é] 3

Defining the infinite part of f(iy) as foo(iy), this is the divergent part of the
energy evaluated along the imaginary axis. Notice that for 79 > r; the integrand
will evaluate to I, (yr1) K, (yre2) — 0 and I, (yr2) Ky, (yri1) — oo as y — oo.

Thus for some y € R

Fooliy) = TT =2 I yra) o () (459

m

This is the infinite contribution to the energy along the imaginary axis. If this
is rotated out into the complex plane

fool2) =]] f%Im(fizrg)Km(fizrl) (4.60)

m

Simplifying this using the Bessel relations above and the Hankel relation
H () = (J_m(z) — e "™ Iy (2)) /(i sin(m)) (4.61)
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results in

fool2) =]] f% m(—i2ra) Ko (—izry)

m

-2 (o) Kon(—ir)

= [[—iJm(zra) HS (2r1)
L] (4.62)

= H —i T (2r0) (T (2r1) — e ™PU T, (2r1)) /(i sin(mmr))
— H —2iJm(zT2)Jm(zr1)(eim” _ e—imw)/(eimﬂ _ e—imTr)

= [ —2iJm(zr2) Jm(2r1)

Thus for any complex z it is possible to use the density

foolz) = H =20 (212) Im (271) (4.63)

Subtracting the infinite part of the energy will give
E=F—-Fy

1w o (1 Im(yr)Em(yra)
T or zm:!dyl 8 (1 Im(yrz)Km(yn)>

—m/2
i i 4.64
~ lim / “:de log (f(ee ) ) (164

0 4 Joo(€€?)
/2
1
b (1)
7y ¢_>0C3 foo( )

Solving the integral over C, first

lim [ dz 10g< /() )

e—0 foo (z)

€

—7/2

. X T (6€¥75) Y, (ee?971)
=1 46 log | — : :
ey /66 og( 2iJ,, (e€979) g, (€€7077)
m m/2
T (€€071) Y (eet9r3)
2iJ (€€¥rg) T (ecfry)
—7/2

(4.65)

. ) . Ym(eewﬁ) . Ym(eewrg)
=1 96 1 B VA :
vy Z / “ o8 <z 2 (eefry) ! 2Jm (e€'frq)

m m/2
—m/2 ‘0 ( 0 )
. X Yo (ee®rq) Y, (ee*¥ry
=1 a0 L B A :
50 — / « o8 2Jm(e€9ry)  2J,,(ee?frq)
w/2
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The asymptotic forms of these functions for 0 < x < v/m + 1 are
Z(log(z/2) +7) m=0

SHm2yme oy s (4.66)

Thus for m =0
Y()(ZT'1) Yo(Z’I“Q) 112 2
_ ~ — [—(1 2 — —(1 2
2J0(Z7"1) 2J0(Z’l"2) 2 7T( Og(le/ ) + ,Y) 7T( Og(r22/ ) + FY) (4 67)
. .
= —log(ry/rs)
T
and for m >0
_D(m) (2 \™ _IGry) (2 \"
’ Ym(ZT‘l) B Ym(ZTg) - 1 ™ (zrl) _ Tr2 (zrg)
2Jm(zr1)  2Jm(2r2) 2 r(n}+1) (54 F(W:Ll+1) (532)
_ (4.68)

DO =

_L(m)I(m +1) <2>2m+r(m)r(m+1)<2>2m

e zZTr1
(1>2m <1>2m
— N + N
1 T2

For all m the integrand will be a limit of the type € or eloge. As ¢ — 0 the
integrals will therefore go to zero

2

_T(m(m+1) (|2>2m

. f(2) )
lim [ dz lo =0 4.69
i & ( Foo(2) (4.69)
The integral over Cs is next
. f(k)
o [ v (755
C3
i (p67)Yon(pe11)
. ) Im (pe’’ra) Yy, (pe'ry
=1 946 log | — : :
pro0 - / re °g< 20T (pe7r3) I (P11
/2 (4.70)

T (p€071) Yo (pe?073)
20 (pefr3) Jm (pefry)
w/2

. X Yo (pei®ry) Yo (pefrs)

1 6 log [ — = i

pggoz / pe 8 < 2iJm (petfry) + 2iJm (peifrs)
—m/2

m

The asymptotic forms of these functions for z > |m? — 1/4| are

(4.71)



The integrand will be

( Yo (zr1) Yo (zre) >

—2idp(zr1)  —2idm(272)

1(‘5( mm 7T)t< mm 7r>)
> an ( zrq 5 1 an ( zrg > 1

% (tan (ay + i61) — tan (ag + if2)) (4.72)

1 elor—P1 _ p—ia1+p1 elaa—P2 _ p—iaa+Py

- —92 (i(eial—ﬁl + e—ial-i-ﬁl) N i(eioé2—ﬁ2 + e—ia2+52)>
1 (eial—ﬁl — e~ ta1thr elae—P2 _ e—ia2+B2)

2

Q

etor—P1 4 e—ia1+pP1 ) + etz +pB2

Where a; = pcos(8)r; — mn/2 — n/4 and B; = psin(f)r;, but this integrand
does not converge. Thus this method does not fix the divergence, it might be
possible if a cutoff function or another approach altogether is used.

Thus -
1 Im(l/rl)Km(yW))
E=— /d lo (1 -
27 Z ) Y 208 L (yra) Ky, (yry)

m

I f(k)
-, f avos ()
¢—>003

The same regularization technique was used in appendix C on the parallel plates.
Using this regularization in this chapter resulted i a similar divergent integral
in the energy. But the correct energy was still recovered from the result. While
the lack of cancelation above is troublesome the comparisons in Figure 6.7 and
6.9 agrees with a energy given by

1l L (1) Ko (yr2)
e= 53 [dyios (1 - fm<yr2>Km<ym>> (4.74)
m o9

This energy is comparable to the results of F.D. Mazzitelli, D.A.R. Dalvit and
F.C. Lombardo [9] (p. 9).

The pressure on the inner and outer circle can be calculated from the energy
by equation (5.16) and (5.17)

(4.73)

1 OF
pP1=— o
27ry Orp
! 8£ (4.75)
P2 = 27’(’7”2 (97’2
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Chapter 5

Virtual Work

dr

Figure 5.1: Illustration of the tranformation dr on each object.

The total energy in a system is a function of several parameters. For instance
in the case of two concentric circles the energy is of the form E(ry,72) as such a
function of each radii r; and r9. In general there are n arguments E(rq,...,7,)
that control the energy. Let v(s) = (r1(s), ..., (s)) be an one parameter curve
through the argument space. Then the change in the energy F(v(s)) will relate
to the parameter s as

dE(y(s)) = VE - v/(s)ds (5.1)

Given a set of compact objects and the union of the surfaces Q@ = U;Q); it is
possible to define the force on a surface element dl on each object as F; = np;dl,
where n is directed into each compact object, or equivalently with an outwards
pointing normals and define the force as F; = —np;dl.

Figure 5.1 shows an example of a deformation of an object. The change in
total energy related to the deformation field, dr, is the integral of the force along
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the deformation.

dE:j{F-drz—j{dlpn~dr:—2%dlpjn~drj (5.2)

Q Q 7 Q;

Thus the energy is related to the pressure by

—VE -+/(s)ds = y{dlpn -dr (5.3)
Q

Example 1. Consider two parallel one dimensional plates with a distance a.
Mowe each plate separately. How will the pressure on the surface relate to the
energy change of the system?

Answer. Starting with the parameter change. FEach plate is determined by its
position along the x-azis. Let the left plate have position x1 and the right position
To such that x1 < xs.

Lets look at the left plate. Let the parameters be determined by ~(s) =
(z1 £ 8,22), then the change in energy will be

- (£1,0)ds = ig—Eds (5.4)

UG () = VE - (6)ds = (50 57 ) -

Oxy’ Oy

First parametrize the plates to describe the deformation. Let ri(s,t) = (z1+s,t)
describe the deformations of the surface. The normal is given by: ny = (1,0).
Then the pressure is related to the energy change by

4B(1(5)) = - § dipim - (£d5,0)
Q1
= q:ds]gdlpl = FdsLp;
Q1
The pressure on the surface is constant, as can be seen from the symmetries of

the problem. If each plate has length L, then the energy per unit of length is
given by

oOF
:I:a—xlds = Fdsp, (5.6)
So oF

For the right plate the sign will be reversed due to the normals having reversed

direction.
oF

:87‘%2

Or using the relation a = xo—x1 to relate this to the distance between the plates.
The chain rule gives

P2 (5.8)

oE

— (5.9)

b1 =p2 =
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With the energy from equation (B.11) that was calculated from the boundary
integral method

T
Fla) = ——— 1
(0) = 50 (5.10)
Then the pressure on each surface is
T
=Py = —— 5.11
pP1=Dp2 SYPS ( )

There is an attractive force between the plates and it is in agreement with the
force calculated by the boundary integral method in (A.13).

Example 2. Consider two concentric circles of radit Ry < Rs. Change the
radius of each circle separately. How will the pressure on the surface relate to
the energy change of the system?

Answer. Fach circle is fully described by its radius. The parameter change for
the inner circle is given by y(s) = (Ry £ s, Ra), and thus

OFE
dE =VE(Ry,Rs) - (£1,0)ds = £——ds (5.12)
ORy
The parametrization of each circle is given by ri(s,t) = (R1%s)(cos(t),sin(t)) =
(Ry £ s)ny. The differential change is given by dry = (+ds) ny, thus the force
s given by

dE(v(s)) = —j{dlplnl - (£ds)my
Q1

= ¥ds%dlp1

Q1

(5.13)

By symmetry considerations it is clear that the pressure on each circle is constant
and thus

dE(v(s)) = F2mp1 R1ds (5.14)
Combining these to get
L OB e compiRd (5.15)
R, § = Famprhi1ds .
or for the pressure
1 OF
=——— 5.16
h 27TR1 8R1 ( )

and for the outer circle there is a change in sign from the change in direction
of the normals
1 OF

=__——— 1
27TR2 6R2 (5 7)

D2

Example 3. Consider two adjacent circles that are centered in 0y = (x1,0)
and 09 = (x2,0) with radius r and minimal separation a = xo — x1 — 2r > 0.
Change the position of each circle separately. How will the force relate to the
energy change of the system?
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Answer. Mowve the left circle along the x-axis and the energy will change as

E
dE = VE(x1,2) - (£ds,0) = :l:dsg— (5.18)
Tl

The parametrization of the left circle is r1(s,t) = (x1 £ s,0) + r(cos(t), sin(t)).
The differential change is given by dry(s,t) = (£ds,0). Thus

dE(x(s)) = — 74 dlpym - (dds, 0)

o (5.19)
= :Fds-%dlpl Nz = :FdS Fl,m
Q1
and the force is given by
oF
F,=—— 5.20
L (9171 ( )

The same result holds for the right circle and it is clear that the total force will
be oriented along the x-axis.
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Chapter 6

Comparison

6.1 Geometries

There are three situations where the methods will be tested. The first two are
symmetric and have exact answers that the results can be compared to. The
final situation is more complicated and will be used to compare the boundary
element and functional integral methods.

6.1.1 Parallel plates

Figure 6.1: Illustration of the parallel plates with the forces on each line segment.
Note boundary effects on the edges.
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Take two 2D plates located at @ = +a/2 of length L with normals pointing
form each plate to the other. Each of these are discretized into N linear line
segments and can easily by integrated into the above program. This case is
special, since it is comprised of two non-compact objects. Figure 6.1 shows the
two plates and the force on each line segment of the plates. Notice that the
boundary effect are minimal.

Since the objects have to be of finite length in our program some boundary
effects are expected. The plates should be long enough so that the boundary
effects are small and constrained to the edges.

Observe that for this case the subtracted self stress is zero, first observe that
for sp € Q; and spr € Qj,J # 4, thus equation (1.114) gives

w n, . (Sk/ — Sk”)

y,i];k// = _an/DO(Sk’,Sk”) = Kl(WHSk/ - Sk””) (61)

2m |lspr — ser||
When sy, spr € Q; the objects will always have s — s at a right angle to n’.
Thus
6n/D0(Sk/, Sk//) =0 (62)
When sy, — s~ it is clear that in equation (1.115) the diagonal element will be
zero.
This shows that in equation (1.96) the self stress in B = 0.

6.1.2 Concentric circles

Figure 6.2: Illustration of the concentric circles with the forces on each line
segment.

Two concentric circles of radii Ry and Ry where Ry > R;. The normals
should be pointing from one circle to the other. Figure (6.2) shows the circles
and the force on each line segment of the circle. The total force is zero on each
circle
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6.1.3 Adjacent circles

Figure 6.3: Illustration of the two adjacent circles with the forces on each line
segment.

Two adjacent circles with radius R that are separated with a minimum dis-
tance of a, where all the normals should be pointing out of the circles. There is
no exact solution for this case, but it will show that the methods can be used
for non-symmetrical situations. Figure 6.3 shows the circles and the force on
each line segment.
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6.2 Results

To calculate the force with the functional integral method! the first order central
difference will be used with parameter variation h = 0.0001. To be consistent
all objects will use N = 400 discretization points and the integrals [ dw will be
solved with an accuracy of 10~% for both methods. Thus the resolution of each
object will be the same, the only error should be associated with the solvers
themselves.

6.2.1 Parallel plates

For the comparison of the methods the lengths of the plates are set to L = 30
and the distance between them will vary in the range a = 1...3. The methods
will be compared with the exact formula from equation (4.31). The results are
presented in figure 6.4 and figure 6.5 shows the relative error.

It is surprising to see that all the methods are in agreement. The parallel
plate geometry is non-compact and as such outside of the scope of both the
boundary element and the functional integral method. But as seen from the
results, both methods are accurate even for non-compact objects. The functional
integral method shows an increasing error for larger lengths, this is probably due
to the constant length of the plates. To verify this suspicion the computations
for the functional integral method are repeated in the same range a = 1...3 but
with the plate lengths L = 30a. This will keep the ration L/a constant during
the computations. Figure 6.6 shows the new error compared to the old. The
new lengths will reduce the resolution in each step and should slightly increase
the error, but this is seen to be of little effect. The new error profile in figure
6.6 is very different from before, the primary difference is that it is no longer
increasing with the separation of the plates.

6.2.2 Concentric circles

For this case there is an exact solution given by equation (4.74). The radius
of the outer circle will be constant Ry = 15 and the radius of the inner circle
will vary in the range R; = 10...14. Because of the constant discretization of
N = 400 points on each circle the resolution of the inner circle will change with
the radius. Figure 6.7 and 6.9 compares the three solutions and figure 6.8 and
6.10 shows their difference. All three methods give the same result, with little
deviation.

6.2.3 Adjacent circles

Two circles of radius R = 1 and minimal distance between circles in the range
a = 1...3 will be used to compare the boundary integral method and the
functional integral method. Figure 6.11 shows the results and figure 6.12 shows
the difference in the solutions.

The break in figure 6.12 reflects that both methods have integrals [ dw that
of the same accuracy at these distances (107%). Since there is no exact solution
it is not possible to say that either method is more accurate. As the results
show, both methods give approximately the same answer.

1The resulting force is multiplied by two so it’s possible to compare it to the other methods.
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Figure 6.4: Results from the boundary element! and functional integral method
with the exact solution to the parallel plates problem.
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Figure 6.5: Relative error between the numerical solutions and the exact solution
for the parallel plates in Figure 6.4.
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a new calculation with the functional integral method using a variating length
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Figure 6.7: Results from the boundary element! and functional integral method
with the exact solution to the concentric circles problem on the inner circle.
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Figure 6.9: Results from the boundary element! and functional integral method
with the exact solution to the concentric circles problem on the outer circle.
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Figure 6.11: Comparison of numerical results from the boundary element! and
functional integral method with the exact solution to the adjacent circles.
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Chapter 7

Conclusion

In all situations the resulting force produced by the boundary integral method
is off by a factor of two. Aside from this factor, the method correctly predicts
the geometry dependence of each test problem. The location of this error can
be somewhat predicted. In order to generate an exact solution for this problem
the equations were modified in section 1.8. Using this minimal modification the
exact solution could be predicted without modifying the solver to any consid-
erable degree. This would eliminate any error related to the boundary integral
method itself. The results were that the solver was very close to the exact so-
lution, and converged for higher resolutions. While this test did not cover the
subtraction of the self stress, this is only a minor addition to the solver. Without
this restriction it was not possible to compare the results from the solver to an
exact solution. This test shows that the factor of two is located in the theory
or calculations before equation (1.52).

The factor of two could be related to the dimension, this is supported by
the result in appendix A. The method correctly calculates the force on the
two parallel plates in one dimension, but is missing a factor of two when the
calculations are repeated in two dimensions. This could be verified if the method
was implemented in three dimensions and the result was off by a factor of two
(or four).

The renormalization of the equations are twofold: First a limiting process
and then the subtraction of the self stress. If the limit was not taken along the
surface curves, the right side of the equations would diverge. This appears to be
the only possible way to perform this limit. The subtraction of the self energies
is natural since the equations decouple at higher frequencies. This is equivalent
(at least for these equations) to separating all the objects at infinite distances.
The only remaining equation is the self stress equation (1.84) that describes the
Casimir effects interaction from each object onto itself. The Casimir force is
renormalized by subtracting the self interaction from each object, the resulting
force is the interaction Casimir force between the objects.

For the parallel plates and concentric circles the numerical solution is in good
agreement with the exact solution in figure 6.4, 6.7 and 6.9. The error plots in
figures 6.5, 6.8 and 6.10 show that the maximum relative error of the boundary
integral method is less than or approximately equal to 1% for these cases.

There is no exact solution to the Casimir force of the adjacent circles, but
the force calculated from the boundary element- and the functional integral

(6]



methods are very similar as seen in figure 6.11. Figure 6.12 shows that the
difference between the two solutions is less than 10~ for all distances.

The errors in all solutions are low, but they increase as the objects get
closer. This is natural because the resolution is constant during the tests. The
increasing error from the functional integral method in figure 6.5 is probably an
artifact from the non-compact geometry. A simple experiment where the lengths
of the plates are increased with the separation was used to test the theory. Figure
6.6 shows that the relative error in the boundary integral method will remain
low (~1.5%) if the plate lengths are increased. As figure 6.5 also shows, there is
no similar increasing error for the boundary integral method. This suggest that
the method might be less sensitive to edge effects than the functional integral
method. Thus for a mixed configuration of both compact and non-compact
objects the boundary integral method might give a more accurate result.

We conclude that the boundary integral method, with the given renormaliza-
tion, correctly calculates the geometry dependence of the force in each problem.
A very important next step is to compare the theory to experiments. To apply
this method to any physical problems it would first have to be expanded to
cover electromagnetic fields.
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Appendix A

Boundary integral method for
zero dimensional parallel
plates

This chapter will cover a less complicated situation where the space is one di-
mensional space and the parallel plates are two points separated by a distance a.
This will both serve to demonstrate the method and provide some comparison.
This chapter follows the calculations of the two dimensional boundary integral
method completed earlier. Figure A.1 gives a clear illustration of the situation
with two zero dimensional parallel plates on the real line.

1 . N\
1 ) 7

0 a

Figure A.1: Illustration of the interval with two zero dimensional parallel plates.

There are two options here, use the final results from the chapter 1 or cal-
culate all the theory from scratch. Both options will lead to the same result.

Using results from main chapters

This will be based on the matrix system obtained as the final result in equation

(1.96)
[ all, a2, } { oL, } _ [ 0 )
G N Ykrkr = ok O D '
and the self stress equation is

> apinbih = Y (A.2)
k

Use the solution z}}, along with equation (1.52) to find the force
1 o0
F, = ]{dlx o / dwn(x)z' (x, %, w) (A.3)
7r
Q1 -
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Since our surface is a single point it is natural to insert a delta function into
each integral. This will evaluate the Green’s function on the surface. The free
1d-Green’s function is given by
1 1"
Do(z, 2", w) = ———e~ I@llz=2"] A4
To calculate the primary matrix the Green’s function will be evaluated on each
object. Thus

1 _ 1
2|w|
12 _ _L —|w|a
2|w|
1 (A.5)
21 _ e—|w|a
2|w|
22 _ 7i
2|w|
The normal derivative of the free Green’s function is
1 —|w|(z'—2"") / i
e ' >x
ar’Do(x’,x”,w) = { _%6_‘w‘(xu_$/) {13/ < [1;// (AG)

The y matrix is (note that by convention it is necessary to first have to let
z” — Q; and then 2’ — Q)

The self stress equation for object 1 is

allbll _ yll

(—2|1w|) bl = —% (A.8)

b = |w|ny

Thus the matrix system is given by

all 12 211 0
[ a2l 22 ] [ 212 | = { Y12 — q21p1t }
__L — L o—lwla 11 (A.9)
1 Qlli“ 2\w|€1 [ x12 = { 9|w|a }
— 31 GIm] T nie

This is simplified into

1 67|w|a .Tll r 0
|: ef\w\a 1 :l |: 212 :l - i _2‘w|nle,|w‘a :| (AIO)

The solution is

(A.11)



and from this the force is given by

2w ni
Fi= fdl Ar / e2|w|a _1 % o1t / eZwa —

Q1 0
1 U
= ¢ dix d
% 4ma? / Yo
Q1 0
1 7 2
dly d
% 4ma? / Y6 6
Q1 0
Thus the density is given by
T
P1= 9402

(A.12)

(A.13)

The plates are attracted and this agrees with the results of Milton [16] (p.9 with

d=0) and also Ambjgrn and Wolfram [15](p.4 with d=1).

From scratch

Alternatively it is possible to find this solution without using the previous re-
sults. The Green’s function satisfies the equation (1.26) in one spatial dimension.

dz?
D(z,2',w)lg, =0
The Lagrangian for this dimension is now given as
1 1
L= 5903 T ¥

The stress energy tensor is found to be

oL
T = ———0,p— L L
9(0up)
These are calculated as
1 1
00 _ + 2, 1 2
T - 2<)Ot + 2()0;8 ’I‘O1 = PtPr
1 1 70 — _
R pui

The conservation equation are given by
KTY™ +0,T" =0
When v = 1 the momentum equation appears

1 1
Or(prpe) + 895(—5802 - *803:) =0

or

Bip+ 0,8 =0

79

d D(z, 7', w) — w*D(x, 2’ ,w) = 6(x — 2)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)



where p is the momentum density and S is the momentum flux. The momentum
flux is

1 1
S(z,t) = 597 — 591 (A21)
2 2
This will define the quantum stress tensor through point splitting.
' 1 L
Sq(z,t) = lim | —20,0 — 200y | D(x,t, 2", 1) (A.22)
' =z 2 2
t'—t
Using the same procedure as before we set: t = —iu, t’' = —iv/ and s = u — v/
_ 1 1 )
Sq(x) = lUm [ —=0,0, — =0ss | D(z,2', 5) (A.23)
5—

And a Fourier transform in time gives

Sq(z,w) = lim (1336(%/ + w21> D(z,z',w) (A.24)
Fe ?

The boundary conditions state that D(z,z’,w) = 0 on the boundary

1
Sq(w,w) = lim —iaxax/D(:c,x',w) (A.25)
550
where -
dw
Sie) = [ GoSie) (A.26)

The force on the interval can now be calculated as

P

(A.27)
= —S4lo = 54(0) = Sy(a)
Thus the force from the left endpoint to the interval is given by
T dw
Fun = 5,00 = [ 525,0.0)
. (A.28)
1
=— lim — / dw Dypr (2,2, w)|2=0
' —x 47

To calculate the force on the left plate the sign must be reversed. After the
limit

1 oo
BFegt = = / dw D, (0,0,w) (A.29)
— 00

For the right endpoint the result will be the same answer except a change in
sign due to the normal vector n, = +1.
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To make a boundary element formulation for equation (A.14) it is natural
to start with the integral relation for the opperator L = d?/dx? — w?

/ dz (LOU — PL)
2o, LU,
d*® d*v d (do dv
- ¢ 0" )= [ L (Cy el
/d:c <dm2 dwz) / xdm(dm dm)
dd dv\ |*
- (Zv-2)

The free space Green’s function satisfies

(A.30)

0

LDy(x,2",w) = Oy Do(x, 2", w) — w?Dy(z, 2" ,w) = 6(x — ") (A.31)

where Dy(z, 2", w) = —ﬁ exp(—|w||z — 2"']). Define E(x,2') = 0pD(x,z’)
with the equation.
LE(x, 2", w) = 0p (2,2, W) — wW?E(x, 2", w) = Opd(x — ) (A.32)

Use the integral relation above to write out

/dx (LDo(z,2")é(z,2") — Do(z, 2" )LE (x, 2"))

_ / dz (0(z — 2")E(z,2") — Dol(@, 2")0ud(z — 2)) (A-33)
=E(2",2") — 0w Do(a', 2"")
The left side of the relation is also equal to
dx (LDg(z,2")E(z,2") — Do(z, 2" )LE(x, 2’
[ e @i a0 - Do e )

= (9 Do(x,2")E(x,2") — Do(w,2")0,E (x, 7))

Thus
E(x",a") — Oy Do(a, 2"

= (0xDo(z,2")E(z,2") — Do(z,2")0,E(z,2"))|g (A.35)
= — Dy(a,2")0,E(a,x") + Do(0,2")0,£(0,x)
When 2 — {07, a™ } it is obvious from the boundary conditions that £(z”, z') =
0. Thus
Op Do(z',2") = Do(a,x")0,E(a,x") — Do(0,2")0,£(0, x") (A.36)

For " € {0,a}
Note that for high frequencies w >> 0 the equations will decouple and for
a’ — {0%,a™ } this results in
0. Do(0%,0) = —Do(0%,0)0,£(07,0)

B - B (A.37)
0 Do(a™,a) = Do(a™,a)0,E(a™, a)
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These equations are parallel to the self stress equations that were found in
equation (1.84). It is possible to solve these equation directly and the solution
will be defined as 0o Dj(z, 2)

3355(0, 0) = 811/1?1 (0, 0) = llnng —8I/D()(.’EI, 0)/D(](£E/, 0)
z/—

] , , (A.38)
0:€(a,a) = 0z Da(a,a) = lim 0 Do(z',a)/Do(z’, a)
' —a~
where | ol
, " B 567 wirx —T x’ > x//
81/D0($ , L ,w) = { 7567‘&)‘(2//71/) 1;, < IN (A.39)
and in the limits 1
/1im+ O Do(2',0,w) = —3
w0 . (A.40)
lim 8, Do(2',a,w) = —=
/' —a~ 2
Thus from equation (A.38)
0y D1(0,0) =
1(0,0) = el (A.41)

Oz Da(a,a) = |w|

Use these to regularize the force calculations by subtracting the high frequency
contribution and redefine equation (A.29) appropriately.

Aj(z,2") = Oy D(x,2") — Opa Dj(, 2") (A.42)

Insert this back into equation (A.36) to get the following system of equations
parallel to eq (1.86) and (1.87)

0 = Do(0,07)A1(0,0%) — Do(a,07)dyD(a,07) 2,2 — 0

(A.43)
0= Dg(a,a)As(a,a™) — Do(0,a7 )0z D(0,a™) 2',2" — a
and
81/D0(0+,a_) =+ DO(O?a_)awx’Dl (070-0-) ot
= Do(a,a™ )z D(a,0") = Do(0,a7) A1 (0,07)  +"=e”
(A.44)

0y Do(a™,0") — Do(a,0)0pe Do(a,a™) o
= Dy(a,0")Az(a,a™) — Dy(0,07)0,.D(0,a™) @' —=0"

Insert the known limits into this system and organize to get a better view of
the two systems

0=—A4(0,0) + e 1¥l%9,,. D(a,0) " =0
(A.45)
—2Jwle”¥la = e7Ile A (0,0) — Oy D(a,0) %20
and for the second object
0= —As(a,a) + e €199, D(0, a) 2" —a
(A.46)

2wle ¥l = —e~lwle Ay (a, a) + 0,0 D(0, a) @, =0

z'" =0
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These can be organized as matrix equations

e | P R ey

=T | P GO P

The solutions are

and

2|w|
Al(0,0,W) = —m
2w
AQ((L,G,(A)) = —m
Insert this back into equation (A.29)
oo
Fur = 3 [ dwai(0,0,0)
1 Vi w
=—— | d
7T/ w 1 e2wa
0
1 w2
75102
o
 24a?
The force on the left endpoint is
T
Flett = ——
left = 515

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)

This force is directed into the interval and the only difference for the force on
the other endpoint is a change in sign. Thus the plates will be attracted as was

found above in equation (A.13).
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Appendix B

Functional integral method
method for zero dimensional
parallel plates

Consider two zero dimensional plates separated by a distance a along the real
line. This will both serve to demonstrate the method and provide some com-
parison for later. This chapter is a step by step walkthrough of chapter 2.8 for
the functional integral method.

1 . \
1 i 7

0 a

Figure B.1: Illustration of the interval with two zero dimensional parallel plates.

Figure B.1 illustrates the situation of two zero dimensional "parallel plates"
along the real axis. Each point has a origo O' = 0 and O? = a, the basis
functions for each point is 1! = a}jl = af, , = 12 = 1 in the respective coordinates
systems. There is only one basis function in each coordinates system so the index
set is p; = p2 = 1.

The Green’s function for Helmhotz equation in each coordinate system is
given by equation (2.58) and for one dimension it is

GN T, Tor) = G*(Toy Tor) = G(To — Tor)
ieik‘zaiza,”k:i,{ = —e¢

2k 2K

—K|Ta—T o] (Bl)

for k >0
The first goal is to decompose the Green’s function into each basis set. To

find this decomposition one has to evaluate the Green’s function on the surface
of each object, use the formula G (z,25) = GP(z5(x4), 25:)

G (z1,25) = GHz1(21),25) = G1(0,0) = G(0) = #

G*(z2,15) = G*(z2(22),25) = G*(0,0) = G(0) = o (B.2)
G2 (z1,15) = G*(z2(21),25) = G*(—a,0) = G(—a) = ﬁ —ha '
G (w9, 2p) = GHx1(22), 25) = G'(a,0) = G(a) = 5-e "



The decomposition is now found directly from the above calculations since

G (wa,wp) = 32, Gpl(wpr)ag, (za)-
The surface integrals are now

Gily = [ G3ltwnas, (ap) A,
Qs

B8 i a=p
= G;f(xﬁ)aqa (zg) =
e ™ a#p
and
Df, = [ (@5, () a, (a) s, = 1
Qo
The matrices are calcualted as
11 2 1
H' =45 H? = &
12 1 - 21 1 -
K = 5:€ ra K21 = 5-€ Ka
and ) ) , )
U12 — %e—na U21 — %e—na

(B.3)

(B.5)

(B.6)

The final expression of the Casimir energy is found from equation (2.103)

oo

h
£la) = - / In (det Mo (ir)) di
m
0
Where the matrix M is given by
1 (Tl)—lUlr
(Tr)flUrl . 1
Since there are only two objects the energy is reduced to
h oo
Ela)= - /m (det (1 — (TH U 2(T2) 1 U2Y)) s n di
m

0
After multiplication the energy is given by

o0

E(a) = h /ln(l —e k) dp
21
0
This can be solved as
h 72 hr
t@) =512 = "2

(B.9)

(B.10)

(B.11)

This is the Casimir energy for two zero dimensional "parallel plates" along a
line. This coincides with the results found of V.G. Kiselev, Y.M. Shinir and
A.Ya Tregubovich [17] (p.102 and 106) and also Ambjgrn and Wolfram [15]

(p-4 with d=1).
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Appendix C

Mode summation for parallel
plates

Consider two parallel plates with separation a. The defining equation for a
massless scalar field is

(%, 1) — AV2p(x,t) =0 (C.1)

where ¢ = 1 and the field ¢(x,t) satisfies p(x,t) = 0 when evaluated on either
plate.
Starting with a Fourier transform in the time domain.

(%) + Vp(x) = 0 (C.2)
and then another Fourier transform of y with wavenumber k& will yield
—¢"(z) + (k* —w?) p(z) =0 (C.3)

or
—¢"(x) +¢*p(z) = 0 (C.4)
where g = Vk? — w?. The solution to this equation is

o(x) = Ael® 4+ Be™9* (C.5)
The boundary conditions are

p(0)=A+B =0
o(a) = Ae?® + Be™1* =0

or as a matrix system
1 1 A 0
o ][5 ]=[0] ©
The only possibility for a non-trivial solution is if the determinant is zero
e 1% — el =0 (C.8)
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The imposes a restriction on the possible values of w. Note that for real ¢ there
is only one solution to the above equation: ¢ = 0. This implies that w? = k2.
The other possible solutions are for w? > k2, this will give

g=VE —w? =iV -k =ip (C.9)
Thus for w? > k? equation (C.8) will be
g(w, k) = e™"P* — e"P* = —2jsin(pa) = 0 (C.10)

Note that for all w? < k? this function is non-zero.
The energy can be expressed as

E :2 / % S wnh) = %/dk S wnh) (C.11)
N n 0 n

Where wy, (k) are the zeros of g(w, k) and units are chosen such that & = 1.
As g(w, k) has no poles it is possible to use the argument principle in order to
evaluate this sum.

It states that for an analytic function h(z) with no poles inside the contour
C and a meromorphic function f(z) with no poles or zeros on C. Then

ENIE
2mi dz )f(z)

=Y mnh(20) = knh(2) (C.12)

where 20 are zeros, and 2P are poles of f(z) inside the contour and m,,, k,, are

their respective multiplicity.
Use h(z) = z and an analytic continuation of g(w, k) from equation (C.10)
to get a sum over the zeros w,

an(k) = L j{dwwg/(w’k) (C.13)

2mi g(w, k)
c
Insert this back into the energy to get
17 (w, k
E= _/dk j{dwww (C.14)
472 g(w, k)
0 c

With a partial integration this will be

E=- ! /dk %dw log(g(w, k)) (C.15)
0

4724
C
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Figure C.1: The integration contour used in the argument principle for the
parallel plates.

where the contour C is given in Figure C.1. The angle ¢ will help with the
convergence

E=—

lim dk /dw log (g(w, k)) + /dw log (g(w, k))

471'22 R—)oo

(C.16)
+ /dw log (g(w, k)) + /dw log (g(w, k))

C. Cr

The first two integrals give

o Z.Iggnoo/oo Q duo og (9(w. ) + [ do log (g0, )
0 1 Ca

e—0
¢»—0

[ —i¢ 20
12 ’L'R%Iclm/dk /ze dy log (g(zye ,k))

6—0 0 (C.17)

_|_

"t~

(—ie'®dy) log (g(—iye'®, k))

oo

2107 /dylog 9(iy, k))
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Note that the integrand, g(w, k), is evaluated on the imaginary axis. This will
result in

g(iy, k) = e~V ()2 =k2a _ i/()?~k2a _ /v +k2a _ e_\/ma (C.18)

It is convenient to define the divergent part as

Goo (i) = eVV*FTH?a (C.19)
This can be rotated into the complex plane with w = iy
Goo(w) = 'V TR (C.20)

This is the divergent part of the energy. Thus it is convenient to redefine the
Casimir energy by subtracting this

E=E-E.

o0

1 7 g(iy, k)
= 1 dk | -2 dy 1 _
472 RE)I%C/ Z/ L <goc(iy,k;)
0 0

»—0

R

(C.21)

Consider the two final integrals by using the parametrization w = pe®

_ /pewdH log (g(’(’e:ek}i))

71\/(pe”7)2 k2a _el\/(p619)2 k2q )

(C.22)

60
pe de log< N e

/pe’edﬁ log( Vereri—k2a _ 1)
On the contour C’6 the radius p = € — 0 and thus

/dw log (g(w, k) ) = /eewdﬁ log (e_%V 2e0—ka _ 1)
Ce

Joo(w, k) (C.23)

€

—0

And on the contour Cg the radius p = R — oo and 6 € [-7/2 + ¢, 7/2 — @]

/dw log ((“’k> /Re“’d& 1og( —2iRe’a _ 1)
Goo

= /Reieda log (e—ziRacos(e)egRa sin(6) _ 1) (C.24)

Cr
— 00
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If this divergence is ignored the Casimir energy will be given by

g- L [ i /Ood lo (g(lyk)>
o2 / / y log 9o (i, F)
= # /dk /dy log (]_ _ 6_2W‘1)
- 2/2 . (C.25)
i o fartiocm - Jasaa -
0 0 0

1 du u wy 1 T o
=1 ﬂﬁlog(l—e )— T6maZ /duulog(l e )
0 0

For two plates with a separation a the Casimir energy is given by

[ ey RC(3) h
= T6ra? /duulog (1—e™)=- ~ —0.0239142 (C.26)
0

167a?

This coincides with equation (4.31) in section 4.1.
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