NERg

UNIVERSITY OF TROMSQ UIT | ==

FACULTY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

Javza

A runtime supporting dynamic app configuration and
integration in asymmetric systems

N

Anders Tungeland Gjerdrum

INF-3981

Master's Thesis in Computer Science
July, 2012

Abstract

The advent of cloud computing alongside with pervasive form factors such as smart devices,
introduces a new meaning to asymmetric system models. These new clients act as a
presentational layer alleviating much of the computational and storage concerns to cloud
services. The application platforms associated with these creates new opportunities for third
party developers to provide domain specific applications (apps) to smart devices. Restricted
interaction surfaces on smart device introduce new challenges to how apps are managed on
these. Moreover, for security purposes as well as strict resource requirements, apps running in
these environments are commonly subject to very strict isolation.

We conjure that there are benefits with allowing automatic configuration apps onto a client
system. Furthermore, we suggest that integration between apps residing at the same host, as
well as different hosts, is beneficial to system functionality. By enabling this we could alleviate
much of the interaction necessary for users and reduce the time consumed in using such smart
devices.

The concrete asymmetric system explored in this thesis is the Windows 8 app platform. This
platform poses several hindrances to our conjecture. For security reasons, automatic
configuration of apps onto a client system is prohibited. Apps run inside a sandboxed
environment where they are isolated from the system and other apps. Access to resources is
prohibited unless explicitly allowed by the user. As a consequence, communication between
apps is forbidden. This is further complicated by the fact that apps in this environment are
suspended when not in use.

This thesis introduces Javza, a runtime to support dynamic app configuration and integration in
Windows 8. Javza provides support for automatic installment of apps based on simplified
contextual information. Furthermore, it provides app integration by allowing apps to share
data, both within the same and across different systems.

We present and evaluate the associated performance costs of deploying Javza inside a
Windows 8 environment. We further evaluate the applicability of Javza by implementing a
specific use case involving collaborative search. Lastly we discuss some of the security
implications associated with our design, and some future improvements in Windows 8 to
support our conjecture.

Acknowledgements

| would like to thank my advisor Prof. Dag Johansen for all your guidance and support. Your
enthusiasm is highly infectious.

| would also like to extend my gratitude towards my co-advisor Krister Mikalsen, your
perspective and insight has been much appreciated.

Further, | would like to thank my Girlfriend for listening to my mad rambles these last 5 months.
Your compassion knows no boundary, | love you.

| would like to thank Robert Pettersen for his valued friendship and helpful discussions in the
last five years. | would like to thank my family, especially my mother and father, for being true
sources of inspiration.

Lastly, | would like to thank my fellow colleagues at the IAD research lab, including Audun
Nordahl, Age Kvalnes and Dr. Havard D. Johansen for their insight and help throughout this
process.

Vi

Table

Figure 1:

of Figures

Application platform mModel ...t eenaes s s s s e s s e e nnsssssssssasannnnessnssssaaennn 7

Figure 2: The Android Operating System Archit@Cture.........ccciiiieeuiiiiiiiiniiieiiniiniieissssnrrsssssssssenns 9
Figure 3: Metro Immersive USer INterfaceccccciiiiiiimiiiiiiiiiinniiiiiiiiiieeniieessssiissssssssssssssssssns 11
Figure 4: Windows 8 Architecture [10]......ccceeueuiiiiiiiiiiieccieieeieeenenseeesseseeennsssssessseesnnnsssssssssssesnnsssssssssssssnnnnssnssns 14
Figure 5: Windows Runtime Object Projections [10]ccccciiiiiiiiiiiiiiiiieiiieeiiesiieesssssesesssssssssssssssssssssssssssssssssssssnns 15
Figure 6: App Lifecycle state diagramccceeeeeiiiiiiiiiieicciiieireeieeseeseeseeeennssseesseeennnssssssessseesnnsssssssssesssnnnnssnnnns 16
Figure 7: Windows Push Notification Service [15]cccciiiiiiiiiiiiiiiiiiiiiieiiiiiiiessisssssesssesssesssssssssssssssssssssssssssssssssnns 18
Figure 8: ArchiteCtural OVEIVIEWcciiiiieiimeeeciiiiiiieiieneeeieereeenansseessessesnnssssssssseeennnssssssssssessnnsssssssssssssnnnnsnnsnns 22
Figure 9: App Provider INteraction........cciiiiiiieuciiiiiiiiiimniiiiiiiiiessesiiiiiiieessssssiisiimesssssssssstsesssssssssssssssssssssssssss 24
Figure 10: Group Recommendation SEIVICEcciiiiiireeecciiiiiiietneseeeeeereeennsssseesseeeennssssssssssseesnnsssssssssssssnnnssssssns 25
Figure 11: Arbitrator placement in architeCture.........ccueiiiiiiiiiiiniiiiiiiiiirrersss s rresssessssssssssssnssssssnns 26
Figure 12: ArchiteCture iN USE CASEcciiiieeeeeeeieiiiiiietienneeeeeeteeennnsseessessesnnssssssssseeennsssssssssssessnnsssssssssssssnnnsssnssns 27
Figure 13: Data Base SChema......ccccuuuiiiiiiiiiiiniiiiiiiiieiieeiiiiiiiesssessiisiiissssssssssisstisesssssssssssstsesssssssssssssssssnsssssssns 33
Figure 14: 3-DimensioNal tEIMSccuuu i iiiiiiiiiiicceiereeernenseeeeeereeennnssseessessesnnssssssssseeennnsssssssssseesnnsssssssssssssnnnnssnssns 36
Figure 15: App Management COMPONENTcc..iiiiiuiiiiiiuiiiiiiniiiiiieiiiiisiiiesssirssssimasistmssssssssssssssesssssssssssssssssssses 39
Figure 16: COMMUNICAtIONcceuiiiiiieiiiiiiiiiiieeiieitneiertneeertenssestenssessensssssensssssensssssessssssssnssssssnssssssnsssssenssssssnnssssen 40
Figure 17: Abstract functionalitycccciiiiiiiiimiiiiiiiiiiiiiniiieeriesninreessssssissteeessssssssssssteessssssssssssssssnnsssssssns 40
Figure 18: Centralized APProach....... ..t ccee e rrceneassee s s e s seennssssssesseeennssssssssssseesnnsssssssssssssnnnnsnnnnns 42
Figure 19: Peer-to-peer Organizationc.cciiieiiiiiuuiiiiiiuiiiieniiiinniiinsiiiemssirssestiasissrasssssssnsssssssssssssssssssssssssses a4
Figure 20: Disk Bas@d IPC.......ccciiiieemeuieiiriiieiinneceeesseeenmmsssssssesseesnnnssssssssssesnnsssssssssesssnnsssssssssssssnnsssssssssssssnnnnssssnns 48
Figure 21: Desktop side and App Side iNteractioncccceeeiiiiiiiiineiiiiiiiiiineeiiieesssessssenesssssssssnns 50
Figure 22: App Side INEEINQIS......ccceeeeeciiiiieeciccccierrre e eceee e s e cenansseessesseennssssssssseeennnssssssssssessnnssssssssssnesnnnnsnnnnns 51
Figure 23: Arbitrator Data FIOWcc.iiiiiiiiiimmneiiiiniiiennsniiiiiiiiiesssssiisiiimsesssssssissiisessssssssssstsssssssssssssssssssnsssssssss 55
Figure 24: Named Pipes Data FIOWccoiieeiieeeiiiiiiiiiiieccccssieceneasssessesseennnsssssessseennnssssssssssessnnssssssssessssnnnnsnnnns 56
LT U T O I T o TU =4 o 11 P 57
Figure 26: IPC ROUNG-THIP tiME ...ccceeeieiiiiiiiiiiiccciriteetienseceeeeseeenanssseessessesnnssssssssseeennnssssssssssessnnssssssssssssnnnnnssnnnns 59
Figure 27: Inter-Host Arbitrator Data FIOW.........ccciiiiiiimeeiiiiiiiiiiniiiiiiiinieessssiisniieessssssissiiiesssssssssssssssssssssssssns 61
Figure 28: Inter-Host TCP Data FIOWccccceeeeeeeiiiiiiiiiiieecccieeiecenenssssessesseennssssssssseeennnsssssssssseesnnsssssssssssssnnnssnnsnns 61
Figure 29: Inter-Host TRIrOUZhPULiiiiiiiiiiiiiiiiiiciisissininneneessiesstssseessssssssstnnessssssssssssteessssssssssssssssnnsnsssssss 62
Figure 30: Inter-Host ROUNA-TriP TiME...ciiiiiiiueiiiiiiiieiieeeceieeieeenansseeessesseesnsssssessseesnnnsssssssssssesnnsssssssssssssnnnsssnsens 63
Figure 31: Idle Runtime overhead (Total KB/S Of I/0).....ccccccrirereiiieiiceirsneeeeeeeeeessssnneeeeesesssssssnsesessssssssssnsesssssssssns 65
Figure 32: Time taken to install apps

Figure 33: Case study usage.........ccceeuue..

Figure 34: 5 dynamically configured apps displayed on the start screen...........ccoiviieeeeiiciiiiiniinennienninnneeeennnn. 75
Figure 35: A section of the group Interaction GUI inside @ SiNgle app ...ccccceriiiiiiiiiiiiiiiiiiiiiiciiecrreccrc e s e s ss s 75

Vi

viii

Table of Content

LY o131 T PP PP PR iii
Y Yol g Lo RNV [=To F =T o a V=T oY £ U RPN v
1Yo L=l o] E T (UL <1 UUURRRP vii
Table Of CONTENT ..o s et sne e [
[f o) Yol o1 1Y/ o RPN Xii
R [011 oY [0l Ao o PP PR PSPPI 2
1.1 Thesis STateMENT..cc..iiiiiie e 3
1.2 ScoPe and ASSUMPLIONS ..eeiiiieieiiiiieiee e e cecerrree e e e e eescirree e e e e e esstrrreeeeeseesentasaeseeeeeessnnsnrenes 4
1.3 Method and APProach ... e e e e e e e 4
I O 10 114 TP PR PSP 5

B XX 4 0 [1= o ol V£ =] o U N 6
% R Y o Yo J o =1 o] o s JEUUU U PRSP PP 6
21,1 The Android PlatfOrm ..o..ooeoieeeeeeeee e e 8

2.2 WINAOWS 8.t sre e e 10
221 NeW IN WINAOWS 8coouiiiiiiiiiiiieieeece e s 10
2.2.2 Capabilities aNd CONTIACES ..uuvviiiiieiiiiieeeie e e e s e seaaraeees 11
2.2.3 Installment and activationcoc.eoeeiierieeieeeee e 12
2.2.4 WiIndOWS RUNTIME.....ciiiiiiiiiiiiiieieeeee e e s s e 13
R T Vo] o I 11 =Tor Yol [T UTRRRRRRRR 15
2.2.6 APP SANADOXING wrvvviiiiiiiiiiiiiiee et eeretre e e e e e esbbaer e e e e e s seasbreaeeeeessesnsranees 17
2.2.7 Windows NoOtification SErVIiCe........ccveriiriieiiieieeeeee e 17
2.2.8 Programming MOAElccooe i e e et e e e e e e 18

2.3 Evaluation of platform ... 19
2.4 SUMMAIY ieiiiiiieiiiiiiiieee e e et eeettetirse e e e e e eteaaasta e s eeeeeetaaessaaassseeeeseesssssnnssseseeeseesssssnnsssseeeanns 21

I YL =Y o 0 I ol V=Tl 0 <SPPSR 22
3.1 SerVer COMPONENTS . coiiiiiiiiiiiiiieie e eeeetrtii e ee e e e e e e tetart e e e e e eeeeeeassraasaseeeeeessesssannssessseneens 22
I A 1 Vo T o I o o 1Y/ o [T SR 22
3.1.2 Group Recommendation SErVICEcuiiiieei it e e e e 24

0 A N Y= 1N oY1 =) o (TR 25

S T o] =Y =TT =1 V7T SRRt 26
B O Y= = PP PPPROPTRN 26
S T U [210 0 =1 VR RRRRt 27
TaaY ol [=TaT=T 0} =14 1o o H U U RO PURPRRRRRRIRt 30
A1 SEIVEI SIOC....eiiiiiiiiie e s 30
0t Y LYo T o TN o 0 1V T [T SR 31
4.1.2 Yol = T =N =] AV S PP PP PP P PP OO PPPPPPPPPRN 32
4.1.3 Group Recommendation SErVICEuuiiiieei it e e e 33
4.1.4 DTSy =To AT Y= =4 0T UT o L3 PPPPPPPPPPPP 34
B2 ATDIErATO . i e 37
4.2.1 APP MaNAZEMENT .cviiiiiiie ettt ettt e e e e et erebbrse e e s eeeeeeasssaasssseeessneessennn 37
4.2.2 COMMUNICATION ..ttt e 39
423 Inter-Process ComMmUNICAtIONccocciiiiiiiiiiiiiiiieic e 47
4.3 SUMIMAIY ciiiiiiiiiiiiie ettt etettrtiesae e e e eeetttate e eeeeeeteestsraasseseeesesesssssssseseeesesessssnssnsseseeeseesrnes 52
EVAIUGTION Lo s s 54
5.1 Inter-Process COMMUNICATION.....ccoiiiiiimiiiiiiiiiiiiiiiie et 54
5.1.1 EXPErimeENntal SELUPiii it 55
T 0 A 1 o1 o U ={ o'oY | PSPPI 56
5.1.3 1= 1 (=T ooy P PP PPPUUPPPPPPPPPPPPPPN 58
5.2 Inter-Host COMMUNICATION......ciiiiiiiiiiiiiiie e e 60
5.2.1 EXPErimeENntal SETUPcii it 60
T A | 11 (o U { oo YU | PSPPI 61
5.2.3 = (=T ooy PP PPPUUPPPPPPPPPPPPPPN 62
5.2.4 Idle-time OVerh@ad.........coouiiiiiiiiiiiieece e e 63
5.3 APP INSTAIALION weiiiiiiiie i e s e e e e e e e 66
5.4 CONCIUSION 1.ttt ettt e st e bt e st e s bt e e sbee e saneesane 67
Case study: Collaborative SEArCh.........cuiii i e e e 70

6.1 Collaborative SEAICRcooviiiiieeee ettt e e ettt e e e e e et e e e e eeeeaes 70

6.2 Yot <] = 1 o YN 71

(S T [0 o1 (=T 0 V=T 01 = o] s RSO UOPURPO 72
L U 1210 o =1 VSRRt 76
7 Discussion and Related WOrKc.ceeiueeiiieieeiieeeeee e 78
2% R [4 oY [o7 4 (o] o 3PSO TSP 78
7.2 Changes tO WiNAOWS......oooiviiieiiieeiiciireieee e eectiareee e e e e eessbrreereeeeeessnsbasereeesesssnsssraeseeeenas 80
7.3 Relate@d WOrK.....oooeiieeieeeee e 82
8 CONCIUSION ittt ettt e sb e e sab e st e s e e e s b e e e es 84
S 0 A @] o Yol [V T oY= =T 0 0 F= 1 SRS 84
8.2 ACKIEVEMENTS ...t 84
8.3 FULUIE WOIK ettt e sb e s e s 85
O REFEIENCES .. 88
Yo 01T T LD AU 92

Xi

Xii

List of Acronyms

XML = Extensible Markup Language

IPC = Inter-Process Communication

DHT = Distributed Hash Table

GRS = Group Recommendation Service
AMC = App Management Component
IDC = International Data Corporation
CPU = Central Processing Unit

API = Application Programming Interface
GPS = Global Positioning System

ARM = Advanced RISC Machine

RISC = Reduced Instruction Set Computing
OEM = Original Equipment Manufacturer
GUI = Graphical User Interface

TCP = Transmission Control Protocol

IP = Internet Protocol

NIC = Network Interface Card

COM = Component Object Model

CLR = Common Language Runtime

OS = Operating System

I/0 = Input/Output

TPL = Task Parallel Library

LINQ = Language Integrated Query

JSON = JavaScript Object Notation

VM = Virtual Machine

JVM = Java Virtual Machine

W3C = World Wide Web Consortium
UDDI = Universal Description Discovery and Integration
JIT = Just-In-Time

WNS = Windows Notification Service

Xiii

Chapter 1: Introduction 1.1 Thesis Statement

1 Introduction

The advent of cloud computing has introduced a new paradigm in systems design [1]. Cloud
providers deliver computational power and storage as a service to consumers at different levels
of abstraction.

Infrastructure as a Service (laaS), delivers raw computing power and storage to consumers in
form of virtual machines with networking capabilities attached and block data storage. Platform
as a Service (PaaS) provides system software for building applications in the cloud. This includes
runtimes for these to execute in and structured storage capabilities such as databases. At the
very top end of the abstraction is Software as a Service (SaaS), providing complete application
services accessed through web browsers or other light clients.

Enterprises are becoming big consumers of cloud technology. CISCOS Global cloud networking
survey [2] asked 1300 important IT decision-makers worldwide about their companies cloud
migration strategy. A large percentage of these answered that they have, or at least are
planning to migrate much of their corporate infrastructure into the cloud.

Private users also follow this trend and are becoming increasingly dependent on the cloud. The
cloud provides services including everything from email and social networking services, to
productivity and collaborative tools. All of which are directly consumable by end users. The
clients of these cloud services are becoming increasingly pervasive and are no longer restricted
to desktop computers. They now include more light weight form factors such as smart phones
and tablets. International Data Corporation (IDC) [3] reports that nearly a billion such smart
devices where shipped in 2011, and shipments expect to double by 2016. More and more
consumers now possess multiple smart connected devices, for different purposes. We refer to
this new client-server model as an asymmetric systems model.

In this model, computation and storage are asymmetrically distributed between the client and
the server. Light weight clients act as a presentational layer of the system, while the server
provides the storage and computational power. Smart devices act as these light clients which
then consume cloud services, bringing content and functionality to the devices.

With the introduction of these light weight form factors come new application platforms
delivering third party application support. These provide generic and open APIs for creating
apps specifically targeted towards these smart devices.

These apps are typically very restrictive in functionality and domain. They focus on the
presentational aspects of the system, pushing many the storage and computational concerns to

Chapter 1: Introduction 1.1 Thesis Statement

cloud services. These could either be platform provided service accessible from all platform
apps or third party services associated with a particular app.

Smart devices typically have a small user interaction surface. However, users must adhere to
the same approach to application management designed for desktop computers with much less
restricted interaction capabilities.

To acquire apps, users are required to lookup, download, validate and install each of these onto
their device explicitly. Some of these are only necessary in special cases and under certain
conditions. The applications that aren’t in use, hog up space, and even resources on the
devices. Other application forms such as web application execute through the browser in
mostly any environment without installation. Smart device apps are often subject to the same
restrictions as web applications, but still require a rigorous installation procedure.

Specifically, these restrictions limit the app’s capability to interact with other apps. Consider a
scenario where a set of apps with different usage domains are installed on the same smart
device system. They are being used by a single individual as a part of achieving a goal, satisfying
different parts of it. These apps should be able to share data in order to contribute to each
other’s fulfillment of the goal. Also, consider if the individual is contributing to a social group
which is cooperating in achieving this goal, these apps again should be able to share state to
more effectively perform their joint tasks.

App platforms often restrict this kind of behavior by isolating apps from one another and the
system for security and resource considerations. Other apps that could benefit from using this
data in their own domain aren’t able to do so. In order for the scenario to have the same
effect, the user must then manually update the state of each application as the work
progresses.

Building upon the arguments earlier made with regards to restricted user interaction surfaces,
it is not difficult to observe that this approach is inefficient.

1.1 Thesis Statement

This thesis shall develop and evaluate a runtime system for dynamic application configuration in
a concrete asymmetric system environment (Windows 8). This run-time must support
integration across applications on the same host, as well as applications receding on different
hosts. Alternative solutions with and without server-support must be explored.

The prototype will evaluate important aspects of the prototypes performance. Furthermore we
will evaluate the prototype by implementing a use case, more specifically collaborative search.
The evaluation will include suggestions for further optimizations and extensions, and possible
implications for adopting these.

Chapter 1: Introduction 1.2 Scope and Assumptions

1.2 Scope and Assumptions

The underlying platform of interest to our thesis is the Windows 8 application platform. We
conjecture that asymmetric system models will benefit from allowing dynamic and automatic
application management and integration, both across and inside asymmetric resource
constrained environments. We will implement a prototype for dynamic application
management and integration. Our focus in this thesis is on alternative approaches to app
communication across different hosts without server support. We will evaluate the possibilities
and limitations of our prototype in the context of the underlying system. Furthermore we will
illustrate our design in a broader context, by implementing a use case involving a collaborative
search experience. The two major functional requirements our prototype must fulfill are the
following:

- The prototype must support communication between apps located inside a single client,
as well as across different clients to support integration amongst these.

- The prototype must support automatic configuration of an app environment onto the
client system.

1.3 Method and Approach
The final report of the Task Force on the Core of Computing Sciences [4], divides the discipline
of Computing into three paradigms:

e Theory is rooted in mathematics and includes four steps in the development of a
coherent and valid theory. (1) First one characterizes the objects of study. (2) Then
hypothesize possible relationships between these (theorem). (3) Following this one
seeks out to falsify or prove the relationship. (4) Lastly the result is interpreted.

e Abstraction is rooted in the experimental sciences, and follows four steps to research a
phenomenon. (1) One forms a hypothesis relating to the phenomenon. (2) Then one
creates a model based on this and makes predictions. (3) Following this an experiment is
constructed and the resulting data is collected. (4) Lastly the results are analyzed.

e Design is rooted in engineering, and follows four steps in the process of constructing a
system. (1) One states the requirements and (2) specifications of the system. (3) Then
design and implements the system. (4) Lastly the system is tested to conform to the
initial requirements and specifications.

In this thesis we utilize the design paradigm. We state the requirements and specifications of
the system related to our conjecture. We present a system architecture based on these
requirements and implement a prototype. The prototype system is then evaluated in a series of
experiments for conformance with our initial requirements and specifications.

Chapter 1: Introduction 1.4 Outline

1.4 Outline
The outline of this thesis is as follows:

e Chapter 2 details the notion of an asymmetrical systems model. We introduce Windows
8, the system subjected to our conjecture, and evaluate it with regards to our functional
requirements.

e Chapter 3 details the architecture of Javza, a runtime to support dynamic app
configuration and integration.

e Chapter 4 explains the implementation of Javza, evading the restrictions posed by
Windows 8

e Chapter 5 evaluates the associated performance costs of deploying Javza in Windows 8.

e Chapter 6 presents a specific use case and evaluates the usability of Javza in this
context.

e Chapter 7 discusses some of the Security implications by adhering to our conjecture.
Furthermore, we suggest some further adaptations to the Windows 8 platform and list
the related work.

e Chapter 8 summarizes this thesis and provides some concluding remarks and thoughts
on future work.

Chapter 2: Asymmetric System 2.1 App Platform

2 Asymmetric System

Before we explain or prototype design, we will explain the concept of an app platform and how
it relates to the asymmetric system model. We will give a brief introduction to the major
components that often exist in such, often referred to as an app platform, and relate them to
existing systems. We then proceed to describe the new Windows 8 app model, our subject of
interest in this thesis and its major components. We conclude the chapter by looking at some
properties of the Windows 8 app platform and evaluate this with respect to our initial
conjecture.

2.1 App Platform
Asymmetrical system models have existed for some time [5], more recently in the form of app
platforms.

In the last years this market segment has exploded in terms of size and revenue. The distinction
between personal computers and smart devices is no longer binary and we see users being in
possession of a multitude of computing devices of different sizes. Hardware configurations are
becoming more powerful, and it is no longer uncommon to see multicore processors in mobile
devices or tablets. Many configurations exist for each use case, trading portability for
complexity of work.

Smart devices typically have specialized application platforms associated with them which
enable development of third-party applications for the devices. These applications, often
referred to as apps, are very restrictive in domain and functionality.

Such apps exist on top of several other abstractions as well. These range from low level mobile
operating system platforms such as Android* and iOS®> up to the ones residing inside
applications themselves, such as Facebook?, Spotify* and Skype>. The only requirement for an
app platform is that the underlying system function is broad enough to provide a rich API
available to developers. The collection of cloud services, and internal systems APls should
enable developers to create new apps with non-existing features. These apps then drive the
innovation of the platform further by introducing functionality not originally thought of by the
creators of the underlying system.

Our focus in this thesis is on the smart device abstraction, with apps and cloud services. The
combination of these two is what constitutes our notion of an asymmetric systems model. Apps

! http://www.android.com/

2 https://developer.apple.com/devcenter/ios/index.action
3 http://developers.facebook.com/

* https://developer.spotify.com/

> http://developer.skype.com/

Chapter 2: Asymmetric System 2.1 App Platform
residing on resource constricted smart device clients commonly have associated cloud services.
These cloud services deliver content and functionality to the app.

An overview of the components involved in a typical app platform can be seen in Figure 1. This
model includes the following three components:

- The client runtime, the execution environment in which the app run.
- The cloud services that provide content and functionality to the apps.
- The digital distribution platform, or app store, which provides apps to the client.

We will describe them each in more detail in the following paragraphs.

— %ﬁ_ff_'_'_f_, Bk

Runtime }

N

Figure 1: Application platform model

Because they run on battery power most of the time, smart devices have fairly limited power
resources available. Because of this they commonly optimize towards low power consumption.
Memory is limited to reduce power consumption, and generally these devices have no
swapping ability for virtual memory. For the same reasons, the CPUs in these devices are much
slower than laptop or desktop environments. Conserving the usage of available memory and
CPU resources is therefore very important. Platforms such as the iOS or the Windows 8
platform in the next section are fairly restrictive in how they allow multitasking of apps in order
to conserve memory and CPU. Also, with regards to multitasking, the screen real-estate on
these devices is limited and there is only a limited display area available for use at a given time.

Cloud services pose an integral mechanism for offloading computation and data to services
outside this limited resource environment. Examples of these include cloud storage and
management of app data, personal data related to emails contacts and calendars. Some of

Chapter 2: Asymmetric System 2.1 App Platform

these services may be provided directly to the system and through it consumable by apps.
Other cloud services again are proprietary and only accessible to a particular app.

The runtime is the underlying software component that the system runs on top of with the
associated system support. This component manages resources, thread scheduling and
everything associated with the execution of an app. Different runtimes provide varying levels of
isolation and portability. Some execute inside an interpreter engine, while other are executed
inside an isolated virtual machine environment. Others yet again, are implemented in native
machine language executing as common processes directly on top of the operating system.
Common for them all is that they in some form provide resource management and isolation
from other app instances.

Digital distribution platforms, more commonly referred to as app stores, provide a uniform and
secure mechanism to distribute apps to consumers. The distribution services often require
licenses to develop apps and deliver them to the store. Users must then hold accounts for
purchasing and consuming apps. They generally provide a strict policy on what types of apps
are allowed inside their store. Apps must adhere to the policy enforced by the store and require
app certification prior to submission.

2.1.1 The Android Platform

The Android platform is the most widely deployed app platform in the world. At the first
quarter of 2012 it a 59% share of the smart device market [6]. The Android operating system is
deployed on a wide range of device types, including smart phones, tablets and even media
center computers.

Apps developed for this platform are usually implemented in the Java programming language,
but there exist SDKs for native development as well. The apps developed in Java are compiled
down to byte code and executed inside the Dalvik Java Virtual Machine®. This provides isolation
from other apps and system components.

Android apps run in a sandbox, where they are isolated from accessing system resources unless
access permissions are granted by the user upon installation. The Android Operating System is
built on top of a Linux based kernel. The overview architecture of the Android platform client
can be seen in Figure 2.

® http://source.android.com/tech/dalvik/index.html

Chapter 2: Asymmetric System 2.1 App Platform

Applications

Cvere [vuer Woasioll o [sowe [oo [s [conier
[Contacts] [VoiceDiaI [Email] [Calendar][:,1:;’:] [Albums] [Clock] []

Application Framework

Activity Manager] [Window Manager] [Content Providers] View System] [N&g‘:‘?:;"]
[Package Manager] [Telephony Manager Resource Manager] [Location Manager] XMPP Service]

Libraries
Surface Manager [Media Framework SQLite
OpenGLIES [FreeType LibWebCore Dalvk Virtual Machine
SGL SSL Libe

Linux Kernel

Bluetooth Driver

Flash Memory
Driver

Display Driver

Binder (IPC) Driver
Power
Management

Keypad Driver Audio Drivers

Figure 2: The Android Operating System Architecture’

As far as app platforms goes, Android is perhaps the least restrictive of its kind. With regards to
multitasking it poses fewer restrictions on apps executing code the background.

There is however a 5-10 percent cap on the altogether consumable CPU by background
processes. The OS can, when observing low memory conditions, terminate apps running in the
background. This might sound strict, but other platforms enforce much harsher policies.

Unlike Windows 8, as we will see in subsection 2.2.6, Android provides functionality for apps
within the same smart device to communicate. All Android components communicate using
this functionality, referred to as intents. An intent message is asynchronous, contains a
recipient and optionally data as well. It could be thought of as a separate component
implementing a functionality which is executed upon reception, much like remote procedure
calls. Intents are one to one communication constructs, and apps are not able to send system-
wide broadcasts. Only the Android OS can broadcast to the entire system. The system uses
intents to signal apps when important system events occur. There are two types of intents
implementable in Android, implicit and explicit. Explicit intents specify the receiver of the

’ Source: http://source.android.com/tech/security/index.html

Chapter 2: Asymmetric System 2.2 Windows 8

message, and these should only be delivered to that specific app. Implicit intents can request
delivery to any app as long as it implements the functionality required by the intent.

The digital distribution service for the Android platform is the Google Play store. Apps for
Android devices are downloaded and installed through this distribution hub. But, unlike iOS and
Windows 8, Android allows apps to be installed from outside the store, although only explicitly.
Users still have to validate the app before installment. To access the store users are required to
register with a Google account. This account connects all of Google’s cloud services, ranging
from email, cloud storage to social networks in Google+. Apps implemented for the android
platform are able to consume these cloud services by approval from the user.

2.2 Windows 8
This section evaluates the asymmetric system we use in this thesis in order to validate our
conjecture, the Windows 8 app platform®. The outline of this section is as follows:

We will first explain the general model, and the rationale behind it. Then we explain how apps
in this environment consume cloud and system services. We further proceed by describing the
Windows Store digital distribution platform and the requirements for installing apps onto
Windows 8. We will then give a description of the underlying system, the Windows Runtime,
which these new apps use. Finally, we summarize the section; evaluate the system, and how it
conforms to our initial conjecture.

2.2.1 New In Windows 8

Windows 8 unlike its predecessors include a brand new app platform [7]. The system will be
released in several versions, one of which will run on the ARMv7 architecture. This version,
officially called Windows RT, will be available for tablet form factors. This is not to be confused
with the Windows Runtime, the environment in which apps for this platform run.

Windows RT will not be released to customers as an installation package. Instead it will be
preinstalled on the devices coming from the OEM partners. Each OEM is responsible for rolling
out updates to its own devices. Windows RT appears to enable some form of the classic
desktop environment. The package will come preconfigured with touch optimized desktop
versions for both Internet Explorer and the Microsoft Office suite. On the other hand, third
party developers will not be able to provide or install software for the desktop environment.
Microsoft has announced that they will themselves produce a tablet based on this operating
system, called Surface’. This tablet will come in two versions, both based on x86 and ARM.
They have further announced that the next installment of the Windows Phone operating
system, Windows Phone 8 [8], will build upon the same core as Windows 8.

8 http://msdn.microsoft.com/en-us/windows
% http://www.microsoft.com/surface/en/us/default.aspx

10

Chapter 2: Asymmetric System 2.2 Windows 8

The apps designed for this new app platform, are called Metro Style Apps. They are distributed
exclusively through the Windows Store, and are available for both the ARM and X86/64
architectures. They get an entirely new, touch friendly, immersive interface which embraces
Microsoft’s new design language Metro. It is already integrated into their services ranging from
Windows Phone 7 to the Xbox Media Center. The form dictates strict and clear typographic
design with emphasis on the functional aspects of the user interfaces. The principal axiom of
the language is to avoid diluting the visual presentation of the data with superfluous content.
Figure 3 illustrates the new start screen of Windows 8 with several apps installed on the left
hand side. These squares are referred to as the “tiles” of each app, and introduce a new way of
showing apps that are available in the system. However, regular applications for the old familiar
desktop environment are only available for x86/64 architectures.

Joey Ramone &

Figure 3: Metro Immersive User Interface

2.2.2 Capabilities and Contracts

Windows 8 is heavily integrated with Microsoft’s own cloud services, accessible through the
users Windows Live account. One important feature of this is the ability to roam apps and
configuration between Windows 8 instances. Users are able to log in with their live accounts on
one computer and their system configuration is accessible from other computers when they log
on with the same account.

11

Chapter 2: Asymmetric System 2.2 Windows 8

Apps are also able to consume these cloud services through the system. An example of this is
being able to roam app specific data related to a single user account across system instances.
To control how each app access resources, be it cloud, system or devices, each app requires a
capabilities declaration.

Capabilities are explicitly declared intents to interact with the environment, embedded in the
app manifest. The app manifest associated with each app contains metadata about the
activation and execution of the app. These declarations are made during development and
invoked during installation. They describe specific features of the system that the app requires
to function, and upon installation the user is asked to approve of this. The APIs that these
capabilities control, consists of an array of application layer constructs to interface with devices
and system resources. Examples of which could be everything from allowing background
connections and web cam capture to file system access and GPS location services.

Another class of implementable policies for apps to interact with the system is contracts. These
are activatable pieces of code which are executed in the case of specific environmental events.
Apps implement a specific behavior when activated in the context of these contracts. The
contracts that are available for a given app is specified in the app manifest.

The search contract is an example of this. This contract is activated through the systems new
search functionality which allows users to search through content inside of apps. The way in
which each app chooses to implement this search contract is open. Apps can display which ever
results it deems fitting in whatever way they wishes to present it. Other similar contracts
include sharing between apps. In this, both apps implement the two way functionality and how
the apps respond when being activated.

Common for all contracts is that they require explicit user interaction to be activated.
Information about these contracts is stored in the registry upon installation alongside with the
entry point and code classes to invoke the contract.

2.2.3 Installment and activation

Included in Windows 8 is a new digital distribution platform called the Windows Store. This
store is the only way Metro Style Apps can be distributed to private consumers. When a
developer prepares a package for submission to this store, the app manifest, together with the
compiled binaries are stored in a compressed app package.

Before submission all apps must pass the Windows Store certification process, ensuring that
apps conform to the stores policy. All apps are tested for package manifest compliance. This
means the use of only supported APIs, runtime debugging and security validation.

12

Chapter 2: Asymmetric System 2.2 Windows 8

Before installation, apps are further inspected by the operating system. The app package is
verified for a correct signature. This signature must be made by a trusted certificate authority.
In this case it is Windows Store which is trusted by all Windows 8 clients. Then the apps pre
declared capabilities must be validated, first by the OS and then by the end-user explicitly. After
this procedure is done the app is ready for installment.

The process from installing an app to activating it contains several steps [9]. The app manifest
contains an app registration field, describing the most important aspects of the app, including
the contract activation specifications. This field is used to store the metadata needed into the
Windows Registry for managing the app. All apps are installed per user into the registry and
there are many different registrations for different types of activations. Starting the app via for
example touching a tile from the start screen activates a specific contract, as mentioned before.
All apps implement this, called the launch contract.

When activated, the registry contains information to how the app is launched. The information
describes whether it is an out of process activation, used in apps developed in JavaScript, or in-
process activation for C# or C++. In the case of a JavaScript/HTML developed apps, the code is
launched within a separate system provided binary called “wwahost.exe”.

Enterprise consumers are able to install apps outside the store by what is refers to as side
loading. This involves the same strict policy for app package signing and installation as
explained above.

2.2.4 Windows Runtime

Metro Style Apps run on top of a separate abstraction from regular Windows applications. This
new runtime is called the Windows Runtime [10]. This should not be confused with Windows
RT, the tablet version of the Windows 8 Operating System. In the ARM version of Windows 8,
the ability to develop desktop applications is gone. Both the win32 APIs, and the .NET platform
is unavailable to third party developers.

Windows Runtime only exposes a small subset of the services available in these. This is not a
new executable runtime in the common sense, but rather a set of system-managed and
maintained objects exposed by the system. An illustration of the system separation can be seen
in Figure 4.

13

Chapter 2: Asymmetric System 2.2 Windows 8

Windows 8

Metro style Apps Desktop Apps

XAML HTML / CSS

JavaScript

C
HTML
(Chakra) JavaScript C++

C/C++ C#, VB
Windows Runtime APIs
Communication Graphics & Devices &
& Data Media Printing

Application Model Internet Win32

Explorer

Windows Kernel Services

2
Z
S
3
=5
o
wn
a
=
s
<
(7]
)
=
2
£
)
dwindows.cc

Figure 4: Windows 8 Architecture [10]

At its very core Windows Runtime is designed around an enhanced version of the Component
Object Model (COM). The model restricts components from influencing the execution of other
components by being self-contained and decoupled from the interface exposed to consumers
of the object. It is designed explicitly with interoperability in mind and allows language neutral
access to these objects.

The Windows Runtime objects are themselves built directly on top of the Windows kernel
services. To enable consumption from multiple languages, Microsoft has designed language
projections for each programming language to function as an adapter between COM objects
and the app code. The APIs are exposed using metadata files with the same format used by the
.NET framework [11]. This makes them consumable from all languages supported by the .NET
framework, including native, managed and scripting languages.

An example illustration of this interaction can be seen in Figure 5. At the time of writing there
currently exist projections to unmanaged app development through C++ as well as managed
development through Visual Basic, C# and JavaScript. The apps developed through Visual Basic
or C# code run on top of the Just-In-Time (JIT) compiler and the Common Language Runtime
(CLR), just like all other .NET applications. The JavaScript language projection is run on top of
the Chakra JavaScript engine, while the C++ apps are compiled into native code.

Through the Windows Runtime, there are over 800 objects available for interfacing with system
resources. Windows Runtime objects are stored in the Windows registry for discovery and

14

Chapter 2: Asymmetric System 2.2 Windows 8

identification. They are exposed to consumers through entry points for activation. All libraries
and apps are constructed as Windows Runtime objects and developers can themselves
construct custom objects, compile them, and make them consumable across language
boundaries. For example, a component written in C++ could be consumed by a JavaScript app.

All Windows Runtime objects implement two base interfaces, IlUnknown and lInspectable. The
IUnknown manage the existence of these through reference counting. It also enables users to
get pointers to other interfaces exposed by the given object. The llinspecable interface must be
implemented in order to provide projection across languages.

Projections

uonaafoig

uoipdafoid

-
=
8.
1]
0
=
(¢}
=

[Windows
o Metadatal T

www.buildwindows.com

Figure 5: Windows Runtime Object Projections [10]

2.2.5 App lifecycle

Metro Style Apps are intended to run in very diverse and resource constrained environments.
Windows 8 with Windows Runtime included, is designed specifically for this purpose. In
comparison with the Android platform’s multitasking abilities, Windows Runtime’s is much
more restrictive. When installed and activated, Windows 8 Metro Style Apps run in separate
processes. They go through what is called an app lifecycle similar to the multitasking abilities in
i0S [12].

The apps transits through several states while installed into the system, as depicted in the
diagram below (Figure 6). Apps not running in full screen are suspended to conserve resources.
They are notified of the event and given 5 seconds to save any state before being suspended.
While suspended, these apps are present in main memory but no part of it is being scheduled

15

Chapter 2: Asymmetric System 2.2 Windows 8

by the operating system kernel for execution. In the case where the system is low on memory,
these apps are eligible for termination without notice. They are then removed from memory,
hence the importance of saving state when suspended. As a consequence, there is normally
only one app running at a time in the system.

Activated

Resuming

Figure 6: App Lifecycle state diagram10

Despite being suspended or terminated these apps are able to register several types of
background processing, if proper contracts are in place.

Background tasks allow apps to remain responsive to major events. Triggers include network
coverage change, incoming data through connections, system events, push notifications and
time triggers. These tasks are run in a separate process from the app for isolation purposes.
They are activated by a contract and entry point located in the Windows Registry, as explained
before. Other types of background activities which can be registered include transfers of data

and audio playback.

Because of the low resource consumption design of Windows Runtime, there are many
restrictions as to how often and how frequent these background tasks can be executed. Every
app is able to run a time-triggered background process every 15 minutes, and can on a total
only consume about 1 second of CPU usage across 2 hours [13].

% source: http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx

16

Chapter 2: Asymmetric System 2.2 Windows 8

2.2.6 App Sandboxing

For security reasons as well as resource control, Metro Style Apps are executed inside a
sandboxed environment. The consequence of this is that apps are restricted from consuming
system resources without being explicitly allowed access.

The Windows Integrity mechanism was first introduced in Windows Vista, and its main purpose
is to restrict access permissions of applications that are less trusted. Regular applications are
commonly executed in the medium integrity level while apps are run in a new integrity level
called App Container [14]. This container ensures that no app access or modify the system or
any other apps directly. By default apps can only access local isolated storage for that particular

app.

Most system calls from an app go straight to the kernel while other, more restricted, go
through a broker process. This process is responsible for managing the apps system access, in
accordance to their specifications in the app manifest, and accesses privileged data and devices
on behalf of the app. This mechanism, together with the Windows Runtime Object model,
completely isolates apps from each other and the system by preventing less secure code from
modifying objects at a higher integrity level.

2.2.7 Windows Notification Service

The Windows Notification Service is Microsoft’s push based notification platform for conveying
notifications to Windows 8 enabled smart devices. It enables third-party developers to register
with the service and distribute notification from its own cloud services to apps residing in the
client machines. Push notification systems are known to be extremely scalable, with little
overhead at the client side [15]. Because it is push based, apps do not require polling services to
receive updates.

Apps are able to receive push notifications and update their live tile while being suspended, but
in reality they do not perform the updates themselves. The OS kernel receives the updates and
renders the tiles according to an XML specification of the tile layout without the app
interacting. In the event of a resume, the app notices this update and can then request the new
information from its third-party service.

Setting up the push notification capability for an app in a third-party service involves the
following steps. First, a developer license needs to be acquired, which provides credentials that
the developer can use to authenticate his own cloud service with WNS. These credentials
consist of a package security identifier and a secret key. Each app has its own set of security
identifiers, which guards against sending notifications to other apps. This authentication

17

Chapter 2: Asymmetric System 2.2 Windows 8

mechanism is implemented using the Oauth 2.0 protocol™, and by providing these credentials
to WNS, the cloud service is given an access token which it can later use to send notifications.

A client app expresses its interest in receiving notifications by sending a request to the
notification platform residing inside the client operating system. This platform then contacts
the Windows notification service to create a notification channel. The identifier, in form of an
URI, is returned to the caller via the notification platform. The client app then forwards this URI
to the apps own cloud service. As illustrated in Figure 7 , when the cloud service has an update
to send, it notifies the WNS using this URI which then routes the notification to the client.

Push Notification

uoied1IoN

WN
Tile Renderer ™" Image Cache g™+ I cOnnecStion

Windows 8 Client Platform

Figure 7: Windows Push Notification Service [15]

2.2.8 Programming model

Windows’s emphasis on the design aspects of apps has influenced the programming model as
well. Microsoft has stated that all API-calls not serviceable in fewer than 50ms should be made
asynchronous. Therefore, Windows Runtime only exposes asynchronous versions of all system
services that satisfy this property. One of the justifications for forcing this on developers is to
keep the Graphical User Interface (GUI) responsive in the face of high latency I/O. Furthermore,

" http://oauth.net/2/

18

Chapter 2: Asymmetric System 2.3 Evaluation of platform

asynchronous programming is known to have its performance advantages, especially with
regard to scalability.

The way that the C# projection implements this behavior is by the “await” and “async”
operators. All functions which are asynchronous are marked with the asynchronous property.
When a function call is marked with the prefix “await”, the function call immediately return to
the calling thread. The rest of the code following the asynchronous code is left unexecuted. A
callback is then marshaled to the continued execution of the function when the asynchronous
method finishes. The function thus executes in a perceived sequential fashion. The returning
thread is then able to do other computations in the meanwhile, such as keeping the GUI
responsive. This type of asynchrony embedded into the programming language leaves a lot of
the dirty mechanics away from the developer. Things like callback handlers and consistency are
handled by the runtime and compiler instead.

2.3 Evaluation of platform

This section evaluates the choice of Windows 8 as our example asymmetric system and how it
conforms to our requirements. The first part will defend the choice of platform and identify
which properties are advantageous to our conjecture. We will then identify and explain the
specific parts of the system which restricts our own design, as well as others.

We chose this platform because of its massive distribution and influence potential. Windows 8
is a new version of the most widespread operating system in existence, reaching out to a nearly
a half billion users worldwide. Based on our assumptions, the trend suggests that Microsoft is
moving towards consolidating all their operating systems and services to provide a unified app
platform for all form factors. Therefore using this system for evaluation will give a broad
foundation for our conjecture.

Microsoft introduces a new design paradigm with the Windows Metro Style Apps. Devices that
have reduced display real estate available will benefit from having tasks more efficiently solved
through this. It is our experience that this new immersive no-nonsense design will prove highly
usable in combination with our objective of reducing the time used in app instaliment.

Our requirements also benefit from Windows’s strict resource management. The app lifecycle
and the brokered system access guards against excessive resource consumption. For example,
having 10 automatically configured apps simultaneously working together without such
restrictions would hold a significant overhead, especially on low powered devices. The
extended cloud integration, providing new features such as app, data and configuration
roaming is very applicable as well.

19

Chapter 2: Asymmetric System 2.3 Evaluation of platform

Although there are some positive traits with using Windows 8, there are also some restrictive
properties associated with it that must be addressed. The same resource optimal environment
that is inherently a positive trait is also restrictive to our requirements.

The most prominent of these is our requirement for apps to communicate, both internally and
across hosts. The only way these apps are allowed to run is in full screen and when not, they
are suspended. Therefore, we cannot assume that apps are alive for receiving communication.
The operating system do support some type of perceived multitasking by allowing apps to
register background tasks, but these are subject to the same isolation and resource restrictions
as well. These tasks are able to trigger on important system events and it is our opinion that
apps should also remain active in response to events occurring when other apps inside the
system change as well.

Apps should be able to cooperate on best aiding the user in achieving his goal, much like the
intent system exposed in the Android platform. The contracts available in Windows Runtime
aim at serving a similar purpose to this. The major drawback of this is that they must be
activated explicitly by user interaction. This invalidates the dynamic properties we seek in our
system. A simple example highlighting this inefficiency follows.

Consider a user involved in a work session solving problems at different domains, aided by
different app instances. It would be reasonable to assume that these apps should respond to
state changes in the others. In Windows 8 Metro Style Apps, this functionality is explicitly
prohibited. The user must invoke these commands in different apps in order to keep them
consistently operating. This would impact the efficiency and speed, at which the user is able to
perform his work.

The app sandboxing together with the Windows Runtime Object Model isolates apps from the
underlying system. More specifically, metro apps are not allowed to install other apps. This
functionality is only available to desktop applications. This complicates our idea of dynamic
configuration of an entire app environment through metro apps. Furthermore, the Windows
operating system will not install any metro app not signed by a trusted certificate authority.
Under normal circumstances this would be the Windows Store. But, it does not provide a
mechanism for automatically configuring an entire app environment.

Software developers have already expressed their concerns about this closed up platform, one
of which is Mozilla. Their intent to make a metro enabled browser for this new operating
system is impeded by the restrictions that Windows Runtime imposes.

In a document on their web side [16] they evaluate the runtime and expose the major
properties of the model that restricts this, one of which is the lack of Inter-Process
Communication (IPC) support. Furthermore, there is no mechanism for dynamic execution of

20

Chapter 2: Asymmetric System 2.4 Summary

code, making it difficult to run a scripting engine inside the browser. Mozilla has evaluated the
built in browser, Internet Explorer 10 and discovered that a lot of the restrictions put into
Metro Style Apps are effectively avoided by this app. This on the other hand proves that there
are use cases and workaround for a lot of the limitations in existence. They therefore restrict
third-party browsers from using the same capabilities as their solution does.

2.4 Summary

In this chapter we have detailed the app platform type as a type of asymmetric system. We
have identified the most important components in this platform and how they interact. We
have further evaluated the major components of Windows 8, the subject app platform we base
our conjecture upon.

Two major focuses in the design of this new app platform has been low resource consumption
and security. Because of this, Windows 8 poses several hindrances to our initial conjecture.
Automatic configuration of apps onto a client system is prohibited in this platform. Apps run
inside a sandboxed environment where they are isolated from the system and other apps.
Access to resources is prohibited unless explicitly allowed and, because of this, IPC mechanisms
are not available for apps. This is also further hindered by the fact that apps are suspended by
the system when not running in full screen. This means that usually only a single app is allowed
to run at a time.

21

Chapter 3: System Architecture 3.1 Server Components

3 System Architecture
To overcome the limitations of Windows 8 and evaluate our conjecture, we have designed
Javza'’.

This system enables dynamic configuration of app environments based on simplified contextual
data retrieved from the user. Moreover, it supports the integration of apps residing on the
same host as well as across hosts by means of communication. This chapter details the
architecture of the system, explaining the function of the different components and how these
interact.

The overall architecture of Javza is based on a three-tiered model, consisting of the client side,
server side and storage server. The three components are depicted in Figure 8. At the client
side we have the Arbitrator which manages all app instances and provides integrating
functionality for these. At the server side we have two components, the App Provider and the
Group Recommendation Service (GRS). Both these use our storage server for managing
structured data such as user context and app packages.

4 Client) 4 Server)
S \

R
N

—

App Provider

S /)

Group
Recommendation
| Service) . Storage
Arbitrator < > \/\ ,:: :
R Server

N

Figure 8: Architectural Overview

3.1 Server Components

The server side of Javza includes two components. The App Provider, which conveys apps to
data
recommendations for group assignments based on contextual data.

clients automatically based on contextual received. The GRS, which provides

3.1.1 App provider
One of our motivations for designing Javza is to enable dynamic app configuration. By this we
mean the ability to automatically download and install apps without the explicit involvement

2 The name comes from the language of the indigenous Sami-population located in the northern-most part of
Europe. The meaning behind it is a special type of singer, referring to a virtuous who masters the most challenging
song techniques.

22

Chapter 3: System Architecture 3.1 Server Components

with the user. To be able to do this, we require a server responsible for managing and
distribution of the app packages. For this purpose we introduce the App Provider.

As mentioned in 2.2.3 app stores commonly require users to explicitly download apps from the
store as is the case with the Windows Store. The conceptual model of this is similar to the one
depicted in Figure 1.

The interaction with these goes through several steps. Users perform a search through the app
store and upon finding what types of apps are necessary, they download the app. The app is
then validated by the user and installed on their local client. This process is time consuming and
perhaps not very efficient, especially on restricted display spaces quite common for smart
devices. This requires us to rethink the model and introduce an alternative, more efficient
approach.

We have designed a service resembling that of the Windows Store. However, the Windows
Store also requires the user to explicitly search for, download, validate and install apps. To
adhere to our initial requirements we instead implement a model which installs apps
automatically, pushing the apps to the end users instead of pulling them. To differentiate
between the two types we refer to our model as an App Provider.

Automatically downloading and installing apps do not come without its consequences with
regards to the integrity and security of the client system. Downloaded executable code is
generally considered very unsecure and Windows 8 enforces strict policies to guard against this
from occurring. Furthermore, this approach to app management could provide issues with
privacy and could be considered intrusive if not properly handled. We abstract away these
issues here as it is outside the scope of this thesis. However, we acknowledge the need for
secure mechanisms for app management, and reason about the issue later in section 7.1.

The notion of pushing apps to clients requires us to have a fair understanding of what type of
apps the user needs. More specifically, we are required to, with high probability and precision
infer what apps the user needs. Accurately predicting user needs is difficult and we will not go
into particular detail on this, as it is beyond the scope of this thesis.

We instead adopt a rudimentary description of context to infer user needs. Contextual data can
be anything that describes the environment and situation the user is involved in. This data
could be explicitly provided, such as the case of the common search engine query. Or it could
be implicitly inferred by available context. Mobile devices contain an abundance of sensors,
able to provide implicit contextual data. These include GPS link, Altimeter, Magnetometer,
Accelerometer, Microphone, Video Capture and Image Capture. Our solution is confined to
explicit context, retrieved through the specification of intent, embodied in Javza as strings.

23

Chapter 3: System Architecture 3.1 Server Components

Based on this contextual information provided by the client, the App Provider performs an
analysis and matches it to app packages residing on the storage server. These are then returned
to the client and automatically installed. The contextual information is stored in a per user
fashion in the storage server for further use by the GRS. The overall interaction between these
three components can be seen in Figure 9.

f, ,__(_:_"'E[‘_t__\\ /,___5_‘? ver O

Group
Recommendation
Service

\ y Storage

1
I

i

Arbitrator N .

| Context Data I: Context Data Server

i App Provider

Q y _-App Packages \ / < App Packages v

Figure 9: App Provider interaction

3.1.2 Group Recommendation Service

We want to provide the ability for apps across different hosts to communicate with each other.
Apps used inside the same domain should be able to share data to aid one another in their
purpose, despite host boundaries.

To be able to provide communication between apps across different hosts, we need a way to
identify which hosts should be able to communicate. The objects participating in the integration
needs to share some similar intent to validate this integration, we therefore need a mechanism
to detect this. To provide this service in Javza, we introduce the GRS.

These recommendations could be made implicitly or explicitly. In the explicit scenario, users are
able to decide what users they are connected to. The other recommendation type issues
implicit recommendations which automatically connect users.

To limit the scope of this thesis, we abstract away the notion of users consent to participate in a
given group. Our purpose is not to evaluate the security and privacy aspects of such a system
but rather provide the ability for apps to communicate across different hosts. We have not
deigned an optioning to allow users to manage group access. Hence we declare that every
active user of a host system is willing to connect to groups of other users. And we therefore
connect users automatically without user involvement.

The GRS’s sole purpose is to provide users with recommendations about groups of other users
with similar intents. It retrieves the contextual information from the storage server and
performs an analysis on this information. If the analysis concludes that there are groups of

24

Chapter 3: System Architecture 3.2 The Arbitrator

users with similar intents, a recommendation is sent to these users. These users are now by the
information contained in the recommendation, able to connect into a group. Figure 10
illustrates the push based information flow and placement of this component.

//__(_Z_Ii_gp_t__\\ 4 Server) ©

\ Group
Recommendation Recommendation < Context Data
Service

Storage
Server

N

Figure 10: Group Recommendation Service

3.2 The Arbitrator

By allowing apps to share data, both within the same host and across hosts, they become
providers of content for other apps. Apps would not only rely on user input to that specific app,
but also user input and data generated in the context of other apps. This can provide insight
from their specific domains not otherwise available.

Consider two example apps in a single host system. One of them is a restaurant listing app with
functionality for reserving tables. The other is a map app with GPS capability. The user interacts
with the restaurant app, first searching and then booking a table at a given restaurant. The user
then checks the map app to find the restaurant. In the case where these apps aren’t able to
communicate, the user must then perform the same search in both apps. This causes
unnecessary complication and time consumption, especially when the host system has a
restricted display surface such as the case with smart devices. Furthermore, consider the same
scenario across two hosts. Two particular users are performing a similar task. They are
cooperating on finding the solution to the given problem. The apps on each users host should
also be able to communicate for the benefit of this collaboration.

It is our conjecture that it will prove beneficial to the overall functionality of the system and
provide a richer user experience. As mentioned in subsection 2.1.1 the Android platform
provides this functionality for apps within the same host. In subsection 2.2.6 we explained how
Windows 8 restricts us from doing this implicitly.

To satisfy our requirements and evade Windows 8’s app sandboxing restrictions, we have
designed the Arbitrator. This naming comes from its function as a decision maker and mediator
between apps in Javza. This runtime is located within each client host and consists of multiple
cooperating components.

25

Chapter 3: System Architecture 3.3 Storage server

. [server D

4 Client

\
] Group I
. |
Recommendation | Recommendation | < Context Data
| Service '
N / Storage

Arbitrator
Context Data

_____________ \| |: Context Data > Se rver
i ¢ozza
|

App Packages < App Packages
\ / & ___________ j _/

Figure 11: Arbitrator placement in architecture

Bl

It provides a mediation service by Inter-Process Communication between apps on the same
host, and networked communication service for apps on different ones. Figure 11 illustrates
how a single Arbitrator instances, located on the client, interacts with the rest of the system. It
forwards contextual data back to the App Provider. When it receives App Packages from the
App Provider, it automatically installs these on the client system. When a recommendation is
issued to it by the GRS, it then connects to a group of other Arbitrator instances.

3.3 Storage server

Both the App Provider and the GRS requires a storage server which provides consistent and
structured storage of data, accessible by both. The GRS needs this data to keep track of the
groups in effect and users associated with these. The App Provider will store apps and manage
the contextual information provided by each user for analysis.

The storage server also maintains a correspondence between the groups, and what apps are
installed by which user of a group. The App Provider will need to control which apps each user
has installed already to avoid duplicate access to apps. Each app is also associated with a
specific context, specified by the developers of them. Apps are collected together into sets of
apps, which corresponds to similar usage comparable with contextual information. As
mentioned previously, the notion we adopt in this thesis is very rudimentary, for abstraction
purposes. In Javza we use simple textual strings to represent a user’s contextual information.

3.4 Overview

All these components interact to provide the joint functionality we require in Javza. Figure 12
describes the architecture in use and the interaction between the components. This interaction
consisting of the following steps:

The Arbitrator runtime provides contextual data to the App Provider.
The contextual data is evaluated and stored in the storage server.

3. The App provider then retrieves the collection of apps that best match this from the
storage server.

26

Chapter 3: System Architecture 3.5 Summary

4. These apps are then sent back to the Arbitrator residing at the client, who then
automatically installs these apps into the system.

5. Periodically, the GRS retrieves the contextual information from the storage server and
analyzes it.

6. If it discovers clients with similar contextual data, it sends a recommendation to these
users to join up in a group.

7. Once inside this group, the apps on the host systems of these users are now able to
communicate with each other through networked communication.

et) ~ ™ TN
Client © Server “ (

Group
Recommendation Recommendation < Context Data
Service

™ @ Storage
Context Data I_Context Data Server
App Provider

K\ // App Packages \ / < App Packages \—’/

4) (3)
r

Group

I

Arbitrator

i

Figure 12: Architecture in use case

3.5 Summary

In this chapter we have identified the separate components involved in the design of Javza. We
have explained our design and how it relates to our conjecture and the restrictions imposed by
Windows 8.

We have introduced the concept of an App Provider. Consumers spend a lot of time in
traditional App Stores by searching, downloading, validating, installing and then configuring
apps before they are ready to be used. The App provider aims to remedy this by installing apps
automatically based on simplified contextual information retrieved from the user. There are
some obvious security implications with installing apps automatically onto a system from across
networked connections. In designing Javza, we abstract away these issues and rather focus on
how to provide this functionality.

27

Chapter 3: System Architecture 3.5 Summary

We explained the benefits of allowing apps to share data, and contribute to a richer user
experience. The Arbitrator has been designed to complement Windows 8, and provide this
feature both within and across hosts.

To allow related app instances across users to be able to share data, we have designed the GRS.
This service issues recommendations to users with similar intents to join into groups. The
service enables users of users to communicate implicitly.

We have identified the most relevant requirements for the storage server in order to provide
this functionality. Finally, we provided an overview of the different components interacting
with each other to fulfill our requirements.

28

Chapter 3: System Architecture 3.5 Summary

29

Chapter 4: Implementation 4.1 Server Side

4 Implementation

This chapter details the prototype implementation of Javza, which we will further use to
evaluate our initial conjecture. In section 4.1 we detail the server side components which
provide group recommendations and apps to clients. Section 4.2 then explain the Arbitrator
implementation, our client side runtime which provides automatic configuration and
integration of apps.

We should mention the difficulty of researching a yet to be released proprietary system such as
Windows 8. In parallel to our research efforts, this system has been released in multiple
versions. To adapt we have made modifications to our system during this phase which will be
detailed later in this chapter.

Windows Runtime and Windows 8 gave us four language choices for implementing our
prototype, C++, Visual Basic, JavaScript and C#. Visual Basic was deemed too old a technology
and JavaScript too restrictive. C# was then chosen based on a tradeoff between performance
and speed of development. Although native code execution is faster than managed code
execution, prototyping in C# is much faster than the native alternative C++. The underlying
frameworks used are the .NET platform and the Windows Runtime.

The custom communication protocol we implemented uses the same underlying messaging
format throughout the entire prototype implementation. It is implemented exclusively on top
of regular TCP which gives us total control of the performance. We exclude unwanted
functionality by stripping the communication down to the bare bones. Other communication
mechanisms such as web services and Remote Procedure Calls are more costly if not used
efficiently and without expert knowledge. We are quite familiar with TCP sockets and they
provide the basic properties we require in communication channels, reliability, synchrony, and
congestion control.

To assure interoperability across different types of Metro style Apps, we should be able to
share structured data. To be able to share structured data across stream based communication
primitives such as TCP we must serialize data down to a byte representation. Metro Apps and
.NET are able to serialize objects by two different approaches JSON and XML. We use XML as
the method of serialization in our implementation.

4.1 Server Side

We will now explain the implementation of the server side of Javza. Although the design
indicates that the App Provider and GRS are separate components, both run inside a single
process in separate threads and use the same storage server.

30

Chapter 4: Implementation 4.1 Server Side

4.1.1 App Provider

Our motivation for designing the App Provider is to enable dynamic app configuration. We
redefine the app store model by installing apps automatically to the end user. In order to
accurately do this we should infer the needs of the users based on contextual data and
associate these with apps.

This component manages app packages and associated tags describing the apps usage. When
submitting an app to the App Provider, the developer is responsible for including these tags in
form of strings. Apps are then based on these tags grouped into sets. These sets will then
contain apps with similar capabilities.

Implementing an interface for app submission is outside of the scope of this assignment. The
current implementation is statically configured with apps that are tagged and stored into the
database. Furthermore, our focus for this thesis is not on app development so to limit the scope
we refrain from developing many complex apps. We have however implemented 5 apps which
use Javza, with related functionality. These apps are based on a developer sample retrieved
from the Windows Development Center™, although extensively altered. We describe their
purpose later in chapter 6.

Since we have only implemented these apps for evaluating Javza, there are some restrictions to
our initial design. When a client provides contextual information to the App Provider, all 5 apps
are returned for installation instead of particular set of apps corresponding to this. However,
the App Provider supports grouping apps into sets using the mechanism detailed below in
subsection 4.1.4, although our implementation does not utilize it.

Furthermore, the App Provider also collects usage information provided by the clients of the
system and stores them together with the apps located in the storage server. These statistics
come in three types on a per-app granularity: the installation count, an uninstallation count and
the number of activations. This information could help precision in searching for apps by
providing information valuable in ranking. However, because of the same reason mentioned
above we refrain from using this functionality.

When a client reports back some contextual information, the App Provider then stores this and
returns the apps to the client for installment. The package format of these apps is identical to
the ones downloaded from the Windows Store, as explained in subsection 2.2.3, except that
these are signed by our own temporary certificate. Upon compilation of the apps, the Visual
Studio IDE creates a temporary certificate for the app, and signs the app package with it
automatically. It also creates a batch script for installing both the app and the certificate into
the client system. The app packages themselves are actually stored on disk, while the metadata

3 http://code.msdn.microsoft.com/windowsapps/

31

Chapter 4: Implementation 4.1 Server Side

resides in the storage server. To convey multiple app binaries across the network we compress
them together using the DotNetZip** library. This zip archive file is sent back to the client, which
in turn decompresses and installs the apps.

4.1.2 Storage Server

Our requirements dictate that the storage server should hold structured data. As depicted in
Figure 13, the data requirements we presented in section 3.3 map fairly well to the entity-
relationship model. The schema of this component is a relational database schema
implemented through the ADO .NET Entity Framework™ on top of a Microsoft 2012 RTM SQL
Express Server.

A group entity contains more user entities which in turn have app entities related to them.
Associated with each app entity is a set of tag entities which describe the usage of that app. The
relationships between the tag and user entity shows that we use the same entity for storing the
contextual data retrieved from users. App entities are also related to their own groups, which
the schema refers to as a taxonomy entity.

By using the entity framework, we are able to manipulate relational data in an object oriented
fashion. Furthermore, because of its integration with .NET we are provided with LINQ query
language support for retrieval of data. We express these queries directly in C# code, and the
underlying system handles the execution transparently.

% http://dotnetzip.codeplex.com/
> http://msdn.microsoft.com/en-us/data/ef.aspx

32

Chapter 4: Implementation

#3 Group ES

= Properties
Ji 1d
K Name
=l Navigation Properties

\'E] Users

OD.J

*

<
#3 User 2

= Properties
Ji Id
K AcceptGroupCh...
K Name
& |PAddress
& port
¥ Groupld

| Navigation Properties [

ha Group
¢= Apps
¢=l Tags

*3 App

(5

= Properties
¥ Id
B Activations
F Installs
SourceDirectory
& Uninstalls
F Name

F Taxonomyld *

K Userld
Navigation Properties

5‘ Taxonomy
vg Users
vl Tags

<>('.L.1

*

<O

0.1

>

%3 Tag

= Properties
o Id
K Value
K Userld
% Appld

=l Navigation Properties
v@ User
¢ App

Figure 13: Data Base Schema

4.1.3 Group Recommendation Service
Our motivation for implementing the GRS is to aid integration of apps across hosts. The GRS
contributes by recommending users to groups which then implicitly enables apps within these

i

4.1 Server Side

#r Taxonomy A

=l Properties

o Id
F Clusterldentifyer

= Navigation Properties

¢ Apps

groups to communicate with other apps. To realize this we need a method of determining what

groups users are recommended to join. More specifically, to determine what users have similar

intents from the contextual information gathered by the App Provider.

The GRS performs analysis on this data retrieved from the storage server within regular

intervals. The data is consumed by an analysis algorithm which will detect if users with similar

intents exist. The recommendation is then pushed out to the users, along with enough

33

Chapter 4: Implementation 4.1 Server Side

information to connect the group. The storage server is responsible for storing this contextual
information for each user of the system, and also the associated groups they currently belong
to.

As explained in 3.1.2, GRS does not reason about users consent to participate in a group. In a
real life scenario we would have to address these privacy implications but as it is outside the
scope of our thesis, we abstract away from this issue. In our system, all active clients are
interested in being connected to a group.

User records are admitted into storage on a first encounter policy. The first time a user contacts
the App Provider he is admitted into the data records and is then able to receive
recommendations from the GRS.

4.1.4 Detecting groups

This subsection describes the algorithm used by the GRS for detecting objects with similar
contexts. Our choice of method for analyzing contextual data comes from two basic
requirements. The method should provide a more sophisticated analysis than simply comparing
values in a binary form. Furthermore, it would be considered a benefit if the approach is
relatively straightforward to implement.

The same approach is used in the App Provider to group apps together, but as explained before
we do not utilize this. In the following subsection we refer to them both as objects.

We adopt a rudimentary approach to contextual information where the information gathered
from these objects consists of distinct tags, more precisely string values. The algorithm employs
techniques that are inspired the Vector Space Model [17] for computing document similarities
of these tags.

To assign objects to groups corresponding to their contextual information, we look at each
object’s recorded tags as a vector in Euclidian space. We then use a learning algorithm to find
similarities, and use this to group together objects based on data clustering.

Each unique tag corresponds to a single dimension, and is encoded in the object’s single vector
as either one to mark the presence of a term, or zero for the absence of this term. The amount
of dimensions corresponds to the entire amount of unique tags across all evaluated objects.

In other cases where contextual information is actually quantifiable this approach is not
necessary. They are then directly adaptable into the vector. An example of this could be the
latitude and longitude coordinates retrieved through the GPS sensor on a smart device.

34

Chapter 4: Implementation 4.1 Server Side

The algorithm used for determining correlation between the vectors is the k-means algorithm
[18]. It is a classical clustering algorithm which classifies output cluster patterns from input
samples.

It starts out using k initially chosen vectors in the Euclidian space. These are chosen either from
the set of input vectors or randomly distributed throughout the space. For each vector
evaluated the algorithm computes the Euclidian distance from that vector to the k vectors in
the cluster. It then assigns the vector to the closest one, and re-computes the center of that
cluster by arithmetic mean. The process continues until the clusters converge towards a single
point. In our case where the amount of input vectors is finite, this process continues until all
vectors have been evaluated.

For an n-dimensional space, the Euclidian distance is given by the equation:

And the arithmetic mean v for each dimension, for each vector U assigned to a cluster is given
by:

m

_1Z—>
v=") Ux

x=1

The key to this approach and the most difficult part is choosing how many initial clusters exist in
the data set. We have no way of knowing the amount of natural clusters in advance.
“Increasing the number of clusters will always decrease the amount of error in the result,
converging in the case where each cluster contains only a single point. Choosing k should strike
a balance between maximum data compression in assigning the data to a cluster, and the

accuracy corresponding to the original value of the point™™®.

For simplicity we implement the following approach, commonly used in text database analysis
[19]. Here all the input vectors to the k-means algorithm are put together in a matrix D where
each row corresponding to a single vector. The number of clusters is determined by the

m+*n
formula: k = X where t is the number of non-zero entries in D, m is the number of vector

points and n is the number of dimensions.

16 Paraphrasing: http://en.wikipedia.org/wiki/Determining the number of clusters in a data set

35

Chapter 4: Implementation 4.1 Server Side

We can by this approach extract the vector assignments and group users accordingly.
Consider the dimensions D = {cheese,wine, alligators}. We are then operating in 3-

dimensional Euclidian space.
We have three objects with corresponding contextual information:

U, = {cheese,wine}
U, = {wine, alligators}
U; = {alligators}

Their corresponding vectors will then be:

u, = [1,1,0]
1_4)2 = [OP1P1]
u; = [0,0,1]

We then determine k as k = ceil (153) =2

U,
Us
S
©
2 Uy
e 2
< $¢
Cheese

Figure 14: 3-Dimensional terms

We observe from Figure 14 that the closest terms are in fact U, = {wine, alligators} and
U; = {alligators}. These two are only separated by a single dimension. U;is diagonal across
the x-y plane from U, and diagonal across all three dimensions from Us.

In our example we have only three dimensions and three input vectors for illustrative purposes.
However, the method is applicable for any number of dimensions.

Normally in vector space models the cluster center point is not computed as an arithmetic
mean of the vector coordinates, rather they use angles between vectors. Furthermore
measuring the Euclidian distance as a method of comparison is crude. Since it is out of the

36

Chapter 4: Implementation 4.2 Arbitrator

scope of this thesis to evaluate sophisticated document analysis methods, we refrain from
implementing this.

The approach taken here boils down to a comparison of values represented in vector form. A
more sophisticated alternative to detecting objects with similar interests would be to use
semantic textual analysis. In such an approach, one would instead try to infer the meaning
behind the tags. One could for example use a lexical database such as WordNet'’. WordNet
records the semantic relations between different words in the English language into a database.
By this approach one could discover how far objects are relative to the meaning of the terms
associated with these objects. This relationship can be quantified and used to compare similar
intents.

4.2 Arbitrator

This section describes the implementation of the Arbitrator, the client side runtime of Javza.
Our design dictates that we require a runtime which can automatically install apps.
Furthermore, it must function as an integration point between apps at the same host and those
receding at different hosts. In order to fulfill this purpose it must remain in continuous
operation regardless of apps being suspended by Windows. The Arbitrator is therefore
implemented within in the desktop environment and not the Windows Runtime environment.

It consists of an app management component and a communications component. Though they
fulfill different requirements of the system, their separation is at a logical level, meaning they
are both located inside a single process.

4.2.1 App Management

The App Management Component (AMC) is in charge of installing and monitoring apps received
from the App Provider. Administering communication between apps requires proper
addressing, and in order to address apps we need to know which ones are installed. If a user
should choose to uninstall an app our runtime should reflect these changes. Since the App
Provider pushes apps to the clients it should be notified of this event, to record what apps are
already associated with users. Furthermore, knowing how each app is used in our system could
prove an important contribution when ranking these. The AMC therefore consists of two
mechanisms, one that provides dynamic installation of apps and one that performs monitoring.

To manage app packages we use the Windows Package Manager. This is an operating system
provided asynchronous APl which enables us to query, install and remove Metro style App
packages from the system. This APl is only available for desktop applications, which further
validate our decision of implementing the Arbitrator outside the Windows Runtime
environment.

7 http://wordnet.princeton.edu/

37

Chapter 4: Implementation 4.2 Arbitrator

In subsection 2.2.3 we explained the difficulties of installing apps outside the Windows Store
and that packages must be signed by a trusted certificate. However, Windows provides two
mechanisms that allow developers to deploy their temporary applications while in
development on the local system,

For this purpose, the Visual Studio IDE creates temporary certificates for app deployment on
local computers outside the Windows Store. It signs these packages with this certificate and
upon deployment the certificate is installed into Windows Trusted Root Store. The compilation
of app packages include a batch file script for installing both the certificate and the app at the
same time, and the AMC provides functionality to execute these with each app package.
However, our requirements imply that the installation process should be as swift as possible
and installing certificates into the Trusted Root Store costs time. We therefore only installed
the certificate in which all our apps packages are signed with, once per operating system
instance.

To install these custom apps we also need to have a developer license registered on the system.
Windows provide an APl which enables us to check for and acquire developer licenses to the
system. We automate this procedure and check whether a developer license is already
registered upon initialization of the Arbitrator runtime and if not, we acquire one. This must be
performed within the context of a developer account, so the system then prompts us for
registering with the developer credentials. The procedure is a one-time event per operating
system instance, and is only necessary the first time a user instantiates the runtime. With this in
place the AMC is now able to install apps issued by the App Provider, as illustrated in Figure 15.

We monitor these apps by querying the Package Manager within regular intervals, retrieving a
list of installed apps. We also keep track of the lifecycle of each app installed by monitoring the
state of the processes associated with each app. These two approaches give us a fine granular
knowledge of when a distinct app is activated, terminated and uninstalled. In the face of such
an event, the client runtime reports back this information to the App Provider. The App
Provider then stores the information together with the corresponding app.

38

Chapter 4: Implementation 4.2 Arbitrator

Arbitrator
App
Management

Figure 15: App Management Component

4.2.2 Communication

We conjure that there are benefits in providing integration between apps located on the same
host as well as on different hosts. Allowing apps to share data and contribute to the
functionality of other apps without explicit user involvement could provide a richer user
experience. Furthermore, it would alleviate much of the time consumed in explicit user
interaction on restricted display surfaces commonly present in smart devices.

This applies to different smart devices as well, possibly aiding a group of users in a cooperative
task. Apps located on the different devices should be able to share data without user
involvement to efficiently aid the cooperation.

We here detail the implementation of the Communication component supporting this in the
client side of Javza. Figure 16 illustrates the organization of this component residing within the
Arbitrator. This subsection is structured as follows:

First we state our requirement with regard to inter-host communication, before detailing our
solution to this. We then proceed by identifying the properties we seek in Inter-Process
Communication, limitations posed by the underlying system, and how we solved this. Finally we
present the naming format used by the Arbitrator runtime to convey messages.

39

Chapter 4: Implementation 4.2 Arbitrator

)| (=) (=
| |

N
{ Communication }

Arbitrator

Figure 16: Communication

4.2.2.1 Inter-Host Communication

We conjure that there are use cases where apps located on different hosts could benefit from
being able to share data. Furthermore, we anticipate that not all scenarios are efficiently
servable from a centralized approach to mediate this communication.

The GRS, described in subsection 4.1.3, provide a service which identifies users with similar
intents, and subsequently sends a recommendation for them to join each other in a group to
enable communication between apps on different hosts. Figure 17 illustrates the abstract
function of this in between Arbitrator instances.

Network connectivity issues are common in mobile environments, and there is the possibility
for smart devices to be disconnected from the rest of the network. For the sake of abstraction,
we refrain from implementing a rigorous scheme for fault tolerance in this thesis. Even just
establishing whether or not a connection is just slow or dead is impossible. We have not
formally tested our capabilities of handling failures, and as such we do not support it.

Arbitrator [[]|:> Network [[]|:> Arbitrator

Figure 17: Abstract functionality

40

Chapter 4: Implementation 4.2 Arbitrator

4.2.2.1.1 A Centralized Approach

In this thesis we have chosen to explore a decentralized approach to inter-host communication
between apps. Centralized client-server solutions require a server to relay messages between
hosts. We conjure that not all scenarios can be efficiently solved using this model. Examples of
this could be a session where the users are within a close range, such as in a collaborative
setting. This would be even more pressing if the users are within a network with limited
coverage or a metered network. In metered networks the payment plan of a mobile
subscription dictates how much data could be transferred, and at what cost.

We consider a case involving the Windows 8 app platform where one app wishes to
communicate with another app located on different devices. In Windows 8 apps are suspended
when not in use and can therefore not receive communication. However, notifications about
important events could be relayed through the Windows Notification Service to these devices
regardless of app state. As mentioned in subsection 2.2.7 only third-party cloud services can
relay notifications to client systems. So any request for notification to a particular app must go
through this. Figure 18 details the communication necessary in order for these two devices to
communicate. We list the steps here:

1. First the initiating app (C;) on the client smart device sends the message to its
centralized server or cloud service.

2. This service again, through Windows Notification Service, sends a notification to the
other participant (Cy).

3. Upon the receipt of the notification at the clients system (C,), the system or the user
explicitly notices this event.

4. It can then by polling the server retrieve the actual message from the server.

41

Chapter 4: Implementation 4.2 Arbitrator

— Third Party
WNS Cloud

(2)

g
@ :
IO
@@
3)
G

Figure 18: Centralized Approach

4.2.2.1.2 Peer-to-Peer

The alternative we have chosen to a centralized solution is a decentralized approach. Among
these the most viable for our use is peer-to-peer communication. The organization of this could
be either structured or unstructured. They can also be completely distributed or a hybrid
approach with a centralized organizer.

We chose to implement a completely decentralized and highly structured peer-to-peer
approach to communication in Javza. The source of inspiration for this peer-to-peer
implementation is the Chord peer-to-peer lookup service [20], built for distributed hash tables.
More specifically, the prototype we implement resembles the lookup service and organization
of nodes in Chord to provide communication between hosts in Javza.

We further build our arguments for the choice of this design upon the similarity with Chord. We
cannot argue solely on behalf of our own implementation, because we do not evaluate a lot of
the aspects which justifies this choice. We simply note that Chord provides the properties we
seek for in communication, and our implementation aims to mirror this.

The first and foremost property is the scalability Chord provides. A vast amount of smart
devices are able to be interconnected directly into a peer-to-peer network, without a
centralized bottleneck in the system. Furthermore, because this approach is completely
decentralized, we are not dependent on any server for communication. The Chord structure, as
we will note, maintains redundant links and is therefore able to maintain connectivity in the
group despite of nodes failing. This same structure provides relatively good upper bound
guarantees as to how many hops are included for a communication to reach its destination. In

42

Chapter 4: Implementation 4.2 Arbitrator

the event where multiple apps on separate hosts are able to consume a given piece of data
shared within the group, the overlay network should support broadcasting. Peer-to-peer
approaches provide very efficient ways of broadcasting. This is done by distributing information
or state to multiple receivers through epidemic protocols such as gossip based dissemination.

In our implementation, as with Chord, all participants in this network are coordinated into a
ring where their placement in the ring is guided by a unique key. The next consecutive key held
by a node in the ring is called that participants successor, and the key before called its
predecessor.

4.2.2.1.3 Lookups

Each participant in the ring holds a table of size m, internally referred to as a finger table. The
ring can hold a maximum of N participant where N is exactly 2™ for any given m. This table
could be compared to an address book for quick access to other participants in the ring. To
obtain the properties explained later in this subsection we use a formula to compute which
participants should be present in the finger table. The node address residing in the ith entry of
the finger table of node n is calculated by the given formula:

x = ((n+27)mod 2™)
X is the key of that particular node. It requires exactly 2™ keys for an m length finger table.

Each participant is assigned a set of keys between its own and its predecessor. We refer to this
as a key range. When the ring is full, as illustrated in Figure 19, each participant only owns a
single key. The number of entries in the finger table is 3, which corresponds to a maximum of
23 = 8 participants

43

Chapter 4: Implementation 4.2 Arbitrator

Figure 19: Peer-to-peer organization

The algorithm for looking up a specific key in the ring includes the following steps (Special care
must be taken when crossing the 0 key):

1. The user credentials of the recipient hashed down to a given key, and thus forwarded to
the closest participant in the finger table not exceeding that key.

2. That participant checks to see if he is the owner of the destination key, if not he returns
the closest entry not exceeding the key value in his finger table to the requester,

3. The participant corresponding to this entry is then queried, and this process is
continued until the participant who owns the key requested is found.

The guarantee for finding the key requested using this algorithm is given in the strict
organization of the key range and finger table entries. Furthermore, this also guarantee that a
lookup of any given node in the ring will take no more than Log(N) hops, where N is the
maximum allowed members in the ring. By the randomness property of consistent hashing,
each participating node is likely to be evenly distributed across the ring, providing optimal
placement for the lookup algorithm. For formal proof of this algorithm and its properties we
refer to the original Chord specification [20].

4.2.2.1.4 Message handling

On top of this lookup service we provide two types of communication, both broadcast and one-
to-one. Both modes again provide two types of messaging objects, serialized objects or files.
Point-to-point communication, include the same steps as the algorithm described above. For

44

Chapter 4: Implementation 4.2 Arbitrator

broadcasting messages through the peer-to-peer network we use a gossiping data
dissemination inspired approach.

This type of communication protocol is more commonly used in unstructured peer-to-peer
networks, but it is just as well applicable in our case. The way this mechanism works is that the
initiating participant broadcasts the message to all distinct entries in its finger table, and each
one if these in turn further broadcasts in the same manner. The cut of in this algorithm is when
a participant receives a duplicate message, recalled by a unique identifier. It then stops, and
does not further issue a broadcast. The proof of this mechanism is left to others [21], but during
the evaluation of Javza we experienced quite reliable broadcasting.

4.2.2.1.5 Membership

Entry into the ring is controlled by the same algorithm as for lookups. The key of an entering
participant is decided by hashing down his own unique credentials. These credentials could be
anything from a Windows GUID and IP/Port address pairs to nicknames. A joining node
requests the closest one to this key and by iterations of the algorithm he is forwarded to the
owner of that key. The owner’s key range is then split into two on the joining participant’s key.
The predecessor of this node is notified about its new successor in the ring and the join
mechanism is complete.

If on the other hand the key of the joining participant is at the exact latter end of the owner’s
key range, then a split of the key range is not possible, and thus he is denied entry into the ring.
To avoid this from happening, we could make the entire set of keys very large. The randomness
property of the hashing algorithm would then ensure this, as conflicting hash values are very
unlikely to happen.

To exit the ring in a planned manner, the node who wishes to depart, informs its predecessor
and successor of this fact. The predecessor updates its successor information to contain the
departed nodes successor. The successor of the departing node then inherits that key range.
Under normal circumstances not involving failures, the rule dictates that key ranges are always
split from and merged to the successor in the ring. The finger table entries of both the
predecessor and the successor are also updated to reflect this change in membership. Other
participants that have this departed node as a reference in its finger table must proactively
discover membership changes.

4.2.2.1.6 Stabilizing Finger tables

In order for the finger tables to remain consistent in the face of membership changes we have
implemented a remedy. It consists of a background thread doing lookups on the entries at
regular intervals, and updating them to reflect changes.

45

Chapter 4: Implementation 4.2 Arbitrator

However, there is a tradeoff to consider here. Updating them too frequently would cause a lot
of bandwidth overhead, and strain the peer-to-peer network. On the other hand, infrequent
updates would leave the table in an inconsistent state hurting the speed of lookups, especially
if posed with a high churn rate. We therefore limit the frequency of updates by using an update
control algorithm.

This algorithm executes in a similar manner to how congestion control works in the TCP
protocol. The updater thread execution interval starts out at the lower bound of the threshold.
It then updates this frequency every time it runs increasing the interval with 0.5 seconds,
upward to the upper bound of 20 seconds. Whenever a membership change is noticed, the
algorithm drops this frequency down to the lower bound and starts growing again. Changes are
noticed through either connection timeouts or lookup mismatch.

Network outages are very common in mobile environments, and there is the possibility that an
unplanned departure of the ring happens. Since the finger table entries require the
predecessor/successor links as a fallback, these are the two most important links to preserve.
Our solution must therefore support two such scenarios, a predecessor leaving or a successor
leaving.

In the case of the successor of a given node leaves, the successor’s successor is responsible for
absorbing the key range left unused by the departing node. He is responsible for letting the
given node know he is the new successor. We find the leaving successor’s successor in the
second entry of the finger table if it is up to date. As previously mentioned, we do not support
fault tolerance in this prototype and in the event that the finger tables are not updated, the
communication fails over. During experimentation we only encountered this situation when
removing a large portion of the nodes in within a given range of the ring in rapid succession.

The execution architecture of the communication component is illustrated in subsection 4.2.3.2
in Figure 21. Communication is implemented as both a server and a client. It is listening on a
socket for incoming connections as well as providing an app level interface for interacting with
the provided services. When a request is inbound, the server creates a new thread for
interaction with another node and upon the end of handling this request, the connection is
closed.

Although this approach requires a TCP connection for each request, it requires less state to be
preserved and is therefore substantially easier to implement and manage. The alternative, an
asynchronous implementation maintaining open TCP sockets to peers, would require a lot more
effort.

46

Chapter 4: Implementation 4.2 Arbitrator

4.2.3 Inter-Process Communication

This subsection details two different implementations of IPC between apps inside the same
host. We implement it to avoid Windows’s restrictive app sandbox and address the likelihood of
apps being suspended while in the midst of communicating. Located in the Arbitrator, it allows
apps to adapt to the usage of other apps without the user having to explicitly provoke this
behavior. Furthermore, it allows multiple apps to adapt to this usage simultaneously by
broadcasting data.

The first and initial approach uses the disk for communication to avoid the sandboxing and
provide persistent decoupled communication. This was developed for the release of Windows 8
Developer Preview in September of 2011. The second type is the current IPC deployed in Javza.
It accomplishes the same, using tools that were released in the Windows 8 Consumer Preview
at the end of February 2012.

Based on the restrictions of Windows 8 our requirements to an IPC mechanism in the app
environment can be summarized in the following steps:

1. It should be able to send structured data across the connections, to increase
interoperability and simplify consumption of data across different types of apps.

2. The communication should be bidirectional; the mechanism should be able to send data
in both directions.

3. Connections should be decoupled, allowing communication to persist across process
instances, to support app suspension and resume.

4. Communication mechanism should be stream based. The messages should be conveyed
in the manner they were inserted into the connection.

5. Apps should be able to broadcast messages to other apps, in order to make it
consumable by multiple apps simultaneously.

4.2.3.1 Disk based

The first approach, as the title suggests, involves communication relayed by the file system. It is
implemented as a contiguous series of messages stored in a file on disk, as illustrated in Figure
20. It is a quite crude way of implementing communication between processes, but to our
knowledge, it was the only realistic approach at the time. The main disadvantage using this
approach is latency. Each side requires a separate thread performing I/O accesses continuously
by polling the disk. If instead given simple intervals for polling this would further hurt latency.

Both Windows Runtime and the .NET platform provide file system APIs for inserting event
callbacks which are executed upon changes to the file system. We avoid disk polling by
exploiting this functionality. The wrappers implemented on each side of the library allow us to
subscribe to an event handler which trigger upon incoming data.

47

Chapter 4: Implementation 4.2 Arbitrator

(. ‘ . \
File File
Size Size
Body Body
Size Size
Body Body
Size Size
Body Body

~— |

a U
Arbitrator

Figure 20: Disk Based IPC

Since file access is exclusive on write, full duplex communication is realized through two single
directional files. These provide the logical abstraction of a single bidirectional pipe, as
illustrated in Figure 20.

The inner workings that allow the desktop application and the app to use the same files are
hidden inside the app’s manifest. Capability declarations, as explained in 2.2.2, allow apps to
specify storage libraries in which they wish to be allowed access to. With this they declare
which file associations they are going to use. So in this implementation each app declares its
intent to use the common document folder and its own file format association identical to the
name of the app. When the Arbitrator registers the installation of the app it creates two such
files, one in each direction, and monitors the one facing the Arbitrator for changes.

The advantage with this approach is that communication is persistent across app states and
Operating System transitions. However, the response time and throughput is less than optimal
for its usage requirements.

In this implementation the receiver is responsible for removing messages that have been
received, meaning he also perform write operations in the same file to delete messages. A
consequence of this is lock contention, and we still require further polling for successful
requests. These disadvantages are further exposed when running several apps simultaneously.

48

Chapter 4: Implementation 4.2 Arbitrator

4.2.3.2 Internet Protocol Stack based

With the Consumer Preview build a new set of developer tools were released, and among these
were the “CheckNetlsolation” tool. This tool is meant as a remedy for developers to temporarily
disable the isolation of apps from using the loopback address for communication. This enables
developers to test their networked apps locally using the local host communication without
these restrictions. More specifically, we can use TCP sockets to relay messages to processes
inside the same system by addressing the local host IP address (127.0.0.1). We exploit this
property and re-implemented the IPC mechanism.

By invoking this tool as a part of the installation procedure, we disable this isolation only for
apps installed by our runtime and enable local host communication. Although, each app is still
required to add the “Internet Client” capability to its app manifest. This capability simply states
its intent to use the Internet and all connected apps require this to function.

Aside from this we still need to address the issue of app suspension. All apps are suspended by
the operating system when not executing in full screen. Because of this we cannot assume that
the receiving end is active at any point. In turn when the receiving participant is resumed, the
sender might be suspended. The disk based approach automatically fixed this, but we are now
required to rethink our design. We need the Arbitrator to act as mediation step in
communication and save message objects in-flight.

There are two parts to this IPC mechanism and for clarity we will here refer to them as the app
side and the desktop side. The desktop side is listening in on a specific message header to
initiate communication with the app side. We use the same listener socket as the for the peer-
to-peer functionality.

If we recall the app life cycle explained in 2.2.5, apps receive an event from the operating
system when they are suspended or resumed. When these occur apps are required to perform
an open or close call on the communication channel. The open call on the app side library
creates a TCP connection to the desktop side and a separate thread continuously listens for
messages on this connection. On the desktop side this connection is managed by a separate
thread in the Arbitrator for each app.

When the app is suspended, this connection is closed and the thread resources are
relinquished. Messages relayed to suspended apps are put on a queue. When the app then
resume and the connection is reestablished, the desktop side forwards these queued up
messages to the app.

Both the desktop side and app side threads are blocking on receive calls, and therefore incur
little or no extra overhead in resource consumption. We implement our multithreaded

49

Chapter 4: Implementation 4.2 Arbitrator

capabilities using the .NET platforms Task Parallel Library™®. It uses a work stealing algorithm to
efficiently distribute and schedule tasks across active threads.

[Open ()]App Side [Send ()][Handler()]
i i "

/\/ N7 LJ

—> [IPC Thread J —

Listener | Desktop Side @ e
—> | e \ﬁ
_J

N
o+ B
] s

{ Network]

Figure 21: Desktop side and App Side interaction

Figure 21 illustrates the communication between the app side and the desktop side. It also
depicts the interaction with the peer-to-peer network. Received messages through the peer-
to-peer network are also forwarded through the IPC channel to apps. If the app is suspended
theses are also put onto the same queue.

We developed the client side component to conform to the Windows Runtime’s paradigm of
asynchronous programming by having all inbound messages conveyed through events. This
only requires that apps hook on to these events in the same syntactical manner as other event
handlers in .NET. The outbound API is implemented as asynchronous “await” able procedures,
asin 2.2.8.

This asynchrony as well as the apps volatility due to the app life cycle required us to be much
more diligent about how we conveyed messages to the app code. We had to be confident that
messages are delivered through the correct event handler, at the correct point in time. We
should refrain from delivering them before the app is initialized and ready to receive them.

'8 http://msdn.microsoft.com/en-us/library/dd460717.aspx

50

Chapter 4: Implementation 4.2 Arbitrator

Therefore care is taken to ensure this is that each message type only holds a single event
handler attached to it at any time. The app is free to change handlers during execution. In the
case that no event handler has yet been subscribed to this message type, the library
temporarily queues up these messages on the app side. When an event handler is attached
these messages are forwarded to it. This implies that apps should only subscribe to events
when they are prepared to receive them. Figure 22 depicts the internals of the app side library
IPC functionality inside a single app. Each message type has a separate queue and handler
associated with it. The messages received are tagged with the type of handler they should be
delivered to, and the processing step forwards them accordingly.

p
[Event Handler][Event Handler] Event Handlerﬁand() App
— S
4 é I

* A

~

Library
[Processing}—»[Socket }——
N J

Figure 22: App Side Internals

Event based programming often incurs some synchronization issues which must be explicitly
handled by the programmer. Because of this, each of these events are fired in the context of a
single thread. This thread is assigned to the communications object upon initialization and
changeable during execution. Since most GUI centric apps are not thread safe, this provides a
mechanism to allow the event handlers to directly update the GUI objects from the handler
code, without tedious interaction with thread dispatchers.

The library is quite extensible, and could easily be modified to support custom event types. The
events embedded in the library are specific to the use case we implement in chapter 6 to
evaluate our prototype. However, additions to this only yield about 10 lines of extra code, most
of which is reusable from the existing event types.

Events of special interest in this environment are the group membership events each app
receives when connecting or disconnecting to a peer-to-peer network. Apps can then adapt to
what type of communication the Arbitrator can provide at a given time.

51

Chapter 4: Implementation 4.3 Summary

4.2.3.3 Naming

The Arbitrator allows apps to transparently communicate with any other app. These could be
located on any host in the connected network including its own, both one to one and
broadcast. To structure this in a form usable by the Arbitrator for correctly conveying messages
we have implemented a naming scheme. The naming conventions are formatted in the
following way.

<type>#<username>#<app name>#<custom attributes>

Type denotes if the message being transferred is a file or a generic message. Username denotes
the node in the network which holds the app we wish to address. This is the unique credential
for each participant in the ring, which is hashed down to the destination key usable by the
underlying peer-to-peer network. App name refers to the app name inside a node, de-
multiplexed at the receiving end. The last parameter is used in special types of messages, for
example files, where this field is used to contain the filename with the proper extension.

Given the case where one wishes to broadcast a message, the corresponding identifier in the

“uxn

naming scheme is left to denote all. In the most extreme case this could be a broadcast to
all users and, within them, all apps. If we create an example naming scenario to address all apps

on a single host with a generic message, it would look like this:
Message#johndoe#*#<blank>

4.3 Summary

In this chapter we explained the implementation of Javza, and what problems each component
aims to solve. The resulting prototype evades the restrictions posed by Windows 8 to meet our
initial requirements.

We have presented the App Provider, which automatically sends apps to clients for installment.
We have presented the GRS, which provides recommendations for users with similar contextual
data to join together in groups. Furthermore, we have presented the Arbitrator which manages
the client side of the automatic installation procedure and monitors the state of these apps.

This runtime provides communication between apps within the same host and across different
hosts. Furthermore, it provides communication across hosts in the group assigned by the GRS
through a peer-to-peer network. Each app on every host is now able to communicate with any
app on any other host, both one-to-one and broadcast.

52

Chapter 4: Implementation 4.3 Summary

53

Chapter 5: Evaluation 5.1 Inter-Process Communication

5 Evaluation

This Chapter evaluates the performance of Javza, in context with our initial system
requirements stated in section 1.2. We conjecture that the system should provide app
integration both inside and across different host. Furthermore, the system should be
dynamically configurable allowing apps to be automatically installed based on contextual data.
We analyze and reflect on the performance consequences of providing this functionality within
the confines of Windows 8.

5.1 Inter-Process Communication

In this section we evaluate the throughput and latency of the Inter-Process Communication
(IPC) mechanism for communication between different apps inside the same system
implemented in the Arbitrator. To properly evaluate this we need a fair baseline for
comparison. We evaluate a system provided mechanism that exposes the same functionality
we listed in our requirements (4.2.3). Eligible IPC mechanisms should therefore have the
following properties:

1. Should be able to send structured object data across the connection, to increase
interoperability and simplify consumption of data across different types of apps.

2. Should be bidirectional, the mechanism should be able to send data in both directions.

3. Connections should be decoupled, allowing communication to persist across process
instances, to support app suspension and resume.

4, Communication mechanism should be stream based. The messages should be conveyed
in the order they were inserted into the connection.

5. The communication relay should enable broadcasting messages to multiple recipients.

Available IPC mechanisms in Windows include, Named Pipes, Anonymous Pipes, Mailslots, RPC,
Shared Memory and COM. Most of these disqualify from this experiment by not fulfilling all our
requirements. The only stream based ones are Mailslots, Anonymous Pipes and Named Pipes.
Common for them all is that they operate as client-servers.

Mailslots are the only one supporting broadcasting natively, although message sizes broadcast
to a domain are limited to 400 bytes. Furthermore, this form of IPC is deprecated and
commonly not used by contemporary applications.

Anonymous Pipes are not persistent, and exist only as long as the processes exist. They are not
discoverable by naming, and require each participating process to share the system handle to
communicate.

54

Chapter 5: Evaluation 5.1 Inter-Process Communication

As a consequence we chose Named Pipes for our comparative study. Because they are more
complex, Named pipes are slightly slower than Anonymous Pipes. However, it supports
broadcasting by creating parallel pipes to each receiver without significant overhead. Most
importantly, communication is persistent across process terminations, and pipe constructs
must be explicitly deleted. Furthermore, it provides bidirectional communication by setting up
unidirectional pipes in each direction. To provide the ability to send structured objects across
the connection, we use the same approach as with the Arbitrator and add serialization using
XML on top of the Named Pipe.

5.1.1 Experimental Setup

The experiments conducted here were exclusively performed on a Dell Precision Workstation
390 running Windows 8 64-bit Consumer Preview build number 8250. The hardware was an
Intel Core2 Quad CPU, with 4 cores running at 2.40 GHz with 4 GBs of memory attached to it.
All experimental efforts are implemented in C#. Metro apps that are implemented as a part of
the experiments use the Windows Runtime API. All other experiments use the .NET framework.

If we compare the two approaches, our Arbitrator requires an extra level of indirection to
provide the properties listed above. The experimental setup, as illustrated in Figure 23 and
Figure 24, is therefore different for the two types of IPC. In between each process, depending
on the communication type, is a series of steps involving interaction with the operating system.
We have left it out of the illustrations for clarity.

App

Arbitrator

Figure 23: Arbitrator Data Flow

55

Chapter 5: Evaluation 5.1 Inter-Process Communication

M /\

Process Process

o N

Figure 24: Named Pipes Data Flow

To perform our experiment with the Arbitrator, we require that two apps are running
simultaneously. However, in subsection 2.2.5 we explained that Windows 8 is specifically
designed against this. Fortunately, the Visual Studio Debugger avoids the suspension of apps
running with the debugger attached. This functionality is intended as an aid in developing apps.
The developer can instead explicitly trigger app lifecycle transitions, to test how their app
responds. We exploit this mechanism and force our apps to remain active throughout the
experiment.

Running processes with the debugger attached can have a negative impact on the performance.
Since we cannot perform our experiment without it, we require our comparative experiments
to run using the debugger as well. We predict that all experiments will incur the same
performance loss. However, during our evaluation we experienced little difference in the result.

For each experiment we calculate the arithmetic mean value, or average value, of the collected
samples and its associated standard deviation. This gives us an idea of how far from the average
measurements the samples are dispersed. We assume that these samples constitute the entire
population. The standard deviation for a collection of values is then given by:

Were X is the arithmetic mean of the collection, and n is the collection size.

5.1.2 Throughput
The blue columns on the left in Figure 25 illustrate the average throughput performance of the
different IPC mechanisms.

We measure the throughput in megabytes per second to illustrate how much data we can send
through a single connection. In the presence of multimedia content it is not uncommon to see
large quantities of data transferred across communication constructs. CISCO [22] anticipates
that internet video will account for 50 percent of consumer internet traffic in 2012, an
increasing amount of which is generated from smart devices. We mirror this trend by setting

56

Chapter 5: Evaluation 5.1 Inter-Process Communication

the size of each message relayed through the connection to 1 megabyte at the core. We then
record the speed at which this data is received on the other end.

The small columns in red on the right of each blue column represent the standard deviation of
the experiment. On the left hand side we observe that the maximal throughput of the
Arbitrator is around 16 megabytes per second. The disk based approach, depicted in the middle
column performs at about 1.1 megabytes per second. On the right hand side is the Named Pipe,
which exhibits nearly twice the throughput of the Arbitrator, around 30 megabytes per second.

We can observe that the metrics are quite stable and deviate little across experimental tries.
The highest deviation is observed for the Arbitrators experiment. This is caused by the other
functions of the process affecting its performance, such as reporting back usage statistics. We
will give a detailed explanation of the cause in the later subsections.

Inter Process Communication
Throughput
35
29.99941176

< 30
c
S
9 25
(7]
& 20 T 166521176 B AVG
[7,]
9 15
3 mSTD
© 10
s

5

1.110588235
0.816089083 0.294787473
0 " o 0-144282019 |
Arbitrator Disk Named Pipes

Figure 25: IPC Throughput

An interesting feature of this experiment is that communication handled by the Arbitrator
experience throughput of the same magnitude as Named Pipes do, but both experience
relatively low performance.

The low throughput is contributed to the serialization/deserialization procedure, which is
known to be very costly. Testing without serialization, both local host and Named Pipe
throughput remain in the same magnitude only 10x the throughput. Because of the inability to
correctly multiplex messages in the Arbitrator without serialization we have only tested this in
point-to-point communication for local host.

57

Chapter 5: Evaluation 5.1 Inter-Process Communication

We can argue that without the indirection posed by the Arbitrator, the performance difference
would in fact be even less. The reason for this could be attributed optimizations of the TCP/IP
protocol stack inside the operating system. The implementation details of previous versions of
Windows suggest this [23].

When a request for communication on a loopback address occurs, the operating system notices
this particular IP address in the packets at the IP layer of the network stack. It then short-cuts
the connection and avoids the data and link layer. This avoids, among other things, the Network
interface card and Nagle’s algorithm to buffer management. Nagle’s algorithm is a method for
improving the efficiency of TCP/IP networks by reducing the number of packages that needs to
be transmitted across connections. It delays the transmission and combines outgoing messages
until the buffers are full before transmitting the data. The approach also avoids the congestion
control mechanism, which could further impact performance. The packages are instead put
back onto the input queue up to the transport layer, and delivered to the receiving socket.

Prior to the release of Windows 8 Consumer Preview, the disk based approach was the method
of which apps communicated in Javza. Not surprisingly it is by far the slowest in this
experiment. The terribly slow seek time of disk accesses are an obvious perpetrator. However,
during development and testing we also observed some other interesting characteristics. Most
file system employ an exclusive write policy and does not allow multiple processes to write to
the same file in parallel. As mentioned in subsection 4.2.3.1, the receiver is responsible for disk
cleanup after a message had been received, so both processes actually perform writes to the
same file. File access is non-blocking, and the call throws an exception when permission is
declined. This requires the participant to retry until success, triggering file access contention
even with events instead of polling.

As observed in Figure 25 the average disk communication throughput is about 1.1 megabytes
per second. For this experiment we used directly connected pipes in between two separate
processes as observed in Figure 24. The sole purpose for including this in the experiment is to
provide some insight into the developmental improvements we made during the
implementation phase of Javza. Therefore, we did not deem it necessary to include the
indirection imposed by the Arbitrator, but rather try to optimize. All reason and logic would
suggest that adding the indirection would decrease performance, which also is in keepings with
what we observed during our experimentation.

5.1.3 Latency

Response time is vital for many applications, and an important property to test for in IPC is
latency. We therefore measure the round-trip time for a message to be transported across the
connection, checked for integrity, and back again.

58

Chapter 5: Evaluation 5.1 Inter-Process Communication

The average rotational latency on hard disk drives is about 4 milliseconds. Adding the file
system overhead and contributing factors such as non-sequential reads, this already puts the
latency of the disk outside the range of this experiment. For clarity we have therefore excluded
it from further experiments.

Figure 26 depicts the resulting average round-trip time in terms of milliseconds for each of the
two experimental subjects. In the column on the left we observe that the average round trip
time is around 3.4 milliseconds for the Arbitrator. In the column on the right side we observe
that named pipes perform at about 0.26 milliseconds, being an order of magnitude faster.

Inter-Process Communication
Round-Trip Time
4
35 3.407916393
3 .
225 -
o
g 2 mAVG
= 1.5 - mSTD
> L 1.045415327
05 0.438571196
: 0.259867227
0 4
Arbitrator Named Pipes

Figure 26: IPC Round-Trip time

The reason for the actual performance difference could be explained by the indirection when
transferring messages through a third process, as illustrated in Figure 23.

Each message touches the IP stack, and up again to the Arbitrator process. The Arbitrator
process must deserialize the message in order to know where to forward it. After this the
message is then serialized, and travel down the IP stack again to be received back at the other
app. This app again deserializes the message, checks its integrity and serializes it again. This
process is repeated on the way back to the origin. Named pipes do not have this extra level of
indirection or extra level of serialization/deserialization and is consequently much faster.

In this experiment we removed 19 outliers in the Arbitrator measurements from a total of 1726
samples, all of which were above 10 milliseconds. Still, we observe that the standard deviation
of this experiment is high for both subjects. Since we are operating with timing at such a fine
grained level, the timing could be impacted by only the slightest changes in load of the
operating system. An example of such could be a page faults occurring. The contributing factor

59

Chapter 5: Evaluation 5.2 Inter-Host Communication

in the Arbitrator is that it simultaneously performs monitoring and report updates back to the
App Provider every 2 seconds.

5.2 Inter-Host Communication

We conjure that there are scenarios where apps located on different hosts could benefit from
being able to share data. Furthermore, we anticipate that not all scenarios are efficiently
servable from a centralized approach to mediate this communication. To enable app
integration across hosts without the need for server support, we implemented a peer-to-peer
based approach to communication. This was inspired by the Chord internet lookup service [20].
In this section we evaluate the same metrics as in the previous section, but across different
host systems.

5.2.1 Experimental Setup

The setup consists of two computers interconnected, running Windows 8, achieving a
maximum bandwidth of 100 megabits per second. One of these is the Dell Precision
Workstation 390 used in the previous experiments. The other is a Dell Vostro 1500 Laptop with
an Intel Core 2 Duo 2.2 GHz processor with 2 GB of memory.

The comparative approach to inter-host communication we use is regular TCP. It is the most
optimal and reliable communication mechanism in its segment, available for commodity
operating systems. Our peer-to-peer solution is in fact built upon this very mechanism and it
should serve as a good baseline for comparison. In order for us to accurately test the round-trip
time we must disable Nagle’s algorithm for buffer management. This means that TCP packets
are sent across the link as fast as they are written to the socket. As with the previous
experiments, we require that the comparative communication methods are able to send
structured data across the connection. Hence, we serialize data conveyed through the TCP
connection.

We initialized two Arbitrator processes, one on each computer, and connected them together
in a peer-to-peer network. We wait for the frequency at which finger tables are updated to rise
to its upper bound, so it does not infer too much with the experiment.

60

Chapter 5: Evaluation 5.2 Inter-Host Communication

Peer-To-Peer
Network

Arbitrator Arbitrator

Figure 27: Inter-Host Arbitrator Data Flow

Figure 27 explains the setup of the Arbitrator. In comparison with Figure 28, this illustrates that
just as with the IPC experiment the Arbitrator provides extra indirection. However, in this case
there are actually two levels.

M

Network Process

Figure 28: Inter-Host TCP Data Flow

5.2.2 Throughput

In Figure 29, the blue columns on the right hand side of each communication type depict the
average throughput. In the left column we observe that the Arbitrator exhibits an average
throughput of around 7.9 megabytes per second. On the right hand side we observe that the
TCP connection performs similar giving it an average throughput of around 7.2 megabytes per
second. Next to these on the left side are the corresponding standard deviation measurements.
As with the experiments before, each package we send contains 1 megabyte of data.

We can see that they perform very similar. Since we only add two Arbitrator nodes to this peer-
to-peer network, the data only travels one hop. When the app side library forwards the data to
the Arbitrator, it directly forwards it to the closest entry to the receiver in its finger table. In our
setup the receiver is always the successor node and therefore only one TCP connection is

61

Chapter 5: Evaluation 5.2 Inter-Host Communication

required for each transfer. With further hops in the peer-to-peer network, we anticipate that
the throughput will drop.

Another interesting observation is that the Arbitrator slightly outperforms the TCP connection.
This is due to the fact that the Arbitrator’s peer-to-peer mechanism is multithreaded. It will
stress the maximum bandwidth capacity by issuing multiple parallel TCP connections to the
receiver. The TCP, on the other hand, is single threaded and send all data across one

connection.
Inter-Host Communciation
Throughput
9
7.871055106

T 8 7.245372093
o7
36
é 5 HAVG
2 STD
> [|
s> 2.032292973
v 2
Z

0

Arbitrator TCP

Figure 29: Inter-Host Throughput

5.2.3 Latency

Figure 30 depicts the round-trip time measurements for the Arbitrator and the TCP
communication. We observe that the average round-trip time for the Arbitrator is around 8.1
milliseconds. The round-trip time for the TCP connection is around 0.8 milliseconds. This clearly
illustrates the overhead of indirection in the Arbitrator nodes, depicted in Figure 27. Since we
have an extra level in comparison to the inter-process measurements, the average is about 2.5x
over the results gathered from subsection 5.1.3. This corresponds fairly well to IPC time
doubling plus the extra overhead associated with the TCP connection across the network (1
millisecond). Without disabling Nagle’s algorithm, we experienced a round-trip time of around
400ms for the TCP connection.

In this experiment we removed 6 outlier samples of a total 1727 all above 30 milliseconds for
the Arbitrator measurements. However, the standard deviation measurements for the
Arbitrator measurements in both inter-host experiments are quite high. During the
experimentation we observed that when the finger tables were updating or the usage statistics

62

Chapter 5: Evaluation 5.2 Inter-Host Communication

were reported back to the App Provider, the throughput dropped and the round trip time
increased.

The cause of this is lock contention. We restrict finger table access by mutual exclusion from
other parts of the Arbitrator while in the midst of updating these. Since the IPC experiments do
not interact with the peer-to-peer code, the measurements of these do not exhibit this
deviation. We can also observe that the round-trip time is impacted more than the throughput
experiment. In that experiment we send 1 megabyte of data for each package so most of the
time is spent waiting for sockets to unblock. If on the other hand we were to exchange smaller
packages in the throughput experiment, this would impact performance more. This applies to
the IPC experiments as well.

Inter-Host Communication
Round-Trip Time

0.767792125

? 8.094027019
8 .
7 .
26 - 5 681108359
2.
b B AVG
24 3:374588091
E 3 mSTD
2
1
0

Arbitrator TCP

Figure 30: Inter-Host Round-Trip Time

5.2.4 Idle-time overhead

In chapter 4 we described how we bypass the restrictions imposed on apps to provide both
inter-processes and inter-host communication. As a result we implemented the Arbitrator as a
separate process running outside the Windows Runtime environment. There are consequently
some overhead associated with this.

As mentioned in subsection 4.2.2.1.6, the peer-to-peer communication employs an update
control algorithm for updating finger table entries in a timely manner. In this experiment we
illustrate the idle-time 1/O overhead of having the Arbitrator being connected in a peer-to-peer
network.

There are several reasons to why we chose to measure |/O resources. First and foremost, since
we are restricted to testing on the local computer, we require the metrics to be isolated across

63

Chapter 5: Evaluation 5.2 Inter-Host Communication

processes. Measuring CPU would only make sense if processes did not impact the CPU time
available for others. The Windows scheduler does not perform such isolation.

I/O resources are one of the most expensive resources in smart devices, and an important
metric to measure in ubiquitous scenarios. Contributing factors to this are real expenses such as
metered internet, where internet connectivity is charged by the megabyte. Other expenses
include the battery drainage from having the wireless radio link enabled.

Using one computer we start several Arbitrator processes communicating across the loopback
interface to illustrate the overhead of being connected to a 39 node peer-to-peer network. Our
choice of exactly 39 nodes comes from the fact that it was the largest amount we were able to
deploy and connect on the same computer, while maintaining stability in the peer-to-peer
network.

We have chosen to monitor a single random Arbitrator instance for performance. Because of
the symmetric properties in the peer-to-peer implementation, we expect similar behavior
across all. We used Windows own performance monitoring tool called “perfmon” for isolating
the performance metrics of a single process and a snapshot of this is depicted in Figure 31. It
shows the overhead in terms of total data written or read from 1/0O per second in kilobytes.

We can be confident that we are only measuring network bandwidth because the only type of
I/0 performed by our app at idle-time is network /0. We started 39 instances and connected
them together in the exact same way that a recommendation triggers group connection. We
wait until the update control algorithm has stabilized before starting the experiment.

The spikes that occur every 20 seconds or so is the finger table update procedure. At this point
the frequency is at its upper bound, triggering every 20 seconds. In a stable peer-to-peer
network, without membership changes, we only require outbound communication while idle
every 20 seconds. The constant cycles below the spikes are triggered by the Arbitrator
reporting back app state and responding to update requests from other instances. The vertical
range of the graph goes from 0-1000 kilobytes per second, and these contribute about 100
kilobytes of data. The spikes indicating a finger table update are in the range of 300-500
kilobytes per update.

64

5.2 Inter-Host Communication

Chapter 5: Evaluation

KB\Second

524:40PM 52522PM 52602PM 52642PM S52T:22PM 52802PM 52842PM S202PM 53002PM 5:30:42PM

Show Color Sclle Counter Instance Parent Object Computer

vl ——— 10 IODstaBptes/sec BpeimentScalabiltys] - Process WANDRRSC

LRI

Il

531:22PM

5:3202PM

5:3242PM

533:22PM

5:34:02PM

5:34:42PM

([l

5:35:22PM

5:36:02PM

5:36:42 PM

T

I111]

S3T2PM 53302PM

53842 PM

5:39:22PM

Last|

0000 Average | 64333 Minimum |

L1

5:40:02PM

540:42PM 541:19PM

0000 Maximum 493419 Duration 1640

Figure 31: Idle Runtime overhead (Total KB/s of 1/0)

65

Chapter 5: Evaluation 5.3 App Installation

We now wish to evaluate how the update control algorithm operates in the face of
membership changes. To properly trigger the expected behavior we must incur some
membership changes to the peer-to-peer network. This was handled by removing 6 participants
evenly distributed throughout the ring. By doing this we increase the likelihood of our random
Arbitrator instance being affected by the membership change. Just as expected the frequency
drops to 500 milliseconds in the middle of the graph. As the finger table stabilizes again, we can
observe that the threshold grows back up to the upper bound.

The large quantities of data are caused by XML serialization. Furthermore, all packages are
wrapped inside use our own custom message format which incurs more overhead. This
message format is on the other hand necessary to address recipients correctly inside the
Arbitrator runtime and throughout the peer-to-peer network. An example of how much
overhead this incurs could be illustrated by sending a single integer through our message
format. This will generate a network load of about 5.6 kilobytes. However, this is only a static
cost and includes the whole message header in our custom protocol format.

Despite the overhead of serialization, we can still argument towards the benefit of
implementing a threshold based approach to updating finger tables. As observed in this
experiment, the frequency of updates is responsive with regards to the peer-to-peer network
state. If we were to adopt a more optimized serialization scheme, this would reduce the 1/0
costs drastically.

5.3 App Installation

In order for Javza to provide dynamic configuration of apps we require the overhead of app
installment to be low. We therefore conducted an experiment where we measure the time
taken to install an increasing amount of apps simultaneously, using the Windows Package
Manager API. The overhead we measure only includes the installation of packages. We exclude
the signing and install procedure of the associated certificates.

Figure 32 depicts the total time taken to install a given number of apps at a time on a single
computer. The graph illustrates a linear increase in app install time as the concurrent job
number increases. We observed in the course of the experiment that installing apps were disk
bound. The utilization of the disk was at peak capacity throughout each run of the experiment.
The CPU metric, on the other hand, remained within the 15-25% region. Using our initial
approach where we installed a separate certificate for each deployment, the time per app
increased to about 10s.

Another observation we made during this experiment was that the install process tended to
have a warm up phase, making consecutive installations faster than previous ones. The

66

Chapter 5: Evaluation 5.4 Conclusion

resulting data points are therefore calculated by averages of ten runs across all parameters. We
observe that the standard deviation is higher for the middle points in the graph.

Total time to install apps

20000
18000 A

16000
14000 4§/
12000 /
10000

8000 /

6000
4000
2000

Milliseconds

5 6 7 8 9 10
Of Apps

Figure 32: Time taken to install apps

5.4 Conclusion

Our conjecture was that there are benefits to providing integration across apps situated on the
same host, as well as across hosts in asymmetric systems. Furthermore, we also suggest that
there might be benefits to automatic app configuration and installment. In this chapter we have
evaluated this conjecture and the associated cost of supporting it at the client system in
Windows 8.

We have conducted experiments on the inter-process as well as inter-host communication
implemented in Javza to expose the overhead related with providing app integration. We have
further illustrated the cost of dynamically installing apps into this system. We also expose the
idle-time overhead of our peer-to-peer service in a connected environment to provide app
integration across hosts. Lastly we implemented a use case, which exposes a usable scenario in
which an asymmetric system would benefit from our prototype.

In section 5.1 when measuring the IPC performance in terms of common benchmarks, we
observed the system-provided Named Pipe outperforms our service. The latency is an order of
magnitude slower in our case, and the throughput is cut in half. We contributed much of the
extra cost to serialization and communications indirection. If Named Pipes were available for
Metro Style Apps this would not be an issue as they satisfy our requirements for
communication. On the other hand, we can still conclude by saying that since the apps are
seldom operating simultaneously, the latency will not be an issue in real life.

67

Chapter 5: Evaluation 5.4 Conclusion

In section 5.2 we observed the cost of using a peer-to-peer based approach for allowing app
communication across hosts. The metrics for throughput and round-trip time are affected by
providing the services in a separate user level process. We identified the XML serialization as a
significant overhead in I/O costs. However, the conceptual frequency modulating algorithm for
updating finger tables could provide scalability if serialization is handled correctly.

In section 5.3 we observed the cost of app installation onto Windows 8. We discovered that the
process was disk bound, and that the install time scales linearly as the number of installs
increase. The time it took for 10 apps simultaneously to complete installation was around 20
seconds.

68

Chapter 5: Evaluation 5.4 Conclusion

69

Chapter 6: Case study: Collaborative search 6.1 Collaborative Search

6 Case study: Collaborative search

The Javza prototype provides dynamic app configuration in Windows 8. Furthermore, it
provides app integration by enabling communication between apps residing at the same host
and across different hosts. In this chapter we design and implement a case study involving a
concrete scenario which utilizes this. The motivation behind this is to evaluate if there exists
some scenarios in which smart devices could benefit from our initial conjecture and Javza.

The outline of this chapter is as follows: We first explain the concept of collaborative software
and collaborative search. We then explain some of the associated difficulties with this field.
Then we design a specific scenario involving a collaborative search experience running on top of
Javza. We then explain the implementation of this scenario and how it relates to the Javza
architecture. Lastly we will summarize the chapter by highlighting some of the possibilities and
constraints with this scenario in the context of Javza.

6.1 Collaborative Search

The term collaboration is defined as a group of individuals working together to achieve a
common goal. Collaborative software, or group-ware, is a branch of application software that
aims at aiding this process. This type of software is difficult to develop and involves several
research disciplines [24].

One needs to understand the psychological and social mechanisms involved in solving a
problem in plenum, which is challenging. The social hierarchy of a group of people working
together to achieve a common goal is also dynamic in nature and can change as the process
continues. Another crucial aspect in developing this type of software is interaction, with both
computers and other individuals. This requires understandable and well defined interfaces,
which involves interaction design and graphical design.

The scenario we implement is closely related to a concept called collaborative search. In this
type of collaboration users are able to cooperate in searching, aiding one another in finding the
correct result or goal [25].

There exist two major sub categories of collaborative searches, explicit and implicit
collaboration. In explicit collaboration the users share a common agreed upon basis of
information and already acknowledge the cooperation. The users then guide each other by
performing searches, refining results, and agreeing upon the most relevant information
gathered.

The implicit type revolves around users with similar information needs, but not a common
ground. The search engine, based on analysis, infers this common interest and provides
relevant feedback to each user based on its own analytic work as well as the other users.

70

Chapter 6: Case study: Collaborative search 6.2 Scenario

A lot of criticism has been dealt to this approach from the fact that it puts the user’s privacy at
risk. However, if one accepts the premise that collaboration is inherently public in some way,
there might still be some benefits from adopting it.

6.2 Scenario

To explain the usage of an asymmetric system model relative to our conjecture we have
designed an example scenario. In this scenario we consider a group of people involved in a
project. They need to obtain some information regarding this project and in order to do this
efficiently they are required to collaborate closely. They realize their information need through
search. The required information involves different areas of study, and they must all be
researched to satisfy the information need required by the project. For efficiency work is
delegated inside the group and each participant is responsible for a given sub category.
Although separated, the domains are overlapping, and require everyone to participate and aid
one another in achieving the goal.

Each of the participants in this group is in possession of some type of smart device, typically
either a tablet or smart phone. Upon initiating their collaborative session, triggered perhaps by
a contextual change, they are all connected together into a group. Furthermore, all the apps
they require to collaborate are automatically configured into their smart device, each
concerned with a separate domain. These apps now have the ability to communicate across
smart devices with all apps inside all the other smart devices the group. The participants can
now perform their delegated work by the aid of these apps. Furthermore, these apps are also
able to share state. By this they enable participants to aid one another in retrieving the
information they require.

71

Chapter 6: Case study: Collaborative search 6.3 Implementation

6.3 Implementation

To model the collaborative search scenario detailed in the previous section, we implement each
of the apps to enable search in a separate domain. In an asymmetric system model, as
described in chapter 2, lightweight clients are pulling content and functionality from the cloud.
To model this we have implemented five Metro Style Apps which retrieve their content from
five different cloud services. More specifically each app uses a separate search service to
retrieve content pertaining to the query submitted. These five services are listed below in

Table 1.

Service Function

Bing Web Search Delivers generic web page as the results

Bing Image Search Delivers images as the result

Bing News Search Delivers relevant news articles as the result

Amazon Book Search® Delivers purchasable books through Amazon
as the result

Spotify Album Search Delivers album listings from Spotify as the
result

Table 1: Cloud service functionality

All of these apps, upon the presence of a search term, interrogates their own cloud service and
presents the results to the user in their Graphical User Interface (GUI). Each of these apps are
connected to the Arbitrator through the app side library described in subsection 4.2.3.2. Upon
activation, they hook on to a special handler implemented for this scenario; we refer to it as the
search term handler. Through it they are delivered all terms searched by other apps inside the
same host. They then open the IPC pipe which creates a TCP connection with the Arbitrator and
activates the IPC enabling them to send and receive data. When each app executes a search by
a given term, that term is forwarded to all the other search handlers inside the other apps by
help of the Arbitrator. Because the other apps, with high probability, are suspended these
terms are queued by the arbitrator and forwarded only when the app resumes execution.

Furthermore, each app also hooks on to a special event handler for detecting group
membership. In the event of the host being added to a group, all apps on that host are notified
through a special message. When an app receives such a message, it enables extra functionality
only available as a part of a group.

Inside the presentation of each app, the list of results from a particular search is displayed. This
list further enables the user to click on a particular search result. The app then displays detailed

' Amazon authentication mechanism ported to Windows Runtime from C# sample code retrieved from
aws.amazon.com

72

Chapter 6: Case study: Collaborative search 6.3 Implementation

information about this particular result. The click also triggers information about this result to
be broadcast through the peer-to-peer network to the same app type on all other hosts inside
the group. All apps hook on to a separate handler for receiving this click data, and display the
information in a separate column inside the group enabled GUI. Through an identical
mechanism presented in a different part of the GUI users are able to share files and
communicate by messaging with the same app on the other hosts in the network.

Within the field of collaborative search our scenario can be categorized as explicit
collaboration, where all the users share some predefined common ground. However, the
collaboration is triggered implicitly by a contextual change in the environment. The contextual
change used in Javza is a similar usage of the apps, more specifically, users searching for the
same thing. Because of this, we require that each user starts out with the particular app
pertaining to the task delegated to them in the collaborative session.

N N e i T TN
~. B e LN s =~ ~
\ \

s A) A
Cloud . "} Cloud . ;:{\ Cloud
. ’s - 1.\\-' - /L/ H 3 . b
) D .
T e
_..------.‘c'i ________ NN
App App
“ﬁ ¢ .. O >
© 2 W% @ ESNC)
g J=l AR
¥ Install &
©) [Communication
ﬁ App
| Arbitrator Management
3
3 a
5| @ @1z 5@
o X =
- o 2
< ¥ |8
AN

Figure 33: Case study usage

Figure 33 illustrates the Javza system involved in this search collaboration, and how the apps
interact with Javza. The App Provider interaction is depicted in the lower right lower corner of

73

Chapter 6: Case study: Collaborative search 6.3 Implementation

the figure, delivering app packages back to the AMC for installation. The Arbitrator retrieves
contextual data and usage statistics and sends this to the App Provider. The communication
component manages IPC and inter-host communication. It connects to a peer-to-peer network
group when a recommendation is received from the GRS. We explain the steps involved in
configuring this collaborative search on each participant in the group related to Figure 33:

1. When the single already present on each system app is prompted with a search term, it
gueries its own cloud service with that search term.

2. The search term is forwarded to the Arbitrator through the IPC mechanism.

Upon receipt of the search term the Arbitrator then forwards it back to the App
Provider.

4. The App Provider returns the set of apps not installed by this user to the AMC inside the
Arbitrator for installment.

5. The apps are then automatically installed onto the client system.

6. Upon completion of the installation, each of the apps have the search term put onto
their input queue inside the Arbitrator. When activated by the user they open the IPC
pipe through the app side library and hooks on to the search term event handler,
thereby receiving the search term. Each app uses this to interact with their own cloud
service, presenting the information relevant to their domain.

7. The Group Recommendation Service notices that the participants are searching for the
same thing and issues a recommendation to join them together in a group. The
Arbitrator instances located on each of these smart devices are then grouped into a
peer-to-peer network. The apps are also notified about this event with a special
message sent through the IPC mechanism.

8. The apps located on each of these users host system are now, by the help of the
Arbitrator, able to share data both within the same host and across hosts in the peer-to-
peer network.

Figure 34 depicts all the app tile icons located on the starts screen having been automatically
installed as a part of the scenario. The members of the group are now able to see, through each
app individually, what types of result the other participants click on.

Inside each app, when a user clicks on an item in the result presentation, a group wide
broadcast is issued to the same app installed at all other users. Furthermore, when connected
together, each of these apps provide users with the ability to communicate using messaging
and share files. The group interaction interface we have implemented for these apps is
activated when connected to a group. Figure 34 depicts the group interaction GUI with shared
click data displayed on the left and the messaging functionality located on the right.

74

Chapter 6: Case study: Collaborative search

Other People Have Clicked

Ao]

Pt ST

w1 e

i PR

75

Start

cheese.net - A World...

*

amazon

The Founder of Atari ...

merican

pg - Wikipedia...

Figure 34: 5 dynamically configured apps displayed on the start screen

r[.-_-.:l U F.-.:I F.I'l.-"lElrﬁl .|. L:l | ERR |

Chart

Iyl

Figure 35: A section of the group Interaction GUI inside a single app

6.3 Implementation

Chapter 6: Case study: Collaborative search 6.4 Summary

6.4 Summary

In this chapter we introduced a collaborative search oriented use case employing our Javza
prototype. This enabled automatic installation and configuration of an entire app environment
in an asymmetric system environment.

The usage of Javza is not restricted to collaborative search. The apps could function in any type
of collaborative domain, using perhaps document editing, computer assisted drawing tools etc.
However, this is not only limited to professional collaborative settings. Social settings could
benefit from utilizing Javza as well, perhaps involving groups friends playing games. Or perhaps
hobbyist organizations working on a project or planning an outing. The only requirement is that
the scenario involves a group of users, performing some task which could be aided by smart
devices and apps within them.

We argue that without the presence of this functionality, especially in Windows 8, the project
collaboration would be more time consuming affair. The participants would have to manually
search, download validate and install the apps relevant for their collaboration. Upon this they
are required to manually configure a group to communicate with each other, through perhaps a
server mediated connection. Once connected, each app on a single device as well as across
devices in the collaboration must be explicitly updated throughout the collaboration session to
remain consistent. The time consumed in all of these tasks is further extended by the fact that
their smart devices have restricted interaction surfaces.

Although a centralized server connection is a viable alternative, one can argue that not all
collaborations are organized in the presence of a third party server. Ad hoc collaboration could
occur in any mobile environment where smart devices are a realistic choice as aid. In these
settings a centralized approach is out of the question. As in situations with restricted bandwidth
or metered internet. In these scenarios an ad hoc connected network would perhaps be more
fitting. In this case users could instead share the actual apps between them instead of all of
them being pushed to devices by a server such as the App Provider. An existing system
supporting ad hoc networking between apps on different smart devices will be explained in
section 7.3

The issue of privacy is less important within such a group of peers because of the inherent
public properties of collaboration. However, communication should be secured from
eavesdropping by outsiders. Furthermore, the system should support authentication of
membership inside the ring. The security concerns of installing apps automatically require the
eligible apps to be conveyed and installed in a secure manner onto the devices. These apps
could perhaps be validated by a central authority trusted by the participants, such as the
validation procedure present in the Windows Store.

76

Chapter 6: Case study: Collaborative search 6.4 Summary

In the scenario presented here, collaboration and configuration is triggered by a change in the
environment. Changes could be observed by contextual data retrieved from sensors inside the
smart devices. Environmental changes can also mean a change in usage, and in our
implementation this change in usage is manifested in the search terms submitted to the apps
by users. Another environmental change that could trigger the configuration could be that the
GPS coordinates inside the smart devices reveals that certain smart devices are within close
range of one another, perhaps in a meeting room.

We realize the collaborative effort without the time consumed in manual app installment.
Furthermore, by automatically integrating apps, both within smart devices and inside groups,
we remove this overhead as well. The implementation of this scenario is rudimentary, but the
design suggests that there might be use cases where the restrictions of Windows 8 will
counteract systems design and hurt functionality.

77

Chapter 7: Discussion and Related Work 7.1 Implications

7 Discussion and Related Work

The Javza prototype provides dynamic app configuration and integration of apps both within
and across hosts. This functionality is otherwise not present in current app platforms. However,
there are several reasons for why these asymmetric systems refrain from providing it. In this
chapter we highlight some of the implications of providing automatic app installation and
communication. We further explain some suggested modifications applied to the asymmetric
system model in Windows 8.

7.1 Implications

The first, and perhaps most serious issue with altering the nature of how apps are installed, is
privacy and security in smart devices. These devices handle some of the most private and
sensitive data of the typical consumer. These include telephony records, text messages, email,
calendar and images to name a few. Anything that might violate or breach this privacy could
have severe consequences.

Pushing apps to smart devices for automatic installation could put this at risk. Generally
executing downloaded code without proper security mechanisms in place could have
potentially disastrous consequences. Systems that provide this capability commonly provide
some sort of elevated security for executing this code.

Isolation and elevated security capabilities exist on top of several abstractions in computing
systems. System that implement this generally provide an environment for running code in a
more secure and less privileged mode, where resources are managed by the underlying system.

Hardware virtual machines execute entire operating systems in guest mode, an example of
which is the Xen Hypervisor®®. The security mechanisms are implemented in hardware
providing elevated privilege levels for executing guest operating systems. Privileged instructions
trap down to the virtual machine which then executes the procedure on behalf of the calling
code. This allows multiple operating systems to run isolated in parallel on a single computer.

Another type of security enforcing mechanism is introduced by the Reference Monitor concept
[26]. This is an abstract concept in operating system architectures. A reference monitor
mechanism control system access by enforcing an access control policy on subjects, controlling
their ability to perform operations on objects inside the system. All access from untrusted
subjects to any object is mediated through this monitor. The mechanism requires three
properties to be considered a valid reference monitor. The mechanism must always be invoked,
as every access must be mediated. If not the case it is possible for an untrusted subject to
violate the enforced policy. The mechanism must also be tamper proof, in that it is impossible

20 http://xen.or

78

Chapter 7: Discussion and Related Work 7.1 Implications

for an attacker to undermine the security mechanism. The mechanism must be small enough to
be able to verify its completeness. Without this last property the mechanism could be flawed.

A related and perhaps overlapping concept to this is sandboxing. The term was first used to
describe a method of fault isolation, but is more commonly known for secure isolation of guest
programs [27]. These are executed in a tightly controlled environment where access to
resources or other parts of the system are prohibited or strictly managed. Guest programs
typically only have very restricted resources available, in memory or on disk, for which to run in.

An example system which utilizes sandboxing is available in the Chromium open source
browser®’. Chromium loads web pages in separate processes with a lower integrity level,
managed and monitored by the system. These processes allow downloaded scripts to execute,
aiding the presentation and functionality of the web page, without security infringements.

Windows 8 provides capability based sandboxing. It executes Metro Style App processes at a
lower integrity level, called App Container. Access to system resources is managed via a broker
mechanism, governed by the capabilities declared by the app.

What separates the sandboxing in Chrome from Windows 8 is that this type of code execution
does not require a rigorous install procedure when executing in the client browser. As
mentioned in section 2.2.3 Windows 8 requires app packages to be signed by a trusted
certificate before installment. This authenticates the source of the package and validates that it
is secure to execute this code inside the client system. Furthermore, capabilities required by the
app to function must be validated by the system and the user explicitly.

A substantial amount of research has been put into the concept of verifying code to determine
if it is safe to execute. An example of which is proof-carrying code introduced by C. Necula [28].
With this mechanism a host system can with certainty determine if a piece of code supplied by
an untrusting party is safe to execute. Untrusted parties deliver attestations as proof that the
code adheres to some predefined safety policy. The untrusted party verifies the code by a
“theorem prover” which ensures that the code adheres to the policies, and assembles a proof
of this. The proof is then packaged together with the code and shipped to the host system. The
host system can then rapidly validate the proof, and run the code without any further checks.

If we then assume that we are able to install apps automatically to client environments in a
secure manner, there are still other aspects to consider. Users might perceive it intrusive to
have apps automatically installed into their smart devices, without asking for user consent.
Legal problems arise when we consider a payment model for these types of apps. How is a user
expected to pay of an app if he has not explicitly purchased it?

*! http://dev.chromium.org

79

Chapter 7: Discussion and Related Work 7.2 Changes to Windows

In Javza we remove the isolation between apps and allow them to communicate with each
other. This creates an even broader attacks surface for intruders. The contents of these
messages can be sniffed, modified, stolen, replaced or even forged, which can compromise user
privacy, and violate security. In [29] the Android platform’s IPC mechanism is analyzed in the
context of possible security infringements, and several such are found.

In subsection 3.1.2 we explained how we limit the scope of this thesis by abstracting ourselves
away from group membership management. We rather declared that all active users are
interested in participating in a group. However, we must address the intricacies of dynamically
connecting groups of people. There are obvious privacy implications of allowing apps on a
user’s smart devices to communicate with apps on another smart device. Users should be able
to explicitly control their interests. They should be able to manage what groups they are joining
and their availability to do so. Furthermore, users should be authorized to be able to participate
in these groups and we require authentication to provide the assurance.

Another consequence of our design is resource costs, both in terms of money and power.
Providing the capability of automated app installation and cross host integration requires
devices to remain connected. Wireless connections are often disabled when not used due to
the radio links drainage of the battery. Furthermore, when operating in metered internet
environments the actual costs of transferring apps and data is an issue.

Because of the widespread use of Windows, it is also prone to malicious attacks. Throughout its
lifetime Windows has been subject to a vast amount of malware attacks, more recently by the
flame worm [30] [31]. These types of attacks are common in Windows, while platforms with
much less widespread use have been guarded.

Every security mechanism in Windows through its releases had to, more or less, be backwards
compatible with existing applications. But with this new app platform Microsoft is now free to
redesign the security policies from scratch. It is clear that they are reflecting on past
experiences, because they are now taking all precautions possible to guard against malicious
attacks. However, this trait does not come without consequences. By doing this they are
sacrificing generic and broad support in third party app development for secure and resource
optimal apps.

7.2 Changes to Windows

This thesis illustrates that it is possible to implement a dynamic app environment enabling
communication between apps. However, as observed, this is not without performance
consequences. Properly supporting this with the least amount of overhead would require
altering Windows. We will now discuss some propositions for future release of Windows.

80

Chapter 7: Discussion and Related Work 7.2 Changes to Windows

First and foremost, installation of apps is as we already have experienced a large performance
bottleneck. By making the installation process more lightweight we could remove these. We
introduce a concept that would model something closer to what script execution in browsers
provide. This approach would emphasize the already present asymmetric property of the app
platform. Apps executing inside these smart devices could be mobile and reside on clients only
when needed. When not needed, the state and code could be migrated to a cloud service for
preservation.

We could analyze the contextual data retrieved from sensors on the smart device to perceive
the probable usage. By this we could reason on what apps are probably being used actively in a
given contextual situation, and which of them are eligible for migration to the cloud service. As
we will see in section 7.3, research has already been done on how to infer this type of app
usage.

Another lack in Windows 8 that has caused some commotions in the development community
[32] is the lack of Inter-Process Communication. We propose to modify Windows with a
mechanism resembling that of Androids intent system. One could even base the solution on top
of already existing communication primitives such as named pipes.

The messages could be persisted until received by the other app after reactivation. This would
largely benefit the app interested in consuming other app’s data, without the burden of having
it be done explicitly by the user. This could easily be administered through a broker process,
and embedded into the app manifest. Communication could be organized by a
publish/subscribe mechanism requiring apps present to subscribe to other apps upon
installation, in order to be able to communicate. This mechanism works fine with suspending in
place and apps can receive data upon reactivation, if available.

Furthermore, we propose extending this across different hosts. The platform could provide
pairing of smart devices into a network. This network could resemble our peer-to-peer
approach and enable apps involved on the different devices to share state and data. As we will
see in section 7.3, there already exists a framework which provides proximity based pairing of
smart devices.

Complementing the asymmetric model in Windows 8 could create a new paradigm in app
ecosystems, where each app functions as a part of a dynamic mosaic-like plugin environment.
APIs for cooperating are clearly defined and cooperation is optioned after what capabilities an
app requires. Apps would function without having to share data, but collaboration happens on
a quid-pro-quo basis.

81

Chapter 7: Discussion and Related Work 7.3 Related Work

7.3 Related Work

Sohn et al. [33] has performed a diary study on mobile information needs. They conducted a
two-week experiment to better understand mobile information needs and how they are
addressed. The trials consisted of 20 participants constituting a diverse populous. These were
then tasked with recording their mobile information needs, what context they arose, and in
what manner they were addressed. They define a mobile environment as being any situation
where the normal work station is unavailable. The findings dictated that as much as 42 percent
of the time, users postponed addressing their information need, or never addressed them at all.
This study provides great insight into what information needs are addressable in given
contextual situations. And further what types are addressable, and which should be postponed
to a later time where the context is more fitting. In the context of our work, this could prove
valuable knowledge in determining what apps to push to a user at a given time.

Microsoft Research in collaboration with the University of Massachusetts, Amherst [34] has
implemented a prototype modification to the Windows Phone 7.5 operating system which
allows apps to launch faster. The motivation behind it is that app launching on mobile devices is
slow and it is not uncommon for these to have a 20 second delay. What they do to remedy this
is predict apps launching prior to when they are launched by the user. To perform this
prediction they collect contextual data from the abundance of sensors commonly available on
mobile devices. The contextual data is fed to a learning algorithm which then computes the
decisions on which apps should be started at what time. What they discover from
experimenting on this prototype is that app launch times are shaved by about 6 seconds. They
further illustrate that the extra strain on battery life incurred by incorporating this modification
into the system was just over 1 percent. This work exemplifies another way to adopt learning
algorithms to reason about app management decisions in a system. This prototype only
involves launching apps already installed, and not automatic app installment. However, this
further validates our prototype implementation by illustrating that it is possible to infer what
apps a user needs, based solely on the contextual data provided by the smart device sensors.

We previously mentioned the Android intent system, which is similar to what we have
implemented here. Another interesting inter-app communication system which is in fact
modeled after this is Web Intents [35]. This system provides communication between different
web applications. It consists of a lightweight RPC mechanism for communication between
applications distributed across the web. It also contains a discovery mechanism, for finding
these abilities. This technology is in the process of being adopted by the W3C organization.

A similar approach to our peer-to-peer based communication support has already been
introduced in Allloyn?. It is an open-source application development framework developed by

22 https://www.alljoyn.org/

82

Chapter 7: Discussion and Related Work 7.3 Related Work

Qualcomm Innovation Center Inc. It enables ad hoc, Proximity-based device-to-device
communication. This supports the development of peer to peer connected apps without
requiring cellular networks or internet access. The framework is OS agnostic, and currently in
development for Windows 8 Metro Style Apps.

83

Chapter 8: Conclusion 8.1 Concluding remarks

8 Conclusion

This thesis develops and evaluates Javza, a runtime system for dynamic app configuration in an
asymmetric system environment, more specifically Windows 8. The runtime supports
integration across apps on the same host system, as well as apps receding on different hosts.

8.1 Concluding remarks

Smart devices have introduced new application platforms for implementing apps. These apps
are fairly restricted in resources and domain, and they commonly utilize cloud services to
provide content and functionality. We refer to this symbiosis between smart devices and cloud
services as a new type of asymmetric system. The restricted display space on these devices
indicates that all interaction should be kept to a bare minimum. In Windows 8, security and
resource considerations complicate app communication both inside and across different hosts.
Automatic installation of apps is forbidden for the same reasons. We conjured that allowing this
would alleviate much of the interaction necessary for users, and reduce the time consumed in
using such smart devices.

We acknowledge that there are several security aspects to consider in a possible solution
supporting this. Furthermore, we also consider the privacy and intrusiveness of such a system.
However, we still argue that there are benefits to supporting this in app platforms.

8.2 Achievements
The problem statement from section 1.1 is as follows:

“This thesis shall develop and evaluate a runtime system for dynamic application configuration

in a concrete asymmetric system environment (Windows 8). This run-time must support
integration across applications on the same host, as well as applications receding on different
hosts. Alternative solutions with and without server-support must be explored.

The prototype will evaluate important aspects of the prototypes performance. Furthermore we
will evaluate the prototype by implementing a use case, more specifically collaborative search.
The evaluation will include suggestions for further optimizations and extensions, and possible
implications for adopting these.”

Within the confines of Windows 8, we have implemented and demonstrated a prototype which
supports automatic app installation based on simplified contextual information. Furthermore,
our implementation of Javza demonstrates that it is possible to provide integration among apps
located at the same host by means of IPC. With the same unified interface we also
demonstrated that apps located on different hosts can be integrated in a decentralized peer-to-
peer network. We have evaluated the important aspects of Javza’s performance, and
pinpointed the costs of supporting our conjecture in Windows 8. We have further implemented

84

Chapter 8: Conclusion 8.3 Future work

a functioning use case involving collaborative search to run on top of Javza which demonstrates
the possible benefit of our design in an asymmetric systems model.

Lastly, we discussed some of the implications of our conjecture in Windows 8, and provide
some opinions on how this could be supported in the future.

8.3 Future work

In this subsection we explain some further improvements that could be made to Javza. Some
are design choices, in that we have abstracted ourselves away from the concerns, while others
are components that we did not deem crucial to implement in Javza, but should be addressed
in future endeavors.

e The communication mechanism used throughout the prototype, is in clear text, and
should be encrypted. One way of realizing this is to have the server component
implement some type of public key infrastructure.

e Since we already provide a generic API for app integration both internally and across
systems, we should provide a mechanism for developers to participate in this and allow
them to deploy apps to our App Provider. For this we need an interface for registering
apps and usage of these apps.

e Due to time constraints we were unable to fully explore Microsoft’s cloud integration
into Windows 8, and we should integrate this into Javza where possible.

e Since no tablets have been released for Windows RT, we have yet to test Javza on this
platform. The only way for us to test Javza, have been the x86 version of the system. We
want to investigate how to evade Windows RT’s metro-app-only policy, and provide a
workaround for this, to allow the Arbitrator to compile to ARM architectures.

e In order to provide relevant apps grouping and user grouping recommendations, we
should utilize contextual data retrieved through the sensors on such smart devices.
Pending the release of the Microsoft Surface slate, we wish to evaluate our prototype by
using the sensor data available in this smart device.

e To limit the scope of this thesis we have not implemented membership detection in our
peer-to-peer scenario, but in a realistic case this would be needed. One method of
implementing this would be something similar to the gossip based dissemination
protocol used in the Arbitrator for broadcasting data.

85

Chapter 8: Conclusion 8.3 Future work

e Javza does not support being admissible into multiple groups. Groups are assigned on a
per-host granular level. We would like to adopt an approach to manage the
participation into multiple groups, and be able to seamlessly switch between these.

e Furthermore, we would like to investigate how we could employ the UDDI description
and binding mechanisms for web services to couple users with apps. This service
couples webs services with consumers on basis of properties described in metadata, and
any subject corresponding to the requirements are applicable. We could for example
create app requirements descriptions based on contextual information and use a similar
approach to match users with apps.

e Since we adopt a non-novel approach to app management and installment, we should
investigate what implications this would have on adding a payment model into this. The
obtrusive nature of pushing apps instead of requesting them requires us to rethink how
we implement this feature. Users cannot be expected to pay for apps that they have not
explicitly purchased. A possible solution to this could be delivering apps in a subscription
based service.

86

Chapter 8: Conclusion 8.3 Future work

87

Chapter 9: References

9 References

1. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew
Konwinsky, Gunho Lee, David A. Patterson, Ariel Rabkin, lon Stoica, Matei Zaharia. Above the
Clouds: A Berkley View of Cloud Computing. Berkley : Electrical Engeneering and Computer
Sciences University Of California at Berkley, 2009. UCB/EECS-2009-28.

2. CISCO. Global Cloud Networking Survey. www.cisco.com. [Online] 2012. [Cited: 06 15, 2012.]
http://www.cisco.com/en/US/solutions/ns1015/global_cloud_survey.html.

3. International Data Corporation. Press Release. www.idc.com. [Online] 03 28, 2012. [Cited:
06 10, 2012.] http://www.idc.com/getdoc.jsp?containerld=pruS23398412.

4. D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner, Paul R. Young.
Computing as a Discipline. Communications Of The ACM - Volume 32 Issue 1. 1 1989, pp. 9-23.

5. Supporting Broad Internet Access to TACOMA. Dag Johansen, Robbert van Renesse, Fred B.
Schneider. s.|. : ACM, 1996. EW 7 Proceedings of the 7th workshop on ACM SIGOPS European
workshop: Systems support for worldwide applications. pp. 55-58.

6. PrWeb. Android Smartphone Activations Reached 331 Million in Q1'2012 Reveals New
Device Tracking Database from Signals and Systems Telecom. prweb.com. [Online] 05 16, 2012.
[Cited: 06 24, 2012.] http://www.prweb.com/releases/2012/5/prweb9514037.htm.

7. Microsoft Corporation. Building Windows 8. Building Windows 8. [Online] 2011 - 2012.
[Cited: 06 26, 2012.] http://blogs.msdn.com/b/b8/.

8. —. Windows Phone Blog - Announcing Windows Phone 8. windowsteamblog.com. [Online]
06 20, 2012. [Cited: 06 26, 2012.]
http://windowsteamblog.com/windows_phone/b/windowsphone/archive/2012/06/20/announ
cing-windows-phone-8.aspx.

9. —. Windows Runtime internals: understanding "Hello World" (video) - Build Conference.
channel9.msdn.com. [Online] 09 16, 2011. [Cited: 07 4, 2012.]
http://channel9.msdn.com/Events/BUILD/BUILD2011/PLAT-875T.

10. —. Lap around the Windows Runtime(video) - Build Conference. http://channel9.msdn.com.
[Online] 09 14, 2011. [Cited: 06 26, 2012.]
http://channel9.msdn.com/Events/BUILD/BUILD2011/PLAT-874T.

11. ECMA International. Common Language Runtime Infrastructure (CLI) Partitions 1 to 6
(Ecma-335). s.l. : ECMA, 2012.

88

Chapter 9: References

12. Apple Inc. App States and Multitasking. iOS App Programming Guide. [Online] 03 07, 2012.
[Cited: 06 26, 2012.]
http://developer.apple.com/library/ios/#DOCUMENTATION/iPhone/Conceptual/iPhoneOSProg
rammingGuide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html.

13. Microsoft Corporation. White Paper: Introduction to Background Tasks - Guidlines for
developers. Microsoft Developement Center. [Online] January 27, 2012. [Cited: 06 11, 2012.]
http://go.microsoft.com/fwlink/?Linkld=227329.

14. —. Bringing existing C++ code into Metro style apps(video) - Build Conference.
http://channel9.msdn.com. [Online] 09 14, 2011. [Cited: 06 17, 2012.]
http://channel9.msdn.com/Events/BUILD/BUILD2011/TOOL-789C.

15. Sinofsky, Steven. Updating live tiles without draining your battery. Blog: Building Windows
8. [Online] 11 2, 2011. [Cited: 06 11, 2012.]
http://blogs.msdn.com/b/b8/archive/2011/11/02/updating-live-tiles-without-draining-your-
battery.aspx.

16. Mozilla. Windows 8 Integration. wiki.mozilla.org. [Online] 02 8, 2012. [Cited: 06 17, 2012.]
https://wiki.mozilla.org/Windows_8_Integration.

17. G. Salton, A. Wong and C. S. Yang. A Vector Space Model for Automatic Indexing.
Communications of the ACM. 11 1975.

18. MacKay, David J.C. Chapter 20: An example Inference Task: Clustering. Information Theory,
Inference and Learning Algorithms. s.l. : Cambridge University Press, 2003.

19. Fazli Can, Esen A. Ozkarahan. Concepts and Effectinveness of the Cover-Coefficient-Based
Clustering Methodology for Text Databases. ACM Transactions on Database Systems. 1990, Vol.
15, 4.

20. lon Stoica, Robert Morris, David Liben-Nowell, David R. Krager, M. Frans Kaashoek, Frank
Dabek, Hari Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for internet
applications. Tranactions on networking (ACM/IEEE). 1, 2003, Vol. 11.

21. Anne-Marie Kermarrec, Laurent Massoulié, Ayalvadi J. Ganesh. Probabilistic reliable
dissemination in large-scale systems. |[EEE Transactions on Paralell and Distributed Systems.
2003, Vol. 14, 3.

22. CISCO. Visual Networking Index: Forecast and Methodology, 2010-2015. www.cisco.com.
[Online] 06 1, 2011. [Cited: 06 15, 2012.]

89

Chapter 9: References

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_pa
per_c11-481360 ns827 Networking_Solutions_White_Paper.html.

23. Microsoft Corporation. Microsoft Windows Server 2003 TCP/IP Implementation Details.
technet.microsoft.com. [Online] 06 13, 2006. [Cited: 7 4, 2012.]
http://technet.microsoft.com/en-us/library/cc758746(v=ws.10).

24. Peter H. Carsten, Kjeld Schmidt. Computer Supported Cooperative Work: New Challenges
to Systems Design. Handbook of Human Factors. 1998.

25. Collaborative Exploratory Search. Golovchinsky, Jeremy Pickens and Gene. Boston
Massachusetts : s.n., 2007. Workshop on Human-Computer Interaction and Information
Retrieval MIT CSAIL, Cambridge, Massachusetts, USA. pp. 21-22.

26. Anderson, James P. Computer Security Technology Planning Study - Section 4.1.1. s.l. : US
Air Force Electronic Systems Division, 1972.

27. A secure environment for untrusted helper applications confining the Wily Hacker. lan
Goldberg, David Wagner, Randi Thomas, Eric A. Brewer. San Jose, California : USENIX
Association Berkeley, 1996. Proceedings of the Sixth USENIX UNIX Security Symposium.

28. Proof-carrying Code. Necula, George C. 1997. POPL '97 Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. pp. 106-119.

29. Analyzing Inter-Application Communication in Android. Erica Chin, Adrienne Proter Felt,
Kate Greenwood, David Wagner. Bethesda, Maryland, USA : ACM, 2011. MobiSys.

30. Wikipedia. Flame (malware). wikipedia.org. [Online] 06 17, 2012. [Cited: 06 17, 2012.]
http://en.wikipedia.org/wiki/Flame_(malware).

31. Computerworld. www.computerworld.com. Computerworld. [Online] 06 13, 2012. [Cited:
06 17,2012.]
http://www.computerworld.com/s/article/9228064/Microsoft_readies_post_Flame_Windows_
Update_changes.

32. Stack Overflow. How does the new Windows 8 Runtime (WinRT) compare to Silverlight and
WPF? stackoverflow.com. [Online] 11 10, 2011. [Cited: 06 17, 2012.]
http://stackoverflow.com/questions/7416826/how-does-the-new-windows-8-runtime-winrt-
compare-to-silverlight-and-wpf.

33. A diary study of mobile information needs. Timothy Sohn, Kevin A. Li, William G. Griswold,
James D. Holland. Florence, Italy : ACM, 2008. CHI.

90

Chapter 9: References

34. Fast App Launching for Mobile Devices Using Predicitive User Context. Tingxin Yan, David
Chu, Deepak Ganesan, Amand Kansal, Jie Liu. Low Wood Bay, Lake District, UK : ACM, 2012.
MobiSys.

35. Weblintents.org. www.webintents.org. www.webintents.org. [Online] 06 17, 2012. [Cited:
06 17, 2012.] http://www.webintents.org/.

91

Appendix A

One CD-ROM containing the Javza prototype source code and experimental data.

92

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

