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Abstract

A Bayesian multiscale technique for detection of statistically significant fea-
tures in noisy images is proposed. The prior is defined as a stationary intrinsic
Gaussian Markov random field on a toroidal graph, which enables efficient
computation of the relevant posterior marginals. Hence the method is appli-
cable to large images produced by modern digital cameras. The technique is
demonstrated in two examples from medical imaging.
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Gaussian Markov random fields

1. Introduction

Scale space or multiscale approaches to image and signal analysis exist
in a multitude of varieties, and in computer vision the concept is rooted in
the realization that physical observation is an inherently multiresolutional
process. Different levels of smoothing reveal different structures, and image
structures exist as meaningful entities only over certain ranges of scale [1].
In the current article, structure in images is defined as significant gradient
and curvature above the overall uncertainty.
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The use of Markov Random Fields in imaging has a long tradition [2],
and has been used in a variety of applications, including segmentation [3],
low level vision [4], object identification [5], as well as pattern recognition in
dermatoscopic images [6]. The underlying graph is a regular lattice corre-
sponding to the pixels of the image, which has a Markov property, i.e., the
value of any pixel is a random variable conditionally independent of all ex-
cept the neighboring pixels defined in a neighborhood structure. Restricting
the field to a Gaussian Markov Random Field (GMRF), the field attains the
property that the structure of the inverse covariance matrix, i.e., the pre-
cision matrix, directly reflects the conditional dependency structure of the
graph [7]. This enables fast numerical routines to be employed, and thus
it is feasible to treat large images in a multiscale analysis. The fact that
the graph is highly regular, in our case a torus, gives further computational
advantages. Although the families of smoothes considered throughout this
article are exclusively GMRFs, it should be pointed out that many alterna-
tive techniques exist for image smoothing or denoising which are not based on
Markov Random Fields, e.g. Adaptive Smoothing [8], Anisotropic Diffusion
[9], and Jump Regression Analysis [10][11][12].

In [13] and [14] Godtliebsen et. al. proposed the S3 (Significance in
Scale-Space) methodology for finding significant features in grayscale images
and density estimates, respectively. The methodology combines scale space
ideas with statistical inference, and is inspired by the SiZer (Significant Zero
crossings of derivatives) methodology by Chaudhuri and Marron [15]. SiZer
is a scale space method within non-parametric curve estimation, and looks
for derivatives that are significant above the noise level at different levels of
smoothing. S3 proceeds by viewing the image smoothed by convolutions of
Gaussian kernels of varying bandwidth, and calculates gradients and curva-
tures that are significant above the noise level, and in this sense represents
a two dimensional version of SiZer. In [16] and [17], a Bayesian approach
for exploratory analysis of time series data is developed, and it is demon-
strated that in certain applications it outperforms SiZer, since it can make
meaningful inference on much lower levels of smoothing. In [18] Erästö and
Holmström introduce a similar methodology which they refer to as BSiZer
(Bayesian SiZer), for finding significant features in scatterplots, and in [19]
these ideas are further developed into a tool for multiresolution analysis of
random signals.

In this article a new Bayesian methodology to finding significant features
in images is developed, extending the Bayesian methodology from [16] and

2



[17] to two dimensions. The method can be seen as a Bayesian version of S3,
and we will refer to the method as Bayesian multiscale analysis (BMulA).
The method looks for gradients and curvature which are significant above
the overall posterior uncertainty, stemming from noise and the uncertainty
in the prior which is chosen as one of two intrinsic Gaussian Markov ran-
dom fields (IGMRFs), i.e., a rank deficient GMRF [7]. A limitation of the
S3 methodology is that it is, particularly in the implementation the authors
make available online, computationally very demanding and thus impracti-
cal for use on images one typically obtains from modern digital cameras.
An area of particular concern in developing the BMulA methodology has
therefore been to make the implementation highly computationally efficient,
thus allowing the method to be used on large images. This computational
efficiency is achieved at the expense of some flexibility, in that we restrict
the model to deal with the simple image plus noise case. We further assume
that the noise term consists of i.i.d. Gaussian random variables with known
variance, and that the image is a stationary Gaussian Markov random field
defined on a toroidal graph [7]. The model is still sufficiently general to be
used in a wide range of applications and, in particular, the toroidal graph
only affects inference on the pixels close to the image boundaries, depending
on the level of smoothing. In addition to being fast, this formulation allows
for the exact calculation of posterior means and covariances, and we do not
have to rely on costly Markov Chain Monte Carlo procedures.

The organization of this paper is as follows. Section 2 introduces the ba-
sic statistical model underlying BMulA, and explains the priors used in the
software (available for download from http://www2.telemed.no/kevin). Sec-
tion 3 briefly explains the mathematical foundations for the computational
efficiency of the proposed method, and Section 4 discusses the assessment
of significant features. In Section 5, two examples are given of practical
problems where the method is demonstrated as useful.

2. Model and assumptions

The underlying statistical model for the Bayesian multiscale analysis is
that the observed image Y is the sum of an unknown image X and a noise
term ǫ

Y = X+ ǫ. (1)

The elements of the noise term are further assumed to be i.i.d. Gaussian
random variables with variance σ2. Throughout this article we will also
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assume that the noise variance is known or can be estimated, and that the
observed image has been standardized with regard to it, in the sense that
the pixel values have been divided by σ. The likelihood follows immediately
as

π(y|x) = N (x, I) . (2)

Here x and y are the vectorization of X and Y, attained by stacking the
columns, and I is the identity matrix. The prior is modeled as a GMRF with
precision matrix Q [7], so

π(x) ∝ exp

(

−
1

2
xTQx

)

, (3)

from which the posterior density follows:

π(x|y) ∝ π(y|x)π(x) ∝ exp

(

−
1

2
(y − x)T (y − x)

)

exp

(

−
1

2
xTQx

)

∝ exp

(

−
1

2
xT (Q+ I)x+ yTx

)

. (4)

This means that the posterior density is a Gaussian with mean

E(x|y) = (Q+ I)−1y, (5)

and covariance
Cov(x|y) = (Q+ I)−1. (6)

The relevant quantities are of a simple form and, in principle, equations (5)
and (6) can be used to calculate both the posterior mean and covariance.
The dimensions of the matrix to be inverted however, make this impracti-
cal for anything but the smallest of images. A m by n image implies a mn
by mn covariance matrix and, in general, matrix inversion is a computa-
tionally expensive task (O((mn)3)). Luckily there are techniques for their
efficient calculation, utilizing the block-circulant structure of the matrix to
be inverted. The details of this will be given in Section 3.

2.1. Prior Image Model

There are two rather strong assumptions in the construction of the prior
image model that together assure the desired block-circulant structure of the
precision matrix. The first is that we consider the image to be defined on a
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torus. This amounts to introducing undesirable correlations across opposing
edges. However, this approach facilitates efficient calculations on rather large
images, so the edges constitute a minor part of the images for which the
technique is intended. The user should, however, be aware of this limitation,
and inferences on the image boundaries should not automatically be trusted,
especially on high levels of smoothing. Secondly, the prior is a stationary
GMRF on the torus. This means that, with x−ij denoting the full field x
with sites i and j excluded, the full conditionals {π(xij|x−ij)} have constant
parameters not depending on ij, such that the local properties of the image
are the same throughout the image.

There are several ways to specify a GMRF, the most common way of
which is to specify the prior through its full normal conditionals with condi-
tional mean and precision [20]

E(xi|x−i) = −
1

Qii

∑

j:j∼i

Qijxj,

Prec(xi|x−i) = Qii, (7)

in the zero mean case, where i ∼ j denotes neighboring sites i and j, and
in fact the Qijs uniquely define (see e.g. Theorem 2.6 from [7]) the elements
of the precision matrix Q from equation (3). In principle, any well defined
GMRF can be used as a prior, but in the software used in this article, two
specific IGMRFs have been chosen. We will specify the IGMRFs through
normal increments, following [7], from which the full normal conditionals
follow.

2.1.1. IGMRFs on lattices

IGMRFs are improper GMRFs in the sense that they have a precision
matrix that is not of full rank. In this article we follow the convention from
[7], and define the order of an IGMRF as the rank deficiency of its precision
matrix.

Since the precision matrix is not of full rank, its inverse does not exist.
Hence, an IGMRF does not have a well defined mean and covariance matrix.
IGMRFs do, however, have some interesting properties: The mean of an
IGMRF of order k is defined only up to the addition of a polynomial of order
k − 1.

Turning our attention specifically to lattices, we define IGMRFs in terms
of ’independent’ increments, and for the first order case we define a normal
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increment between neighboring pixels i and j as

xi − xj ∼ N (0, κ−1). (8)

κ, which in [16] simply is referred to as a smoothing parameter (named β),
is in the current formulation the precision (inverse variance) of the difference
between neighboring pixels. The independence assumption of the increments
gives the following IGMRF model:

π(x) ∝ κ(n−1)/2 exp

(

−
κ

2

∑

i∼j

(xi − xj)
2

)

∝ κ(n−1)/2 exp

(

−
1

2
xTQx

)

, (9)

where i ∼ j is to be understood as the set of all unordered pairs of neighbors,
to avoid double counting. x is some ordering of the pixels in a 2d image, which
will be by column throughout this article. Letting ni denote the number of
neighbors of pixel i, the precision matrix Q in equation (9) has elements

Qij = κ







ni i = j,
−1 i ∼ j,
0 otherwise.

Choosing the four nearest pixels as neighbors, and remembering that the im-
age is defined on a torus (i.e. connected opposing edges, and no special treat-
ment given to the boundary pixels), the precision matrix is block-circulant
with base (The base of a block-circulant matrix will be defined in section 3,
or see [7])

qκ = κ









4 −1 −1
−1

−1









, (10)

where empty elements are zero.
To construct a second order IGMRF in two dimensions, we can choose

the increments
(
∆2

1,0 +∆2
0,1

)
xi−1,j−1

= (xi+1,j + xi−1,j + xi,j+1 + xi,j−1)− 4xi,j ∼ N (0, κ−1), (11)
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where ∆1,0 and ∆0,1 are the forward difference operators in the vertical and
horizontal directions. In [7] it is shown that the precision matrix should have
non-zero elements corresponding to

−
(
∆2

1,0 +∆2
0,1

)2
= −

(
∆4

1,0 + 2∆2
0,1∆

2
1,0 +∆4

0,1

)
, (12)

which is a negative difference approximation to the biharmonic differential
operator

∇4 =

(
∂2

∂x2
+

∂2

∂y2

)2

. (13)

Equation (12) can be used in the construction of the precision matrix, but
since in principle any difference approximation to ∇4 can be used, we have
used the Mehrstellen stencil [7]. This has the advantage of being isotropic
in the discretization error, and is given in graphical notation as

∇2 ≈ −
10

3

◦ ◦ ◦

◦ • ◦

◦ ◦ ◦

+
2

3

◦ • ◦

• ◦ •

◦ • ◦

+
1

6

• ◦ •

◦ ◦ ◦

• ◦ •

. (14)

Here the operator for the central circle sums over the sites labelled by a closed
circle, the open circles used for reference. Considering again the image on
a torus, so that all pixels may be considered interior, we can decompose Q
into Q = κDTD, where D is found from equation (14) as a block-circulant
matrix with base

1

6











−20 4 4
4 1 1

4 1 1











,

which, using results from Section 3.1, means that the base of Q is

qκ =
κ

36













468 −144 18 18 −144
−144 −8 8 8 −8
18 8 1 1 8

18 8 1 1 8
−144 −8 8 8 −8













. (15)
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Having found the base of the precision matrices for a first and second order
IGMRF, it is straightforward to find the corresponding full conditionals,
since they are related through equation (7). For the first order case, with
increments as in (8), we have

E(xij|x−ij) =
1

4
(xi+1,j + xi−1,j + x1,j+1 + xi,j−1),

Prec(xij|x−ij) = 4κ, (16)

and for second order (with increments as in (14)):

E(xij|x−ij) =
1

468



144

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

◦ • ◦ • ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

− 18

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

• ◦ ◦ ◦ •

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

+8

◦ ◦ ◦ ◦ ◦

◦ • ◦ • ◦

◦ ◦ ◦ ◦ ◦

◦ • ◦ • ◦

◦ ◦ ◦ ◦ ◦

− 8

◦ • ◦ • ◦

• ◦ ◦ ◦ •

◦ ◦ ◦ ◦ ◦

• ◦ ◦ ◦ •

◦ • ◦ • ◦

− 1

• ◦ ◦ ◦ •

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

• ◦ ◦ ◦ •



 , (17)

Prec(xij|x−ij) = 13κ. (18)

Several interesting properties of the above IGMRFs can now be stated.
For a first order IGMRF, the xTQx term is invariant to the addition of a
constant to x. This means that realizations from the density will tend to
favor piecewise constancy, since no ‘penalty’ is incurred for constant regions,
in the sense that only jumps in values will contribute to the xTQx term.
Similarly, for the second order IGMRF, piecewise linearity is favored, since
planar regions do not contribute to the xTQx term, and penalty is incurred
only for jumps in first derivatives. It must be noted that, strictly speaking,
both the IGMRFs we have considered here are of order one when defined
on the torus, since the rank of their precision matrices is one in both cases.
Locally, though, they retain their desirable properties. For the ‘second order’
case, this means that no penalty is incurred for planar regions, only for
discontinuities in gradient.

By specifying the IGMRFs by way of normal increments, it is possible to
gain some intuition about the meaning of κ as a smoothing parameter, and to
relate the common way of defining GMRFs through their conditional means
and precisions to a generative model. From equations (8) and (11) it is clear
that large values of κ correspond to a small variance in the increments, of first
and second order respectively, resulting in smoother curves. It must be noted,
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however, that the basic structure of the realizations from these IGMRFs does
not depend on κ, and merely scale is affected. With our assumption of noise
of unit variance, though, this scale is crucially important in the calculation
of the posterior mean, leading to smoother estimates for increasing values of
κ. Implicitly, increasing κ values corresponds to decreasing signal to noise
ratio, so the posterior estimates will put increased weight on the model as κ
increases.

A sample from the proper part of π(x|κ) with κ = 1 for both the first
and second order case is shown in Figure 1. For both samples the same
random number generator seed was used, and the images are rescaled to
cover the same grayscale range. The sample from the second order IGMRF
appears much smoother than the first order IGMRF, and for the purpose
of modeling relatively smooth natural images, the second order IGMRF is
usually preferable. This is also default in the software.

(a) First order IGMRF (b) Second order IGMRF

Figure 1: (a) and (b) are samples from a first and second order IGMRF, respectively,
demonstrating the relative smoothness of the second order IGMRF compared to the first
order.

3. Computational aspects

In this paper a scale-space approach to finding significant features in im-
ages is developed. This, naturally, involves calculation of posterior means
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and covariances over a wide range of scales, the scale in our case parameter-
ized by κ. In general this is an extremely computationally expensive task,
though there exist efficient programming schemes exploiting the sparsity of
the precision matrix, such as GMRFlib [21]. In this paper we use an approach
proposed in [7], and exploit the block-circulant structure of the precision ma-
trix rather than the sparsity, for highly efficient calculation of the relevant
posterior means and covariances.

3.1. Block-circulant matrices

Block-circulant matrices have many interesting properties, the most in-
teresting for our purposes being that many typical matrix operations can
be performed using the two dimensional (inverse) discrete Fourier transform,
(I)DFT2, on the base of the matrices. The base of a block-circulant Nn×Nn
precision matrix is an n×N matrix, so the computational advantage is sub-
stantial.

For reference, some of the most important results for block-circulant ma-
trices, along with a definition, will now be stated, and the interested reader
can find a detailed account in [7].

Definition 1. (Circulant matrix) An n × n matrix C is circulant iff it
has the form

C =










c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

cn−2 cn−1 c0 · · · cn−3
...

...
...

...
c1 c2 c3 · · · c0










, (19)

for some vector c = (c0, c1, . . . , cn−1)
T . We call c the base of C.

Definition 2. (Block-circulant matrix) An Nn×Nn matrix C is block-
circulant with N ×N blocks iff it can be written as

C =










C0 C1 C2 · · · CN−1

CN−1 C0 C1 · · · CN−2

CN−2 CN−1 C0 · · · CN−3
...

...
...

...
C1 C2 C3 · · · C0










= (Cj−i mod N), (20)
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where Ci is a circulant n×n matrix with base ci. The base of C is the n×N
matrix

c = (c0 c1 . . . cN−1).

Let C be a block-circulant matrix where c = base(C) is its base, and let
v be any n×N matrix and vec(v) the vector that results from stacking the
columns one above the other. The matrix-vector product vec(u) = C vec(v)
can then, with ⊙, ⊘ and ? denoting elementwise multiplication, division and
power respectively, be computed as

u = DFT2(DFT2(c)⊙ IDFT2(v)). (21)

The product of two block-circulant matrices C and D, is a block-circulant
matrix with base

base(CD) = IDFT2(DFT2(c)⊙DFT2(d)), (22)

and the inverse of C has base

base(C−1) = IDFT2(DFT2(c) ? (−1)). (23)

3.2. Calculation of posterior mean and covariance

With the help of equations (21) through (23) we can now efficiently cal-
culate the matrix form of the posterior mean from equation (5) and the base
of the covariance matrix from equation (6). Letting 1ij denote the matrix
with entry (i, j) equal to 1 and the rest equaling zero, we find the posterior
mean as

Xκ = E(X|Y) = DFT2(IDFT2(Y)⊘DFT2(qκ + 111)). (24)

The base of the posterior covariance matrix, Σκ, can be found similarly:

Σκ = IDFT2(DFT2(qκ + 111) ? (−1)). (25)

Since we are interested in calculating these quantities for a wide range of
values of κ, it is interesting to note that the Fourier transform actually only
needs to be performed once on the base of the posterior precision (qκ +111).
With obvious notation, we may write qκ + 111 = κq + 111, where q is the
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matrix from equations (10) or (15). Since DFT2 is a linear operator, we can
calculate this as

DFT2(qκ + 111) = κDFT2(q) + 1,

where 1 is a matrix consisting only of ones. Comparing with the compu-
tational cost of a näıve direct inversion of the posterior precision matrix at
each scale (O(N3) for an image with N pixels), the computational advan-
tages of using the DFT2 (in practice FFT2) are substantial (O(N log(N))).
Also compared to the techniques exploiting sparsity, the advantages are sub-
stantial, since these techniques generally are of cost O(N3/2).

3.3. Padding the image

Some preprocessing of the image must be done before we apply the DFT2
to it. In addition to standardizing of the image by dividing it by the noise
standard deviation, we also subtract the mean of the border values. Since
computation of the posterior mean relies on the DFT, any discontinuities in
the image will give ringing artifacts as a consequence of Gibbs phenomenon.
To minimize these effects at the borders, we pad the image with a Gaussian
drop-off before joining edges to make the torus. Specifically, we use the
border value as the mode of a Gaussian function, and let the padded values
approach zero by way of the Gaussian function. Alternatively, the image can
be zero-padded before applying the DFT. Both alternatives are implemented
in the software.

3.4. Effective sample size and the range of κ

The technique proposed in this article is Bayesian, in contrast the fre-
quentist S3 method in [13], where the smoothed estimates X̂h are calculated
as

X̂h = Y ∗Kh, (26)

Kh being a Gaussian kernel with bandwidth h, and ∗ denoting convolution.
The Bayesian smoothed estimate from equation (24) may, however, using
the well known connection between convolution in the spatial domain and
multiplication in the Fourier domain, be written as

Xκ = DFT2(IDFT2(Y)⊘DFT2(κq+ 111))

= Y ∗DFT2(DFT2(κq+ 111) ? (−1))
︸ ︷︷ ︸

Kκ

. (27)
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Comparing the two, it is clear that calculating the smoothed estimates from
this Bayesian methodology may be put into the framework of kernel smooth-
ing, where the kernel in this case is given as Kκ in equation (27). This allows
us to incorporate the useful concept of ‘Effective sample size’, a measure of
the number of points inside each kernel window, into the current Bayesian
setting. In [13] this is defined as the matrix ESS = (Kh ∗ 1)/Kh(0, 0) and
the average ESS is the average of these values over the entire image. Since
we give no special treatment to the image boundaries, in our case the ESS
is uniform throughout the image, and the convolution reduces to calculating
the volume under the kernel. Recognizing that for real images the DFT2
and IDFT2 are simply scaled versions of each other we may, comparing Kκ

from equation (27) and the expression for the posterior covariance Σκ from
equation (25), write

ESS = 1/Σκ(1, 1), (28)

since Σκ always sums to one. This allows us to define a sensible range for κ,
and following [17] the lower bound of κ is chosen such that ESS(κmin) ≈ 2.
The upper bound of κ is chosen such that a circle containing ESS points
should not have a diameter exceeding one tenth of the smallest dimension,
since the toroidal graph introduces noticeably detrimental effects at higher
levels. Thus, we choose κmax such that ESS(κmax) ≈ min(m,n)2π/400, m
and n being the number of rows and columns in the image. The values of
κ from κmin to κmax are linear in a log scale, since we desire the smoothness
from one scale to the next to increase evenly. Note that the ESS is found
with practically no extra computational cost, since the base of the posterior
covariance matrix already is calculated at all scales.

4. Significance of features

The calculations in this section follow along the lines of [13] and [14].
There the variances of the relevant quantities had to be estimated and asymp-
totic results were used to arrive at analytically tractable expressions for the
relevant quantiles. In our approach we have calculated the posterior covari-
ance matrix, thus avoiding the need for asymptotics.
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4.1. Significant gradient

Denoting the underlying image as f , the gradient magnitude at a given
pixel location is

G(f) =

[(
∂f

∂x

)2

+

(
∂f

∂y

)2
]1/2

, (29)

where x and y indicates the vertical and horizontal directions, respectively.
The estimate of the gradient magnitude is:

G(f̃κ(i, j)) = [(f̃κ,x(i, j))
2 + (f̃κ,y(i, j))

2]1/2, (30)

where the partial derivative estimates are in the form of the forward differ-
ences

f̃κ,x(i, j) = Xκ(i+ 1, j)−Xκ(i, j),

f̃κ,y(i, j) = Xκ(i, j + 1)−Xκ(i, j), (31)

where Xκ is the posterior mean for a given value of κ. We are looking for
the pixels where the posterior probability of the gradient being zero is below
some threshold α. The posterior distribution of the gradient is

[
fκ,x
fκ,y

]

∼ N

([
f̃κ,x
f̃κ,y

]

,

[
σ2
1 σ2

12

σ2
21 σ2

2

])

. (32)

Since we have calculated the posterior covariance matrix (with base Σκ), the
terms σ2

1 and σ2
2 are easily derived as:

σ2
1 = Var(f̃κ,x(i, j)) = Var(Xκ(i+ 1, j)−Xκ(i, j))

= Var(Xκ(i+ 1, j))− 2Cov(Xκ(i+ 1, j), Xκ(i, j)) + Var(Xκ(i, j))

= 2(Σκ(1, 1)− Σκ(2, 1)) = σ2
2. (33)

Similarly,

σ2
12 = Σκ(1, 1) + Σκ(2, 2)− 2Σκ(2, 1) = σ2

21. (34)

Our decision rule amounts to deeming as significant those pixels that do not
contain the origin in the α confidence ellipse of the posterior distribution of
the gradient. Geometrical considerations make this equivalent to choosing
as significant those pixels for which [f̃κ,xf̃κ,y]

T falls outside the α confidence
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ellipse of a zero mean random variable with the same covariance matrix as
[fκ,xfκ,y]

T . Since

[
fκ,x fκ,y

]
[
σ2
1 σ2

12

σ2
12 σ2

2

]−1 [
fκ,x
fκ,y

]

∼ χ2
2, (35)

a gradient is considered significant when

1

σ4
1 − σ4

12

(

(f̃ 2
κ,x + f̃ 2

κ,y)σ
2
1 − 2f̃κ,xf̃κ,yσ

2
12

)

> qχ2

2

(α), (36)

where qχ2

2

(α) is the α-quantile of the χ2
2 distribution.

4.2. Significant curvature

The test determining the statistical significance of curvature is based on
the eigenvalues of the Hessian matrix

H(f) =

[
fxx fxy
fyx fyy

]

, (37)

where fxx = (∂/∂x)2f , fyy = (∂/∂y)2f , and fxy = (∂/∂y)(∂/∂x)f . The
eigenvalues λ± of the symmetric 2 by 2 matrix H(f) are calculated as

λ± =

[

(fxx + fyy)±
√

(fxx − fyy)2 + 4f 2
xy

]/

2, (38)

where of course the partial derivatives must be replaced by their estimates.
The curvature is deemed significant when at least one of λ+ or λ− are sta-
tistically significantly different from zero. Hence, we wish to find

T = max{|λ+|, |λ−|}, (39)

which are significantly different from zero. We have that




fκ,xx
fκ,xy
fκ,yy



 ∼ N









f̃κ,xx
f̃κ,xy
f̃κ,yy



 ,





σ2
11 σ2

12 σ2
13

σ2
12 σ2

22 σ2
23

σ2
13 σ2

23 σ2
33







 , (40)

with

f̃κ,xx = X̂κ(i+ 1, j)− 2X̂κ(i, j) + X̂β(i− 1, j),

f̃κ,yy = X̂κ(i, j + 1)− 2X̂κ(i, j) + X̂β(i, j − 1),

f̃κ,xy = f̃κ,yx = X̂κ(i+ 1, j + 1)− X̂κ(i, j + 1)− X̂κ(i+ 1, j) + X̂κ(i, j),
(41)
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and

Cov(f̃κ,xx) = 2(3Σκ(1, 1) + Σκ(3, 1)− 4Σκ(2, 1))

= Cov(f̃κ,yy) = σ2
11 = σ2

33,

Cov(f̃κ,xy) = 4(Σκ(1, 1)− 2Σκ(2, 1) + Σκ(2, 2)) = σ2
22,

Cov(f̃κ,xx, f̃κ,yy) = Σκ(1, 1) + Σκ(3, 3) + 2Σκ(3, 1) + 4Σκ(2, 2)

− 2Σκ(3, 2)− 4Σκ(2, 1) = σ2
13,

Cov(f̃κ,xx, f̃κ,xy) = 3Σκ(1, 1) + 4Σκ(2, 2) + Σκ(3, 1)− Σκ(3, 2)− 7Σκ(2, 1)

= Cov(f̃κ,yy, f̃κ,xy) = σ2
12 = σ2

23. (42)

A closed form expression for the density of T is not available, so the quan-
tile must be empirically established through Monte Carlo simulations. In our
specific implementation, we generate 1,000,000 samples of Z ∼ N

(
[0, 0, 0]T , I

)

and calculate




fxx
fxy
fyy



 =





σ2
11 σ2

12 σ2
13

σ2
12 σ2

22 σ2
23

σ2
13 σ2

23 σ2
33





−
1

2





Z1

Z2

Z3



 . (43)

T is then found through equations (38) and (39), and the empirical α-
quantile, q̂T , is found. The estimate of T , T̂ , is calculated for all pixels.
Those pixels for which T̂ > q̂T are classified as significant.

In the following examples, we tailor the curvature detection to two specific
problems in dermascopic imaging, where the relevant significance are shown
as blue, as we do not differentiate between the different types of significance
as opposed to the examples in [13].

5. Examples

5.1. Detecting hairs in dermascopic images of skin lesions

In the last ten years much effort has been expended on the development
of computer aided diagnostic tools for detection of malignant melanoma (see
e.g. [22] or [23] for an overview). Among the many problems such a system
must be able to cope with, is the fact that often the images of skin lesions will
contain hair. Since there is no reason to believe that the hairs contain any di-
agnostic information, it is crucial that the system can find them so that they
do not contribute to the final diagnosis. Several algorithms exist for han-
dling this problem (see e.g. the much cited [24]), and here we propose that
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Bayesian multiscale analysis can be a useful tool for the problem at hand.
The idea is that hairs will be significantly darker than the surrounding skin,
and in most cases its color will be different than that of the lesion. BMulA,
which seeks to find significant gradient and curvature on several scales, should
therefore be useful, since it is to be expected that hairs of different color and
thickness will show up at different scales. We use as our model the second-
order IGMRF, as it should be well suited for images where the local statistics
are fairly constant throughout the image, and the image is relatively smooth.

5.1.1. The method

Since the images originally are three channel RGB color images, a choice
must be made on how to extract a grayscale image. We have chosen to use
the first principal component of the R, G and B channels of the linear (non
gamma-corrected) image, thereby retaining the maximum of variance for a
linear transform. The resulting grayscale image is in our example a 3326 by
4432 matrix.

The images under consideration have a black frame to the left and right of
a illuminated circle where, ideally, all pixel values should be zero (the black
areas in Figure 2). Consequently the sample variance in these regions are ex-
plained by the image noise, and it is the sample standard deviation calculated
in these regions that is used as estimate of noise standard deviation.

Since hairs, being for the most part dark and long, will appear as long
valleys in the grayscale image, it is natural to use the version of BMulA which
locates significant curvature. Furthermore, since the method can distinguish
between peaks, valleys, saddle points, holes, and ridges, we may restrict our
attention only to finding significant valleys. While it would be possible to also
use gradient information, gradients in the image under consideration would
be flagged significant for almost all pixels, since gradients are a relatively
simple feature to detect and the noise level is low. It is of course possible to
use the technique, utilizing a σ2 much larger than the actual noise level, and
using an extremely low significance level α. Such an ad hoc procedure could
easily be incorporated into the hair detection algorithm, but the results using
only significant valleys are of such high quality that its use is not merited.

The basic idea of the proposed technique, is that different features will
show up at different scales, so it is crucial to arrive at a sensible range of
scales. While one could use the entire range calculated from ESS(κmin) ≈ 2,
and ESS(κmax) ≈ min(m,n)2π/400, in this specific application this turns out
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to be excessive since, at the lowest levels of smoothing, far to much is flagged
as significant and, at the highest levels, almost nothing is. Through trial
and error on several representative images, we have found that a range of κ
from 100.8 to 103 is sufficient to capture both the fine structures represented
by fine hairs, while at the same time assuring robustness through going to
a level of smoothing where the spurious artifacts seen in the lower levels
disappear. In Figure 2 the significant valleys for four different scales are
shown, demonstrating how at the lowest scales we capture the finest hairs,
but also find significant valleys which for the purpose of hair detection must
be considered unwanted artifacts. At the higher levels the artifacts disappear,
along with the fine hairs.

(a) Sign. valleys log
10
(κ) = 0.8 (b) Sign. valleys log

10
(κ) = 1.5

(c) Sign. valleys log
10
(κ) = 2.3 (d) Sign. valleys log

10
(κ) = 3.0

Figure 2: Subfigures (a) through (d) show the valleys that are flagged as significant at the
indicated scales. At the smallest scales it is evident that too much is flagged as significant,
while at the highest scales the fine detail is lost.
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The final step in the hair detection algorithm is to define as candidate
hair pixels those pixels which have been classified as such in 90 % of the
scales considered, and to remove the smallest objects where the major axis
of an ellipse fit to the object is less than 50 pixels.

5.1.2. Results

The results of applying the method to two dermascopic images is shown
in Figure 3. For comparison, the results using Dullrazor are shown in the
same figure. From these experiments it seems that our technique is superior
in detecting the fine hairs in the image, while the performance is comparable
for the dark and thick hairs.

These results are preliminary in nature, and there likely remains much
room for improvement. The initial results, however, are promising and
demonstrate the usefulness of BMulA in a very practical problem. The com-
putational efficiency of BMulA is the reason that this methodology can be
used on images of the dimensions in this example. The toroidal assump-
tion underlying the method does not affect the statistical inference in the
interesting parts of the image, even at the highest scales (κ = 103).

The comparison with Dullrazor is included since the Dullrazor software
is much referenced within the field, and it is readily available online
(www.dermweb.com/dull razor/). To make this superficial comparison as
fair as possible we have, in addition to applying the software on the full size
images, applied the software on resized images (from 10 % to 90 % reduction),
and chosen by visual inspection the best results. This is done since the results
from using Dullrazor also depend on the scale/dimensions of the image. Still,
we do not claim this comparison to be exhaustive and, since there is no
established ‘gold standard’ in evaluating hair detection algorithms, we cannot
within the confines of this limited comparison quantify the performance of
the algorithms other than by visual inspection.

5.2. Detecting dots/globules in skin lesions

Dermatologists utilize a number of rules for determining whether they
suspect a skin lesion might be a melanoma. In the well known ABCD rule
for dermoscopy, one of several sets of heuristics dermatologists use to guide
their decision [25], features such as asymmetry, border, colors, and dermas-
copic structure are given a score, which are weighted to produce a diagnosis.
A computer aided diagnostic system for detection of malignant melanoma
should be able detect many of these features, and here we demonstrate how
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(a) Original image (b) Original image

(c) Results BMulA (d) Results BMulA

(e) Results Dullrazor (f) Results Dullrazor

Figure 3: Subfigures (a) and (b) show two dermascopic images of skin lesions. The results
of using BMulA for the task of hair detection on the two images is shown in sub figures
(c) and (d). (e) and (f) shows the results using Dullrazor on the same images.
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BMulA can be useful in detecting one of the dermascopic structures, namely
dots/globules.

Dots or globules are small, roughly circular, dark areas in the lesion.
As with many of the features a dermatologist looks for, it is a somewhat
subjective exercise to determine their presence. The notion of scale is, of
course, crucial. How large or small, and how dark or fair the area can be
while still being classified as a dot or globule, is to a large extent a judgement
call for the dermatologist. Accordingly, we have set the parameters in the
algorithm in cooperation with a trained dermatologist, so as to best detect
what he considered to be dots in our training set of eight images. As with
the previous example, the results are preliminary, and are presented mainly
to demonstrate the potential of the algorithm.

5.2.1. The method

Since the presence of dots is of interest only in and immediately around
the lesion, we have chosen to segment the image into lesion and skin parts
before applying BMulA. The segmentation algorithm works by applying wa-
tershedding [26] to the negative smoothed 2d histogram of the first two prin-
cipal components of the image in the CIElab color space, thus segmenting the
histogram into regions. The pixels are then classified by which region in the
segmented histogram they belong to, an approach similar to that proposed
in [27].

Having segmented the image, we proceed to create a grayscale image from
the full RGB image. Again we choose the first principal component of the
RGB components, but now we only use the lesion pixels in calculating the
principal component scores, thereby assuring the maximal explained variance
in the actual region of interest. As in the previous example, we use the black
frame to estimate the noise variance.

Having done the necessary preprocessing, the algorithm proceeds in the
same way as in the previous example, with the feature of interest now being
holes. We choose the range of scales such that both the small and the large
dots, as determined by the dermatologist, in eight test images are captured
by the algorithm. Some post-processing needs to be performed also here.
In cooperation with the dermatologist, we have arrived at the heuristic that
those pixels which have been classified as belonging to a dot in 75 % of the
scales considered are dots, so long as they consist of more than 15 pixels. In
this example twenty κ-values were used, ranging from 100 to 101.
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5.2.2. Results

The results of applying the algorithm to two images not in the test set is
shown in Figure 4, and corresponds nicely to the dermatologist’s assessment
of what he considers dots in the lesions. There will always be ambiguities in
evaluating such a procedure, and again we must rely on visual inspection. For
these two images (1025 by 808 and 519 by 555 pixels) the computation time
in Matlab was approximately 0.42 and 0.32 seconds per κ value respectively,
demonstrating the efficiency of the procedure. In fact, the Monte Carlo
simulations for determining the appropriate quantile constitute more than
half the computation time.
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(a) Original image cut to lesion area (b) Results BMulA

(c) Original image cut to lesion area (d) Results BMulA

Figure 4: Subfigures (a) and (c) show two dermascopic skin lesion images on which BMulA
has been used for the detection of significant dots, and (b) and (d) show the results.
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