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Abstract

Small rodents are key herbivores of arctic ecosystems, where their cyclic population
dynamics have important implications for vegetation dynamics. The role of vegetation
for shaping small rodent population dynamics remains, however, unclear. Evaluation
of this interaction has been greatly hampered by the rather fragmentary knowledge
of small rodents feeding ecology, which in turn is due to methodological challenges
in studying small rodent diets. In this thesis, I investigated interactions between
small rodents and vegetation, focusing on variability of both diets and plant defences
induced by rodent herbivory.

In order to overcome limitations set by methods, I have evaluated the use of two
recently developed methods and one traditionally used method for studying small
rodent diets (papers I, IT and IV). I found that novel DNA metabarcoding methods
give the best taxonomic resolution whereas traditional microhistological methods may
still be useful to elucidate which plant parts have been eaten. Moreover, use of
stable isotope analysis in research of small rodent feeding habits can be useful when
evaluating the temporal persistence of diets.

In three observational studies (papers II, 11T and IV) I described diets of small
rodents in tundra habitats and assessed sources of variability in them. I found that
diets of my study species were more diverse than previously believed, suggesting that
diversity is an important but previously underrated trait of small rodent diets. Nu-
tritional quality seems to determine which food items are preferred, as small rodents
selected in general for most palatable food items. In addition to nutritional drivers,
my results suggest that various ecological drivers, such as food availability, compe-
tition and predation risk avoidance, are important determinants of for small rodent
diets in the wild. A better incorporation of ecological and nutritional drivers into
a common framework is therefore needed to understand what shapes diets of small
rodents, and herbivores in general, in natural habitats.

I evaluated the impact of herbivory on grass silica defences in an experimental
study (paper V). I found that levels of such defences vary between locations, probably
due to heritable differences among grass populations in the response to herbivory
and differences in local growth conditions. Based on such spatial variation and the
large proportion of other food items included in the diets of the focal small rodent
populations, it is unlikely that silica-based defences would have a strong direct role
in shaping small rodent population dynamics in Finnmark. However, increased levels
of silica in grasses reduce grass palatability for rodents, and hence probably impact
rodent diet quality indirectly, through a shift to diets with less grasses. I therefore
suggest that availability of alternative food items is likely to be an important factor
shaping the interaction between small rodents and grasses.

Variability in both small rodent diets and plant defences suggests that interaction
between vegetation and a small rodent species may show pronounced spatial variation.
This, together with my findings on the diversity of diets and its increase during high
population densities, indicates that a single plant defence mechanism is unlikely to
shape rodent-vegetation interactions. I suggest that deeper understanding of the role
of food for small rodent population dynamics could rather be gained by focusing on
the compensatory nutritional effects of different food items as well as diet diversity.






Introduction

Small rodents in tundra food webs

Terrestrial tundra food webs are characterized by low productivity and diversity of
both plants and animals (Batzli et al. 1980; Krebs et al. 2003; Ims and Fuglei 2005).
This relative simplicity, in comparison to more southern food webs, makes them ap-
propriate study systems for trophic interactions. In tundra food webs, small rodents
form a central link between vegetation and predators, as most of the transformation
of plant biomass to animal biomass happens through them (Batzli et al. 1980; Krebs
et al. 2003; Ims and Fuglei 2005; Gauthier et al. 2011; but see Legagneux et al.
2012). Even in tundra ecosystems which have other herbivores, these are usually
not equally available for predators. Biomass of the other important mammalian her-
bivores, reindeer (Rangifer tarandus) and musk oxen (Owibos moschatus), is low in
many parts of the arctic (Jefferies et al. 1994; Batzli et al. 1980), or extensively used
up by humans as is the case for Fennoscandian semi-domesticated reindeer. On the
other hand, herbivorous birds, especially geese, are locally an important trophic link
(Jefferies et al. 1994; Gauthier et al. 2011), but their presence is restricted to summer
season and particular locations.

Most arctic small rodent populations undergo cyclic high amplitude changes in
population density (Ims and Fuglei 2005; Oksanen et al. 2008), which tend to char-
acterize whole tundra food webs. During population peaks, small rodent herbivory
affects plant biomass (Andersson and Jonasson 1986; Hambéck et al. 2004; Olofs-
son et al. 2012), vegetation composition (Andersson and Jonasson 1986; Moen et al.
1993; Olofsson et al. 2004; Ravolainen et al. 2011; Villareal et al. 2012), plant mor-
tality (Ravolainen et al. in revision (b)) and reproduction (Andersson and Jonasson
1986; Oksanen and Ericson 1987). Periodic heavy grazing by small rodents seems
to even have the potential to maintain alternative stable states of tundra vegetation
communities (Virtanen et al. 1997; Villareal et al. 2012).

In addition to vegetation, small rodent population dynamics affect the predators
of tundra food webs. Tundra predators respond to fluctuations of food availability,
i.e. rodent densities, both functionally and numerically (Batzli et al. 1980; de Korte
and Wattel 1988; Elmhagen et al. 2000; Gilg et al. 2003; Killengreen et al. 2011).
Rodent population dynamics have even indirect consequences for species which rep-
resent alternative prey for tundra predators. For example, during years of low rodent
population density the reproduction success of ground-breeding birds is low whereas
their mortality is high (Béty et al. 2001; Sittler et al. 2000; Gauthier et al. 2004).

Rodent population dynamics and vegetation

”However, anyone who is familiar with the literature on microtine cycles knows that
it does mot lack reasonable hypotheses. If only they were all easily testable, perhaps
we could more confidently explain the perplexing population fluctuations of voles”

G. O. Batzli and F. A. Pitelka, 1975

Interactions between arctic small rodents and vegetation have been mostly studied in
the context of rodent population dynamics. A range of hypotheses on how rodent-
vegetation interactions may, alone or together with other factors, cause cyclic popu-
lation dynamics have been put forward. These hypotheses suggest that small rodent
population densities are either affected directly by plant productivity cycles or by a
feed-back mechanism of changes in vegetation caused by small rodents themselves.

While plant productivity cycles seem to have no clear correlation with rodent popu-
lation dynamics (Andersson and Jonasson 1986; Oksanen and Ericson 1987; Olofsson



Box 1. Terminology

Plants:

plant defence - A plant defence mechanism against herbivores or other stressors.
Such defence can either be chemical, such as many toxic secondary metabolites, or
morphological, such as spikes, woody structures etc.

induced defence - A plant defence mechanism against herbivores or other stressors,
which is only expressed after a stimuli of such a stressor.

constitutive defence - A plant defence mechanism against herbivores or other stressors,
which is expressed independently of the presence of such stressors.

tolerance - A plant strategy against herbivory, alternative to defence. Plant that tolerates
herbivory does not defend itself in order to avoid herbivory, but is able to compensate the
lost tissues after herbivory without a notable cost.

palatability - Attractiveness of a food item to a consumer. A combined measure of
sensory inputs such as taste, odor, texture and post-ingestive effects of nutrients and
defence compounds.

plant functional group - A group of plants which are characterized by similar
functional traits, not necessarily taxonomically related. Traits such as growth form
(woody /herbaceous, evergreen/deciduous), nitrogen uptake (hemiparasite/legume) or
decomposability can be used to characterize a plant functional group.

Herbivores:
generalist - A herbivore feeding on a wide range of food items.

specialist - A herbivore feeding on a single food item or a narrow range of food items.
trophic niche - An animals niche defined by the range of food items it consumes.

absolute food preference - An animals preference for a food item independent of
whether it is available or not.

realized food preference - Food preferences that are conditioned on the prevailing
ecological circumstances, such as the available species pool, and defined as ingested
proportions being higher than those available in vegetation.

et al. 2012), considerable uncertainty about the role of feed-back mechanisms still ex-
ists (Klemola et al. 2003; Oksanen et al. 2008; Krebs 2011). This group of hypotheses
is based on the logic that an increasingly dense rodent population has an increasing
impact on its food sources. At high population densities the availability of food, or
the availability of good quality food, may become insufficient to fulfill the needs of
all rodent individuals. This is assumed to either decrease reproduction or increase
mortality, and as a consequence population densities should diminish. The increasing
impact of rodents on their food sources may, moreover, cause plants to induce vari-
ous defences. This, in turn, should further reduce food quality for rodents, reducing



their health status, and thus accentuate the consequences for population density. Fi-
nally, vegetation may need several years to recover from a rodent population peak,
potentially causing the delayed feed-back needed to produce interaction cycles.

The suggested feed-back hypotheses can be divided into two types, based on what
small rodents are expected to feed during the population peaks. First, the biomass
of preferred food plants has been suggested to diminish to low levels during high
rodent population densities, forcing them to shift to less preferred food plants of
lower quality; i.e. plants with less nutrients, more defence compounds or even lethal
toxins (Schultz 1964; Freeland 1974; Plesner Jensen and Doncaster 1999; Berg 2003).
The second group of feed-back hypotheses is based on preferred food plants being
eaten throughout population cycles. As a consequence of heavy grazing during high
population densities, these plants are suggested to either induce defences or decrease
in nutrient content (Laine and Henttonen 1983; Lindroth and Batzli 1986). This
group of hypotheses has been evaluated by several authors who have studied various
plant defence mechanisms, such as phenolics (Lindroth and Batzli 1984; Harju and
Hakkarainen 1997), proteinase inhibitors (Seldal et al. 1994; Brathen et al. 2004;
Lindgren et al. 2007) and silica-based defences (Massey and Hartley 2006; Massey
et al. 2008).

Nevertheless, current knoweldge on small rodent diet changes during population
density fluctuations is relativly limited. While grazing signs of small rodents on poorly
palatable food have been found to increase with population density (Hansson 1986), it
remains unclear whether this is simply caused by the larger number of small rodents
or whether small rodent diets actually change. Moreover, the few studies evaluat-
ing changes of small rodent diets during population density changes have rendered
contrasting conclusions. While Batzli and Pitelka (1975) could not relate population
density to changes in diets, Bergeron (1980) and Larsson and Hansson (1977) suggest
that lower quality food items are more frequently consumed during population density
peaks. Hence, proper evaluation of the assumptions of any of the hypotheses stating
that vegetation has an impact on small rodent population dynamics requires knowl-
edge that is currently lacking. Most importantly, what are the food plants used by
different rodent species and populations during population density peaks? To what
extent these plants have defence mechanisms, constitutive or induced?

Grass silica defences

Grasses have long been considered to cope with herbivory mainly by tolerating it
(Vicari and Bazely 1993), and therefore only recently grass defences against herbivores
have been suggested to play a role in plant-herbivore interactions. Nevertheless,
grasses do have a range of defence mechanisms, of which silica-based defences are
among the most important (Vicari and Bazely 1993). Silica-based defences of grasses
have experimentally been shown to be induced by vole herbivory, deter feeding by
voles and reduce digestibility for them (Massey and Hartley 2006; Massey et al. 2008).
Furthermore, the silica levels of grasses have been found to follow vole population
dynamics in the wild (Massey et al. 2008). Based on these findings, Massey and
co-authors have proposed that grass silica defences may be driving vole population
cycles (Massey and Hartley 2006; Massey et al. 2008).

This hypothesis has been developed using a temperate forest ecosystem as a study
model (Massey et al. 2008). However, grass silica defences have been found to be
induced by grazing also elsewhere, notably in ecosystems characterized by grazing,
such as savannas and prairies (McNaughton et al. 1985; Brizuela et al. 1986; Cid et al.
1989). Moreover, Cooke and Leishman (2011) suggested that silica plays a bigger role
in plant ecology than previously believed. Fennoscandian tundra vegetation is heavily



grazed by semi-domesticated reindeer, which seems to increase biomass of silica-rich
grass species (Moen and Danell 2003; Ravolainen et al. 2011). Grass silica defences
can therefore be expected to play a yet unknown role for plant-herbivore interactions
in Fennoscandian tundra habitats.

Food selection by small rodents

Herbivore food selection has long been studied as function of plants nutritional quality
(see " nutrient constraint hypothesis” by Westoby 1978 and ” detozification limitation
hypothesis” by Freeland & Janzen 1974). However, plant nutritional quality for a
herbivore is a complex measure, consisting of gained energy and nutrients as well
as the negative effects of plant defences. Consequently, the nutritional value of a
food item for a herbivore depends on the interplay of its different contents, as well
as the abundance and quality of other concurrently available food items (Belovsky
and Schmitz 1994; Dearing et al. 2000; Behmer et al. 2002; Provenza et al. 2007;
Lisonbee et al. 2009; Nersesian et al. 2012b; Pretorius et al. 2012). Until recently,
most research has been based on either nutrients or plant defence compounds alone,
and the understanding how these two interact and together define palatability is still
developing (Dearing et al. 2000; Behmer et al. 2002; Provenza et al. 2007).

Small rodents have been experimentally shown to avoid a range of compounds
present in plants, such as phenolics, alkaloids, silica and acid detergent fiber (ADF)
(Lindroth and Batzli 1984; Bergeron and Jodoion 1987; Harju and Hakkarainen 1997;
Massey et al. 2006). They have also been shown to prefer foods with higher protein
content (Bergeron and Jodoion 1987; Harju and Hakkarainen 1997). Still, some stud-
ies found no effect of food quality on food selection by small rodents (Bélanger and
Bergeron 1987; Pedersen et al. 2011), while others indicate that palatability is an im-
portant food selection criteria (Batzli and Jung 1980; Harju and Hakkarainen 1997).
This diversity of results is unsurprising, as the biochemical diversity of a plant com-
munity is likely to have diverse effects on small rodents food selection. For example,
plant defence compounds differ in terms of the amounts of nutrients required for their
detoxification. Consequently, the impact of a plant defence compound on herbivore
feeding behaviour depends on the chemical composition of the other components of
the herbivores diet (Behmer et al. 2002; Villalba et al. 2002). Moreover, the impacts
of a plant defence compound differ between small rodent species (Batzli and Jung
1980; Lindroth et al. 1986), and results from one rodent species can therefore hardly
be extrapolated to apply all species.

Still, feeding behaviour of small rodents in the wild is affected by a range of other
factors than ”simply” choosing a meal from the chemical landscape. Another main
branch of research on herbivore food selection has been focused on optimal selection
of food items or feeding patches based on their costs and benefits. Studies within this
body of research have evaluated the impacts of various ecological drivers, such as food
availability, predation avoidance and competition on herbivore food selection (Senft
et al. 1987; Brown 1988; Ripple and Beschta 2004; Searle et al. 2008; Tuft et al. 2011).
This framework leans mainly on theories which originally emerged to explain predator
food selection, such as the ” optimal foraging theory” by MacArthur and Pianka (1966)
and " marginal value theorem” by Charnov (1976). These studies therefore mostly use
a simple currency to measure the value of food items, such as energy or total nitrogen,
or use herbivores preference as an index of food quality. Consequently, integrated
understanding of ecological and nutritional drivers of herbivores food selection is
poorly developed.

For small rodents, increased availability of a food item has been shown to increase
its use, although it is unclear what regulates this relationship (Batzli et al. 1981; Gross



et al. 1993; Lundberg 1988; Hobbs et al. 2003) and what is the impact of alternative
food item availability (Pusenius et al. 2003). However, variability of small rodent diets
between habitats, albeit poorly known for most species, indicates that food availability
often has an impact on diets (Batzli and Pitelka 1983; Batzli and Henttonen 1990;
Tast 1991). It has also been established that predation risk affects both small rodent
habitat selection, in terms of opting for more sheltered habitats, and the time invested
on feeding (Hambéck et al. 1998; Y1onen & Brown 2008). Little direct evidence exists
on the impacts of competition on small rodents food selection. Still, decreased survival
and reproduction as a result of food competition (Huitu et al. 2003) indicates that
also competition is an important factor in determining what small rodents feed on.
Even so, the interplay between various bottom-up (plant chemistry, quantity and
spacing), top-down (predation risk) and ”sideways” (competition) drivers on small
rodent food selection is poorly understood. An evaluation of the relative importance
of these different drivers in wild is one of the first steps needed towards an integrated
understanding of small rodent food selection.

Diets of tundra-dwelling small rodents

Many of the above outlined gaps in the understanding of interaction between small
rodents and vegetation are caused by a lack of knowledge on rodent diets in the wild.
This, again, is mainly due to lack of methods which could have provided data at
appropriate depth (i.e. taxonomic resolution) and width (i.e. across relevant spatial
and temporal scales). Three methods have traditionally been available for evaluating
the food habits of small rodents, namely studies on stomach contents, cafeteria exper-
iments and observations of grazed vegetation. The two latter are valuable methods to
study rodent-plant interactions, but fail to answer a fundamental question: what is the
composition of small rodent diets in their natural habitats? On the other hand, stud-
ies of stomach contents using microhistological methods are challenging to conduct.
Such methods are time-consuming and require often extensive work on constructing
a reference-database and training observers. The plant epiderm fragments found in
small rodent stomachs are often very small, only a few cells, implying that they can
often be identified only at a coarse taxonomic resolution. In addition, observers are
likely to have a different threshold in identifying a fragment to an identifiable group
versus classifying it as unidentifiable. To conduct a microhistological study there-
fore requires investing a great amount of work to a project which may result in a
coarse description with potential biases between observers. Despite these challenges,
adequate knowledge for general descriptions of small rodent diets has been gained.
Below, I summarize what is known about the diets of the primary study species of
this thesis; grey-sided vole (Myodes rufocanus), tundra vole (Microtus oeconomus)
and Norwegian lemming (Lemmus lemmus), based on studies published prior to this
thesis.

Myodes rufocanus

Diet of the grey-sided vole (Figure 1), has been investigated by observations of feeding
signs in subarctic birch habitat (Kalela 1957) as well as stomach contents from forested
habitats (Hansson 1969; Hansson and Larsson 1978). Together, these studies indicate
that grey-sided voles feed on Vaccinium shrubs, herbs and grasses in summer, with an
increased use of shrubs in wintertime. At the same time the studies disagree in many
aspects; while Hansson (1969) and Hansson and Larsson (1978) conclude that grasses,
especially Avenella flexuosa, and mosses are frequently eaten, Kalela (1957) claims
that this is not the case. While such discrepancy indicates that grey-sided vole diets
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Figure 1: Grey-sided vole, Myodes rufocanus

may differ between areas and habitats, it is also possible that the different conclusions
depend on the method used. Similar indication of variable diets between seasons and
regions is given by the studies conducted in Japan, where the species mainly feeds on
leaves and shoots of bamboo in winter but also on various forbs and grasses during
summer (Kaneko et al. 1998). To my knowledge, no published studies evaluate the
diets of grey-sided voles in tundra habitats. However, several experiments on the
effect of grey-sided voles on Vaccinium myrtillus have shown that it is an important
forage species for grey-sided voles above the treeline (Hambéck and Ekerholm 1997;
Dahlgren et al. 2007, 2009).

Microtus oeconomus

Tundra vole (Figure 2) feeding habits have been investigated based on stomach con-
tents in Finland (Tast 1974) and Alaska (Batzli and Jung 1980; Batzli and Henttonen
1990). The animals sampled by Tast (1974) were trapped in the subarctic birch zone,
although no details of habitats were included. Both Alaskan studies focus on open
tundra habitats; Batzli and Jung (1980) trapped tundra voles mainly in graminoid-
dominated wet tundra while Batzli and Henttonen (1990) compared diets along a
moisture gradient. These studies agree that monocotyledons, especially Eriophorum,
form the bulk of the tundra voles diet. In addition, both Tast (1974) and Batzli
and Henttonen (1990) indicate that during summer both horsetails (Equisetum) and
herbs were eaten, whereas Batzli and Jung (1980) found that also willows (Saliz sp.)
were an important component of tundra vole diet. Moreover, Batzli and co-authors
indicate that tundra vole feeding habits do not vary greatly between different habitats
(Batzli and Henttonen 1990; Batzli and Jung 1980). In addition to stomach content
studies, tundra vole food preferences have been investigated in a cafeteria experiment
using voles originating from a Polish population (Gebczynska 1970). In this study,
voles were found to preferably select for various forbs, although they were not of-
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fered Eriophorum, as it was not available for tundra voles in the studied population.
Differences between these studies suggest that food habits and potentially also food
preferences of tundra voles may differ based on the available food.

Figure 3: Norwegian lemming, Lemmus lemmus
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Lemmus lemmus

Studies on the feeding habits of the Norwegian lemming (Figure 3) are more abundant
than those of tundra-dwelling voles. Their diets have been investigated using micro-
histological analysis of stomach contents (Koshkina 1961; Hansson 1969; Tast 1991;
Saetnan and Batzli 2009), and faeces (Stoddart 1967), as well as feeding trials (Kalela
et al. 1961). In general, all of these studies agree on the main pattern; Norwegian
lemmings feed mainly on mosses and monocotyledons. However, there are several dis-
crepancies between the studies. For example, lemmings have been claimed to select
for mosses (Kalela et al. 1961) and select against them (Saetnan and Batzli 2009).
Different mosses have been suggested to be the most important ones; Hylocomnium
splendens (Hansson 1969) and Dicranum sp. (Kalela et al. 1961; Koshkina 1961).
Some authors have done an impressive effort analysing a large sample size (Koshkina
1961; Tast 1991), providing possibilities to evaluate temporal and spatial trends in
lemmings food habits. Based on these studies, the use of mosses seems to decrease
during summer, with a simultaneous increase in the use of grasses (Kalela et al. 1961;
Koshkina 1961; Tast 1991). Findings on spatial variation in lemming diets are less
consistent. On one hand, Tast (1991) and Saetnan and Batzli (2009) studied lemming
diets in similar habitats, namely alpine meadows with scattered willow thickets, but
found rather different diets. On the other hand, the comparison of diets between
different habitats by Tast (1991) indicates that such differences are small. Several
aspects of Norwegian lemming diet, such as the identity of important food species
and the extent and causes of spatial variation, remain thus unclear.

Aims

My general aim with this thesis was to describe and assess sources of variability in
interactions between small rodents and vegetation. Specifically, my first aim was to
describe what small rodents on subarctic tundra eat, using new methodology (pa-
pers I, II, III). My second aim was to evaluate different methods which could be
used to study small rodent diets, taking advantage of their strengths but correcting
for their biases (papers I, I, IV). Third, I intended to use the new on knowledge
small rodent diets to investigate why they eat what they eat. To do this, I aimed
to combine data on the availability of different food items as well as on competition
to better understand variability of small rodent diets (papers III and IV). Fourth, I
aimed to evaluate how defences of important food items are driven by herbivory on
the subarctic tundra (paper V).

Specific questions addressed in the papers were:

Paper I: Can DNA metabarcoding methods be used to study diets of small rodents?
Paper II: What do Norwegian lemmings eat during summer, and how does this vary
between habitats?

Paper III: How does food selection of subarctic voles depend on food availability?
Paper IV: How does competition affect trophic niche width of arctic small rodents?
Paper V: Does herbivory induce silica-based defences of grasses in tundra habitats?

13



Methods
Main study area: North-East Finnmark

The Finnmark study area belongs to shrub tundra vegetation zone and is located at
approximately 70°N, 27-30°E (Figures 4 and 5). Within this area, the most prominent
habitat type of inland tundra landscapes (approximately 100-400 meters a.s.l., Figure
4A) is dwarf-shrub tundra heath (Figure 4A,D-E). A more productive but spatially
restricted habitat is found at riparian sediment planes, where forb-rich meadows and
willow (Saliz spp.) thickets form a vegetation mosaic (Figure 4A,B-C).

In the heaths, Empetrum nigrum dominates the vegetation, but also Betula nana
and Vaccinium myrtillus are frequent (Figure 4B-C). Field layer of the meadow vege-
tation is more diverse, and dominated by grasses (e.g. Avenella flexuosa, Deschampsia
cespitosa), forbs (e.g. Rumez acetosa, Trollius europaeus, Viola spp.) and deciduous
shrubs (mainly Saliz spp.). In spite of the general common characteristics, spatial
and temporal variation in vegetation composition is substantial within both habitats
(Ravolainen et al. in revision (a), Trasti 2010, Figure 4B-E). For example, between
two consecutive years the standing crop of field layer vegetation can differ up to 50%
in the meadows and 20% in the heaths (Trasti 2010).

In heath habitats, grey-sided voles are the most common small rodent species,
whereas in the meadow habitats tundra voles dominate the small rodent community
(Ims et al. 2011; Henden et al. 2011). In addition to voles, Norwegian lemmings are
found in the area during their outbreak years. Small rodent populations in Finnmark
have cyclic population dynamics with high-amplitude peaks every 4-5 years (Yoccoz
and Ims 2004; Oksanen et al. 2008). During the study period of this thesis, such
peaks occurred in 2007 and 2011 (see figure 3 in paper IV), with different spatial
trajectories (Henden et al. 2011; Ravolainen et al. 2011, paper IV). In addition to
small rodents, semi-domesticated reindeer (Rangifer tarandus) are abundant in the
study area, whereas other mammalian herbivores are scarce (Killengreen et al. 2007).

Study designs

North-East Finnmark

Within the Finnmark study area, data was collected from three focal river catchments,
namely Ifjordfjellet (IF), Vestre Jakobselv (VJ) and Komagdalen (KO) (Figure 5),
using an observational study design. Two of these, VJ and KO, are at Varanger
peninsula (70-71°N, 28-31°E) whereas IF is located at a mountain plateau about
100 km further west (71° N, 27° E) (Figure 5). Within each river catchment, 15
x 15 m sampling grids (KO n=24, VJ n=26, IF n=24) were established in equal
numbers in the meadow and heath habitats during summer 2005 (Figure 5, hereafter
called " main study design”). Within each sampling grid, 13 plots were established for
plant biomass measurements and 8 plots for herbivore faeces counts (Figure 5). The
same grids were also used for small rodent population census by snap-trapping, which
provided samples for diet analyses. I used data from this study design to describe
small rodent diets and assess the effects of plant biomass as well as rodent population
density on them (Table 1). Additional sampling grids (n=18, 11 and 17 for IF, VJ
and KO respectively) are established in heath, meadow and wetland habitats in the
focal river catchments as a part of a large-scale monitoring of small rodent population
dynamics (Killengreen et al. 2007; Ims et al. 2011; see description of wetland habitat
in paper IV). I included small rodent samples and population density index data from
these sampling grids (hereafter called ” additional trapping grids”) in papers II and
IV (Table 1).
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Figure 4: Landscape and examples of field layer vegetation in heath and meadow
habitats of the Finnmark study area. A) Overview of a typical landscape within the
study area where river valleys with willow-thickets and open meadows cut through
heath plateaus, B) meadow habitat field layer, dominated by forbs C) meadow habi-
tat field layer, dominated by silica-rich grasses, C) dense heath habitat field layer,
dominated by Vaccinium myrtillus, D) sparse heath habitat field layer, dominated by
Empetrum nigrum.
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Within each sampling grid in the meadow habitat of the main study design, 9
experimental plots were established during summer 2006 to study herbivore effects on
vegetation (Figure 5, Ravolainen et al. 2011, Ravolainen et al. in revision (b), paper
V). Of these, three plots were randomly assigned to each of the following treatments;
(1) exclusion of rodents and reindeer using small-meshed exclosure (mesh size 1 x 1
cm), (2) exclusion of reindeer with a large-meshed exclosure (mesh size 3 x 3 cm) and
(3) unexclosed control plots to which all herbivores had access. I used leaf samples
of six different grasses (Avenella flezuosa, Anthozanthum nipponicum, Calamagrostis
phragmitoides, Deschampsia cespitosa, Nardus stricta and Phleum alpinum) from
this field experiment to evaluate the effects of species identity, herbivore exclusion
and location on grass silica content (paper V).

The three focal river catchments have coarsely similar vegetation (Ravolainen
2009, Ravolainen et al. in revision (a)). Since the onset of small rodent population
census in 2005, rodent population densities have peaked in 2007 and 2011, but both
the dominant rodent species and the temporal trajectory of the peak have differed
between river catchments (Henden et al. 2011, Ravolainen et al. 2011, papers IV
and V in this thesis). Moreover, the river catchments at Varanger peninsula (VJ
and KO) are used as summer pastures for more than 10 000 reindeer (on average
3.2 reindeer/km?) and thus are heavily grazed during the summer season. The river
catchment IF is used by reindeer mainly during autumn and experiences thus lower
grazing pressure.

Table 1: Data from the Finnmark study area included in this thesis. In each section
of the table are the part of study design from which the different data were collected
(uppermost, in italics) and the type of data. M, H and W refer to meadow, heath
and wetland habitat, respectively.

data river catchment habitat year paper

vole traps

rodent stomach samples VJ, KO M, H 2007 I
VJ, KO M, H, W 2007 I1
VI, KO M, H 2007 III
IF, VJ, KO M, H, W 2007-2011 IV

rodent stable isotope samples IF, VJ, KO M, H, W 2007-2008 IV

rodent density index VJ, KO M, H 2007 I
IF, VJ, KO M, H, W 2007-2011 IV
IF, VJ, KO M 2006-2008 'V

vegetation plots

plant biomass V], KO M, H 2007 111

herbivore exclosure plots

grass silica content IF, VJ, KO M 2008 \Y

faeces plots

reindeer density index IF, VJ, KO M, H 2006-2008 'V
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Figure 5: Main study design in Finnmark study area, which consisted of three river
catchments; Ifjordfjellet (IF), Vestre Jakobselv (VJ) and Komagdalen (KO). Within
each river catchment, sampling grids (15x15m, n=24 in KO and IF, n=26 in VJ)
were distributed in pairs in heath and meadow habitat throughout major parts of
the river catchment. Scale bar of within-catchment map is approximate, width of the
river valley (i.e. the valley bottom containing willow-thicket and meadow habitat,
see Figure 4A) ranged from 50m to 1.5km. Within sampling grids, study setup was
identical in meadow and heath habitats except for the herbivore exclosures which
were only in meadow habitat.



Other field sites (paper IV)

In paper IV, I used observational data from two additional arctic study sites, namely
Nenetsky (Russia) and Bylot Island (Canada). From Nenetsky, I used stable isotope
samples of tundra voles and population census data, which were collected using a
study design similar to that of Finnmark, i.e. snap-trapping grids of 15 x 15 m. All
of the samples were collected in riparian willow-thicket / meadow habitats, which
resemble those in Finnmark (Skogstad 2009; Ehrich et al. 2012). The study site is
described in more detail by Ehrich et al. (2012) and in paper IV. From Bylot Island,
I used stable isotope samples of brown lemmings (Lemmus trimucronatus), collected
by snap trapping from two dominant habitats of the study site; wet and mesic tundra.
I also used population density data, achieved by mark-recapture methods, and de-
scribed in detail in (Gruyer et al. 2008). Further details on the small rodent trapping
on Bylot Island, as well as description of the study site are given in paper IV and in
Gauthier et al. (2011)

Greenhouse experiment (paper V)

In paper V, I combined two experimental designs to study silica induction of grasses;
herbivore exclosure plots from the field (Table 1) and an additional experiment in
a greenhouse. The greenhouse experiment, designed to identify genotypic variation
on grass silica induction, encompassed four common subarctic grass species (Avenella
flexuosa, Anthoxanthum nipponicum, Deschampsia cespitosa and Festuca ovina). 1
tested the effects of simulated grazing, genotype identity and their interaction on
foliar silica levels of each species using a factorial experimental design.

Small rodent diets

Microhistology

I used three different methods to study diets. First, I tested the traditionally used mi-
crohistological methodology, which is based on identifying plant epidermal fragments
of stomach contents, or faeces, of a herbivore (Hansson 1970; Johnson et al. 1983;
Carriere 2002). Taxon identification using this method requires a reference collection
of microscopy photos of plant epiderm, covering flora of the focal region. With sys-
tematic counting of identifiable fragments and comparison with reference collection,
one can then achieve a quantitative estimate of stomach contents. In paper I, T used
this method as a reference to the application of novel DNA metabarcoding methods
on small rodent diet studies.

During summer 2006, a sample of each vascular plant species present at the sam-
pling grids at Komagdalen and Vestre Jakobselv was collected and dried. I used these
samples to construct a reference database of microphotographs of each species leaf
epiderm, as well as stems, seeds, root and fruits of certain species of special interest.
Using a method modified from (Hansson 1970) I prepared the stomach contents to
analysis by first homogenizing the content and then filtering it to > 0.16 mm and >
0.56 mm fractions. I then bleached the samples with approximately 2 ml of house-
hold bleach for approximately 1/2 hour, and analysed one microscope mount from
each fraction. From each mount, I counted 25 hits on identifiable material along a
measuring grid, under a light microscope (40x).
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DNA metabarcoding

The second type of methodology I used for studying small rodent diets was DNA
metabarcoding, i.e. taxon identification using a standardized genome section (Valen-
tini et al. 2009b; Taberlet et al. 2012). For the diet studies of herbivorous small
rodents it was important to use a method which would identify a large range of plant
taxa as detailed as possible. Therefore, I had three important criteria for selecting
the targeted DNA region. First, in order to distinguish between taxa, the selected
region had to differ between taxa. Second, stomach content samples contain mostly
degraded DNA, i.e. the DNA molecules are not of original length but have been bro-
ken to short fragments. It was therefore also important that the targeted region was
short. Third, DNA just outside the targeted variable region had to be very similar
amongst taxa. In order to multiply DNA using polymerase chain reaction (PCR),
two so called primers are required. Primers are short DNA-fragments which attach
to the sample DNA, multiplying the DNA section between them during PCR (See
example in Figure 6A). Therefore, to achieve amplification of the targeted DNA in all
targeted taxa, primer attachment sites have to be similar amongst them. So called
”universal primers”, i.e. primer pairs which amplify a short and variable DNA region
across a large range of taxa have been developed for plants and fungi (Taberlet et al.
2007; Epp et al. 2012). For seed plants (i.e. spermatophytes) I used the so-called g-h
primer pair (Taberlet et al. 2007) and for fungi the primer pair ITS-Fungi (Epp et al.
2012) (Table 2).

A)
Cc
B) N
||
T ' T
trnL (UAA) exon 1 trnL (UAA) exon 2

Figure 6: A) schematic illustration of a DNA fragment with primer attachment sites.
B) primer pairs g-h and c-h. Figure adapted from Taberlet et al. (2007)

In addition to seed plants, I expected to find mosses in lemming diets. I therefore
wanted to both evaluate the proportions of mosses, seed plants and other vascular
plants in lemming diets, as well as identify the most important moss groups. To
achieve this, I used primers ¢ and h (Table 2, Taberlet et al. 1990, 2007). Primer pair
c-h includes same region as primer pair g-h, together with an additional region (Figure
6B). It thus enabled separation of mosses and vascular plants as well as identification
of moss groups. It also amplified short enough DNA-region to be used on stomach
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content samples.

Table 2: DNA metabarcoding primer pairs used in this thesis.

taxon primer name targeted DNA region paper reference

seed plants  g-h chloroplast trnL. (UAA) intron  I-IV Taberlet et al. (2007)

all plants c-h chloroplast ¢trnL (UAA) intron 11 Taberlet et al. (1991, 2007)
fungi ITS-Fungi ITS1 -region of nuclear DNA 11 Epp et al. (2012)
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/ Mixing all samples

‘ Sorting data based on tags

Sample Taxon 1 Taxon 2
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2 2 1
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Tagging of individual samples

High-throughput sequencing

Figure 7: Principle of the workflow of DNA metabarcoding.

In practice, DNA metabarcoding data is achieved as follows.

First, all DNA

present in a sample (e.g. a stomach content of a rodent) is extracted (Figure 7).
Thereafter, targeted DNA fragment is amplified using PCR. This results in a sample
with a large number of copies of the targeted DNA-region, but a minute number
of non-target DNA copies. After amplification, the DNA is purified and quantified,

20



i.e. the concentration of DNA per sample is analysed. The individual samples are
then mixed, taking their concentrations of DNA into account, to achieve a pooled
sample into which each individual sample has contributed with as much DNA (Figure
7). In order to identify individual samples from this pooled sample later on, the
samples have to be tagged. This routinely happens by adding a tag sequence on
the primer sequence before the PCR (Coissac et al. 2012). The pooled sample is
thereafter sequenced using a high-throughput sequencer, resulting in a dataset where
all sequences from all individuals are mixed (Figure 7).

After the sequencing, bioinformatic tools are used to first remove erroneous se-
quences from the dataset and thereafter to identify the original individual samples as
well as taxa they contain (Figure 7, Coissac et al. 2012). To include only reliable DNA
sequence data, all metabarcoding data in this thesis (papers I-IV) was cleaned using
OBITools -software package (http://www.prabi.grenoble.fr/trac/OBITools). Here, I
describe the principle of the cleaning, while details are given in the respective papers.
First, sequences with errors in primer and tag sequences were excluded. Thereafter,
very rare sequences were excluded. Two additional steps were added in the cleaning
of data for papers II and IV. Sequences which occurred in an intermediate form; i.e.
had apparently mutated from their original form during PCR were excluded using a
clustering algorithm (Shehzad et al. 2012). Also, sequences which were of unrealisticly
short length were removed.

The cleaned dataset was then compared to reference libraries containing known
sequences. For primer pair g-h, I used a reference library of 842 arctic vascular
plant species (Senstebg et al. 2010). In papers I and III, sequences which matched
poorly with these references were further compared with target sequences extracted
from a public reference library, GenBank (http://www.ncbi.nlm.nih.gov/genbank/).
In papers II and IV, I supplied the arctic reference library with 877 boreal vas-
cular plant taxa at the rank of species, subspecies or variety (Brochmann et al.
unpublished). In these papers, I further compared the poorly matching sequences
against those that are publicly available in the EMBL Nucleotide Sequence Database
(http://www.embl.de/index.php). Even if EMBL and GenBank are hosted by differ-
ent institutions, they frequently exchange sequences and thus contain the same data.
For primer pair c-h, I further supplied the reference library of arctic and boreal vas-
cular plants with sequences of 442 arctic and boreal bryophyte species (Gussarova et
al. unpublished) to identify moss taxa. No targeted reference library was available
for ITS-Fungi and I therefore used only sequences retained from EMBL. A final step
of sequence data cleaning was done at this stage, excluding sequences which matched
poorly with any known taxa.

The final clean dataset always consisted of a count of different taxa per individual.
However, the actual number of sequences per individual has little biological mean-
ing. I therefore used two different approaches to include all individuals in a common
analysis. For all data on plants (Table 2), T transformed the counts to proportions
within an individuals diet. Due to the potential biases of DNA metabarcoding data
(paper I, Pompanon 2012), I also calculated frequency of occurrence of plant taxa
within a rodent species diet (papers IT and III). For the data on fungi (primer pair
ITS-Fungi, paper II), T only report the frequency of occurrence, as no evaluation of
the quantitative aspects exists for this primer pair.

Stable isotopes

In paper IV, T used a third method to study small rodent diets, namely stable isotopes.
This method is based on ratios of different isotopes within carbon (§13C) and nitrogen
(6'5N), which in a consumers tissue reflect those of its food sources. As tissue build-up
takes long time in comparison to filling up a stomach, stable isotope ratios of tissues
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incorporate a consumers diet across longer time-periods than what can be measured
using stomach content analysis. Thus, stable isotope studies are used in increasing
amounts to illustrate many aspects of feeding ecology which are difficult to study using
more conventional methods (see a recent review by Ben-David & Flaherty 2012).

I used stable isotope ratios to compare diets of groups of individuals against each
other. This approach is based on so called ”isotopic niche”, i.e. the niche occupied by
a group of individuals in isotopic space (Newsome et al. 2007). Isotopic space can be,
in its most simple form, represented as a bivariate plot; §'3C and §'°N along the two
axes. The relative sizes and positions of such isotopic niches can then be used to infer
differences in feeding ecology between the compared groups. A detailed description
on the samples, laboratory analyses and data analyses is included in paper IV.

Grass silica content; plant defence data

Foliar silica content of samples from both the field and greenhouse experiment was
analysed using X-Ray Spectrometry. Leaf samples were first dried and grinded, then
pressed into 13 mm pellets using a hydraulic press at 11 bars. The pellets were
subsequently analysed using a Niton XL3t portable XRF analyzer (Thermo Fisher
Scientific, Inc.), calibrated against silicon-spiked synthetic methyl cellulose.

Focal predictor variables

Population density indices for herbivores

An index of small rodent population density in the Finnmark study area was collected
using small quadrate snap-trapping method according to Myllyméki et al. (1971).
The trapping was done twice each year, once in early/mid-July and once in early
September. More details of the trapping are published by Henden et al. (2011) for
the main study design and by Ims et al. (2011) for the additional trapping grids.
In paper IV, I also used similar snap-trapping data from the Nenetsky study area
and population density estimates based on live-trapping from Bylot Island (details
presented in paper IV).

An index of reindeer density for the main study design of Finnmark study area
was gained by faeces counts. These counts were conducted annually in early July and
early September. During each count, presence of reindeer faeces was recorded in 8
permanent plots (50 x 50 cm) per grid (Figure 5), and the plots were subsequently
cleaned of faeces. Thus, July counts represent reindeer presence during the preceding
winter, and September counts during the preceding summer.

Plant biomass; food availability data

Plant biomass data was collected during the peak of growing season (late July/ early
August) using point intercept method (Jonasson 1988; Brathen and Hagberg 2004).
In each sampling grid of the main study design, these measurements were done in 13
sampling plots of 50 x 50 cm (Figure 5, see Table 1 for grids included in this thesis).
In each plot, number of hits on 20 pins was recorded and subsequently converted to
biomass estimates using calibrations presented by Ravolainen et al. (2010). Hits were
recorded at plant species level, thus enabling the aggregation of data to different food
item units, such as plant families or functional groups.
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Results and discussion

Methodology to study herbivore diets (based on papers I, II
and IV)

DNA metabarcoding and microhistology

Comparison between DNA metabarcoding and microhistology revealed that DNA
metabarcoding was taxonomically much more detailed, more objective and less biased
between taxonomic groups (paper I). Both methods agreed on the general picture of
the diets of the two vole species included in the study, i.e. similar conclusions could
be drawn about the importance of most food item groups for a vole species. Some
plant groups did, however, behave differently in the different analysis. While these
discrepancies were primarily due to different taxonomic resolution, microhistology is
biased towards easily identifiable groups (paper I, Alipayo 1992). On the other hand,
food item proportions gained by DNA metabarcoding are potentially also biased, and
such results should be presented together with frequencies of occurrence of food items
(Deagle et al. 2006; Pompanon et al. 2012). Main biases of this method are due to
different number of DNA copies in different plant tissues, as well as different length of
DNA fragments leading to preferential amplification of short fragments (Pompanon
et al. 2012). Even so, the general agreement of proportions between methods indi-
cates that such issues do not severely hamper the use of DNA metabarcoding for
herbivore diets (paper I). A conclusive evaluation of the accuracy of proportional
DNA metabarcoding data would still require controlled feeding experiments where
ingested food proportions could be related to those observed in diets.

Both methods require a great amount of training, but the equipment needed for
metabarcoding is more specialised than that required by microhistology. Still, most
studies using microhistology to investigate small rodent diets have been done during
1960-1980’s (see references within “Introduction: Diets of tundra-dwelling small ro-
dents”), after which little new knowledge of small rodent diets has been gained. Later
research on small rodent feeding habits has mostly focused on experiments where im-
pacts of rodents on vegetation has been measured (Strengbom et al. 2003; Dahlgren
et al. 2007, 2009), although some exceptions exist (Saetnan et al. 2009). Such a lack
of newer studies seems to indicate that the knowledge of small rodent diets which
could be gained with further microhistology studies is not likely to add greatly to
the current understanding. Thus, to address further questions on the characteristics
of small rodent diets, their variability and how that relates to different ecological
variables, different methods are needed. While I used stomach contents in the papers
included in this thesis (papers I-IV), non-lethal diet studies would be preferable. DNA
metabarcoding of faeces makes this possible (Box 2), and while population-level data
could be gained by collecting faeces from the wild, individual-level data would require
a more specific study design based for instance on live-trapping.

Microhistology could still reveal some aspects of small rodent diets that DNA
metabarcoding could not. For example, separating different plant tissues is only pos-
sible by visual examination of stomach contents. Thus, microhistology could be used
to determine the proportions of plant parts such as leaves, seed, berries or woody
tissue in small rodents diets (Hansson 1970). Such knowledge could open avenues for
more detailed studies of small rodent diets, if used in combination with a taxonomic
approach and DNA metabarcoding.

What can different primer pairs, alone and together, tell?

In papers I, IIT and IV, I only used primer pair g-h. This primer pair targets a
short sequences of chloroplast DNA, which base-pair composition differs sufficiently
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between spermatophyte (i.e. seed-plant) species to enable their identification. Thus,
it provides a useful approach for studying seed plants, but the complete picture of diets
of herbivores which consume great amounts of other plant taxa, such as mosses and
horsetails, cannot be gained with this primer pair alone. Also, some spermatophyte
families, mainly Asteraceae, Salicaceae and Poaceae, can rarely be identified to species
level using this primer pair. Again, depending on the question this can be problematic
or not. For example Saliz spp. thickets in Finnmark are composed of a great number
of species, whereas only Saliz herbaceae is common in the heath habitat. Thus,
identifying family Salicaceae in herbivore diets at the meadow habitat may refer to
many different species, whereas in the heath habitat a more precise identity can be
inferred based on the vegetation.

In paper II, I supplied the g-h primer pair with c¢-h and ITS-Fungi (Taberlet et al.
1991, 2007; Epp et al. 2012). The c-h primer targets a longer area than g-h, which
enables identification of also mosses. For lemmings, which are feeding on mosses in
addition to seed plants (paper IT and references therein), such additional analysis was
necessary to properly evaluate their diet. The combined approach enabled estimation
of moss and vascular plant proportions in lemming diet, as well as more details on
which taxa within these groups were consumed.

For both ¢g-h and c-h primer pairs I was able to compare the sequence data against
a reference library of target sequences from arctic flora. For fungi, such reference li-
brary does not exist currently and sequences extracted from an open database (EMBL,
http://www.ebi.ac.uk/embl/) had to be used. Publicly available sequences are not
always of good quality and some of them may be misidentified. Thus, any accurate
results of herbivore diets require a targeted database covering the focal regions flora.
I could further improve the accuracy of taxon identification by comparing the iden-
tified taxa to those present in the study area, i.e. the potential species pool (papers
I-IIT). Especially in areas with low number of species within family, such as the arc-
tic, data on focal flora can greatly improve the resolution of DNA metabarcoding data.

Stable isotope ratios and small rodent diets

In paper IV, I used stable isotope ratios to complement DNA metabarcoding analyses
on small rodent diets. Interestingly, I found no differences in small rodents isotopic
niche between habitats, even though DNA metabarcoding data showed clear indica-
tion of differing diets between habitats (paper IV). The stable isotope ratios of any
tissue reflect those of a consumers diet during the buildup of that tissue (Ben-David
and Flaherty 2012). Muscle tissue, which I used, has a build up time in other rodents
for about a month (Miller et al. 2008), although no measurements for my study species
exist. It seems likely that the time-window of isotopic niche based on muscle is too
long to capture differences in diets between habitats. Small rodents have small and
usually stable home ranges (Rodgers and Lewis 1986; Erlinge et al. 1990), and could
therefore be expected to forage nearby the location they were trapped. However, it
seems that rodents trapped outside their primary habitat may not necessarily have
spent their whole life there but have migrated from elsewhere. The time-frame of one
month can be relatively long in regard of the lifespan of a small rodent as well as the
processes which can be expected to have an impact on small rodent diets. Tissues
with faster build-up rate than muscles, such as blood, could potentially better eluci-
date processes at a time-scale relevant for small rodents food selection within a home
range.

Moreover, herbivorous small rodents have available a wide range of food plant taxa
even in the high arctic (see e.g. the Panarctic Flora, available at http://nhm2.uio.no/paf/).
Even though the isotopic ratios of these plants do vary between species, not all taxa
differ distinctly from each other (paper IV). It is therefore relatively challenging to
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interpret isotopic ratios as real food proportions, which is possible for distinct food
sources using so called mixing models (Phillips 2012). This is a common approach
in predator diet studies (Ben-David and Flaherty 2012), but probably useful for her-
bivore diet studies only when food plants can be grouped into for example marine
vs. terrestric or C4-plants vs. C3-plants (Chambers and Doucett 2008; Inger et al.
2006; Ben-David and Flaherty 2012). However, an interesting possibility to assess the
contribution of fungi to herbivores diets may lay within the use of mixing models,
as the stable isotope ratios of plants and fungi differ more distinctively than those
among plants (Trudell et al. 2004). Still, mixing models require several estimates of
consumer species physiological processes (Ben-David and Flaherty 2012), for which
data is currently lacking for many herbivores.

In spite of these limitations, variation of stable isotope ratios between groups of
individuals can give valuable information on herbivore feeding habits at population
level, given that the variability present in the underlying food items is appropriately
evaluated. For example, in paper IV I show that stable isotope ratios of plants
in tundra habitats were above all defined by plant species identity. Thus, I could
conclude that an increase of a small rodent populations isotopic niche width with
population density was likely caused by an increased range of consumed plant species.

New insights on small rodent diets in Finnmark (papers I-IV)

For all the three small rodent species which diets I studied in detail, the DNA analyses
gave partly surprising results. On one hand, I identified a greater number of plant
species in the diets of all three rodent species (grey-sided vole Myodes rufocanus,
tundra vole Microtus oeconomus and Norwegian lemming Lemmus lemmus) than what
has been recorded before (papers IT and III). On the other hand, within the plant
groups that most previous diet studies have identified, some species were clearly eaten
more than others (papers II and IIT). The wide range of commonly consumed taxa
indicates that at least the two vole species can be considered as generalist herbivores
(as defined in Box 1). The diet of Norwegian lemming was, however, dominated by a
few food items, implying that lemmings have a somewhat more specialised diet than
voles. Still, as lemming diets include various other taxa in addition to the dominant
ones and they forage across a wider range of taxa than that of voles (i.e. including
both vascular plants and mosses), I suggest that the description generalist herbivore
is also appropriate for lemmings.

My results also indicate that fungi seem not to be actively eaten by lemmings and
voles (paper IT, Box 3). Although almost all investigated individuals of all three rodent
species had ingested some fungal taxa, those fungal taxa that could be identified
belonged mainly to micromycetes, i.e. to taxa which produce no large fruit bodies
that could be used as food. Rather, many identified taxa have such ecology that they
probably have been eaten together with the plants foods, being for example plant
pathogens, endophytes, or root associated fungi. Plant-associated fungi in tundra
habitats are diverse (Newsham et al. 2009; Jensen et al. 2011), although little is
known about their ecology. In other ecosystems, such fungi have been found to
sometimes have implications for herbivores through modified food quality (Saikkonen
et al. 2006; Huitu et al. 2008; Saari et al. 2010). Thus, the indirect role of fungi for
rodents remains an intriguing question.

Myodes rufocanus

Grey-sided voles diets in tundra heath habitats were dominated by ericoid shrubs and
forbs (papers I and III). However, their diets were clearly more diverse than previously
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Box 2: Is it necessary to kill rodents to know what they eat?

In this thesis, I have used stomach contents of small rodents to study their diets. Because
the population censuses in the Finnmark study area were done with snap-trapping, dead
animals were available to be used for additional research purposes. However, in many
cases it would be more appropriate to use non-lethal methods of diet analyses. In paper I,
I suggest that collecting faeces would be a good alternative for stomach content studies.
When food is passed through a digestive system, DNA of different food items may be
degraded to a different degree. To evaluate the use of faeces instead of stomach contents,
I compared the two approaches. I collected both stomach contents and pellets from the
rectum in a total of 40 individuals. Both stomach contents and pellet contents were then
analysed using DNA metabarcoding methods as described in paper I. I then compared the
species-specific diets based on data from pellets and stomach contents (Figure B2-1.).
Assessed at population level, diets reflected by stomach contents and pellet contents are
rather similar. Moreover, DNA metabarcoding methods have been successfully used to
assess diets from faeces of various other herbivores (Valentini et al. 2009a; Kowalczyk et al.
2011; Raye et al. 2011; Ait Baamrane et al. 2012). These results indicate that sampling
pellets could be a good alternative for stomach content analysis and lethal methods on
future small rodent diet studies could be avoided. While faeces sampling from traps during
live-trapping could provide similar resolution of species and individual as stomach content
studies, faeces sampled from the field are both difficult to identify to rodent species and
potentially contaminated by surrounding plant DNA. Such a loss of resolution could be
tackled with a careful sampling design and additional DNA analyses to identify the rodent
species in question.

In combination to non-lethal DNA metabarcoding diet studies, also non-lethal stable iso-
tope methods are an option. Several tissues can be sampled from live-trapped animals,
such as fur, whiskers and blood. A combination of quickly renewed tissues, such as blood,
and slowly renewed tissues, such as fur, could give insight to changes in an individuals diet
through its life. Such an approach has been suggested by Bearhop et al. (2004), but to my
knowledge never attempted on herbivores.
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Figure B2-1. Proportions of vascular plants in stomach and rectum of digestive system
of three small rodents species. Data from the same individuals are included in both upper
and lower panels.
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considered (paper III). Surprisingly, grey-sided voles seem to include various ericoids
shrubs in their diets; in addition to Vaccinium myrtillus I found V. uliginosum and
Empetrum nigrum to be rather common, and a range of other ericoid species also
present. Local food availability seems to have a clear effect on the grey-sided voles
diet, as individuals trapped during summer season and in meadow habitats ate more
forbs and grasses but less ericoid shrubs, than those from heath habitats and during
autumn season (papers III and IV).

Microtus oeconomus

In the tundra meadow habitats, tundra vole stomach content were dominated by
forbs, which they also selected for (papers I and III). My results thus contradict
clearly the earlier characterization of tundra voles as a graminoid-feeding species
(Tast 1974; Batzli and Jung 1980; Batzli and Henttonen 1990). As discussed in
paper III, this is probably due to a combination of methodology and availability.
Moreover, I found that animals captured from heath habitats had consumed more than
average proportion of ericoid shrubs and grasses (paper IV), both groups typically
more abundant in heaths than forbs. Thus, also tundra vole diets are clearly modified
by local food availability.

Lemmus lemmus

I found the diets of Norwegian lemmings to be dominated by mosses and graminoids
(paper II), which is in agreement with previous studies (Kalela et al. 1961; Koshkina
1961; Stoddart 1967; Hansson 1969; Tast 1991; Saetnan and Batzli 2009). However,
the DNA metabarcoding methodology made it possible to identify some of the domi-
nant taxa, namely Avenella flexuosa within grasses and Dicranum sp. within mosses
(paper II). Even if T found in total 27 vascular plant genera, the diets of lemmings
were rather dominated by the above-mentioned taxa and thus clearly less diverse than
vole diets (papers II and IV). Lemmings, too, seem to show some variation in diets
between habitats, although a more balanced sample size would be needed to confirm
the trends I found (papers IT and IV).

Why do small rodents eat what they eat (papers III and IV)

In papers IIT and IV, I evaluated the effects of food availability and competition on
small rodent feeding habits. In summary, I found that voles preferred nutritious and
easily digestible functional groups (and taxa within them) more than less palatable
taxa (paper III, Box 5). Seasonal changes in vole feeding habits (paper III), responses
to available biomass (paper III) as well as differences in diets between habitats (pa-
per IV), indicate that changing food availability and quality modify these preferences.
While seasonal changes in diets can be caused by a combination of decreased nutri-
tional quality and biomass of herbaceous foods towards the autumn, variability of
diets between habitats is probably caused by the habitat-specific biomass of different
food items. Availability of alternative food items has an impact on vole selectivity,
to the extent that the biomass of food items which are less preferred at the rodent
population level, may modify the consumption of more preferred food items (paper
IIT). Thus, these results indicate that even if food quality probably is important in
determining rodents absolute preferences, the relative availabilities of food items seem
to be important determinants of the realized preferences.

Further, I found little indication that small rodents would compensate low avail-
ability of some foods by increased selectivity (paper III). Increased availability of a
food item tended rather to increase selectivity for it (paper IIT). My interpretation
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Box 3. Fungi in vole diets?

Little is known about the presence of fungi in vole diets, what type of fungi are ingested
and whether they have any physiological or ecological implications for voles. While fungi
are only seasonally available as food (mushrooms in the autumn), voles may also ingest
fungi with their plant foods. I analysed stomach content of grey-sided voles (n=86)
and tundra voles (n=62) for fungi, following methods described in paper II. Most vole
individuals had ingested fungi; only 8% of grey-sided voles and 11% of tundra voles
contained no fungi at all (Table B3-1). However, based on those fungi which could be
identified to species or genera, macromycetes do not seem to be commonly ingested
food items (Table B3-1). The only identified macromycete taxa was Russula sp., which
was found in 10% grey-sided voles. Interestingly, one of the identified taxa (Claviceps
purpurea) is know to be an endophytic fungi which produces compounds that are toxic for
herbivores (Lev-Yadun and Halpern 2007).

Table B3-1. Frequency of occurrence of fungi in diets of tundra voles ("Mo”) and grey-
sided voles ("Mr”) Column ”size” refers to micromycetes ("mi”) and macromycetes ("ma”).
Taxa marked "NR” refer to taxa with "no rank”, i.e. taxa which position within larger

taxa is unclear.

division Family Species Mo Mr Size
Ascom 45 43
Venturiaceae 11 5
Venturia sp. 2 mi
Venturia atriseda 11 2 mi
Davidellaceae Cladosporium cladosporioides 2
Leptosphaeriaceae Leptosphaeria sp. 9 1
Mycosphaerellaceae Muycospharella sp. 5
Sporormiaceae Preussia sp. 1
Pleosporales NR Ochrocladosporium elatum 1
Helotiaceae Gremminella sp. 2 5 mi
Helotiales NR 2
Phialocephala cf. fortinii GS15P1c 1
Thelebolaceae 2 3
Trichocomaceae Penicillinium sp. 2
Penicillium dipodomyicola 2
Dipodascaceae 6 14
Galactomyces geotrichum 6 mi
Yarrowia lipolytica 6 10 mi
Clavicipitaceae Claviceps purpurea 2 1
Halosphaeriaceae Monodictys arctica 5
Hyponectriaceae Pseudomassaria chondrospora 1
Hypocreales NR 1
Xylariales NR Microdochium sp. 5/97-37 10 1
NR Troposporella sp. 2
Basidiom 41 37
Exobasidiaceae Exobasidium rostrupii 5 5 mi
Schizophyllaceae Schizophyllum sp. 3 14 ma
Amanitaceae 4
Amanita sp. 3
Amanita vaginata 1
Russulaceae 10
Russula sp. 10
Lactarius tabidus 1
Tremellales NR 10 8
Dioszegia crocea 6 1
Bullera sp. 2
Leucosporidiales NR Leucosporidium sp. 2 mi
Chytridiom Rhizophydiales NR 2
NR 87 84
Mortierellaceae Morteriella sp. 2
Mucoraceae 6
Mucor racemosus 2
No rank fungi fungal endophyte sp. M4-3261 2
fungal sp. SUN1 1
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of this result is that when food item availability is low, small rodents do not invest
extra time in finding these food items. In paper III, I discuss the potential reasons
for this, and suggest that predation risk avoidance could greatly affect the time use
by rodents.

Moreover, I found that when small rodent population density increases, their
population-level dietary diversity tends to increase (paper IV). Density had, how-
ever, no impact on the diet composition at the population level, implying that the
increased diversity of diet was caused by different responses of different individuals.
This indicates that at higher population densities, the inclusion of new food items in
diets depends on availability, different individuals including different food items. On
the other hand, increased population densities tend to lead to a spillover of individu-
als to habitats adjacent to their primary habitat (Henttonen et al. 1977; Oksanen et
al. 1999; Morris et al. 2000; Sundell et al. 2012; paper IV). Because individual diets
are affected by the habitat-specific availability of different food items, such increased
habitat use heterogeneity tends to increase the population diet diversity (paper IV).
Together, these results indicate that both bottom-up (food availability) and top-down
(predation risk) interactions in a food web, as well as competitive interactions, play
an important role for small rodent food selection in the wild.

Based on these results, I suggest that small rodents food selection, and that of
herbivores in general, should be seen as a hierarchical process, where constraints of
time and habitat use may partly overshadow the nutritional effects. Thus, for example
predation risk avoidance may constrain both habitat selection and time available
for foraging (as indicated by Nersesian et al 2012a), consequently resulting in less
selective, broader diets which reflect more closely food availability than diets in the
absence of such a constrain. Hierarchical processes of herbivore feeding behaviour have
been studied in large herbivores, but with a focus on resource availability at different
spatial scales (Senft et al. 1987; Bailey et al. 1996). While a conceptual framework of
relevant spatial scales for large herbivore foraging decisions has consequently emerged
(Senft et al. 1987; WallisDeVries et al. 1999; Bailey et al. 1996; Searle et al. 2008),
similar understanding of small herbivores decision scales is currently lacking. Further,
the importance of different ecological interactions on foraging decisions at different
spatial scales is little acknowledged (Searle et al. 2008), and warrants further research.

Role of grass silica defences in tundra food webs (paper V)

In the greenhouse experiment, I found that at least part of the common grasses of
tundra habitats have the capacity to induce silica as a response to herbivory. However,
this ability clearly differed between genotypes of the same species. Moreover, I found
no clear increase of silica levels due to herbivory in the field, but variable silica levels
in different locations. I discuss potential explanations for these findings in paper V,
and suggest that spatially variable growing conditions and adaptations to herbivory
caused the lack of a uniform response.

Previous research on interactions between voles and grass silica defences has mostly
been conducted in conditions where grasses have been the main available food source
for voles (Massey and Hartley 2006; Massey et al. 2007, 2008). In Finnmark, silica-
rich grasses as well as grasses in general form a small proportion of vole and lemming
diets (Box 5, papers II and IIT). As these small rodents also have plentiful other food
sources available (paper III) they probably switch to feed on alternative food items if
silica content of grasses increases to unpalatable levels. Silica-based defences of grasses
are thus likely to have an indirect impact on small rodent diet quality, rather than
directly impacting small rodent health with consequent effects on their population
dynamics. Hence, the lack of a clear and uniform response of grass silica levels on
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Box 4: Potential for exploitation competition between small rodent
species?

During cyclic population density peaks, several small rodent species are found in habitats
adjacent to their primary habitat, and their habitat use thus overlaps with other small
rodent species (Henttonen et al. 1977; Oksanen et al. 1999). Interaction between species
under such conditions has been little studied, although some indication of interference
competition exists (Henttonen et al. 1977). However, two species present in the same
habitat may also experience exploitation competition if a) their diets overlap and b)
resources are limited.

To evaluate the potential for interspecific exploitation competition between small rodents
in the subarctic tundra habitats of Finnmark, I measured overlap between their diets. I
included all stomach samples presented in papers [-IV, analysed for vascular plant content
at plant family level (Lemmus lemmus, n=55, Microtus oeconomus n=111, and Myodes
rufocanus n=154). Details of methods are given in papers I (laboratory) and IV (field
and bioinformatics). To measure overlap, I used Schoeners index of diet overlap (Schoener
1968), which takes values between 1 and 0, 1 indicating complete diet overlap and 0 no
diet overlap.

Table B4-1. Diet overlap between small rodents from Finnmark, measured as Schoeners
index. Above to right are results from heath habitat (L. lemmus, n=36, M. oeconomus
n=21, and M. rufocanus n=117), below to left from meadow habitat (L. lemmus, n=12,
M. oeconomus n=90, and M. rufocanus n=37).

L. lemmus M. oeconomus M. rufocanus

L. lemmus - 0.45 0.29
M. oeconomus  0.43 - 0.74
M. rufocanus  0.49 0.69 -

Based on Table B4-1, overlap between vole species seems to be higher than that of between
lemming and voles. These results probably underestimate the difference as the index values
are based on vascular plants only and the high proportion of mosses in lemming diets (paper
IT) has not been taken into account. As these results are based on plant family level, some
biases may occur. For example, within Poaceae lemmings feed mainly on the grass Avenella
flezuosa (paper II), whereas both vole species include a more varied range of grass species
in their diets (papers I and III, Box 5). Nevertheless, these results indicate potential for
exploitation competition, especially between vole species, when they occur together.
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herbivory (paper V) is probably also related to the availability of alternative good
quality food items. Accordingly, availability of alternative good quality food items is
likely to be an important factor shaping the interaction between small rodents and
grasses, not only in Finnmark but also in other ecosystems.

Still, silica-based defences of grasses do seem to have a further role in plant-
herbivore interactions in tundra habitats. Even if grasses did not seem to respond to
herbivory by inducing silica, biomass of silica-rich species decreased with reindeer ex-
clusion in the same exclosure experiment (Ravolainen et al. 2011). It thus seems that
heavy reindeer grazing may maintain the presence of silica-rich grasses in vegetation,
similarly to that of sheep grazing (Austerheim et al. 2007). While reindeer graz-
ing directly reduces the biomass of preferred palatable plants (Brathen and Oksanen
2001), it probably also provides competitive advantage for silica-rich grasses as indi-
cated by (Ravolainen et al. 2011). Such an advantage can either be caused by lower
grazing pressure due to lower palatability for herbivores, better grazing tolerance, or
a combination of these. Moreover, it is likely that high silica content improves the
competitive ability of grasses, through increased rigidity and stress tolerance (Currie
and Perry 2007; Cooke and Leishman 2011). Furthermore, two of the most com-
mon silica-rich grasses of Fennoscandian tundra habitats, Deschampsia cespitosa and
Nardus stricta, form dense tussocks. Such tussocks show frequently signs of rodent
grazing, even though these grass species are not important for rodents as food (Box 5,
papers IT and IIT). Rather than food, silica-rich tussock grasses are likely to function
as a shelter from especially avian predators in the otherwise open tundra landscape.
Consequently, the role of silica-rich grasses for small rodents in tundra habitats seems
to be partly in creating sheltered habitat and partly in outcompeting more palatable
food plants, such as forbs. Hence, silica rich grasses probably form an interaction link
between small rodents and reindeer in tundra habitats.
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Box 5: Do voles feed on silica-rich grasses?

To understand the role of silica-rich grasses in tundra ecosystems, one obvious question
is: do herbivores feed on them? During vole population peaks, especially Deschampsia
cespitosa tussocks on tundra meadows are full of tunnels (see e.g. Figure 4C, photo in
the front cover of paper III). Living plants area clearly cut by voles, and grass litter is
abundant. However, grasses are not very abundant in tundra vole diets and tundra voles
feed on monocots to a lesser extent than what has been previously believed (papers I, III).
Within the group of grasses, several species were found.

Table B5-1. Tundra vole (n=46) preference between grass genera. Results of composi-
tional analysis (see details in paper III) done on a subset of individuals from paper III,
including only those which had at least 90% of their total Poaceae consumption at the
resolution of genera. The table is read along the rows; there is a ”+” when the genera
on a row was used more than the one in a column, and ”-” otherwise. When the differ-
ence is significant, the sign is tripled. Genera names are abbreviated to three first letters,
full names are Agrostis, Anthoxanthum, Avenella, Calamagrostis, Deschampsia, Festuca,
Nardus, Phleum and Poa.

Agr Ant Ave Cal Des Fes Nar Phl  Poa

Agr 0 + — e - +++ - —
Ant - 0 — — + - A+t - —
Ave +++ +++ 0 - +++  + +++ + -
Cal  +++ +++ + 0 +++ + +++  + +
Des - - — — 0 —  + - —
Fes + +++ - - +++ O +++ + -
Nar — — — — - — 0 —  —
Phl  +++ +++ - - +++ - +++ 0 -
Poa +++ +++ + - +++ + +++ + 0

Silica-rich genera, i.e. Deschampsia and Nardus (paper V), are clearly the least preferred
food items among grasses. On the other hand, Calamagrostis seems to be the most pre-
ferred grass genera to feed on. Calamagrostis phragmitoides is equally rich in silica as
Deschampsia cespitosa (paper V), but the silica content of C. lapponum and C. neglecta
(the other species present in the study area) is unknown. No Calamgrostis in vole diet
data had species level resolution, and it is therefore possible that those species eaten by
voles were actually silica-poor.
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General discussion and future perspectives

Small rodent population dynamics and plants

Based on my results, small rodent diets are affected by food availability. Both within
a habitat and when moving to another habitat, abundantly available food items are
more frequently and abundantly consumed. Moreover, when population densities
increase, new food items are included in population-level diets. Still, as there seems to
be no consistent patterns in which food items are exploited more at higher population
densities, we cannot assume that different individuals add the same plants in their
diets. Rather, the changes in an individuals diet caused by population density are
likely to depend on what is available for different individuals.

Even though these results shed new light on how small rodent diets change during
population density cycles, they do not directly point at any single plant taxon. It
thus seems unlikely that a plant defence in a single plant species could cause such
major changes in rodent mortality or reproduction rate that their population dynam-
ics would be greatly impacted. Rather, the role of induced defences of preferred food
plants for small rodents is likely to be manifested through changes in realized food
preferences. When the difference in quality between two food items decreases, the
profitability of including additional food items in diets evidently increases. A combi-
nation of decreased quality of preferred food items together with inclusion of new food
items consequently leads to changes in the chemical composition of ingested diet. The
impacts of induced defences for rodents are therefore likely to depend on the extent
of diet shifts and quality of new food items that are included in diets. The combined
intake of different plant defence compounds, in interaction with the intake of nutri-
ents, is more likely to determine an animal’s physiological status than the intake of
a single compound alone (Villalba et al. 2002; Provenza et al. 2007; Nersesian et al.
2012b). Thus, deeper understanding of the role of food for small rodent population
dynamics could be gained by focusing on the compensatory effects of different food
items and the combined quality of realized diets.

Majority of the literature around small rodent population dynamics has focused
on the mechanisms creating population cycles, while other aspects of population dy-
namics have received less attention (Angerbjorn et al. 2001; Krebs 2011). However,
the pronounced geographical differences in peak population densities of small rodents
(Krebs 2011) have major impacts in shaping the different tundra ecosystems. For
example, on Bylot Island where peak population densities of lemmings have been
recorded to be 20 individuals/ha (paper IV) lemmings seem to consume only a frac-
tion (5%) of the annual biomass production (Legagneux et al. 2012). In contrast, at
Point Barrow, Alaska, lemming peak densities may reach above 200 individuals/ha
(Pitelka and Batzli 2007) and consequently lemmings have been estimated to remove
up to 50% of the vascular plant standing crop (Batzli et al. 1980). In spite of the
rather generalist food habits of small rodents (papers I-IV), not all green vegetation
(i.e. total productivity) can be considered to be usable food for rodents (paper III).

Spatial variability in small rodent peak population densities at regional scales
seems to be little correlated with productivity, although at global scale such a pattern
emerges (Batzli and Jung 1980; Jedrzejewski and Jedrzejewska 1996; Ims et al. 2011).
Rather than total plant productivity, it seems likely that patterns in the availability of
preferred food items would explain regional variation in population cycle properties.
Moreover, diversity of small rodent diets has been little studied (but see Sassi et al.
2011), even though it appears to be a potentially important aspect of small rodent
feeding ecology (paper III). Combining measurements of food item diversity, both
taxonomic and chemical, with those of availability appears therefore as an interesting
avenue for new insights to the interaction between vegetation and small rodents.
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More generally, incorporating qualitative aspects of food availability into a common
framework with quantitative availability should improve our understanding of carrying
capacity for herbivore population sizes.

Small rodents and other tundra herbivores

Based on my results on rodent diets, there is a clear potential for both intraspecific
and interspecific exploitation competition during population density peaks (papers
I-IV, Box 4). In addition to small rodents, semi-domesticated reindeer are abundant
herbivores in Fennoscandian tundra ecosystems. Although little data is available
on the diet of reindeer, many of the plants that I found to be important in small
rodent diets have been indicated to be important for reindeer as well (Brathen and
Oksanen 2001). Several taxa with an important contribution to small rodent diets,
such as Vaccinium myrtillus, Avenella flexuosa and family Polygonaceae are food
items frequently grazed by reindeer (Warenberg et al. 1997; Brathen and Oksanen
2001). Hence, the diet of reindeer most likely overlaps with that of rodents. Such
exploitation competition has been even suggested to have caused lack of population
density peaks in Northern Fennoscandia during the last decades, with cascading effects
on the food web (Kjellén and Roos 2000; Angerbjérn et al. 2001; Ratcliffe 2005).

In other ecosystems, large herbivores have been found to modify both nutritional
quality of available vegetation as well as habitat structure to such an extent that
small rodent population densities are affected (Suominen and Danell 2006; Saetnan
and Skarpe 2006; Austerheim et al. 2007; Bakker et al. 2009; Munoz et al. 2009).
There are currently only two studies evaluating impacts of reindeer on small rodents
in tundra habitats, and the results of these studies do not indicate any consequent
negative effect (Ims et al. 2007; Henden et al. 2011). The impact of ungulates on
small herbivores has in different ecosystems been suggested to be mediated through
different processes, such as reduced shelter (Bakker et al. 2009; Munoz et al. 2009)
improved food quality (Austerheim et al. 2007) and reduced food availability (Torre
et al. 2007). Such a wide range of potential mechanisms, together with the variability
in rodent species food and habitat preferences (this thesis and references within),
indicates that the relationship between reindeer and small rodents in tundra habitats
probably differs between rodent species as well as habitats. Moreover, spatial variation
in food availability (Ravolainen et al. in revision (a); paper I11I) and quality (Brathen
et al. 2004; DeGabriel et al. 2010; paper V), could explain the spatially variable
relationships between rodents and reindeer-modified vegetation indicated by Henden
et al. (2011).

Further questions emerging from this thesis

The methodological part of this thesis leads to new possibilities for studies of small ro-
dent feeding ecology. For example, winter is a crucial period for shaping many aspects
of small rodents population biology, but the knowledge of rodents winter ecology is
currently rather fragmentary (Aars and Ims 2002; Kausrud et al. 2008; Krebs 2011).
As snow cover prevents the use of many methods routinely employed during sum-
mer, development of methods that enable studies of rodent winter ecology is needed.
DNA metabarcoding could provide such new opportunities, by enabling diet analyses
from faeces collected after snow melt from rodent winter habitats. Further, the role
of fungi for interactions between rodents and plants is largely non-explored. While
DNA-based methods open up for taxonomic identification of ingested fungi, the dif-
ference in stable isotope ratios of plants and fungi (Trudell et al. 2004) may be useful
for determining the abundance of fungi in diets.
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Some of the interesting questions emerging from the ecological part of this thesis
are those of the relative roles of different drivers for small rodent food selection in
the wild, and their consequences for rodent population dynamics. For example, how
does predation risk modify food selection? Could increased predation risk and com-
petition during high population densities lead to so unselective feeding that it has
consequences for rodent population dynamics? In an other well studied example of
population cycles, the Canadian snowshoe hare, predation risk has indeed been found
to contribute in creating cyclic dynamics by inducing severe stress (Boonstra et al.
1998; Krebs 2011). It is undoubtedly difficult to differentiate between the effects of
stress caused by reduced food quality, predation risk and constrained selectivity for
food due to predation risk. In spite of such challenges, I suggest that the non-lethal
effects of predation on both herbivore feeding ecology and small rodent population
ecology warrant for more research. Moreover, what is the mechanism through which
competition impacts small rodent diets? Is the effect of increased population density
simply manifested through exploitation competition for changed food availability, or
does also interference competition have a role?

Further, grass silica defences probably contribute to the interaction between rein-
deer and small rodents. It remains, however, to be tested to what extent the different
positive and negative interactions discussed under the title "Role of grass silica de-
fences in tundra food webs” actually take place. Moreover, tundra herbivores probably
do interact indirectly also through other plants than silica-rich grasses, but through
which plants and what are the consequences of such interactions for these herbivores,
remain unanswered questions presently.
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