




Abstract

The machine learning �eld based on information theory has received a
lot of attention in recent years. Through kernel estimation of the probability
density functions, methods developed with information theoretic measures
are able to use all the statistical information available in the data, not just a
�nite number of moments. However, by using kernel estimation, the methods
are dependent on choosing a suitable bandwidth parameter and have trouble
dealing with data which vary on di�erent scales.

In this thesis, the �eld of information theoretic learning has been explored
using k-nearest neighbor estimates for the probability density functions in-
stead. The developed estimators of the information theoretic measures was
used in a clustering routine and compared with the traditional kernel es-
timators. Performing clustering on a range of datasets and comparing the
performance, the new method proved to provide superior results without the
need of tuning any parameters. The performance di�erence was found to
be especially large when clustering datasets where groups were on di�erent
scales.
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Preface

0.1 Notation Used

The notational conventions described in Table 1 is used throughout this text.

Table 1: Notation used throughout this text

X, X Random variable (multi- and univariate).
xi, xi Realization of random variable (multi- and univariate).
Rd Feature space of d dimensional dataset.
N Number of datapoints in set.
(ω1, ..., ωC), C Class labels and number of classes in total.
κ(·, ·) Kernel function.
Vkωi

(x) Hypervolume spanned from x to the k-th nearest neighbor
in class ωi. For the one-class case, this ωi is omitted.

F Feature space for mapped data.
HS(X) Shannon Entropy.
Hα(X) Renyi's α Entropy.
G = (V ,E) Graph with vertex set V and edges E.
M Manifold of data embedded in Rd.
(λi,vi) Eigenvalue, eigenvector pair.

0.2 Abbreviations

PDF Probability Density Function

PMF Probability Mass Function

KNN K Nearest Neighbor

RPKH Reproducing Kernel Hilbert space

ix



ML Maximum Likelihood

SVM Support Vector Machine

PCA Principal Component Analysis

IT Information Theory

ITL Information Theoretic Learning

ITC Information Theoretic Clustering

CIP Cross Information Potential

x



Chapter 1

Introduction

In recent years, a new direction in machine learning based on Information
Theory (IT) has received a lot of attention. This emerging �eld has been
able to extend many of the techniques in the established theory by replacing
old measures with information theoretic alternatives. Examples of this is
for instance new ways of performing dimensionality reduction, classi�cation,
signal denoising and clustering. See e.g. the discussions in Príncipe [45] and
Jenssen et al. [31].

The breakthrough leading to these developments within Information The-
oretic Learning (ITL), came from the realization that one speci�c information
theoretic measure, Renyi's quadratic entropy [46], lends itself to be very eas-
ily estimated directly from data. Up until this point, a lot of the established
techniques were limited to only consider the �rst and second order statistics
of a dataset. Letting entropy, and later other IT measures, instead control
the machine learning algorithms allowed them to consider all the statistical
information contained in the data, since these measures are functions of the
underlying Probability Density Functions (PDFs) [17, 22, 21, 30].

Estimation of the PDFs in this setting have primarily been done via a
technique called Parzen windowing [42]. This method uses special functions
which map the d-dimensional data vectors to the real line according to some
non-linear transformation to produce an estimate. How this transformation
should be done vary from problem to problem and because of this, the func-
tions have a bandwidth parameter which helps control the behavior. With
this introduced parameter choice, all of the methods using Parzen windowing
have a limitation in that the results they produce are highly dependent on
choosing the correct bandwidth.

In certain settings, this means that another step is required by the al-
gorithms to do cross-validation searching for the best choice. While this
increases the complexity of the implementations, it is generally accepted as

1



Figure 1.1: Example of dataset with three clusters on di�erent scales.

a necessity when using these methods. If no prior information about the
datapoints is known however, which is typically the case when performing
clustering, the cross-validation step is not possible to do. In these cases,
the methods rely on using heuristic techniques to decide on a bandwidth
parameter, but these approximations often produce poor results [53].

Another problem with using a �xed bandwidth, is that when presented
data varying on di�erent scales, there does not exist one speci�c choice which
is suitable for all the datapoints. An example of such a dataset is seen in
Figure 1.1. This seemingly easy structure, consisting of three arti�cially
created groups on di�erent scales, proves very di�cult for the Parzen window
technique to handle directly. There does exist techniques for letting the
bandwidth parameter adapt locally, see e.g. [51, 43], however these have not
seen much use in ITL thus far.

A di�erent method of estimating the PDF of a dataset is by the K Near-
est Neighbor (KNN) method [54, 9]. This an estimation technique derived
from the same basic principal as the Parzen window method, but does the
estimation in a fundamentally di�erent way. As will be seen in Chapter 2,
the KNN approach is more adaptive to the local structure of the data and
with that better suited to handle data on di�erent scales.

So far in ITL, only the Parzen method has been used to estimate the PDFs
which enter into the information theoretic measures. The IT techniques
which makes use of the Parzen estimate, then naturally inherit the problems
the estimate su�ers from. This means that many of the machine learning
techniques extended to use IT considerations, are also sensitive to correct
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parameter choice and do not handle data on di�erent scales well.

Performing ITL with KNN-estimates have so far received little attention
and only recently have some articles explored the topic [33, 55, 11]. Given
the estimates original connection with the Parzen window estimate and its
ability to adapt to di�erent scales and structures in the data, it is interesting
to investigate if the inherited problems of ITL methods can be avoided by
instead using KNN estimates.

In this thesis a new method of obtaining the required information theo-
retic measures will be explored using the KNN approach. Using this method,
new estimates of the IT measures will be derived and shown to be more adap-
tive to the local variations in the data. These estimates will then be explored
in the setting of a heuristic clustering routine similar to one previously de-
veloped which used Parzens method [21]. Adapting the algorithm to use the
KNN estimates, it will also prove to produce reliable results without tuning
any parameters.

Through comparison with the Parzen estimate, exploring clustering on
many real and synthetic datasets, it is shown that the new KNN method
consistently outperforms the old estimation technique. Especially when clus-
tering datasets where groups are on di�erent scales, the new method provide
vastly better results.

1.1 Kernel and KNN Methods

For reasons which will become apparent in Section 2.3, the Parzen window
estimate can for certain choices of windowing function be called a kernel
method. Kernel methods are a family of machine learning algorithm which
implicitly map the input to an unknown feature space where inner products
are calculated by the use of Mercer kernels [39]. As the most common choice
of windowing function in the Parzen estimate is a Mercer kernel, the method
is in this thesis called a kernel method.

KNN methods on the other hand, are not connected with any such map-
ping to another space. Instead, by KNN method, it is meant any machine
learning technique which intrinsically evaluate a restricted neighborhood in
any point of interest.

The theme of this thesis will be to explore the similarity and di�erences of
Kernel and KNN methods, with the goal of developing a new KNN approach
to ITL.
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1.2 Structure of Thesis

As the main focus of the thesis is to explore a KNN approach to learning in
a �eld dominated by kernel methods, it is natural discuss some of the fun-
damental similarities and di�erences between these two paradigms. Chapter
2 will discuss the Parzen windowing and KNN approach to estimating PDFs
and look at some of the properties of each of the estimates. Next the term
kernel method will be more precisely de�ned and an example of a method
investigated. The �nal section of Chapter 2 will explore methods in machine
learning connected to KNN-considerations.

Chapter 3 will introduce the �eld of Information Theoretic Learning
(ITL). The intuition behind the theory is discussed and the various IT
measures are presented. The topic of clustering with IT principals is then
introduced and a cost function used by several algorithms is presented.

In Chapter 4, the new KNN approach to performing Information Theo-
retic Clustering will be derived. Here the estimate of the cost function will
be presented along this an algorithm for optimization it. The results chapter
will highlight some of the new methods properties and compare it to a pre-
viously developed algorithm which uses Parzen window estimates. Finally,
the conclusions are presented in Chapter 6
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Chapter 2

Background Theory

2.1 Introduction

In this chapter, some of the relevant background information will be intro-
duced and reviewed. As the topic of the thesis is to explore a new KNN
learning technique in a �eld where kernel methods are dominating, the focus
will naturally fall on highlighting similarities and di�erences between these
two approaches. It is then helpful to investigate the places in the established
theory where the two paradigms appear.

Firstly, their uses and properties in non-parametric density estimation
will be examined. Here, examples will be provided on a two dimensional
synthetic dataset to give some intuition on the results. Then, the estimates
will be used in a practical task of classi�cation in a Bayesian setup with
examples further highlighting some of their features.

Next, some theory only related to the use of a kernel is introduced with
The Kernel Trick being de�ned and used to do non-linear dimensionality
reduction with Kernel -PCA. The subject of dimensionality reduction is also
explored in the KNN-setting with Laplacian Eigenmaps. This is a graph
based method which is also shown performing clustering.

2.2 Probability Density Estimation

This section will deal with the di�erent ways of estimating what underlying
probability model a dataset is generated from. Given N samples, {x1,x2, ...
xN}, in d dimensions from some process, the task is to use this known data
to gain generalized knowledge about the system, i.e. do learning. With this
information, typical machine learning and pattern recognition tasks such
as classi�cation, prediction, dimensionality reduction and clustering can be
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done.

The literature on this topic typically make a distinction between two main
approaches for performing the estimation; parametric and non-parametric
methods. The �rst one assumes a model with a set of parameters and then
tries to estimate these parameters. The latter assumes no model and lets the
given data infer information about the model more directly. Since this thesis
largely revolves around non-parametric techniques, the theoretical introduc-
tion to parametric methods is left an appendix (see Appendix A). However,
some of the results of parametric inference is illustrated in the section on
classi�cation herein.

For illustration throughout this discussion, a dataset, X, generated from
a bivariate normal mixture model is assumed:

X ∼ P1N(µ1,Σ1) + P2N(µ2,Σ2) (2.1)

where µ1/2 are the mean vectors and Σ1/2 the covariances. P1 and P2 are
the prior probabilities for each of the mixtures.

2.2.1 Nonparametric Methods

Parametric estimation techniques can give very good results if the model
assumed for the data is correct. Often however, a simple underlying model
(whose parameters can be estimated) is not obtainable. When this is the
case, no amount of advanced estimation can help the methods escape the
fundamental problem; a wrong model. Real world data can indeed be hard
to approximate with an analytical model; the data set could be multimodal,
have di�erent distributions along the di�erent dimensions and come from a
phenomenon with complicated dependencies between the components. Non-
parametric methods strong suit is that they assume no model and instead
do inference based purely on the given dataset.

The basic idea used to build up the nonparametric methods comes from
the fact that the probability of a random variable x falling inside a region
R, is given by

P (x ∈ R) =

∫
R

p(x′)dx′ (2.2)

From this it can be seen that P (x ∈ R) is an averaged version of p(x).
Now, using (2.2) the other way around, a smoothed estimate of p(x) can be
obtained by estimating P (x ∈ R).

Given a dataset of N points, X = {x1,x2, ...,xN} de�ned on Rd, the
probability of k points falling inside region R is governed by the binomial
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law as a function of k by

P (kx ∈ R) =

(
n

k

)
P k(1− P )n−k, P = P (x ∈ R) (2.3)

with the expected value of k being

E(k) = NP (2.4)

From this, a reasonable estimate of P (x ∈ R) would be k/N .
Now, if p(x) is assumed to be continuous and the region R is made so

small that p(x) does not vary by much within it, the integral in (2.2) can be
approximated by a simple product∫

R

p(x′)dx′ ≈ p(x)V (2.5)

with V being the volume enclosed by R.
By combining (2.2), (2.3) and (2.5), the following estimate of p(x) is

found

p(x) ≈ k/N

V
(2.6)

with k being the number of datapoints (from a total of N) falling inside
a region around x with volume V . Equation (2.6) is the general form of
the nonparametric estimator of p(x) which will be built upon in the two
extensions to come.

2.2.2 Parzen Windowing

The Parzen window estimate of a Probability Density Function (PDF) is
based on using (2.6) with the volume V kept constant. The probability is
estimated by evaluating the number of points, k, inside the �xed volume at
di�erent places in Rd. Fixing the volume in this manner will turn out to make
the estimate very sensitive to which volume is chosen for the given dataset,
and is the fundamental di�erence between kernel and KNN estimates in this
regard.

Parzen windowing is put in the domain of kernel methods. This comes
from the choice of function used in the end counting the datapoints; a kernel
function. Unfortunately, this will not be completely clear until the kernel
trick and Mercers theorem is presented in the next section.

To introduce the Parzen windowing approach, �rstly a mathematical
function to count the number of datapoints falling inside R is de�ned. This
function is used to determine k in equation (2.6) for any x ∈ Rd.
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The so-called windowing function is de�ned as

κhist(u) =

{
1, |uj| ≤ 1/2, j = 1, 2, ..., d

0, otherwise
(2.7)

and constitutes a hypercube around the origin. Note that u here can be
replaced by the di�erence between two vectors in Rd; u = xi − xj. As
such, κhist() can also be thought of as a function measuring the similarity or
closeness of two vectors. In this case, either they are inside each others hyper
volume, or they are not.

By using this, the number of points falling inside a hypercube with sides
of length h (and thus a volume of hd) around x can be counted as

k(x) =
N∑
i=1

κhist

(
x− xi
h

)
(2.8)

By inserting (2.8) into (2.6), the histogram estimate of p(x) is obtained

p̂hist(x) =
1

N

N∑
i=1

1

V
κhist

(
x− xi
h

)
(2.9)

The estimate above immediately hints of a multitude of possible solutions, by
di�erent choices of counting function κ(·), as noted by Parzen in his original
paper [42].

Since κhist(·) is discontinuous, the estimate of the probability density
found by using this function will also be discontinuous. If it is instead re-
placed by some other, smooth, function κ(·), the resulting estimate will itself
be smooth [54]. Parzen suggested several choices of this kernel function κ(·)
and discussed which properties it would need to ful�ll for the estimator to
be valid. These properties will be discussed below.

The most common choice of κ(·) in the d-dimensional space is the Gaus-
sian kernel

κGauss(x;µ,Σ) =
1

(2π)d/2 |Σ|
1
2

exp

{
−(x− µ)TΣ−1(x− µ)

2

}
(2.10)

Using a centered kernel (µ = 0) with spherical symmetry in space (Σ = σ·I),
the probability estimate reduces to

p̂Gauss(x;σ) =
1

N

N∑
i=1

1

(2π)l/2σd
exp

{
−(x− xi)T (x− xi)

2σ2

}
(2.11)
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with σ replacing h as a width parameter (the standard deviation of the
Gaussian kernel).

Note, κGauss is actually a Mercer kernel, meaning that using it is related
to calculating inner product in some unknown feature space. Because of this,
any machine learning algorithm which makes use of the Parzen PDF estimate
in (2.11), can be called a kernel method. Details on this will be discussed in
Section 2.3.

Properties

It was noted with the introduction of equation (2.2) that the nonparametric
methods yield a space averaged estimation of the true probability density.
Because of this, if the estimator given by (2.6) is to converge to the true
probability density, the hypervolume V would need to tend to zero. This
however leads to problems as the number of datapoints is �nite; if V is made
smaller while the number of datapoints are kept constant, each region R (of
volume V ) could be made to enclose no datapoints and the estimate would be
useless. Moreover, if one datapoint would coincide with an arbitrarily small
region, the estimate would diverge to in�nity - an equally useless estimate.
For these reasons, whenever a �nite number of datapoints is assumed, the
estimate will have to do some averaging to obtain useful estimates.

This averaging causes the probability density estimate to always deviate
from the true underlying density as long as the number of points evaluated
is limited (as it is in any real life application). If however this restriction is
lifted, some of the probability estimates underlying properties can be more
thoroughly investigated. Given a dataset X = {x1,x2, ...,xN} in Rd drawn
independently from p(x) where N is allowed to go to in�nity, the Parzen
windows' convergence in mean square sense is evaluated. The mean square
convergence of p̂n(x) (where the subscript N is there to highlight the depen-
dency on the number of data points) is de�ned as

lim
N→∞

p̄N(x) = p(x) (2.12)

lim
N→∞

σ2
N(x) = 0 (2.13)

where p̄N(x) refers to the expected value of the estimate in x and σ2
N(x) is

the variance of p̂(x) in x.

To prove this convergence, some conditions has to be placed on the un-
known density p(x), κ(x) and the window width σ. These conditions, as

9



noted in [9], are

sup
u
κ(u) <∞ (2.14)

lim
||u||→∞

κ(u)
d∏
i=1

ui = 0 (2.15)

lim
N→∞

VN = 0 (2.16)

lim
N→∞

NVN =∞ (2.17)

In addition, κ(x) has to be continuous, non-negative and integrate to 1, i.e.
itself be a PDF.

Considering the convergence of the mean value of the estimate, the ex-
pected value is investigated

p̄(x) = E[pN(x)]

=
1

N

N∑
i=1

E

[
1

VN
κ

(
x− xi
σN

)]
=

∫
1

VN
κ

(
x− v
σN

)
p(v)dv

=

∫
δN(x− v)p(v)dv,

where δ(x−v) = 1
VN
κ
(
x−v
σN

)
. Here, the de�nition of the expected value and

the assumption of independence between each data sample has been used.

The �nal integral above can be recognized as the convolution between
the true density and a smoothing function. By the condition given in (2.16),
the smoothing windowing function δ(·) becomes the Dirac delta function as
N approaches in�nity. The convolution between a function and the delta is
known to yield the function itself, and thus the expected value converges to
the true value for all x in Rd.

In the derivations above it was shown that the mean of the estimate
could �t the underlying distribution if the width σN (and consequently VN)
could approach 0. However, in so doing the estimate will exhibit a higher
variance. Under the assumption of in�nitely many datapoints, a smooth p(x)
and (2.14) � (2.17), the variance of the estimate is evaluated in the following
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manner

Var(p̂N(x)) =
N∑
i=1

E

[(
1

NVN
κ

(
x− xi
σN

)
− 1

N
p̄N(x)

)2
]

= NE

[
1

N2V 2
N

κ2
(
x− xi
σN

)]
− 1

N
p̄2N(x)

=
1

NVN

∫
1

VN
κ2
(
x− v
σN

)
p(v)dv − 1

N
p̄2N(x)

Now, dropping the last term and recognizing the integrand as κ(·)δN(x −
v)p(v), a bound on the variance can be found to be

Var(p̂N(x)) ≤ sup(κ(·))p̄N(x)

NVN
(2.18)

From this it can be seen that the variance is minimized by having the
smoothing function κ(·) have a large volume. However, for the estimate
to converge to the true distribution, the kernel should approach the Dirac
delta corresponding to a volume approaching zero. In this arti�cial setting of
in�nitely many datapoints, (2.18) could be made small by invoking condition
(2.17) and for instance letting the volume grow slower than 1/N . Any real life
scenario would however lead to having to make a trade o� between estimate
error and variance.

Silverman [53] has explored the optimal choice of σ in the case of a Gaus-
sian smoothing kernel to �nd

σS = σ̂M
{

4N−1(2d+ 1)−1
} 1

d+4 (2.19)

where σ̂M is the mean value of the Maximum Likelihood (ML) standard
deviation estimate obtained from the data1. It is given as

σ̂M = d−1
d∑
i=1

Σ̂i,i (2.20)

where Σ̂i,i is the element in row i and column i of the ML-covariance matrix
estimate from the data.

A visualization of the Parzen window probability density estimate of
model (2.1) for two di�erent choices of σ is shown in Figure 2.1. In this
�gure it it is evident that the smallest σ is causing the estimate to be a poor
one, with small Gaussian peaks around each datapoint. While the other
choice of σ smooths out the datapoints su�ciently to recreate the underlying
bivariate Gaussian mixture.

1See Appendix A for an introduction to the ML estimates of the covariance matrix.)
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Figure 2.1: Probability density estimate using Parzen Windowing with dif-
ferent σ on synthetic dataset.

2.2.3 K Nearest Neighbors

The K Nearest Neighbor probability density estimation is, like the Parzen
Window approach, based on (2.6). However, instead of keeping the hypervol-
ume V constant and varying k, k is now kept constant and V is changed so
that it encloses k points. With this in mind, the following estimate is de�ned

p̂kNN(x; k) =
k

NVk(x)
(2.21)

with Vk(x) being a function which measures the hypervolume of the structure
in Rd which encloses the k nearest neighbors of x.

With an Euclidean distance (the 2-norm), this results in the volume be-
coming a hyper-sphere. For a hyper-sphere in d dimensions, the volume is

12



given as

V (x) =
πd/2

Γ(d/2 + 1)
||x||d2 (2.22)

where Γ(·) is the gamma function and || · ||2 is the Euclidean norm.

Properties

In the estimation given in (2.21), the volume which encloses k points depends
on the distance metric. Choosing di�erent metrics leads to di�erent formulas
for the volume and it might also change which points are considered the k
nearest as was noted in the original article on the subject [35]. A visualization
of the three most common metrics (the 1-, 2- and∞-norm) is given in Figure
2.2. It could be noted that even though the same point has been found to be
the �fth closest to the ×, the areas (or hypervolumes in higher dimensions)
are di�erent. The shaded regions correspond to areas where, if one or more
datapoints were enclosed, would cause a di�erent set of points to be evaluated
as the k (in this case 5) nearest.

-norm
2-norm
1-norm

Figure 2.2: The k = 5 nearest neighbors for di�erent distance metrics.

The estimator p̂kNN has been proven to be asymptotically consistent under

13



the assumptions

lim
N→∞

kN = ∞ (2.23)

lim
N→∞

kN/N = 0 (2.24)

in the original article [35].
The estimate is itself continuous, however, its derivative is not. This

comes from the fact that as the designated k nearest points change, the esti-
mate could, over an arbitrarily small step, change from growing to shrinking
(and vice versa) whenever the k-th nearest neighbor changes. This phe-
nomenon also causes the estimate to be somewhat spiky for k and N �∞.

Using gradient descent optimization on a KNN surface is also impossible.
This is because the gradient of the surface never goes to zero. Moving a
delta in a direction from any point in space, the movement is either towards
or away from the k-nearest neighbor (if not the k nearest neighbor point
changes), and thereby never zero.

Using the synthetic dataset and an estimate with k = 5, the results
visualized in Figure 2.3 is produced. Here the estimates erratic behavior is
seen quite clearly.

Comparison

Two techniques for performing nonparametric density estimation was dis-
cussed in the two preceding sections. It was seen that they both stem from
the probability approximation given in (2.6) and they are both consistent
estimates as N → ∞ under mild assumptions. In any real life applications
where a limited number of datapoints are used, the two estimates do however
produce slightly di�erent results. This can be seen if Figure 2.1 is compared
with Figure 2.3. A better comparison of the two is given in Figure 2.4. It is
here seen that the Parzen windowing technique produce a smoother estimate,
and the true bimodal form of the underlying distribution is uncovered.

It is also interesting to note that the Parzen window estimate uses all
the points in the dataset (N evaluations) to estimate the PDF in x, while
the KNN method only rely on one point, the k-nearest neighbor. This does
not mean that the complexity of using the KNN estimate is any less that
the Parzen method however. As the distance have to be calculated to all
the points in the set, before the k-th neighbor can be found, this leaves N
operations for this method also. Actually, the KNN method could be said to
have a higher complexity, as a sorting of the distances is also needed.

An even more important di�erence between the two estimates, is the
behaviors when presented with data on very di�erent scales. In Figure 2.5,
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Figure 2.3: The k = 5 nearest neighbors PDF estimate for the synthetic
dataset.
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Figure 2.4: Probability density estimate with Parzen windowing to the left,
and K-Nearest Neighbor to the right.
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200 datapoints drawn from

X ∼ 0.5N

([
0
0

]
, 0.01× I

)
+ 0.5N

([
20
20

]
, 100× I

)
(2.25)

is attempted estimated by the two non-parametric methods. The parzen win-
dow method here uses Silverman's approximation (2.19) to choose a band-
width. It is in (a) seen that this choice of bandwidth over-smooths the dense
area. This causes the estimate to be very high in large regions completely
void of datapoints near the dense area, which is clearly wrong. Using the
KNN estimate, the PDF surface falls o� much more quickly when moving
out of the dense region, something which better re�ect the true underlying
densities2.

2.2.4 Classi�cation

In this section, one of the more common uses of the probability density
is explored, namely classi�cation in the Bayesian setting. As with many
machine learning tasks, it minimizes a cost function, here related to the
possible misclassi�cations of the data, in order to reach a solution. This
solution turns out to be dependent on the which probability density estimate
is obtained from the training data. With that, it is well suited to explore the
estimates developed in the previous section further. The introduction to the
basic Bayesian classi�er setup, is left as an appendix (B). This is done to keep
the text somewhat more focused on the goal of investigating the di�erences
between the PDF-estimates.

The setup is to evaluate the created decision boundary given data from
two Gaussian distributions with the same covariance structure and di�erent
mean vectors; p1(µ1,Σ) and p2(µ2,Σ). This data is the training set for
which the class of each datapoint is known. The training data is then used
to create a decision rule for classifying any new datapoints. More details
regarding this can be found in the appendix, but the end decision rule in the
two class case is stated here; an unknown x is classi�ed to according to

x→ ω1(ω2) if
p(x|ω1)

p(x|ω2)
≥ (<)

P (ω2)

P (ω1)

[L2,1 − L2,2]

[L1,2 − L1,1]
(2.26)

where the condition for the alternative classi�cation, x→ ω2, is given in the
parenthesis. The L-values refer to user set costs of classifying/misclassifying.
As explained in the appendix, the prior probabilities P (ω1) and P (ω2) are

2Some smoothing was applied to the KNN estimate to get the visualization seen in the
�gure. See Appendix D for more details.

17



(a) Parzen

(b) KNN

Figure 2.5: Parzen and KNN estimate of data drawn from Gaussian mixture
with very di�erent covariance scale. The KNN is seen to adapt more to the
data and not create an unreasonable estimate around the dense datapoints.
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estimated by simply counting the number of occurrences from each class and
dividing by the total number of points.

Parametric maximum likelihood

Using the parametric approach of Appendix A, it is assumed that both
p(x|ω1) and p(x|ω2) are Gaussian distributions; X1 ∼ N(µ1,Σ1) and X2 ∼
N(µ2,Σ2). This method states that the parameters could be estimated by
Maximum Likelihood estimates given in (A.5) � (A.6). Using these estimates
yields

p̂(x|ω1) = N(µ̂1, Σ̂1) p̂(x|ω2) = N(µ̂2, Σ̂2)

These estimated densities can then be inserted directly into (2.26) to get
the classi�cation rule

x→ ω1(ω2) if
|Σ̂1|−

1
2 exp{− 1

2
(x−µ̂1)′Σ̂

−1
1 (x−µ̂1)}

|Σ̂2|−
1
2 exp{− 1

2
(x−µ̂2)′Σ̂

−1
2 (x−µ̂2)}

≥ (<) P̂ (ω2)

P̂ (ω1)

[L2,1−L2,2]

[L1,2−L1,1]
(2.27)

Parzen windowing

If the non-parametric estimation method called Parzen windowing is used, no
assumptions has to be placed on the data. Instead, so-called kernel functions
are placed over each known datapoint from the distribution and summed
up to give an estimate. In 2.2.2 the probability density estimate using this
technique with a Gaussian kernel was shown, (2.11), to be

p̂Gauss(x;h) =
1

N

N∑
i=1

1

(2π)d/2σd
exp

{
−(x− xi)

T (x− xi)

2σ2

}

If the same spherical kernel is used to estimate both p(x|ω1) and p(x|ω2),
giving the estimates p̂(x|ω1) and p̂(x|ω2), these can be used directly to get
the decision boundary based on the training data

x→ ω1(ω2) if
1
N1

∑N1

i=1 exp{−(x−xi)
′(x−xi)

2h2
}

1
N2

∑N2

j=1 exp{−(x−xj)′(x−xj)

2h2
}
≥ (<)

P̂ (ω2)

P̂ (ω1)

[L2,1 − L2,2]

[L1,2 − L1,1]

(2.28)

where the common terms in the fraction on the left side, 1/
(
(2π)d/2σd

)
, have

been divided out.
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K Nearest Neighbor

With the KNN probability density estimation, it was seen in 2.2.3 that the
volume was left free to vary to at each point to encapsulate k points. The
probability density estimate then became

p̂(x) =
k

NV (x)

where the dependency on the volume is emphasized.
Adopting this probability density estimate and using the Bayesian clas-

si�cation rule, the classi�cation of a new point x is done by evaluating

x→ ω1(ω2) if

k
N1Vkω1

(x)

k
N2Vkω2

(x)

=
N2Vkω2

(x)

N1Vkω1
(x)
≥ (<)

P̂ (ω2)

P̂ (ω1)

[L2,1 − L2,2]

[L1,2 − L1,1]
(2.29)

where Vkω1
(x) and Vkω2

(x) is the hyper volume with center in x enclosing k
points from ω1 and ω2 respectively.

Compar

2.2.5 Examples

In this section, some decision boundaries produced from using the di�erent
plug in estimators of the probability density discussed above are shown. The
synthetic dataset used is a bivariate Gaussian mixture of N = 100 points.
The dataset, {x1,x2, ...,x100} ∈ R2, has its �rst 70 elements drawn as

{x1,x2, ...,x70} ∼ N

([
0
0

]
,

[
1 0
0 1

])
while the last 30 are drawn as

{x71,x72, ...,x100} ∼ N

([
2.5
2.5

]
,

[
1 0
0 1

])
Here, P (ω1) = 0.7 and P (ω2) = 0.3 has been assumed, and the dataset has
been created so that the prior probabilities will be exact, i.e. no stochastic
evaluation has been done in choosing which of the classes to create data from.

In the proceeding �gures, some intuition about the behavior of the dif-
ferent plug in estimators is sought and the e�ect of varying their parameters
is demonstrated.

For the parametric density estimate, the correct model (described above)
is selected, and the estimates described in Appendix A are used to obtain
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(a) N = 100 (b) N = 500 (c) N = 1000

Figure 2.6: Decision boundaries with a parametric PDF estimate for di�erent
training set sizes.

the parameters P̂ (ω1), P̂ (ω2), µ̂1, µ̂2, Σ̂1 and Σ̂2. As these estimates are
unbiased, it is expected that as the number of datapoints grow, the estimates
converge to the true parameters. The e�ect of this is seen in Figure 2.6, where
the number of datapoints in the synthetic set is allowed to grow (from 100 to
1000). With the number of available datapoints increasing, the estimates gets
closer to the true parameters. Moreover, the fact that the mixture models are
drawn with the same underlying covariance becomes clearer as the decision
boundary can be seen to shift towards a more straight line. This is known
to be the optimal classi�cation rule in the case of a bivariate mixture of two
Gaussians with equal covariance [54].

In light of the assumptions which lead to (B.10) (namely that the two
classes needed to be drawn with the same covariance structure), this is ex-
pected; with more datapoints, the estimates Σ̂1 and Σ̂2 both converge to the
true covariance Σ3 and the line is straightened.

With the Parzen window estimate, no explicit data model has to be as-
sumed and only the data itself and the width parameter σ governs the prob-

3Equal to

[
1 0
0 1

]
.
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Figure 2.7: Decision boundary with a Parzen window PDF estimate for dif-
ferent kernel sizes.

ability estimates. As such, di�erent choices of σ was tried on the synthetic
dataset to demonstrate the di�erent possible behaviors. Letting σ take on
the values of 0.1, 0.5 and 2, produced the decision boundaries seen in Figure
2.7. It is here seen that a small choice (corresponding to a narrow kernel
and consequently little averaging) yields a decision line with high variance,
prone to over-�tting. Increasing σ, the line gets smoother as more and more
averaging over the data is performed.

It should be noted that in the parametric setup of Bayes Decision theory,
the discrimination lines are limited to straight, closed ellipses or hyperbolas.
When replacing the multivariate Gaussian models with non-parametric es-
timates, the lines can take on any form depending on the dataset used for
training. This typically makes non parametric estimates better classi�ers for
irregular data.

As with Parzen windowing, the K Nearest Neighbor estimate requires no
assumptions of the underlying model the data has been generated from, only
the data itself and the parameter k is relevant in determining the decision
boundary. In Figure 2.8, k is varied from 1, to 3 and 10.

Choosing k = 1 leads to a decision boundary with a very high variance
and the dataset being over-�tted. Even a region close to the mean of the red
class will be classi�ed incorrectly because of a single outlier from the blue
class. With increasing k, the variance is reduced, but the decision line can
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Figure 2.8: Decision boundary with a K Nearest Neighbor PDF estimate for
di�erent choices of k.

still be seen to be quite dependent on the data.
Lastly in this section, the convergence properties of the di�erent decision

boundaries are investigated. As all the probability density estimators are
unbiased and converge to the correct distribution under the assumptions
stated in their derivations, it should be possible to obtain close to the same
classi�cation line for each of the methods.

Recall from 2.2 that the important behavior of the Parzen window es-
timate was that Vn → 0, while at the same time nVn → ∞ (with some
restrictions placed on the kernel function κ(·)). For the K Nearest Neighbor
estimate it was noted that kn → ∞ and kn/n → 0 as N → ∞ proved the
estimator to be consistent. The parametric method discussed in Appendix
A estimates, under the assumptions of a Gaussian mixture, its parameters
(µ1,µ2,Σ1 and Σ2) correctly as N →∞.

First 100 datapoints are generated from the bivariate Gaussian mixture
and the decision line is estimated using the methods of the previous section.
Then, 100 000 datapoints4 are generated from the same model and the same
methods are used to produce new decision boundaries. As N is increased,
Vn and kn of the parametric methods are also changed to follow the pattern

4Simulating N at ∞
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required for consistent estimators.
The resulting decision boundaries are shown in Figure 2.9. In this �gure,

it could be noted at all the methods converge towards the analytical solution
as N grows. With N = 100 000, the parametric methods estimates is o� by
only about 0.1%. The non parametric methods are also seen moving closer
to the analytical solution. However, they have problems when moving out of
the region populated with datapoints. Indeed, especially the Parzen window
estimate exhibits high variance a small distance away from the datapoints.
This, of course, has to do with there being very few points close by relative to
the shrinking kernel (Vn → 0) size. The KNN estimate can be seen to perform
somewhat better under these conditions. This could be due to an overall
better choice of its parameter k. It could also be that this method is more
adaptive in regions of few datapoints (increasing its volume until k datapoints
are enclosed no matter what)5. However, discussing the behavior of the
non parametric approaches outside of the regions populated by data can be
futile. The take away from this example should instead be the convergence
towards the same, optimal, desicion bondary (in the region of interest) for
all estimators, given enough data points.

5As producing the data rich decision boundaries was computational expensive, not a
lot of di�erent choices for the parameters was tried.
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(a) N = 100 datapoints.

(b) N = 100 000 datapoints.

Figure 2.9: Decision boundaries made using the di�erent methods of proba-
bility density estimation with for varying N .
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2.3 Kernel Methods

In this section, some of the fundamentals related to kernel methods will be
introduced. It will be shown how a simple idea of a Mercer kernel function,
which implicitly calculate inner products in some unknown space, can be
used extend the functionality for many of the established algorithms in the
�eld. Using inner products in a unknown space between datapoints, these
methods turn out to be inherently di�erent from similar KNN-approaches.
This is due to the fact that all the datapoints are implicitly mapped to a
new domain, where inner products can be calculated. KNN methods are
only interested in some local neighborhood of each datapoint in the original
domain.

In the �eld of machine learning, many of the well established and well
understood methods were, for a long time, only so called linear methods.
Techniques and methods such has Principal Component Analysis (PCA),
Support Vector Machines (SVMs), Ridge Regression, Fisher Discriminant
Analysis (FDA) and Canonical Correlation Analysis (CCA) could here be
mentioned [40]. The fact that these methods are regarded as linear, refers
to that they all have intrinsic connections with linear hyper-surfaces and
perform poorly when presented data with prominent non-linear structure.

The method for making these techniques non-linear, involves the so called
kernel trick, where the data is mapped to a new (possibly much higher di-
mensional) feature space F where the linear methods can be used to produce
non-linear results in the original space. In this chapter, the theoretic ba-
sis which guarantees the validity of this mapping idea is discussed and an
example of an application is shown.

In Appendix C, the reader will �nd another example involving classi�ca-
tion where the Support Vector Machine (SVM) has been made non-linear by
the methods discussed in this section. To keep the theory more succinct, it
has been omitted from the main text.

2.3.1 The Kernel Trick

The basis for all the techniques being made non-linear is based on performing
a non-linear mapping, via a mapping function here denoted Φ(·), to a new
space where the problem (hopefully) reduces to one which a linear method
can solve. Given a dataset X of N points, {x1,x2, ...,xN} ∈ Rd, the nonlin-
ear mapping to the feature space F is de�ned as

Φ : X → F

x 7→ Φ(x) (2.30)
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with F ∈ Rm, m ≥ d.
Now, a general mapping of the data to a higher (possibly in�nite) di-

mensional space, would in most cases lead to problems in choice of mapping
and in handling the data once the mapping has been done. Fortunately, in
certain feature spaces (with corresponding mappings Φ(·)), it is possible to
compute inner products, and it is this knowledge the kernel trick is based
around. A kernel function κ(·, ·) is de�ned as a function which maps data
from Rd to the unknown feature space F and calculates inner products there

κ(xi,xj) = 〈Φ(xi),Φ(xj)〉 (2.31)

Mercers theorem states the requirements on κ(·, ·) which guarantee that
it calculates inner product in some unknown space [39].

Theorem 1 Mercers's Theorem: Given an x ∈ Rd and a mapping Φ such
that

x 7→ Φ(x) ∈ F
with an equivalent the inner product de�nition

〈Φ(x),Φ(z)〉 = κ(x, z) (2.32)

where 〈·, ·〉 de�nes an inner product in F . Then, κ(x, z) is a symmetric
continuous function satisfying∫

C

∫
C

κ(x, z)g(x)g(z)dxdz ≥ 0 (2.33)

for all x, z ∈ C ⊂ Rd and for any function g(·) such that∫
C

g2(x)dx <∞ (2.34)

Now, the opposite is always true; given a function κ(·, ·) satisfying (2.33) and
(2.34), there always exists some space where κ(·, ·) de�nes an inner product.

It could here be noted that for a kernel obaying the requirements of
Theorem 1, the corresponding feature space F is a so-called Hilbert space6.
This is a result of Moore-Aronszajn's Theorem [45], which states that all
valid choices of κ(·, ·) (with respect to (2.33) and (2.34)) reproduce a Hilbert
space. Because of this, the feature space that machine learning algorithms
implicitly use when the kernel trick is applied is often called a Reproducing
Kernel Hilbert space (RPKH) [54].

6A complete linear space equipped with an inner product operations [54].
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To reiterate, according to the theory of RPKHs and their corresponding
kernel functions, it is possible to calculate inner products in some unknown
high dimensional space. This means that [40][48]: every (linear) algorithm
that only uses scalar products can implicitly be executed in F by using ker-
nels, i.e., one can very elegantly construct a nonlinear version of a linear
algorithm. This is also true for algorithms which operates on similarity mea-
sures, which produce positive de�nite matrices7. In the next section, this
simple philosophy is applied to a linear algorithm to produce its nonlinear
kernel counterpart.

Given a dataset {x1,x2, ...,xN} of vectors Rd, and a kernel function κ(·, ·),
calculating inner products in F , the kernel matrixK for the dataset is de�ned
as all the cross inner products. K will then be an N ×N matrix where each
element Ki,j is given by

Ki,j := κ(xi,xi) (2.35)

Assuming a valid kernel function is given, K will be a positive semide�nite
symmetric Gramian matrix [48].

Many kernels can be chosen for which the requirements of Theorem 1 is
ful�lled. In the �eld of machine learning and pattern recognition, the most
commonly used is the Gaussian kernel [54]

κσ(x, z) = exp

(
−||x− z||

2

2σ2

)
(2.36)

where σ is a width parameter (equivalent to that in 2.2.2) which can be
varied.

The name kernel, refers to a class of functions which are used in all these
methods, either to measure similarity between points, estimate densities or
do an implicit mapping of the data to a new domain. Many more kernels
could be mentioned, but as only (2.36) will be used in this text, the reader
is instead referred to [54] for examples.

With the theory here presented, it can now be understood why the Parzen
window estimate (2.11) in Section 2.2.2 could be called a kernel method.
Approximating the density in x, can be viewed as the mean of the inner
products between x and the other datapoints in some unknown space F .

2.3.2 Kernel PCA

The goal of Principal Component Analysis (PCA) is to �nd a new, more
meaningful way to express a given dataset X : {x1,x2, ...,xN} ∈ Rd. This

7The de�nition of a positive de�nite matrix K is: ∀ x 6= 0, xTKx > 0.
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is done by �nding a new set of orthonormal bases with corresponding weight
parameters {(v1, λ1), (v2, λ2), ..., (vd, λd)} which span Rd. With PCA, the
goal is to capture as much of the variance of the data along the �rst prin-
cipal components vi, i = 1, 2, ..., d. In this new basis, it is then easy to
do meaningful dimensionality reduction by simply projecting onto a chosen
number of basis vectors8 to obtain a new representation of the data whilst
keeping as much of the variance as possible [57][54]. This choice of basis con-
struction is equivalent to minimizing the projection error in the sum squared
sense [9] as the variance is a measure of sum squared variation. Often this
projection error can in fact help denoise the data, as typical interference on
a signal is non-correlated and as such, described by the less important (end)
part of the basis set [40].

Finding this new basis which best describes the variance of the dataset
comes from solving the eigenvalue problem on the sample covariance matrix
C of the data. If a centered dataset X is provided such that

∑N
i=1 xi = 0,

the sample covariance matrix is given by

C =
1

N

N∑
i=1

xix
T
i (2.37)

The eigenvalue problem for C is de�ned as

λv = Cλ (2.38)

where inserting the de�nition for C yields

λv =
1

N

N∑
i=1

xix
T
i v =

1

N

N∑
i=1

〈xi,v〉xi (2.39)

From this it can be seen that all solutions of v must lie in the span of
x1,x2, ...,xN

9.
To do PCA in the feature space, the problem now becomes one of solv-

ing the eigenvalue problem on the sample correlation matrix of the mapped
data Φ(xi), i = 1, 2, ..., N . An expression for the correlation matrix in F
is obtained by performing the (unknown) mapping Φ(·) on each datapoint
(where again, centered feature space data has been assumed)

CF =
1

N

N∑
i=1

Φ(xi)Φ(xi)
T (2.40)

8This is especially easy as the set of basis vectors is orthonormal.
9A corollary of this is that if N<d, C will be singular.
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which gives the eigenvalue problem

λV =
1

N

N∑
i=1

Φ(xi)Φ(xi)
TV =

1

N

N∑
i=1

〈Φ(xi),V 〉Φ(xi) (2.41)

As for regular PCA, it is here seen that any V must lie in the span of
Φ(x1),Φ(x2), ...,Φ(xN). This has useful consequences in this context. One
of them being that

λΦ(xk)V = Φ(xk)CFV ∀ k = 1, 2, ..., N (2.42)

Next, any V can be expressed with the given mapped data as a basis, i.e.
there exists a set of scalars α1, α2, ..., αN such that

V =
N∑
i=1

αiΦ(xi) (2.43)

Going from (2.41), it is observed that

V =
1

λN

N∑
i=1

〈Φ(xi),V 〉Φ(xi) =
N∑
i=1

αiΦ(xi) (2.44)

which means that the coe�cients on the mapped data points which span an
eigenvector of CF can be found by evaluating some inner product in F . Also
note that the scalar coe�cients from this inner product and the term 1/λN
is absorbed in the α's.

Inserting (2.44) into (2.42) and using the fact that 〈·, ·〉 is a scalar (i.e.
it can be moved freely with regards to matrices and vectors), the following
expression is obtained

λ
N∑
i=1

αiΦ(xk)
TΦ(xi) = Φ(xk)

T 1

N

N∑
i=1

Φ(xi)Φ(xi)
T

N∑
j=1

αjΦ(xj) (2.45)

where k can take on the values 1, 2, ..., N .

Evaluating the left hand side of (2.45) for all k, the set of equations
obtained can be written as

λ

N∑
i=1

αiΦ(xk)
TΦ(xi)

∀k
= λKα (2.46)
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where K is N × N matrix of the inner products terms and α is a N × 1
column vector of the αi terms:

K =


Φ(x1)

TΦ(x1) Φ(x1)
TΦ(x2) · · · Φ(x1)

TΦ(xN)
Φ(x2)

TΦ(x1)
...

. . .
...

Φ(xN)TΦ(x1) · · · Φ(xN)TΦ(xN)

 , α =


α1

α2
...
αN


With these de�nitions, the right hand side can be evaulated as

Φ(xk)
T 1

N

N∑
i=1

Φ(xi)Φ(xi)
T

N∑
j=1

αjΦ(xj) =

1

N

N∑
i=1

N∑
j=1

Φ(xk)
TΦ(xi)Φ(xi)

TΦ(xj)αj =

1

N

N∑
i=1

N∑
j=1

〈Φ(xk),Φ(xi)〉 〈Φ(xi),Φ(xj)〉αj
∀k
=

1

N
K2α (2.47)

Now, from (2.46) and (2.47), (2.45) can be reformulated as

Nλα = λFα = Kα (2.48)

where λF = Nλ is an eigenvalue of the kernel matrix K. Solving the eigen-
value problem for the kernel matrix in (2.48) yields the α-coe�cients sought
in the expression for V , (2.44), which is related to the original datapoints
projection onto one of the principal axes in F .

As V is a principal axes of the feature space F for a given αk (the k-th
eigenvector of (2.48)), it is normalized to be of length 1:

V TV =

(
N∑
i=1

αi,kΦ(xi)

)T ( N∑
j=1

αj,kΦ(xj)

)
= (αk)

TKαk = λk(αk)
Tαk︸ ︷︷ ︸

=1

= λk

From which it follows that the principal axis k in F is de�ned as

V =
1√
λk

N∑
i=1

αi,kΦ(xi) (2.49)
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A new point x ∈ Rd, its image in F has a projection onto the k-th
principal axes de�ned as

(Vk)
TΦ(x) =

(
1√
λk

N∑
i=1

αi,kΦ(xi)

)T

Φ(x)

=
1√
λk

N∑
i=1

〈Φ(xi),Φ(x)〉

=
1√
λk

N∑
i=1

k(xi,x) (2.50)

Given that the projection on the principal axes of F for the data points used
in construction of K is sought, the following result follow

V T
k Φ(xj) =

1√
λk

N∑
i=1

αi,kΦ(xi)
TΦ(xj)

∀j
=

1√
λk

N∑
i=1

αi,kK

=
1√
λk
αTkαkλkα

T
k

=
√
λkα

T
k (2.51)

From which it is seen that the projection of the original data onto a principal
axes of F is equivalent to a scaled version of the given eigenvector of K.

Examples

Given datasets of circular, or spherical symmetry, regular PCA will perform
poorly due to the covariance matrix being invariant of spacial rotation [57].
Applying the kernel trick and performing PCA in the feature domain F
instead can improve the results. In Figure 2.10, two dataset exhibiting rota-
tional symmetry around the origin is given, along with their projections onto
the principal axes of F . The coloring applied here is for visualization only,
and all the datapoints are treated equally by the Kernel PCA algorithm.

In this case, obviously, no dimensionality reduction is done. However,
the data is transformed to a new representation where it becomes linearly
separable. Note that linear separability also holds if dimensionality reduction
was done and the data projected onto the horizontal axis only (the �rst
principal component).

32



(a) Set 1: Original data (b) Set 1: Mapping onto principal axes of F

(c) Set 2: Original data (d) Set 2: Mapping onto principal axes of F

Figure 2.10: Toy datasets with mapping to principal axes of F . It is observed
that the data becomes linearly separable upon transformation.
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2.4 KNN Methods

This section will discuss methods more exclusive to the K Nearest Neighbor
approach. As mentioned in the introduction, this approach is focused on
the local structure around each datapoint and is with that more adaptive to
changes in the data on a global scale.

The section will introduce some mathematical constructions for evaluat-
ing local neighborhoods and show practical examples of the use of them. It
will be shown how these measures can be used to do non-linear dimensionality
reduction and clustering.

2.4.1 Laplacian Eigenmaps

Using KNN-considerations, dimensionality reduction and clustering is here
investigated. This will be done in the form of analysis of a so-called Lapla-
cian matrix. The idea of this technique is that, given a dataset in Rd, it
is assumed that this dataset lies on a smooth manifold, M , embedded in
Rd: M ⊂ Rd with a dimension m < d. A new representation of the data
with local neighborhood properties preserved is sought such that the geomet-
ric structure of M in Rd is unraveled and disregarded, thereby performing
dimensionality reduction. By indirectly evaluating this new representation,
via the Laplacian matrix, it is also possible to do non-linear clustering by
minimizing some function which de�nes the cost of splitting the dataset.

To achieve this non-linear dimensionality reduction and clustering, a non-
directed weighted graph will be constructed based on the dataset given. The
properties of this graph can be expressed in terms of matrices, and upon
analysis of these, the goals are reached. As it is most common to construct
these graphs evaluating the nearest neighbors of the datapoints given, one
could argue that these algorithms fall under the category of methods related
to k-nearest neighbors and are di�erent from the kernel methods discussed
previously.

Constructing the Graph

For a dataset of N points, {x1,x2, ...,xN} ∈ Rd, let G = (V ,E) de�ne
a undirected graph constructed by the set. Each data point correspond
to a vertex in the graph G, giving a set of N vertices V = {v1, ..., vN}.
Furthermore, de�ne all connected points to have edges, stored in E, between
them. These edges can then be weighted with regards to some similarity
measure between the connected vertices. A common similarity measure is
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the Gaussian kernel, which in evaluating vertex i and j is de�ned as

w(i, j) = exp

{
−||xi − xj||

2

2σ2

}
(2.52)

Setting up the connection between the vertices of the graph should be
done in such a way that neighborhoods relationships are captured. In [36],
three possible choices are suggested

1. The ε-neighborhood graph: Given some metric measuring similarity
in Rd, all points with a pairwise distance lower than a choosen ε are
said to be neighbors and an edge between their vertices is set up.

2. The k-nearest neighbor graph: In this setup, the goal is to connect
vertex vi with vj if it is one of its k nearest neighbors. A problem with
this is that it leads to a directed graph, as vj not necessarily have vi
as one of its k nearest neighbors. One way of dealing with this, is to
construct the graph such that there is an edge between vi and vj, eij,
if one of the vertices has the other as one of its k nearest neighbors.
Another way, is to only insert an edge if both vertices has the other
among is k nearest neighbors.

3. The fully connected graph: Here, all the vertices are connected with
edges regardless of their neighborhood properties. The weighting of the
edges applied afterwards is used to capture the similarities between each
vertex. This method is generally not recommended, as connecting each
vertex leads to more demanding computations (without added value)
later in the process [36].

Next, the connections between points are weighted with a similarity met-
ric such that points which are pairwise close to each other in Rd are assigned
a high weight to their edge relative to pairwise points further away from each
other. This weighting between the N points can then be represented in a
N × N matrix W . The elements of which, w(i, j), i, j = 1, 2, ..., N , corre-
spond to the weight on the edges eij, with w(i, j) = 0 if vi and vj are not
connected. Note that since the similarity measure should be a metric, W
will be symmetric.

It is interesting to note that (2.52) is exactly the kernel function κσ(xi,xj)
used in 2.3. With this choice of kernel and using method 3 for construct-
ing the graph, the matrixW becomes exactly the K matrix of the previous
chapter; implicitly expressing inner products in some other space. The merg-
ing of the two methods in this limiting case comes as no surprise as they are
intrinsically related. However, method 3 above does not �t with this thesis
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Figure 2.11: Example of a non-connected graph produced by ε-distance setup.

de�nition of a KNN-consideration and is mentioned only to highlight this
connection to the kernel methods.

For illustration, a graph constructed from datapoints in R2 with the ε-
neighborhood approach from above is shown in Figure 2.11. The result of this
is an unconnected graph where only points within a distance ε are connected
and weighted by some w(i, j). In this �gure, the equidistant ε from a point
is seen to be a circle, meaning that an Euclidean 2-norm has been used in
this example (see 2.2.3 for more details).

The Laplacian Matrix

In order to introduce the Laplacian matrix, some preliminary notation is
required. Given a set of vertices V , connected with edges E weighted byW ,
a vertex vi's degree di is the sum of the outbound weights

di =
N∑
j=1

w(i, j) (2.53)

where the weight w(i, j) is zero for j such that vi and vj are not connected.
With this, it is possible do de�ne the diagonal matrix D (N × N), having
the degree of each vertex along its diagonal and zeros elsewhere.
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The unnormalized graph Laplacian L is now de�ned as

L = D −W (2.54)

The literature on this subject also provide two alternative de�nitions of
Laplacian matrices, the so-called normalized graph Laplacians [36]

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2 (2.55)

Lrw = D−1L = I −D−1W (2.56)

The normalization here comes from the multiplicative dependency of the
degree holding matrix D. In Luxburg [36], it is noted that for algorithms
relying on evaluating a Laplacian matrix, the normalized versions outperform
the unnormalized one. For simplicity however, this chapter will derive its
algorithms using the unnormalized Laplacian.

Dimensionality Reduction

An important property of the matrix L which makes it suitable for dimen-
sionality reduction on the underlying dataset is the fact that given a vector
f ∈ RN (same dimensionality as number of datapoints), the following holds

f ′Lf = f ′Df − f ′Wf =
N∑
i=1

dif
2
i −

N∑
i,j=1

w(i, j)(fi − fj)2

=
1

2

(
N∑
i=1

dif
2
i − 2

N∑
i,j=1

fifjw(i, j) +
N∑
j=1

djf
2
j

)

=
1

2

N∑
i,j=1

w(i, j)(fi − fj)2 (2.57)

Further more, it can be shown that the smallest eigenvalue of L is 0, and that
this eigenvalues multiplicity is equal to the number of connected components
in the graph.

Now, imagining that f is a 1-dimensional representation of the N data-
points (originally expressed in Rd), it is seen in (2.57) that if neighborhoods
should be preserved when reducing the dimensionality, f should be chosen
such that the di�erence fi − fj is small when w(i, j) is large.

If f is set to be the eigenvector of L corresponding to the smallest eigen-
vector (λ1 = 0), the following holds

λ1f = Lf

0 = fTLf =
1

2

N∑
i,j=1

w(i, j)(fi − fj)2
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Now, since by de�nition all w(i, j) are non-negative, the only way for this
equation to be zero, is f to be a constant vector. This solution, although
trivial, hints of other (meaningful) solutions, evaluating eigenvectors of L.

In Belkin and Niyogi [5] it was proposed that �nding an optimal embed-
ding of the data in a lower dimension could be solved by

arg min
f
fTLf (2.58)

such that fTDf = 1

Here, the constraints removes an arbitrary scaling of the embedded points.
This minimization problem can be solved using Lagrange multipliers, which
gives the eigenvalue/eigenvector problem

Lf = λDf (2.59)

where the solutions lie in the eigenvectors of D−1L. From this approach to
the problem, it is easy to see the role the normalization of L plays; it is
constraints imposed on the solution spaced with regards to scaling. In the
solution above, the eigenvectors of Lrw is sought. Had the constraint been
fTD1/2D1/2f = 1 or fTf = 1 instead, the optimization would reduce to
evaluating the eigenvectors of the di�erent Laplacian matrices.

If a given dataset of N points were to consist of q distinct, unconnected
regions, the L matrix (of size N × N) could, without loss of generality, be
constructed as

L1−q =


L1

L2

. . .

Lq


where the elements outside the matrix blocks along the diagonal are all zero.
As every L1,L2, ...,Lq are them selfs valid Laplacians, living in disjoint sub-
spaces of RN , they all lead to eigenvalues of 0 for L1−q: λ1 = λ2 = ... =
λq = 0. The corresponding eigenvectors will then be indicator vectors in
RN taking some constant value for all connected vertices forming the rele-
vant sub-laplacian, and zero for all other vertices. This fact hints of possible
applications in clustering, which will be looked at in the next section.

Examples Given a dataset originally placed in R3, the graph is constructed
by calculating all the distances between the points and creating edges be-
tween those within a distance epsilon from each other. These edges are then
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(a) Original data in R3 (b) Optimal embedding onto R2

Figure 2.12: Original dataset as two skewed cylinders in R3 and its optimal
embedding onto R2 using the non trivial solutions of the laplacian L (ε = 1,
σ = 5). Colors are for visualization only.

weighted using the function

w(i, j) = exp

(−d2i,j
σ2

)
(2.60)

This creates the sparse a�nity matrix W from which D and L is con-
structed. The eigenvectors of L then gives an embedding of the data ontoM .
Creating two rings, with added gaussian noise, placed skewed in R3, yields
the results visualized in Figure 2.12.

A slightly harder test example is shown in Figure 2.13, where a non-
linearity has been introduced by bending the skew cylinders in space. The
result of evaluating the eigenvectors of Lrw is seen to separate the two struc-
tures nicely, although the intuitive form in recovered in Figure 2.12 is not
seen. Nevertheless, using this method for dimensionality reduction would
greatly help subsequent algorithms handle the data.

Spectral Clustering using Graph Cuts

As was noted in the previous section, the eigenvectors of the Laplacians can
give knowledge about possible clusters in the data directly. However, for this
to apply, the user must choose the correct parameters (like the ε-distance)
for meaningful clusters to appear in the a�nity matrix . A way around this
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(a) Original data in R3 (b) Optimal embedding onto R2

Figure 2.13: Original dataset as two skewed and bent cylinders in R3 and its
optimal embedding onto R2 using the non trivial solutions of the normalized
Laplaican D−1L (ε = 1.5, σ = 0.1). Colors are for visualization only.

problem is to de�ne an operation on the graph called a cut, and try to split
the graph into pieces in a way which minimizes some cost function related
to the splitting. It is assumed that the graph being worked on is connected
so that none of the non-trivial eigenvectors (of the smallest eigenvalues) are
just indicator vectors for some of the disjoint parts of the graph.

To derive the Spectral Clustering algorithm, some notation is required.
Assuming a graph G = (V ,E) is constructed with an associated Laplacian
L, an a�nity matrix W and a diagonal matrix D containing the degree of
each vertex, it is possible to split the graph into two sub-graphs A and B
such that

A ∪B = G and A ∩B = ∅

The degree of a vertex is given in (2.53) and gives the relevance of that vertex.
Next, given a subgraph A, its relevance can be measured by its volume. The
volume of sub-graph A is de�ned as

V ol(A) =
∑
i:vi∈A

D(i, i) =
∑

i : vi ∈ A
j ∈ vi

w(i, j) (2.61)

As proposed in [58], one way to split G into two sub-graphs A and B, is
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to try to minimize the cut, de�ned as

cut(A,B) =
∑

i:vi∈A, j:vj∈B

w(i, j) (2.62)

Minimizing this function would correspond to assigning the vertices into two
groups such that the sum of the weights on the edges running between the
two are minimized.

This choice of cost function is, as noted in [54], however not optimal as it
tends to cut o� single lone vertices; if a vertex only has one edge from itself
to another vertex, the cost of making it the only vertex in B while the rest
of the graph is assigned to A would, using (2.62) be very small. A remedy
for this was suggested in [52], where the cut cost is normalized with respect
to the volumes of each of the resulting sub-graphs. The normalized cut is
de�ned as

Ncut(A,B) =
cut(A,B)

V ol(A)
+
cut(A,B)

V ol(B)
(2.63)

Minimizing (2.63) would not tend to cut o� lone vertices, as one of the
resulting sub-graphs would then have a very small volume, making the cost
of that particular cut high. Another choice of graph separation cost function
is the RatioCut [18], which also normalizes with respect to sub-graph sizes.
For simplicity, it will not be covered in this thesis.

So solve the task of minimizing the normalized cut, it is assumed that
labels for the vertices in each sub-graph is assigned as follows

yi =

{
1

V ol(A)
if vi ∈ A

− 1
V ol(B)

if vi ∈ B
(2.64)

which, given a set of N vertices, results in a vector y ∈ RN .
Now, by this de�nition of indicator values for each of the sub-graphs, the

following result follows

yTWy =
1

2

∑
i

∑
j

(yi − yj)2w(i, j)

=
1

2

∑
i:vi∈A

∑
j:vj∈B

(
1

V ol(A)
+

1

V ol(B)

)2

cut(A,B)

∝
(

1

V ol(A)
+

1

V ol(B)

)2

cut(A,B) (2.65)
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where the proportionality comes from removing the multiplicity of the sum-
mation term with regards to vertices in each sub-graph.

With the de�nition in (2.64), the following equation also holds

yTDy =
∑
i:vi∈A

yiD(i, i) +
∑
j:vj∈B

yjD(j, j)

=
1

V ol(A)2
V ol(A) +

1

V ol(B)2
V ol(B)

=
1

V ol(A)
+

1

V ol(B)
(2.66)

Combining (2.65) and (2.66), it is seen that (2.63) can be replaced by

J =
yTLy

yTDy
(2.67)

and minimized.

By the de�nition of (2.64), the yi elements are only allowed to take on
two very speci�c values10. In order to solve the optimization, the problem is
relaxed such that y can vary over all real values constrained by

yTDy = 1 (2.68)

where 1 is a column vector of length N with only 1's. With this, (2.67) can
then by optimized by introducing Lagrange multipliers on the constraints,
obtaining the eigenvalue, eigenvector equation

Ly = λDy (2.69)

Since a minimum cost is sought, the eigenvector yi of D
−1L corresponding

to the smallest eigenvalue λi should be chosen. However, if the graph is
connected, it will have an eigenvalue λ1 of 0 corresponding to a constant
vector y1. Evaluation of y1 to obtain a cut is then impossible and instead
the eigenvector associated with the second smallest eigenvalue is used. To
avoid the ambiguity when it is unclear whether the graph is connected or
not, is it generally constructed so that it is [54].

The cluster labels can now be set by thresholding the given eigenvector.
Since it should mimic the true de�nition of y, given in (2.64), a common
choice here is clustering vertex vi to A if yi ≤ 0 and to B otherwise.

10These values also vary based on which cut is performed.
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Example

A synthetic dataset of somewhat complicated structure is created in 2 dimen-
sions to test the Laplacian method of clustering. The dataset can be seen in
Figure 2.14(a). The distance matrix D is constructed using the Euclidean
norm, and the connected nodes are determined using the ε-method with a
distance threshold of 0.1. The weight on the edges between each node is cal-
culated using (2.52) with a width parameter σ of 0.3. The Laplacian matrix
L is then calculated and its eigenvalues and eigenvectors found. Threshold-
ing out class assignments based on the elements along the second smallest
eigenvector is done simply evaluating the sign. The result is the class labeling
shown by di�erent colors in Figure 2.14(b), which is very satisfactory.
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(a) Original unlabeled data

(b) Result of graph based spectral clustering

Figure 2.14: Spectral clustering applied to non-linear dataset (ε = 0.1 and
σ = 0.3).
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Chapter 3

Information Theoretic Learning

In the previous sections, some of the machine learning applications involving
estimating the probability densities or connections between datapoints were
given an overview. Over the last 10 years, a new direction which also rely on
the probability densities has been explored; namely the �eld of information
theoretic learning.

This new approach uses what is called the entropy and divergence mea-
sures to capture information about a dataset beyond the �rst and second
order moments, which most novel techniques rely on. Being a functional
of the PDFs themselfs, it relays information about all the statistics of the
process [10]. A basic example of why this can be worth while is shown in
Figure 3.1, where three probability densities with the same mean and the
same variance is plotted. Clearly the three distributions look very di�erent,
but this remains unknown to the �rst and second order statistics.

Up until very recently, ITL was done exclusively by means of kernel meth-
ods, with the Parzen window estimate (discussed in 2.2.1) of the PDF playing
an important role. In this chapter, it will be shown why this has been the
case and how the Parzen estimate naturally shows up. The next chapter will
then look at a state-of-the-art clustering routine where this estimate is used
and extend the theory so that the adaptive KNN-approaches can be used
instead.

The term entropy was �rst used by Shannon in 1948 discussing optimal
communication over transmission lines [49]. In the original paper, Shannon
developed his theory to evaluate transmission potential in presence of noise,
also taking into account the statistical properties of the ensemble of mes-
sages being communicated. With that, he spawned of a whole new �eld of
research still active to this day ranging from engineering of cables to design
of adaptive machine learning systems. This wide range of uses for informa-
tion theoretic considerations was apparent to Shannon from the outset and
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Figure 3.1: Three distributions with same mean and variance, yet very dif-
ferent shapes.

a quote by Sir Arthur Stanley Eddington from the book The Mathematics of
Communications [50] of 1949 is here apt:

Suppose that we were asked to arrange the following in two
categories - distance, mass, electric force, entropy beauty, melody.

I think there are the strongest grounds for placing entropy
alongside beauty and melody, and not with the �rst three. En-
tropy is only found when parts are viewed in association, and it is
by viewing and hearing the parts in association that beauty and
melody are discerned. All three are features of arrangement. It is
a pregnant thought that one of these three associates should be
able to �gure as a commonplace quantity of science. The reason
why this stranger can pass itself o� among the aborigines of the
physical world is that it is able to speak their language, viz., the
language of arithmetic.

It is interesting to note how well this quotation about entropy �ts into our
modern theory of machine learning and pattern recognition, talking about
comparing sets of structures and extracting universal knowledge. The quote
could serve as motivation moving forward in investigating and developing the
theory.
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In what follows, an introduction to the background is given. Firstly the
Shannon entropy is introduced before moving on to the more applicable Renyi
entropy. With this, the basic way of estimating the entropy is investigated
before the di�erent distance measures in information theoretic learning is
given a review.

3.1 Entropy

Shannons original de�nition of entropy is given on the form

HS(X) = −
∫
p(x) log p(x)dx (3.1)

in the continuous case and

HS(X) = −
∑
k

p(xk) log p(xk) (3.2)

in the discrete case [49].
The quantity

Ik = − log(p(xk)) = 1/ log(p(xk)) (3.3)

refers to the information obtained from a speci�c event occurring as �rst
described by Hartley [19] and later re�ned by Shannon in his seminal article
of 1948 [49]. It should be noted that this information is completely described
by the PDF of X in the form of inverse logarithmic proportionality.

In the case where p(xk) becomes 1 (only one event in the probability
space), the information of that event occurring becomes zero - seeing the
event happen can not serve to explain any phenomenon as it always happens.
The same balancing happens in the opposite case of an improbable event
carrying much information. The entropy can with this be understood as a
weighted mean of the information of a process with the weighting being done
according to the probability of each event actually happening. The entropy
acts as a descriptor of the Probability Mass Function (PMF), or the PDF, in
such a way that a balance is struck between the information an event carries
and the probability of that event occurring [45]. It captures the fact that
not all random processes are equally random with the degree of uncertainty
fully described as a function of the PDF.

Having introduced the Shannon entropy and discussed the intuition be-
hind it, it looks like a promising descriptor of data to build upon within
machine learning. However, the task of actually estimating the entropy from
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real world data is altogether nontrivial in its current form. Here, the ex-
tension done to the theory by Alfred Renyi in the mid 1950s proves very
helpful in managing to do straight forward estimation of entropy from an
unknown dataset. With this, one can then train algorithms (do learning) to
solve various tasks with ITL-principles as the foundation.

3.2 Renyi's Entropy

Renyi set out to �nd the most general form of an information measure
that preserved the property of additivity for information about independent
events, which he describes as the most important aspect of entropy [46]. This
means that the joint observation of two independent events should yield as
much information as the sum of them combined

I(xi ∩ xj)
xiind.xj

= I(xi) + I(xj) (3.4)

He noted, as some authors before him had [3], that the summation and
integration in (3.1) and (3.2), could be understood as a linear weighted mean
of the quantities 1/ log(p(xk)) = Ik. Extending the de�nition of taking the
mean value by applying an invertible, monotonic function, g(x), a new en-
tropy estimate can be written as

Hg()(X) = g−1
(∫

p(x)g(I(x))dx

)
(3.5)

where I(x) is the information contained in event x as de�ned by Shannon. In
these discussions, only the continuous case will be considered. The same the-
ory holds for discrete variables also (with sums taking the place of integrals),
but is here omitted for simplicity.

The restriction of additivity for independent events turn out to restrict
the number of valid functions, g(x), substantially [45], leaving only

g(x) = cx (3.6)

g(x) = c 2(1−α)x (3.7)

with α > 0 and α 6= 1.
Applying the former (for any c 6= 0), (3.6), into (3.5) returns the ordinary

mean leaving the original Shannon entropy. By using the latter however, the
following entropy estimate is obtained

Hα(X) =
1

1− α
log

(∫
pα(x)dx

)
(3.8)
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This new formulation leaves the logarithm outside of the integral and lends
itself to being more �exible through di�erent choices of the parameter α.
Indeed, in the limiting case where α approaches 1, it is easily veri�ed (through
l'Hôpitals rule) that limα→1Hα(X) = HS(X), the original Shannon entropy
[45].

3.2.1 Renyi's Quadratic Entropy

One particularly useful choice of α, namely α = 2, gives the quadratic entropy
measure

H2(X) = − log

(∫
X

p2(x)dx

)
(3.9)

This parameter choice has been the most prevalent in applied uses of
information theoretic learning in recent years. The reason for this is the
elegant solution obtained when noticing that

∫
X
p2(x)dx (or equivalently∑N

k=1 p
2(xk)) is the expected value of p(x) taken over p(x)

Ep(x)[p(x)] =

∫
X

p2(x)dx (3.10)

This, of course, is just the �rst order moment of p(x), a quantity that
can be easily estimated from the sample mean. Given N realizations of p(x),
the expected value (and thus the integral) can be estimated by

Ep(x)[p(x)] ≈ 1

N

N∑
k=1

p(xk) (3.11)

This holds for both continuous and discrete X. Now, all that remains is
inserting the estimate into the negative logarithm of (3.9) to have the entropy
measure sought.

It could here be worth commenting the link to the technique called Monte
Carlo integration. This theory states that given an integral over the product
of two functions f(x) and h(x), the integral can be estimated by simulating
data according to h(x) applying f(x) and taking the mean. This gives [47]

∫
h(x)f(x)dx = Eh(x)[f(x)] ≈ 1

N

N∑
k=1

f(x′k) (3.12)

where X ′ = {x′1,x′2, ...,x′N} is generated from h(x). Setting f(x) = h(x) =
p(x), this is exactly the situation of (3.11).
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Estimation of H2

As was seen in the previous section, using Renyi's quadratic entropy results
in a easy form of the estimate where the mean value of p(x) is needed. To
achieve this from actual data, the underlying unknown probability density
needs to be estimated. To this end, one can draw on the theory examined in
Section 2.2. As mentioned there, real world problems of estimating PDFs are
often tackled using non-parametric approaches [45]. This comes from their
strength of not introducing any model bias and being able to handle complex
structures along the di�erent dimensions.

Recall from Section 2.2.1 that the probability density in a point x could
be written as the mean contribution from all datapoints weighted according
to distance by some kernel function. Pursuing this intuition, gives the (non-
parametric) estimate

p̂(x) =
1

Nσ

N∑
k=1

κ

(
x− xk
σ

)
(3.13)

with σ being a bandwidth parameter and the kernel function κ adhering to
the requirements of section 2.2.1.

Using a Gaussian kernel, Gσ(·), (on the from given in (2.10)), gives the
classic Parzen window estimate used extensively in practice to realize entropy
estimates from real data. This will be the standard method of estimating
probability densities moving forward. However, in the next chapter, the
theory will be extended to the k nearest neighbor case.

The reason this Gaussian kernel estimator has been so popular, comes
from the nice properties the kernel exhibits under convolution with itself.
Firstly, the arguments of the kernel reduces to the di�erence, and the variance
of each of the kernels adds together. This yields the estimate

Ĥ2(X) = − log

∫ ∞
−∞

(
1

N

N∑
i=1

Gσ2(x− xi)

)2

dx

= − log
1

N2

N∑
i=1

N∑
j=1

∫ ∞
−∞

Gσ2(x− xi)Gσ2(x− xj)dx

= − log

(
1

N2

N∑
i=1

N∑
j=1

G2σ2(xi − xj)

)
(3.14)

This is a very nice result, as only the N known datapoints enter into
the estimation. With only evaluations across the datapoints needed, the
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estimate reduces to something which can be done in O(N2) time regardless
of the dimensionality of the data. This is a highly attractive property, as it
circumvents the problem of populating a high dimensional space with testing
points in order to do estimation [45]. In scenarios with large amounts of data
however, this complexity can prove too time consuming and steps have to be
taken to avoid too many cross datapoint evaluations.

It could also be noted that the double sum in (3.14), can be evaluated in
matrix- and vector notation as

Ĥ2(X) = − log

{
1

N2
1TK1

}
(3.15)

where 1 is a (N × 1)-dimensional vector of ones. Further more, if a valid
Mercer kernel function is used to estimate the PDF, K (N × N) will be a
positive semide�nite matrix of cross point kernel evaluations corresponding
to inner product calculations in F .

The elements of K implicitly give information about the entropy in the
dataset. Eigendecomposing this matrix can then help do e.g. dimensionality
reduction and denoising [26], classi�cation [27] or clustering [16].

3.3 Divergence

So far, only informational theoretic measures related to a single probability
density has been given a review. An equally important subject, is how to
construct some metric to measure similarity (or dissimilarity) between two
PDFs. Ever since Mahalanobis introduced the concept of distance between
probability densities [38], the topic has been extensively expanded and is
today a cornerstone in information theoretic learning. As such, it is in the
literature also referred to as information divergence, information gain and
relative entropy.

Given two PDFs, p(x) and q(x), the Kullback-Liebler (KL) divergence
between them is de�ned as [32]

DKL(p||q) =
∑
x

p(x) log
p(x)

q(x)
(3.16)

DKL(p||q) =

∫
X

p(x) log
p(x)

q(x)
dx (3.17)

This is a measure of the dissimilarity between between p and q adhering to
some, but not all, of the postulates of a metric; it is non-negative and 0 if and
only if p = q. However, it is not symmetric and does not ful�ll the triangle
inequality and as such it is called a divergence measure.
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Even though (3.16) � (3.17) is not symmetric (DKL(p||q) 6= DKL(q||p)),
it can easily be made so by instead using the J divergence (introduced by
Je�rey) as mentioned by Príncipe [45] citing [8]. One version of it is given
as follows

DJ(p||q) =

√
1

2
(DKL(p||q))2 +

1

2
(DKL(q||p))2 (3.18)

As was discussed in the previous section, entropy is related to the uncer-
tainty in a process. In a similar fashion, the divergence is related to the gain
in information on p(x) by observing q(x). Given an event A with probabil-
ity q(xi), which changes to p(xj) upon observing B. From this, the uncer-
tainty changes according to the information gained from observing B. This
gain is log 1/q(xi) − log 1/p(xj) = log p(xj)/q(xi), a quantity recognized in
DKL(p||q). So, the KL-divergence is the weighted mean (according to p(x))
of the gain in information (or decrease in uncertainty) when observing an
event. This intuition help explain the other names of divergence mentioned
above.

3.3.1 Renyi's Divergence

Now, similar to the section about entropy, a scalar function over probabilities
has been introduced and, similar still, it could be noted that evaluation of
this function can be di�cult in practice. In the case of entropy, Renyi's
more general de�nition lead to promising results and his general divergence
measure is investigated here.

Renyi's α divergence between p(x) and q(x) is de�ned as 1

Dα(p||q) =
1

α− 1
log

∫
X

p(x)

(
p(x)

q(x)

)α−1
dx (3.19)

with α > 0 and α 6= 1.
Here, the connection with the Renyi's entropy is clear. The logarithm now

appear outside of the integral and the free parameter α has been introduced.
Interesting properties of this divergence include [45]

1. Dα(p||q) ≥ 0, ∀p(x), q(x)

2. Dα(p||q) = 0 if and only if p(x) = q(x) ∀ x ∈ Rd

3. limα→1Dα(p||q) = DKL(p||q)
1For simplicity, only the continuous case will be treated hereinafter. Changes needed

to accommodate discrete random variables should be obvious where applicable.
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1 and 2 states the same metric conditions which the KL-divergence follows.
3 states that the KL-divergence is the limiting case when α tends to 1, much
in the same way as Shannon entropy was the limiting case of Renyi's entropy
for α → 1.

Estimation of Dα

As with Renyi's entropy, the divergence could be understood as the expected
value of p(x)

q(x)
under p(x). From this, the measure could be estimated non-

parametrically via parzen windowing. Given N points generated from p(x),
{xp(1), ...,xp(N)}, andM points from q(x), {xq(1), ...,xq(M)}, the estimate
becomes

Dα(p||q) =
1

α− 1
logEp

[(
p(x)

q(x)

)α−1]

≈ 1

α− 1
log

1

N

N∑
i=1

(
p̂(xi)

q̂(xi)

)α−1

=
1

α− 1
log

1

N

N∑
i=1

(
1
N

∑N
j=1Gσ2(xp(i)− xp(j))

1
M

∑M
j=1Gσ2(xp(i)− xg(j))

)α−1

(3.20)

= D̂α(p||q)

In employing the Parzen windowing, the estimate reduces to cross-datapoint
evaluations leading to a complexity bounded above by O(N2) (or O(NM)
for M > N) as with the Renyi entropy estimate.

3.3.2 Cauchy-Schwartz Divergence

There exists many more divergence measures, such as the Bhattacharyya [6],
the Cherno� [7] and the Hellinger [4] distance as cited by Príncipe [45], which
can be used to evaluate similarity between PDFs. It is beyond the scope of
this thesis to give a review of these. However, another based on Euclidean
distance is worth investigating. It is de�ned as

D∗ED(p||q) =

∫ √
(p(x)− q(x))2dx (3.21)

This functional obeys all the properties of a metric and is thus a distance
measure (not just a divergence measure).
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For use in machine learning applications (dealing with cost functions to
be optimized), the square root term is often omitted, giving

DED(p||q) =

∫
(p(x)− q(x))2dx

=

∫
p2(x)dx+

∫
q2(x)dx− 2

∫
p(x)q(x)dx (3.22)

This geometrical interpretation of PDF-divergence/distance leads to the
�nal measure, the Cauchy-Schwartz divergence which will be used in the
applications to come. Its origin is in the Cauchy-Schwartz inequality√∫

p2(x)dx

∫
q2(x)dx ≥

∫
p(x)q(x)dx (3.23)

Here equality holds only if p(x) = q(x)2.
From this, Jenssen et al. de�ned a new divergence measure inspired by

the inequality as

DCS(p||q) = − log

∫
p(x)q(x)dx√∫

p2(x)dx
∫
q2(x)dx

(3.24)

where the larger factor have been moved to the other side of the inequality.
Because of the CS-inequality, the argument of the logarithm is always

in the interval [0, 1]. This causes DCS ≥ 0 ∀ x with equality only when
p(x) = q(x). The measure is also symmetric, but it does not ful�ll the
triangle inequality, makes it a divergence measure instead of a metric.

Decomposing the factors of the logarithm yields

DCS(p||q) = 0.5 log

∫
p2(x)dx+ 0.5 log

∫
q2(x)dx− log

∫
p(x)q(x)dx

(3.25)
which is recognized as the terms in (3.22) divided by 2 with the logarithm
applied. From this, it is understood that the CS divergence is closely related
to the Euclidean distance divergenceDED which directly measures di�erences
between densities.

It should also be noted that this measure is particularly suitable for mea-
sureing the seperation of two datasets. This comes from the two di�erent
information theoretic considerations which enter into the equation; in order

2In general, this is true up to two constant factors but since p(x) and q(x) have to
integrate to unity, these constants have to be 1.
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to maximize the CS-divergence, the between set entropy should be small,
while each set in itself should contain as much information as possible. A
parallel to the normalized cut in 2.4.1 is here natural to draw. In that case,
a good seperation between two sets was described as something which had
large distance across the sets while keeping each set itself compact. For the
CS-divergence case, the same thing is measured by small overlap in the in-
dividual PDFs (distance), while each of the sets carry as much information
as possible (compactness).

Estimation of DCS

Having decomposed the divergence measure into the three terms of (3.25), the
�rst two integral evaluations is recognized as the Renyi's quadratic entropy
of p(x) and q(x) from the previous section.

DCS(p||q) = −0.5H2(Xp)− 0.5H2(Xq)− log

∫
p(x)q(x)dx (3.26)

The estimation of these can be done as discussed in the previous section.

With this, the only term which needs a closer look is the integral over
both densities, called the Cross Information Potential (CIP) [45]. It is in-
teresting to note that this term is the only one of the three involving both
densities. Because of this, it is the only one which actually relay anything
about the di�erence between the two. The two other terms merely normalize
the measure with respect to the carried information, the entropy.

To estimate the integral
∫
p(x)q(x)dx, the two most common approaches

are

1. Insert a Parzen window estimate with a Gaussian kernel for each density
and use the properties of the Gaussian under convolution.

2. Exploit the fact that the datasets are realizations from each of the
distributions and do Monte Carlo integration or mean value approxi-
mation.

Both methods will be investigated.

Assume Np and Nq points are generated from p and q, giving the sets

P = {x′′i }
Np

i=1 and Q =
{
x′j
}Nq

j=1
respectively. For the �rst method, the Parzen

window estimates of the densities are inserted directly and the convolution
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properties of the kernel (as explained by Jenssen et al. [21], citing [44]) used∫
p(x)q(x)dx ≈

∫
p̂(x)q̂(x)dx

=

∫
1

Np

Np∑
i=1

Gσ2(x− xi)
1

Np

Nq∑
j=1

Gσ2(x− xj)dx

=
1

NpNq

Np∑
i=1

Nq∑
j=1

G2σ2(xi − xj) (3.27)

Again it is seen that the estimate reduces to a sum over all cross-datapoint
di�erences weighted by some kernel as with the estimation of the Renyi
quadratic entropy. This time however, all of the cross terms are between
data from di�erent distributions.

As with the estimate of H2(X), this quantity can be expressed in vector
notation as 1TNp

K1Nq whereK is a (Np×Nq) matrix of the kernel evaluations
and 1Nx is a column vector with ones of length Nx.

If instead the second approach is used, it is noted that both the datasets
given are realizations from the underlying distributions p and q. Recall from
Section 3.2.1 that using Monte Carlo integration [47], one of the sets will
be inserted directly into the function for the other, and the mean taken.
Choosing to insert Q into p(x), gives the mean value approximation∫

p(x)q(x)dx ≈ 1

Nq

Nq∑
j=1

p(x′j)

Notice that this can be regarded as as approximation to the expected value
of q on p

Ep(x)[q(x)] ≈ 1

Nq

Nq∑
j=1

p(x′j) (3.28)

It should also be noted that instead choosing to insert P into q(x) is also
an option (by the commutative property of functions under integration). In
that case, the opposite expectation would be evaluated (p on q).

Now, if p(x) had been a known function, the estimation would have been
done. It is not however, and has to be estimated using the other dataset P .
Using the Parzen window estimate with a Gaussian kernel Gσ′(·) gives∫

p(x)q(x)dx ≈ 1

NqNp

Np∑
i=1

Nq∑
j=1

Gσ′(x
′′
j − x′i) (3.29)
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With this, the same result as with convolving two Gaussian kernels is
reached. The width parameters σ and σ′ are not necessarily equal, but these
are a free parameters in this setting. Choosing σ′ = σ

√
2, would yield the

exact same estimate.
Reaching the estimate above by two di�erent methods is good, albeit a

bit unnecessary. However, something was gained in going by method num-
ber two. In this method, a Gaussian kernel for estimation was chosen, but
the theory is consistent for any kernel choice which is asymptotically correct
in estimating p(x). Indeed, it is consistent for any asymptotically correct
estimator of p(x) (not necessarily a kernel). This fact will be crucial in de-
veloping a KNN-take on Information Theoretic Learning in the next chapter.

3.4 Clustering with IT-principles

Clustering is an unsupervised way of grouping data given some measure of
similarity. In clustering, the goal is to organize unlabeled data into its natural
groups such that points within each group is more similar to each other
relative to datapoints in the other groups. In this setup of machine learning,
there are no known data labels which could help guide our algorithms, nor
are there some speci�c similarity measures which are guaranteed to capture
separation of all possible datasets.

Traditionally, the measures of similarity have been linear in nature, only
taking into account the �rst and second order statistics of the clusters pro-
duced (see Gokcay and Príncipe [17] and the references therein). The famous
K-means algorithm is an example of an algorithm with such a measure, seek-
ing to minimize the distance variance in each cluster [37]. This methods only
works well if the data structures are hyperspherically distributed and will
break down if presented data with prominent non-linear features.

In recent years the topic of clustering has been explored within the setting
of Information Theoretic Learning (ITL). As seen in this chapter, this theory
is equipped with measures for both across-cluster (divergence) and within-
cluster (entropy) considerations. With that, an extension of the traditional
clustering theory can be explored where Information Theoretic considerations
replacing �nite-order statistics.

Clustering with IT was �rst done by Watanabe [56] as cited in [17]. The
major limitations in the early work of Information Theoretic Clustering (ITC)
was that parametric methods were used for estimating the PDFs. Because
of this, a lot of prior knowledge was required about the data if a signi�cant
model bias was to be avoided. Gokcay and Príncipe [17] circumvented this
problem in their landmark article by estimating the required IT-measures
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with the non-parametric kernel methods discussed in the previous sections.

The �rst article using non-parametric kernel estimates applied a hierar-
chical optimization routine which tried to reduces the number of clusters
(generated from a naïve preclustering routine) according to the Cross Infor-
mation Potential (CIP) of the set [17]. The CIP was estimated as in (3.27)
and the algorithm provided promising results. However, the complexity, T ,
of the optimization (O(N3) < T < O(N4)), rendered the algorithm very
slow or unusable for problems of some size.

In later work, the clustering was done hierarchically in a fashion which
tried to minimize the gain in Renyi's quadratic entropy when a datapoint was
assigned a cluster [20]. When reducing the number of clusters, the CIP was
again used to evaluate which cluster was to be removed. As opposed to the
original algorithm, two information theoretic measures are here used to do
the optimization, one evaluating within cluster entropy and one evaluating
between cluster divergence. This made the optimization easier and reduced
the complexity. The run-time was further improved by performing stochastic
subsampling of the dataset in [29].

Extended development in this �eld lead Jenssen et al. [22, 21] to a cluster-
ing routine which used the Cauchy-Schwartz divergence measure to do ITC.
This method produced state-of-the-art results by estimating the divergence
measure by a kernel method (as in 3.3.2) and hierarchically optimizing it.
However, as with any other kernel-method, the quality of the results proved
highly dependent on a correct choice of the bandwidth parameter σ.

3.4.1 Kernel ITC

This section will introduction the cost function which the most recent re-
search has focused on to do ITC. Here, its kernel estimate will also be
reviewed. In the next chapter a new, KNN-approach is proposed for doing
the optimization.

As was seen previously, the Cauchy-Schwartz divergence provided a nor-
malized measure of distance between two PDFs inspired by the the inequality
with the same name. It was also shown how the quantity could be estimated
in a non-parametric fashion by only cross-datapoint evaluations in a kernel
function very similar to the Renyi's quadratic entropy. This divergence has
been the subject of much research in recent years with the focus on clustering
[22, 21, 29, 31, 23].
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Cost function and estimation

The machine learning task of clustering is based on optimizing a cost function
which relays information about the separation of the groups found. It was
seen in Section 3.3.2 that the Cauchy-Schwartz divergence measure could
be suitable to that end, as it measures distance between two clusters while
taking into account the information contained in each cluster.

To repeat (3.24), the CS-divergence is de�ned as

DCS(p||q) = − log

∫
p(x)q(x)dx√∫

p2(x)dx
∫
q2(x)dx

The nominator is know as the Cross Information Potential (CIP) and mea-
sures the distance between p and q. The denominator is recognized as Renyi's
quadratic entropy of p and q and measures the information contained in each
of the PDFs.

This lead Jenssen et al. [21] to de�ne a cost function based on the diver-
gence as

JCS(p, q) =

∫
p(x)q(x)dx√∫

p2(x)dx
∫
q2(x)dx

(3.30)

where the monotonically increasing logarithmic function has been dropped
and the minus sign removed. This means that to maximize DCS, one could
instead minimize JCS.

Now, using the non-parametric estimates for p(x) and q(x)

p̂(x) = 1
Np

∑Np

i=1 κσ2(x,xi)

q̂(x) = 1
Nq

∑Nq

j=1 κσ2(x,xj)

where κσ2 is a spherical Gaussian kernel with Σ = σ2I, the cost function
can be estimated. By inserting the estimates above into (3.30) and using the
convolution property of Gaussian kernels, the following estimate is obtained

ĴCS(p, q) =

1
NpNq

∑Np,Nq

i,j κ2σ2(xi,xj)√
1
N2

p

∑Np,Np

i,j κ2σ2(xi,xj)
1
N2

q

∑Nq ,Nq

i,j κ2σ2(xi,xj)
(3.31)

An interesting property of the Cauchy-Schwartz divergence and cost func-
tion is the normalizing interaction between the numerator and denominator.
In (3.31), the terms Np and Nq are canceled out. Indeed, any linear terms in
the kernel function is also removed3.

3Like the ((2π)d/2σd)−1 terms of the spherical Gaussian kernel.
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Multiple clusters To extend the estimate of the cost function to handle a
set of M clusters, C = {C1, C2, ..., CM}, the divergence between every combi-
nation of cluster has to be evaluated. This is in [21, 29, 22] done by extending
the cost function as

Ĵ(C) =
1
2

∑N,N
i,j Mi,jκ2σ2(xi,xj)√∏M

m=1

∑N,N
i,j MCmi,j

κ2σ2(xi,xj)
(3.32)

where Mi,j is one if xi and xj are in di�erent clusters and zero otherwise.
MCmi,j

is one if xi and xj both are in cluster m.

Optimization Optimization of this cost function has been the subject of
much research. A heuristic optimization was proposed in [21]. One involving
Lagrange optimization was investigated in [25, 24] while another based on
spectral clustering explored in [28]. For a complete review on these optimiza-
tion techniques, the reader it referred to [23]. A discussion on the divergence
measures' connection to graph theory and Mercer kernels can be found in
[31].
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Chapter 4

New Information Theoretic

Clustering Algorithm with KNN

In this chapter, the new K Nearest Neighbor (KNN) approach to Information
Theoretic Learning (ITL) will be introduced in the form of a new clustering
algorithm. This algorithm will in the results chapter be shown to provide
state-of-the-art results without the need of any parameter tuning and vastly
outperform traditional kernel methods when working on data spread over a
wide range of scales.

4.1 Cost Function

In the previous chapter, several IT measures was introduced. It was seen
that the Cauchy-Schwartz divergence DCS provided a very intuitive measure
of cluster separation by both measuring the similarity between two clusters
and the information contained in each separate cluster. The measure was
closely related to Renyi's quadratic entropy and could with that easily be
estimated from data.

For these reasons, it is a natural choice to build upon for a KNN-approach
to Information Theoretic Clustering. Recall from section 3.4.1 that the
Cauchy-Schwartz cost of separating two clusters p and q, is given as

JCS(p, q) =

∫
p(x)q(x)dx√∫

p2(x)dx
∫
q2(x)dx

(4.1)
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4.2 KNN Estimation

In order to do Information Theoretic Learning in a KNN-setting, an estimate
of (4.1) building on KNN principles is needed. The previous work in this
�eld drew on Parzen window kernel estimates of the PDFs and used the
convolution properties of the Gaussian kernel to do the estimation; method
number one of section 3.3.2. This method can not be applied in this setting.
Instead, an estimate based on the mean approximation of the integrals is
built upon; method two mentioned in the section.

The estimation of JCS can be split up into the estimation of each of the
integrals. Evaluating the integrals in the denominator �rst, it is known from
previous theory that

∫
p2(x)dx = Ep(x)[p(x)] ≈ 1

Np

Np∑
i=1

p(xi) (4.2)

Now, since p() is not known, it has to be estimated, something which will
here be done by the KNN method.

Recall from Section 2.2.3 that given a dataset of Np points assumed
to be generated from p, the PDF in a point x could be estimated non-
parametrically as

p̂kNN(x; k) =
k

NVk(x)

Where Vk(x) calculates the hyper volume spanned from x to the k-th nearest
neighbor in the dataset.

The estimate can now be inserted directly into (4.2) to give a non-
parametric KNN estimate of the integral as

∫
p2(x)dx ≈ 1

Np

Np∑
i=1

p(xi) ≈
k

N2
p

Np∑
i=1

1

Vk(xi)

Estimation of the other integral in the denominator of (4.1) can be done in
the same way, replacing p with q.

This means that the original integral can be estimated by evaluating the
mean value of the inverse hyper volume spanned from each datapoint out
to its k-th nearest neighbor in the dataset. It is a fundamentally di�erent
way of obtaining the estimation and has not been seen before in any of the
literature studied on the subject.

For the numerator of (4.1), the same approach as above is used. However,
here the integral is over two di�erent PDFs. This leads to the expected value
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evaluating points between the two datasets∫
p(x)q(x)dx = Ep(x)[q(x)] ≈ 1

Nq

Nq∑
i=1

p(xi)

where the xi's are from q.
Next, the KNN estimate of p is used with the datapoints from q. This

leads to∫
p(x)q(x)dx ≈ 1

Nq

Nq∑
i=1

p(xi) ≈
1

Nq

Nq∑
i=1

k

NpVkp(xi)
=

k

NqNp

Nq∑
i=1

1

Vkp(xi)

Where Vkp(xi) means that the hyper volume spanned from xi (belonging to
q) to the k-th nearest neighbor in p is evaluated.

In general Ep(x)[q(x)] 6= Eq(x)[p(x)] when performing the estimation this
way. The reason for this is that no two set of points from p and q necessarily
both are each others k-th nearest neighbor. Another reason for this di�erence,
is the formula's sensitivity for dataset size. Imagine one point from p lying
a unit distance from ten overlapping points of q, with these being the only
points in each of the sets. Evaluating the integral by the expected value both
ways with k = 1 yields

Ep(x)[q(x)] ≈ k

NpNq

Nq∑
i=1

1

Vkp(xi)

Eq(x)[p(x)] ≈ k

NpNq

Np∑
i=1

1

Vkq(xi)

In the �rst case, 10 evaluations of 1/V (1) would be summed up, while in the
other case only 1 term would enter the summation. Since all the other values
are unchanged, this leads to two potentially very di�erent estimates of the
integral.

With no obvious way of choosing which of the above estimates to use
for the integral in the numerator, the choice has been made to do both
estimations and take the mean. This makes the end estimate of the cost
function and the CS-Divergence symmetric1.

The end KNN estimate of JCS(p, q) becomes

ĴCS(p, q) =

1
2

(
k

NqNp

∑Nq

i=1
1

Vkp (xi)
+ k

NqNp

∑Np

i=1
1

Vkq (xi)

)
√(

k
N2

p

∑Np

i=1
1

Vkq (xi)

)(
k
N2

q

∑Nq

i=1
1

Vkp (xi)

) (4.3)

1Similar to Je�reys way of making divergence measures symmetric.
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This can be easily extended to an estimator of the Cauchy-Schwartz diver-
gence by applying the logarithm and switching the sign

D̂CS(p||q) = − log ĴCS(p, q) (4.4)

4.2.1 Multiple clusters

Since a divergence measure in itself is a measure between two PDFs, ex-
tending it to apply to a higher number of functions has to be done by some
heuristic. There are here several choices which have been used in related
work previously and they all revolve around calculating all the combinations
of divergence between the di�erent functions. The choice presented here have
used a method inspired by the work of Jenssen et al. [30].

GivenM clusters C = {C1, ..., CM} with corresponding PDFs, {pC1 , ..., pCM},
the Cauchy-Schwartz divergence of the set is de�ned as

D̂CS(C) = − log
M−1∑
i=1

M∑
j=i+1

1

CM
D̂CS(pCi ||pCj) (4.5)

Here, CM is the number of waysM clusters can be arranged in groups of two

CM =

(
M

2

)
=
M(M − 1)

2
(4.6)

This term helps normalize the divergence measure when di�erent number of
clusters is used, something which proves useful when trying to estimate the
true number of clusters in a given dataset (more on this in Section 5.1.2).

Wanting to maximize (4.5), one could equivalently minimize the extended
cost function

ĴCS(C) =
M−1∑
i=1

M∑
j=i+1

1

CM
ĴCS(pCi , pCj) (4.7)

where each of the CM inner terms are estimated according to (4.3).

4.3 Optimization Scheme

Previous work on ITC with the CS-divergence measure has produced several
optimization methods for the cost function [21, 24, 28]. The optimization
technique presented here is inspired by the heuristic algorithm of [21] which
in [23] proved to provide the best and most reliable results of the explored
alternatives.

64



To do the optimization, the dataset is �rst seeded with Kinit clusters of
Ninit points. An unlabeled point is chosen at random and then that cluster is
grown to contain a total of Ninit points. This is done in an iterative fashion
such that each point added to the cluster is the one currently the closest
to any of the points in the cluster already. By obtaining the pre-clustering
this way, instead of using the Ninit − 1 nearest neighbors of the initial point,
provides initial clusters which more closely follow the natural distribution of
the data [17].

Having seeded Kinit × Ninit points, the remaining unlabeled points are
iteratively assigned a cluster. This is done by choosing the unlabeled point
closest to some labeled point and �nding which label assignment would min-
imize JCS(C) (thereby maximizing the divergence).

With all the points assigned one of Kinit clusters and Kinit being much
higher than the number of clusters sought, the task now is to gradually
reduce the number of clusters until the user set end cluster number Kend is
reached. To do this, each of clusters currently in the set is tried removed
one at the time and the cost function is evaluated with each of the clusters
removed. Recording which of the cluster removals provided the best cost,
a worst cluster is found. The points of this cluster then have their labels
removed and the remaining clusters are regrown to absorb the points of the
removed clusters. This growing is done iteratively in a fashion minimizing
JCS as before. All the points are now again labeled, but the number of
clusters are reduced by one.

This procedure is repeated until the prede�ned end number of clusters is
reached. For completeness, the above description of the algorithm is restated
in Algorithm 1 and a visualization of the algorithm running is provided in
the next section.

4.3.1 Example of algorithmic steps

In Figure 4.1, each of the steps the clustering algorithm takes is visualized. In
(a), the random initial seed step is seen. Here, 8 clusters each of 10 points is
seeded, before in (b) the clusters are seen after the iterative growing. This has
been done for illustration purposes only and is in general not recommended
as each initial cluster is too small. Next, in (c), the worst cluster found has
been removed and in (d) the clusters have again been regrown to give each
datapoint a label. This is repeated in (e) to (h) and in (h), the �nal result
of 4 clusters is seen.

As is evident, the algorithm has produced a good clustering of the data,
which a linear method could not do.
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(a) Initial seed (b) Clusters grown (c) Cluster removed

(d) Clusters regrown (e) Cluster removed (f) Clusters regrown

(g) Cluster removed (h) Clusters regrown (i) Final result

Figure 4.1: Visualization of the algorithm running.
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Algorithm 1 Pseudocode for clustering with KNN ITL. All cluster assign-
ments (line 3 and 10) are done in order of which point is closest to already
clustered point.

1: procedure KNN Clustering(Kinit, Ninit, Cend)
2: Seed Kinit clusters of Ninit points
3: Iterativly cluster unlabeled points minimizing ĴCS
4: Kcurr = Kinit . Set current cluster number
5: while Kcurr > Kend do

6: minCr ĴCS(C \ Cr) . Find cluster to remove
7: C \ Cr
8: Kcurr = Kcurr − 1
9: for i = 1 : NCr do . Reassign points in removed cluster
10: Cluster xi : minCx ĴCS(C1, C2, ..., Cx + xi, ...CCcurr)
11: end for

12: end while

13: Return C
14: end procedure

4.3.2 Choice of seeding parameters

The choice of Kinit and Ninit can be somewhat important for the algorithm
to work. Experiments have shown that the algorithm performs best when
getting a chance to remove at least 5 clusters before Kend is reached. That
way, it has some �exibility to adjust to the dataset over several re-clustering
steps. At the same time, each initial cluster should not be made up of very
few points, as the Information Theory measures being used will tend to be
more unreliable.

This creates a trade-o� between Kinit and Ninit, connected to the param-
eter Kend. When having an end number of clusters of 2 or 3, setting Kinit to
10− 12 and letting Ninit be of such a size that 80% of the dataset is included
in the initial seeding has been found to be a stable choice.

4.4 Cluster Assignment Voting

As the algorithm is based on random initialization of the Kinit clusters, it
will typically produce di�erent clustering results on each run. Sometimes,
the algorithm will iterate towards a good solution, while other times it could
get trapped in a local minimum. To �nd the best clustering result without
knowledge of the true labels, a natural choice would be to use the result
which provided the highest end divergence. However, although divergence
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and accuracy is correlated (see Figure 5.3), the relationship is subject to
random �uctuations.

Because of this, a voting scheme among the best clustering results is
proposed. It is based on the idea that each of the clustering results which gave
the highest divergence measures all have provided usable results. Choosing
to use only one of them, although easy, can be quite limiting. If instead the
di�erent results are allowed to each cast a vote regarding the �nal clustering
assignment of a data point, the end result will be more stable and based on
more data.

The way the voting is done is visualized in Figure 4.2. Since the algorithm
starts out with Kinit clusters, the end label names for each of the clusters will
typically be di�erent. To solve this, one of the results chosen to participate
in the voting has its labels mapped down to run from 1 to Kend. Each of the
other results also voting then have their labels mapped down to the same
range in a manner which minimizes the distance to the �rst result mapped
down. This is stage two of the scheme seen in the �gure.

The di�erent label vectors then do a voting for the end cluster assignment
of each data point. As can be seen in the example in the �gure, as long as
the di�erent results have not committed errors which overlap, the end result
can turn out to be better that any one result alone [13, 14].

This phenomenon was often times seen on real datasets as well. Running
the algorithm on the benchmark set Wine and performing voting among the
three best results, the accuracies shown in Table 4.1 was obtained.

Run 1 2 3 Voted
Accuracy 0.865 0.944 0.955 0.961

Table 4.1: Result on voting with 3 best results from the Wine dataset. The
voted accuracy is higher than any one of its individual constituents.
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1
2
3
4
5
6
7
8
9

Original labels
3 3 3 3 3 7 7 7 8 8 8 8
2 2 2 2 1 1 1 5 5 5 5 5
7 7 7 7 6 6 6 6 6 6 6 2

Mapped and reordered
1 1 1 1 1 2 2 2 3 3 3 3
1 1 1 1 2 2 2 3 3 3 3 3
1 1 1 1 2 2 2 2 2 2 2 3

Voting
1 1 1 1 2 2 2 2 3 3 3 3

Figure 4.2: Algorithmic scheme for label assignment according to multiple
clustering results' voting. Red boxes indicate errors.
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4.5 High Dimensional Data

Trying to cluster images typically results in handling feature vectors of many
dimensions. Using each pixel in the image as a feature, the dimensionality
of the problem quickly grows. Even for a small image of size 20 × 20, the
feature space would be 400-dimensional.

Recall that the formula for calculating the hyper volume of a sphere in d
dimensions is given as

V (x) =
πd/2

Γ(d/2 + 1)
||x||d2

If d is su�ciently large, any computer will run into numerical problems han-
dling the extremely large numbers produced to do the calculation. Especially
the Gamma function grows rapidly as a function of the dimension2. The dis-
tances calculated in a high dimensional space can also become quite large,
and taking these large numbers to the power of a large d, will produce insta-
bilities in this term also.

The end result is that the calculation either breaks down (tries to eval-
uated ∞

∞) or calculates the hyper volume as 0. To circumvent this, it was
found that for high dimensional data, using only the distance ||x||2 instead of
the hyper volume (i.e. the distance out to the k-th nearest neighbor instead
of the hypervolume), provided reliable results.

Mathematically, the clustering is then no longer done according to maxi-
mizing a divergence measure since the PDF estimates are no longer asymptot-
ically correct. But, the optimization is closely related to the original problem
and proves to perform well on the images tried in the results chapter.

4.6 Choice of K

The �nal algorithm presented in this paper has no parameters which need
tuning, as opposed to the kernel methods requiring a very speci�c bandwidth
parameter to function properly. This is one of the key advantages of the new
method. However, this does not mean that the �exibility is gone, but rather
that one parameter choice seems to perform well on all problems tested. The
choices presented here are results of countless tests on various datasets and
does not necessarily have a strict mathematical justi�cation.

Initially, the same k was used in both the numerator and denominator
of (4.3). Here k = 1 (the nearest neighbor) produced good results and

2Breaking down using double point precision at around Γ(175).
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nothing was gained in increasing this choice for k. However, sometimes the
optimization algorithm turned out to let one cluster grow out of proportion
relative to the other clusters. The end result then was typically one cluster
dominating the entire data set with Kend−1 small clusters scattered around.
From the intuition that the denominator is related to the compactness of
each cluster, the choice for k was here tried changed (while keeping k = 1
in the numerator). In the end, it turned out that letting this k be equal to
the cluster size was a better choice for keeping the clusters compact. This
means that in the denominator, each probability is calculated by the inverse
of the hyper volume spanned to the point in the cluster furthest away. As a
cluster is growing, i.e. new points are incorporated along the border of the
cluster, the e�ect of choosing this k is that more points, of lack of a better
word, 'feel' the growth, thereby tending to make the clusters more compact.

With this, the algorithm proved to be more reliable, and all the results
presented in the next chapter are based on optimizing the cost function us-
ing the nearest neighbor in the numerator and the farthest neighbor in the
denominator.

Another solution was attempted to solve the compactness-problem involv-
ing introducing a non-linear scaling parameter on the hyper volume. This
also helped in keeping the clusters compact, but upon implementing the so-
lution with the di�erent ks, the scaling was obsolete. Nevertheless, it is
included in Appendix D as it proved to be an e�cient way of smoothing the
KNN-PDF estimate.

4.7 Complexity

In previous work on ITC using kernel estimates, the bound on the complexity
has for the most part been governed by the need to calculate the distance
between each dataset. Any algorithm where this is required typically has
an upper bound on complexity given by O(N2). This complexity can prove
di�cult if the data set given is of some size.

The new algorithm presented in this chapter also needs to calculate the
distances between each of the data points, so it is at least bounded by O(N2).
However, since it needs to know the ordering of the neighbors for each data
point, a sorting is also required. Given a distance matrix D of size N ×
N , each of the N columns have to be sorted to �nd the ordering to the
neighboring points. Assuming each sorting can be done in O(N logN) time,
the overall complexity of this method would become O(N2 logN). This is a
very slight increase compared to the kernel methods.
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Chapter 5

Results

In this chapter, various results from clustering with the new algorithm is
presented. The algorithm has been applied to a wide range of problems and
is shown to produce state-of-the-art results without any parameter adjust-
ments.

Where relevant, the new algorithm has been compared to the kernel based
method presented in [21]. This is done to keep the comparisons drawn more
relevant with regards to comparing KNN and kernel methods. The reliability
of the kernel method has proved highly sensitive to the bandwidth parameter
σ. Because of this, whenever a comparison between the two methods is done,
the kernel method is allowed to do its calculations with two di�erent heuristic
approximations to the bandwidth choice; σM and σS. Here, σM is the mean
of the standard deviation along each of the dimensions in the data, while σS
is Silverman's rule-of-thumb approximation [53]. See Section 2.2.2 for more
details.

The chapter begins with examples on two synthetic datasets highlighting
some of the fundamental properties of the algorithm. Next, a comparative
study between the new KNN method and the old kernel method is examined
on a suit of standard benchmark datasets. After that, the algorithm is studied
working in high dimensional spaces before clustering on a multi spectral
satellite image to do cloud screening is investigated. Finally, some datasets
with features on di�erent scales are studied before the results are summarized.
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5.1 Synthetic Data

5.1.1 Non-linear

In Figure 5.1, the new algorithm is compared to the K-means algorithm on
a dataset which can not be separated by straight lines. As is evident, the
K-means performs very poorly, while the new algorithm is fully capable of
separating datasets with non-linear boundaries. It should be noted that the
kernel method is also capable of handling this dataset if a suitable bandwidth
parameter is provided.

5.1.2 Estimation of number of clusters

As was seen in the previous chapter, the cost function constructed for this
algorithm is normalized with regards to number of cluster combinations in
each step. This normalization makes the estimated cost (and also the esti-
mated divergence) invariant to the number of clusters the algorithm is cur-
rently working on. Because of this, it is in some cases possible to �nd the
true number of clusters in the data by simply evaluating the divergence as a
function of number of clusters.

This is done for datapoints from four well separated Gaussian distribu-
tions in Figure 5.2. Here a clear peak is seen when the algorithm hits four
clusters. This information could be used to make a decision about the true
number of clusters in an unknown set. However, the divergence measure
proved a bit more erratic when the same approach was attempted on harder
datasets. In general it did not produce reliable results when attempted on
the benchmark sets analyzed in the next section.
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(a) K Means

(b) KNN ITC

Figure 5.1: Linear K Means clustering (a) and ITL Clustering with KNN
approach (b). The K Means algorithm fails to cluster the 3 spirals while the
information theoretic method performs perfectly.
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(a) 4 well separated Gaussians.

(b) Divergence as a function of number of clusters.

Figure 5.2: Divergence as a function of number of clusters in optimization
algorithm. A clear peak is seen in the divergence when the correct number
of clusters is hit.
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5.2 Benchmark Sets

In this section, the results from testing on several standard benchmark sets1

are presented. Since the true cluster information is available for these known
sets, the accuracy can be calculated for each of the clustering results. For the
new KNN-method, the best result and the result of letting the highest diver-
gence clusterings vote on the �nal grouping is presented. This is compared
with the best result from the kernel approach after sweeping over a wide
range of bandwidth parameters, as well as using the two heuristic methods
to choose a bandwidth.

A more thorough analysis will be done of the Wine dataset before the
the remaining test sets have their results presented. All the data analyzed
here has been linearly normalized to have its features in the range [−1, 1]
and the algorithms have been given the true number of clusters in the set.
The new KNN method has been run with random initialization 50 times
on each dataset and the results with the top 10% divergence has voted on
the label for each datapoint. For the kernel method, a sweep over a range
of bandwidths has been done and the algorithm ran 50 times on each. In
addition, the algorithm was run 50 times for each of the bandwidths found
using the two bandwidth approximations.

For both methods, Kinit has been set to 10, while Ninit chosen such that
80% of the dataset is initially seeded.

5.2.1 Wine

The Wine data is a set of 178 feature vectors in 13 dimensions. Each of the
features come from a chemical analysis of wines grown in the same region of
Italy. The wine analyzed originating from three di�erent cultivars, thereby
producing a dataset where 3 clusters is natural to assume.

In Figure 5.3, the linear relationship between the accuracy of the cluster-
ing and the Cauchy-Schwartz divergence is seen. This is a very helpful result
for choosing which of the solutions to go for. For any clustering done on
an unknown dataset, the accuracy of each the results is not available. This
result shows that the highest divergence terms should be considered for a
good solution.

Figure 5.4 shows the fundamental problem with kernel methods. Here the
clustering is done 50 times for each of the bandwidths in the sweep and the
accuracy result analyzed. The �gure shows that the kernel method provides
stable results only over a limited range of bandwidths. It is also seen that the

1Obtained from University of California, Irvine, Machine Learning Repository [12].
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Figure 5.3: Accuracy plotted as a function of CS-divergence. The linear
relationship help justify the reason for letting the highest divergence results
vote on which cluster assignment is correct.

best accuracy provided by the algorithm comes from a choice of σ where the
results overall is unstable. This means that less con�dence should be placed
on this best result, as it could be a �uke.

In Table 5.1 the accuracy of performing clustering on the dataset is given.
It is here seen that the new KNN algorithm performs as good as the best
result of the kernel method. As discussed earlier however, having the kernel
method actually select this solution is not trivial when the labels of the
dataset is unknown. It is a huge advantage that the new algorithm returns
this accuracy without needing any prior knowledge.

The weakness of having to select some heuristic approximation to the
bandwidth for the kernel method is clearly seen in Table 5.1. Neither σM nor
σS come close to the best result of the KNN method.

KNN Kernel
Best 0.978 Best 0.978
Voted 0.978 σM = 0.403 0.923± 0.017

σS = 0.266 0.867± 0.058

Table 5.1: The various accuracies of the two methods clustering the Wine
dataset.
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Figure 5.4: Clustering accuracy for kernel method using di�erent kernel
widths σ on the Wine dataset. The algorithm is shown to be stable only
within a narrow range of bandwidths.

For completeness, the confusion matrix for the voted clustering result
with the new method is given in Table 5.2. It is here seen that only four
errors are committed, which is comparable to the best results reported for
the dataset.

C1 C2 C3
True 1 58 1 0
True 2 0 68 3
True 3 0 0 48

Table 5.2: Confusion matrix for clustered Wine data with new KNN method.

5.2.2 Iris

The Iris benchmark is a 4-dimensional dataset based on length measurements
on the �ower of an Iris plant. The 150 sets of measurements are from 3
di�erent types of plant, making the sought number of clusters in the set 3.

The clustering tests were done as with Wine. The new KNN algorithm
was run without any parameter adjusting and highest divergence results
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voted for the �nal clustering. For the kernel method, the heuristic meth-
ods of estimating a bandwidth parameter was used while also reporting the
best accuracy obtained from performing a sweep of values.

The results are reported in Table 5.3. Again it is seen that the new
algorithm performs as well as the best result reported from the kernel method.
At the same time, the KNN method vastly outperforms the kernel method
when the heuristically bandwidths are used.

KNN Kernel
Best 0.973 Best 0.974
Voted 0.967 σM = 0.514 0.573± 0.117

σS = 0.248 0.920± 0.029

Table 5.3: The various accuracies of the two methods clustering the Iris
dataset.

5.2.3 Wisconsin breast cancer

The Wisconsin breast cancer dataset consist of 683 10-dimensional features
extracted from a digitized image of a breast mass. For each of the features,
the task is to evaluate if the mass examined is malignant or benign. This
means that the clustering routine should look for 2 groups in the set.

The result of using both the methods discussed in this text is shown in
Table 5.4. Here it is evident that both bandwidth σM and σS has missed
their marked and produced poor results. The parameter free new method
however, has given very satisfactory results comparable to the overall best
found when sweeping a wide range of bandwidths.

KNN Kernel
Best 0.958 Best 0.974
Voted 0.955 σM = 0.561 0.695± 0.090

σS = 0.313 0.696± 0.057

Table 5.4: The various accuracies of the two methods clustering the Wiscon-
sin breast cancer dataset.

5.2.4 Pima

The Pima dataset is based on 8 physiological measurements on females of
Pima Indian heritage living near Phoenix, Arizona, USA. A total of 768
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females, all over the age of 21, was examinded. The goal is to evaluate
whether the data recorded could help predict if a patient would test positive
for diabetes or not.

The results of the clustering is shown in Table 5.5. It is seen that the
KNN method outperforms the kernel method for both the heuristic choices
of the bandwidth parameter. It is also intereseting that the accuracy is
increased by about 1.5% when letting the top 5 clustering results (in term of
CS-Divergence) vote on each datapoints' cluster assignment.

This dataset is by far the hardest of the benchmark sets with the best
clustering obtained only being correct for 70% of the data. However, this
result is comparable to previous work done on the dataset. In [34], a wide
range of classi�ers was compared on this dataset, and the best result was
found to be a classi�cation accuracy of 77.3%. This accuracy is a result
of training a classi�er using the known labels, so the task is overall easier.
Getting a clustering accuracy this close to the best ever reported is good, as
no prior knowledge was used.

KNN Kernel
Best 0.688 Best 0.710
Voted 0.703 σM = 0.323 0.656± 0.018

σS = 0.162 0.660± 0.023

Table 5.5: The various accuracies of the two methods clustering the Pima
dataset.

5.3 High Dimensional Data

To illustrate that the new algorithm also can perform clustering in high di-
mensional spaces, two datasets of images were chosen. Recall from the pre-
vious chapter that when the dimensionality of the data increases, calculating
the hypervolume can lead to numerical problems for a computer working with
�nite precision. To work around this, the distance to the k nearest neighbor
was used in the optimization, instead of the hypervolume spanned by the
distance.

As will be seen in the next two examples, optimizing this related cost
function also leads to meaningful clusters.
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5.3.1 Frey faces

Out of an movie sequence with 1965 images of a face, 300 frames were drawn
at random and tried clustered into two groups. Each image is of dimen-
sion 28 × 20, making the feature vectors of dimension 560; enough for the
hypervolume calculation to break down.

The result of executing the KNN IT clustering starting with Kinit = 8 and
seeding 80% of the dataset is seen in Figure 5.5. Here the 560 long feature
vectors have been reshaped back into images and displayed.

From the �gure, it appears that the algorithm as found two natural clus-
ters in the data. One where the face is smiling and one where it is not.

5.3.2 Handwritten digits

Using the US Postal Service dataset for handwritten digits, 30 images of the
number zero and 30 images of the number one was drawn at random. Each
image is of dimension 16× 16, making each feature vector 256-dimensional.

The result of clustering this dataset (with the same starting parameters
as in the previous section), is shown in Figure 5.6. The clustering algorithm
is here seen to perform without error. However, it should be noted that these
two digits look quite di�erent, making the clustering task easier. The result
was more unstable when trying other, more similar looking digits.
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(a) Cluster 1: Smiling.

(b) Cluster 2: Not smiling.

Figure 5.5: Clustering of 300 randomly drawn Frey-faces. Cluster 1 appears
to always be smiling, while the other cluster does not.
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(a) Cluster 1: All zeros.

(b) Cluster 2: All ones.

Figure 5.6: Clustering of randomly drawn zeros and ones from the USPS
dataset. The result is without errors.
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5.4 Cloud Screening

In this section, the algorithm is tried on a multispectral satellite image to do
cloud screening. This is an important task in remote sensing when working in
frequency ranges where energy is absorbed by the presence of water droplets
in the air. In [16], Gómez-Chova et al. attempted to pre-process land-cover
images using Kernel PCA and Kernel ECA before performing cloud screening
[26]. The images are taken from the MERIS instrument on board the En-
vironmental Satellite (ENVISAT)2. Six physically inspired features obtained
from the MERIS bands was used [15].

The new KNN ITC algorithm is here used to �nd two clusters in the
original image. In theory, the entire image could have been clustered directly,
but since it has a resolution of ≈ 1000 × 1000, approximately 500 billion
distances would have to be calculated. Instead, the known labels of the
image is used to draw 150 pixels of clouds and 150 pixels of land cover at
random, similar to [16]. This reduced dataset is then clustered into two
groups using the new KNN algorithm. With the clustering results, a 1-NN
classi�er trained and used to classify the rest of the pixels in the image.

The result of this classi�cation routine is seen in Figure 5.7. In (a),
a small section of the original image has been cropped out and clustered
directly. This is done to illustrate that the clustering algorithm applied
directly produce reliable results.

In (c), the result of using 300 clustered points in a 1-NN classi�er is
shown. The accuracy of 0.989 is comparable to the best results reported in
the original article of 0.9941 [16]. In the article, a lot of other clustering
attempts was also made, and they all obtained worse results than the KNN
ITC. For instance, running a kernel k-means clustering gave an accuracy of
0.9622. Lastly, it should be noted that the best result reported in [16] was
obtained from performing cross validation when sweeping the bandwidth pa-
rameter over 5 orders of magnitude to �nd the best one. The KNN algorithm
presented in this thesis worked without any parameter tuning.

This section is concluded with some words on the merits of training the
classi�er with the clustering result and performing cloud screening. The
classi�ers used in the original article was trained based on "ground truth"
labels from manual inspection by humans. As the density of clouds fall along
a continuous gradient, it is natural to assume that the labels set by humans
are such that only very dense clouds have been marked. This causes any
classi�er trained with the labels to focus on assigning the dense areas as

2Images provided by Luis Gómez-Chova from The Image Processing Laboratory (IPL),
Universitat de València, Spain.
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(a) Clustering input (�rst 3 channels shown) and results. Accuracy 0.990.

(b) RGB composite. (c) Classi�cation. Accuracy 0.989.

Figure 5.7: Classi�cation of clouds with training from clustering results.
Image is taken over Spain (BR-2003-07-14).
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cloud regions. Pixels falling somewhere between dense clouds and clear sky
tend to not be represented in the training set.

If instead the training set is a result of clustering randomly drawn pixels
into two groups, it is likely that information exists in the training set regard-
ing semi-transparent cloud regions. Also, in having performed the clustering,
a decision has been made regarding if these pixels are more similar to dense
clouds, or clear sky (any signature from typical land covers in the region).

In Figure 5.8, the ground truth data is compared with the classi�cation
result when training has been done using the clustering results. Examining
the �gure, it is interesting to note that the regions where the classi�cation
di�er from the truth map tend to look like typical cloud formations. This
is especially seen in the lower right corner of (b) where maybe a cloud is
forming. It is therefore possible that more is gained from knowing less when
examining classi�cation tasks of this nature. It would have been interesting
to examine further if some of the errors made by the new algorithm could in
fact be forming clouds.

(a) Truth map. (b) Classi�cation.

Figure 5.8: Comparison of truth map and classi�cation with clustered train-
ing data.

5.5 Data on Di�erent Scales

This last section of the results chapter will focus on datasets where the scales
vary. Traditional kernel methods typically struggle to do anything useful in
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these cases, as no single bandwidth parameter can capture all of the structure
in the data. As will be seen, the adaptive nature of the PDF estimation in
the new KNN-approach help the optimization such that meaningful clusters
are obtained.

Two synthetic datasets will �rst be examined to highlight the problem.
Then, a simple example from the real world with data on di�erent scales is
presented. In all the cases looked at, the new method is shown to handle the
clustering far better than the kernel approach.

5.5.1 Gaussian distributions

In the �rst example, 300 points are generated from 3 Gaussian distributions,
100 points from each. These distributions are created such that the covari-
ance matrices are scaled to be very di�erent, with the most spread class
having 5 orders of magnitude higher variance than the most compact class.
The data is generated as follows

X1 ∼ N

([
0
0

]
, 10−2I

)
, X2 ∼ N

([
4
0

]
, 100I

)
, X3 ∼ N

([
20
0

]
, 102I

)
This means that there does not exist some speci�c bandwidth which the

kernel-ITC algorithm can use to capture the structure of the data completely.
For the kernel method, the bandwidth was chosen to be equal to the variance
of the middle class. As before, the KNN method does not need any parameter
adjustment.

A typical clustering result is shown in Figure 5.9 where the kernel method
obtains an accuracy3 of 0.76. Notice that the kernel method has problems
clustering the most spread class. It has even done some errors in the middle
cluster, even though the bandwidth is set to be equal to this clusters' vari-
ance. The KNN method is seen to perform without any mistakes and has an
accuracy of 1.

5.5.2 Color distributions

The dataset presented here is based on an RGB image of two parts, where
one part is monochromatic, while the other has a huge variance in the colors.
The image constructed is shown in Figure 5.10(a).

Clustering this image proves hard for a kernel method, as the color of
one of the clusters is spread, while the other is very compact. This is seen

3Running this clustering several times, the accuracy of the kernel method never ex-
ceeded 0.80.
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(a) Kernel: Accuracy 0.76

(b) KNN: Accuracy 1

Figure 5.9: Clustering on mixture of Gaussians on di�erent scales. The �xed
kernel size in (a) causes poor performance, while the KNN method performs
perfectly.
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in Figure 5.10(b). For each pixel, the three color channels as well as the
pixels' position in the image is used as features for the clustering algorithms.
Each feature is normalized to be in the range [−1, 1] and the clustering is
attempted with Kinit = 6 and Ninit such that 80% of the datapoints are
included in the initial seeding.

Assuming no knowledge about the process which generated the image, the
kernel methods have to estimate the bandwidth to use. As previously done
in this chapter, the kernel method is allowed to try to cluster the data using
two di�erent estimates of the bandwidth; σM and σS. The KNN method
clusters without any parameters needing to be speci�ed.

The clustering results can be seen in (c). The kernel method fails com-
pletely when using Silverman's-rule-of-thumb, σS, as the bandwidth of the
kernel. It does better when instead the mean variance along each dimension,
σM , is used. However the result is by far the best for the KNN clustering
with only 6 pixels (out of 400) being assigned to the wrong cluster. For
comparison, σM produced 31 errors and σS around 200.

5.5.3 Texture and object

The experiments with data on di�erent scales is concluded with a real life
example. In Figure 5.11(a), a scene where a monochromatic gray object is
lying on a rough texture is seen. The color of the texture is varying greatly
compared to the object. This can be seen in (c), where the RGB value of
each pixel of the downsized image constitutes a point in R3.

This clustering task is recognized as one where the two clusters are on
di�erent scales. The position of each pixel is included as features and the
dataset normalized to be in the range [−1, 1] before the clustering is carried
out with the two competing algorithms.

The kernel method is allowed to do the clustering with the two approxima-
tions to the bandwidth seen previously, σM and σS, while the KNN method
is as always run without specifying any parameters.

It is in (d) seen that the kernel clustering fails to separate out the object
for both choices of bandwidth. The KNN approach however, returns a very
satisfactory result where the object in the image has been found. One pixel
to the right of the object has been clustered to the wrong group. This is
likely due to the downsized image (b) having an extra bright/gray pixel in
that area as well as it being close to the object.
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(a) Synthetic image.

(b) Color spread. Left side of image marked.

(c) Clustering results.

Figure 5.10: Clustering of synthetic image with di�erent color spreads. The
KNN algorithm outperforms the kernel method for both choices of bandwidth
parameter.
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(a) Original image. (b) Downsized image.

(c) Color spread. Object marked.

(d) Clustering results.

Figure 5.11: Clustering of image with object and texture. Both bandwidths
of the kernel method fails to cluster the object.
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5.6 Summary of Results

In this chapter, results of the new KNN approach to ITC has been investi-
gated. It was seen that the optimization routine was able to handle datasets
of non-linear structure and that the cost function could in some cases be used
to estimate how many clusters a dataset is made of.

Running the algorithm on the benchmark datasets, it consistently outper-
formed the kernel method. Here it is interesting to note that the clustering
accuracy when letting the results with the highest CS-divergence vote, was
always on par with the best accuracy reported. This makes the new algo-
rithm capable of �nding a good cluster result in an unknown dataset by
evaluation of the divergence and performing the voting scheme to obtain the
�nal cluster labels.

For the high dimensional data, the related optimization task from evalu-
ating distance out to the k nearest neighbor, instead of using the hypervol-
ume formula, was shown. This proved to produce meaningful clusters of the
images looked at. For the Frey-faces dataset, the clustering seemed to sep-
arated based on the facial expression into smiling and non-smiling images.
The handwritten digits got clustered as expected with all the ones in one
cluster and all the zeros in another.

When training a cloud cover classi�er based on the clustering results
from the new algorithm, the accuracy was seen to be close to that of a recent
research paper. It was noted that this research paper used a kernel approach
where a sweep of di�erent bandwidth parameters had to be tried with cross
validation. This makes the overall training process more complex than with
the new KNN method.

Further more, the training of the classi�er based on the clustering result
revealed some new structures in the image. It was noted that these resembled
clouds and it was speculated whether something new had been learned by
letting a clustering result dictate the classi�cation.

The fundamental problem of clustering on datasets where the clusters are
on di�erent scales was tackled next. Here, the kernel method was seen to be
helpless in trying to cluster all the datapoints correctly with one set band-
width parameter. The new KNN algorithm performed far better, producing
error free, or close to error free, clusters.

Lastly it should again be stressed that all the results produced by the
KNN algorithm in this chapter was done without any parameters being tuned
(except for the optimization algorithms' parameters Kinit, Ninit and Kend, but
the clustering results proved quite insensitive to these). Regardless of which
dataset the algorithm worked on, it was simply set to run multiple times (as
it could run into a local optima) and the end result was proved to be good
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and reliable. Avoiding the whole uncertainty of whether or not the current
parameter choice is the absolute best choice proved really helpful in reducing
the complexity of the testing.
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Chapter 6

Conclusion

This thesis has explored the �eld of Information Theoretic Learning (ITL)
from the perspective of using K Nearest Neighbor (KNN) estimates to do
learning. Speci�cally, a new clustering algorithm has been introduced which
uses these principles instead of the traditional kernel estimates.

Using this new clustering algorithm has been shown to consistently pro-
duce results comparable to the best of previous research. These results are
obtained without the tuning of of any parameters. This is a major advan-
tage, as the task of clustering a dataset typically means that no known labels,
which could be used to �nd usable parameters, are available.

Another advantage of performing Information Theoretic Clustering (ITC)
with a KNN approach is the estimators robustness when handling data where
the clusters are on di�erent scales. Several examples of datasets where the
traditional kernel method breaks down has been examined. In all of these
cases, the KNN approach has provided very good results.

Further work could be to investigate if the CS-divergence estimate of
the �nal clustering could be made more stable. The positive correlation
between the divergence and the accuracy should be kept, while removing the
phenomenon of some local minima solutions reporting high divergences. If
this is managed, the voting among the top results would generally be done
with selected constituents of higher quality.

It could also be interesting to do more research on using the divergence
measure as a means of selecting the number of clusters in an unknown dataset.
The experiments done on this showed promise, but on harder datasets the
results were often inconclusive.
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Appendix A

Parametric Density Estimation

To do any sort of parametric estimation, one has to assume a model for the
data. Given a d-dimensional stochastic vector X generated from a prob-
ability density function p(x;θ) with q unknown parameters {θ1, θ2, ..., θq}
in θ. This (parametric) model is completely described by the unknown θ
parameters, which have to be estimated.

The most common method for estimating the models parameters, is the
Maximum Likelihood (ML) method. Given a dataset with N realizations of
the stochastic variable X, X = {x1,x2, ...,xN}, the joint probability func-
tion can be constructed, if statistically independent realizations are assumed,
by

p(X;θ) = p(x1,x2, ...,xN ;θ) =
N∏
k=1

p(xk;θ) (A.1)

For a given dataset (A.1), called the likelihood function, is strictly dependent
of θ. The maximum likelihood method involves estimating θ so that the
likelihood function is maximized

θ̂ML = arg max
θ

p(X;θ) = arg max
θ

N∏
k=1

p(xk;θ) (A.2)

Finding a maximum of this function is, in the cases where the underlying
model is well-behaved (di�erentiable and unimodal), often done by evaluating
for which θ the gradient is 0:

θ̂ML :
∂
∏N

k=1 p(xk; θ̂ML)

∂θ
= 0 (A.3)

To make the calculations easier, the monotonically increasing logarithmic
function can be applied to (A.3) without changing the position of θ̂ML. By
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doing this, the product of all the realizations of X instead becomes a sum,
and a new expression for θ̂ML is found

N∑
k=1

∂ ln p(xk; θ̂ML)

∂θ
=

N∑
k=1

1

p(xk; θ̂ML)

∂p(xk; θ̂ML)

∂θ
!

= 0 (A.4)

For the case of estimating the parameters of a single Gaussian distri-
bution, completely described by µ and Σ, it can be shown [57] that the
maximum likelihood estimators for µ̂ and Σ̂ given N datapoints from the
distribution are

µ̂ =
1

N

N∑
i=1

xi = x̄ (A.5)

Σ̂N =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T (A.6)

where the subscript N in ΣN refers to the fact that the estimator divides by
N . By evaluating the expectation of these estimators, it can be shown that
Σ̂N is only asymptotically unbiased, as

E[Σ̂N ] =
N − 1

N
Σ = Σ− 1

N
Σ

Because of this, it is common to divide by N −1 instead of N in (A.6) to get
an unbiased estimate of Σ. Having unbiased estimates of µ and Σ means that
as the number of datapoints in the estimate grows, the estimates converge
to the true parameters [57] [2]. This is also true for asymptotically correct
estimates, but for small N here, an error will be done in the estimation.

The solution found by evaluating (A.4), often yield good results if the
correct underlying model for the data is assumed and this model has the
nice properties of being di�erentiable and unimodal (as in the case leading
to (A.5) � (A.6)). If these assumptions are not ful�lled, di�erent numerical
and/or iterative methods (like the EM-algorithm) could be deployed to still
obtain a solution. There are however no guarantees that the solution found
is the optimal one; it could be a local maximum (for which an example is
given in Figure A.1) of θ (or even a minimum), it could be an in�ection point
or the solution could lie in the boundaries of the solution space.

The classic example when discussing parametric models is the task of
estimating the probability density function given data drawn from a Gaussian
mixture model. The distribution of a random variable X generated such a
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Figure A.1: EM-algorithm which has converged. To the left a correct solution
is found. The on on the right has found a local maximum.
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model of C classes ({ω1, ..., ωC}) is given by

X ∼
C∑
i=1

P (ωi)N(µi,Σi) (A.7)

where P (ωi) is the probability of class i and
∑C

i=1 P (ωi) = 1.
Assuming X is generated by the model above, there are approximately

C2/2 + (d + 1)C parameters to estimated. The quality of the solution is
also highly dependent on assuming the correct C before proceeding with
the estimation. The standard way of �nding the parameters of this model
is the EM-algorithm. To illustrate some of the problems with parametric
approximations, a synthetic dataset of 100 points is generated from a mixture
of 3 classes given by

X ∼ 0.4N

([
0
0

]
,

[
1 0
0 1

])
+ 0.3N

([
3
3

]
,

[
1 0
0 1

])
+ 0.3N

([
6
0

]
,

[
1 0
0 1

])
Next, the EM-algorithm is applied in order to estimate all the parameters
the model above requires. The number of classes C thought to be correct
generally have to be given to the algorithm. If C is not chosen correctly, the
model is likely to either over�t or under�t the dataset.

Using the synthetic dataset, the EM-algorithm is run three times, with
di�erent guesses for C. The result of �tting these di�erent models is visual-
ized in Figure A.2. It is in this �gure clearly seen that the data is under�tted
if C = 2 and over�tted if C = 6. Using the correct C = 3 however, yields
satisfactory results. In closing, it should be noted that there exists well estab-
lished techniques for choice of reasonable a C, such as the Akaike or Bayesian
Information Criterion [1].
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Figure A.2: EM-algorithm with di�erent guesses for C.
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Appendix B

Bayes Decision Theory

In Bayes Decision Theory, the task is to assign a unknown vector x ∈ Rd to
one of C classes, {ω1, ω2, ..., ωC}, in a meaningful way. A reasonable choice
of this assignment is to let x be assign to the class which is most probable.
That is, given x, assign it class label ωi if P (ωi|x) > P (ωj|x) ∀ j 6= i. In
this expression, the probability p(ωj|x), j = 1, ..., C is not readily available
and to obtain it, Bayes rule, given in (B.1), is used.

Given C classes with known distributions p(x|ωi), i = 1, ..., C and known
prior probabilities P (ωi), i = 1, ..., C, it is possible to estimate the probability
of an unknown x coming from class ωi by using Bayes formula, given by

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
(B.1)

with

p(x) =
C∑
i=1

p(x|ωi)P (ωi)

Now with the assumptions stated above, a new datapoint x can be as-
signed to a class i with the rule

x→ ωi if P (ωi)p(x|ωi) > P (ωj)p(x|ωj) ∀ j 6= i (B.2)

It is noted that the denominator in (B.1) has been dropped as it is equal for
all classes and plays no role in the evaluation of the most probably class.

It can be shown that the decision boundaries given by (B.2) minimizes
the probability of error Pe [54]. For a random vector x ∈ Rd, if the region
where it is assign to the class ωi ∈ {ω1, ..., ωC} is denoted Ri, then the total
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probability of error is given by

Pe =
C∑
i=1

∫
Ri

 ∑
j ∈ {1, ..., C}

j 6= i

p(x|ωj)P (ωj)

 dx (B.3)

In this formula, the probabilities of all misclassi�cations of x possible have
been summed up to give the total probability of misclassi�cation.

With this, the theory of generating decision boundaries could be said to
be complete, as (B.2) can be shown to minimize (B.3) [54], [9]. However,
in many real life applications the di�erent classes are not deemed equally
important. A classic example of this can be drawn from medicine, where
a tumor classi�er has to weight the two outcomes (malignant or benign)
di�erently; the consequences of classifying a malignant one as benign are
far worse than the other way around. To let the classi�er take into account
this consideration, di�erent weights on each of the possible classi�cations is
introduced and stored in a loss matrix Λ. This matrix is de�ned as

Λ =


λ1,1 λ1,2 . . . λ1,C−1 λ1,C
λ2,1 λ2,2 . . . λ2,C−1 λ2,C
...

. . .
...

λC−1,1 λC−1,2 . . . λC−1,C−1 λC−1,C
λC,1 λC,2 . . . λC,C−1 λC,C

 (B.4)

where λi,j gives the weight of misclassifying something from class ωi as ωj.
Note here that the diagonal of the matrix corresponds to the correct classi-
�cations, and these parameters are usually set to zero.

These parameters could be said to represent the relative risk of the dif-
ferent misclassi�cation the system can make. Given an unknown x to be
labeled, the system now tries to minimize the average risk (instead of the
average classi�cation error) with the risk de�ned as

r =
C∑
i=1

∫
Ri

 ∑
j ∈ {1, ...,M}

j 6= i

λj,ip(x|ωj)P (ωj)

 dx (B.5)

The decision boundaries which minimize the risk, is similar to the ones
which minimize the average error1. The only thing that has changed is that
now, each term is scaled with its corresponding λ-value and the minimum

1In fact, minimizing the average error can be thought of as minimizing the average risk
with all elements of Λ set equal to some arbitrary constant.
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(risk) is sought rather than the maximum probable class. With this in mind,
the classi�er given below is obtained.

x→ ωi if
C∑
k=1

λi,kP (ωi)p(x|ωi) <
C∑
k=1

λi,kP (ωj)p(x|ωj) ∀ j 6= i (B.6)

To gain some intuition on how this classi�er works, the best way is to
simplify the dimensionality of x to 1 (x ∈ R) and limit the problem to the
two class case. The decision boundary ends up as

x→ ω1 if λ1,1p(x|ω1)P (ω1) + λ2,1p(x|ω2)P (ω2) ≤
λ1,2p(x|ω1)P (ω1) + λ2,2p(x|ω2)P (ω2) (B.7)

x→ ω2 if λ1,1p(x|ω1)P (ω1) + λ2,1p(x|ω2)P (ω2) >

λ1,2p(x|ω1)P (ω1) + λ2,2p(x|ω2)P (ω2) (B.8)

Evaluating the inequality (B.7)

λ1,1p(x|ω1)P (ω1)+ ≤ λ1,2p(x|ω1)P (ω1) +

λ2,1p(x|ω2)P (ω2) λ2,2p(x|ω2)P (ω2)

p(x|ω1)

p(x|ω2)
≥ P (ω2)

P (ω1)

[λ2,1 − λ2,2]
[λ1,2 − λ1,1]

p(x|ω1)

p(x|ω2)

P (ω1)

P (ω2)

[λ1,2 − λ1,1]
[λ2,1 − λ2,2]

≥ 1 (B.9)

where the assumption that λ1,2 > λ1,1 and λ2,1 > λ2,2 has been used (changing
the direction of the inequality sign).

The same result, with opposite inequality direction, is obtained evaluating
(B.8). Classi�cation can now be done based on whether the fraction on the
left evaluates to larger than or smaller than 1 (larger than 1 corresponds to
ω1). From inspection of the fraction in (B.9), it is seen that the classi�cation
is done evaluation density-, prior probability- and risk-ratios between the two
classes.

Example

Assuming λ1,1 = λ2,2 = 0 (no penalty for correct classi�cation) as is custom-
ary, some of the di�erent cases which can occur in this classi�cation scheme
is visualized in Figure B.1. In this �gure, the distributions of each of the
classes is

x|ω1 ∼ N(−2, 1) , x|ω2 ∼ N(2, 1)
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In the top �gure, the prior probabilities for each of the classes are the
same (= 0.5), and the risk coe�cients λ1,2 and λ2,1 are the same constant
c. Because of this, and the fact that the two distributions have the same
standard deviation, the decision boundary gets placed directly between the
mean values of each of the classes.

In the middle �gure, the prior probabilities are changed, with P (ω1) >
P (ω2). This is re�ected in the height of the densities drawn and it is seen
that the decision boundary is shifted to the right, re�ecting the fact that x
being from ω1 is more probable. In these two cases, the risk coe�cients have
been the same, e�ectively making this classi�er one that minimizes the mean
classi�cation error. This can be understood by observing that the decision
boundary have been placed in such a way that it minimizes the integrals
given in (B.3) (here visualized by the green and red colored areas under each
distribution).

In the bottom plot of Figure B.1, misclassifying ω1 as ω2 is deemed worse
than misclassifying ω2 as ω1. This is re�ected in the fact that λ1,2 is now
higher than λ2,1 and the decision boundary is shifted to the left. Note now
that the probability of error is no longer minimized. Instead, the overall
risk is. When this happens, the decision boundary is not placed at xd :
P (ω1)p(xd|ω1) = P (ω2)p(xd|ω2) as is the case in the two other plots (which
minimize Pe).

In general, when the data is bivariate normal and still consist of two
classes with equal variance (or in general variance and covariance), simpli�-
cations (such as using the logarithmic function) can be applied to (B.9) to
obtain an analytical expression for the optimal decision boundary. Doing this
and simplifying the expression somewhat, it can be shown [54] that decision
line g(x) is given by

g(x) = wT (x− x0) (B.10)

where

w = Σ−1(µ1 − µ2)

x0 =
1

2
(µ1 + µ2)− log

(
P (ω1)

P (ω2)

)
µ1 − µ2

||µ1 − µ2||2Σ−1

and || · ||2Σ−1 denotes the squared Mahalanobis-distance [38]. The important
point here is that from (B.10), it is seen that the decision boundary is linear.
By the derivations which leads to this simple form, the linearity is understood
from the fact that both classes have the same covariance structure.

In the derivations above, the densities of the di�erent classes, p(x|ωi),
i = 1, 2, ..., C, and their prior probabilities P (ωi), i = 1, 2, ..., C, has been
assumed to be known. In most real life applications this is not the case
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Figure B.1: Decision boundary for 3 di�erent cases of the Bayes Classi�er.
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however and estimation methods have to be invoked. The density estimators
discussed in 2.2 and Appendix A can here be used in order to approximate
the densities in (B.9) and do Bayesian classi�cation.

Estimation of the priors

If N1 + N2 = N points, {x1,x1, ...,xN1 ,xN1+1, ...,xN1+N2} are given. The
�rst N1 points known to be generated from p(x|ω1), while the last N2 points
comes from p(x|ω2), then the prior probabilities can be estimated with the
number of training examples directly by

P̂ (ω1) = N1/N P̂ (ω2) = N2/N (B.11)
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Appendix C

Kernel SVM

Given a linearly separable set of N feature vectors from two classes, with cor-
responding class labels {(x1, y1), (x2, y2), ..., (xN , yN)} (y ∈ {−1, 1}), there
exist in�nitely many decision boundaries which perform equally well (zero
errors) on the training set. However, each of them does not necessarily gen-
eralize equally good to new data. Obtaining a classi�er by minimizing a cost
function on the form

J(θ) =
N∑
i=1

(yi · sign(wTx+ b)− 1) (C.1)

where w is the normal vector to the decision boundary, usually leads to this
ambiguity1.

Support Vector Machines aim to solve this problem by introducing a term
called the margin. It is de�ned as the length from the decision boundary to
the closest points in each class. An illustration of a typical linear SVM is
shown in Figure C.1.

As the distance from any point x to a hyperplane is given by

d =
|wTx+ b|
||w||

, (C.2)

the distance to the closest points of the set can be set to 1 by varying w. As
such the margin can be maximized by minimizing ||ω|| while still classifying
the training set correctly. From this idea, the following optimization problem
arise

min J(ω) =
1

2
||w||2 (C.3)

such that yi(ω
Txi + b) ≥ 1, ∀ i = 1, 2, ..., N (C.4)

1The sign(x) function is de�ned as −1 for x ≤ 0 and 1 otherwise.
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Figure C.1: Support vectors and margin of a SVM for a given training set.

Now, for the Support Vector Machine to also be able to handle a non-
separable training set, each datapoint is given a slack parameter ξi, i =
1, 2, ..., N . This introduced slack is to make the optimization handle points
which fall within the margin, or even on the wrong side of the hyperplane
and can be thought of as an regularization to avoid the SVM over-�tting the
data.

With this added set of parameters, the optimization problem now be-
comes

min J(ω, ξ) =
1

2
||w||2 +R

N∑
i=1

ξi (C.5)

such that yi(ω
Txi + b) ≥ 1− ξi, ∀ i = 1, 2, ..., N (C.6)

ξi ≥ 0, ∀ i = 1, 2, ..., N (C.7)

where R is a parameter chosen by the user to determine the degree of regu-
larization. An example of a linear SVM applied with di�erent choices of R
is shown in Figure C.2.

As it turns out, this formulation belongs to a class of convex optimiza-
tion problems and can be solved using the Wolfe dual representation of the
Lagrangian [54]. With this reformulation, the following associated problem
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(a) R = 1

(b) R = 100

Figure C.2: Decision boundaries from a linear Support Vector Machine for
di�erent choices of R. Notice C.2(a) does not make error free predictions on
the training set due to an outlier, but could be said to generalize better.
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is obtained

max

 N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyj xTi xj︸ ︷︷ ︸
An inner product!

 (C.8)

such that 0 ≤ λi ≤ R, ∀ i = 1, 2, ..., N (C.9)
N∑
i=1

λi = 0 (C.10)

Assuming all required parameters are obtained from the optimization,
classi�cation of a new point x using an SVM is done by evaluating

x → ω1(ω2) if ω
Tx+ b ≥ (<) 0 (C.11)

As both classi�cation and the training of the parameters (seen in (C.8)
� (C.10)) is done using inner products, it is known that a non-linear version
of the algorithm can be obtained by applying the kernel trick and replacing
all inner products with a kernel function. The linear training and the clas-
si�cation is then e�ectively done in the higher dimensional feature space F ,
producing non-linear results in the original space.

Example

An example of a non-linear decision boundary produced by using the kernel
trick with the ordinary Support Vector Machine is shown in Figure C.3.
Here a highly irregular training set2 can be seen to be �tted nicely using a
Gaussian kernel (similar to that given in (2.36)) to calculate inner products
in F .

2Taken from the online Stanford course in Machine Learning [41].
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Figure C.3: Non-linear SVM decision boundary using the kernel trick (σ =
0.1, C = 1).
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Appendix D

Smoothing of KNN PDF

Estimate by Non-linear Scaling

The idea of a non-linear scaling on the PDF estimate, was originally an ex-
periment for trying to avoid clusters growing out of control. Scaling was done
by introducing a free parameter α which the hyper volume in the estimate
was taken to the power of. This produces a function related to the KNN
PDF estimate given as

p̃(x; k, α) =
k

NV α
k (x)

(D.1)

The e�ect of scaling the inverse hyper volume by di�erent α's between
zero and one is seen in Figure D.1. Notice that as α decreases, the sensitivity
on the distance also decreases. This results in the PDF estimate becoming
more smooth, as can be seen in Figure D.2.
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Figure D.1: E�ect of scaling inverse hyper volume by di�erent α's.

Figure D.2: E�ect of scaling seen on PDF-estimate.
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