

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Editors: W.T.A. Harrison, H. Stoeckli-Evans, E. R.T. Tiekink and M. Weil

(3a*S*,4*S*,6*S*,7a*R*)-Hexahydro-3a,5,5-trimethyl-2-phenyl-4,6-methano-1,3,2-benzodioxaborole

Tore Lejon, Olga V. Gozhina and Victor N. Khrustalev

Acta Cryst. (2012). E68, o3103

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The journal publishes over 4000 structures per year. The average publication time is less than one month.

Crystallography Journals Online is available from journals.iucr.org

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3aS,4S,6S,7aR)-Hexahydro-3a,5,5trimethyl-2-phenyl-4,6-methano-1,3,2benzodioxaborole

Tore Lejon,^a* Olga V. Gozhina^a and Victor N. Khrustalev^b

^aDepartment of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037 Tromsø, Norway, and ^bX-ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street B-334, Moscow 119991, Russian Federation Correspondence e-mail: tore.lejon@uit.no

Received 29 August 2012; accepted 5 October 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.092; data-to-parameter ratio = 16.5.

The molecule of the title compound, $C_{16}H_{21}BO_2$, comprises a chiral fused tricyclic system containing five-membered (1,3,2dioxaborolane), six-membered (cyclohexane) and fourmembered (cyclobutane) rings. The 1,3,2-dioxaborolane ring is almost planar (r.m.s. deviation = 0.035 Å), and the syn H and Me substituents at this ring are in an eclipsed conformation. The cyclohexane and cyclobutane rings adopt sofa and butterfly conformations, respectively. The B atom has a trigonal-planar configuration (sum of the bond angles = 360.0°). The phenyl ring is practically coplanar with the 1,3,2dioxaborolane ring [dihedral angle between the ring planes = 1.96 $(8)^{\circ}$]. The absolute structure was determined from the known configuration of (+)-pinanediol which was used in the synthesis. In the crystal, weak $C-H\cdots\pi(Ph)$ interactions occur.

Related literature

For the Matteson homologation reaction, see: Matteson et al. (1983); Matteson (1989). For 2-substituted (+)-pinanediolboronates, see: Carmès et al. (2000); Caselli et al. (2003); Morandi et al. (2003, 2005).

Experimental

Crystal data

<u></u>	
$C_{16}H_{21}BO_2$	V = 1406.27 (8) Å ³
$M_r = 256.14$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 8.4974 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
p = 11.8566 (4) Å	$T = 100 { m K}$
= 13.9580 (4) Å	$0.25 \times 0.22 \times 0.18 \text{ mm}$

Data collection

w S

29

Bruker APEXII CCD	21778 measured reflections
diffractometer	2905 independent reflections
Absorption correction: multi-scan	2717 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2003)	$R_{\rm int} = 0.037$
$T_{\min} = 0.981, \ T_{\max} = 0.986$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	176 parameters
$wR(F^2) = 0.092$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
2905 reflections	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C12-C17 phenyl ring

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} C8-H8A\cdots Cg^{i}\\ C11-H11A\cdots Cg^{ii} \end{array}}$	0.99 0.98	2.94 2.97	3.7532 (13) 3.9481 (13)	140 174

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The Norwegian Research Council is acknowledged for research grant 166742.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2267).

References

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2005). APEX2. Bruker AXS, Madison, Wisconsin, USA.
- Carmès, L., Carreaux, F. & Carboni, B. (2000). J. Org. Chem. 65, 5403-5408. Caselli, E., Danieli, C., Morandi, S., Bonfiglio, B., Forni, A. & Prati, F. (2003).
- Org. Lett. 5, 4863-4866.
- Matteson, D. S. (1989). Chem. Rev. 89, 1535-1551.
- Matteson, D. S., Ray, R., Rocks, R. R. & Tsai, D. J. S. (1983). Organometallics, 2. 1536-1543.
- Morandi, S., Caselli, E., Forni, A., Bucciarelli, M., Torre, G. & Prati, F. (2005). Tetrahedron Asymmetry, 16, 2918–2926.
- Morandi, F., Caselli, E., Morandi, S., Focia, P. J., Blásquez, J., Shoichet, B. K. & Prati, F. (2003). J. Am. Chem. Soc. 125, 685-695.
- Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o3103 [doi:10.1107/S1600536812041712]

(3a*S*,4*S*,6*S*,7*aR*)-Hexahydro-3a,5,5-trimethyl-2-phenyl-4,6-methano-1,3,2benzodioxaborole

Tore Lejon, Olga V. Gozhina and Victor N. Khrustalev

Comment

2-Substituted (+)-pinanediolboronates are well known compounds (Carmès *et al.*, 2000; Caselli *et al.*, 2003; Morandi *et al.*, 2003; Morandi *et al.*, 2003; Morandi *et al.*, 2005). In the present work, the (+)-pinanediol phenylboronate (CAS Registry Number: 76110-78-6) has been synthesized by the reaction of phenylboronic acid with (+)-pinanediol in diethyl ether (Fig. 1) as a starting material for the Matteson homologation reaction (Matteson *et al.*, 1983; Matteson, 1989).

The molecule of the title compound, $C_{16}H_{21}BO_2$, comprises a chiral fused tricyclic system containing five-membered (1,3,2-dioxaborolane), six-membered (cyclohexane) and four-membered (cyclobutane) rings (Fig. 2). The 1,3,2-dioxaborolane ring is almost planar (s.u. = 0.035 Å), and *syn* hydrogen and methyl substituents at this ring are in an eclipsed conformation. The cyclohexane (C8/C4/C3a/C7a/C7/C6 and C5/C4/C3a/C7a/C7/C6) and cyclobutane rings adopt *sofa* and *butterfly* conformations, respectively. The boron atom has a trigonal-planar configuration (sum of the bond angles is 360.0 (3)°). The phenyl ring is practically coplanar to the 1,3,2-dioxaborolane ring (the interplanar angle between the ring planes is 1.96 (8)°).

The absolute structure was determined from the known configuration of (+)-pinanediol that has been used in the synthesis. The title molecule possesses four asymmetric centres at C3a, C4, C6 and C7a carbon atoms. The configurations at these asymmetric centres are *S*, *S*, *S*, *R*, respectively.

The crystal packing of the title molecules is stabilized by the weak intermolecular C8—H8A··· π (Ph) [the H···*Cg*ⁱ distance is 2.94 Å; *Cg* means the centroid of the phenyl ring composed of C12/C13–C17] and C11—H11A··· π (Ph) [the H···*Cg*ⁱⁱ distance is 2.97 Å] interactions. Symmetry codes: (i) -1 + *x*, *y*, *z*; (ii) 1/2 - *x*, 1 - *y*, 1/2 + *z*.

Experimental

(+)-Pinanediol (10 g, 0.059 mol) was added to a solution of phenylboronic acid (7.16 g, 0.059 mol) in ether (80 ml). The reaction mixture was stirred for 4 h at room temperature. Then the solvent was evaporated under reduced pressure to give the title compound as colourless prismatic crystals. Yield is 15 g (99%). ¹H NMR (400 MHz, CDCl₃): δ = 8.25 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.83–7.80 (m, 1H), 7.63–7.35 (m, 3H), 4.46 (dd, *J* = 8.8, 1.9 Hz, 1H), 2.41 (ddd, *J* = 8.6, 8.0, 5.6 Hz, 1H), 2.23 (ddd, *J* = 10.8, 6.1, 2.3 Hz, 1H), 2.15 (d, *J* = 5.9 Hz, 1H), 1.96 (ddd, *J* = 12.2, 5.5, 3.0 Hz, 2H), 1.49 (s, 3H), 1.32 (s, 3H), 1.23 (d, *J* = 10.8 Hz, 1H), 0.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 135.62, 134.76, 132.68, 131.15, 127.97, 127.72, 86.22, 78.24, 51.42, 39.54, 38.19, 35.57, 28.71, 27.10, 26.49, 24.04.

Refinement

All the H atoms were discernible in the difference electron density map. Nevertheless, all the H atoms were fully constrained. The values of the used constraints were following: C_{aryl} —H = 0.95, C_{methyl} —H = 0.98, $C_{methylene}$ —H = 0.99, $C_{methylene}$ —H = 1.00 Å; $U_{iso}(H) = 1.2U_{eq}(C_{aryl/methylene/methine})$; $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. After the refinement converged the

extremal residual density peaks equalled to -0.197 and 0.302 e A⁻³. All the highest positive peaks in the range of 0.170– 0.302 e A^{-3}) were situated between the covalently bonded atoms. 2225 Friedel pairs were merged in the refinement process. The absolute structure was determined from the known configuration of (+)-pinanediol that had been used in the synthesis.

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Reaction of phenylboronic acid with (+)-pinanediol.

Figure 2

The title molecule with the atom numbering scheme. The displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

(3aS,4S,6S,7aR)-Hexahydro-3a,5,5-trimethyl-2- phenyl-4,6-methano-1,3,2-benzodioxaborole

Crystal data	
$C_{16}H_{21}BO_2$	F(000) = 552
$M_r = 256.14$	$D_{\rm x} = 1.210 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 7519 reflections
a = 8.4974 (3) Å	$\theta = 2.3 - 32.2^{\circ}$
b = 11.8566 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 13.9580 (4) Å	T = 100 K
V = 1406.27 (8) Å ³	Prism, colourless
Z = 4	$0.25 \times 0.22 \times 0.18 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003) $T_{\min} = 0.981, T_{\max} = 0.986$	21778 measured reflections 2905 independent reflections 2717 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 32.7^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -17 \rightarrow 18$ $l = -21 \rightarrow 21$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.092$ S = 1.05 2905 reflections 176 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0609P)^2 + 0.0967P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.015 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.47304 (10)	0.46977 (7)	0.16126 (6)	0.01697 (16)	
B2	0.51357 (15)	0.50773 (11)	0.07183 (9)	0.0155 (2)	
03	0.43471 (10)	0.60223 (7)	0.04344 (6)	0.01612 (16)	
C3A	0.33535 (12)	0.64035 (9)	0.12251 (7)	0.01379 (18)	
C4	0.16707 (12)	0.65105 (9)	0.08556 (7)	0.01398 (18)	
H4	0.1503	0.7117	0.0368	0.017*	
C5	0.04178 (12)	0.64743 (9)	0.16843 (8)	0.01482 (18)	
C6	0.05741 (14)	0.51655 (9)	0.16181 (8)	0.0170 (2)	
H6	-0.0424	0.4734	0.1719	0.020*	
C7	0.19909 (14)	0.47449 (10)	0.21897 (8)	0.0181 (2)	
H7A	0.2184	0.3944	0.2029	0.022*	
H7B	0.1743	0.4788	0.2882	0.022*	
C7A	0.35083 (13)	0.54313 (9)	0.19900 (7)	0.01454 (19)	
H7C	0.3886	0.5765	0.2606	0.017*	
C8	0.10773 (14)	0.53195 (10)	0.05572 (8)	0.0182 (2)	

H8A	0.0190	0.5329	0.0097	0.022*
H8B	0.1920	0.4800	0.0346	0.022*
C9	0.40689 (14)	0.75145 (9)	0.15593 (8)	0.0180 (2)
H9A	0.4052	0.8059	0.1031	0.027*
H9B	0.5158	0.7388	0.1763	0.027*
H9C	0.3457	0.7811	0.2098	0.027*
C10	-0.11904 (13)	0.68839 (11)	0.13230 (9)	0.0195 (2)
H10A	-0.1992	0.6736	0.1812	0.029*
H10B	-0.1464	0.6482	0.0733	0.029*
H10C	-0.1142	0.7696	0.1194	0.029*
C11	0.07336 (14)	0.70381 (10)	0.26519 (8)	0.0189 (2)
H11A	-0.0121	0.6856	0.3097	0.028*
H11B	0.0791	0.7857	0.2566	0.028*
H11C	0.1733	0.6762	0.2912	0.028*
C12	0.63777 (13)	0.44754 (9)	0.00804 (8)	0.01522 (19)
C13	0.68207 (13)	0.49218 (10)	-0.08098 (8)	0.0167 (2)
H13	0.6353	0.5602	-0.1029	0.020*
C14	0.79409 (15)	0.43795 (10)	-0.13785 (8)	0.0191 (2)
H14	0.8243	0.4695	-0.1976	0.023*
C15	0.86127 (14)	0.33749 (10)	-0.10656 (9)	0.0202 (2)
H15	0.9356	0.2995	-0.1459	0.024*
C16	0.82009 (15)	0.29237 (10)	-0.01792 (9)	0.0219 (2)
H16	0.8673	0.2243	0.0037	0.026*
C17	0.70942 (14)	0.34746 (10)	0.03884 (8)	0.0186 (2)
H17	0.6820	0.3167	0.0994	0.022*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0158 (4)	0.0176 (4)	0.0175 (3)	0.0048 (3)	0.0017 (3)	0.0028 (3)
0.0141 (5)	0.0152 (5)	0.0171 (5)	0.0012 (4)	0.0001 (4)	-0.0003 (4)
0.0159 (4)	0.0166 (3)	0.0159 (3)	0.0034 (3)	0.0031 (3)	0.0019 (3)
0.0135 (4)	0.0135 (4)	0.0144 (4)	0.0010 (4)	0.0011 (3)	0.0007 (3)
0.0129 (4)	0.0138 (4)	0.0152 (4)	-0.0002 (3)	0.0001 (3)	0.0006 (3)
0.0127 (4)	0.0146 (4)	0.0172 (4)	-0.0005 (4)	0.0003 (4)	-0.0001 (4)
0.0153 (4)	0.0139 (4)	0.0217 (5)	-0.0018 (4)	-0.0006 (4)	0.0010 (4)
0.0167 (5)	0.0157 (4)	0.0218 (5)	-0.0006 (4)	0.0016 (4)	0.0047 (4)
0.0140 (4)	0.0145 (4)	0.0151 (4)	0.0020 (4)	0.0010 (3)	0.0008 (4)
0.0187 (5)	0.0169 (5)	0.0191 (5)	-0.0017 (4)	-0.0019 (4)	-0.0036 (4)
0.0157 (5)	0.0151 (4)	0.0231 (5)	-0.0019 (4)	0.0004 (4)	-0.0004 (4)
0.0143 (5)	0.0214 (5)	0.0228 (5)	0.0020 (4)	-0.0003 (4)	0.0026 (4)
0.0182 (5)	0.0203 (5)	0.0182 (5)	0.0007 (4)	0.0022 (4)	-0.0024 (4)
0.0138 (4)	0.0151 (4)	0.0167 (4)	-0.0001 (4)	-0.0001 (4)	-0.0014 (4)
0.0158 (5)	0.0170 (5)	0.0173 (4)	0.0002 (4)	-0.0008 (4)	-0.0004 (4)
0.0191 (5)	0.0213 (5)	0.0169 (5)	-0.0010 (4)	0.0014 (4)	-0.0021 (4)
0.0179 (5)	0.0207 (5)	0.0220 (5)	0.0013 (4)	0.0040 (4)	-0.0043 (4)
0.0205 (5)	0.0180 (5)	0.0272 (5)	0.0054 (4)	0.0036 (4)	0.0004 (4)
0.0175 (5)	0.0180 (5)	0.0204 (5)	0.0031 (4)	0.0034 (4)	0.0015 (4)
	$\begin{array}{c} U^{11} \\ 0.0158 \ (4) \\ 0.0141 \ (5) \\ 0.0159 \ (4) \\ 0.0135 \ (4) \\ 0.0129 \ (4) \\ 0.0127 \ (4) \\ 0.0127 \ (4) \\ 0.0153 \ (4) \\ 0.0167 \ (5) \\ 0.0140 \ (4) \\ 0.0187 \ (5) \\ 0.0143 \ (5) \\ 0.0182 \ (5) \\ 0.0138 \ (4) \\ 0.0158 \ (5) \\ 0.0179 \ (5) \\ 0.0205 \ (5) \\ 0.0175 \ (5) \end{array}$	U^{11} U^{22} 0.0158 (4) 0.0176 (4) 0.0141 (5) 0.0152 (5) 0.0159 (4) 0.0166 (3) 0.0135 (4) 0.0135 (4) 0.0129 (4) 0.0138 (4) 0.0127 (4) 0.0146 (4) 0.0153 (4) 0.0139 (4) 0.0167 (5) 0.0157 (4) 0.0187 (5) 0.0157 (4) 0.0187 (5) 0.0151 (4) 0.0187 (5) 0.0151 (4) 0.0187 (5) 0.0203 (5) 0.0182 (5) 0.0203 (5) 0.0138 (4) 0.0151 (4) 0.0158 (5) 0.0170 (5) 0.0179 (5) 0.0207 (5) 0.0205 (5) 0.0180 (5)	U^{11} U^{22} U^{33} 0.0158 (4)0.0176 (4)0.0175 (3)0.0141 (5)0.0152 (5)0.0171 (5)0.0159 (4)0.0166 (3)0.0159 (3)0.0135 (4)0.0135 (4)0.0144 (4)0.0129 (4)0.0138 (4)0.0152 (4)0.0127 (4)0.0146 (4)0.0172 (4)0.0153 (4)0.0139 (4)0.0217 (5)0.0167 (5)0.0157 (4)0.0218 (5)0.0140 (4)0.0145 (4)0.0151 (4)0.0187 (5)0.0169 (5)0.0191 (5)0.0157 (5)0.0151 (4)0.0228 (5)0.0182 (5)0.0203 (5)0.0182 (5)0.0138 (4)0.0151 (4)0.0167 (4)0.0158 (5)0.0170 (5)0.0173 (4)0.0191 (5)0.0207 (5)0.0220 (5)0.0205 (5)0.0180 (5)0.0204 (5)	U^{11} U^{22} U^{33} U^{12} 0.0158 (4)0.0176 (4)0.0175 (3)0.0048 (3)0.0141 (5)0.0152 (5)0.0171 (5)0.0012 (4)0.0159 (4)0.0166 (3)0.0159 (3)0.0034 (3)0.0135 (4)0.0135 (4)0.0144 (4)0.0010 (4)0.0129 (4)0.0138 (4)0.0152 (4) $-0.0002 (3)$ 0.0127 (4)0.0146 (4)0.0172 (4) $-0.0005 (4)$ 0.0153 (4)0.0139 (4)0.0217 (5) $-0.0018 (4)$ 0.0167 (5)0.0157 (4)0.0218 (5) $-0.0006 (4)$ 0.0187 (5)0.0169 (5)0.0191 (5) $-0.0017 (4)$ 0.0187 (5)0.0151 (4)0.0231 (5) $-0.0017 (4)$ 0.0183 (4)0.0151 (4)0.0228 (5) $0.0020 (4)$ 0.0183 (4)0.0151 (4)0.0167 (4) $-0.0001 (4)$ 0.0182 (5)0.0203 (5) $0.0182 (5)$ $0.0007 (4)$ 0.0158 (5)0.0170 (5) $0.0173 (4)$ $0.0002 (4)$ 0.0179 (5) $0.0213 (5)$ $0.0169 (5)$ $-0.0011 (4)$ 0.0179 (5) $0.0207 (5)$ $0.0220 (5)$ $0.0013 (4)$ 0.0179 (5) $0.0180 (5)$ $0.0204 (5)$ $0.0031 (4)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0158 (4)0.0176 (4)0.0175 (3)0.0048 (3)0.0017 (3)0.0141 (5)0.0152 (5)0.0171 (5)0.0012 (4)0.0001 (4)0.0159 (4)0.0166 (3)0.0159 (3)0.0034 (3)0.0031 (3)0.0135 (4)0.0135 (4)0.0144 (4)0.0010 (4)0.0011 (3)0.0129 (4)0.0138 (4)0.0152 (4) -0.0002 (3)0.0001 (3)0.0127 (4)0.0146 (4)0.0172 (4) -0.0005 (4)0.0003 (4)0.0153 (4)0.0139 (4)0.0217 (5) -0.0018 (4) -0.0006 (4)0.0167 (5)0.0157 (4)0.0218 (5) -0.0006 (4)0.0016 (4)0.0140 (4)0.0145 (4)0.0151 (4)0.0020 (4)0.0010 (3)0.0187 (5)0.0169 (5)0.0191 (5) -0.0017 (4) -0.0003 (4)0.0157 (5)0.0151 (4)0.0228 (5)0.0020 (4) -0.0003 (4)0.0143 (5)0.0214 (5)0.0228 (5)0.0007 (4) -0.0003 (4)0.0182 (5)0.0203 (5)0.0182 (5)0.0007 (4) -0.0001 (4)0.0158 (5)0.0170 (5)0.0173 (4)0.0002 (4) -0.0008 (4)0.0191 (5)0.0213 (5)0.0129 (5) -0.0013 (4) 0.0040 (4)0.0179 (5)0.0207 (5)0.0220 (5)0.0013 (4) 0.0040 (4)0.0179 (5)0.0207 (5)0.0220 (5)0.0031 (4) 0.0036 (4)0.0175 (5)0.0180 (5)0.0272 (5)0.0031 (4)0.0036 (4)

Geometric parameters (Å, °)

01—B2	1.3709 (15)	C8—H8B	0.9900
O1—C7A	1.4535 (13)	С9—Н9А	0.9800
B2—O3	1.3644 (15)	С9—Н9В	0.9800
B2—C12	1.5544 (16)	С9—Н9С	0.9800
O3—C3A	1.4612 (13)	C10—H10A	0.9800
C3A—C9	1.5239 (15)	C10—H10B	0.9800
C3A—C4	1.5254 (15)	C10—H10C	0.9800
СЗА—С7А	1.5767 (15)	C11—H11A	0.9800
C4—C8	1.5563 (16)	C11—H11B	0.9800
C4—C5	1.5727 (15)	C11—H11C	0.9800
C4—H4	1.0000	C12—C17	1.4012 (15)
C5—C11	1.5307 (15)	C12—C13	1.4020 (15)
C5—C10	1.5355 (15)	C13—C14	1.3963 (16)
C5—C6	1.5602 (15)	C13—H13	0.9500
C6—C7	1.5280 (16)	C14—C15	1.3911 (17)
C6—C8	1.5520 (17)	C14—H14	0.9500
С6—Н6	1.0000	C15—C16	1.3927 (17)
С7—С7А	1.5500 (16)	C15—H15	0.9500
С7—Н7А	0.9900	C16—C17	1.3924 (16)
С7—Н7В	0.9900	C16—H16	0.9500
С7А—Н7С	1.0000	C17—H17	0.9500
C8—H8A	0.9900		
B2—O1—C7A	108.24 (9)	C6—C8—H8A	114.2
O3—B2—O1	114.25 (10)	C4—C8—H8A	114.2
O3—B2—C12	122.96 (10)	C6—C8—H8B	114.2
O1—B2—C12	122.78 (10)	C4—C8—H8B	114.2
B2—O3—C3A	108.56 (8)	H8A—C8—H8B	111.4
O3—C3A—C9	105.55 (8)	СЗА—С9—Н9А	109.5
O3—C3A—C4	108.18 (8)	СЗА—С9—Н9В	109.5
C9—C3A—C4	113.93 (9)	H9A—C9—H9B	109.5
O3—C3A—C7A	103.72 (8)	СЗА—С9—Н9С	109.5
С9—С3А—С7А	113.04 (9)	Н9А—С9—Н9С	109.5
C4—C3A—C7A	111.59 (9)	H9B—C9—H9C	109.5
C3A—C4—C8	108.59 (9)	C5—C10—H10A	109.5
C3A—C4—C5	112.56 (8)	C5—C10—H10B	109.5
C8—C4—C5	87.29 (8)	H10A—C10—H10B	109.5
C3A—C4—H4	115.1	C5—C10—H10C	109.5
C8—C4—H4	115.1	H10A—C10—H10C	109.5
C5—C4—H4	115.1	H10B—C10—H10C	109.5
C11—C5—C10	107.92 (9)	C5—C11—H11A	109.5
C11—C5—C6	118.15 (9)	С5—С11—Н11В	109.5
C10—C5—C6	111.77 (9)	H11A—C11—H11B	109.5
C11—C5—C4	121.22 (9)	C5—C11—H11C	109.5
C10—C5—C4	110.62 (9)	H11A—C11—H11C	109.5
C6—C5—C4	85.75 (8)	H11B—C11—H11C	109.5
C7—C6—C8	108.63 (10)	C17—C12—C13	118.35 (10)
C7—C6—C5	111.14 (9)	C17—C12—B2	120.53 (10)

Acta Cryst. (2012). E68, o3103

C8—C6—C5	87.88 (8)	C13—C12—B2	121.11 (10)
С7—С6—Н6	115.3	C14—C13—C12	120.87 (11)
С8—С6—Н6	115.3	C14—C13—H13	119.6
С5—С6—Н6	115.3	С12—С13—Н13	119.6
С6—С7—С7А	112.97 (9)	C15—C14—C13	119.71 (11)
С6—С7—Н7А	109.0	C15—C14—H14	120.1
С7А—С7—Н7А	109.0	C13—C14—H14	120.1
С6—С7—Н7В	109.0	C14—C15—C16	120.31 (11)
С7А—С7—Н7В	109.0	C14—C15—H15	119.8
H7A—C7—H7B	107.8	C16—C15—H15	119.8
O1—C7A—C7	110.20 (9)	C17—C16—C15	119.67 (11)
O1—C7A—C3A	104.58 (8)	C17—C16—H16	120.2
C7—C7A—C3A	115.87 (9)	C15—C16—H16	120.2
O1—C7A—H7C	108.7	C16—C17—C12	121.07 (11)
C7—C7A—H7C	108.7	С16—С17—Н17	119.5
СЗА—С7А—Н7С	108.7	С12—С17—Н17	119.5
C6—C8—C4	86.60 (8)		
C7A—O1—B2—O3	1.42 (13)	B2-01-C7A-C7	119.37 (10)
C7A—O1—B2—C12	-178.09 (10)	B2—O1—C7A—C3A	-5.80 (11)
O1—B2—O3—C3A	4.09 (13)	C6C7C7AO1	-120.17 (10)
C12—B2—O3—C3A	-176.40 (10)	C6—C7—C7A—C3A	-1.72 (14)
B2—O3—C3A—C9	111.83 (10)	O3—C3A—C7A—O1	7.86 (10)
B2—O3—C3A—C4	-125.86 (10)	C9—C3A—C7A—O1	-105.95 (10)
B2—O3—C3A—C7A	-7.25 (11)	C4—C3A—C7A—O1	124.09 (9)
O3—C3A—C4—C8	63.98 (10)	O3—C3A—C7A—C7	-113.64 (10)
C9—C3A—C4—C8	-178.99 (9)	C9—C3A—C7A—C7	132.54 (10)
C7A—C3A—C4—C8	-49.50 (11)	C4—C3A—C7A—C7	2.59 (13)
O3—C3A—C4—C5	158.89 (8)	C7—C6—C8—C4	-85.15 (9)
C9—C3A—C4—C5	-84.08 (11)	C5—C6—C8—C4	26.47 (8)
C7A—C3A—C4—C5	45.42 (12)	C3A—C4—C8—C6	86.66 (9)
C3A—C4—C5—C11	37.66 (14)	C5-C4-C8-C6	-26.25 (8)
C8—C4—C5—C11	146.68 (10)	O3—B2—C12—C17	-176.74 (11)
C3A-C4-C5-C10	165.43 (9)	O1—B2—C12—C17	2.72 (17)
C8—C4—C5—C10	-85.55 (10)	O3—B2—C12—C13	3.88 (17)
C3A-C4-C5-C6	-82.88 (10)	O1—B2—C12—C13	-176.66 (11)
C8—C4—C5—C6	26.13 (8)	C17—C12—C13—C14	0.39 (17)
C11—C5—C6—C7	-40.37 (13)	B2-C12-C13-C14	179.78 (11)
C10—C5—C6—C7	-166.49 (9)	C12—C13—C14—C15	0.88 (17)
C4—C5—C6—C7	82.98 (10)	C13—C14—C15—C16	-1.55 (18)
C11—C5—C6—C8	-149.55 (10)	C14—C15—C16—C17	0.94 (19)
C10—C5—C6—C8	84.33 (10)	C15—C16—C17—C12	0.36 (19)
C4—C5—C6—C8	-26.20(8)	C13—C12—C17—C16	-1.01 (17)
С8—С6—С7—С7А	47.70 (12)	B2-C12-C17-C16	179.59 (11)
С5—С6—С7—С7А	-47.38 (13)		~ /

Hydrogen-bond geometry (Å, °)

g
2

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C8—H8A···Cg ⁱ	0.99	2.94	3.7532 (13)	140
C11—H11A···Cg ⁱⁱ	0.98	2.97	3.9481 (13)	174

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) –*x*+1/2, –*y*+1, *z*+1/2.