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[1] The change in degree of organization of the magnetosphere during substorms is
investigated by analyzing various geomagnetic indices, as well as interplanetary magnetic
field z-component and solar wind velocity x-component. We conclude that the
magnetosphere self-organizes globally during substorms, but neither the magnetosphere
nor the solar wind become more predictable in the course of a substorm. This conclusion
is based on analysis of substorms in the period from 2000 to 2002. A minimal
dynamic-stochastic model of the driven magnetosphere that reproduces
many statistical features of substorm indices is discussed.
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1. Introduction

[2] The complexity of the magnetosphere has been exten-
sively studied and one of its descriptions is based on the
paradigm of self-organized criticality (SOC) coined by Bak
et al. [1987]. Systems that exhibit SOC activate many
degrees of freedom, their interactions are local, but due to the
excitation of a scale-free hierarchy of avalanches when the
system is slowly driven to a criticality threshold, long-range
interactions develop, and the dynamics on different spatial
and temporal scales is essentially the same. It has been shown
that the magnetospheric-ionospheric system exhibit sig-
natures characteristic of SOC-dynamics [Vörös, 1991;
Uritsky and Pudovkin, 1998], and models for such descrip-
tion have been developed [Valdivia et al., 2006;Klimas et al.,
2000; Chapman et al., 1998; Chang, 1999; Uritsky et al.,
2002; Kozelov and Kozelova, 2003]. On the other hand, the
magnetospheric-ionospheric system has also some signatures
of intermittent turbulence [Golovchanskaya et al., 2008],
non-equilibrium phase-transitions [Sitnov et al., 2001], as
well as low-dimensional chaos [Sharma et al., 1993]. It
has been recently reported by Živković and Rypdal [2011]
that the magnetosphere, interplanetary magnetic field (IMF)
z-component Bz and solar wind flow speed v become more
predictable and more persistent during magnetic storms,
while only the magnetosphere reduces the effective number
of degrees of freedom through self-organization. In that study
the magnetosphere was studied through analysis of the geo-
magnetic indices SYM-H andDst, since it is known that these
indices respond to the intensification of the ring current

during magnetic storms [Wanliss and Showalter, 2006]. In
this article we analyze how different magnetospheric indices
respond to the much more frequent and short-living events
called substorms.
[3] Different geomagnetic indices represent different parts

of the magnetosphere and respond to different dynamics.
Geomagnetic indices studied in this article, are downloaded
from World Data Center, with 1-min resolution. The most
commonly used index for substorm studies is the auroral
electrojet index (AE) defined as the difference between the
AU index, which measures the strength of the eastward
electrojet in the auroral zone, and the AL index, measuring
the westward electrojet current, and is usually derived from
12 magnetometers positioned below the auroral oval [Davies
and Sugiura, 1966]. We also use minute data for the IMF
component Bz, as well as minute data for the solar wind
velocity vx component along the Sun-Earth axis. They are
both retrieved from the OMNI satellite database where the
data is time-shifted to the Earth’s bow shock nose, and are
given in GSE coordinate system. Intervals where data for
Bz and vx is missing are linearly interpolated.
[4] We have not analyzed other plasma parameters, since

the plasma instruments can be influenced by solar X rays or
energetic particle precipitation and are more unstable than
the magnetometers. We also analyze the polar cap magnetic
activity (PC), as well as the AU and the AL index. During
magnetically disturbed times the westward electrojet, whose
proxy is the AL index, increases abruptly due to currents
from the magnetotail. On the other hand, the eastward
electrojet, whose proxy is the AU index, increases due to the
partial ring current closure via the ionosphere in the evening
sector [Feldstein et al., 2006]. Therefore, through the anal-
ysis of the AL and AU index we can get insight into the
dynamics of different parts of the magnetosphere. The PC
index monitors geomagnetic activity over the polar caps
caused by changes in the IMF and the solar wind. This index
is mostly influenced by field-aligned currents which flow
at the poleward rim of the auroral oval, and is also sensitive
to the ionospheric Hall currents in the polar cap [Vennestrøm
et al., 1991], which are particularly dominant in the summer
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time. Since field-aligned currents are closely related to the
auroral electrojets, the linear correlation of the PC and AE
indices is of the order of 0.8–0.9 in the winter and equinox
for the Thule station on the northern hemisphere. The cor-
relation is less in the summer due to the disturbance of the
polar cap currents [Vennestrøm et al., 1991]. Here we use
the northern polar cap index measured at the Danish geo-
magnetic observatory in Thule (86.5�N).
[5] Magnetic substorms are associated with release and

storage of energy and momentum from the solar wind to the
magnetosphere. They consist of three phases. In the growth
phase, typically lasting for about one hour, loading of the
magnetic flux and energy into the magnetotail takes place. It
is succeeded by the expansion phase (substorm onset), last-
ing 30–60 min, when hot plasma “unloads” earthward,
leading to sudden brightenings of the polar aurora, and
plasmoids are ejected away from Earth into the far tail. In the
ionosphere, substorm onset is characterized by a rise of the
westward electrojet current, which forms the substorm cur-
rent surge with field aligned currents. The recovery phase
returns the magnetosphere to its quiet state. The duration of
this phase is 1–2 hours.
[6] Data about the times of substorm onsets are found in

Frey et al. [2004], whose database is from the period
between 2000 and 2002. These substorms were detected by
the FUV instrument on the IMAGE spacecraft. Observations
covered the peak of the last solar cycle. According to Frey
et al. [2004] a substorm onset is only accepted as a sepa-
rate event if at least 30 min have passed after the previous
event. It is also required that local brightening of aurora
occurs and that the aurora expands to the poleward boundary
of the auroral oval and spreads azimuthally in local time for
at least 20 min. The latter criterion excludes pseudo-break-
ups which do not develop into full substorms.
[7] The remainder of the paper is organized as follows:

section 2 gives a brief overview of the methods used in the
analysis of our data. Section 3 shows the results from
application of these methods to the substorm data and
section 4 is reserved for discussion.

2. Methods

2.1. Recurrence-Plot Analysis

[8] Recurrence-plot analysis was developed by Eckmann
et al. [1987] and is very useful in studies of short and non-
stationary time series. A comprehensive review of the
method and its applications can be found in Marwan et al.
[2007]. Substorm durations are at most a few hours and all
indices show non-stationary behavior during the events.
Recurrence-plot analysis is very suitable for handling such
short non-stationary time series. The method is useful for
low-dimensional deterministic dynamical systems as well as
for high-dimensional systems and for stochastic signals. It
can also provide useful information about non-autonomous
systems. An impression of the versatility of this technique
can be obtained from Marwan et al. [2008]. For low-
dimensional systems

dz
dt

¼ f z tð Þ; t½ �; ð1Þ

recurrence plots are based on the recurrences of a trajectory
z(t) on the d-dimensional attractor in a p > d-dimensional

phase space. If the system is autonomous, i.e. no explicit time
dependence of the phase-space flow f[z], and if the attractor
of trajectory has dimension d, Takens’ time delay method
[Takens, 1981] can be used to construct anm > 2d-dimensional
embedding space on which the attractor can be mapped
continuously and one-to-one. The embedding space is con-
structed from the time series xi = g(z[idt]), where g(z) is the
measurement function. Here t = idt, and dt is the sampling
time of the time series. The mapping is given by

xi ¼ xi; xiþt ;…; xiþ m�1ð Þt
� �

; ð2Þ

where t is the time delay. There are practical constraints on
useful choices of the time delay t. If t is much smaller than
the autocorrelation time the image of the attractor in the
embedding space becomes essentially one-dimensional. If t
is much larger than the autocorrelation time, noise may
destroy the deterministic connection between the compo-
nents of x(t), such that our assumption that z(t) determines
x(t) will fail in practice. A common choice of t has been the
first minimum of the autocorrelation function, but it has been
shown that better results are achieved by selecting the time
delay as the first minimum in the average mutual information
function [Abarbanel, 1996], which we also use in this article.
[9] The recurrence-plot analysis deals with the trajectories

in the embedding space. If the original time series x(t) has
N elements and a time delay t, we have a time series of
N � (m � 1)t vectors x(t) for t = 1, …, N � (m � 1)t. This
time series constitutes the trajectory in the reconstructed
embedding space.
[10] The next step is to construct a N � (m � 1)t � N �

(m � 1)t matrix Ri,j consisting of elements 0 and 1. The
matrix element (i, j) is 1 if the distance is kxi � xjk ≤ � in
the reconstructed space, and otherwise it is 0. The recurrence
plot is simply a plot where the points (i, j) for which the
corresponding matrix element is 1 is marked by a dot. For a
deterministic system the radius � is typically chosen as small
fraction of the diameter of the reconstructed attractor, but
varies for different sets of data. In our analysis we have used
10% of the total extent of the set spanned by the trajectory
analyzed in the embedding space. This is a rule of the thumb
generally accepted in the recurrence-plot literature [Marwan
et al., 2007]. The results are not very sensitive to this choice,
but issues arise if � is too large (to crude resolution and
practically no information) or too small (poor statistics).
[11] Dynamical systems with a large number of indepen-

dent or weakly dependent degrees of freedom can only be
described either by large-scale numerical simulation or by
stochastic methods. For such systems the phase-space
attractor is also high-dimensional and cannot be mapped
one-to-one onto a low-dimensional time delay embedding
space. Nevertheless, the evolution of the “projection” of the
phase-space vector onto the embedding space usually pro-
vides valuable information if the measurement function is
carefully chosen to be sensitive to variation of those degrees
of freedom that are in the focus of our interest (for instance
we should use the AE index rather than the Dst index as
measurement function if substorm activity is studied). Some
of this information can be discerned from the recurrence
plots, even if the recurring states are not recurrences of the
full phase-space vector, but only of the projections. This is
true also if the full set of differential equations is non-
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autonomous [Webber and Zbilut, 1994]. The time-dependent
forcing invalidates the embedding theorem, but we are not
assuming a perfect embedding anyway. We just have to be
aware that dynamical features we observe in the recurrence
plot may well reflect the dynamics of the forcing and not
only the internal dynamics of the unforced system.
[12] Of particular interest is the analysis based on the

diagonal line structures of the recurrence plots [see, e.g.,
Trulla et al., 1996]. If the projected trajectory has a tendency
to repeat its path when it recurs to the same region in
embedding space, recurrences tend to be localized along
unbroken diagonal segments. The longer these segments are,
the more predictable is the path. We define the average
inverse diagonal line segment length G:

G ≡ 〈l�1〉 ¼
X

l

l�1P lð Þ=
X

l

P lð Þ; ð3Þ

where P(l) is a histogram over diagonal lengths:

P lð Þ ¼
XN

i; j¼1

1� Ri�1; j�1

� �
1� Riþl; jþl

� �Yl�1

k¼0

Riþk; jþk : ð4Þ

[13] It was shown heuristically in Živković and Rypdal
[2011] that G can be used as a proxy for the largest Lyapunov
exponent in deterministic systems and as a measure of per-
sistence in stochastic systems. For a deterministic system we
demonstrated the connection with the largest Lyapunov
exponent l by computing l and G along a period-doubling
route to chaos for the Lorenz system. By computing G and the
self-similarity exponent h for numerically generated frac-
tional Brownian motions (fBm) with h in the range 0 < h < 1
we established the relation G = 0.72 � 0.57h in the range of
persistent Brownian motions (0.5 < h < 1). An fBm is a
Gaussian stochastic process {x(t)} which satisfies the self-

similarity condition x tð Þ ¼d l�hx ltð Þ for all l. Here¼d denotes
identity in distribution. For a given time series h can be
estimated from the variogram [Živković and Rypdal, 2011].
For a chaotic, deterministic system, the inverse of the largest
Lyapunov exponent is a measure of predictability. For a
persistent stochastic process h is also such a measure, and
G decreases with increasing h. Thus we suggest to use the
inverse of G as a measure of predictability. Since signals of
interest are a mixture of deterministic and stochastic com-
ponents, and many stochastic processes are neither self-
similar nor Gaussian, we do not consider G as an absolute
measure of predictability, but when a decrease of G takes
place in a time series under certain conditions, e.g. during a
magnetic storm, we interpret this as an increase in predict-
ability of the dynamics under these conditions.
[14] We compute G for embedding dimension m = 1. An

obvious advantage of this choice is that we don’t have to
worry about the choice of time delay t. A higher value of
m does not make much more sense since the dynamics of the
magnetosphere and the solar wind is strongly influenced by
a high-dimensional/stochastic component and cannot be
unfolded in any higher-dimensional embedding space. Also,
if the embedding dimension is inappropriately high, spurious
long diagonal lines will appear in the recurrence plot.
Moreover, the way G depends on other predictability mea-
sures like Lyapunov exponent or self-similarity exponent is

rather insensitive to the choice of m, hence G can be used to
detect changes in predictability irrespective of the choice of
embedding dimension.

2.2. A Test for Determinism

[15] We shall adopt a terminology where a physical system
is deterministic if it can be described as a low-dimensional
dynamical system, i.e. by the autonomous version of
equation (1). A test of determinism was developed byKaplan
and Glass [1992, 1993] which takes advantage of the fact
that the trajectory through a given position in phase space is
completely determined by this position, and if a trajectory
recurs to the vicinity of this point the tangents of the trajec-
tory in these two points are approximately parallel. This is in
contrast to a stochastic system, where the directions of the
tangents are independent for the two points. Let us assume
that the phase space is divided into boxes. In our test, a box
size is chosen as the average distance a phase-space point
moves in the m-dimensional embedding space during one
time step. The displacement of the trajectory inside a box, in
m-dimensional phase space is given from the time delay
embedding reconstruction:

Dx tð Þ ¼ �
x t þ bð Þ � x tð Þ; x t þ t þ bð Þ � x t þ tð Þ;…;

x t þ m� 1ð Þt þ bð Þ � x t þ m� 1ð Þtð Þ�; ð5Þ

where b is the characteristic time the trajectory spends inside
a box. The tangent for the kth pass through box j is the unit
vector uk, j = Dxk, j(t)/jDxk, j(t)j. The averaged tangent in the
box is

Vj ¼ 1

nj

Xnj

k¼1

uk; j; ð6Þ

where nj is the number of passes of the trajectory through
box j. In the case of deterministic dynamics and finite box
size, Vj will not depend very much on the number of passes
nj, and Vj will converge to 1. In contrast, for the trajectory
of a random process with independent increments, Vj will
decrease with nj as Vj� nj

�1/2. Thus, to obtain better statistics
for the description of average tangents we compute the
average Vj as a function of the number of passes through a
box:

Ln ≡ 〈Vj〉nj¼n; ð7Þ

where this average is done over all boxes with same number
nj of trajectory passes.
[16] There are obvious similarities between this test for

determinism and the one for predictability developed in the
previous subsection. Both measure the degree of divergence
of projected trajectories starting at almost the same position
in the reduced embedding space. In those cases when the
system can be described as a low-dimensional dynamical
system (equation (1) without the explicit time dependence in
the flow field), we have Ln = 1 for all n, provided the
embedding dimension m is sufficiently large to unfold
the attractor. In this case G will reflect the magnitude of the
largest Lyapunov exponent, and the two tests clearly mea-
sure different properties. For a stochastic process Ln is
independent of m [Živković and Rypdal, 2011] and inde-
pendent of its persistence, which is easily demonstrated by
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computing it for fBms with varying self-similarity exponents
h. However, for the systems considered in this paper the
signals contain both a deterministic and a stochastic com-
ponent. In this case the phase-space trajectory cannot be
mapped one-to-one onto the embedding space for any choice
of m, and the distinction between the two methods is less
clear. One could envisage that an increase of the low-
dimensional (deterministic) component relative to the sto-
chastic one could enhance both Ln and G�1. On the other
hand, an increase in predictability in either the deterministic
or the stochastic component, without change in relative
strength of the two components, could also influence both
measures. Thus, in those cases where both measures either
increase or decrease together, it is difficult to decide whether
the cause is a change in determinism or in predictability.
However, in situations when only one of the measures
undergoes a change, or they change in opposite direction,
the interpretation is unambiguous.
[17] Kaplan and Glass [1992, 1993] also suggest another

test of determinism, which does not suffer from this ambi-
guity. It takes advantage of how the measure of determinism,
the curves of Ln versus n, changes when we construct a new
surrogate time series for which the effect of nonlinearity in a
low-dimensional system has been corrupted. This surrogate
signal has the same power spectral density (and hence
same auto-covariance) as the original signal, but the phases
of the Fourier coefficients have been randomized. From
application of this procedure to synthetic stochastic and low-
dimensional signals we have gained support for the conjec-
ture that randomization of phases do not change these
curves for neither stochastic or high-dimensional, nor low-
dimensional, linear systems. Only for low-dimensional,
nonlinear systems will the surrogate data curves lie below
those based on the original data. These features were dem-
onstrated for numerical solutions of the Lorenz system (low-
dimensional, nonlinear and chaotic) in Živković and Rypdal
[2011]. Here we demonstrate the same for Ln versus n for
the Mackey-Glass (MG) equation [Mackey and Glass, 1977]:

dx

dt
¼ �lx tð Þ þ a

x t � dð Þ
1þ x t � dð Þc : ð8Þ

Unlike the Lorenz system, the attractor of this system is in
general high-dimensional. However, for some set of para-
meters, e.g. a = 0.2, l = 0.1, d = 30, c = 10, the attractor of
MG dynamics can be low-dimensional and Ln derived from
the MG equation will fall more slowly with increasing n than
that for the randomized version, as shown in Figure 2a. The
time series for these parameters is plotted in Figure 1a. In
order to calculate Ln, embedding dimension m = 8, t = 15,
and b = 1 are used. Here we compute and plot mean Ln for
ten realizations of the MG equation and for ten realizations
with phases of the Fourier coefficients randomized. Standard
deviation is not plotted since it is of the same order as the
symbol size. For a discussion of how we treat errors and
statistical significance in this paper, see section 2.3. It has
been shown in Mackey and Glass [1977] that the dimension
of the attractor for the dynamics of MG equation increases
with d. Therefore, we compute mean Ln as a function of n
when d = 150. Figure 1b shows this time series, while mean
Ln versus n is shown in Figure 2b. Unlike in Figure 2a, where

Figure 2. Vector length Ln versus number of passages n
averaged over an ensemble of 10 realizations: bullets are
derived from numerical solutions to the MG equation, stars
are derived from these solutions after randomization of
phases of Fourier coefficients: (a) d = 30 and (b) d = 150.
Inset shows same characteristics for the O-U process. The
error bars are of the same order as the symbol size.

Figure 1. Time series for the MG equation: (a) d = 30 and
(b) d = 150.
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Ln of the original and randomized time series are clearly
separated, in Figure 2b Ln for the original and randomized
time series are overlapping, demonstrating that the high-
dimensional attractor diminishes the difference in mean Ln
between the original and randomized time series. Here, m =
10, t = 15, and b = 2 is used. The inset in the same figure
shows the same results for a Ornstein-Uhlenbeck (O-U) sto-
chastic process. The stochastic equation used to generate
such a process was described in Živković and Rypdal [2011].
The coefficients in this equation are generated from fitting the
variogram of the numerically generated process to the var-
iogram of the AE index by means of least squares regression
(for definition of the variogram see Živković and Rypdal
[2011, equation (12)]). In O-U equation, the embedding
dimension used is m = 8, t = 15, and b = 1. Ln for the MG
equation when d = 150 falls more slowly as a function of n
than that for the O-U process, since the latter is stochastic
infinite dimensional process. The parameter b is chosen such
that a sufficient number of trajectories pass through the
phase-space box to make a good statistics up to n = 6. Rea-
lizations of a stochastic process like the O-U is indistin-
guishable from realizations of a measurement function of a
high-dimensional deterministic system for which the
embedding dimension is too small to unfold the attractor. The
Ln-curve for the O-U process is unchanged after randomiza-
tion of phases and shows that this test for determinism is
negative for stochastic (and high-dimensional) systems. We
have verified that this is the case also for strongly persistent
(highly predictable) O-U processes. This is completely rea-
sonable on theoretical grounds; the long-range persistence in
an fBm only depends on the predominance of low frequen-
cies in the power spectrum, not on correlation between the
phases of the Fourier coefficients. Thus, this test is not
measuring predictability and is a useful test for detecting
changes in determinism in time series.

2.3. Statistical Errors and Significance

[18] The plots presented in Figure 2 are based on compu-
tation of a measure of determinism (Ln) for individual
numerical realizations of a signal generated by two particular
models. In the following we shall denote such a realization as
a sample of the ensemble of signals. In the same figure we
also present plots based on computation of this measure from
signals with randomized phases of Fourier coefficients (here
denoted surrogate data). In an ensemble of such samples of
the signal this measure has a Gaussian statistical distribution
with standard deviation sS. The purpose of computing these
measures is to reveal a statistically significant difference
between the measures of original data and the surrogate data.
For the MG signal for d = 30 (Figure 2a) the separation
between the two curves is obviously significant, while for d =
150 and for the O-U process (Figure 2b) it is obviously not.
However, in section 3 we will perform many estimates of
similar nature, where the curves are separated, but where we
have to address the question whether this separation is sta-
tistically significant. A common situation is that the standard
deviation sS is of the same order as the difference between
the computed measure for the original data and the surrogate
data, so a statistically significant separation of the measures
cannot be established from estimation of the measure for only
one sample of each data set. However, the statistical distri-
bution of the ensemble mean computed by averaging over

N independent samples is s ¼ sS=
ffiffiffiffi
N

p
. What we have plot-

ted in Figure 2 is this ensemble mean, and the uncertainty in
this estimate is therefore s (not sS) and s should be quoted as
the error bar of this estimate.
[19] In section 3 we compute measures from various

geomagnetic indices for ensembles of N sample data sets. In
all these cases we are able to choose N so large that the error
bars for the ensemble means become of the same order as the
symbol size in the plots. Plotting the error bars will make it
difficult to recognize the different symbols and is the reason
why none of the figures in that section will be equipped with
error bars.
[20] The errors discussed so far refers to statistical uncer-

tainty, which can always be improved with more data. This
should not be confused with systematic errors, which can
have many sources. One such source is non-stationarity of
the observational time series. Others are related to inade-
quacies in the definition and computation of measures of
predictability and determinism.

3. Results

[21] In Rypdal and Rypdal [2010] it was shown that the
fluctuation amplitude (or more precisely; the one-timestep
increment) Dy(t) of the AE index is on the average propor-
tional to the instantaneous value y(t) of the index. This gives
rise to a special kind of intermittency associated with mul-
tiplicative noises, and leads to a non-stationary time series of
increments. However, the time series Dy(t)/y(t) is stationary,
implying that the stochastic process x(t) = log y(t) has sta-
tionary increments. Thus, a signal with stationary incre-
ments, which still can exhibit a multifractal intermittency,
can be constructed by considering the logarithm of the AE
index. We use transformed versions of geomagnetic indices:
tAE = log(AE), tAL = log(0.1928 jALj + 10.50), tAU =
log(0.1167 jAUj + 13.50), tPC = log(0.0503 jPCj + 0.1978),
while Bz and vx have increments which are not strongly
dependent on their magnitude, and do not need transforma-
tion to obtain stationary increments.
[22] It is well known that the AE index exhibits scale-free

characteristics which often is associated with stochastic
dynamics since its power spectral density has two distinct
power law regimes [Tsurutani et al., 1990]. However, it has
also been shown that apart from colored noise which dom-
inates the dynamics of the AE index on timescales up to
100 min, there are also signatures of low-dimensional, cha-
otic characteristics as well [Athanasiu and Pavlos, 2001].
These properties will be discerned from the analysis of
determinism of geomagnetic indices in section 3.2.

3.1. Predictability Analysis

[23] First, we discuss two magnetic substorms that
occurred on September 8th, 2002. The first substorm onset
was registered at 5:01 UT and the other at 21:26 UT. The
second substorm onset started after 13 hours of northward
IMF Bz. In Figure 3a the transition between dark and white
bands in the recurrence plot indicates changes in the
dynamics in the tAE. The first transition marked by an arrow
occurs around the first substorm onset. The next appears at
the onset of the second substorm. For instance, the broad
white band in Figure 3a corresponding to i > 300, j < 300
indicates that a region in embedding space visited before the
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substorm onset is never visited after onset. Figure 3b con-
tains a blow-up of the recurrence plot for the second sub-
storm. The image pales away from the main diagonal, which
indicates that the process is non-stationary due to the inten-
sification and the movement of ionospheric currents during
the substorm. Since the plot pattern changes during the
substorm we might expect that G, which is defined from the
diagonal lines of the plot, will change as well.
[24] We obtain G for tAE, tAU, tPC, tAL, Bz, and vx for

substorms whose onsets were taken from the database of
Frey et al. [2004]. The variation of G over a 6 hour time
interval, three hours before and three hours after the sub-
storm onset, is computed from recurrence plots derived from
thirty-minute windows so that 11 G-values are obtained for
each substorm. Substorms with onsets separated by less than
3 hours are discarded from the ensemble to avoid overlap.
Thus 1922 “independent” substorms are included in the
ensemble.
[25] The time evolution of G is computed for these sub-

storms and averaged. The results are presented in Figure 4a.
Apparently, there is no significant variation of the ensemble
average of G over the duration of a substorm for any of the
geomagnetic indices.

[26] On timescales less than 100 min all quantities ana-
lyzed can be modeled as non-stationary multifractal motions
whose persistence can be characterized by an exponent
h [Rypdal and Rypdal, 2010, 2011]. Increasing h implies
higher persistence and predictability, corresponding to a
reduction of G. We compute h from the variogram [Živković
and Rypdal, 2011, equation (12)]. Figure 4b shows no var-
iation in ensemble mean of 2 h for any of the indices, con-
firming the result obtained for G. Further, the same
procedure is repeated for all indices during the entire year
2000, 2001 and 2002. In this case, each set is computed over
6 hour time intervals, without distinguishing between sub-
storm and quiet times. The result (not shown here)is that the
ensemble average of G and 2 h overlaps with the results
presented in Figure 4, hence that the predictability and per-
sistence do not change significantly during substorms.
[27] The same analysis is done for Bz and vx. Mean values

for G and 2 h are plotted in Figure 5, showing no significant
change of predictability during substorms for the solar wind
observables. Values for these parameters during all times
overlap with the results in Figure 5, as in the case for the
geomagnetic indices. The example of two substorms from
September, 8th, 2002 shows a reduction of G in tAE around
substorm onset (not shown here), but this day seems to be an
exception rather than the rule.

Figure 3. Recurrence plots for tAE: (a) For the entire day of
September 8th, 2002, containing two distinct substorms whose
onsets are marked by arrows. (b) Blow-up of recurrence plot
for second substorm (marked by square in Figure 3a).

Figure 4. (a) 〈G〉, obtained by averaging G over the sub-
storm ensemble. (b) Ensemble means 〈2 h〉. Triangles repre-
sent tAE, squares tAU, stars tPC, and circles tAL. The
standard errors for all points are in the range 0.003 < s < 0.02.
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3.2. Determinism Analysis

[28] The signals we study are dominated by a stochastic
component and their Ln decreases when number of passes n
is increased. However, the existence of a low-dimensional
component in e.g. the tAE can be demonstrated by com-
puting Ln and then do the same for the surrogate signals
obtained by randomizing phases of Fourier coefficients. For
computation of mean Ln, we use AE index data from the
years 2000, 2001 and 2002. Each sample value of Ln is
computed over a record of 7200 points, while the ensemble
mean Ln is computed by averaging over ensembles of 9, 15
and 14 realizations, respectively. The number of realizations
nn in the ensemble depends on the number of substorms in
the respective years and is obtained as nn = (number of
substorms) ∙ 150/7200, since the length of a substorm will be
150 min, and one sample Ln is calculated over 7200 points.
[29] The same number of realizations is used to compute Ln

for randomized time series as well. Here, ensemble mean of
Ln is computed over both substorm and quiet periods to
which we refer as all data. We have also computed mean
Ln for several other record lengths, but the value does not
change significantly. The embedding dimension is m = 8,
and t = 10 minutes. The sample values of Ln are statistically
independent and Gaussian distributed with standard deviation

ss, and hence the standard error of the ensemble mean is
ss=

ffiffiffiffiffi
nn

p
, where nn is the number of realizations. This error is

for all Ln-curves shown in this paper of the same order as the
symbol size, and is therefore not shown explicitly in the fig-
ures. As observed in Figure 6a, where triangles are for the all
data, and stars are for randomized data, Ln for tAE is higher
than for the randomized version, indicating existence of a low-
dimensional and nonlinear component in the signal. The same
is shown for tAU, tAL, and tPC indices in Figures 6b and 7,
respectively. Notice that for the O-U process in the inset of
Figure 2b, Ln for the randomized version is overlapping with
the Ln of the O-U process itself.
[30] Also, the same test was done for the geomagnetic

index SYM-H in Živković and Rypdal [2011], and even
though analysis of this index yields low-dimensionality
during magnetic storms, Ln is indistinguishable from its
randomized version when averaged over a year, where both
storm and quiet times are taken into account. Further, Ln
computed for Bz and vx (triangles) is indistinguishable from
the Ln of their randomized versions (stars), as is shown in
Figure 8.

Figure 5. (a) 〈G〉, obtained by averaging G over the sub-
storm ensemble. (b) Ensemble means 〈2h〉. Stars represent
Bz and diamonds vx. Standard error for 〈G〉 is of the order
s ≈ 0.02, while for 〈2h〉 it is s ≈ 0.04.

Figure 6. Ln averaged over an ensemble of realizations (for
explanation see the main text); squares are derived during
substorms, triangles from all data, stars from all data after
randomization of phases of the Fourier coefficients, (a) for
tAE and (b) for tAU. Standard errors are of the same order
as the symbol size.
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[31] As we demonstrate below tAE, tAU and tPC all
exhibit a discernible low-dimensional component during
substorms. Since substorms occur very often, sometimes
several per day, this low-dimensionality is discernible also
when averaged over both substorm and quiet period data, as
already shown. We use the substorm database and compute
Ln in the time interval 1 hour before and 1.5 hours after the
substorm onset. This way we generally include all phases of
the substorm. Substorms with onsets separated by less than
3 hours are discarded from the ensemble to avoid overlap, as
already mentioned in the previous section.
[32] It was shown in Živković and Rypdal [2011] that

increasing the embedding dimension will result in a better
estimate for the determinism Ln for systems with low-
dimensional dynamical component, while no change in
determinism can be seen for a stochastic signal like the O-U
process. Therefore, in principle one should use as high
embedding dimension as possible. However, as shown
below, increasing embedding dimension reduces the number
of data points available in the embedding space, and hence
the statistical uncertainty in the estimates increases. Thus, a
compromise must be found in each case. Ideally t should be

chosen to correspond to the first minimum of the average
mutual information (which is t ≈ 20 in most of our data).
However, in our data we are limited by the length of the time
records, which is the typical length of a substorm. We use
records of length 2.5 hours (record length L = 150 data
points), chose t = 10minutes, andm = 8 (when t = 20, results
are the same, but due to better statistics, we use t = 10). This
leaves a trajectory record in embedding space of length
N � (m � 1)t = 80 (from equation (2)). These 80 data points
are not sufficient to produce meaningful estimates for Ln,
hence we compute one value of Ln by means of a string of
7200 data points (as in the case for “all” and “randomized”
data), comprising 7200/150 = 48 successive substorms. From
such a string we can compute an Ln which should be per-
ceived as an average evolution characterizing those 48 sub-
storms, and we consider it to represent one sample value of
the Ln-evolution of the substorm process. Further, mean
Ln values are computed over an ensemble of 9, 15 and 14
realizations for the year 2000, 2001 and 2002, respectively,
and for each year the standard error of the mean s is esti-
mated. This analysis is made for tAE, tAL, tAU, and tPC, and
compared to Ln computed from all data where the mean Ln is

Figure 7. Ln averaged over an ensemble of realizations;
squares are derived during substorms, triangles from all data,
stars from all data after randomization of phases of the Four-
ier coefficients, (a) for tAL and (b) for tPC. Standard errors
are of the same order as the symbol size.

Figure 8. Ln averaged over an ensemble of realizations;
squares are derived during substorms, triangles from all data,
stars from all data after randomization of phases of the Four-
ier coefficients, (a) for Bz and (b) for vx. Standard errors are
of the same order as the symbol size.
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calculated over the same number of realizations as for
the substorm data. Figures 6 and 7 are plotted for the
year 2000 and illustrate that all geomagnetic indices
(except tAL) exhibit elevated determinism during substorm
times (squares) in respect to all data (triangles), i.e. low-
dimensionality increases during substorms. Future studies
should investigate why determinism in tAL index change
very little during magnetospheric substorms. Notice that if
we could obtain equally good statistics with higher embed-
ding dimension, it would be very likely that the determinism
during substorms would be even more elevated than it is for
m = 8. Also, we believe that Ln during substorms would be
more elevated over Ln that would be computed from data
where all substorms are excluded. However, this is difficult
to do in practice, since quiet intervals between substorms
have very unequal lengths. Mean Ln during substorms in
2001 and 2002 is also elevated over Ln computed for all data
in 2001 and 2002, but the elevation is slightly smaller. Ln for
the geomagnetic indices plotted in Figures 6 and 7, is
obtained for b = 1. Box size of b = 2 gives very similar
results, but larger boxes include more trajectories and the
difference between determinism during substorms and all the
data tend to decrease. As we see in the above analysis,
Ln versus n looks similar to an O-U process, demonstrating
that geomagnetic indices reveal predominantly stochastic
dynamics. However, Ln for the original (either all or sub-
storm times) is elevated over the Ln for the randomized time
series, indicating that there is also a low dimensional, non-
linear component present in the time series.
[33] Another way to demonstrate the existence of a low-

dimensional component in these indices is to compare the
determinism computed from the tAE during substorms with
signals generated numerically from the O-U equation, whose
coefficients are fitted to the tAE under substorm through
least squares regression procedure. For each of a large
number of realizations of the O-U process, we compute the
ensemble mean of L4 as a measure of low-dimensionality,
for embedding dimension m = 8 and t = 20. The choice of
L4 from the Ln versus n curve is a compromise between clear
separation between low-dimensional and stochastic dynam-
ics and small error bars (which increase with increasing n).
The ensemble mean for O-U process is L4 ≈ 0.40, while for
deterministic process L4 � 1. In contrast, Figure 6a shows
that L4 ≈ 0.60 for tAE under substorm conditions, which
gives a clear indication that the AE index is neither fully
deterministic nor stochastic.
[34] In Figure 8 we plot Ln for Bz and vx, also when b = 1,

and observe no increase in determinism during substorms.
This indicates that the increased low-dimensional component
in the geomagnetic indices during substorms is not imposed
on the magnetosphere by the growth of such a component in
the solar wind. In other words: the organization of the mag-
netosphere during substorms is a self-organization.

4. Discussion

[35] We have applied recurrence-plot analysis and a test of
determinism to geomagnetic indices AE, AU, AL and PC, as
well as IMF Bz and solar wind velocity x- component vx.
Recurrence plots were applied by March et al. [2005a] to
connect solar wind observables to the AL and AU indices,
concluding that the correlation between these indices results

from magnetic storm signatures appearing in both time series.
Also, correlation between the solar wind electric field vxBz and
the AE index was studied in March et al. [2005b], invoking
mutual information. Here it was found that correlation is
present intermittently on the timescales of a few hours, sug-
gesting that substorms are information carriers between the
solar wind and the magnetosphere. In our study, recurrence
analysis is used to measure the inverse average diagonal line
lengthGwhich is heuristically shown to be a useful measure of
predictability of the dynamics. As an alternative predictability
measure the self-similarity exponent h was measured during
the course of substorms. No systematic variation of h or G
during substorms has been detected in an ensemble of all
substorms in the period from 2000–2002. This is true both for
geomagnetic indices and the solar wind observables. Thus we
conclude that geomagnetic indices which represent dynamics
in the magnetotail, plasma sheet boundary layer, partial ring
current, and polar cap convection, do not become more pre-
dictable during substorms. The same applies for observables
representing the dynamical state of the solar wind driver. From
the analysis of a spatiotemporal dynamical model of the high
latitude magnetic perturbation, it was shown in Valdivia et al.
[1999] that the nonlinear dynamical model for the evolution
of the spatial structure produces better prediction than the
linear one during intense magnetospheric activity. In this
article, a simple test for determinism has shown as well that the
AE index exhibits some nonlinear characteristics, but in
addition, it has a weak low-dimensional component. These
characteristics are elevated during substorms, as is illustrated
in Figure 6a. Other geomagnetic indices (to a lesser extent AL
index) also show same signatures during magnetic substorms
(see Figures 6b and 7), which could indicate that the magne-
tosphere develops low-dimensional dynamics under substorm
conditions. For the AE index similar results were obtained by
Athanasiu and Pavlos [2001], who applied singular value
decomposition (SVD) analysis to the AE index. They con-
cluded, by comparing the AE index with solutions of the
Lorenz system contaminated by a colored noise term, that the
first SVD component in both cases is entirely due to colored
noise, while the higher-order SVD components are due to the
internal, low-dimensional and chaotic dynamics. By comput-
ing cross-correlation between the first SVD component of the
AE index and the index itself, they concluded that the influ-
ence of the first component is about 40 percent. Further, the
first SVD component is attributed to the solar wind and is
characterized as linear and stochastic, while higher SVD
components are attributed to magnetospheric dynamics. In our
test of determinism the data are not filtered to reduce the effect
of the stochastic component on the analysis, but the results still
reveal that unlike IMF Bz and solar wind velocity x-component
vx, the AE index contains components that makes it different
from a high-dimensional or stochastic system.
[36] Thus, it seems firmly established that the auroral

electrojet proxies exhibit an additional low-dimensional
component associated with self-organization of the magne-
tosphere, the most prominent example being the auroral
substorm. It should be stressed, however, that also for AE
activity the major component is stochastic. Chapman and
Watkins [2001] argue that the AE index contains informa-
tion transferred from the solar wind, since it has been shown
in Freeman et al. [2000] that power laws in burst lifetime
distribution for the AL and AU indices and for the solar
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wind electric field vxBz are similar apart from a bump in the
lifetime distribution which Freeman et al. [2000] explain as
a signature of the substorm current system. This indicates
that the stochastic component of the auroral electrojet
activity to a great extent is a direct imprint of the solar wind
turbulence. This conclusion is supported by the analysis in
Rypdal and Rypdal [2011], where Bz and tAE are found to
exhibit very similar multifractal spectrum on the timescale
up to 100 min.
[37] Our analysis supports a picture where the magneto-

sphere under quiet conditions resides in a forced state where
the organization of the magnetospheric dynamics reflects the
organization of the solar wind driver, i.e. the stochastic
properties of the global magnetospheric system and the
driver are very similar. If substorms are trigged by solar
wind features, this trigger does not increase the organiza-
tion or predictability of the solar wind dynamics. During
substorms geomagnetic indices are influenced by a self-
organization that involves the major current systems in
the magnetosphere-ionosphere, and hence indicates that a
global instability is exited. This picture is consistent with
the scenario described in Chang [1999], and conceptually
simpler forerunners like Lewis [1991]. The latter sets out to
explain the unpredictability of substorm onset, noting that
external triggers, like reversal from northward to southward
pointing Bz, are not always identifiable, and series of
substorm cycles can occur if southward IMF persists for
prolonged times. Further, this picture agrees with Klimas
et al. [2000] who simulated a spatiotemporal chaotic system
that could display multiple dissipation events under constant
driver. Southward IMF opens up for loading of mag-
netic flux and energy to the magnetosphere, and in Lewis
[1991], and further elaborated by Sitnov et al. [2001], para-
meters representing this loading are modeled as external
time-dependent control parameters, and the magnetospheric
state-variable (e.g. a geomagnetic index) is modeled via a
non-autonomous system of the form

dX

dt
¼ F X ; a; bð Þ; ð9Þ

where a(t), b(t) are two time-dependent external control
parameters. The underlying assumption is that the magneto-
sphere resides in a forced equilibrium corresponding to a sta-
ble fixed point of this system, and hence these equilibria are
located on the surface F(X, a, b) = 0 in the three-dimensional
(X, a, b)-space. Choosing a third-order polynomial form, e.g.
F(X, a, b) = X3 + aX + b, gives rise to a folded surface that
opens the possibility of a cusp catastrophe which is inter-
preted as the substorm onset (expansion phase). According to
this non-autonomous model for the evolution of the stable,
forced equilibria, the substorm onset is not really unpredictable
since it depends on the control parameters a and b. However,
the catastrophe can occur along a curve in the (a, b)-plane
which may be hard to identify from this kind of conceptual
model, and hence practical prediction may be difficult.
[38] One unsatisfactory feature of non-autonomous mod-

els of this kind is that the control parameters are not directly
related to the state of the solar wind driver, but rather a result
of the solar wind/magnetosphere interaction that is an inte-
gral part of the dynamical system to be modeled. Thus, in
this respect a more satisfactory approach is to model the

magnetosphere-ionosphere as a dynamical system which is
autonomous under constant forcing. Such models can be
constructed with varying degree of sophistication [Baker
et al., 1990; Klimas et al., 1992; Horton and Doxas, 1998],
and may give rise to chaotic signals that reproduce many of
the random characteristics of the magnetospheric time series.
However, being deterministic and low-dimensional they
cannot reproduce the strong stochastic component in the
observational signals. On the other hand, such models can be
generalized to include stochastic forcing from small-scale
internal dynamics and deterministic and stochastic forcing
from variations of the driver. Thus, one may conceive com-
plicated as well as simple conceptual dynamic-stochastic
models that can capture the essential stochastic dynamics as
it presents itself in the observables studied here. In Rypdal
and Rypdal [2010, 2011] the AE index is modeled by a
simple dynamic-stochastic equation that reproduces the
general statistical features. The deterministic dynamics in
this equation was represented by a drift term (a nonlinear
damping) which prevents the solution to drift off to infinity,
but the focus in those studies was on the timescales less
than a 100 min, where the effect of the drift term is small. A
version of this stochastic difference equation that exhibits
on-off intermittency for certain choices of parameters is

dX ¼ M xð Þdt þ
ffiffiffiffi
D

p
X w ð10Þ

where M(x) = aX � X3 with a > 0 models the drift term
found from the AE index in Rypdal and Rypdal [2011].
Here dt is the discrete time step (the sampling interval of the
time series) and dX(t) = X(t + dt) � X(t). In Rypdal and
Rypdal [2010] w(t) is modeled as a particular multifractal
stochastic noise process with unit variance. It was shown by
Aumaitre et al. [2005] that the on-off intermittency of this
equation is sensitive to the nature of the noise term. If w(t)
is approximated by a white Gaussian noise, equation (10) in
the limit d → 0 reduces to the Itô stochastic differential
equation

dX ¼ aX � X 3
� �

dt þ
ffiffiffiffi
D

p
XdB tð Þ;

where B(t) is the Wiener process (Brownian motion).
It can be shown from the associated Fokker-Planck
equation that the stationary probability density for X
is P(X) = CX (2a/D)�1e�(X 2/D). The divergence of P(X)
as X → 0 for 2a/D < 1 is due to the on-off intermittency in
this regime, which makes the solution reside in the vicinity
of X = 0 for a considerable portion of the time, while for
2a/D � 1 small, but positive, the solution has an intermit-
tent character more similar to the behavior of the AE index.
Such a solution, for D = 0.1, is shown in Figure 9a, with a
sample of the AE index shown in Figure 9b. Here w was
chosen as a weakly anti-persistent fractional Gaussian noise
with Hurst exponent H = 0.45, which is the H-value derived
from the power spectral density for AE shown in Figure 10.
The relation between the spectral index b, which is the
slope of the straight lines fitted to the spectra plotted in a
log-log plot, and the Hurst exponent of the differentiated
signal is b = 2H + 1. On timescales <100 time steps (min-
utes) AE index has b ≈ 1.90, corresponding to H ≈ 0.45.
The power spectral density for the model signal shows a
less clear power law regime on these timescales, which is
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mainly due to a crude model for the nonlinear drift term M
(X) in equation (10). A more “box-like” function would
remedy this. On timescales >100 minutes the spectrum for
the AE index has a pink-noise character (b ≈ 1), while the
model time series has a more gradual transition toward
white noise. Further study on refinements of equation (10)
is required to settle whether these spectral features are
possible to reproduce within this class of one-dimensional
stochastic equations.
[39] An interesting question is whether modeling along

these lines can produce bursts (substorms) which enhance
the determinism compared to a completely random process.
As discussed before, the test based on comparing the Ln-
curve with the one obtained after randomization of phases
is a test on the existence of a low-dimensional and nonlinear
component in the dynamics. Direct computation of Ln from
the model signal, when t = 10 and m = 8, does not reveal a
significant reduction of Ln after randomization, in contrast to
what was found from theMG system signal in Figure 2a. One
obvious reason for this is that the signal from equation (10)
contains a strong stochastic component which is not present
in the signal from the MG system. Hence, in this case it is
necessary to perform a mild low-pass filtering of the model

signal before computation of Ln [Kaplan and Glass, 1993].
The result after filtering is shown in Figure 11, indicating the
presence of a low-dimensional nonlinear component. To
make sure that this filtering does not introduce spurious low-
dimensional nonlinearities in the signal, we perform the same
test to a filtered O-U process with similar spectral char-
acteristics as our model signal (the power spectral density for
the O-U signal is displayed in Figure 10). The filtered O-U
process shows very small change of Ln after randomization of
phases, as shown in the inset of Figure 11. Obviously, low-
pass filtering also has an effect on this test when applied to
physical signals with a stochastic component. In Figure 12
we show the effect of applying the same filter to tAE,
which should be compared to the result for the unfiltered
signal shown in Figure 6a.
[40] The nonlinearity producing determinism in the model

signal from equation (10) is a combination of the nonlinear
drift term and the multiplicative noise term

ffiffiffiffi
D

p
Xw . The

multiplicative term can be eliminated by the transformation

Figure 9. (a) Numerical solutions of equation (10) and
(b) AE index.

Figure 10. Power spectral densities. Top curve is from AE
index. Middle curve is from solutions of equation (10) with
w a fractional Gaussian noise with H = 0.45. Bottom curve is
from O-U process with w the same as above.

Figure 11. Ln averaged over an ensemble of realization;
bullets are derived from low-pass filtered numerical solu-
tions to equation (10), stars are derived from these solutions
after randomization of phases of Fourier coefficients. Inset
shows same characteristics for the filtered O-U process.
Standard errors are of the same order as the symbol size.

Figure 12. Ln averaged over an ensemble of realization;
bullets are derived from the all low-pass filtered tAE time
series, stars from this time series after randomization of
phases of the Fourier coefficients. Standard errors are of
the same order as the symbol size.
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Y = logX, but then Itô’s formula [Gardiner, 1985] yields
a new drift term on the form ~M Yð Þ ¼ e�YM eYð Þ � D=2 .
Note that if our original drift term is a linear damping
M(X) = �nX the transformed drift term reduces to a negative
constant ~M Yð Þ ¼ � n þ D=2ð Þ. This yields Y(t) → �∞, and
hence X(t)→ 0 as t→∞, and demonstrates that the drift term
must be nonlinear to produce stationary time series from a
model with a multiplicative noise term like equation (10).
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