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Genomics and Epidemiology, Max-Planck Institute for Informatics, Saarbrücken, Germany, 3 Department for Algorithmic Bioinformatics, Heinrich-Heine University

Düsseldorf, Düsseldorf, Germany, 4 CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia, Australia, 5 Department of Arctic and Marine Biology, University

of Tromsø, Tromsø, Norway

Abstract

Lignocellulosic biomass remains a largely untapped source of renewable energy predominantly due to its recalcitrance and
an incomplete understanding of how this is overcome in nature. We present here a compositional and comparative analysis
of metagenomic data pertaining to a natural biomass-converting ecosystem adapted to austere arctic nutritional
conditions, namely the rumen microbiome of Svalbard reindeer (Rangifer tarandus platyrhynchus). Community analysis
showed that deeply-branched cellulolytic lineages affiliated to the Bacteroidetes and Firmicutes are dominant, whilst
sequence binning methods facilitated the assemblage of metagenomic sequence for a dominant and novel Bacteroidales
clade (SRM-1). Analysis of unassembled metagenomic sequence as well as metabolic reconstruction of SRM-1 revealed the
presence of multiple polysaccharide utilization loci-like systems (PULs) as well as members of more than 20 glycoside
hydrolase and other carbohydrate-active enzyme families targeting various polysaccharides including cellulose, xylan and
pectin. Functional screening of cloned metagenome fragments revealed high cellulolytic activity and an abundance of PULs
that are rich in endoglucanases (GH5) but devoid of other common enzymes thought to be involved in cellulose
degradation. Combining these results with known and partly re-evaluated metagenomic data strongly indicates that much
like the human distal gut, the digestive system of herbivores harbours high numbers of deeply branched and as-yet
uncultured members of the Bacteroidetes that depend on PUL-like systems for plant biomass degradation.
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Introduction

Understanding the enzymology of plant biomass conversion is a

key issue in the world’s desire to establish a sustainable bio-based

economy. Whilst current available enzyme technology is insuffi-

ciently effective, many free-living organisms readily deconstruct

plant biomass by enzyme-driven hydrolysis to take advantage of

this material as a nutrient source. In particular, obligate herbivores

have evolved to maintain a symbiotic relationship with a

specialized consortium of gut microbes (microbiomes) that

underpins lignocellulose deconstruction. Current paradigms for

microbial lignocellulose degradation in gut microbiomes are

centered on well known key cellulolytic enzymes (i.e. GH5,

GH6, GH7, GH9 and GH48; see [1] for enzyme classification)

and multi-enzyme cellulosome complexes [2].

Accumulating knowledge indicates that these paradigms are not

unique and that nature has additional, as yet poorly understood

tools to accomplish lignocellulose degradation. For instance, the

gut bacterium Fibrobacter succinogenes has long been known to

degrade crystalline cellulose and other plant structural polysac-

charides at a rate exceeding that of most other microorganisms.

However genome studies indicate this bacterium lacks both GH6,

processive GH9, and GH48 representatives and cellulosome

structures [3]. The absence or poor representation of key enzymes

and cellulosomes in cellulolytic gut microbiome communities has

been further exemplified by recent metagenome sequencing

projects in the hindgut of termites [4], the foregut of marsupials

[5] and the rumen of cows [6,7]. Here we have explored this

further by studying the rumen microbiome of the Svalbard

reindeer, a herbivore whose extreme habitat and diet are very

different compared to the herbivores studied so far.

Svalbard reindeer (Rangifer tarandus platyrhynchus) live under

austere nutritional conditions on the high-arctic archipelago of

Svalbard (74–80uN lat.), where snow and ice cover most
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vegetation for more than eight months of the year. In winter time,

the reindeer feed on poor quality forages that are high in

lignocellulose. Body reserves are not sufficient for winter survival,

and it has been estimated that only 10–30% of the daily energy

expenditure during the dark part of winter can be covered by

mobilization of fat [8]. Therefore, optimal utilization of the feed

during winter time is crucial for survival and metabolic capabilities

of the rumen microbiome are likely to play a central role. Indeed,

studies on cultivable members of the microbiome showed high

levels of bacteria capable of degrading various forms of cellulose

and heteroxylans [8], whilst a limited cultivation-independent

study suggested that the rumen microbiomes of Svalbard reindeer

are dominated by novel species [9].

Svalbard reindeer research to date indicates the presence of a

microbiome with high microbial diversity, powerful functional

capabilities in terms of cellulose degradation, and a considerable

degree of novelty. We present here a compositional and

comparative analysis of metagenomic data for the rumen

microbiome of Svalbard reindeer during winter. Novel bacterial

lineages were identified and nucleotide composition-based se-

quence binning using PhyloPythiaS [10] facilitated the production

of a 0.9 Mb assemblage of DNA representing one of the novel

Bacteroidales clades numerically dominant in this community.

Further in silico analysis revealed the presence of polysaccharide

utilization loci-like systems (PULs) that resemble multiprotein

starch utilization systems (Sus) [11] as well as the presence of

carbohydrate-active enzymes targeting a broad spectrum of

polysaccharides, in both this clade and the unassembled

metagenome. Additional functional screens of fosmid libraries

and data-mining of existing metagenome datasets revealed

cellulose-degrading loci and PUL-like systems at an exceptionally

high frequency in the Svalbard reindeer rumen as well as other

herbivore gut environments [7,12].

Results and Discussion

Metagenomic Sequence Generation
Total DNA was extracted from rumen samples collected from

two Svalbard reindeer (SR1 and SR2) feeding on natural winter

pasture, when the percentage of fibre degrading bacteria is

believed to be at its maximum [8,9]. A 454 pyrosequencing

scheme with four technical replicate PCR reactions (each with a

unique barcode) for each animal (2 animals 6 4 replicates: 8

samples in total), was used to obtain ,80,000 sequence reads from

PCR-amplified V1–V3 regions of bacterial 16S rRNA genes

(average read length ,490 nt). In order to eliminate noise

introduced during PCR and sequencing of 16S rRNA genes,

operational taxonomic units (OTUs: defined using a 97%

sequence identity threshold) were only included in the community

analysis if their representatives were found in at least four of the

eight samples.

To facilitate access to the metagenome and subsequent

descriptions of microbial community function, approximately

503 Mb of raw single- and paired-end shotgun reads were

generated from pooled rumen microbiome community DNA (2

animals). A proportion of the reads could be assembled into

contigs greater than 500 nt (a total of 32,073 contigs, 26 Mb in

total) with the largest contig being 17,446 nt. Paired-end

sequences were used to construct 1364 scaffolds (scaffolds

represent one or more contigs ordered and oriented using

paired-end reads) for taxonomic binning using PhyloPythiaS

(avg: 3986 nt, largest 46,178 nt; 5.44 Mb in total). Another

1.2 Mb of metagenomic DNA sequence was obtained by

assembling and manual editing of the sequences of selected

fosmids.

Microbial Community Composition and the Dominance
of the Bacteroidetes

The microbial community structure was determined using both

16S rRNA gene amplicon pyrosequencing and sequence-compo-

sition binning (PhyloPythiaS) of scaffolds assembled from metage-

nomic sequences (Figure 1). Using 16S rRNA gene analysis we

determined there was little variation between the two animals used

for this study: 90.4% and 91.5% of OTUs found in the rumen

communities of animals SR1 and SR2, respectively, were shared

between the two samples (Figure 1, Table S1). There were only a

few instances of large differences in OTU relative abundance

between the two samples (Table S1).

Comparison of OTUs against the Ribosomal Database Project

[13] revealed that the Bacteroidetes and Firmicutes were largely

predominant constituting 61% and 27% of the gene amplicon

sequences respectively (Figure 1a). Dominance of these phyla is

commonly observed in gut microbiomes. However, at an OTU-

level as many as 85% of the OTUs could not be classified to a

Genus-rank (Table S1), whilst the 20 most abundant OTUs

demonstrated low sequence identities with cultured representatives

(Figure S1). This suggests that the OTUs generally are only

distantly related to any of the cultivated species from other gut

environments. Furthermore, OTU-level comparisons using net-

work maps showed a limited degree of shared OTUs between the

Svalbard reindeer and other foregut-digesting herbivores, includ-

ing the Norwegian reindeer (Rangifer tarandus tarandus) fed a

commercial pelleted feed (Figure 1b). Community-level compar-

isons with Unifrac, which analyze phylogenetic lineages and not

just shared OTUs, showed that the microbiome of the Svalbard

reindeer rumen was more similar to that of the Norwegian

reindeer than to those from other herbivores (Figure 1c). A small

core-set of six OTUs was present in all ruminants (both reindeer

species and cow), as well as two more that were present in all

foregut digesters (macropods included). Interestingly these eight

OTUs were all affiliated to either Ruminococcaceae or Lachnos-

piraceae lineages (Firmicutes) (Figure 1b, Table S1). Recent broad-

scale phylogenetic analysis of the human gastrointestinal micro-

biome has identified highly prevalent core phylogroups belonging

to the Lachnospiraceae [14], and evidence presented here suggests

that such groups exist for foregut digesters as well. Most OTUs in

the Svalbard reindeer rumen were present at low abundance,

however several deeply branched unique members of the

Bacteroidales (Bacteroidetes) were found in high abundance

(Table S1). One OTU in particular, hereafter referred to as

SRM-1, comprised 11% of the total 16S rRNA gene dataset. The

SRM-1 OTU was found in both reindeer species only (Figure 1b)

and has never before been reported. It demonstrates only 91%

sequence identity to its closest cultured relative, Bacteroidales

genomosp P1.

Taxonomic analysis of the metagenome sequences by sequence-

composition binning of assembled scaffolds with PhyloPythiaS

revealed a similar community structure to that observed when

using 16S rRNA gene amplicon pyrosequencing analysis, with

,75% of scaffolds assigned to the Bacteroidetes and Firmicutes

(Figure 1d, Table S2). The dominance of SRM-1 was confirmed

with over 880 kb (,16%) of scaffold sequence being assigned to

this OTU. Noteworthy contrasts between the two approaches

included: (1) the absence of metagenomic scaffolds binned to the

phylum Chloroflexi, which had several numerically abundant

OTUs in the 16S rRNA gene amplicon pyrosequencing analysis

(Figure 1a, Figure S1), and (2) the higher percentage of

Metagenomics of the Reindeer Rumen Microbiome
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metagenomic scaffolds that were assigned as ‘‘other’’. We

hypothesize that due to the deep-branching nature of the

Chloroflexi OTUs (the closest cultured relative has 90–91% 16S

sequence identity) and an under-representation of Chloroflexi

genetic information available for PhyloPythiaS training (Table S3),

metagenomic scaffolds originating from Chloroflexi species were

not detected and instead assigned as ‘‘others’’ (assignments not

extending deeper than Domain-rank). This could explain both

inconsistencies, at least in part.

Overall, both analysis yielded a considerable proportion of

shallow assignments, with 60% of the PhyloPythiaS assignments

(Table S2) and 53% of the OTU lineages (Table S1) not extending

deeper than an Order-rank of classification. This confirms that the

Svalbard rumen microbiome consists of unique bacterial lineages,

with limited similarity to published sequence data from other

organisms and/or environments.

Plant Polysaccharide Degradative enzymes in the
Svalbard Reindeer Rumen Microbiome and the
Dominant, Novel and Saccharolytic Bacteroidales Clade
SRM-1

In order to characterise the biomass-degrading capabilities of

the Svalbard reindeer rumen microbiome gene-centric metage-

nomic datasets were constructed and annotation efforts focused on

Figure 1. Microbial community analysis of the Svalbard reindeer rumen microbiome and comparison with microbiomes from other
selected gut environments. (A) Diversity and relative abundance of the most abundant bacterial taxa identified in the rumen of the Svalbard
reindeer based on phylogenetic analysis of 16S rRNA genes. (B) OTU network map showing OTU interactions between all rarefied samples from the
Svalbard reindeer, Norwegian reindeer feeding on a commercial feed, Tammar wallaby, rumen and termite. OTUs are represented by dots and dot
sizes reflect sequence counts within the OTU. Dot colour indicates the number of microbiomes in which the OTU was found (1 = white, 2 = yellow,
3 = orange, 4 = red). The lines radiating from each of the five grey dots link the OTUs to their source microbiomes: Svalbard reindeer, dark blue (this
study); Norwegian reindeer, light blue (this study; dataset included for comparative purposes only); Termite_PL3, yellow [4]; bovine, green [6];
Tammar wallaby, orange [5]. (C) Principal coordinate axes (PCoA) for the unweighted UniFrac analyses are coloured by host animal; Svalbard reindeer
(2 samples: cm) dark-blue; Norwegian reindeer (2 samples: ¤¤) light-blue; bovine rumen (N) green; Tammar wallaby (b) red; termite (&) orange.
(D) Composition of the Svalbard reindeer rumen metagenome sequence dataset, based on sequence composition-based binning of 1394 assembled
scaffolds (,5.4 Mb) using PhyloPythiaS. For a complete rrs inventory and comparisons between the two Svalbard reindeer samples at an OTU
definition of 97% ID see Table S1.
doi:10.1371/journal.pone.0038571.g001
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identifying genes putatively encoding carbohydrate-active genes.

Both filtered unassembled reads (Table 1) and assembled contigs

and scaffolds (for SRM-1; Table S4) were subjected to automated

annotation using the Integrated Microbial Genomes with Micro-

biome Samples (IMG/MER) system [15]. Carbohydrate-active

enzymes were identified using pfamHMMs and grouped accord-

ing to major functional role (see www.cazy.org and [1] for a

description of the classification system).

In total more than 5000 putative GH (Glycoside Hydrolase)

gene fragments were recovered from 300 Mb of filtered unassem-

bled reads and over 400 of these were putative cellulases, mainly

belonging to families GH5 and GH9 (Table 1). Limited numbers

of gene fragments associated with cellulosome complexes were also

detected, including genes encoding GH48s (n = 5) as well as

cohesin (n = 52) and dockerin (n = 92) modules. Their detection

was notable since cellulosome components generally are scantly

found in gut metagenomes. However, it is in accordance with

reports showing that cellulolytic bacteria associated with cellulo-

some complexes occur in the microbiome of ruminants [16],

including the Svalbard reindeer [8]. The analysis showed a broad

profile of hemicellulases and non-cellulase polysaccharide degrad-

ing enzymes (Table 1), including a high-proportion of enzymes

involved in depolymerisation of the major grass hemicellulose,

glucuronoarabinoxylan (e.g. GH51 a-L-arabinofuranosidases and

GH67 glucoronidases) and enzymes acting on xylo-oligosaccha-

rides (e.g. GH1–3 and GH43). Despite the snow cover in winter,

grass species are still significant components of the Svalbard

reindeer diet accounting for 14–26% of daily feed intake [17].

Additionally, many of the identified GH-encoding genes are

putatively involved in the deconstruction of polysaccharides that

are prevalent in the cell walls of dicots and non-vascular plants.

Predicted abundant enzyme activities include hydrolysis of

galacturonans (GH28) and rhamnoses (GH78) commonly found

in pectin, as well as hydrolysis of mannans (GH5 and GH26) and

xyloglucans (GH5, GH16 and GH74). These predicted activities

are consistent with the fact that the Svalbard reindeer winter diet is

dominated by the dicot Salix polaris (dwarf shrub; 4–16%), Saxifraga

spp. (evergreen; 0–48%) and bryophytes (non-vascular mosses; 10–

54%) [17]. Both types of plants possess cell walls that typically

have higher levels of xyloglucans, mannans and pectins than

grasses [18,19]. Interestingly the analysis also revealed an

abundance of Sus-like genes that may be part of PULs (see

Table 1 and below for further discussion).

PhyloPythiaS produced a 0.9 Mb assemblage from the

metagenomic contigs and scaffolds it assigned to the dominant

SRM-1 Bacteroidales population. More than 20 carbohydrate-

active families targeting various hemicelluloses, pectins and

cellulose were identified in this assembly, suggesting the presump-

tive SRM-1 strain is well adapted to the reindeer diet (Table S4).

Genes encoding presumptive endoxylanases (GH8 and GH10), b-

xylosidases (GH3, GH30 and GH43), a-L-arabinofuranosidases

(GH51 and GH53), a-glucuronidases (GH67), and endopolyga-

lacturonase (GH28) and acetyl xylan esterases (CE1 and CE4)

were identified. The SRM-1 reassembly also includes presumptive

GH5 and GH9 endo-b-1,4-glucanases, and GH3 b-glucosidases,

as well as Sus proteins. However, the partial assembly did not

contain any known cellobiohydrolases (GH6, GH7, or GH48), nor

were any dockerin or cohesin modules present; suggesting a non-

cellulosomal mode of polysaccharide hydrolysis. Interestingly, a

putative polyphenol oxidoreductase laccase was also identified and

suggests that, along with the presence of CE1 and CE4 esterases,

this bacterium may have an effective strategy for the deconstruc-

tion of ‘‘non-core’’ lignin.

Functional Screens and Gene-mining Linking Cellulose
Degradation to the Bacteroidales and PULs

The frequency of fosmid clones testing positive for CMCase

activity was the highest reported so far (48 positive from ,5,000

screened, corresponding to ,1% of the clones and a hit rate of 1

per 3.5 Mb screened; [20]). The majority of the sequenced fosmid

clones were predicted to be derived from Bacteroidetes-affiliated

lineages (Table 2). More than 70% of the scaffolds constructed

carry one or more genes encoding a presumptive GH5

endoglucanase. However, two scaffolds (Sc00001 & Sc Sc00021)

did not possess any GH families representing known endogluca-

nases, suggesting members of the Bacteroidales might also possess

novel cellulose-degrading mechanisms. Further studies, e.g.

employing random transposon mutagenesis, are needed to identify

exactly which genes are responsible for the enzymatic activity

encoded by these fosmids. The presumptive GH5 endoglucanase

genes were most often located in close proximity to multi-gene

PULs which were all found on fosmids assigned to Bacteroidetes,

including one fosmid assigned to SRM-1 (see Figure 2, Table 2).

Their gene-organisation included Sus-like outer membrane

proteins homologous to SusC and SusD, which are essential for

the import and degradation of starch by the Sus initially described

in the human gut bacterium Bacteroides thetaiotaomicron [21]. SusC-

and SusD- like genes which typify a Sus-like PUL, function

together with other hypothetical outer-membrane proteins (SusE/

F-like) and linked carbohydrate-active enzymes [11]. Whilst

originally characterised on starch, Sus-like PULs encoded in

human gut Bacteroidetes have since been described with

capabilities to degrade other plant polysaccharides that include

pectins and hemicellulosic substrates [22]. Predictions of polysac-

charide degradation by Sus-like PULs in other environments have

previously been made [11,23], but so far there are only few studies

addressing their importance in the herbivore gut. Their involve-

ment in xylan degradation by the rumen bacterium Prevotella

bryantii has been illustrated by gene transcriptome studies [23],

whereas their potential role in cellulose degradation has been

suggested on the basis of the metagenome described for the

anaerobic microbiome of the Tammar wallaby foregut [5].

Having observed the abundance of Sus-like proteins in the

Svalbard reindeer microbiome, we re-evaluated existing herbivore

metagenomic data. Cellulolytic screens using fosmids constructed

from the metagenome of the buffalo rumen microbiome have

previously identified GH5 endoglucanases affiliated to the

Bacteroidetes [12]; closer examination of flanking genetic regions

revealed the presence of Sus-like PULs (Figure 2). Gene-mining

within the rumen metagenome constructed by Hess et al. [7],

revealed a hitherto non-detected abundance of Sus-like genes

(Table 1) as well as a cellulase-linked PUL encoded within the

partial genome assembled for the as-yet uncultured Bacteroidetes

phylotype AC2a (Figure 2, Table S5). The cellulases (GH5 and

GH9) and a GH94 cellobiose phosphorylase encoded within the

AC2a PUL suggest activity against cellulosic substrates (Figure 2).

Interestingly, Hess et al. showed that both these cellulase genes

expressed proteins with enzymatic activity against either CMC or

avicel and pretreated Miscanthus substrates [7] (Table S5). Overall

these findings suggest that PULs including those linked with

cellulases are widespread in herbivore gut environments and may

play a major role with respect to plant biomass degradation,

similar to what has been demonstrated in the human distal gut.

Taken together the accumulated data also suggests involvement of

Sus-like proteins in cellulose degradation, a process which is not

predominant in the human gut but essential in herbivores.

Metagenomics of the Reindeer Rumen Microbiome
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Table 1. Overview of the occurrence of GHs targeting plant structural polysaccharides in five herbivore metagenomes*.

Predominant activity Macropod Termite Bovine [6] Bovine [7] Reindeer

Cellulases

GH5 cellulases 10 56 8 1451 287

GH6 endoglucanases 0 0 0 0 0

GH7 endoglucanases 0 0 0 1 0

GH9 endoglucanases 0 9 6 795 109

GH44 endoglucanases 0 6 0 99{ 5

GH45 endoglucanases 0 4 0 115 0

GH48 cellobiohydrolases 0 0 0 3 5

Total 10 (4) 75 (20) 14 (2) 2464 (13) 406 (8)

Endohemicellulases

GH8 endoxylanases 1 5 4 329 35

GH10 endo-1,4-b-xylanases 11 46 7 1025 190

GH11 xylanases 0 14 1 165 8

GH12 xyloglucanases 0 0 0 0 0

GH26 b-mannanase & xylanases 5 15 5 369 153

GH28 galacturonases 2 6 5 472 120

GH53 endo-1,4-b-galactanases 9 12 17 483{ 125

Total 28 (10) 98 (26) 39 (6) 2843 (15) 631 (12)

Xyloglucanases

GH16 xyloglucanases 4 1 1 483 116

GH74 xyloglucanases 1 7 0 385{ 44

Total 5 (2) 8 (2) 1 (0) 868 (5) 160 (3)

Debranching enzymes

GH51 a-L-arabinofuranosidases 12 18 64 1249{ 488

GH54 a-L-arabinofuranosidases 0 0 1 76{ 23

GH62 a-L-arabinofuranosidases 0 0 0 1 0

GH67 a-glucuronidases 5 10 0 120 74

GH78 a-L-rhamnosidases 25 0 34 1260 313

Total 42 (15) 18 (5) 99 (14) 2706 (15) 898 (17)

Oligosaccharide-degrading enzymes

GH1 b-glucosidases 61 22 10 253 122

GH2 b-galactosidases 24 23 186 1436 716

GH3 b-glucosidases 72 69 176 2844 844

GH29 a-L-fucosidases 2 0 74 939 268

GH35 b-galactosidases 3 3 12 158 39

GH38 a-mannosidases 3 11 17 272 116

GH39 b-xylosidases 1 3 2 315 76

GH42 b-galactosidases 8 24 11 374 95

GH43 arabino/xylosidases 10 16 61 2932{ 787

GH52 b-xylosidases 0 3 0 1{ 2

Total 184 (70) 174 (47) 549 (78) 9524 (52) 3065 (60)

Other domains associated with GHs

Cohesin 0 0 0 80 52

Dockerin 41 0 8 188 92

SusC 36 0 9 3110" 1122

SusD 42 0 11 1889" 685

Metagenome size 0.054 Gb{ 0.062 Gb{ 0.026 Gb1 268 Gb{ 0.30 Gb1

*GHs are grouped according to their major functional role in the degradation of plant fiber. The numbers in parentheses represent the percentages of these groups
relative to the total number of GH’s presented in this table. In addition to GHs, the table shows data for four other selected proteins possibly involved in biomass
turnover; see main text for details. Note that some of the GH profiles were derived from contigs{ rather than (filtered) unassembled reads1, explaining part of the
differences in absolute gene numbers. " Data calculated in this study using searches against the rumen metagenome dataset [7] using SusC (PF00593) and SusD
(PF07980) HMMs. {Pfam HMMs not available for CAZy families; data generated by dbCAN (http://csbl.bmb.uga.edu/dbCANdev/index.php).
doi:10.1371/journal.pone.0038571.t001
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Concluding Remarks
The high-Arctic Svalbard reindeer survive under austere

nutritional conditions relying on the ability of the rumen

microbiome to digest poor quality mosses and fibrous plants

available in winter. The metagenomic analyses in this study

illustrate that the Svalbard reindeer rumen is host to novel and

numerically dominant bacterial lineages. The deeply branched

and numerically dominant SRM-1 lineage is predicted to play a

key role in the deconstruction of plant biomass by producing an

array of glycoside hydrolases targeting cellulose, hemicelluloses,

pectin and other oligosaccharides. Functional screening and

sequencing of fosmid libraries revealed CMCase positive clones

affiliated to the abundant SRM-1 clade that lacked known

endoglucanases, inferring the possibility of novel cellulolytic

mechanisms that are yet to be characterised. This approach also

identified Bacteroidetes-affiliated GH5-linked PULs, which in-

cluded one linked to SRM-1. The finding of similar cellulase-

linked PULs in the cow and buffalo rumen and macropod foregut

microbiomes adds further weight to the hypothesis that these

structures perhaps represent a key adaptation to growth on

cellulose by Bacteroidetes species. It would seem that these PULs

and their constituent genes present important targets for further

research, possibly representing completely novel mechanisms for

enzymatic cellulose conversion in anaerobic gut environments.

Materials and Methods

Reindeer Sampling and Ethics Statement
Rumen contents were sampled from two adult, female Svalbard

reindeer (Rangifer tarandus platyrhynchus) (SR1 and SR2) aged

between 1.5 and 4.5 years and grazing on their natural winter

pastures in Bjørndalen near Longyearbyen, Svalbard (Norway) on

January 31st 2010. The Svalbard Environmental Protection Fund

‘‘Svalbard miljøvernfond,’’ Acting Environment Manager Per

Kyrre Reymert and Conservation Advisor Tor Punsvik, approved

the use of Svalbard Reindeer in this study (Permission reference

number: 2009/00420-4). The Svalbard Environmental Protection

Fund is the competent authority for sampling from wild animal

populations. The reindeer were euthanized by an experienced

hunter by shooting followed by exsanguination, which is an

approved procedure under the Norwegian Animal Welfare Act.

Since the reindeer were euthanized for the post mortem collection

of samples, the procedure did not require ethical approval from

the Norwegian Animal Research Authority (NARA).

In addition, for comparative rrs analysis, two adult Norwegian

reindeer (Rangifer tarandus tarandus) (NR1 and NR2) fed a

commercially available pelleted concentrate feed for reindeer

(RF-80; Felleskjøpet, Norway), were sampled from the domestic

herd at the University of Tromsø, Norway (December 2009). NR1

and NR2 were purchased from local reindeer herders and

maintained in the animal research facility at the University of

Tromsø. This facility (and staff) has been inspected and approved

by NARA, and therefore fulfills current animal welfare criteria.

The reindeer were euthanized by trained personnel by stunning

followed by exsanguination, which is an approved procedure

under the Norwegian Animal Welfare Act.

Rumen contents were transferred immediately after slaughter to

sterile containers and frozen at 280uC.

Cell Dissociation and DNA Extraction
Cell dissociation from plant material and DNA extraction were

performed on individual samples (SR1, SR2, NR1 and NR2) and

pooled Svalbard reindeer samples that contained equal amounts of

SR1 and SR2 material. To desorb and recover microbes adhered

to plant biomass 5–10 g of the pooled samples were centrifuged at

14 000 rpm for 2 minutes, and the pellets were resuspended in

Figure 2. Comparative gene organization of presumptive cellulolytic PULs identified in the Svalbard reindeer rumen and other gut
environments. Gene clusters were recovered from the cow rumen metagenome (partial genome of an as-yet uncultured Bacteroidales phylotype
AC2a) and sequenced cellulolytic fosmids constructed from environmental DNA originating from the gut microbiomes of the wallaby foregut and the
reindeer and buffalo rumen (upper four clusters). All fosmid sequences originate from Bacteroidetes, according to PhyloPythiaS binning, and for all
cellulolytic activity has been detected in functional screens. Green genes represent SusE/SusF-like genes predicted to encode outer-membrane
proteins whose function is currently unknown. Black genes encode putative response-regulators. BACON: indicates a carbohydrate binding domain
identified by [40]. TonB: indicates members of the TonB-dependent receptor family, a group of outer membrane spanning b-barrel proteins that
transport solutes and macromolecules. TW-64 and TW-33 correspond to sample IDs for the GH9 and GH5 genes (respectively) encoded within the
AC2a PUL, from which expressed proteins were tested positive for hydrolytic activity on various cellulosic substrates by Hess et al., [7]. GenBank
accession numbers and/or IMG Gene Object ID numbers are provided. Gene IDs for the AC2a PUL are provided in Table S5.
doi:10.1371/journal.pone.0038571.g002
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dissociation buffer and subjected to a dissociation and DNA

extraction procedure described by Rosewarne et al. [24].

16S rRNA Gene Amplicon Sequencing
Bacterial rrs genes were amplified from the individual NR1,

NR2, SR1 and SR2 metagenomic DNA samples using the forward

primer (59- CCT ATC CCC TGT GTG CCT TGG CAG TCT

CAG CAA CAG CTA GAG TTT GAT CCT GG -39), which

contained the 454 Life Sciences primer B sequence and the

broadly conserved bacterial primer 27F, and the reverse primer

(59-CCA TCT CAT CCC TGC GTG TCT CCG ACT CAG

NNN NNN NNT TAC CGC GGC TGC T -39), which contained

the 454 Life Sciences primer A sequence, the broadly-conserved

bacterial primer 515R and a unique 8-nt multiplex identifier

(MID) used to tag each amplicon (designated by NNNNNNNN)

[25]. Four technical replicate PCR reactions (each with a unique

barcode) were performed for each DNA sample. Pyrosequencing

of rrs gene amplicons was performed on the 454 Genome

Sequencer FLX-Titanium system according to manufacturer’s

instructions (454 Life Sciences). Signal processing and base calling

were performed using the bundled 454 Data Analysis Software

version 2.3.

Phylogenetic Analysis of 16S rRNA Gene Sequences
Rrs gene sequences were processed using the QIIME software

package [26] and removed from the analysis if they were ,350 or

.550 nt in length, contained ambiguous bases, had a mean

quality score ,25, contained a homopolymer run exceeding 6 nt,

or did not contain a primer or barcode sequence. Similar

sequences were clustered into operational taxonomic units (OTUs)

using UCLUST software [27] and a 97% sequence identity

threshold. To eliminate noise and possible artifacts introduced

during PCR and sequencing, OTUs were filtered so that only

those that contained representatives from a minimum of 4 samples

were used, and the most abundant sequence in each OTU was

chosen as the representative sequence. As an added precaution

chimeras were removed from the representative set using Chimera

Slayer as previous work suggests that chimera formation is

reproducible across technical replicates [28]. Representative

sequences (accession numbers JN802705 - JN803885, SRM-1:

JN802985) were aligned against the Greengenes core set [29]

using PyNAST software [30] with a minimum alignment length of

150 and a minimum identity of 75%. Taxonomy was assigned to

each OTU using the Ribosomal Database Project (RDP) classifier

[13] with a minimum support threshold of 80% and using the

RDP taxonomic nomenclature. The alignments were then filtered

to remove gaps and hypervariable regions using a Lane mask [26],

and an maximum-likelihood tree was constructed from the filtered

alignment using FastTree [31]. Prior to comparison of reindeer rrs

gene sequences with wallaby, rumen and termite samples, each rrs

dataset was randomly ‘‘subsampled’’ using QIIME to normalize

each dataset and remove sample heterogeneity. An unweighted

UniFrac distance matrix [32] was constructed from the phyloge-

netic tree and visualised using principal coordinates analysis. The

OTU network maps were generated using QIIME and visualised

with Cytoscape [33].

Metagenome Processing: Shotgun Library Preparation,
Sequencing and Assembly

Shotgun sequencing runs were performed on libraries prepared

from pooled Svalbard reindeer rumen community DNA using the

454 Genome Sequencer FLX-Titanium single- and paired-end

protocols (total 1,453,100 reads, 503 Mb). Sequencing reads were

assembled using Newbler (GSassembler v. 2.3) resulting in 32,073

contigs $500 nt, totalling 26 Mb and 1364 scaffolds totalling

5.44 Mb. Due to low assembly (334,500 out of 1,453,100: ,23%),

unassembled single-end reads were used for community GH

profile analysis. Importantly this approach also ensured that

differences in species abundance distribution were incorporated

(i.e. dominant populations producing multiple hits to the same

gene will be weighted in the analysis). Unassembled sequencing

reads with degenerate bases (‘‘Ns’’) were removed along with all

replicate sequences that were detected using the following

parameters: 0.9 (90% ID), length difference requirement = 0

and 3 beginning bases checked [34]. A total of 695,636 (300 Mb)

reads passed this quality filtering. The raw sequencing reads and

the assembled metagenome dataset have been deposited at the

NCBI Short Read Archive under BioProject ID PRJNA73677 and

accession number SRA046345.1.

Fosmid Constructioxn, Screening, Sequencing and
Assembly

A 36 kb insert fosmid library was cloned in pCC1Fos (Epicentre

Corp.) using previously described methods [24]. Fosmid clones

bearing endoglucanase and/or xylanase activity were detected by

plating the E. coli library on LB-chloramphenicol agar plates

containing either 0.2% (w/v) carboxymethylcellulose or 0.2% (w/

v) birchwood xylan (Sigma). Recombinant strains were plated and

incubated overnight at 37uC. The plates were then stained with

Congo red dye and de-stained with 1M NaCl to reveal zones of

hydrolysis. Positive colonies were isolated and reexamined to

confirm activity. This approach yielded 48 fosmid clones positive

for carboxymethylcellulose hydrolysis (,5,000 screened) and three

positive for xylan hydrolysis (,1,000 screened). These 51 clones

were subsequently sequenced and assembled. Fosmid copy

numbers were enhanced using Epicentre protocols, and the

fosmid DNA was purified using Qiagen MiniPrep columns.

Equimolar amounts of the fosmids were pooled together (,20 mg

total DNA) and both a 3 kb paired-end library and a 454 standard

shotgun library were constructed. Both libraries were directly

sequenced with the 454 Life Sciences Genome Sequencer GS FLX

and assembled into 40 scaffolds using Newbler. Redundancy was

observed within the assembly with several fosmids overlapping at

least one other fosmid, however no instances of fosmid replicates

were observed. For nine fosmids, insert sequences were completely

assembled, with no gaps. In total, 1.2 Mb of metagenomic DNA

sequence was assembled and manually edited.

Gene Annotation and Phylogenetic Analysis
Three metagenomic datasets (unassembled single-end reads,

assembled contigs $500 nt, and assembled fosmids) from the

Svalbard reindeer rumen microbiome were annotated via the

IMG/M-ER annotation pipeline and loaded as independent data

sets into IMG/M-ER [15] (http://img.jgi.doe.gov/cgi-bin/m/

main.cgi), a data-management and analysis platform for genomic

and metagenomic data based on IMG [35]. Complete annotated

data for the fosmid scaffolds, assembled contigs and unassembled

reads can also be accessed through the IMG/MER (http://img.

jgi.doe.gov) under Taxon Object ID 2199352020, 2081372005

and 2088090000 respectively. Putative genes were called with a

combination of GeneMark.hmm for Prokaryotes (v. 2.4) [36],

MetaGene [37], Prodigal (v2.00) [38] and multiBLASTx. Datasets

from the Hess et al., rumen metagenome [7] were downloaded

from ftp://ftp.jgi-psf.org/pub/rnd2/Cow_Rumen/. This includ-

ed genome bins for as-yet uncultured bacteria (ftp://ftp.jgi-psf.

org/pub/rnd2/Cow_Rumen/cow_rumen_genome_bins.tar.gz)

and putative genes for the total dataset that included genome bins
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as well as assembled metagenome contigs (ftp://ftp.jgi-psf.org/

pub/rnd2/Cow_Rumen/metagenemark_predictions.faa.gz).

Searches for glycoside hydrolases (GHs) of selected functional

classes (e.g. cellulases, hemicellulases, debranching enzymes, ‘‘oth-

ers’’) were performed with pfam HMMs (Pfam version 24.0 and

HMMER v3.0), named in accordance with the CAZy nomenclature

scheme [1]. The specific cut-off was set to Gathering Threshold

(HMMER). For those GH families for which there is currently no

representation in Pfam, HMMs were generated using hmmbuild

(HMMER) and multiple sequence alignments of representative

sequences selected from the CAZy database.

Binning

Assembled metagenomic contigs, scaffolds and fosmids were binned

(classified) using PhyloPythiaS [10], a kmer-based taxonomic classifier.

The classifier was trained to include clades at the taxonomic ranks of

domain, phylum, class, order and family and the clade ‘‘uncultured

Bacteroidales bacterium’’ (SRM-1). The models include all clades

covered by two or more species at the corresponding ranks among

2193 sequenced microbial isolates and clade SRM-1 (Table S3). The

classifier consists of an ensemble of six structural support vector

machines (SVMs) models, created by using fragments of 1, 3, 5, 10, 15

and 50 kb in length, respectively, for training (see [10] for details). For

SRM-1, thirteen assembled scaffolds (a total of 205,517 bp) were used

for training, which were assigned unambiguously through a combina-

tion of high read coverage, consistent GC% and affiliation of selected

phylogenetic marker genes [39] to the order Bacteroidales. Sample

specific sequences for other clades were obtained by similarity searches

and application of the lowest common ancestor algorithm on

taxonomic identifiers of the best-scoring hits. Input fragments of a

particular length were generated by using a sliding window with a step

size of one-tenth of the generated fragment size (for example 5 kb for

50-kb fragments) on sample-derived sequences and a step size of

generated fragment length on the isolate sequences. The classifier was

then used to assign all assembled scaffolds and contigs larger than

500 bp. Results of this binning process were loaded into IMG/M-ER

to allow independent analysis of the component populations.

Supporting Information

Table S1 Operational taxonomic units (OTU) represen-
tatives of 16S rRNA gene sequences obtained from the
rumen microbiome of the Svalbard reindeer. * Hierar-

chical taxonomic assignment for each OTU calculated using the

RDP naı̈ve Bayesian Classifier [13]. Lineages are displayed only

where OTUs could be assigned with an 80% bootstrap confidence

estimate. SR1 and SR2 indicate animal number and a-d indicate

PCR replicates used for OTU filtering (see Materials and

Methods). Rows highlighted in yellow indicate OTUs shared with

all ruminant and foregut samples (see Text and Figure 1b)

(DOC)

Table S2 Phylogenetic profile of the Svalbard reindeer
rumen metagenome sequence dataset, based on se-
quence composition-based binning of assembled scaf-
folds using PhyloPythiaS. Values described in non-bold text

represent sub-category counts for order/family lineages within the

Bacteroidetes and Firmicutes.

(DOC)

Table S3 Input clades, sample specific data and
genomes/Whole Genome Shotgun submissions (WGS)
used for PhyloPythiaS training models. * temporary ncbid

for SRM-1.

(DOC)

Table S4 Glycoside hydrolases and related proteins
recovered from the putative partial SRM-1 genome. *

indicates best match; { indicates contig is linked to an uncultured

Bacteroidales bacterium scaffold, based on PhyloPythiaS analysis;

+SP indicates signal peptide detected. Taxonomic assignment was

predicted using GC%, high coverage (greater than 6x) and

PhyloPythiaS binning.

(DOC)

Table S5 A cellulase-linked PUL encoded within the as-
yet uncultured Bacteroidales phylotype AC2a genome
bin, reconstructed from the rumen metagenome [7]. *

Gene ID’s are in the following format: NODE_ORF (see [7]). All

data downloaded from ftp://ftp.jgi-psf.org/pub/rnd2/

Cow_Rumen/{ Sample ID and Substrate are as in Figure 3 and

Table S6 from Hess et al. [7].

(DOC)

Figure S1 Relative abundance of the 20 most dominant
bacterial taxa in the Svalbard reindeer rumen micro-
biome. Percentages are calculated against the total number of

16S rRNA gene sequences recovered. The closest cultured relative

of each OTU and the sequence similarity % ID is indicated in

parentheses. The lineage of each OTU is indicated by colour of

text: Bacteroidetes maroon, Chloroflexi blue and Firmicutes green.

(TIF)
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