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Abstract

Anomalously large radial transport levels in fusion devices is commonly believed to
be the cause of small-scale edge localized electrostatic drift wave turbulence. We
review the basic drift wave instability mechanism and show how poloidally elon-
gated structures can self-consistently emerge from the small-scale turbulent mo-
tions through envelope modulation governed by the cubic nonlinear Schrödinger
equation. There has been extensive study of the zonal flow - drift wave system
recently, showing that zonal structures effectively reduce radial transport levels.
We study the drift wave turbulence model due to Hasegawa and Wakatani (OHW),
which upon subtle modification (MHW) also allows for zonal flow formation which
is characteristic for the edge region of fusion devices. There is experimental evi-
dence of long-range correlations; we investigate whether zonal flows give rise to such
behavior in the hydrodynamic and quasi-adiabatic state of the OHW and MHW
models. Rescaled range analysis gives no indication of long-range correlation. Struc-
ture function analysis confirm this finding for the zonal flow free simulations where
fluctuations are essentially Gaussian. Heavy tails in probability distributions of tur-
bulent quantities due to the emergence of zonal flows in the quasi-adiabatic state
of MHW complicate the analysis and increase in self-similarity parameters com-
puted from structure functions cannot be used as proof for long-range correlation.
The finding of this work is that significantly longer time-series are needed to clarify
whether long-range correlations are an artefact of zonal structures or not.
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Chapter 1

Introduction

Turbulent transport of particles and heat towards the confining walls in fusion plas-
mas is a major design challenge for next generation Tokamak devices. It is generally
recognized that electrostatic drift wave turbulence is the cause for turbulent trans-
port in the plasma edge, where free energy is provided by density gradients which
are necessary to keep the plasma confined ([24]). Fusion plasmas are typically highly
magnetized such that turbulent dynamics in the edge region are approximately de-
scribed by a two-dimensional geometry. A specific two-dimensional drift wave model
is the Hasegawa - Wakatani (HW) set of coupled partial differential equations for
vorticity and density fluctuations ([4]), which has been extensively studied before
([17],[27]). The benefits of employing this model is its simplicity, which makes it
a popular candidate for long-time numerical simulations. Experimental evidence
of electrostatic turbulence allows for a static magnetic field, magnetic shear can
be neglected when considering slab-geometry such as shown in Figure 1.1 inside
the last closed magnetic flux surface. The figure shows a poloidal cross section of
the Alcator C - Mod Tokamak device at the Massachusetts Institute of Technology
(MIT), imagine the box being located slightly to the left such as to lie entirely inside
the magenta shaded ares, indicating magnetic flux surfaces. Slab geometry is then
the local approximation of radial vs. poloidal direction mapped into a rectangular
coordinate system, which we shall employ. The HW system of equations adequately
describes radial fluxes since the phase relation between density and potential fluc-
tuations is accurately modeled. To incorporate for shear velocities resulting from
zonal structures in turbulent quantities, one has to modify the HW and arrives at
the modified Hasegawa Wakatani equations (MHW). Zonal structures in the turbu-
lent potential improve the confining properties of the plasma by extracting energy
from turbulent fluctuations which in turn reduces radial transport. Recently, there
has been carried out extensive research seeking to describe the role of self - consis-
tent zonal flows in the drift wave turbulence, see f.ex. Diamond [5] for an excellent
review on this topic, but not whether zonal flows give rise to long range correlation.
It should be noted that focus has been on more sophisticated models than the one
we shall employ. There is experimental evidence of long-range correlations in fusion
devices. Long-range correlation is commonly believed to be indirect evidence of
self-organized criticality (SOC) which is associated with local density profile relax-
ation due to turbulent motions which looses its drive when the profile is relaxed,
making it possible to rise to a certain threshold before fueling the turbulence again.
Long-range correlation is the collective memory of such local effects that eventu-
ally lead to experimentally observed avalanche effects in radial flux [26]. We seek
to investigate whether the simple HW and MHW models describe this artefact of
plasma micro-turbulence.
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Figure 1.1: Poloidal cross section of the Alcator C - Mod at MIT. Slab geometry is
essentially indicated by the box.

The structure of this work is as follows. In chapter 2 we derive the necessary
model equations and consider specific analytic limits of it to predict results for the
numerical simulations. We give important physical arguments on how zonal flows
can self-consistently arise due to modulation of small-scale drift wave turbulence in
chapter 3. Statistical concepts and the numerics of the employed code are presented
in chapter 5. Numerical results obtained from the hydrodynamic and quasi - adi-
abatic limit of ordinary and modified Hasegawa - Wakatani equations respectively
are presented in chapter 6.
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Chapter 2

Resistive drift wave dynamics

2.1 Physical mechanism

In the following we present the basic setting for drift wave dynamics to occur. This
section is merely of illustrative value since the equations are oversimplified which
yields stable branches in the dispersion relation. Nonetheless the simple arguments
presented here shall help to give a deeper understanding of the more realistic case
for resistive drift wave dynamics which is described in the next section.
The following derivation follows Pésceli [1] closely.
Consider the ion continuity equation in three dimensional slab-geometry, where we
take the magnetic field to be constant and along the positive z-direction, B = B ẑ,

∂ni

∂t
+ ni∇ · vi + vi · ∇ni = 0, (2.1)

as well as the cold ion, i.e., Ti = 0, momentum equation where resistive dissipation
is neglected

M

(
∂

∂t
+ vi · ∇

)
vi = −e∇φ+ evi ×B, (2.2)

where we have introduced the electrostatic potential E = −∇φ and M denotes the
ion mass. Crossing the momentum equation with B yields the ion perpendicular
velocity

v⊥i = − 1

B2
∇φ×B− M

eB2

[
∂

∂t
(vi ×B) + vi · ∇vi ×B

]
, (2.3)

which we note to be compressible, ∇·v⊥i 6= 0. We assume that the wavelengths are
long enough to allow for quasi-neutrality, i.e., kλD � 1, where the Debye length
for electrons is given by λ2D = ε0Te/e

2n0 . Furthermore, we are considering low
frequency, electrostatic waves that satisfy

vthi � ω/kz � vthe, (2.4)

which means that electrons are free to flow along the magnetic field from wave
crest to trough in order to preserve quasi-neutrality. For all practical purposes we
assume quasi-neutrality to hold and use Poisson’s Equation to compute the density
deviation from the electrostatic potential,

ε0∇2φ = e(ne − ni). (2.5)

Due to the above, it is reasonable to assume that electrons follow a Boltzmann
distribution,

ne = n0(x) exp

(
eφ

Te

)
, (2.6)
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where the temperature is measured in terms of energy units (i.e., eV)such that the
conventional Boltzmann factor does not appear. One easily converts to the Kelvin
scale upon division of Te by the Boltzmann factor, k.

Conventional drift ordering dictates the velocity to lowest order in ω/ωci is given
by the electric drift. Iteration of the RHS in Eq. (2.3) by using the electric drift we
obtain the familiar second order correction, namely the ion polarization drift,

v⊥i = − 1

B2
∇φ×B− M

eB2

(
∂

∂t
− 1

B2
∇φ×B · ∇

)
∇⊥φ. (2.7)

The ieration is valid if the electric field varies only on slow time and long spatial
scales respectively. Note that due to the second order correction the ion perpen-
dicular velocity is no longer incompressible. Invoking quasi-neutrality such that all
subscripts ”e” and ”i” on the densities are redundant and inserting the Boltzmann
distributed density, Eq. (2.6) in Eq. (2.1) gives then

∂φ

∂t
+
Te
e
∇ · (v⊥i + vqib) + (v⊥i + vqib) · ∇φ+

Te
en0(x)

dn0
dx

v · x̂, (2.8)

where obviously v = v⊥ + vqb and we have defined a unit vector in the direction
of the magnetic field, b = B/B . The equation above is readily seen to allow for
a trivial equilibrium, i.e., φ = 0 and vi = 0. Linearizing about this equilibrium
denoted by φ0,vi0, with perturbation φ1,vi1, where the perturbation by definition
of the linearizing concept is assumed to be small, we obtain

∂φ1
∂t

+
Te
e

(
∇ · v⊥i1 +

∂

∂z
vqi1

)
+

Te
en0(x)

dn0
dx

v⊥i1 · x̂, (2.9)

and

v⊥i1 = − 1

B2
∇φ1 ×B− M

eB2

∂

∂t
∇⊥φ1. (2.10)

The parallel component of Eq. (2.2) is

M

(
∂

∂t
+ vi · ∇

)
vqi = −e ∂

∂z
φ, (2.11)

which admits the equilibrium with φ0 = 0, v0i = 0 . We may linearize the parallel
component equation to close the linearized system of eqs.

M
∂

∂t
vqi1 = −e ∂

∂z
φ1. (2.12)

Taking the time derivative of Eq. (2.9) and substituting Eq. (2.10) and Eq. (2.12)
leads to

∂2φ1
∂t2

+
Te
e

(
− M

eB2

∂2

∂t2
∇2

⊥φ̃1 −
e

M

∂

∂t

∂2φ1
∂z2

)
+
Te
e

n′0
n0

(
− 1

B

∂

∂t

∂φ1
∂y

− M

eB2

∂2

∂t2
∂φ1
∂y

)
= 0,

(2.13)
where now n′0 = dn0/dx. Upon introducing the ion cyclotron frequency, Ωci =
eB/M , the hybrid quantities ion sound speed at electron temperature, C2

s = Te/M
, and the ion Larmor radius at electron temperature, ρ2s = C2

s /Ω
2
ci =MTe/e

2B2 we
have

∂2

∂t2
(
φ1 − ρ2s∇2

⊥φ1
)
− Cs

∂2

∂z2
φ1 −

C2
s

Ωci

n′0
n0

∂

∂t

∂

∂y
φ1 − ρ2s

n′0
n0

∂2

∂t2
∂

∂x
φ1 = 0. (2.14)

We study the edge of confined plasmas where density gradients naturally occur, we
therefore initialize an exponential background profile,

n0(x) = n00 exp(−x/Ln),
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where Ln is the characteristic scale-length of the density gradient. The density
gradient is in the radial direction and the plasma is assumed to be homogeneous in
y- and z - direction, such that we are considering fluctuations on the form

φ1(x, y, z, t) = φ̂(x) exp(ikyy + ikzz − iωt),

which gives

ω2ρ2s

(
∂2φ1
∂x2

+
n′0
n0

∂φ1
∂x

)
−
(
ω2 + ω2ρ2sk

2
y − C2

s k
2
z + ω

C2
s

Ω2
ci

n′0
n0
ky

)
φ1 = 0. (2.15)

We may assume that the amplitude varies only weakly with x such that the deriva-
tives acting on it vanish and also considering long wavelengths along the magnetic
field (we still have vthi � ω/kz � vthe) then yields the more simple second order
equation

ω2(1 + ρ2sk
2
y)− ωkyuDe ≈ 0, (2.16)

where the diamagnetic drift velocity for electrons is given by

uDe =
Te
eB

∣∣∣∣n′0n0
∣∣∣∣ = κCs, (2.17)

and we have also introduced the normalized density scaling κ ≡ ρs/Ln . It follows
that

ω =
uDeky

1 + ρ2sk
2
y

. (2.18)

The factor ρ2sk
2
y arises due to the non-zero divergence of the ion polarization drift.

In even more simplified models, where the ion polarization is not considered, the
dispersion relation is simply ω = uDeky , which is commonly denoted as the drift
wave frequency, ω = ω∗ ≡ uDeky. Note that if the fluctuations also were allowed
to vary in the x-direction (still the amplitude should only vary weakly with x) we
would get

ω =
uDeky

1 + ρ2sk
2
⊥
, (2.19)

where k2⊥ = k2x + k2y.

Physical Interpretation

As shown above, the obtained frequency is real, thus there is no instability of
the drift wave. This result follows from the assumption of Boltzmann distributed
electrons, which upon linearization gives that density fluctuations are in phase with
potential fluctuations.

Cf. Figure 2.1. The figure describes a density perturbation. At point A the
fluctuating density is greater than its equilibrium value, the linearized Boltzmann
distribution then gives an in-phase potential at point A, n1/n0 = eφ1/Te . At
point B the corresponding fluctuations are less than its equilibrium value, thus
there is a potential drop between A and B and consequently an electric field di-
rected from to A to B arises due to the density perturbation. Recall that there is
no equilibrium field present, so the electric field is really a perturbed quantity, and
together with the (constant) magnetic field this gives rise to a perturbed electric
drift, v1 = E1 × B0/B

2
0 , which between A and B is directed in the −x direction

and further down the y-axis the drift is in the positive x direction. Now, recall that
there is a gradient in the equilibrium density profile which also is directed in the
negative x direction. The drift is maximum when the perturbed density equals its

6



Figure 2.1: Figure taken from Chen [2], chapter 6, figure 14. Density fluctuations
about its equilibrium (broken line) causes in-phase potential fluctuation in the adi-
abatic limit, which results in an oscillating E×B drift that is π/2 out of phase with
respect to the density perturbation, cf. Figure refelectricdrift. Less dense plasma
is transported to the left in the upper part of the figure, whereas denser plasma is
transported to the right in the lower part. A stationary observer on the broken line
will see plasma slushing back and forth as the perturbation propagates along the
positive y-axis since the electric drift is such that it pushes the density perturbation
at a fixed y-position to values it takes a little lower hence causing propagation of
the density profile.
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equilibrium value (cf. Figure 2.2), thus at point 2, located the distance between
A and B below point B, the local plasma density will increase, whereas the local
plasma density decreases at point 1 between A and B since less dense plasma flows
in there. The effect is that the density is modified by the oscillating electric drift
in such a way that it takes values it had a little earlier at smaller y coordinate.
Thus the whole perturbation propagates in the positive y direction while the local
plasma density at positions A and B is observed to slosh back and forth, as does
the electric drift. Since fluctuations are perfectly in phase, there is no instability
mechanism present.
We realize that any mechanism that makes the potential fluctuations lag behind the
density fluctuations will cause the electric drift to assume its maximum value in
the positive x direction at positions where the fluctuating density is greater than its
equilibrium value thus enhancing the perturbation by transporting excessive plasma
density away from such points and similarly, the electric drift assumes its maximum
value in the negative x direction at positions where the perturbed plasma density is
less than its equilibrium value, and the depletion is enhanced by plasma transport
of less dense plasma into such areas. If the perturbed potential leads the density
perturbations, there will be no instability, since the situation is reversed, and the
drift maxima will occur where the density fluctuations are minimum, thus the per-
turbation is flattened out. Clearly the violation of Boltzmann distributed species
corresponds to electrons not being able to flow along the magnetic field instanta-
neously in order to preserve quasi-neutrality. Thus any kind of resistivity along the
magnetic field may intuitively yield instability. Mechanisms making the potential
fluctuations lag the density perturbations are for instance ([1]) electron - neutral
collisions, electron - ion collisions, Landau damping and inductance.
Electron - neutral collisions are present in weakly ionized gases which may occur in
ionospheric plasmas.
Electron - ion collisions give rise to resistivity in fully ionized plasmas which is con-
sidered in the next section.
Wave - particle interaction yielding Landau damping is important in collision-less
plasmas when the electron distribution function is disturbed by electrons with ther-
mal velocities comparable to the drift wave phase velocity along the magnetic field,
which is not the case for drift waves, since vthi � ω/kz � vthe.
For high β plasmas, i.e., when the parallel phase velocity is of the order of the
Alfvén speed, the representation of the electric field by an electrostatic potential
is no longer valid since the magnetic field created by the electron flow back-reacts
with the background magnetic field. Thus the magnetic field is no longer static and
the the electric field no longer curl-free.

Resistive Drift Waves

The next step of generalization is to allow for electron-resistivity along B, hence
the name resistive drift waves. Then, proceeding according to Bellan [3] we de-
rive the dispersion relation for resistive drift waves. Consider the parallel electron
momentum equation with resistivity,

0 = e
∂φ

∂z
− Te

∂

∂z
ln(ne)− νeimeuez, (2.20)

where the ion parallel velocity is negligible compared to the electron parallel velocity
and we have again made use of vthi � ω/kz � vthe. We may linearize about an
equilibrium with n0 = n0(x), φ0 = 0, uez = 0 and take a spatial Fourier transform
of the fluctuating quantities in y and z direction (the plasma is inhomogeneous
in the x - direction, as before the Fourier amplitudes may depend on x, yet it is

8
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Figure 2.2: Electric drift extrema relative to perturbed density
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more fruitful to assume only weak variation of amplitude in order to obtain simpler
equations without considerable loss of generality). We write

f = f0 + f1 = f0 + f̂ exp(iky + ikz − iωt), (2.21)

where f stands for electron density, potential or components of involved veloc-
ity respectively. The subscript ”0” denotes equilibrium quantities and of course
|f1/f0| � 1. The logarithm is treated according to

lnn = ln

[
n0

(
1 +

n1
n0

)]
≈ lnn0 +

n1
n0
. (2.22)

Invoking the equilibrium given above, linearization gives the parallel electron veloc-
ity (Fourier) component

ûez = − ikzTe
νeime

(
n̂e
ne0

− eφ̂

Te

)
. (2.23)

Assuming |ωce/νei| � 1, we may drop the collision term for the perpendicular
motion

0 = e∇⊥φ− eue ×B− Te∇⊥ lnne, (2.24)

and the inertia term is negligible compared to the pressure term in virtue of ω/kz �
vthe. The perpendicular electron flux is now given by

Γe⊥ = neue⊥ = − ne
B2

∇⊥φ×B+
Te
eB2

∇⊥ne ×B. (2.25)

Substituting the perpendicular electron flux in the electron continuity equation on
the form

∂ne

∂t
+∇ · Γe⊥ +

∂

∂z
(neuez) = 0, (2.26)

yields
∂ne

∂t
+

∂

∂z
(neuez)−

1

B2
∇ne · ∇φ×B = 0, (2.27)

where we have used that the electric and diamagnetic drifts are incompressible in the
magnetic field configuration we are using here. Linearizing about the equilibrium
stated above we find

∂ne1

∂t
+ ne0

∂

∂z
uez1 −

n′e0
B2

x̂ · ∇φ1 ×B = 0. (2.28)

Ivoking Eq. (2.21) for the fluctuating density and potential and also using Eq. (2.23)
for the Fourier amplitude of the fluctuating parallel velocity component we arrive
at

−iω n̂e
ne0

+ ne0ikz

[
− ikzTe
νeime

(
n̂

ne0
− eφ̂

Te

)]
+
ikyφ̂

BLn
= 0, (2.29)

which may be rearranged to obtain

n̂

ne0
=
eφ̂

Te

(
−iω∗ +

1
τq

)
(
−iω + 1

τq

) , (2.30)

where we have introduced the nominal time required for electrons to diffuse a dis-
tance of the order of a parallel wavelength, τq = νeime/k

2
zTe. This is readily seen by

considering the parallel diffusion coefficient Dq = (∆z)2/νei ∼ v2the/νei = Teνei/me

10



, where ∆z denotes a random step length in the parallel direction. It is then clear
that τq → 0 corresponds to Boltzmann distribution, whereas τq 6= 0 introduces a
phase lag between density and potential fluctuations which ultimately is the cause
for drift wave instability as we shall see shortly.
The idea is to find an expression for the ion density perturbation as a function of
the perturbed potential, invoking quasi-neutrality should then lead to the dispersion
relation we set out to determine. The ion equation of motion for cold and singly
charged ions, i.e., qi = e,

M
d

dt
ui = e(−∇φ+ ui ×B)− νieM(ui − ue), (2.31)

may be linearized in the parallel direction under the assumption that the inertial
term is much larger than the collisional term. Note that we have introduced the
lowest order convective derivative

d

dt
=

∂

∂t
+ vE · ∇ =

∂

∂t
− 1

B2
∇φ×B · ∇.

The linearized parallel component of the ion equation of motion is readily found to
be

M
∂

∂t
ui1 = −e∇φ1 + ui1 ×B, (2.32)

where we have linearized about the equilibrium φ0 = 0, ui0 = 0. Using Eq. (2.21)
we find

ûiz =
ekzφ̂

ωM
=
kzC

2
s

ω

eφ̂

Te
. (2.33)

Similarly we find the linearized ion perpendicular equation of motion

M
∂

∂t
ui1⊥ = −e∇⊥φ1 + eui⊥1 ×B, (2.34)

which upon iteration of the RHS by the linearized electric drift yields

ui⊥1 = −e∇⊥φ1 ×B− M

eB2

∂

∂t
∇⊥φ1. (2.35)

The linearized ion perpendicular flux is

Γi⊥1 = ni0ui⊥1,

with divergence

∇ · Γi⊥1 = − 1

B2
∇ni0∇φ1 ×B− ni0M

eB2

∂

∂t
∇2

⊥φ1. (2.36)

The linearized ion continuity equation,

∂ni1

∂t
+ ni0

∂

∂z
uiz1 +∇ · Γi⊥1 = 0, (2.37)

then becomes

∂ni1

∂t
+ ni0

∂

∂z
uiz1 −

1

B2
∇ni0∇φ1 ×B− ni0M

eB2

∂

∂t
∇2

⊥φ1 = 0. (2.38)

Making use of Eq. (2.21) and rearranging gives

n̂i
ni0

=
eφ̂

Te

(
k2zC

2
s

ω2
+
ω∗

ω
− k2yρ

2
s

)
. (2.39)
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Equating Eq. (2.30) with Eq. (2.39) by means of quasi-neutrality finally results in(
−iω∗ +

1
τq

)
(
−iω + 1

τq

) =
k2zC

2
s

ω2
+
ω∗

ω
− k2yρ

2
s . (2.40)

When making the various simplifications, we have implicitly assumed that ωτq =
ωνeime/k

2
zTe � 1 which states that parallel diffusion is not dominant on the time

scale of the wave period and ω ∼ ω∗ which is necessary in order for Eq. (2.21) to
be valid. The LHS may be expanded in the small parameter ωτq such that(

−iω∗ +
1
τq

)
(
−iω + 1

τq

) ≈ 1 + i(ω − ω∗)τq + ω∗ωτ
2
q

≈ 1 + i(ω − ω∗)τq.

The dispersion relation may thus be cast in the form

D(ω, ky, kz) = 1− ω∗

ω
− k2zC

2
s

ω2
+ k2yρ

2
s + i(ω − ω∗)τq = 0. (2.41)

For clarity, we split up the dispersion relation into its real and imaginary part
according to

D = Dr + iDi,

where

Dr = 1− ω∗

ω
+ k2yρ

2
s −

k2zC
2
s

ω2
,

and
Di = (ω − ω∗)τq.

The drift mode distincts itself from the ion acoustic wave by a much greater phase
velocity, ω/kz � Cs, thus we may neglect the last term for the real part of the disper-
sion relation above. We may assume that the drift wave is weakly damped/growing
and check for consistency later, then ωi � ωr and we expand Eq. (2.41) in the small
parameter iωi to second order:

D(ωr + iωi) ≈ Dr(ω)|ω=ωr + iDi(ω)|ω=ωr + (iωi)

(
∂Dr

∂ω

)∣∣∣∣ω=ωr

+ i(iωi)

(
∂Di

∂ω

)∣∣∣∣ω=ωr

=

[
Dr(ωr)− ωi

(
∂Di

∂ω

)∣∣∣∣ω=ωr
]
+ i

[
Di(ωr) + ωi

(
∂Dr

∂ω

)∣∣∣∣ω=ωr
]

≈ Dr(ωr) + i

[
(ωr − ω∗)τq − ωi

ω∗

ω2
r

]
Insisting that the dispersion relation vanishes identically, i.e., for both real and
imaginary part we find

ωr =
ω∗

1 + k2yρ
2
s

, (2.42)

and

ωi = −ω∗
(ωr − ω∗)τq
(1 + k2y)

2ρ2s

= ω∗τq
(1 + k2yρ

2
s )ω∗ − ω∗

(1 + k2yρ
2
s )

3

= ω∗τq
ω∗k

2
yρ

2
s

(1 + k2yρ
2
s )

3
. (2.43)
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Checking for consistency,

ωi/ωr = ω∗τq
k2yρ

2
s

(1 + k2yρ
2
s )

2
� 1,

since ω∗ ∼ ω and ωτq � 1 . As indicated before, we have found that collisional drift
waves are always unstable since the growth rate is positive definite. Furthermore it is
the phase lag between potential and density fluctuations that causes the instability,
as can be seen by τq and thus νei appearing explicitly in the above expression. The
longer the parallel wavelength, the stronger is the growth rate (recall τq ∼ k−2

z ), thus
we may expect drift waves to have the longest possible parallel wavelength subject
to the boundary conditions. Note that the presence of ω∗

2, which is proportional
to L−2, indicates that drift waves are occurring whenever there is a considerable
density gradient, which typically is the case near the edge of confined plasmas. The
growth rate has a maximum for kyρs ∼ 1 .

2.2 Turbulence driven transport

Collisional transport

In the preceding section we have neglected diffusion and viscosity to highlight the
underlying physics. To be consistent, but mainly for numerical purposes, it is of
significant importance to include diffusional and viscous effects. Let us first consider
diffusion and to this end, consider the two-fluid momentum equation for particle
species α co-existing with particle species β,

mαnα

(
∂

∂t
+ uα · ∇

)
uα = −∇pα + qαnα (E+ uα ×B)−mαnαναβ(uα − uβ),

where ναβ is the momentum relaxation rate of particle species α due to collisions
with species β. Now, the perpendicular drift in increasing order of δ = ρs/L, where
L is the characteristic length scale of field quantities, is readily found to be

u⊥α = uE + udα + upα + uνα +O(δ3),

where the electric drift, diamagnetic drift, polarization drift and resistive drift are
given by

uE =
1

B2
E⊥ ×B,

udα = − 1

qαnαB
∇⊥pα × b,

upα =
1

ωcαB

[
∂

∂t
E⊥ + (uE⊥ · ∇⊥)E

]
,

uνα =
ναβ
ωcα

b× (uα − uβ).

To obtain an expression for the resistive drift, we iterate the RHS of the last
expression above to first order in δ. Assuming cold ions and isothermal electrons
for simplicity this results in

uνe = − νei
ωce

(
Te
eneB

∇⊥ne

)
,

uνi = − νie
ωci

(
Te
eneB

∇⊥ne

)
.
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Momentum conservation requires the momentum transfer from species α to
species β to be equal, hence we have the constraint

mαnαναβ = mβnβνβα,

which gives upon invoking quasi neutrality

νie =
me

mi
νei.

Using the above we find that both ions and electrons have the same resistive drift

ur = −meνeiTe
e2neB2

∇⊥ne.

Inserting this drift into the continuity equation for either electron or ions, we
obtain a diffusion equation,

∂n

∂t
− meνeiTe

e2B2
∇2

⊥n = 0,

thus we may define the two-fluid diffusion coefficient

Dclassical =
meνeiTe
e2neB2

. (2.44)

We find that collisions causes perpendicular drift through the proportionality with
respect to νei, whereas a strong B-field reduces the cross field transport by confining
particles to magnetic field lines.

Viscosity

Following standard fluid dynamics, we approximate the divergence of the stress
tensor that enters the momentum equations similarly to what is customary for the
two-dimensional Navier-Stokes equation by µ∇2v, where µ is the dynamic viscosity
due to shearing of neighboring fluid elements on each other.

Quasi-linear effective diffusion

The time averaged radial drift wave induced particle flux is given by

Γx = 〈<(n1) <(u1x)〉

=

〈
1

2

(
n̂eiθ + n̂∗e−iθ)

1

2
(û1xe

iθ + û∗1xe
−iθ

)〉
=

〈
1

4

(
n̂û1xe

2iθ + n̂∗û1x + û∗1xn̂+ n̂∗û∗1xe
−2iθ

)〉
=

1

4
(n̂∗û1x + û∗1xn̂)

=
1

4

(
n̂û∗1x + (n̂û∗1x)

∗)
=

1

2
< (n1 u

∗
1x) .

To lowest order the radial velocity for both ions and electrons is given by the x
component of the electric drift,

u1x = −x̂ · 1

B2
∇φ1 ×B = − ikyφ̂

B
. (2.45)
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The electron density perturbation from Eq. (2.30) with the RHS expanded as before
is (recall that ω∗ is in fact real and the drift wave frequency)

n̂ =
n0eφ̂

Te
(1− i(ω∗ − ω)τq) . (2.46)

Inserting both expressions in the time averaged particle flux yields

Γx =
1

2
<

[
n0eφ̂

Te
(1− i(ω∗ − ω)τq)

ikyφ̂
∗

B

]

=
1

2
<

n0e
Te

(ω∗ − ω)τq
ky

∣∣∣φ̂∣∣∣2
B


=

(
k2yρ

2
s

1 + k2yρ
2
s

)
k2y |φ1|

2

2LnB2

νein0me

k2zTe

= −Ddw
dn0
dx

,

where we have introduced the drift wave induced diffusion coefficient

Ddw =

(
k2yρ

2
s

1 + k2yρ
2
s

)
k2y |φ1|

2

2B2

νeime

k2zTe
. (2.47)

It is indeed the equilibrium density profile gradient that drives the outward particle
flux, which we may interpret as some kind of wave induced diffusion, which is why
we have introduced the diffusion coefficient. Hence, the density gradient provides
the free energy necessary for the drift wave instability to occur. Note that the
diffusive property of the particle flux implies that the equilibrium density gradient
eventually will be flattened out if there are no external agencies sustaining it.
Recall the classical two-fluid (and MHD) diffusion coefficient from the previous
section

Dclassical =
meνeiTe
e2B2

, (2.48)

such that the ratio between drift wave induced and classical diffusion is given by

Ddw

Dclassical
=

(
k2yρ

2
s

1 + k2yρ
2
s

)
e2k2y |φ1|

2

2k2zT
2
e

, (2.49)

we may consider the typical case kyρs ∼ 1, then

Ddw

Dclassical
∼
(
e |φ1|
Te

)2
1

k2zρ
2
s

, (2.50)

which for long wavelengths in the parallel direction reveals that drift wave induced
diffusion down the density profile gradient is (far) more dominant than classical
diffusion provided that e |φ1| /Te > kzρs.

2.3 The Ordinary Hasegawa - Wakatani model (OHW)

We start out with the familiar B perpendicular velocities for electrons, retaining
the electric- and diamagnetic drift, and ions, retaining the electric-, inertial- and
viscous drift respectively. This is equivalent to assuming cold ions and neglecting
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electron inertia due to their high mobility. We shall use rectilinear coordinates with
the magnetic field being constant along the positive z-direction, B = Bẑ.

u⊥e = − 1

B2
∇⊥φ×B +

Te
eB2

∇⊥ lnne ×B (2.51a)

u⊥i = − 1

B2
∇⊥φ×B − M

eB2

(
∂

∂t
− 1

B2
∇⊥φ×B · ∇⊥

)
∇⊥φ+

µ

ωciB
∇2∇φ

(2.51b)

Here M denotes the ion mass, µ is the B perpendicular ion viscosity and ωci =
eB/M is the ion cyclotron frequency (for singly charged ions). Note that ∇⊥ ·u⊥e =
0. From j = −eneue we deduce the linearized current density j1 = −en0ue1 and it
follows ∇‖u‖1 = − 1

en0

∂
∂z jz1. Using the above and (2.51a) in the electron continuity

equation we obtain

∂

∂t
lnne +

1

B
ẑ×∇⊥φ · ∇⊥ lnne =

1

en0

∂

∂z
jz1 (2.52)

In the B parallel direction we include resistivity in the electron momentum
equation, whose z-component when neglecting electron inertia
(provided ω � νei, the electron - ion momentum relaxation rate) is given by

ene
∂φ

∂z
− Te

∂ne

∂z
+ ζen0jz1 = 0, (2.53)

where ζ = mνei/n0e
2 is the (electron) resistivity.

This may be rearranged to express the parallel current as

jz1 =
Te
eζ

∂

∂z

(
lnne −

eφ

Te

)
(2.54)

Inserting (2.54) into the electron continuity equation (2.52), we obtain a relation
between density and potential fluctuations due to electron dynamics

∂

∂t
lnne +

1

B
ẑ×∇⊥φ · ∇⊥ lnne =

1

ene

Te
eζ

∂2

∂z2

(
lnne −

eφ

Te

)
(2.55)

Considering the ions, we firstly approximate the ion continuity equation accord-
ing to

∂ lnni
∂t

+∇ · u⊥i + uE · ∇ lnni = 0 (2.56)

where we have assumed that the advection is dominated by the electric drift.

When calculating the divergence of the viscous drift we realize that ∇ · ∇2∇φ
using index notation is just

∂

∂xi

∂

∂xj

∂

∂xj

∂φ

∂xi
(2.57)

and we readily see that the ”i”s and ”j”s commute to give

∂

∂xj

∂

∂xj

∂

∂xi

∂φ

∂xi
(2.58)

which in turn results in ∇2∇2φ = ∇4φ . We also apply ∇⊥φ ×B · ∇⊥φ = 0 and
∇⊥ · (∇⊥φ×B · ∇⊥)∇⊥φ = (∇⊥φ×B · ∇⊥)∇2

⊥φ.
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Calculating (2.56) using the above and inserting from (2.51b) the ion continuity
equation becomes

∂

∂t

(
lnni −

1

Bωci
∇2

⊥φ

)
+

1

B
ẑ×∇⊥φ · ∇⊥

(
lnni −

1

Bωci
∇2

⊥φ

)
= − µ

ωciB
∇4

⊥φ

(2.59)

Let us now assume quasi-neutrality, i.e. ne ≈ ni, and discard the indices labeling
the densities. It is customary to simplify (2.59) and (2.55) by perturbing the density
as previously according to n = n0 + n1 = n0(1 + n1/n0) where n1 � n0 and
the subscript zero denotes an equilibrium quantity. The logarithm is linearized as
before, cf. Eq. (2.22),

lnn = ln

[
n0

(
1 +

n1
n0

)]
= lnn0 + ln

(
1 +

n1
n0

)
≈ lnn0 +

n1
n0

(2.60)

where the smallness of the fluctuating part is exploited by means of a Taylor
expansion.

The equations we have arrived at by now are

∂

∂t

(
n1
n0

)
+

1

B
ẑ×∇⊥φ · ∇⊥

(
n1
n0

)
− 1

B

n′0
n0

∂φ

∂y
=

1

en0

Te
eζ

∂2

∂z2

(
n1
n0

− eφ

Te

)
(2.61)

∂

∂t

(
n1
n0

)
+

1

B
ẑ×∇⊥φ · ∇⊥

(
n1
n0

)
− 1

B

n′0
n0

∂φ

∂y
= (2.62)

∂

∂t

1

Bωci
∇2

⊥φ+
1

B
ẑ×∇⊥φ · ∇⊥

1

Bωci
∇2

⊥φ− µ

ωciB
∇4

⊥φ

Substituting (2.61) in (2.62) gives

∂

∂t

1

Bωci
∇2

⊥φ+
1

B
ẑ ×∇⊥φ · ∇⊥

1

Bωci
∇2

⊥φ− µ

ωciB
∇4

⊥φ =
1

en0

Te
eζ

∂2

∂z2

(
n1
n0

− eφ

Te

)
(2.63)

At this point it is convenient to normalize (2.61) and (2.63) according to

(x, y) →ρs(x
′, y′), z → λcz

′, ωcit→ t′, (2.64)

n1
n0

→ η,
eφ

Te
→ Φ

where ρ2s = Te

M /ω2
ci is the ion gyration radius at electron temperature and λc the

collisional mean-free path of the electrons (along the magnetic field lines).

We use the chain rule for the various differential operators and recall the defini-
tion of the normalized density scaling length, κ = ρsn

′
0/n0 (assumed to be constant
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and the density gradient must, of course, not be too violent). Furthermore, we
introduce the parameter describing the coupling of the equations,

C = Te/e
2n0ζωciλc. (2.65)

Now, realizing that the equilibrium density profile is only a function of x, we obtain
the normalized Hasegawa-Wakatani equations (Hasegawa & Wakatani [4])

(
∂

∂t
+ ẑ×∇⊥Φ · ∇⊥

)
∇2

⊥Φ = C ∂2

∂z2
(η − Φ) +$∇4

⊥Φ (2.66a)(
∂

∂t
+ ẑ ×∇⊥Φ · ∇⊥

)
η + κ

∂

∂y
Φ = C ∂2

∂z2
(η − Φ), (2.66b)

where we have re-labeled the primes to the more convenient unprimed form in-
sisting that all coordinates are normalized and we have also normalized the diffusion
coefficient according to

$ =
µTe

eω2
ciBρ

4
s

.

Note from section Collisional transport that we really should include the diffusive
drift when evaluating the continuity equation. This merely introduces a diffusion
term for the density as was shown there and we shall make use of this now. Further-
more, numerical studies in three dimensions demand a great deal of computational
power, hence the above model is customary taken to be two-dimensional by as-
suming that fluctuations along the magnetic field can be described by a constant
wavenumber ([17],[26]), ∂z → ikz and ∂2zz → −k2z . Defining the adiabacity parame-
ter

α = Tek
2
z/e

2n0ζωciλc,

and introducing the vorticity as Ω = ∇2φ, we obtain the two-dimensional Hasegawa
Wakatani system

∂Ω

∂t
+ {φ,Ω} = α (φ− n) +DΩ∇2

⊥Ω (2.67a)

∂n

∂t
+ {φ, n} = α (φ− n)− κ

∂φ

∂y
+Dclassical∇2n. (2.67b)

Eq. (2.67a) is indeed the evolution equation for the vorticity. Let us interpret the
electrostatic potential as the stream function for our flow field, v = ẑ×∇φ. Then,
from fluid dynamics, we define the vorticity according to Ω = ∇× v. Calculating
the curl of the electric drift yields

Ω = ∇× (ẑ×∇φ)
= ẑ(∇ · ∇φ)−∇φ(∇ · ẑ) + (∇φ · ∇)ẑ− (ẑ · ∇)∇φ
= ẑ∇2φ

≡ Ωẑ,

where we have used that the fluctuations in the potential are two-dimensional.
Considering the highly adiabatic regime of the Hasegawa Wakatani system,i.e., n→
φ, we find after subtracting the vorticity equation from the density equation(

1−∇2
⊥
) ∂
∂t
φ+ κ

∂

∂y
φ− vE · ∇∇2

⊥φ = 0 , (2.68)

which is the conventional form of the Hasegawa Mima equation commented on in
the next section.
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2.4 The Modified Hasegawa - Wakatani model (MHW)

Fluctuating vs. Zonal components

The purpose of this project is to investigate the role of zonal flows in the self-
consistent drift wave - zonal flow system. To proceed analytically from the Hasegawa-
Wakatani model is rather difficult, therefore we shall restrict our analytical consider-
ations to the adiabatic limit, i.e., C → ∞. To this end we shall reduce the Hasegawa
- Wakatani model to a modified version, which in turn can be analyzed in the adi-
abatic limit by means of the modified Hasegawa - Mima equation, which we shall
derive in the next section. Let us first shed light on what we mean by zonal- and
fluctuating components. We separate the fields into a small - scale fluctuating part
and a y-averaged part which we may interpret as a zonal flow, i.e. an elongated
structure in the azimuthal direction; in the approximated rectilinear coordinate
system we are using this may be expressed as ky = 0. We have,

n = n̄(x, t) + ñ(x, y, z, t), (2.69)

φ = φ̄(x, t) + φ̃(x, y, z, t)

where the zonal part of a scalar field f = f(x, y, z, t) is defined as

f̄(x, t) =
1

Ly

∫ Ly

0

f(x, y, z, t)dy (2.70)

and Ly is the domain length in the y-direction. There are two trivial conse-
quences from the definitions, applying (2.70) we find

¯̄f =
1

Ly

∫ Ly

0

f̄(x)dy = f̄ , (2.71)

and

¯̃
f =

1

Ly

∫ Ly

0

(f − f̄)dy =
1

Ly

∫ Ly

0

fdy − f̄ = 0 . (2.72)

One can easily appreciate the existence of zonal flows, and therefore justify the
decomposition of field quantities in zonal averages and fluctuating components (Di-
amond et al. [5]). Zonal flows are not capable of driving radial plasma transport.
This may easily be seen upon calculating the flux associated with a zonal structure
in the electrostatic potential, φ . The associated particle flux is given by

ΓZF = nvE = nẑ×∇φ = nẑ× ∂φ

∂x
x̂ = n

∂φ

∂x
ŷ, (2.73)

thus there is no net radial transport associated with zonal flows. A direct conse-
quence is that zonal flows cannot ”tap” expansion free energy sources stored in for
instance density gradients that are radially directed and therefore must be driven by
non-linear mechanisms. They form a benign repository for free energy. As we shall
see later, zonal flows play a major roll in the shearing process of drift waves. In the
process energy is transferred from the turbulent drift waves to the quasi-stationary
zonal flow, thus contributing to better confinement properties of a plasma where
zonal flows are present since the drift waves are associated with radial particle flux.
Zonal flows may be thought of as a transport barrier. Zonal flows act as to flatten
the initial density profile which is the driving force for the radial turbulent flux,
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consequently the ZF effectively removes the driving mechanism for radially induced
particle flux. Equivalently one could say that for the same radial transport level
a steeper background density gradient is allowed in the vicinity of a zonal flow
compared to a setting with no zonal flow. Either way the zonal flow improves the
confinement of the plasma substantially. An additional feature of zonal flows is
that the small wavenumber allows for minimal Landau damping, which becomes
important for kλD ∼ 1.

The ordinary Hasegawa - Wakatani equations do not incorporate for the fact
that the zonal components have ky = 0 by definition which necessarily also implies
kz = 0 since fluctuations on a magnetic flux surface are effectively short-circuited
by electrons flowing along the magnetic field to preserve quasi-neutrality ([7], [21]).
Thus the coupling operator, C ∂2zz = k2z , does not act on these components and we
need to write the Hasegawa - Wakatani equations in a slightly modified form.

The Hasegawa - Wakatani equations are modified to incorporate for short-
circuiting on a magnetic flux surface by means of

∂Ω

∂t
+ {φ,Ω} = α

(
φ̃− ñ

)
+DΩ∇2

⊥Ω (2.74a)

∂n

∂t
+ {φ, n} = α

(
φ̃− ñ

)
− κ

∂φ

∂y
+Dn∇2

⊥n, (2.74b)

where now for numerical convenience also a diffusion operator for the density is
introduced. The equations above are the modified Hasegawa - Wakatani Equations
which are suited to describe zonal flows arising in drift wave turbulence. From the
modified equations we see that the parameter α describes the systems ability to
react adiabatically for α → ∞ implying ñ → φ̃ which reduces to the Boltzmann
relation for the fluctuating components and corresponds to collisonless plasmas
described by the previously derived Hasegawa - Mima equation. For α → 0 the
system effectively decouples and merely reduces to the 2 D Navier - Stokes equation
for the vorticity and an advection equation for the (passive) scalar density driven
by the the flow obtained from the vorticity equation. We proceed by invoking the
adiabatic limit on the fluctuating components to derive the Modified Hasegawa -
Mima Equation (OHM), which in the litterature is also frequently referred to as
the generalized Hasegawa - Mima Equation. Clearly, the main set - back of those
simple models is, that it disregards drift wave instability, since we have explicitly
assumed the field quantities to follow a Boltzmann distribution. According to our
earlier derivations, see end of the section Resistive Drift Waves , we know that it
is indeed the deviation from the Boltzmann distribution that allows drift waves to
grow unstable. However, it turns out that both models may help to gain some
insight into the generation mechanism of zonal flows, especially the MHM which is
the appropriate equation to use in plasma physics due the consideration of the short-
circuiting effect indicated earlier. We note that the HM equation does not respect
this fact, however, it also describes zonal flow generation, but is more suited for
atmospherical sciences, where the short-circuiting is not present. In atmospherics,
this equation is commonly referred to as the Hasegawa - Mima - Charney Equation,
where the analogy to plasma physics is incorporated by the two first names, and
Charney is credited for having derived quite a similar equation as early as 1948.
The analogy between zonal flows in plasmas and geostrophic fluids as well as the
close relation between the different models involved is neatly described in [5]

2.5 The Modified Hasegawa - Mima model (MHM)

Consider again the modified Hasegawa - Wakatani equations without diffusion for
simplicity,
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∂n

∂t
+ vE · ∇n+ κ

∂φ

∂y
= α(φ̃− ñ) (2.75)

∂∇2
⊥φ

∂t
+ vE · ∇∇2

⊥φ = α(φ̃− ñ) . (2.76)

Writing all fields in (2.76) as fluctuating and zonal part and averaging over y we
obtain,

∂

∂t
∇2

⊥φ̄+ ṽE · ∇∇2
⊥φ̃ = 0, (2.77)

where we have used the periodic boundary conditions

φ(Ly) = φ(0), ∂yφ(Ly) = ∂yφ(0), ∂
2
yφ(Ly) = ∂2yφ(0) ,

when explicitly calculating the averaged terms. Subtracting (2.77) from the ex-
panded form of (2.76) we arrive at

∂

∂t
∇2

⊥φ̃+ v̄E · ∇∇2
⊥φ̃+ ṽE · ∇∇2

⊥φ̄+ ṽE · ∇∇2
⊥φ̃− ṽE · ∇∇2

⊥φ̃ = α(φ̃− ñ)

(2.78)

Averaging the density equation, (2.75), yields

∂n̄

∂t
+ ṽE · ∇ñ = 0 (2.79)

and subtracting (2.79) from (2.75)

∂ñ

∂t
+ ṽE · ∇n̄+ v̄E · ∇ñ+ ṽE · ∇ñ+ κ

∂φ̃

∂y
− ṽE · ∇ñ = α(φ̃− ñ) (2.80)

Letting ñ→ φ̃ we have

∂φ̃

∂t
+ ṽE · ∇n̄+ v̄E · ∇φ̃+ κ

∂φ̃

∂y
= 0 (2.81)

where now ṽE · ∇φ̃ = 0 .
From (2.81) we subtract (2.78) (applying ñ→ φ̃) which leaves us with

∂φ̃

∂t
− ∂

∂t
∇2

⊥φ̃− ∂

∂t
∇2

⊥φ̄+ ṽE · ∇n̄+ v̄E · ∇φ̃+ κ
∂φ̃

∂y
(2.82)

− ṽE · ∇∇2
⊥φ̄− ṽE · ∇∇2

⊥φ̃− v̄E · ∇∇2
⊥φ̃ = 0

where we have made use of (2.77) to eliminate the over-lined term.

Eq (2.82) can be written in a more compact form if we add ṽE · ∇φ̃ = 0 and
subtract v̄E · ∇φ̄ = 0 .
Collecting terms we get the Modified Hasegawa - Mima equation(

∂

∂t
+ vE · ∇+ κ

∂

∂y

)
φ̃−

(
∂

∂t
+ vE · ∇

)
∇2

⊥φ+ ṽE · ∇n = 0. (2.83)
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Note that Eq. (2.79) reduces to n = constant when ñ → φ̃ . Recalling that
the normalized deviation from the equilibrium value of the density enters in the
Hasegawa - Wakatani equations it follows that for initially zero deviation from
equilibrium and zero perturbation due to fluctuating motions the zonal average of
n vanishes. However, we have just shown that n = constant and consequently the
zonal part vanishes for all times. Thus the last term on the LHS of Eq. (2.83)
vanishes and we are left with(

∂

∂t
+ vE · ∇+ κ

∂

∂y

)
φ̃−

(
∂

∂t
+ vE · ∇

)
∇2

⊥φ. (2.84)

We now give simple arguments to show how zonal flows may be excited.

22





Chapter 3

Zonal flow dynamics

Energy transfer

The first Hasegawa - Wakatani eq, the ordinary- and modified Hasegawa - Mima,
as well as the 2 D Navier - Stokes equation (using the stream function formalism)
may be cast into the form

∂

∂t
∇2

⊥φ+ v · ∇∇2
⊥φ+ Lφ(n, φ, ...) = 0, (3.1)

where Lφ(n, φ, ...) is some operator acting on φ and possibly several of the state
variables, such as density or pressure. v = ẑ × ∇φ in fluid mechanics with the
interpretation of φ as the stream function. In plasma physics v = vE = ẑ×∇φ is
the electric drift and φ is interpreted as the electrostatic potential.
To simplify notation, we introduce the Poisson - brackets according to

{φ, f} = ẑ×∇φ · ∇f = ∂y(f∂xφ)− ∂x(f∂yφ). (3.2)

We then have
∂

∂t
∇2

⊥φ+
{
φ,∇2

⊥φ
}
+ Lφ(n, φ, ...) = 0. (3.3)

We shall demonstrate some interesting properties of the energy transfer between
fluctuating and zonal components in the following. Let us firstly consider the sim-
plest possible operator Lφ(n, φ, ...) = 0 . The following property of the Poisson
brackets shall aid us in the following calculations,

φ∂y(f∂xφ)− φ∂x(f∂yφ) = ∂y(φf∂xφ)− (∂yφ)f(∂xφ)− ∂x(φf∂yφ) + (∂xφ)f(∂yφ)
(3.4)

= ∂y(φf∂xφ)− ∂x(φf∂yφ).

Let Ω = ∇2
⊥φ, multiply Eq. (3.3) (where now Lφ(n, φ, ...) = 0) by φ and use

Eq. (3.4) to obtain

φ∂tΩ+ ∂y(φΩφ∂xφ)− ∂x(φΩ∂yφ) = 0. (3.5)

The first term on the LHS can be written as

φ
∂

∂t
∇2

⊥φ = ∇ ·
(
φ
∂

∂t
∇⊥φ

)
−∇φ · ∂

∂t
∇⊥φ (3.6)

= ∇ ·
(
φ
∂

∂t
∇⊥φ

)
− ∂

∂t

[
1

2
(∇⊥φ)

2

]
.
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Integrating the above over coordinate space which we assume to be bound by a
surface S with outward pointing normal vector dA and using Gauss’ Theorem for
the first term on the RHS in Eq. (3.6) we get∫

dA ·
(
φ
∂

∂t
∇⊥φ

)
− ∂

∂t

∫
dx

1

2
(∇⊥φ)

2
+

∫
dx [∂y(φΩφ∂xφ)− ∂x(φΩ∂yφ)] = 0.

(3.7)
Invoking the boundary conditions

φ(Ly) = φ(0), ∂yφ(Ly) = ∂yφ(0), ∂
2
yφ(Ly) = ∂2yφ(0) ,

we see that ∫
dA ·

(
φ
∂

∂t
∇⊥φ

)
= 0∫

dx(φΩφ∂xφ)|bdy = 0∫
dy(φΩ∂yφ)|bdx = 0

Defining the total energy

E =

∫
dx

1

2
(∇⊥φ)

2
, (3.8)

we have deduced that

d

dt

∫
dx

1

2
(∇⊥φ)

2
= 0 ⇒ Etot = cst.. (3.9)

To compute the zonal energy we first average Eq. (3.5) over y,

1

Ly

∫ Ly

0

dy
∂

∂t
Ω+

1

Ly

∫ Ly

0

dy [∂y(Ω∂xφ)− ∂x(Ω∂yφ)]

=
1

Ly

∫ Ly

0

dy
∂

∂t
Ω+

1

Ly
(Ω∂xφ) |

Ly

0 − 1

Ly

∂

∂x

∫ Ly

0

dyΩ∂yφ

=
1

Ly

∫ Ly

0

dy
∂

∂t
Ω− 1

Ly

∂

∂x

∫ Ly

0

dyΩ∂yφ = 0.

Define the averages

Ω0 =
1

Ly

∫
dyΩ, (3.10)

and

(Ω∂yφ)0 =
1

Ly

∫ Ly

0

dyΩ∂yφ. (3.11)

and rewrite the preliminary result

∂

∂t
Ω0 =

∂

∂x
(Ω∂yφ)0 . (3.12)

Note that due to the periodic boundary conditions as stated in the previous
section we have

Ω0 =
∂2

∂x2
φ.

Integrating Eq. (3.12) over x,

∂

∂t

∂φ

∂x
= (Ω∂yφ)0 , (3.13)
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multiplying by φ and integrating once more over x leaves

∂

∂t

∫
dx

1

2

(
∂xφ

)2
=

∫
dx φ (Ω∂yφ) , (3.14)

which upon defining the zonal flow energy (note again that φ is independent of y)

U =

∫
dx

1

2

(
∂xφ

)2
=

∫
dx

1

2

(
∇φ
)2
, (3.15)

is written as
d

dt
U =

∫
dxφ

∂

∂x
(Ω∂yφ) . (3.16)

In Appendix A we show that∫
dx φ (Ω∂yφ) =

∫
dx φ

(
Ω̃∂yφ̃

)
= −

∫
dx v0

∂

∂x
(ṽxṽy) , (3.17)

with v0 = ∂φ/∂x the mean (shear) flow velocity and the fluctuating velocity compo-

nents given by ṽx = −∂yφ̃ and ṽy = ∂xφ̃ respectively. Subtracting Eq. (3.16) from
Eq. (3.9) we get an expression for the energy contained in the fluctuating motions,

d

dt
K =

∫
dx

1

2

(
∇⊥φ̃

)2
=

∫
dx v0

∂

∂x
(ṽxṽy) . (3.18)

The terms driving the zonal flow and fluctuating energy respectively have op-
posite sign, thus they act as transfer terms, transferring energy from either the
fluctuating motions into the zonal flow or vice versa, leaving the total energy con-
served. The transfer term is governed by shear flow velocity and the divergence of
the Reynolds-stress. Integrating the transfer term by parts leaves

−
∫
dx v0

∂

∂x
(ṽxṽy) = −

∫
dy (v0ṽxṽy) |bdx +

∫
dx
∂vo
∂x

(ṽxṽy)

=

∫
dx
∂vo
∂x

(ṽxṽy) .

This tells us that fluctuating structures (in our description this may equally well
be convective cells) oriented such as to transport positive y-directed momentum in
the direction of the shear flow gradient may effectively transfer energy from the
fluctuating motions to the zonal flow. Cf. Figure 3.1 taken from Garcia et al. [15].

HM energetics

It is now straightforward to apply the same analysis to a different operator in
Eq. (3.3). Take for instance Lφ = −∂t − κ∂y, i.e., Eq. (3.3) is now the conven-
tional form of the Hasegawa - Mima equation. We then get upon introducing the
generalized energy,

EHM =
1

2

∫
dx
[
(∇⊥φ)

2
+ φ2

]
, (3.19)

analogous to Eq. (3.9) another conservation equation

d

dt
EHM = 0. (3.20)

Furthermore, the generalized zonal flow energy

UHM =
1

2

∫
dx
[(
∇φ
)2

+ φ
2
]
, (3.21)
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Figure 3.1: Momentum transfer to zonal flow

is found to be driven by the small scale fluctuations as before,

d

dt
UHM = −

∫
dx v0

∂

∂x
(ṽxṽy) . (3.22)

Subtracting Eq. (3.22) from Eq. (3.20) we get

d

dt
KHM =

∫
dx v0

∂

∂x
(ṽxṽy) , (3.23)

where the generalized energy of the fluctuating motions is given by

KHM =
1

2

∫
dx

[(
∇φ̃
)2

+ φ̃2
]
. (3.24)

Again we see that the energy transfer is conservative between the zonal flow and
the fluctuating motions and fully determined by the shearing properties of the small
scale fluctuations.
Note that we have used the following identities when subtracting Eq. (3.22) from
Eq. (3.20): ∫

dxφ2 =

∫
dx
(
φ̃2 + φ

2
+ 2φ̃φ

)
=

∫
dxφ̃2 +

∫
dxφ

2
+ 2

∫
dxφ

∫
dyφ̃

=

∫
dxφ̃2 +

∫
dxφ

2

and ∫
dx (∇⊥φ)

2
=

∫
dx
(
∇⊥φ̃

)2
+

∫
dx
(
∇⊥φ

)2
+ 2

∫
dx∇φ̃ · ∇φ

=

∫
dx
(
∇⊥φ̃

)2
+

∫
dx
(
∇⊥φ

)2
+ 2

∫
dx
∂φ

∂x

∂

∂x

∫
dyφ̃

=

∫
dx
(
∇⊥φ̃

)2
+

∫
dx
(
∇⊥φ

)2
, (3.25)

since φ and ∂φ/∂x are independent of y.
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MHM energetics

The MHM-equation is obtained when using the operator

Lφφ = −∂tφ− κ∂yφ− {φ, φ̃}.

We then get the evolution equation for the total energy,

d

dt
EMHM ≡ 1

2

d

dt

∫
dV
[
(∇⊥φ)

2
+ φ̃2

]
= 0. (3.26)

The energy contained in the zonal structures is governed by

d

dt
UMHM ≡ 1

2

d

dt

∫
dV
(
∇⊥φ

)2
= −

∫
dx v0

∂

∂x
(ṽxṽy) , (3.27)

and the kinetic energy contained in the fluctuating motions evolves according to

d

dt
KMHM ≡ 1

2

d

dt

∫
dV

[(
∇⊥φ̃

)2
+ φ̃2

]
=

∫
dx v0

∂

∂x
(ṽxṽy) . (3.28)

We may compare the energy transfer rate to the zonal flow for the models described
above. To this end, assume that the driving Reynolds-stress (RS) is the same for
both the HM and MHM model. Furthermore, consider the single Fourier modes of
the fluctuating and zonal part of the potential

φ̃ ∼ φ̂k exp(ik · x) + cc. , φ ∼ φ̂q exp(iq · x) + cc.. (3.29)

We then find that the kinetic energy in the fluctuating motions in both the HM and
the MHM model scales as

d

dt
KHM =

d

dt

1

2

∫
dV (1 + k2)

∣∣∣φ̂k∣∣∣2 = RS

d

dt
tKMHM =

d

dt

1

2

∫
dV (1 + k2)

∣∣∣φ̂k∣∣∣2 = RS,

whereas the zonal flows have energy transfer rates

d

dt
UHM =

d

dt

1

2

∫
dV (1 + q2)

∣∣∣φ̂q∣∣∣2 = −RS

d

dt
UMHM =

d

dt

1

2

∫
dV q2

∣∣∣φ̂q∣∣∣2 = −RS.

The energy contained in the fluctuating Fourier modes is consequently

d

dt

∫
dV
∣∣∣φ̂k∣∣∣2 ∼ 1

1 + k2
RS

for the kinetic energy in both the HM and MHM model. For the zonal modes in
the HM we find

d

dt

∫
dV
∣∣∣φ̂q∣∣∣2 ∼ 1

1 + q2
RS, (3.30)

while for the MHM model

d

dt

∫
dV
∣∣∣φ̂q∣∣∣2 ∼ 1

q2
RS. (3.31)

This shows that energy-extraction from the fluctuating motions happens at the
same rate in both the HM and the MHM model, but the input of energy into the
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zonal flows is faster for the MHM model by a factor (1 + q2)/q2 compared to the
HM model. Thus the MHM is the preferred model to use when seeking to describe
zonal flow dynamics. We shall quantify the growth rates for the zonal flows in
both models in a later section, explicitly showing that zonal flows arise sooner in
the MHM model than in the HM model. The reasoning presented is of course
only valid instantaneously and only for a certain point in time when the integrated
Reynold-stress is indeed equal for both models; as the zonal flows obtain more

energy, the Reynolds-stress changes (RS ∼ q
∣∣∣φ̂q∣∣∣) and the reasoning above is no

longer valid.

Convection Model

To visualize the findings from the previous section, we consider the case of the
simple hydrodynamic convection model, Eq. (3.3) with L ≡ 0. Following [15] we
define a stream function,

ψ(x, t) =Ψ1,1 sin(kxx) sin(kyy) + Ψ1,0 sin(kxx)

+ Ψ2,1 sin(2kxx) cos(kyy).

Here, Ψ1,1 is assumed to represent a constant amplitude pump-wave, Ψ1,0 is the
zonal flow which has no y-variation and Ψ2,1 is a sideband of the pump-wave. In-
serting the above in the convection model, Eq. (3.3), with L ≡ 0 and equating terms
with identical sine and cosine dependence, we get the set of equations governing the
evolution of the amplitudes in this simple model,

dΨ1,0

d t
= −3

4
kxkyΨ2,1Ψ1,1,

dΨ2,1

d t
=

kxk
3
y

8k2x + 2k2y
Ψ1,0Ψ1,1.

Taking the time-derivative of the first equation above and substituting the second
then yields the equation for the zonal - flow amplitude,

d2Ψ1,0

d t2
= −3

8

k2xk
4
y

4k2x + k2y
Ψ2

1,1Ψ1,0, (3.32)

which admits exponentially growing solutions with growth rate

γ2 =
3

8

k2xk
4
y

4k2x + k2y
Ψ2

1,1. (3.33)

This may be compared with the growth rate obtained in [15] which is identical when
making the replacement kx → π and ky → kc . Figure 3.2 below illustrates how
the arising sheared zonal flow acts to tilt the pump-cell and further enhances the
positive momentum transfer to itself. Compare with Figure 3.1.
We further note, that the growth rate is crucially dependent on the aspect-ratio, as
is characteristic for zonal-flows in plasmas. In Figure 3.2 we have used kx/ky = 1/3,
we again refer to Figure 3.1 where the physics behind this dependence lies. The
smaller the aspect ratio, the more effective is the momentum transfer to the zonal
flow. Eq. (3.33),may be written in normalized form

1

k2y

γ2

v2x
=

3

8

k2x/k
2
y

4k2x/k
2
y + 1

, (3.34)

where we have introduced the pump-wave induced radial velocity, v2x = k2yΨ
2
1,1. Cf.

29



0 1 2 3 4 5 60

1

2

3

4

5

6
t = 0

-10
 -7
 -5
 -2
  0
  2
  5
  7
 10

0 1 2 3 4 5 60

1

2

3

4

5

6
t = 0.01

-14
-10
 -7
 -4
  0
  4
  7
 10
 14

0 1 2 3 4 5 60

1

2

3

4

5

6
t = 0.02

-48
-36
-24
-12
  0
 12
 24
 36
 48

0 1 2 3 4 5 60

1

2

3

4

5

6
t = 0.03

-240
-180
-120
-60
  0
 60
120
180
240

Figure 3.2: Zonal flow generation

Parametric Instability

From our previous deduction of the MHM and OHM equations, we get the intuition
the the modified version more adequately describes zonal flow generation compared
to the ordinary cast, since we expect the naiivity involved to disregard important
information. That this is indeed the case will be shown explicitely later. For now we
shall consider the MHM equation bearing in mind that this is the one to use when
seeking a simple zonal flow description. Note, however, that Boltzmann distribution
disregards any kind of drift wave instability as indicated earlier. Thus the MHM
model is far from complete, yet it effectively describes zonal flow growth mechanisms
as we shall see now.

In this section we show how zonal flow generation is incorporated in the mod-
ified Hasegawa - Mima model, inspired by Kaladze et al. [6]. Consider again the
evolution equation for the zonal part of the potential, (2.77), and (2.83) describing
its interaction with the fluctuating part:

∂

∂t
∇2

⊥φ̄+ ṽE · ∇∇2
⊥φ̃ = 0 (3.35)

(
∂

∂t
+ vE · ∇+ κ

∂

∂y

)
φ̃−

(
∂

∂t
+ vE · ∇

)
∇2

⊥φ = 0 (3.36)

Assume that the drift wave ( denoted by φ̃ ) we are considering is superposed

of a pump wave, φ0, and two sidebands, φ+ and φ− such that φ̃ = φ0 + φ+ + φ−.
The drift wave drives a zonal flow given by

φ̄ = φq exp(iq · x− iΩt) + φ∗q exp(−iq · x+ iΩt)

Note that the zonal flow has by definition no y dependence, thus q = qx̂ .
The drift wave and its sidebands are expressed as
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φ0 = φk exp(ik · x− iωt) + φ∗k exp(−ik · x+ iωt)

φ+ = φ+ exp(ik+ · x− iω+t) + φ∗+ exp(−ik+ · x+ iω+t)

φ− = φ− exp(ik− · x− iω−t) + φ∗− exp(−ik− · x+ iω−t)

with k± = k ± q and ω± = ω ± Ω .

Inserting φ̃ and φ̄ into (3.35) gives after a lengthy but straightforward calculation

Ωφq = − iky
q

[
(k2− − k2)φkφ

∗
− − (k2+ − k2)φ+φ

∗
k

]
(3.37)

where k2± = k2 + q2 ± 2kxq .

To arrive at (3.37) we have equated terms with exp(iq ·x− iΩt) dependence and
also made use of the fact that the zonal average does not act on these terms since
q has no y component.

Inserting for φ̃ and φ = φ̃+ φ̄ in (3.36) and equating terms proportional to exp(ik+ ·
x− iω+t) = exp(ik ·x+ iq ·x− iωt− iΩt) and exp(−ik− ·x+ iω−t) = exp(−ik ·x+
iq · x+ iωt− iΩt) respectively yields after a very lengthy but still straightforward
computation

φ+ =
ikyq(1 + k2 − q2)

(Ω + δω+)(1 + k2+)
φqφk (3.38)

and

φ∗− = − ikyq(1 + k2 − q2)

(Ω− δω−)(1 + k2−)
φqφ

∗
k (3.39)

where we have introduced

δω± = ω − κky
1 + k2±

(3.40)

Combining (3.38), (3.39) and (3.37) yields

Ω = −k2y(1 + k2 − q2)|φ0|2
[

(k2+ − k2)

(Ω + δω+)(1 + k2+)
+

(k2− − k2)

(Ω− δω−)(1 + k2−)

]
(3.41)

with φkφ
∗
k = |φ0|2 .

In order to deduce any physics from (3.41) we may simplify by considering the
case where the zonal flow varies on a much larger scale as the drift wave turbulence,
i.e. q � k. In this case we have the approximations

δω± ≈ ∓qvgx −
q2v′gx
2

(3.42)

and
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[
(k2+ − k2)

(Ω + δω+)(1 + k2+)
+

(k2− − k2)

(Ω− δω−)(1 + k2−)

]
≈ −

q2Ωv′gx
ω

1

(Ω− qvgx)2 − (q2v′gx/2)
2

(3.43)

where the x-component of the group velocity is given by

vgx ≡ ∂ω

∂kx
= − 2kxω

1 + k2
(3.44)

and

v′gx ≡ ∂2ω

∂k2x
= −2ω

1 + k2y − 3k2x
(1 + k2)2

(3.45)

(3.42) is deduced by expanding (3.40) in the small parameter q/k in the denom-
inator of the second term in Eq. (3.40). Inserting into the square-bracket term in
(3.41) and cracking through the algebra then yields (3.43).

Using the approximations in (3.41) and solving the simple second order equation
leaves the more useful

Ω± ≈ qvgx ±

√
q2k2y(1 + k2 − q2)v′gx

ω
|φ0|2 +

(
q2v′gx
2

)2

= qvgx ±

√
−
2q2k2y(1 + k2 − q2)(1 + k2y − 3k2x)

(1 + k2)2
|φ0|2 +

(
q2v′gx
2

)2

(3.46)

For Ω to be complex and thus leading to instability it is necessary that

1 + k2y − 3k2x > 0. (3.47)

Again making use of q � k allows us to neglect the second term in the square
root, (

q2v′
gx

2

)2
2q2k2

y(1+k2−q2)(1+k2
y−3k2

x)

(1+k2)2 |φ0|2
=
q2ω2(1 + k2y − 3k2x)(1 + k2)2

2k2y(1 + k2 − q2) |φ0|2

=
q2κ2(1 + k2y − 3k2x)

2(1 + k2 − q2) |φ0|2

≈
q2κ2(1 + k2y − 3k2x)

2(1 + k2) |φ0|2
� 1,

since Eq. (3.47) is of the order unity.
Furtheremore, considering the small wavelength limit, i.e. k � 1 then gives

Ω± ≈ qvgx ±

√
−
2q2k2y(k

2
y − 3k2x)

k2x + k2y
|φ0|2. (3.48)

It is fruitful to consider the case of largest growth which occurs when kx = 0,
cf. Figure 3.3. Realizing that the x projection of the group velocity in this limit is
small (vgx ∼ kxky/k

4 � 1) The maximum growth rate is then given by

γmax = −iΩ+ =
√
2q2k2y|φ0|2

=
√
2qky|φ0|, (3.49)
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Figure 3.3: Contourplot of zonal flow growth rate for the MHM model-

which may be compared to the result for zonal flow growth found by Manfredi et al.
[7]. The authors of this paper use the x direction for all zonal flow related variables,
which is contrary to the more commonly used y direction used in this presentation.
Identifying the zonal flow, k1 = q, the pump wave with k2x (note that ky = 0 here
instead of kx = 0 as in our presentation), and the pump wave amplitude given by
|φ2|2 instead of our |φ0|2 and normalizing as we have done, one finds the exact same
growth rate, checking our result at least to some degree for consistency with [7]
From Figure 3.4 we see that drift waves with a small aspect ratio are the cause for
zonal growth (the red line gives the growth domain; growth corresponds to γ2 > 0).
Physically, the explanation lies in Figure 3.1 showing that the tilting of the convec-
tion cell is important for energy transfer to the zonal flow.

It is interesting to apply the same analysis to the conventional Hasegawa - Mima
equation. The growth rate for the zonal flow one obtains is then slightly different,

ΩHM
± ≈ qvgx ±

√
q4k2y(k

2 − q2)

1 + q2
v′gx
ω

|φ0|2 +
(
q2v′gx
2

)2

= qvgx ±

√
−
2q4k2y(k

2 − q2)(1 + k2y − 3k2x)

(1 + q2)(1 + k2)2
|φ0|2 +

(
q2v′gx
2

)2

. (3.50)

Let us neglect the last term under the square root in Eq. (3.46) and Eq. (3.50) as
well as the first term on the RHS above (scales as ∼ qkxky/k

4 � 1 for q � k) for
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Figure 3.4: Aspect ratio for MHM growth rate

the moment. We then get

γ2MHM/γ
2
HM =

(1 + k2 − q2)(1 + q2)

q2(k2 − q2)
≈
(
1 +

1

k2

)(
1 +

1

q2

)
= 1 +

1

q2
+

1

k2
+

1

k2q2
� 1,

where we have assumed that q � 1.
We may interpret this analogous to Holland et al. [8] as prescribing different ’effec-
tive inertias’ to the zonal flows in the two models considered here. We may state
that zonal flows described by the Hasegawa - Mima equation are ’heavy’ and thus
more difficult to initialize compared to ’light’ zonal flows described by the modified
Hasegawa - Mima equation. From a numerical point of view it is thus preferable to
use the modified equation when seeking to describe zonal flow dynamics since the
zonal flows are more explicit in this model.

Modulational Instability

In this section we perform a derivative perturbation method on the modified Hasegawa
- Mima equation quite similar to Abdullatif et al. [9] and deduce a form of the Non-
linear Schrödinger equation for the drift wave amplitude. We then analyze stability
and deduce the instability criterion for modulations of the amplitude. It turns out,
that this method reproduces Eq. (3.47). Similar work has been done by Champeux
and Diamond [10] on the HW model using the reductive perturbation method.
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Deriving the Nonlinear Schrödinger Equation

Following [9] we perform a multiple-scale derivative perturbation of Eq. (2.84) which
in coordinate form reads

(∂t + κ∂y)φ̃+ ∂xφ∂yφ̃− (∂t + ∂xφ∂y − ∂yφ∂x)(∂
2
x + ∂2y)φ = 0. (3.51)

We expand the derivatives as sets of independent variables at different scales,

{x0, x1, x2, ..., xN ; y0, y1, ...yN , t0, t1, ..., tN}, (3.52)

where xn = εnx, yn = εny and tn = εnt and ε is assumed to be a small parameter.
Consequently we have

φ(x, y, t) = φ(x0, ..., xN ; y0, ..., yN ; t0, ..., tN ),

applying the chain rule then gives the expanded differential operators

∂

∂x
=

∂

∂x0
+ ε

∂

∂x1
+ ε2

∂

∂x2
+ ...+ εN

∂

∂xN
,

∂

∂y
=

∂

∂y0
+ ε

∂

∂y1
+ ε2

∂

∂y2
+ ...+ εN

∂

∂yN
,

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2

∂

∂t2
+ ...+ εN

∂

∂tN
.

The crucial assumption underlying a multiple-scale expansion is that the pertur-
bation can be represented as a superposition of perturbations at different scales,
which is conveniently written as a power series expansion in the small parameter ε.

φ(x, y, t) = φ(x0, ..., xN ; y0, ..., yN ; t0, ..., tN )

=

N∑
n=0

εnφn(x0, ..., xN ; y0, ..., yN ; t0, ..., tN ).

We shall also use the composition into fluctuating part,

φ̃(x, y, t) = φ̃(x0, ..., xN ; y0, ..., yN ; t0, ..., tN )

=
N∑

n=0

εnφ̃n(x0, ..., xN ; y0, ..., yN ; t0, ..., tN ),

and y averaged, i.e., zonal, part,

φ(x, t) = φ(x0, ..., xN ; t0, ..., tN )

=
N∑

n=0

εnφn(x0, ..., xN ; t0, ..., tN ),

where the zonal part is independent of y. It is now straightforward to substitute the
expressions above into the modified Hasegawa - Mima equation. The calculations
leading to the amplitude relations at different orders in ε are, however, lengthy and
thus given in Appendix B. We explicitly state necessary assumptions in order to
simplify as much as possible, yet retaining a great deal of generality. For notational
convenience we discard the zero-order contributions to the potential, this introduces
merely a Doppler shift in the frequency in addition to reproducing the same equa-
tions as we shall find, only at order n−1, i.e., the order ε equation arises at order ε0

and so on, see also Appendix B. The zonal flow should depend on variables at least
one scale-order larger than the (small scale) fluctuations, thus the zonal components
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should not depend on {x0; t0} compared to the fluctuating motions. Furthermore
the zonal components vary on a time scale much longer than the fluctuating com-
ponents. Inserting into Eq. (3.51) and truncating the expansion at N = 4 yields to
first order in ε [

1−
(
∂2

∂x20
+

∂2

∂y20

)]
∂φ̃1
∂t0

+ κ
∂φ̃1
∂y0

= 0. (3.53)

The above may be solved upon assuming a plane wave for the fluctuation at lowest
order,

φ̃1 = A exp(ikxx0 + ikyy0 − ωt0) +A∗ exp(−ikxx0 − ikyy0 + ωt0), (3.54)

where we furthermore restrict the amplitude to vary on scales longer and slower
than the phase, i.e.,

A = A(x1, x2, x3, x4; y1, y2, y3, y4; t1, t2, t3, t4).

Periodicity in x and y requires that the box size, [0, Lx] × [0, Ly] satisfies λx =
Lx/n and λy = Ly/m with {n,m} ∈ N and λx, λy are the wavelengths in the x
and y directions respectively. Inserting into Eq. (3.53) yields the previously found
dispersion relation for (resistive) drift waves

ω =
κky

1 + k2⊥
. (3.55)

To second order in ε we get[
1−

(
∂2

∂x20
+

∂2

∂y20

)]
∂φ̃2
∂t0

+ κ
∂φ̃2
∂y0

+ eiθ
(
∂A

∂t1
+ k2

∂A

∂t1
+ κ

∂A

∂y1
− 2ωkx

∂A

∂x1
− 2ωky

∂A

∂y1

)
(3.56)

+ e−iθ

(
∂A∗

∂t1
+ k2

∂A∗

∂t1
+ κ

∂A∗

∂y1
− 2ωkx

∂A∗

∂x1
− 2ωky

∂A∗

∂y1

)
= 0,

where we have introduced θ = ikxx0+ikyy0−iωt0 and k2 = k2x+k
2
y. Now, Eq. (3.56)

is such that the exponentials are eigenfunctions of the kernel of the operator acting
on φ̃2, thus they give rise to resonance phenomenon and secular growth, which we
shall discard as unphysical. Thus we have to remove the terms proportional to the
exponentials via insisting that

∂A

∂t1
+ k2

∂A

∂t1
+ κ

∂A

∂y1
− 2ωkx

∂A

∂x1
− 2ωky

∂A

∂y1
= 0 (3.57)

∂A∗

∂t1
+ k2

∂A∗

∂t1
+ κ

∂A∗

∂y1
− 2ωkx

∂A∗

∂x1
− 2ωky

∂A∗

∂y1
= 0.

Computing the group velocity

vg ≡ ∂ω

∂k
=

κ

1 + k2
ŷ − 2ω

1 + k2
k, (3.58)

we may write the above as

(1 + k2)

(
∂A

∂t1
+ vg · ∇1A

)
= 0, (3.59)

where ∇1 = ∂x1 x̂ + ∂y1 ŷ . Eq. (3.59) describes advection of the amplitude at
the velocity of the drift wave. It also tells us that the amplitude is constant on
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scales O(ε−1) measured in a frame of reference moving at the group velocity in the
direction of drift wave propagation. What is left of Eq. (3.56) is[

1−
(
∂2

∂x20
+

∂2

∂y20

)]
∂φ̃2
∂t0

+ κ
∂φ̃2
∂y0

= 0, (3.60)

which has the exact same structure as Eq. (3.53). It is therefore reasonable to adopt

the solution for φ̃2 into φ̃1 and set φ̃2 = 0 in the further calculation, always bearing
in mind that φ̃2 really is present as a correction term for φ̃1. To order ε3 we then
get[

1−
(
∂2

∂x20
+

∂2

∂y20

)]
∂φ̃3
∂t0

+ κ
∂φ̃3
∂y0

+ eiθ
(
ikyA

∂φ1
∂x1

+ ik2xkyA
∂φ1
∂x1

+ ik3yA
∂φ1
∂x1

+
∂A

∂t2
+ k2x

∂A

∂t2
+ k2y

∂A

∂t2
− 2ωky

∂A

∂y2

+ κ
∂A

∂y2
− 2iky

∂2A

∂y1∂t1
+ iω

∂2A

∂y21
− 2ωkx

∂A

∂x2
− 2ikx

∂2A

∂x1∂t1
+ iω

∂2A

∂x21

)
+ cc. = 0,

where cc. stands for complex conjugate and denotes all the terms containing the
complex amplitude and are proportional to e−θ. Again invoking the solvability
condition upon insisting that

ikyA
∂φ1
∂x1

+ ik2xkyA
∂φ1
∂x1

+ ik3yA
∂φ1
∂x1

+
∂A

∂t2
+ k2x

∂A

∂t2
+ k2y

∂A

∂t2
− 2ωky

∂A

∂y2

+ κ
∂A

∂y2
− 2iky

∂2A

∂y1∂t1
+ iω

∂2A

∂y21
− 2ωkx

∂A

∂x2
− 2ikx

∂2A

∂x1∂t1
+ iω

∂2A

∂x21
= 0,

which may be reformulated as[
∂A

∂t2
+ vg · ∇2A

]
+ i

1

1 + k2

[
(ω + 2kxvgx)

∂2A

∂x21
+ (ω + 2kyvgy)

∂2A

∂y21

+ 2(kxvgy + kyvgx)
∂2A

∂x1∂y1

]
+ ikyA

∂φ1
∂x1

= 0. (3.61)

We have made use of Eq. (3.59) to arrive at the above. Again, we are left with[
1−

(
∂2

∂x20
+

∂2

∂y20

)]
∂φ̃3
∂t0

+ κ
∂φ̃3
∂y0

= 0,
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suggesting that also φ̃3 may be absorbed into φ̃1 and consequently set to zero in
the further calculations. We then proceed to order ε4,[

1−
(
∂2

∂x20
+

∂2

∂y20

)]
∂φ̃4
∂t0

+ κ
∂φ̃4
∂y0

− ∂3φ1
∂x21∂t1

− 4kxky
∂A

∂y1

∂A∗

∂y1
− 2kxkyA

∗ ∂
2A

∂y21
− 2kxkyA

∂2A∗

∂y21
− 2k2x

∂A∗

∂y1

∂A

∂x1

+ 2k2y
∂A∗

∂y1

∂A

∂x1
− 2k2x

∂A

∂y1

∂A∗

∂x1
+ 2k2y

∂A

∂y1

∂A∗

∂x1
+ 4kxky

∂A

∂x1

∂A∗

∂x1
− 2k2xA

∗ ∂2A

∂x1∂y1

+ 2k2yA
∗ ∂2A

∂x1∂y1
− 2k2xA

∂2A∗

∂x1∂y1
+ 2k2yA

∂2A∗

∂x1∂y1
+ 2kxkyA

∗ ∂
2A

∂x21
+ 2kxkyA

∂2A

∂y21

+ eiθ
(
ikyA

∂φ1
∂x2

+ ik2xkyA
∂φ1
∂x2

+ ik3yA
∂φ1
∂x2

+ ikyA
∂φ2
∂x1

+ ik2xkyA
∂φ2
∂x1

+ ik3yA
∂φ2
∂x1

+
∂φ1
∂x1

∂A

∂y1
+ k2x

∂φ1
∂x1

∂A

∂y1
+ 3k2y

∂φ1
∂x1

∂A

∂y1
− i2ky

∂2A

∂y2∂t1

− i2ky
∂2A

∂y1∂t2
+ i2ω

∂2A

∂y1∂y2
− ∂3A

∂y21∂t1
− i2kx

∂2A

∂x2∂t1
+ 2kxky

∂φ1
∂x1

∂A

∂x1

− i2kx
∂2A

∂x1∂t2
+ i2ω

∂2A

∂x1∂x2
− ∂3A

∂x21∂t1

)
+ e2iθ

[
2k2xA

∂2A

∂x1∂y1
+ 2kxkyA

∂2A

∂y21
− 2kxkyA

∂2A

∂x21
− 2k2yA

∂2A

∂x1∂y1

+ 2kxky

(
∂A

∂x1

)2

+ 2k2y
∂A

∂x1

∂A

∂y1
− 2k2x

∂A

∂x1

∂A

∂y1
− 2kxky

(
∂A

∂y1

)2 ]
+ cc. = 0.

In this case cc. represents the complex conjugate of all the terms proportional to
either eiθ or e2iθ . We proceed by averaging over the y0 coordinate and use our
previous assumption of periodic boundary conditions. The required box length in
the y0 direction is as stated above λy = Ly/m. Note that the terms proportional
to the exponentials are all independent of y0. Furthermore the exponentials vanish
upon averaging,

1

Ly

∫ Ly

0

exp(ikxx0 + ikyy0 − iωt0)dy0 =
1

Ly
exp(ikxx0 − iωt0)

(
1

iky
eikyy0

)∣∣∣∣Ly

0

=
1

Ly
exp(ikxx0 − iωt0)

1

iky

[
exp

(
i
2πmLy

Ly

)
− 1

]
= 0,

and

1

Ly

∫ Ly

0

exp(2ikxx0 + 2ikyy0 − 2iωt0)dy0

=
1

Ly
exp(2ikxx0 − 2iωt0)

1

2iky

[
exp

(
2i
2πmLy

Ly

)
− 1

]
= 0.

The first term also vanishes since

1

Ly

∫ Ly

0

φ̃4 ≡ 0,

and periodicity also applies to ∂y1 φ̃4. We then have only the first order terms left,
which can be rewritten as

∂2

∂x21

(
∂φ1
∂t1

)
=

[
2kxky

(
∂2

∂x21
− ∂2

∂y21

)
+ 2

(
k2x − k2y

) ∂2

∂x1∂y1

]
|A|2 . (3.62)
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Clearly the LHS is independent of y1 which implies that the RHS must not depend
on y1 either. Consequently, averaging over y1 gives

∂2

∂x21

(
∂φ1
∂t1

)
= 2kxky

∂2

∂x21
|A|2, (3.63)

and it follows
∂φ1
∂t1

= 2kxky|A|2, (3.64)

upon integration with respect to x1. The zonal flow is driven by the drift wave
amplitude, which to lowest order is a function of ζ = x1 − vgxt1 and A ≈ A(ζ).
Applying the chain rule then allows us to rewrite Eq. (3.64) as

∂φ1
∂x1

= −2kxky
vgx

|A|2, (3.65)

which we may insert for the last term in Eq. (3.61) to obtain

i

[
∂A

∂t2
+ vg · ∇2A

]
− 1

1 + k2

[
(ω + 2kxvgx)

∂2A

∂x21
+ (ω + 2kyvgy)

∂2A

∂y21

+ 2(kxvgy + kyvgx)
∂2A

∂x1∂y1

]
+

1

vgx
2kxk

2
y|A|

2
A = 0. (3.66)

Eq. (3.66) can be further simplified upon transforming to a reference frame moving
at the group velocity in the direction of drift wave propagation and also noting that
the plasma we are considering is inhomogeneous only in the x direction, thus we
may restrict the amplitude to be weakly varying with respect to y. What drops out
is the one dimensional, nonlinear, cubic Schrödinger equation:

i
∂A

∂t2
− 1

1 + k2
(ω + 2kxvgx)

∂2A

∂x21
+

1

vgx
2kxk

2
y|A|

2
A = 0. (3.67)

From Eq. (3.64) we find that a growth in drift wave amplitude causes also a growth
in zonal flow amplitude. Below we derive the instability region for the equation
above.

Instability criterion

A detailed derivation of the dispersion relation is given in Appendix B. Consider

i
∂A

∂t
+ P

∂2A

∂x2
+Q |A|A = 0, (3.68)

and perturb a solution, A0, that is supposed to satisfy the above. The dispersion
relation is then given by (Swanson [11])

Ω2 = P 2k4 − 2PQk2 |A0|2 . (3.69)

The instability criterion is clearly

PQ > 0,

such that the wavenumber satisfies

0 < k2 < 2Q |A0|2 /P,
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and the maximum growth occurs for

k =

√
Q |A0|2 /P ,

with maximum growth rate
γmax = Q |A0|2 .

Comparing with Eq. (3.67) and recognizing

P = − 1

1 + k2
(ω + 2kxvgx),

as well as

Q =
1

vgx
2kxk

2
y,

we have the instability criterion for modulational instability of drift waves satisfying
the modified Hasegawa - Mima equation:

− 1

1 + k2
(ω + 2kxvgx)

1

vgx
2kxk

2
y > 0, (3.70)

which is satisfied when
1 + k2y − 3k2x > 0. (3.71)

Note that this is just what we would expect from section (6.2) where we deduced
Eq. (3.47) in order for drift waves to generate a growing zonal flow. This can be
understood by means of Eq. (3.64), where we stated that zonal flow amplitude
growth is caused by growth in drift wave amplitude. Thus we see that drift waves
are modulational unstable and zonal flows generated by beating of drift waves are
growing in the same wave number regime. This is a good indicator for drift waves
being the main driving mechanism for zonal flow generation.

Nonlinear frequency shift

We may identify the middle term, P, of the LHS of Eq. (3.67) as the group dispersion
and the last term of the LHS in Eq. (3.67), Q, as the nonlinear frequency shift.
Recall the relations,

ω =
κky

1 + k2
, vgx = − 2kxω

1 + k2
,
∂vgx
∂kx

= −2ω
1 + k2y − 3k2x

1 + k2
. (3.72)

Using the above we rewrite the middle term,

P = −ω + 2kxvgx
1 + k2

= − 1

1 + k2
(ω − 4k2x

ω

1 + k2
)

= − ω

1 + k2
(1 + k2 − 4k2x)

= − ω

1 + k2
(1 + k2y − 3k2x)

=
1

2

∂vgx
∂kx

,

to find the group dispersion. Furthermore,

Q =
1

vgx
2kxk

2
y

= −(1 + k2)2
ky
κ
,
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Figure 3.5: Modulation mechanism.

takes the place of the nonlinear frequency shift, δω ∝ ∂ω/∂ |A|2. Recall that we

started out with Q = ∂φ/∂x1 ∝ |A|2, cf. Eq. (3.65), and since a nonlinear frequency
shift in general is a functional of the amplitude, Q takes indeed the place of the
frequency shift. Instead of the more mathematical arguments giving the constraints
for instability, we also want to show the more physical arguing of Chen ( ch. 8.8.82,
pp.337 in [2]). Consider Figure 8-27 in [2]. The ripple in the envelope modulation
can only grow if there is an energy pile up where the intensity of the modulation
already is high. This happens precisely when the the nonlinear frequency shift
and the group dispersion have opposite sign. In this case, the nonlinear frequency
shift, which is proportional to ω induces an opposite variation of the phase-velocity,
vp = ω/k, with respect to the group dispersion. Take for instance P > 0 and Q > 0,
then δω ∝ ∂ω

∂|A|2 < 0, thus in regions of increasing wave-intensity, the frequency is

shifted downwards. Therefore the phase-velocity is lower in those regions, than in
regions where the wave-intensity decreases. This then leads to a pile up of wave
crests to the left of intensity maxima, which in turn leads to a local increase in k
there. Then, since P > 0 the group velocity in regions of increasing intensity is
also higher than in regions of decreasing intensity (P ∝ ∂vgx/∂kx > 0). We are
in the situation of 8-27 (C) and the modulation is unstable due to the pile up of
wave energy at intensity maxima. If PQ < 0, the situation is reversed, and the
modulation is flattened out. We have thus, also physically deduced, that for drift-
waves to go unstable we need PQ > 0 which according to our identifications in the
previously derived NLS corresponds to

−1

2

∂vgx
∂kx

(1 + k2)2
ky
κ
> 0 ⇔ k2y(1 + k2y − 3k2x) > 0,

and consequently we have the constraint

1 + k2y − 3k2x > 0. (3.73)

Wave Kinetic Equation

There exists an overwhelming amount of literature on the derivation of different
kinds of wave kinetic equations. We use a somewhat different approach based
on the assumption that in a saturated state, the wave action density is approxi-
mately unchanged. Introduce the phase-space spanned by Cartesian coordinates,
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x = (x, y), and wavenumbers, k = (kx, ky), which both are parametrized by the
time-variable, t, such that x = x(t) and k = k(t) . We then define the wave action
density according to

N(x,k, t) ≡ Ek
ωk
, (3.74)

where Ek is the energy density corresponding to a wave with wave-vector k and ωk

is the wave-frequency measured in a reference frame moving with the wave under
consideration. In the saturated state, the action density is conserved in phase-space
(McDonald [16]), which is also intuitively deduced from wave action density being
conserved in a frame of reference moving with the group velocity ( Whitham [12],
Smolyakov [13], Hayes [14]).

∂

∂t
N +

∂

∂xi

(
dxi
dt
N

)
≈ 0, (3.75)

where xi stands for either of the phase-space coordinates and summation over re-
peated indices is implied. Following Bellan [3] we arrive at expressions relating
the phase-space velocities to the local dispersion relation. Suppose that the solu-
tion of the local dispersion relation is given as a functional relation on the form
ω = ω(x,k) = 0 . Close by, i.e., at (x+ δx,k+ δk), the solution can be found upon
Taylor-expanding the above, given that the medium changes smoothly, thus

ω(x+ δx,k+ δk) ≈ ω(x,k) + δx
∂ω

∂x
+ δk

∂ω

∂k
= δx

∂ω

∂x
+ δk

∂ω

∂k
= 0,

since ω(x,k) = 0 is satisfied, and ω(x + δx,k + δk) = 0 by definition of being
a solution of the local dispersion relation. Now, suppose that the phase space
coordinates are parametrized by a time variable, (x,k) = (x(t),k(t)). Then we
have the relations δx = dx/dt δt and δk = dk/dt δt . The equation above thus
reads

0 ≈ dx

dt

∂ω

∂x
δt+

dk

dt

∂ω

∂k
δt,

which is solved by

dx

dt
=
∂ω

∂k
(3.76a)

dk

dt
= −∂ω

∂x
. (3.76b)

These relations, familiar from geometric optics are inserted into Eq. (3.75) yield-
ing the wave kinetic equation for a quasi-stationary state (i.e., no dissipation or
generation of wave action)

∂N

∂t
+
∂ω

∂k
· ∂N
∂x

− ∂ω

∂x
· ∂N
∂k

= 0, (3.77)

where we have used that the divergence of the flow-velocity in phase-space vanishes
due to the Hamiltonian structure dependence on the dispersion relation described
above,

∂

∂xi

dxi
dt

=
∂

∂x

dx

dt
+

∂

∂y

dy

dt
+

∂

∂kx

dkx
dt

+
∂

∂ky

dky
dt

=
∂

∂x

∂ω

∂kx
+

∂

∂y

∂ω

∂ky
− ∂

∂kx

∂ω

∂x
− ∂

∂ky

∂ω

∂y

= 0.
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Note that Eq. (3.77) may be written by means of Poisson brackets

∂N

∂t
+ {N,ω} = 0 , (3.78)

which clearly resembles the close analogy to a non-dissipative one-particle system
with canonical coordinate vector q, conjugate momentum p and distribution func-
tion f = f(q,p) where the evolution of the distribution function is governed by

∂f

∂t
+ {f,H} = 0 , (3.79)

and H is the systems Hamiltonian. By analogy, the solution of the dispersion rela-
tion (more precisely, the dispersion relation itself) then represents the Hamiltonian
and the wave action density resembles the distribution function.

Consider now the coupling of a spectrum of drift waves to the zonal flow mode.
To this end we average the evolution equation for the zonal flow, Eq. (3.13) over an
ensemble of small - scale drift wave realizations to obtain

∂

∂t

∂2

∂x2
φ =

∂

∂x

〈
∂φ̃

∂y
Ω̃

〉
, (3.80)

where the angle brackets denote the average in k -space. From Appendix A we have
the relation

∂φ̃

∂y
Ω̃ =

∂

∂x

(
∂φ̃

∂x

∂φ̃

∂y

)
,

which casts Eq. (3.80) as

∂

∂t

∂2

∂x2
φ =

∂2

∂x2

∫
d2 kkxky |φk|2 . (3.81)

Along a given wave ray trajectory, the density of waves is constant. According to
[5] the population density identifies with the wave action for drift waves here, which
for the MHM equation is given by ([5], [13])

Nk = (1 + k2⊥)
2 |φk|2 . (3.82)

In the presence of a zonal flow, this equilibrium wave action density is modulated
according to ([5], [13])

Nk → N0 + Ñ . (3.83)

Consequently the zonal flow evolution expressed in terms of the modulated wave
action is then from Eq. (3.81)

∂

∂t
v′ZF =

∂2

∂x2

∫
d2 k

kxky
(1 + k2⊥)

2
Ñ , (3.84)

where we have followed [5] by introducing the zonal flow velocity, vZF = ∂xφ and
′ means differentiation with respect to x. Note that the part including N0 van-
ishes, since the equilibrium value is assumed to describe an isotropic spectrum
(i.e., ∂2xN0 = 0). We proceed by calculating the modulation of the wave action den-
sity. Let us assume that the perturbation of the equilibirum wave action density due
to the zonal flow can be written as Ñ ∼ eiqx−iΩt . Inserting into the wave kinetic
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equation, Eq. (3.77), and using the drift wave frequency ω = kyvZF +κky/(1+ k2⊥)
gives

∂N0

∂t
− iΩÑ +

∂ω

∂kx
iqÑ +

∂ω

∂kx

∂N0

∂x
+
∂ω

∂ky

∂N0

∂y
− ∂ω

∂x

∂N0

∂kx

−∂ω
∂y

∂N0

∂ky
− ∂ω

∂y

∂Ñ

∂ky
= 0.

The equilibrium wave action is assumed to be a function of wave numbers only
(isotropic in coordinate space), such that solving for the modulation gives

Ñ = −q2φky
∂N0

∂kx

i

Ω− qvg
, (3.85)

where of course vg = ∂kxω. Note that we have used the intrinsic drift wave fre-
quency, i.e., the frequency observed in a frame of reference moving with the drift
waves. Clearly the presence of the zonal flow induces a Doppler shift in this frame
of reference, contributing by kyvZF to the measured frequency. Note that the
equations describing the evolution of the phase-space coordinates, Eqs. (3.76), are
derived in such a moving frame of reference (following the particle/wave in phase-
space). Now, inserting the expression above into Eq. (3.84) yields

Ω = q2
∫
d2k

kxky
(1 + k2⊥)

2
ky
∂N0

∂kx

i

Ω− qvg
. (3.86)

Assuming that the wave-packet is localized at some wave number, k0 such that
N0 = N0δ(k− k0), we may integrate by parts to arrive at

Ω = −q2
∫
d2k k2yN0

∂

∂kx

[
kx

(1 + k2⊥)
2

1

Ω− qvg

]
, (3.87)

where we have used that N0(bdy kx) = 0, since the wave - packet is assumed to be
localized. From Eq. (3.44) we read off

vg
2κky

= − kx
(1 + k2)2

,

which allows us to rewrite the derivative under the integral above,

∂

∂kx

[
kx

(1 + k2)2
1

Ω− qvg

]
=

∂

∂kx

(
− vg
2κky

1

Ω− qvg

)
= − 1

Ω− qvg

1

2κky

∂vg
∂kx

− 1

2κky

qvg
(Ω− qvg)2

∂vg
∂kx

= − Ω

(Ω− qvg)2
1

2κky

∂vg
∂kx

.

Eq. (3.87) becomes

1 = q2
∫
d2k k2y

N0

2κky

∂vg
∂kx

1

(Ω− qvg)2
, (3.88)

or equivalently

(Ω− qvg)
2 = q2k2y

N0

2κky

∂vg
∂kx

, (3.89)

and the integral over the delta-distribution vanishes for all k except for k0 ≡
(kx, ky). Clearly, for instability to occur we have the criterion

N0

2κky

∂vg
∂kx

< 0, (3.90)
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which upon calculation of the group velocity reduces to (see Eq. (3.45))

N0

(1 + k2)3
(1 + k2y − 3k2x) > 0, (3.91)

which is precisely what we have discovered before when considering four mode
coupling, cf. Eq. (3.47), and also by the multiple - scale expansion technique, cf.
Eq. (3.73) . The growth rate is hence given by

Ω = qvg − i

√
q2N0k2y
(1 + k2)3

(1 + k2y − 3k2x), (3.92)

which is comparable to Eq. (3.46) for N0 = 2(1 + k2) |φ0|2 and q � 1.
What we have deduced by now is the following. Decomposition into turbulent and
zonal averaged components show that there is energy transfer from fluctuating mo-
tions into zonal structures by means of turbulent velocity shearing, quantified by the
Reynolds-stress. Parametric instability due to beating of a pump drift wave with
its sidebands may result in zonal structures if the aspect ratio of the drift waves
satisfies 1 + k2y − 3k2x > 0. The same instability domain is found by considering
modulational instability of drift wave amplitudes, which is accompanied by zonal
flow amplitude growth, cf. Eq. (3.64). A more classical approach using conservation
of wave action density reproduces the instability domain in wavenumber space, un-
derlining the crucial dependence of drift wave aspect ratio for zonal flow formation.
The physical reason for this constraint intuitively follows from Figure 3.1.
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Chapter 4

Drift wave energetics

We start by deriving various integral quantities characteristic for the OHW and
MHW systems, which give insight to the energy flow intrinsic to the systems. In the
simulation these integrals are computed such that we may confirm the analytically
predicted energy flow in favor of zonal flow generation by means of numerical results.

Energetics of the ordinary Hasegawa - Wakatani
model

Recall the OHW eqs. :

∂Ω

∂t
+ {φ,Ω} = α (φ− n) +DΩ∇2

⊥Ω (4.1a)

∂n

∂t
+ {φ, n} = α (φ− n)− κ

∂φ

∂y
+Dn∇2

⊥n. (4.1b)

Following the procedure from section (Energy transfer) we multiply Eq. (4.1a) by
φ and integrate over coordinate space to get an evolution equation for the total
kinetic energy,

∂

∂t

∫
dx

1

2
(∇⊥φ)

2
= −α

∫
dx φ (φ− n)−

∫
dx φDΩ∇2

⊥Ω. (4.2)

Averaging Eq. (4.1a) in the zonal direction yields

∂

∂t
Ω− ∂

∂x

(
Ω
∂φ

∂y

)
= α

(
φ− n

)
+

1

Ly

∫ Ly

0

dy DΩ∇2
⊥Ω. (4.3)

We shall use DΩ
0 = DΩ∇2

⊥Ω for notational convenience. Multiplying through by φ
and integrating also over y then gives the evolution of the zonal flow kinetic energy,

d

dt

∫
dx

1

2

(
∇φ
)2

=

∫
dx φ

∂

∂x

(
Ω
∂φ

∂y

)
− α

∫
dx φ

(
φ− n

)
−
∫
dx φDΩ

0 . (4.4)

As previously shown, subtracting the zonal flow kinetic energy evolution equation
from the total kinetic energy evolution equation results in an evolution equation for
the kinetic energy contained in the fluctuating motions, cf. Eq. (3.25).

∂

∂t

∫
dx

1

2

(
∇φ̃
)2

= −
∫
dx φ

∂

∂x

(
Ω
∂φ

∂y

)
+ α

∫
dx

[
φ
(
φ− n

)
− φ (φ− n)

]
+

∫
dx

[
φDΩ

0 − φDΩ
0

]
.

(4.5)
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Note that (
φ− n

)
− φ (φ− n) = φ(φ− n)−

[
(φ+ φ̃)(φ+ φ̃− n− ñ)

]
= −φ̃(φ̃− ñ)− φ(φ̃− ñ)− φ̃(φ− n),

and the last two therm vanish when integrating over y by definition of the average
of fluctuating quantities upon moving the averaged quantities out of the y integral.
We thus have

∂

∂t

∫
dx

1

2

(
∇φ̃
)2

= −
∫
dx φ

∂

∂x

(
Ω
∂φ

∂y

)
− α

∫
dx φ̃

(
φ̃− ñ

)
+

∫
dx

[
φDΩ

0 − φDΩ
0

]
. (4.6)

Multiplying Eq. (4.1) by n and integrating over coordinate space yields the evolution
equation for the potential energy.

∂

∂t

∫
dx

1

2
n2 = −κ

∫
dx n

∂φ

∂y
+ α

∫
dx n (φ− n) +Dn

∫
dx n∇2

⊥n, (4.7)

where we have used Eq. (3.4) with φ replaced by n in the calculation leading to the
above. Writing out the full density and potential in the first and second term on
the RHS then gives

∂

∂t

∫
dx

1

2
n2 = −κ

∫
dx ñ

∂φ̃

∂y
+ α

∫
dx n

(
φ− n

)
+ α

∫
dx ñ

(
φ̃− ñ

)
+Dn

∫
dx n∇2

⊥n. (4.8)

The total energy is the sum of potential and kinetic energy of fluctuating motions
and the zonal flow. Hence,

∂

∂t

∫
dx

[
1

2
n2 +

1

2
(∇φ)2

]
= −κ

∫
dx ñ

∂φ̃

∂y
+ α

∫
dx n

(
φ− n

)
+ α

∫
dx ñ

(
φ̃− ñ

)
+Dn

∫
dx n∇2

⊥n− α

∫
dx φ

(
φ− n

)
(4.9)

− α

∫
dx φ̃

(
φ̃− ñ

)
−
∫
dx φDΩ∇2

⊥Ω,

which may be simplified to

∂

∂t

∫
dx

[
1

2
n2 +

1

2
(∇φ)2

]
= −κ

∫
dx ñ

∂φ̃

∂y
− α

∫
dx

(
n− φ

)2
− α

∫
dx

(
ñ− φ̃

)2
+Dn

∫
dx n∇2

⊥n−
∫
dx φDΩ∇2

⊥Ω. (4.10)

The complete energy characteristics of the ordinary Hasegawa - Wakatani Equations
is consequently

dE

dt
= Γ̃n − J0 − J̃ +∆n −∆Ω,

dK

dt
= −Ã −Π−∆Ω +∆Ω

0 ,

dU

dt
= −A0 +Π−∆Ω

0 ,

dP

dt
= Γ̃n + B0 + B̃ +∆n,
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where

Γ̃n = −κ
∫
dx ñ

∂φ̃

∂y
,

J0 = α

∫
dx

(
n− φ

)2
,

J̃ = α

∫
dx

(
ñ− φ̃

)2
,

A0 = α

∫
dx φ

(
φ− n

)
,

Ã = α

∫
dx φ̃

(
φ̃− ñ

)
,

B0 = α

∫
dx n

(
φ− n

)
,

B̃ = α

∫
dx ñ

(
φ̃− ñ

)
,

Π =

∫
dx φ

∂

∂x

(
Ω
∂φ

∂y

)
= −

∫
dx v0

∂

∂x
(ṽxṽy) ,

∆Ω = DΩ

∫
dx φ∇2

⊥Ω,

∆n = Dn

∫
dx n∇2

⊥n,

∆Ω
0 = DΩ

∫
dx φ∇2

⊥Ω.

Note that −A0 + B0 = −J0 and −Ã + B̃ = −J̃ . Neglecting diffusion we see that
the turbulent radial flux, which can extract free energy from the density gradient
(i.e., the density gradient drives the radial flux) may act as a source for the total
energy, whereas the resistive dissipation of fluctuating and zonal flow energy acts
as a sink for the total energy since the integrals are positive definite. It is clear
that the turbulent flux and the resistive dissipation of fluctuating motions vanish
in the adiabatic, i.e., Boltzmann distributed density, limit (ñ → φ̃). This is in fact
a tautology since Boltzmann distribution means nothing but that we may neglect
parallel particle motion in the momentum equations, thus there cannot be any
resistivity along the magnetic field. The greater the phase lag between density and
potential, the stronger we expect the total energy to respond.

Energetics of the modified Hasegawa - Wakatani
model

The energetics are readily found analogous to the previous section. Multiplying the
vorticity equation by φ and integrating over coordinate space gives the equation for
the total kinetic energy

∂

∂t

∫
dx

1

2
(∇⊥φ)

2
= −α

∫
dx φ̃

(
φ̃− ñ

)
−DΩ

∫
dx φ∇2

⊥Ω. (4.13)

Integrating Eq. (2.74a) in the y direction, multiplying by φ and integrating also
over x gives the equation for the kinetic energy contained in the zonal flow

∂

∂t

∫
dx

1

2

(
∇⊥φ

)2
=

∫
dx φ

∂

∂x

(
Ω
∂φ

∂y

)
−DΩ

∫
dx φ∇2

⊥Ω. (4.14)
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Subtracting Eq. (4.14) from Eq. (4.13) yields the kinetic energy contained in the
fluctuating motions

∂

∂t

∫
dx

1

2

(
∇⊥φ̃

)2
= α

∫
dx φ̃

(
φ̃− ñ

)
−
∫
dx φ

∂

∂x

(
Ω
∂φ

∂y

)
(4.15)

+DΩ

∫
dx (φ+ φ)∇2

⊥Ω.

Muliplying Eq. (2.74) by n and integrating over coordinate space derives an expres-
sion for the potential energy

∂

∂t

∫
dx

1

2
n2 = −κ

∫
dx ñ

∂φ̃

∂y
+ α

∫
dx ñ

(
φ̃− ñ

)
+Dn

∫
dx n∇2

⊥n. (4.16)

The evolution of total energy is found upon adding the potential energy to the total
kinetic energy, Eq. (4.16) + Eq. (4.13)

∂

∂t

∫
dx

1

2

[
(∇⊥φ)

2
+ n2

]
= −κ

∫
dx ñ

∂φ̃

∂y
− α

∫
dx

(
ñ− φ̃

)2
−DΩ

∫
dx φ∇2

⊥Ω+Dn

∫
dx n∇2

⊥n. (4.17)

The energetics are consequently

dE

dt
= Γ̃n − J̃ +∆n −∆Ω,

dK

dt
= Ã −Π+∆Ω +∆Ω

0 ,

dU

dt
= Π−∆Ω

0 ,

dP

dt
= Γ̃n + B̃ +∆n,

and the integrals are defined in the previous section. We note that in the modified
Hasegawa - Wakatani model the resistive dissipation is only due to the phase lag
between the fluctuating components, as the zonal components have ky = 0 = kz.

Note also that in the collision-less limit, α → ∞ with ñ → φ̃ which recovers the
modified Hasegawa - Mima equation, we have Ã = B̃ = J̃ = 0 = Γ̃n. Thus, the
adiabatic limit in the modified Hasegawa - Wakatani equations corresponds to the
formalism of the modified Hasegawa - Mima equation and we have previously shown
that a similar correspondence is true for the ordinary HW and HM equations.
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Chapter 5

Numerical simulations

5.1 The code - 2dads

The OHW and MHW models are solved by a two-dimensional diffusion-advection
solver (2dads) written by Garcia and modified to include the MHW model by Kube.
The code uses a spectral Fourier-Galerkin method combined with a third order stiffly
stable time integrator scheme. The equations are solved on a box of size [−20, 20]×
[−20, 20] in physical space. The fields are expanded by truncated Fourier-series
with 256 modes in both radial and poloidal direction, giving a spacial resolution of
∆x = ∆y = 40/256 ≈ 0.156. Derivatives are evaluated in spectral space, where the
error involved is faster than exponential, hence derivation in spectral space can be
thought of as exact. Evaluating the nonlinear terms in spectral space corresponds to
convolution, which due to the Fourier series being truncated, introduces an aliasing
error. Following [21] a hyper-viscosity coefficient of order 6 ( α∇6Ω and α∇6n with
α = 0.0001 )is implemented to dissipate energy at small-scales. The discretization
in time is ∆t = 0.001 which introduces an error of (∆t)3 for the third order time
integrator. Full field output in physical space is written every for every 500th
time step. Output to the probes is written every time step, resulting in 20,000
full physical fields for n, φ and Ω and 1,000,000 data points for various probe
quantities. There are 8 probes placed equidistantly on the diagonal from the top
left to the bottom right of the simulation domain. Unless otherwise stated, we
use the probe located at the center of the domain. Initial conditions are a single
density perturbation mode with amplitude 1,600, kx = 0 and ky = 2 and vorticity
identical to zero throughout the domain. In order to speed up the mixing of different
wavelengths initially, a Gaussian bell around the mode (0, 2) in Fourier space is also
excited, leading to the initial density perturbation shown in the contour-plots. We
have performed simulations for C = 0.1, C = 1, C = 5 and C = 10 for both OHW and
MHW. Perpendicular viscosity for vorticity and density is taken to be 0.001, which
leads to quenching of turbulent kinetic energy for C = 5 and C = 10 in the MHW
simulations. Simulations are performed until t = 10, 000, which gives saturated
time-series over at least 8,000 time units. Runs until t = 20, 000 are performed for
C = 10 in OHW and C = 5 in MHW in order to achieve sufficient long saturated
state (OHW) and to investigate whether the strong zonal flow is eventually damped
in order to get statistics from this run. In general the saturated state is achieved
later for high adiabacity, which is associated with density and potential being more
in - phase and hence decreasing the drift wave instability growth rate.
As can be seen from the plots of the linear instability growth rate, the code works
with sufficient accuracy for our purposes.

Note the normalized density gradient is not really a free parameter of the models
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at hand, it can be taken into the normalization of the Hasegawa Wakatani equations
by means of

1

κ

∂

∂t
→ ∂

∂t
,
φ

κ
→ φ ,

n

κ
→ n

and redefining the true free parameters

C
κ
→ C ,

$

κ
→ $ ,

Dclassical

κ
→ Dclassical.

5.2 Linear Stability Analysis of the ordinary Hasegawa
Wakatani model

As a first check for our code (written by Garcia, modified by Kube) we perform a
linear stability analysis of the ordinary Hasegawa-Wakatani Equations, Eqs. (4.1),
and compare the growth rate with numerical results for selected wave-numbers. To
this end, neglect the nonlinear electric drift term and consider density and potential
variations of the form (

φ̃, ñ
)
∼
(
φ̂, n̂

)
eik·x−iωt. (5.1)

Inserting into Eqs. (4.1) we obtain

iωk2φ̂+Dk2φ̂ = α(φ̂− n̂) (5.2a)

−iωn̂+Dk2n̂+ αn̂ = αφ̂− ikyφ̂, (5.2b)

where now for convenience have set DΩ = Dn ≡ D for the perpendicular diffu-
sion coefficients. The equations above are readily combined to yield the complex
dispersion relation

ω2k2 + iω(αk2 +Dk4 −Dk2 + α) +D2k4 − iαky = 0. (5.3)

An analytic expression for the growth rate of the unstable branch is found in Ca-
margo et al. [17],

γ = −1

2

[
α(1 + k2)

k2
+ 2Dk2

]
+

1

2
√
2

α(1 + k2)

k2

√√√√√
1 +

16α2k2y/k
4

α4(1 + k2)4/k8
− 1 (5.4)

Note that we have considered only the case kx = 0 which corresponds to maximum
growth. We initialize different perturbations in the y-direction with kx = 0 and
compute the slope of the time-evolution of the corresponding Fourier-amplitude.
Since kx = 0 it is sufficient to consider the mean-value of the computed field in the
x-direction and then Fourier-transform to find the Fourier-amplitude of (kx, ky) =

(0, k̂y). Figures 5.1 - 5.3 show plots of numerical results versus the analytical growth
rate, Eq. (5.4). The analytic predictions are good, yet there is some deviation
for C = 0.1 on the high k side and for C = 10 for low k. We note that the
Hasegawa Wakatani system allows for non-modal behavior [28] which may result in
deviations from the analytic growth rate we employ. However, the key feature is
that Figures 5.1 - 5.3 prove that our code works to a sufficient degree of precision.

5.3 Data analysis methods

There are a number of statistical tools that we shall employ to uncover features
of the turbulent dynamics. Here we give a brief overview. In general we will
use temporal and spatial autocorrelation functions (ACFs) to determine the time
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Figure 5.1: Growth rate for C = 0.1

scales and spatial correlation lengths involved. The time scales may also be found
from the rescaled range analysis and structure function considerations. Spatial
correlations will help us understand the role of the aspect ratio of the nonlinear
structures, which we may compare with the instability domains found analytically
in the adiabatic regime, cf. Parametric Instability, Modulational Instability, Wave-
Kinetic Equation. Probability density functions (PDF) supplemented by kurtosis
and skewness are calculated to compare with known PDF’s.

Kurtosis and Skewness

Introduce the ith central moment in the following way

mi =
1

N

N∑
j=1

(xj − x)i, (5.5)

where x is the sample mean and N the sample size. Note that the second moment
is simply the variance. The estimator for skewness and kurtosis used are then given
by

gskewness =
m3

m
3/2
2

, (5.6)

and
gkurtosis =

m4

m2
2

− 3. (5.7)

Self - similarity

Consider a stochastic process, X(t). Following Rypdal [18] we have the following
definitions.
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Figure 5.2: Growth rate for C = 1
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Figure 5.3: Growth rate for C = 10
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A process is stationary if X(t0 + t)
d
= X(t) for all fixed t0.

The process inherits stationary increments if X(t0 + t) − X(t0)
d
= X(t) − X(0)

for all fixed t0.

For H ≥ 0, the process is called H-self-similar if X(at)
d
= aHX(t) for all a > 0.

Here,
d
= should be understood as ”equal in distribution”, i.e., statistical distributions

exhibit translational symmetry with respect to time. The self-similar, stationary,
process has the following covariance function, Rypdal [18], Melzani [19]:

〈X(t)X(s)〉 = 1

2

〈
X(1)2

〉 (
t2H + s2H − |t− s|2H

)
, (5.8)

where the angle brackets denote expectation values. Introduce the increments of
the process X, Y (t0) = X(t0 + t) − X(t0), which by self-similarity gives Y (t0) =
X(t)−X(0). We may then compute the autocorrelation function of the increments
at lag n, where n→ ∞,

CX(n) = 〈XnX1〉 =
〈
Y 2
1

〉
H(2H − 1)n2H−2. (5.9)

Since the above relation holds for long time lags, we readily associate the similarity
parameter, H, with the decay of the ACF at large lags,

CX(τ) ∼ (2H − 1)τ−αX , αX = 2− 2H. (5.10)

We also see that CX(τ → ∞) > 0 if H > 1/2 and CX(τ → ∞) < 0 if H < 1/2.
Clearly, CX(τ → ∞) = 0 is the case for random walks with uncorrelated increments,
H = 1/2 in this case. For H > 1/2 there is a positive correlation at long lags and
also a slower decay compared to anti-correlation at large lags (H < 1/2) with a
faster decay. For H close to 1 we note that there is only a weak decay in the ACF,
indicating that regions in the R/S-plot (see below) following such H-dependence
are strongly correlated. H = 1 is the signature of a deterministic signal (or at least
a deterministic, coherent mode with period given by the length of the sample region
for which H = 1).

Rescaled Range Analysis and Hurst exponent

The self-similarity parameter H introduced above is commonly referred to as the
Hurst exponent, after the British hydrologist Edwin Hurst. For a self-similar signal
Y (t), the rescaled range as a function of sample size has the dependence R/S(n) ∼
nH . The rescaled-range can be thought of as a normalized standard deviation with
respect to the deviation in maximum and minimum of the cumulated sum for a
piece of the original sample. The algorithm is as follows, divide the signal in pieces
of length n for which the standard deviation is to be computed. Then calculate the
difference between the maxima and minima in the cumulated, mean adjusted series
for this part of the original signal. The rescaled range is then given by the ratio of
the difference in extrema from the cumulated, mean adjusted series to the standard
deviation corresponding to this sample. To improve statistics the mean over the
rescaled range for all other samples of equal size, n, is computed. One visualizes by
means of a R/S vs. n loglog-plot.
To be more precise, for each sample piece of size n consisting of the elements
X1, X2, ..., Xn we compute the mean adjusted cumulative sum,

Yk =
k∑

j=1

(
Xj −

1

n

n∑
i=1

Xi

)
. (5.11)
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We then find the range, given by the difference between the extrema in the mean
adjusted cumulative sum,

Rk = max(Yl)−min(Yl), l = 1, 2, ..., n. (5.12)

Using the standard deviation for the sample of size n, Sn the rescaled range for
sample size n is given by R/S (n), which is proportional to the similarity parameter
as described earlier (R/S(n) ∼ nH). To improve statistics we calculate the rescaled
range for the N pieces of length n (the total size of the signal is N = N n) and
average.

Structure function analysis

For a stochastic process X(t) the structure function of order q is defined according
to

S(t0, τ) = 〈|X(t0 + τ)−X(t0)|q〉 , (5.13)

where 〈...〉 denotes an ensemble average, which we shall take to be the mean of the
signal. For a stationary (statistically speaking) signal or a signal with stationary
increments, the structure function clearly does not depend on t0. An estimator for
this case is given by

Ŝq(τ) =
N−τ∑
i=1

|Xi+τ −Xi|q

N − τ
, (5.14)

where N is the number of sample points and τ is the (integer) lag. When plotting
the structure function, if there exist a region where the structure function saturates,
the interpretation is that the signal is stationary at those time-lags. The time-lag
found by structure function analysis may be compared to the correlation time found
from ACF-analysis.

Note that the structure function is related to the similarity parameter of an in-
ertial range can be identified; Sq(τ) ∝ τ ζ(q), where ζ(q) = Hq. This only holds if
there is no intermittency present (and the PDF associated with the quantity under
consideration is not dominated by heavy tails).
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Chapter 6

Results

In this section we show results of the numerical simulations performed. Trends
or results are described. For interpretation and relation to Part I, see chapter
Discussion.

6.1 Typical time - series and contour - plots

We start out by presenting typical time-series for the ordinary- and modified Hasegawa
Wakatani system for different adiabacity parameters. Figures 6.1 and 6.3 are for the
ordinary and Figures 6.2 and 6.4 for the modified system respectively. In Chapter
7 and 8 we found that if the transfer term is positive, the energy is transfered from
the fluctuating motions to the zonal flows, which we also observe when studying the
lower subplots of Figures 6.1 - 6.4. Note that for C = 1 in the modified system, the
zonal flows contain considerably more energy than the fluctuating motions. Fig-
ure 6.5 shows the saturated state of the turbulence. Note that the time-series really
are as bursty as Figures 6.1 - 6.4, but the logarithmic scale suppresses this effect.
Clearly the MHW system allows more energy to be contained in zonal structures
as theoretically proposed earlier. Figures 6.34 - 6.27 show the emergence of zonal
structures in the modified system with increasing adiabacity. From Figure 6.6 we
see directly the confining effect of zonal flows, the radial flux is substantially re-
duced compared to the ordinary system with no zonal flows. Finally, Figure 6.9
confirms the obvious notion that elongated structures in the poloidal direction act
as to break the isotropy of the turbulence.
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Figure 6.1: Top: Kinetic energy contained in fluctuating motions (blue) and zonal
structures (green). Bottom: Transfer integral Π
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Figure 6.2: Top: Kinetic energy contained in fluctuating motions (blue) and zonal
structures (green). Bottom: Transfer integral Π
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Figure 6.3: Top: Kinetic energy contained in fluctuating motions (blue) and zonal
structures (green). Bottom: Transfer integral Π
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Figure 6.4: Top: Kinetic energy contained in fluctuating motions (blue) and zonal
structures (green). Bottom: Transfer integral Π
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Figure 6.5: Top left: Kinetic energy contained in fluctuating motions for C = 0.1,
OHW (blue) and MHW (green). Top right: Kinetic energy contained in zonal
structures for C = 0.1, OHW (blue) and MHW (green). Bottom left: Kinetic
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Figure 6.6: Radial flux for OHW (blue) and MHW (green).
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Figure 6.7: Kinetic and zonal energy integrals for OHW and MHW vs. adiabacity
parameter.

In Figure 6.7 the dependence of zonal and turbulent kinetic energy on model and
adiabacity is shown. We have performed simulations for C = 0.1, 1, 5 and 10 but
the arising zonal flows aren’t damped quick enough to give meaningful time-series
for C = 5 and 10 in the MHW runs. Figure 6.8 shows the strong intermittency
for the turbulent kinetic energy, being quenched for long time intervals. This is, of
course, a direct consequence of the strong and persistent occurrence of zonal flows
in these runs, which flatten the turbulence almost entirely for energy. Consequently

60



we shall not use data from those runs with a few exceptions which are explicitely
mentioned later on.
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Figure 6.8: Quenching and turbulence suppression due to strong zonal flows in
MHW with C = 5. The turbulent kinetic energy is magnified by a factor 10 for
visualization purposes.
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Typical contours of the field quantities ñ, n,φ̃, φ, Ω̃ and Ω are shown below. In
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the absence of zonal flows, i.e., OHW with C = 0.1 and C = 1, there is no significant
difference between turbulent and full quantities, hence we only show plots for the
full fields in those cases. The turbulent fields are the difference of the total fields
and zonal, i.e., poloidally averaged, fields.
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Figure 6.10: Full potential contours for OHW with C = 0.1.
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Figure 6.11: Full potential contours for OHW with C = 1.
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Figure 6.12: Full potential contours for MHW with C = 0.1.

�20�15�10�5 0 5 10 15 20
radial direction

�20
�15
�10
�5
0
5
10
15
20

t=10000

-12.0
-9.0
-6.0
-3.0
0.0
3.0
6.0
9.0
12.0

�20�15�10�5 0 5 10 15 20�20
�15
�10
�5
0
5
10
15
20

p
o
lo
id
a
l
d
ir
ec
ti
o
n

t=2500

-12.0
-9.0
-6.0
-3.0
0.0
3.0
6.0
9.0
12.0

�20�15�10�5 0 5 10 15 20�20
�15
�10
�5
0
5
10
15
20

t=5000

-10.5
-7.0
-3.5
0.0
3.5
7.0
10.5
14.0

�20�15�10�5 0 5 10 15 20
radial direction

�20
�15
�10
�5
0
5
10
15
20

p
o
lo
id
a
l
d
ir
ec
ti
o
n

t=7500

-11.2
-8.4
-5.6
-2.8
0.0
2.8
5.6
8.4
11.2

turbulent potential contours MHW C=0.1

Figure 6.13: Turbulent potential contours for MHW with C = 0.1.
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Figure 6.14: Full potential contours for MHW with C = 1.
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Figure 6.15: Turbulent potential contours for MHW with C = 1.
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Figure 6.16: Full density contours for OHW with C = 0.1.
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Figure 6.17: Full density contours for OHW with C = 1.
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Figure 6.18: Full density contours for MHW with C = 0.1.
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Figure 6.19: Turbulent density contours for MHW with C = 0.1.
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Figure 6.20: Full density contours for MHW with C = 1.
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Figure 6.21: Turbulent density contours for MHW with C = 1.
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Figure 6.22: Full vorticity contours for OHW with C = 0.1.
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Figure 6.23: Full vorticity contours for OHW with C = 1.
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Figure 6.24: Full vorticity contours for MHW with C = 0.1.
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Figure 6.25: Turbulent vorticity contours for OHW with C = 0.1.
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Figure 6.26: Full vorticity contours for MHW with C = 1.
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Figure 6.27: Turbulent potential contours for MHW with C = 1.

To show that the zonal flow in the MHW model with C = 1 is indeed persistent,
we average the zonal flows over the saturated state and obtain Figure 6.28 for the
potential structure and Figure 6.29 for the density. We have also computed the root-
mean square deviation of the instantaneous profiles, the gray-shaded area shows
the deviation from the red line, which is the time-averaged profile. We see that
fluctuations for the potential structure are less than for density, still we may state
that the zonal flows are persistent at all times, since the averages not not vanish.
This is non-trivial, since one may suspect zonal flows to spontaneously arise, than be
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destroyed by dissipation and arise again some place else in the simulation domain,
possibly with reversed polarity. A check of instantaneous averages, not shown here,
revels that the zonal flows do emph change polarization. Thus, we find that once a
zonal flow is excited in the MHW with C = 1 model, it stays, on average, at a fixed
position, and it does not oscillate in strength about some value. The zonal flows,
especially for potential structures, are persistent.
We read off a wavelength of about 13 radial length units for the potential zonal flow,
which gives a wavenumber of q = 2π/13 ≈ 0.5. In our theoretical considerations
we have assumed q � k; since k ∼ 1 we find that this is not the case and we have
to admit that our theoretical predictions are not necessarily precise, but they give
a good indication of what we observe in our numerical experiments. On the other
hand, the assumption that zonal components vary on a much slower time-scale than
turbulent components is justified by the persistence of the zonal flows.

Radial and poloidal velocities at the center of the simulation
domain

Here we show a brief overview of the measured turbulent radial and poloidal velocity
measured at the center of the simulation domain.

〈ṽx〉rms 〈ṽy〉rms

OHW C = 0.1 1.92 1.75
MHW C = 0.1 1.67 1.54
OHW C = 1 1.54 1.43
MHW C = 1 0.18 0.24

Table 6.1: Radial and poloidal velocities at the domain center. OHW/MHW for C
= 0.1 and C =1.
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Figure 6.28: Time averaged zonal potential profile in MHW with C = 1.
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Figure 6.29: Time averaged zonal density profile in MHW with C = 1.
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6.2 Autocorrelation functions

Spatial and temporal autocorrelation functions (ACFs) for selected quantities are
shown in this section. We use time-series from the domain centered probe for tem-
poral ACFs. To determine the spatial correlations, we have considered fluctuating
field quantities along x = -10,0,10 and y = -10,0,10 in the simulation domain re-
spectively. Since the radial correlation length is about 5 length units, fluctuations
on those ”cuts” are uncorrelated and we are allowed to form averages over ACFs on
each line to improve statistics. The instantaneous spatial ACFs are averaged over
the saturated state in order to compare with the temporal correlations.

For the OHW we find for the temporal correlation of φ̃ that an increase in C leads to
a decrease in correlation time, whereas Ω̃ exhibits approximately unchanged tem-
poral correlation in OHW with respect to C. For the MHW both increase their
temporal correlation. For fixed C, the correlation time is longer for the MHW than
for the OHW, regardless whether φ̃ or Ω̃ is considered. This may be understood as
structures spending more time at the probe position, which in turn is related to a
lower velocity in both radial and poloidal direction in the MHW system compared
to the OHW model.
Increase in C leads to a decrease in radial and poloidal correlation for the OHW
system and the turbulent potential, whereas the radial and poloidal correlation is
approximately constant for the vorticity. The radial and poloidal rms velocities
are approximately unchanged with respect to C in the OHW system, hence, when
correlation time decreases, so should the correlation length. This is indeed the case
for the potential in the OHW case. The radial correlation length for the vorticity is
approximately unchanged since velocities and its temporal correlation are approx-
imately constant. The effect of the zonal flows in the MHW model is to elongate
turbulent structures in the poloidal direction, this is seen in an increased poloidal
correlation length for both potential and vorticity for C = 1. The radial correla-
tion is approximately unchanged as C increases in the MHW case. Zonal flows are
present for both C = 0.1 and C = 1 and as discussed earlier, the zonal flow induced
velocity is in the poloidal direction. Clearly the poloidal correlation length is larger
in the MHW than in the OHW system since zonal flows are absent there. Radial
correlation length are approximately the same in both systems for fixed C.
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Figure 6.30: Temporal autocorrelation function for φ̃ in OHW (dotted) and MHW
(broken line) for C = 0.1 and C = 1 .
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Figure 6.31: Temporal autocorrelation function for Ω̃ in OHW (dotted) and MHW
(broken line) for C = 0.1 and C = 1 .
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Figure 6.32: Radial autocorrelation function for φ̃ in OHW (triangles) and MHW
(circles) for C = 0.1 and C = 1 .
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Figure 6.33: Poloidal autocorrelation function for φ̃ in OHW (triangles) and MHW
(circles) for C = 0.1 and C = 1 .
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Figure 6.34: Radial autocorrelation function for Ω̃ in OHW (triangles) and MHW
(circles) for C = 0.1 and C = 1 .
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Figure 6.35: Poloidal autocorrelation function for Ω̃ in OHW (triangles) and MHW
(circles) for C = 0.1 and C = 1 .

6.3 Flux scaling

Figure 6.36 shows the integrated radial flux in the saturated state for different
adiabacity parameters. Note that the MHW & C = 5 run is only of illustrative
value here, the zonal flows are too present and zonal flow damping occurs over a
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too large time-span for the run to yield any significant statistics that can be used to
compare it to the corresponding runs in of the OHWmodel. Figure 6.37 summarizes
the essential physics in this work. There are two dependencies of the radial plasma
transport, suppression by zonal flows and adiabacity. For an interpretation we refer
to the Discussion chapter below.
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Figure 6.36: Radial flux from t = 5000 to t = 9000 for OHW and MHW.
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Figure 6.37: Adiabacity and model dependence of the mean radial flux.

6.4 Energy spectra

We present partial wave-number spectra, similarly to [4]. The energy-distribution
as a function of radial wave-number, kx, is given as

E(kx) =
∑
ky

1

2
k2⊥

∣∣∣φ̃k∣∣∣2 , (6.1)

and equivalently for the poloidal distribution

E(ky) =
∑
kx

1

2
k2⊥

∣∣∣φ̃k∣∣∣2 . (6.2)
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In order to compare with contour plots, we shall use both full and turbulent potential
in the expressions above.

100 101

kx

10-5

10-4

10-3

10-2

10-1

100

E
(k

x
)
=

� k
y

1 2
k
2

|�

k
|2

y � average for C=0.1 � full potential

ohw

mhw

Figure 6.38: Radial energy distribution for full potential and C = 0.1. OHW vs.
MHW.
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Figure 6.39: Poloidal energy distribution for full potential and C = 0.1. OHW vs.
MHW.
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Figure 6.40: Radial energy distribution for the full potential and C = 1. OHW vs.
MHW.
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Figure 6.41: Poloidal energy distribution for the full potential and C = 1. OHW
vs. MHW.
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Figure 6.42: Radial energy distribution for the turbulent potential and C = 0.1.
OHW vs. MHW.
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Figure 6.43: Poloidal energy distribution for the turbulent potential and C = 0.1.
OHW vs. MHW.
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Figure 6.44: Radial energy distribution for the turbulent potential and C = 1.
OHW vs. MHW.
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Figure 6.45: Poloidal energy distribution for the turbulent potential and C = 1.
OHW vs. MHW.

Figure 6.38 - 6.41 show no significant difference in energy distribution for C
= 0.1, whence the zonal flow is clearly distinguished for C = 1 in the MHW ra-
dial energy distribution. The peak is located at kx ≈ 0.4 which corresponds to
a wavelength of λx ≈ 16 and clearly confirms Figure 2.51 where a zonal flow of
approximately the same wavelength is present. In the poloidal direction, there is
less energy contained in the total field with zonal flows than in the OHW.
The turbulent energy distribution is almost identical for C = 0.1 in OHW and
MHW, whereas the radial energy contained in small radial structures is a little
higher in the zonal flows state compared to the OHW and the poloidal energy con-
tained in large poloidal structures is slightly higher in the MHW than in the OHW.
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This reflects the shearing of the turbulent potential by the emerging zonal flow.
Consistent with both contour plots and theory.

6.5 Hurst exponents

6.5.1 Rescaled - range analysis

Rescaled range plots are shown for selected quantities. We note that the fit over
the non-deterministic inertial range is in general not over a full decade in R/S, thus
we have to be careful when drawing statistically significant predictions. Yet, we
emphasize that this is due to the shortness of our time-series, which is the data we
have available and hence the best we can do. Table 6.2 shows that the parameters
lie approximately between 0.4 and 0.6 for turbulent quantities, except for the zonal
part of the potential, which is evident from the persistence of the potential zonal
structure (see Figure 6.28). Thus the probe ”sees” the potential structure over
significant time spans, and the associated signal is nearly deterministic. Note that
Table 6.2 is the first evidence of the absence of long-range correlations in the OHW
but also the zonal flow governed MHW system.
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Figure 6.46: Rescaled range for ñ, Γ̃, φ̃ and φ in OHW with C = 0.1.
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Figure 6.48: Rescaled range for ṽx and ṽy OHW and MHW with C = 0.1.
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Figure 6.49: Rescaled range for ṽx and ṽy OHW and MHW with C = 1.

The Hurst exponents shown in the plots above are summarized in the table
below. Hmodel

C stands for ”Hurst exponent in the inertial range for OHW/MHW
with adiabacity C”.

φ̃ ñ Γ̃ Ω̃ ṽx ṽy φ
HO

0.1 0.569 0.565 0.557 0.592 0.607 0.634 0.706
HO

1 0.551 0.571 0.583 0.538 0.563 0.573 0.723
HM

0.1 0.540 0.566 0.551 0.574 0.563 0.594 0.963
HM

1 0.439 0.441 0.537 0.523 0.448 0.550 0.954

Table 6.2: Summarized Hurst-exponents from the rescaled-range method.
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6.5.2 Structure functions and variogram

In this section we calculate the Hurst - exponent by means of the variogram and
also directly from the scaling-exponents of the structure functions.

The variogram is the second order structure function and its relation to the
Hurst-exponent in the similarity-range is given by

S2(τ) ∼ τ2H . (6.3)

In Figures 6.50 - 6.51 we have indicated the fit over the similarity range and
also labeled the corresponding Hurst-exponent for the ordinary Hasegawa Wakatani
model (HO

C ) and the modified model (HM
C ) where C is the coupling - parameter as

before. Note that all structure functions shown are normalized by its first lag value,
denoted by ∆.
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Figure 6.50: S2(τ) for φ̃ in OHW with C = 0.1 (circles), OHW with C = 1 (stars),
MHW with C = 0.1 (squares) and MHW with C = 1 (diamonds).

10-3 10-2 10-1 100 101 102 103
�

10-1

100

101

102

103

104

105

106

107

108

109

S
2
(�

)
/
S
2
(�

)
]

variograms for ñ
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Figure 6.51: S2(τ) for ñ in OHW with C = 0.1 (circles), OHW with C = 1 (stars),
MHW with C = 0.1 (squares) and MHW with C = 1 (diamonds).

The variogram method gives no significant improvement over the rescaled range
method since it is rather difficult to identify a proper inertial scaling range, as can be
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seen from the figures above; to be consistent we present computed Hurst exponents
over what comes closest to an inertial range in Table 6.4.

φ̃ ñ Γ̃ Ω̃
HO

0.1 0.597 0.575 0.634 0.574
HO

1 0.463 0.469 0.460 0.512
HM

0.1 0.571 0.587 0.541 0.607
HM

1 0.598 0.613 0.374 0.436

Table 6.3: Summarized Hurst-exponents from the variogram method.

φ ṽx ṽy
HO

0.1 0.730 0.646 0.588
HO

1 0.758 0.463 0.593
HM

0.1 0.977 0.549 0.587
HM

1 0.994 0.295 0.491

Table 6.4: Summarized Hurst-exponents from the variogram method continued.

The Hurst exponents shown here are to be taken with even more caution than
those obtained from the R/S analysis since the inertial range in the second order
structure function has wavy tendencies, which is bad. However, also by applying
this method we find no significant evidence of long-range correlations, since param-
eters scatter from 0.4 to 0.6 with the (obvious) exception of the zonal potential as
explained in the previous section.
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6.5.3 Structure - function inertial range scaling

In the following we obtain the scaling exponents for the structure functions directly
from the slope in the inertial range. Figure 6.52 includes two regions where we have
fitted the slopes, the deterministic range, where the Hurst parameter is 1, and the
self-similarity range (or inertial-range), where the Hurst parameter is lower than 1
but varying for the variables under consideration.
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Figure 6.52: Structure functions for the fluctuating potential in OHW with C = 1.
Increasing order from below q = 0.25 up to q = 5 in steps of 0.25.
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Figure 6.53: Hurst exponent inferred from the self-similarity range of Figure 6.52.
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Figure 6.54: Structure functions for the fluctuating potential in OHW with C = 1.
Increasing order from below q = 0.25 up to q = 5 in steps of 0.25.
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Figure 6.55: Hurst exponent inferred from the self-similarity range of Figure 6.54.
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H(ñ) =0.451

H(�̃) =0.474
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adiabatic state for MHW.

Figures 6.56 and 6.57 reproduce the tendency from the rescaled range analysis
that long-range correlations are absent in the OHW model. The presence of zonal
flows in the MHW model does not significantly alter this tendency. Similar results
to the above are obtained for C = 0.1 not shown here.

6.6 Probability distributions

The figures in this section show the computed histograms at the domain centered
probe. As expected, variables follow approximately a normal-distribution for the
ordinary model for both C = 0.1, C = 1 as well as for C = 0.1 in the modified
equations. In the modified model for C = 1 the fluctuations are not Gaussian.

Assuming that density and radial-velocity fluctuations are Gaussian and corre-
lated to some extend, we may compute the resulting probability distribution for the
flux, given as the product of those stochastic variables. As can be seen from Fig-
ures 6.61 and Figures 6.65, the flux is consistently modeled. We may normalize in
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a statistical sense by subtracting mean values and dividing by standard deviations,

V =
vx − 〈vx〉
σvx

N =
n− 〈n〉
σn

.

It can then be shown (f.ex. Carreras et. al. [22]) that the probability distribution
for the flux is given by

fΓ(Γ) =
1

π

√
1− γ2 exp(γΓ)K0(|Γ|), (6.4)

where K0 is the modified Bessel function of the second kind with base-number 0
and the cross-correlation between ñ and ṽx is quantified by

γ = 〈NV 〉.

It should be noted that the expression above, of course, changes when the variables
are not normalized.
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Figure 6.58: Fluctuating density PDF compared to normal distribution for OHW
with C = 1.
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Figure 6.60: Fluctuating potential PDF compared to normal distribution for OHW
with C = 1.
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Figure 6.62: Fluctuating density PDF compared to normal distribution for MHW
with C = 1.
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Figure 6.64: Fluctuating potential PDF compared to normal distribution for MHW
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Chapter 7

Discussion

Aspect ratio

In chapter 6 we found important constraints on the aspect ratio for the underlying
drift wave turbulence to self-consistently form zonal flows. The instability domain
for beating of drift waves to resonate and form zonal flows as well as the assumed
functional form of wave kinetic energy perturbations associated with a zonal flow is

1 + k2y − 3k2x > 0.

We also found that drift waves satisfying the above can grow unstable by means of
the modulational instability, as was shown by the reductive perturbation multi-scale
expansion method. Cf. Figure 3.4 for the aspect ratio dependence in the modified
Hasegawa Mima equation, which we recall to be the adiabatic limit of the modified
Hasegawa Wakatani model. We may compare with Figure 7.1 which gives the ratio
of radial to poloidal correlation length for the turbulent potential and vorticity in
the different cases. This gives an indication that our predictions point in the correct
direction - we see that turbulent structures in cases where zonal flows are allowed
and excited indeed tend to be tilted. Furthermore, Figure 6.9 reflects that the
turbulent velocities cease to be isotropic when zonal flows are present. This may
also be seen from contour plots of the turbulent fields.
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Figure 7.1: Ratio of radial to poloidal correlation length for turbulent potential and
vorticity.
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Flux scaling

As discussed earlier, the zonal flows that arise in the modified Hasegawa-Wakatani
eqs. act as a transport barrier by means of forming an energy reservoir for the kinetic
energy contained in the turbulent, fluctuating motions. As the zonal flows grow,
the drift-wave turbulence is suppressed. It is indeed the turbulent drift-waves that
transport plasma down the equilibrium background gradient, hence, as fluctuation
levels go down, so does the radial flux.
By the same reasoning we deduce the adibacity dependence of the radial flux. The
couplings-parameter, C, is inversely proportional to the electron resistivity along the
magnetic field lines and thus directly proportional to electron conductivity along
B. The electron conductivity along the field lines gives the density response to
potential fluctuations as shown in the section on resistive drift waves, which in turn
relates to the growth rate of the drift-wave instability. The more adiabatic the
(electron) density response is, the less pronounced is the turbulence, see Eq. (2.24).
Consequently, the (turbulent) transport levels down the equilibrium background
density gradient decrease as the systems adiabacity is increased. This is precisely
what we observe from Figure 6.37. From the energetics of the Hasegawa Wakatani
models we learned that only the turbulent flux can act as a sink term for the total
energy. Recalling what we just discussed and referring to Figure 6.7, we see that the
total energy, which is the sum of kinetic and zonal energy, shows the same sensitivity
to model and adiabacity, just as it should. The more adiabatic the system, the less
is the flux and consequently the less energy is brought into the system from regions
of higher plasma density, i.e., core regions. Also, zonal flows can be thought of as
transport barriers such as to suppress radial transport which again results in less
energy being transported into the system.

Gaussian fluctuations

The PDFs shown confirm that fluctuations in the hydrodynamic and quasi-adiabatic
OHW system are Gaussian. There are no zonal flows and the turbulence is isotropic,
such that there is no mechanism that should give deviation from a normal distribu-
tion. The theoretical model for the stochastic variable formed by multiplying the
turbulent density and radial velocity reproduces the numerical flux to good agree-
ment. In the quasi-adiabatic zonal flow case (MHW with C = 1), the turbulent
density appears more structured due to the shearing effect of the zonal flow on
the turbulent field, resulting in flattened PDFs for density and hence also for the
flux. The PDFs for the zonal flow case consist of heavy exponential tails which
is due to large bursts events. Comparing with MHW and C = 0.1, we find near
Gaussian fluctuations. This is readily understood from the contour plots, where
the density shows no zonal structure. The suppressing effect of the zonal flow on
the turbulent radial transport causes the PDF for the flux in this case to become
almost symmetric about zero with considerably lower probability of high amplitude
bursts, compared to the other cases. Note also that density and potential show
similar skewness and kurtosis in the quasi-adiabatic state in OHW, which is to be
expected since the correlation between them is significant.

Validity of analytic work

We have considered the adiabatic limit in the modified Hasegawa Wakatani equa-
tion, resulting in the modified Hasegawa Mima equation, to get analytical results
for drift wave dynamics. In order to interpret the obtained equations, we needed to
assume that drift wave turbulence occurs on much smaller spatial scales than zonal
flow dynamics, as well as longer time scales for zonal flows than for drift waves.
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The persistence of zonal structures as shown in Figure 6.28 is highly non-trivial,
since this actually corresponds to zero frequency modes. The correlation times for
turbulent quantities are of about 3 - 5 normalized time units, so this assumption is
justified by our numerical computations. Note that the deviation H = 1 in rescaled
range plots coincides roughly with this. From Figure 6.28 we also found the poten-
tial zonal flow wavenumber to be approximately one half. It is not obvious what
the turbulent wavelengths really are. Omni-directional wavenumber spectra show
a peak around k ∼ 1. We have chosen to only present the partial energy spectra
since omni-directional spectra due to our computation algorithm turn out to be
very bursty. If we take radial and poloidal correlation length to be a very rough

estimate for corresponding wavelengths, we find k ∼
√(

2π
7

)2
+
(
2π
4

)2 ≈ 1.8 for the
turbulent potential in the MHW and C = 1 state. Considering contour plots again,
we see that the actual wavelengths are longer, hence the above can be thought of
as an upper limit for the turbulent wavenumber. As mentioned earlier, k ∼ 1 is
the mode with largest growth rate in the HW system. In conclusion, we find that
q � k seems to be invalid and our theoretical discussions are (obviously) very ap-
proximative only. Note, however, even if the actual instability domains might differ
from what we predicted, obtaining the same instability region for different physical
phenomenon, i.e., modulation of drift wave envelope and modulation of wave ki-
netic energy coinciding with the region for zonal growth by parametric instability,
is indication of a physical connection between them. Indeed, zonal flow formation
is favorably thought of as being generated by edge localized drift-wave turbulence.
See also [5].

Absence of long - range correlations

Referring to the section on rescaled - range analysis, there seems to be no signif-
icant evidence of long - range correlations in neither OHW or MHW. The zonal
flows present in this work are persistent and only weakly damped, hence our re-
sult does not necessarily apply to changing zonal flow configurations which occur
when viscosity is increased. Structure function analysis reveals Hurst exponents
corresponding to fractional Gaussian noise in the absence of zonal flows, whereas
the in the case of zonal flow (MHW, C = 1) the Hurst parameter appears to be
increased. This is not necessarily an indication of long range correlations since the
PDFs clearly are not Gaussian in this case. The presence of power law tails in
PDFs can lead to an overestimated Hurst exponent in structure function analysis
compared to rescaled range considerations, which effectively removes the heavy tail
impact due to its ”ranging” algorithm. Note again that self-similarity ranges for
R/S and structure function analysis are too short to draw statistically significant
conclusions from our findings. It is essential to run simulations much longer to
clarify this issue.
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Chapter 8

Conclusion

In the adiabatic limit of the modified Hasegawa Wakatani equations, small-scale
electrostatic turbulence is adequately described by the modified Hasegawa Mima
equation. For this limit, we have shown how zonal generation from small-scale
electrostatic drift wave turbulence may occur from a parametric beating of reso-
nant drift waves. Drift wave envelope modulations, governed by the cubic non-
linear Schrödinger equation, are unstable in the same wavenumber regime as the
parametric zonal flow generation mechanism, suggesting a causality between those
phenomena. The instability domain is confirmed by considering perturbations to
the wave action density in the presence of zonal flows.

Numerical simulations show the emergence of persistent zonal structures in the
quasi-adiabatic modified Hasegawa Wakatani model, as predicted by theory. We
find that zonal flows increase poloidal correlation lengths for both turbulent po-
tential and vorticity. Temporal correlation of vorticity is increased by zonal flows
which is connected with zonal flows appearing persistent, hence corresponding to
zero frequency modes.
Partial energy spectra show no significant difference in the hydrodynamic limit,
whereas the radial energy distribution in the presence of zonal flows contains more
energy at small scale whence energy is distributed over larger poloidal scales.
Radial transport levels are suppressed by adiabacity and zonal structures acting as
transport barriers. Turbulence is reduced in the quasi-adiabatic MHW state with
zonal structures containing most of the energy. The zonal structures induce velocity
shears that causes anisotropy of the underlying turbulence.
Probability distribution functions are Gaussian in the absence of zonal flows which
induce exponential tails. The turbulent radial flux follows theoretical predictions
for whenever fluctuations are Gaussian. Turbulent density and potential are corre-
lated in the quasi-adiabatic state.

Rescaled range analysis gives Hurst exponents between 0.4 and 0.6, yielding no
indication of long range correlations. Structure function analysis confirms the find-
ings where fluctuations follow Gaussian PDFs, whereas Hurst exponents are in-
creased for the quasi-adiabatic MHW case. This is not necessarily an indication of
long-range correlations since heavy exponential tails in PDFs tend to increase the
self-similarity exponent found from structure functions compared to the rescaled
range analysis. Longer time-series are needed to confirm the statistical significance
of our findings since inertial-ranges span less than one decade in both rescaled range
and structure function analysis.
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Chapter 9

Outlook

The apparent absence of long-range correlations in both the ordinary and modified
Hasegawa - Wakatani equations should be confirmed by extending self-similarity
ranges in R/S and structure function analysis by means of significantly longer time
series to at least three decades.

Runs for C = 5 and C = 10 show that zonal-flows are persistent over long time
intervals, thus essentially suppressing turbulence. Longer time-series are needed to
obtain turbulence statistics in the adiabatic regime, and also to investigate whether
zonal-flows arise quasi-periodically. We have seen one event of rapid zonal-flow
destruction for C = 5 which could be associated with a Kevin-Helmholtz type in-
stability. This should be investigated in depth by viscosity scans in the adiabatic
regime to make sure that this is indeed not associated with the systems viscosity.
If statistics are to be carried out on this type of events, we again point out the need
for much longer time-series, hoping to reproduce several of such events.

The influence of boundary conditions on the unphysical mode kx = 0 should be
investigated. Note that it is an inherent property of the Hasegawa - Wakatani
equations that this mode is associated with the largest growth rate. Clearly no
such mode can exist in Tokamak plasmas where density gradients in the edge are
present.

100





Chapter 10

Appendix A

In this section we show some of the more cumbersome derivations used in the text.
This is in order to guarantee a more fluent reading without too many technical
interruptions.

10.1 Eq. (3.17)

The first equality on the LHS may be derived upon introducing

Ω̃ =
∂2φ̃

∂x2
+
∂2φ̃

∂y2
,

and

Ω =
∂2φ

∂x2
.

We then have

(Ω∂yφ)0 =

∫
dy
(
Ω̃∂yφ̃

)
+

∫
dy
(
Ω∂yφ̃

)
=
(
Ω̃∂yφ̃

)
0
,

and the first equality follows.
To arrive at the second equality we first note that
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due to the periodicity of ∂φ̃/∂x and ∂φ̃/∂y .
Trivially we also have

(
Ω̃∂yφ̃

)
=

∂

∂x

(
∂φ̃

∂x

∂φ̃

∂y

)
.

The x and y components of the fluctuating electric drift are readily computed,

ṽx = ẑ×∇φ̃ · x̂ = −∂yφ̃x̂

ṽy = ẑ×∇φ̃ · ŷ = ∂xφ̃ŷ,

and we find

(Ω∂yφ) = − ∂

∂x
(ṽxṽy) .

Rewriting the middle term of Eq. (3.17) and computing shows that∫
dx φ

(
Ω̃∂yφ̃

)
= −

∫
dx φ

∂

∂x

(
∂φ̃

∂x

∂φ̃

∂y

)

=

∫
dx

∂φ

∂x

∂

∂x

(
∂φ̃

∂x

∂φ̃

∂y

)
−
∫
dx

∂

∂x

(
φ
∂φ̃

∂x

∂φ̃

∂y

)

=

∫
dx

∂φ

∂x

∂

∂x

(
∂φ̃

∂x

∂φ̃

∂y

)
+

∫
dy

(
φ
∂φ̃

∂y

∂φ̃

∂x

)
|bdx

= −
∫
dx v0

∂

∂x
(ṽxṽy) ,

which is what we wanted to show. Q.E.D.
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Chapter 11

Appendix B

In the following we shall derive the dispersion relation given by [11] in a detailed
fashion. Consider again the nonlinear, cubic, Schrödinger equation

i
∂A

∂t
+ P

∂2A

∂x2
+Q |A|2A = 0. (11.1)

Let us seek a solution on the form

A0 = a0e
iωt,

where a0 is a complex constant. Inserting into the equation we find

ω = |a0|2Q.

The NLS can be linearized upon assuming a small perturbation to the solution on
the form

A = [a0 + ε(x, t)]ei|a0|2Qt,

where |ε/a0| � 1.
Plugging into the equation and carefully evaluating the nonlinear term we have

i
∂ε

∂t
−a0 |a0|2Q−ε |a0|2Q+P

∂2ε

∂x2
+Q |a0|2 a0+Qa20(2ε+ε∗)+Q(2a0 |ε|2+a∗0ε2+ε |ε|

2
) = 0.

Now, there is no loss in generality if we assume a0 to be real (neglecting the phase
information). Doing so and discarding terms proportional to ε2 we find

i
∂ε

∂t
+ P

∂2ε

∂x2
+Qa20(ε+ ε∗) = 0.

A general, wave - like, perturbation is expressed as

ε = a1e
ikx−iΩt + a2e

−ikx+iΩt,

where a1 and a2 are again taken to be real without loss of generality and k and Ω
are the wavenumber and frequency of the perturbation. Inserting for ε in Eq. (11)
and collecting terms we arrive at

eikx−iΩt
(
Ωa1 − Pk2a1 +Qa20a1 +Qa20a2

)
+ e−ikx+iΩt

(
−Ωa2 − Pk2a2 +Qa20a2 +Qa20a1

)
= 0.

This equation is supposed to hold for all k and all Ω, thus the terms proportional
to the exponentials must vanish and we have the equivalent matrix equation
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(
Ω− Pk2 +Qa20 Qa20

Qa20 −Ω− Pk2 +Qa20

)(
a1
a2

)
=

(
0
0

)
.

For the solutions to be nontrivial we require the 2× 2 matrix to be singular which
is the case when its determinant vanishes. We therefore have

−Ω2 − 2Pk2Qa20 + (Pk2)2 = 0,

which gives the dispersion relation that we use in the text

Ω2 = P 2k4 − 2PQk2a20 = P 2k4 − 2PQk2 |A0|2 . (11.2)
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Chapter 12

Appendix C

In this section we present the detailed calculations leading to the results shown in
the section Modulational instability. Consider again Eq. (3.51) ,

(∂t + κ∂y)φ̃+ ∂xφ∂yφ̃− (∂t + ∂xφ∂y − ∂yφ∂x)(∂
2
x + ∂2y)φ = 0. (12.1)

We use the expansion to fourth order,

φ = ε(φ̃1 + φ1) + ε2(φ̃2 + φ2) + ε3(φ̃3 + φ3) + ε4(φ̃4 + φ4),

where we have taken the expansion of φ to start at order ε. As is shown in Appendix
B, including φ0 only adds a Doppler shift to the observed frequency in addition to
complicating the calculations. The differential operators to fourth order ε are

∂σ = ∂σ0 + ε∂σ1 + ε2∂σ2 + ε3∂σ3 + ε4∂σ4

∂2σ = ∂σ∂σ = ∂2σ0
+ 2ε∂2σ0σ1

+ ε2(2∂2σ0σ2
+ ∂2σ1

)

+ ε3(2∂2σ0σ3
+ 2∂2σ1σ2

) + ε4(2∂2σ0σ4
+ 2∂2σ1σ3

+ ∂2σ2
),

where σ = x, y, t . We now proceed to evaluate Eq. (12.1) term by term.

(∂t + κ∂y)φ̃ = [∂t0 + ε∂t1 + ε2∂t2 + ε3∂t3 + ε4∂t4 + κ(∂y0 + ε∂y1 + ε2∂y2 + ε3∂y3 + ε4∂y4)]

[εφ̃1 + ε2φ̃2 + ε3φ̃3 + ε4φ̃4]

= ε[(∂t0 + κ∂y0)φ̃1]

+ ε2[(∂t0 + κ∂y0)φ̃2 + (∂t1 + κ∂y1)φ̃1]

+ ε3[(∂t0 + κ∂y0)φ̃3 + (∂t1 + κ∂y1)φ̃2 + (∂t2 + κ∂y2)φ̃1]

+ ε4[(∂t0 + κ∂y0)φ̃4 + (∂t1 + κ∂y1)φ̃3 + (∂t2 + κ∂y2)φ̃2

+ (∂t3 + κ∂y3)φ̃1].

∂xφ∂yφ̃ = (∂x0 + ε∂x1 + ε2∂x2 + ε3∂x3 + ε4∂x4)(εφ1 + ε2φ2 + ε3 + φ3 + ε4 + φ4)

(∂y0 + ε∂y1 + ε2∂y2 + ε3∂y3 + ε4∂y4)(εφ̃1 + ε2φ̃2 + ε3 + φ̃3 + ε4 + φ̃4)

= ε2(∂x0φ1∂y0 φ̃1) + ε3[∂x0φ1(∂y0 φ̃2 + ∂y1 φ̃1) + ∂y0 φ̃1(∂x0φ2 + ∂x1φ1)]

+ ε4[∂x0φ1(∂y0 φ̃3 + ∂y1 φ̃2 + ∂y2 φ̃2) + ∂x0φ2(∂y0 φ̃2 + ∂y1 φ̃1)

+ ∂x1φ1(∂y0 φ̃2 + ∂y1 φ̃1) + ∂y0 φ̃1(∂x0φ3 + ∂x1φ2 + ∂x2φ1)].
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We continue by calculating ∂2xφ , ∂t∂
2
xφ and ∂xφ∂y∂

2
xφ. The other terms are then

easily found by changing indices to y where necessary, due to the symmetry of the
equation.

∂2xφ = [∂2x0
+ 2ε∂2x0x1

+ ε2(2∂2x0x2
+ ∂2x1

) + ε3(2∂2x0x3
+ 2∂2x1x2

) + ε4(2∂2x0x4
+ 2∂2x1x3

+ ∂2x2
)]

[ε(φ̃1 + φ1) + ε2(φ̃2 + φ2) + ε3(φ̃3 + φ3) + ε4(φ̃4 + φ4)]

= ε[∂2x0
(φ̃1 + φ1)] + ε2[∂2x0

(φ̃2 + φ2) + 2∂2x0x1
(φ̃1 + φ1)]

+ ε3[∂2x0
(φ̃3 + φ3) + 2∂2x0x1

(φ̃2 + φ2) + 2∂2x0x2
(φ̃1 + φ1) + ∂2x1

(φ̃1 + φ1)]

+ ε4[∂2x0
(φ̃4 + φ4) + 2∂2x0x1

(φ̃3 + φ3) + 2∂2x0x2
(φ̃2 + φ2) + ∂2x1

(φ̃2 + φ2)

+ 2∂2x0x3
(φ̃1 + φ1) + 2∂2x1x2

(φ̃1 + φ1)].

∂t∂
2
xφ = (∂t0 + ε∂t1 + ε2∂t2 + ε3∂t3 + ε4∂t4)∂

2
xφ

= ε[∂t0∂
2
x0
(φ̃1 + φ1)] + ε2[∂t0∂

2
x0
(φ̃2 + φ2) + ∂t02∂

2
x0x1

(φ̃1 + φ1) + ∂t1∂
2
x0
(φ̃1 + φ1)]

+ ε3[∂t0∂
2
x0
(φ̃3 + φ3) + ∂t02∂

2
x0x1

(φ̃2 + φ2) + ∂t02∂
2
x0x2

(φ̃1 + φ1) + ∂t0∂
2
x1
(φ̃1 + φ1)

+ ∂t1∂
2
x1
(φ̃2 + φ2) + ∂t12∂

2
x0x1

(φ̃1 + φ1) + ∂t2∂
2
x1
(φ̃1 + φ1)]

+ ε4[∂t0∂
2
x0
(φ̃4 + φ4) + ∂t02∂

2
x0x1

(φ̃3 + φ3) + ∂t02∂
2
x0x2

(φ̃2 + φ2) + ∂t02∂
2
x1
(φ̃2 + φ2)

+ ∂t02∂
2
x0x3

(φ̃1 + φ1) + ∂t02∂
2
x1x2

(φ̃1 + φ1) + ∂t1∂
2
x0
(φ̃3 + φ3) + ∂t12∂

2
x0x1

(φ̃2 + φ2)

+ ∂t12∂
2
x0x2

(φ̃1 + φ1) + ∂t1∂
2
x1
(φ̃1 + φ1) + ∂t2∂

2
x0
(φ̃2 + φ2)

+ ∂t22∂
2
x0x1

(φ̃1 + φ1) + ∂t3∂
2
x0
(φ̃1 + φ1)].

∂xφ∂y = (∂x0 + ε∂x1 + ε2∂x2 + ε3∂x3 + ε4∂x4)[ε(φ̃1 + φ1) + ε2(φ̃2 + φ2) + ε3(φ̃3 + φ3) + ε4(φ̃4 + φ4)]

(∂y0 + ε∂y1 + ε2∂y2 + ε3∂y3 + ε4∂y4)

= ε[∂x0(φ̃1 + φ1)∂y0 ] + ε2[∂x0(φ̃1 + φ1)∂y1 + ∂x0(φ̃2 + φ2)∂y0 + ∂x1(φ̃1 + φ1)∂y0 ]

+ ε3[∂x0(φ̃1 + φ1)∂y2 + ∂x0(φ̃2 + φ2)∂y1 + ∂x1(φ̃1 + φ1)∂y1 + ∂x0(φ̃3 + φ3)∂y0

+ ∂x1(φ̃2 + φ2)∂y0 + ∂x2(φ̃1 + φ1)∂y0 ]

+ ε4[∂x0(φ̃1 + φ1)∂y3 + ∂x0(φ̃2 + φ2)∂y2 + ∂x1(φ̃1 + φ1)∂y2 + ∂x0(φ̃3 + φ3)∂y1

+ ∂x1(φ̃2 + φ2)∂y1 + ∂x2(φ̃1 + φ1)∂y1 + ∂x0(φ̃4 + φ4)∂y0 + ∂x1(φ̃3 + φ3)∂y0 + ∂x2(φ̃2 + φ2)∂y0

+ ∂x3(φ̃1 + φ1)∂y0 ].

∂xφ∂y∂
2
xφ = ε2[∂x0(φ̃1 + φ1)∂y0∂

2
x0
(φ̃1 + φ1)]

= ε3[+2∂x0(φ̃1 + φ1)∂y0∂
2
x0x1

(φ̃1 + φ1) + ∂x0(φ̃1 + φ1)∂y1∂
2
x0
(φ̃1 + φ1)

+ ∂x0(φ̃2 + φ2)∂y0∂
2
x0
(φ̃1 + φ1) + ∂x1(φ̃1 + φ1)∂y0∂

2
x0
(φ̃1 + φ1)]

+ ε4{∂x0(φ̃1 + φ1)∂y0 [∂
2
x0
(φ̃3 + φ3) + 2∂2x0x1

(φ̃2 + φ2) + 2∂2x0x2
(φ̃1 + φ1)

+ ∂2x1
(φ̃1 + φ1)] + ∂x0(φ̃1 + φ1)∂y1 [∂

2
x0
(φ̃2 + φ2) + 2∂2x0x1

(φ̃1 + φ1)]

+ ∂x0(φ̃2 + φ2)∂y0 [∂
2
x0
(φ̃2 + φ2) + 2∂2x0x1

(φ̃1 + φ1)]

+ ∂x1(φ̃1 + φ1)∂y0 [∂
2
x0
(φ̃2 + φ2) + 2∂2x0x1

(φ̃1 + φ1)]

+ ∂x0(φ̃1 + φ1)∂y2∂
2
x0
(φ̃1 + φ1) + ∂x0(φ̃2 + φ2)∂y1∂

2
x0
(φ̃1 + φ1)

+ ∂x1(φ̃1 + φ1)∂y1∂
2
x0
(φ̃1 + φ1) + ∂x0(φ̃3 + φ3)∂y0∂

2
x0
(φ̃1 + φ1)

+ ∂x1(φ̃2 + φ2)∂y0∂
2
x0
(φ̃1 + φ1) + ∂x2(φ̃1 + φ1)∂y0∂

2
x0
(φ̃1 + φ1)}.
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To first order in ε we read off

∂t0(φ̃1 + φ1) + κ∂y0(φ̃1 + φ1)− [∂2x0
+ ∂2y0

]∂t0(φ̃1 + φ1) = 0,

which is precisely Eq. (3.53) since φ1 does not depend on any yi coordinate, fur-
theremore we assume that the zonal components vary on spatial scales at least one
order in ε larger than fluctuating components, ∂x0φ1/∂x0 φ̃1 � 1, and also on a

slower time scale, ∂t0φ1/∂t0 φ̃1 � 1 .
We find to second order in ε[
1−

(
∂2x0

+ ∂2y0

)]
∂t0

(
φ̃2 + φ2

)
+ κ∂y0

(
φ̃2 + φ2

)
+
[
1−

(
∂2x0

+ ∂2y0

)]
∂t1

(
φ̃1 + φ1

)
+ κ∂y1

(
φ̃1 + φ1

)
− 2

(
∂2x0x1

+ ∂2y0y1

)
(φ̃1 + φ1)

−
[
∂x0(φ̃1 + φ1)∂y0

(
∂2x0

+ ∂2y0

)
(φ̃1 + φ1)− ∂y0(φ̃1 + φ1)∂x0

(
∂2x0

+ ∂2y0

)
(φ̃1 + φ1)

]
= 0.

Again assuming that the characteristic time- and spatial scales of the zonal flow
are at least one order in ε larger than the corresponding scales for the fluctuating
motions, we arrive at Eq. (3.56) when inserting the assumed wave-form of φ̃1 given
by Eq. (3.54). Equations at third- and fourth order in ε are readily read-off from the
above and the discussion in section Modulational Instability is already sufficiently
explanatory at those orders.

As indicated previously, taking the whole expansion of the potential down to
order ε0 gives f.ex. at order zero

(∂t0 + κ∂y0)φ̃0 + ∂x0φ0∂y0 φ̃0 − ∂t0(∂
2
x0

+ ∂2y0
)(φ̃0 + φ0)− ∂x0(φ̃0 + φ0)∂y0(∂

2
x0

+ ∂2y0
)(φ̃0 + φ0)

+ ∂y0(φ̃0 + φ0)∂x0(∂
2
x0

+ ∂2y0
)(φ̃0 + φ0) = 0,

which upon assuming φ̃0 of the form

φ̃0 ∼ A(x1, x2, ..., y1, y2, ..., t1, t2, ...) exp
ikxx0+ikyy0−iωt0 +c.c,

results in the promised

ω =
κky

1 + k2
+ ky∂x0φ0 =

κky
1 + k2

+ kyvx, (12.2)

where the zonal flow velocity is given by vx = ∂x0φ0 and the last term on the RHS
above is the zonal flow induced Doppler shift.
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