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1 Introduction

Chapter 1

1 Introduction

1.1 Short word about the history of Superconductor

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes and it fast became one
of the most important phenomena in modern physics. When Onnes cooled mercury to the tem-
perature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It
was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically
attainable to witness the phenomenon of superconductivity. Later, in 1913, he won a Nobel Prize
in physics for his research in this area. Superconductors are materials that can transport electrical
current without resistance and loss of energy.

In addition to being able to conduct electrical current without resistance, superconductors al-
so have an extraordinary magnetic property. As a general rule, superconductor will repel the
magnetic field. However, in many cases the magnetic field can nevertheless penetrate the super-
conductor only in the form of minute quantized lines [35]. These lines easily become pinned inside
the material.

All these facts make superconductor very promising materials for application in science, in in-
dustry, in medicine, etc. However, there is a serious lack to these materials- the superconductors
exist only at very low temperature. The first discovered superconducting materials had the tran-
sition temperature not higher than 20 K and BCS theory forbade the existence of superconductor
with critical temperature of more than 30 K. But in 1986, high temperature superconductor(HTCS
which has a critical temperature more than what BSC predicted)LaBaCuO was discovered by Bed-
norz and Muller [12].

This discovery was followed by a long range of new superconducting materials with high criti-
cal temperature. Even if the structure of HTCS is not easy to produce, it made them not well
suited for industry; they are brittle(hard to make cable) and have poor critical density jc at 77
K.In my thesis i work with the superconductor called magnesium diboride MgB2(with critical
temperature Tc ≈ 39K. It has unique properties and it is very easy to produce and to use in
commercial applications [9].

1.2 Motivation for this thesis
This thesis is a theoretical investigation problem about the thermomagnetic instability in su-

perconductor and its suppression by deposing a metallic layer. It is known from the first papers on
thermomagnetic instability that the flux jumps in superconducting sample could be cured by the
superconductors being thermally stabilized after having been coated with metal[2],[3] and [48]. It
was strongly suggested that the thermal conductor/contact greatly suppresses the vortex avalan-
ches.
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1.3 General description of thermomagnetic instability

Recently, experiments [5] and [49] showed that one observes the suppression of avalanches even if
the deposited metal is not in contact with superconductor. This means that the origin of stability
in superconductor coated with metal is not fully due to thermal contact. Several experiment pa-
pers [5], [7] suggested that the phenomenon is electrodynamic braking origin. My work is focused
on this effect. The meaning is to apply the old theory about the thermo-magnetic instability to a
new model for electrodynamic braking for investigating the suppression of avalanches with metal.
In others words, it is already known from experiment that it works, but the goal of thesis is to
prove that it works theoretically.

Phenomena has recently attracted much attention, not only for his importance in commercial
applications, in many scientific fields. For example, it was suggested that the thermomagnetic insta-
bility in superconducting cable could be responsible for the magnet quench incident at LHC(Large
Hadron Collider). CERN released a preliminary analysis of the incident on October 2008 and a
more detailed one on 5 December 2008. Both analyses confirmed that the incident was indeed
initiated by a faulty electrical connection [35]. My thesis can be usefully in such analysis since it
is a study of thermomagnetic instability in superconducting bulk than in thin films.

1.3 General description of thermomagnetic instability
An applied magnetic field penetrates a superconductor in the mixed-state (also known as the

vortex state), where the vortices are quantized. This quantized flux is called Abrikosov vortices.
The supercurrent circulates around the normal(i.e. non-superconducting) core of the vortex. As the
applied field increases, the density of vortices also increases and the cores begin to overlap, which
in turn make the vortex-vortex nearest-neighbor distance smaller than the penetration depth. At
high density the internal field becomes very large and the variation of the field in the space betwe-
en the cores becomes very small. When the penetration depth is much larger than the coherence
length (see definition in subsection 1.5.2, Eq.10), as is usually the case with the high-temperature
superconductors, there is considerable overlap of vortices throughout most of the mixed-state ran-
ge, and the magnetic flux is present mainly in the surrounding region, rather than in the actual
cores. The presence of the applied field at the surface of the superconductor induces vortices to
form right inside the surface. An increase in the applied field causes more vortices to enter and
move inward by diffusion and by virtue of mutual repulsion due to thermomagnetic instability.
Some vortices become pinned during migration.

Concerning the flux motion that takes place at superconductor type-II (which contains vortices
state), there are two kind of them, called ”flux creep ” and ” flux flow”. For low currents the
vortices hop from one pinning center to another and this motion is thermally activated,this is the
flow creep. If the pinning instead is weak in comparison to the Lorentz force, vortices move with
a steady viscous motion, in which the driving force is balanced by a friction force. This regime
is called flux flow. For weak pinning the vortex lattice reacts elastically to an applied force, such
as Lorentz force from a transport current. For strong pinning, non-trapped vortices move past
trapped vortices and flux flows along channels between regions of trapped flux. This later involves
groups of vortices moving cooperatively as a unit, and form flux bundles. Energy barriers can
hinder flux creep which involves thermally activated jumps of flux bundles. The flux jump that we
observe in superconductors is the instability that drives the system from flux creep to flux flow.
This flux jumping is commonly observed at low temperatures in type-II superconductors with
strong pinning.

It is difficult to be able to see how magnetic lines penetrate bulk superconducting sample and
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1.3 General description of thermomagnetic instability

become pinned inside. But the superconductivity research group in Oslo developed a magneto-
optical imaging technique with which it is possible to directly see these lines as they penetrate thin
films and become pinned inside. Here are these flux patterns in dendritic structure due to ther-
momagnetic instability. As consequence, the pinning force will be reduced and make it easier for
more vortices to move into the sample and these flux avalanches is visualized with magneto-optical
imaging (see Fig 1).

Figur 1: Dendritic flux structures seen on the image where they abruptly penetrate the film in re-
sponse to slowly increasing applied field. Bright green color corresponds to magnetic field penetrated
into body of superconductor. The dendrites were formed at applied field 17 mT and temperature
9.9 K. Pictures are taken from the internet site of Superconductivity Laboratory at the University
Oslo (http://WWW.fys.uio.no/super/)
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1.4 Materials parameters

If we manage to control the way in which dendritic patterns are distributed and pinned inside
the superconductor, this will be the key to improve the electromagnetic properties of the mate-
rial. For example, we shall be able to locate directly the weak and good parts, the pinning and
non-pinning parts of the superconductor. This instability can be the reason for magnetic noises;
they reduce the effective critical current density and they can even lead to total malfunction of
superconducting device [34]. One possibility to reduce and suppress this instability is to coat the
superconducting sample with a metallic layer. The MOI (magneto-optical imaging)clearly showed
that the deposition of metallic gold on top of improved its thermal stability and suppressed the
sudden appearance of dendritic flux avalanches [see Fig 2].

There are two fundamental supports that explain the reason for thermomagnetic instability in
superconductors:

(i) The motion of magnetic flux releases energy, thereby increasing the local temperature;

(ii) The temperature rising decreases flux pinning, thereby facilitating the flux motion.

Based on the qualitative explanation given above, , we can see that there are several parame-
ters which play an important role in thermomagnetic instability, including critical current density,
thermal conductivity, electric conductivity, heat capacity, and critical temperature. Let take briefly
a closer look at these thermal properties because they are useful for the later analysis.

1.4 Materials parameters
The application of a sufficiently strong magnetic field to a superconductor causes its resistance

to return to the normal state value, and when the total current density reaches a certain value, nor-
mally the critical current density , the superconductor starts returning to ohmic state and its resis-
tivity increases drastically. The critical current density is temperature dependent jc = jc0(1− T

Tc
) .

The specific heat has traditionally been regarded as a physical property of superconductor that
scales with the size of physical system in the development of theory of superconductivity. The
phonon contribution to specific heat capacity is important when the temperature T is away from
critical temperature Tc. In the present study, we are looking at the penetration of B-field in super-
conducting sample. Assuming the thermomagnetic instability that takes place in the process,the
phonon contribution can be neglected since the process is under Tc. Also, in this thesis the heat
capacity is Cs ' Cs(Tc)( TTc

)3.

We know from thermodynamics that the thermal conduction involves the transport of entro-
py. For superconductivity state, the entropy goes continuously to zero. The explanation for this is
that the superconducting electrons don’t carry entropy. The onset of superconductivity can have
the effect of first increases the conductivity until it reaches a maximum, beyond which it decrea-
ses lower temperature. Also, the thermal conductivity is consequence of the energy gap led from
electron-lattice-electron interaction(see more about BCS mechanism in [38]).Thermal conductivity
is proportional to heat capacity and in this thesis is κ ' κ(Tc)( TTc

)3.
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1.4 Materials parameters

Figur 2: Magneto optical (MO) images of flux penetrations into the virgin states of MgB2 thin
films at 3.8 K for gold thickness of (a) 0, (b) 0.2, (c) 0.9, and (d) 2.55Âµm. The images were
taken at an applied field of 34mT . Pictures are taken from the internet site Eun-,I CChoi.
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1.5 Ginzburg- Landau Theory

1.5 Ginzburg- Landau Theory

1.5.1 Ginzburg-Landau equation

Ginzburg-Landau theory is a mathematical theory used to describe superconductivity. Initially,
it was proposed by Landau as a phenomenological model which could describe type-I superconduc-
tor without examining their microscopic properties. Ginzburg was very impressed by this Landau’s
work on phase transitions and had been thinking about how to apply it to the phase transitions
inside superconductors.

Based on Landau’s established theory of second-order phase transitions, both Landau and Ginz-
burg suggested that the free energy , for a superconductor near the superconducting transition can
be expressed in terms of a complex order parameter field Ψ , which magnitude describes how deep
in superconducting phase the system is. For a complex order parameter the Landau expansion of
the free energy for small|Ψ| would be

F =
∫

[α(T )|Ψ|2+1
2β|Ψ|

4+γ(T )|5Ψ|2]d3x (1)

For a charged superfluid we must add the coupling to the vector potential and also the magnetic
energy, so that the full expression for a pair-superconductor can be written as:

F =
∫

[α(T )|Ψ|2+1
2β|Ψ|

4+γ(T )|(∇+ 2ie
}c

~A)Ψ|2+ B2

8πµ0
]d3x (2)

Near the transition temperature, we can write α(>) ≈ α(>−>c), β(>) ≈ β. ,and take α, βandγ to
be independent of temperature >.The free energy F must be minimized with respect to variation
of Ψ and ~A:

δF

δA
= 0 = −2eγ

}c
i[Ψ∗(∇+ 2ie

}c
~A)Ψ−Ψ(∇− 2ie

}c
~A)Ψ∗] + 1

4π∇× (5× ~A) (3)

or 5× B̃ = ( 4π
c
~j), with j = − 4e

} γ|Ψ|2(∇φ− 2e
}c
~A).

Minimizing with respect to it gives Ginzburg-Landau equation ,

α|Ψ|2+β

2 |Ψ|
2Ψ + 1

2m (−i}∇− 2e ~A)2Ψ = 0 (4)

~j = 2e
m
ReΨ∗(−i}∇− 2e ~A)Ψ (5)

where ~j denotes the dissipation-less electrical current density.

The first equation determines the order parameter Ψ, based on the applied magnetic field. The
second equation then provides the superconducting current. Assuming the smallness of|Ψ| and the
smallness of its gradients, the free energy has the form of a field theory such that in (2)and(3) can
be written in the simple concise form:

F = Fn + α|Ψ|2+β

2 |Ψ|
4+ 1

2m |(−i}∇− 2e ~A)Ψ|2+
~β2

2µ0
(6)
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1.5 Ginzburg- Landau Theory

where Fn is the free energy in the normal phase,α and β in the initial argument were treated
as phenomenological parameters,m is the effective mass,e is the elementary charge(±2e), ~Ais the
magnetic vector potential, and ~B = ~5× ~A is the magnetic field. The physical interpretation here

Figur 3: difference between Helmholtz free energy density in the superconducting(α < 0 or T < Tc
) and normal (α > 0 or T > Tc) state, depending on the order parameter in the Ginzburg-Landau
theory.

is explained in a simple way, see in article [18]. Consider a homogeneous superconductor where
there is no superconducting current. The equation forΨ simplifies to:

α|Ψ|2+β

2 |Ψ|
2Ψ = 0 (7)

This equation has a trivial solution:Ψ = 0. This corresponds to the normal state of the supercon-
ductor, that is for temperatureT beyond the superconducting transition temperature,Tc. Below
the superconducting transition temperature, the above equation is expected to have a non-trivial
solution (whenΨ 6= 0 ). Under this assumption the equation above can be rearranged into:

|Ψ|2= −α
β

(8)

Bear in mind that the magnitude of a complex number can be either positive or zero. This
means that there is non-zero solution forΨ when the right-hand side of the equation (7)is positive.

This can be achieved by assuming the following temperature dependence of α, α(T ) = α0(T −Tc)
with α0

β :
* Above the superconducting transition temperature, T > Tc , the expression α(T )

β is positi-
ve and the right-hand side of the equation (7) is negative. We early said that the magnitude of
a complex number must be a non-negative number, so onlyΨ solves the Ginzburg-Landau equation.

* Below the superconducting transition temperature, , the right-hand side of the equation(7)
is positive and there is a non-trivial solution for Ψ. When approaches zero as gets closer to from
below, we get

|Ψ|2= −α0(T − Tc)
β

(9)
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1.5 Ginzburg- Landau Theory

1.5.2 Coherence length and London penetration depth

Ginzburg-Landau equations predicted the existence of two characteristic lengths in a supercon-
ductor. These are the London penetration depth and the coherence length. The London penetration
depth λL is a fundamental length that characterizes a superconductor and is given by

λ =
√

m

4µ0e2Ψ2
0

(10)

Where Ψ0 is the equilibrium value of the order parameter in the absence of an electromagnetic
field.

The penetration depth sets the exponential law according to which an external magnetic field
decays inside the superconductor. Ginzburg-Landau therory predicted this new length ξ.The cohe-
rence length is a measure of the distance within which the superconducting electron concentration
cannot change drastically in a spatially-varying magnetic field. The coherence length, ξ , is given by

ξ =

√
}2

2m|α| (11)

It sets the exponential law according to which small perturbations of density for superconduc-
ting electrons recover their equilibrium value Ψ0.

The ratio κ = λL

ξ is known as the Ginzburg-Landau parameter. Although λL and ξ depend
strongly on temperature,but they mainly cancel out in the ratio, and κ is roughly temperature
independent. This parameter κ determines the nature of the behaviour in a magnetic field since λ
and ξ come from quite different physics,κ varies from small to large values in different materials.
It has been shown that the domain-wall surface energy of the superconductor was positive for
κ < 1√

2 and negative for κ > 1√
2 .

1.5.3 Superconductor type I and type II

There is not just one criterion to classify superconductors, but they are divided into two most
common types:

1. Type I: if Ginzburg-Landau parameter κ < 1√
2 ,it means they have a single critical field, above

which all superconductivities are lost. Type I completely satisfies the Meissner effect, which can
be defined as the spontaneous expulsion of the internal magnetic field during transition into su-
perconductivity.

2. Type II: If Ginzburg-Landau parameter κ > 1√
2 , it means they have two critical fields, between

which they partial allow penetration of the magnetic field. Type II does not completely satisfy
Meissner effect and the vortex state is found between these two critical fields.

The result of the thesis considered type II superconducting specimen since thermo-magnetic in-
stability can only take place in mixed state or vortex state that occurs in type-II superconductors.
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1.6 Superconductor MgB2

1.6 Superconductor MgB2

The formalism of the thesis is general for type-II superconductors, but the numerical values
are from magnesium diboride MgB2. The magnesium diboride is a simple ionic binary compound
that has proven to be an inexpensive and useful superconducting material. It was discovered by
Nagamatsu and coworkers [53]. Its structure is shown in figure 4 and can be viewed as a simple
hexagonal stacking of graphitic boron with a magnesium atom above and below the center of each
boron hexagon.

Figur 4: The structure of magnesium diboride, Magnesium in blue color and Boron in yellow/red
color (image from [45] grants anyone the right to use this work for any purpose, without any
conditions, unless such conditions are required by law).

Its critical temperature is 39 K and the honeycomb planes of Boron atoms remains the structure
of graphite, which plays the most important role in electronic properties. The conventional theory
says that Magnesium diboride is type-II. But there has been proposed that it is both type I and
type II [47]. Recently a theory called ”1.5 Type Superconductivity” has been proposed [54]. The
argument is that this theory is characterized by two coherence lengths such that their inter-vortex
interaction is attractive at long range and repulsive at short range. One observes these properties
in MgB2. This should give vortex long-range attractive, short-range repulsive interaction. Yet,
critics of the proposed theory say that the two bands interact and if one includes this interaction
you will end up with just one order parameter, as in classical G-L theory[55].

MgB2 has two energy gaps, and for one band κ < 1√
2 and for the other κ > 1√

2 . Like for graphite,
MgB2 has strong σ bonds in the planes and weak π-bonds between planes. Unlike for graphite,
B atoms in MgB2 has fewer electrons than carbon atoms. Not all the bonds for Boron planes are
occupied and the lattice vibration in the planes has a much stronger effect. Each bond of MgB2
gives superconductivity with individual characteristics, for example σ bonds are anisotropic and
strongly coupled with the optical phonon mode,and it gives a large superconducting gap which
consist of electrons and holes, 4π ≈ 7meV . The π-bonds are mostly electron-like and weakly
couple with phonons, and it originates a low energy gap which consist of holes,4π ≈ 2meV .σ-
band gives κ = 4(> 1√

2 ) and π-band gives κ = 0.7(< 1√
2 ). But both gaps disappear at the same

critical temperature . We have seen in subsection (1.4) different parameters which take place in
this system with short physically meaning. MgB2 is the superconductor used in this thesis.
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1.7 The Bean model

1.7 The Bean model

Most of the properties of superconductors are reversible. There are other properties that are
irreversible in the sense that when a parameter such as temperature, pressure, strength of ap-
plied electric or magnetic field changes in direction the system does not reverse, but hysteric
effects occur. The vortices driven into the superconductor by an applied field or current, don’t
reach their equilibrium position because of their interactions with defects in the crystal lattice [17].

Bean’s critical model, introduced by C.P Bean in 1962, gives a macroscopic explanation of the
irreversible magnetization behaviour. It has proved to be a highly effective way to describe the
macroscopic electrodynamic behaviour of superconductors without considering the vortex lattice
in all its microscopic detail. The model assumes that wherever the current flows, it flows at the
critical density and that the internal magnetic field is given by Maxwell equation as described in
chapter 2. The model provides a phenomenological description for the hysteretic magnetization
of type-II superconductors in a temporally varying applied field. The vortices start to penetrate
into superconductor and they are pinned on the surface. In the area below the surface, which is
penetrated by the vortices, a current density jc flows. In others word, the material can only carry
a limited current, the critical current jc, in the presence of a magnetic field. This critical current
will always flow where field has penetrated.

The magnitude of the critical current density is fixed by the characteristics of the particular
superconductor, and it depends on such factors as the superconducting material, twinning, con-
centration of defect centers, etc. The internal magnetic field is given by Maxwell curl equation.
There are two cases, the low-filed and High-field case. These two may be related in terms of a
characteristic field proportional to the radius a , as given by

B∗ = jcµ0a (12)

B∗ has the property that when the applied field Bapp = B∗ the fields and currents are able
to reach the center of the superconducting sample(see fig.5.b). Thus there are two cases, one for
small applied field Bapp < B∗ and the other for high applied fields Bapp = B∗(see fig.5).

At low filed case, the vortices do not reach the inner surface and the interior stays field-free,
whereas at high field, vortices penetrate the whole sample and a magnetic field appears in the
interior, which then increases with increasing applied field [see fig.5].One can show that at high
field the currents and the magnetic field are given by the expressions:

jy(x) = jc − a ≤ x ≤ 0, (13)

jy(x) = −jc 0 ≤ x ≤ a, (14)

Bz(x) = Bapp −B∗(
a+ x

a
) − a ≤ x ≤ 0, (15)

Bz(x) = Bapp +B∗(x− a
a

) 0 ≤ x ≤ a. (16)
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1.8 Road-map

Figur 5: Dependence of the internal field Bz(x) , current density jy(x) and applied field given by:
(a) Bapp

µ0jca
= 1

2 ,(b)
Bapp

µ0jca
= 1, and (c) Bapp

µ0jca
= 2 . This and subsequent figures are drawn for the Bean

model from [40].

1.8 Road-map

This work is divided by five main parts.

a) Basics equations that describe the method used to study thermomagnetic instability in
SC.This is the topic in chapter 2. The linearization of thermal equations and Maxwell equa-
tions for electromagnetic are treated. They lead to a quadratic equation. Hence, the quadra-
tic, will be used to determine whether the system reach the instability.

b) Suppression of thermo-magnetic instability in superconductors without deposed metals.
This is the topic in Chapter 3. The quadratic equation which describes whether the system
is unstable or stable. Similarly result was found in Rakhmanovs paper [1]. However, it slight-
ly deviates with Rakhmanovâs paper as a new parameter β is added in the calculation. The
thermomagnetic instability due to thermal contact is studied.

c) Suppression of thermo-magnetic in superconductors with deposed metal . This is the
topic in chapter 4. The study of flux jumps in superconducting sample coated with metal
is investigated. To study the thermomagnetic instability due to the electrodynamic braking
rather than thermal contact from recently experiment result[49], a model is built. This simple
model is based on Gurevichs and Mints paper [3]. It leads to the results that confirm greatly
the electrodynamic braking as origin for suppression of avalanches in superconductor with
deposited metal.

d)Onset/Offset of oscillations. Chapter 5 is considered as an extra part of thesis. It concerns
the imaginary solutions of dispersion equation for increment of instability. That describes
the onset/offset of oscillations.

e) Main conclusions Chapter 6.
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2 Linearised equation for thermomagnetic instability

Chapter 2

2 Linearised equation for thermomagnetic instability

2.1 Sample geometry
The conventional theory of the thermomagnetic instability predicts ”uniform” flux jump, whe-

re the flux front is essentially flat. But numerous magneto-optical studies have showed that the
thermomagnetic instability in thin superconductor results in dendritic flux patterns [7],[1],[8]. This
dendritic flux forms narrow ”fingers” [see Fig.1].

In the present work the spatial pattern instability in bulk superconductors is investigated using
the conventional approach- linear analysis of a set of differential equations describing small pertur-
bations in the electric field E and in the temperature T . We assume that ∇ •~j = 0 since we have
the continuity of the current. To find the temperature and the electric field in superconducting
sample the second Maxwell equation ~̇B = −∇× ~E and the thermal equation CṪ = κ52 T +~jE
will be used respectfully. My work will be the study of instability in a superconducting slab placed
in a parallel magnetic field (see Fig.6) and its suppression in steak of superconducting slabs and
metals. In figure.6 the slab fills the semi-space x > 0,and the external magnetic field ~H is parallel
to thez-axis so that the screening current ~j flows along y-axis.

Figur 6: Superconductor geometry without metal coating

2.2 Basic Equation
To describe the flux jump instability in Superconductor slab, the sample is placed in a parallel

magnetic field, ~H. When this magnetic field is applied in the direction of the z-axis, the screening
current j and the electric field E are induced inside the slab along the y-axis. For this geometry
(see fig 6), the current J and magnetic field contributions in the sample (flux penetrated region
0 < x < l) are described by the following Maxwell equation,

5× ~B = µ0 ~J, ~B|x=0 = µ0 ~H (17)

Where the common approximation ~B = µ0 ~H is used because Hc1 = 0.

In this model, a linear analysis will be used to describe the small perturbations in the electric
field E and temperature T . We allow the perturbations to vary in any direction, i.e., parallel and

13



2.3 Perturbation Analysis

perpendicular to the direction of the background current j and field E. Taking that in considera-
tion, it will be able to determinate the stability and the instability build-up time.

The goal here is to find the quadratic equation [see subsec.’1.8’]. First, let start with the case of
studying thermo-magnetic in superconductor sample without metal coating. It will later become
clear that thermal diffusion plays an important role in appearing for finger structure. Consequent-
ly, the electro-dynamic boundary conditions will be imposed. In type-II superconductors j(E) is
strongly non-linear, but for simplicity the corresponding Bean model is used.

Also, any B dependence of the critical current density is neglected. The exact form of the current-
voltage curve,

~j = j(T,E)(
~E

E
) (18)

is not crucially important. The point is that E(j) curve is very steep such that its logarithmic
derivative is very large. The relationship between the electrical conductivity and the differential
conductivity gives us as function of electric field. The electrical conductivity is known as σ1 = j

E .
The differential conductivity is an important formula in our thesis and it is defined as

σ ≡ ∂j

∂E
(19)

We define now n(E) = σ1
σ ≡

j
σE , where σ is the differential conductivity and σ1 the electrical

conductivity.
We mentioned above that j(E) is strongly nonlinear in type-II superconductors. Nonlinearity im-
plies that ∂j

∂E 6=
j
E and it is valid for any conductors, both without or with metal coating. It follows

from symmetry considerations that Ex = 0,while for the perturbation δE both components of this
perturbations in x-and y-directions do not vanish.

2.3 Perturbation Analysis

2.3.1 Linearisation of dimensionless equation

In this section, the meaning is to find the dispersion equation for λ(kx, ky). We will start with
a linear analysis of a set of differential equations describing small perturbations in the electric field
~E and temperature T . Those linear differential equations will be inserted into Maxwell equations
and thermal diffusion equation such that it leads us to the dispersion equation for λ.

In this way we determine the stability criteria in superconducting bulk. Also the interpretation
of this dispersion relation is following:for Reλ > 0 the system is unstable,and for Im(λ) 6= 0 the
system has oscillations.

The solutions of the equations above in subsection (2.2) can be represented in form

T + δT (x, y, z, t), E + δE(x, y, z, t), j + δj(x, y, z, t) (20)

where T ,E and j are background values.

The background electric field may be created by ramping the external magnetic field H,and we
assume it to be coordinate independent even if in practice E is non-uniform.

We seek the perturbations in the form:

δT = θexp(λt+ ikxx+ ikyy), δEx,y = εx,yexp(λt+ ikxx+ ikyy), (21)

14



2.3 Perturbation Analysis

Where θ, εx,y are Fourier amplitudes and Re(λ) is the dimensionless instability increment.

The wave numbers ky and kx characterize the scale of the perturbation along the y and x axes,
respectively. We assumed (see the fig.6) infinite in the y direction,the ky is arbitrary,while kx can
be limited by the width of the flux penetrated region and the boundary conditions.

The linearization of the current-voltage relation, Eq.(18) yields (see Appendix B)

δ~j =
(
∂jc
∂T

δT + σδE

)
~E

E
+ jc

(
δ ~E

E
−

~E

E2

)
(22)

Where the electric conductivityσ = j
nE .

Similarly, the linear equations of Maxwell yields

5× ~B = µ0δ ~J, (23)

5× ~E = −∂
~B

∂t
(24)

In the same way we can do the linearization of the thermal diffusion and we assume the current
conservation ∇ � ~j = 0 . The current conservation belongs to electromagnetics and the thermal
diffusion is,

CṪ = κ52 T +~jE (25)

where the first term to left of equation is the heat diffusion and second term is joule heating.

2.3.2 Calculations

We can now use equation (22) to find out δjx and δjy by taking in account that as showed in
appendix (A):

δjx = jc
δEx
E

, δjy =
(
−|∂jc
∂T
|+σδE

)
(26)

Using equation (25), one can find δEx. Also,from ∇ � δ~j = 0,we have kxδjx + kyδjy = 0.If one
insert equation (26) into it one get kxjc x

E = −kyy, which gives

δEx = −kyEδjy
kxjc

(27)

To find the quadratic equation with variable λ, we will use the linearization of Maxwell equa-
tion (23), (24) and thermal equation (25), and it was previously assumed that the applied magnetic
field is in z-direction.[see fig.6]
* We start first with5× ~B = µ0δ ~J and we have

∇× δ ~B =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z
0 0 δBz

∣∣∣∣∣∣ = (∂yδBz,−∂xδBz, 0) = µ0δ~j (28)

15



2.3 Perturbation Analysis

Due to the boundary condition, we have

−∂δBz
∂x

= µ0δjy (29)

−ikxδBz = µ0δjy (30)

δḂz = − µ0

ikx
λδjy (31)

Secondly we use 5× ~E = −∂ ~B∂t and we have

−∂
~B

∂t
= ∇× δ ~E =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z
δEx δEy 0

∣∣∣∣∣∣ (32)

δ ~Bz = −∂δEy
∂x

+ ∂δEx
∂y

(33)

if we put equation (31) equals (33), and it gives

∂δEy
∂x

− ∂δEx
∂y

= µ0

ikx
λδjy (34)

Since we know δEy, δEx and δjy,their derivations in equation(34) gives us

kxδEy = µ0

kx
λδjy −

k2
yE

jc
|∂jc
∂T
|δT +

k2
yEσ

kxjc
δEy (35)

Set δjy inn and separate δEy and δT term,it gives(
−kx −

µ0σ

ikx
λ−

k2
yj

kxnjc

)
δEy =

(
−µ0

kx
|∂jc
∂T
|λ−

k2
yE

kxjc
|∂jc
∂T
|

)
δT (36)

This is the result from electrodynamics and it satisfies my expectation since i want to have it in
separated terms δEy and δT . The next step will be to use the thermal diffusion (25) such that it
gives us an equation with separate δEy and δT terms as above. Let start with it,

CṪ = κ52 δT + jδE + δjE (37)

We separate δEy andδT term in Fourier space and it gives

CλδT = −κ
(
k2
x + k2

y )δT + jδEy + δjyEy(38)

(
Cλ+ κ

(
k2
x + k2

y

)
−∂jc
∂T

E

)
δT =

(
j

n
+ j

)
δEy(39)

We have now from equation (36) and (39)AδEy = BδT and FδEy = DδT where

A =
(
µ0σ

kx
λ+

(
kx + k2

y

j

kxnjc

))
(40)

B =
(
µ0

kx
|∂jc
∂T
|λ+ k2

y

E

kxjc
|∂jc
∂T
|
)

(41)

D =
(

1
n

+ 1
)
j, (42)
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2.3 Perturbation Analysis

F =
(
Cλ+ κ

(
k2
x + k2

y

)
− ∂jc
∂T

E

)
(43)

Using ADδEyδT = BFδEyδT , it can help us to find the dispersion equation for λ,[
µ0σ

kx
λ+

(
kx +

k2
yEσ

kxjc

)]
+ left[cλ+ κ(k2

x + k2
y) + |∂jc

∂T
|E )] =[
µ0

kx
|∂jc
∂T
|λ+

k2
yE

kxjc
|∂jc
∂T
|

] [
j

n
+ j

]
(44)

This gives

cµ0σ

kx
λ2 +

(
cµ0σ

kx
κ(k2

x + k2
y) + cµ0σ

kx

∂jc
∂T

E + ckx +
ck2
yj

kxnjc
− µ0j

kxn
|∂jc
∂T
|−µ0j

kx
|∂jc
∂T
|

)
λ+

kxκ(k2
x + k2

y) + k2
y

jκ(k2
x + k2

y)
kxnjc

kxE|
∂jc
∂T
|+k2

y

jE

kxnjc
|∂jc
∂T
|−
k2
yEj

kx
|∂jc
∂T
|= 0 (45)

we multiply this equation by kx

Cµ0σ

λ2 + 1
c

(
κ(k2

x + k2
y) + |∂jc

∂T
|E
)
λ− E

c
|∂jc
∂T
|λ− j

c
|∂jc
∂T
|λ+

kx
µ0σ

(
kx +

k2
yσ

kxjc

)
λ+ kx

cµ0σ

(
κ(k2

x + k2
y) + E|∂jc

∂T
|

)

− kx
cµ0σ

(
k2
yE

kxjc
|∂jc
∂T
|

)
(Eσ)− kx

cµ0σ

(
k2
yE

kxjc
|∂jc
∂T
|

)
(j) = 0 (46)

λ2 +
(
κ

c
(k2
x + k2

y)− j

cσ
|∂jc
∂T
|+ k2

x

µ0σ
+
k2
yE

µ0jc
)λ+

k2
x

κ(k2
x + k2

y)
cµ0σ

+ E

cµ0σ
|∂jc
∂T
|

+ k2
y

(
Eκ(k2

x + k2
y)

cµ0jc
− E2n

cµ0
|∂jc
∂T
|

)
= 0 (47)

We can write it in quadratic equation

λ2 + Pλ+Q = 0 (48)

Where

P =
(
κ

c
(k2
x + k2

y)− j

cσ
|∂jc
∂T
|+k2

x

µ0
+
k2
yE

µ0jc

)
(49)

Q = k2
x

(
κ

cµ0σ
(k2
x + k2

y) + E

cµ0σ
|∂jc
∂T
|
)

+ k2
y

(
Eκ(k2

x + k2
y)

cµ0jc

E2n

cµ0
|∂jc
∂T
|

)
(50)
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2.3 Perturbation Analysis

2.3.3 Dimensionless Parameters

In this subsection, dimensionless parameters are induced such that it leads to a simple form
for dispersion relation we are looking for. One will observe that an extra parameterβ , compared
to the quadratic equation in [1], will be added during the calculation.
This extra parameter has scale length b which is similar to w in [1] defined as

w2 = CTc
µ0j2

c

(51)

Let now those two parameters τ and β be defined as τ = σκµ0
C and β = b2jc| ∂jc

∂T |µ0
C such that

κ = τC

σµ0
(52)

and
|∂jc
∂T
|= βC

b2jcµ0
(53)

We include them in the quadratic equation (48) and it gives

λ2 +
[
τ(k2

x + k2
y)

µ0σ
− βj

µ0σb2jc
+ k2

x

µ0σ
+
k2
yE

µ0jc

]
λ+ k2

x

[
τ(k2

x + k2
y)

(µ0σ)2 + βE

µ2
0b

2jcσ

]
+

k2
y

[
τ(k2

x + k2
y)nE2

µ2
0b

2j2
c

]
= 0 (54)

We want to induce a characteristic time, t0 = µ0b
2

ρ0
such that λ̃ = t0λ If k̃x = bkx and k̃y = bky,

where b is some length, one obtains quadratic equation:

λ̃2 + t0Pλ̃+ t20Q = 0 (55)

λ̃2 +
[
µ0b

2

ρ

τ(k̃2
x + k̃2

y)
µ0σ

− µ0b
2

ρ0

βj

µ0σb2jc
+ µ0b

2

ρ0

k2
x

µ0σ
+ µ0b

2

ρ0

k2
y

µ0σ

]
λ+ k2

x

[
µ0b

2

ρ0

τ(kx2 + k2
y)

µ2
0σ

2 −

µ0b
2

0

βE

µ2
0b

2jcσ
+ k2

y

[
µ0b

2

ρ0

nEτ(kx2 + k2
y

)

µ2
0σjc

+ µ0b
2

ρ0

βE

µ2
0b

2j2
c

]
= 0 (56)

λ̃2 + 1
ρ0σ

[
τ(k̃2

x + k̃2
y −

βj

jc
+ k̃2

x +
k̃2
yj

njc

]
λ̃+ 1

(ρ0σ)2 k̃
2
x

[
τ(k̃2

x + k̃2
y) + βj

njc

]
+ 1
ρ0σ

k̃2
y[

Enτ(k̃2
x + k̃2

y)
jc

− βj2

nj2
c

]
= 0 (57)

Let α = ρ0σ we can write this new quadratic equation in this form:

α2λ̃2 +
[
τ(k̃2

x + k̃2
y)− βj

jc
+ k̃2

y

j

njc

]
αλ̃+ k̃2

x

[
τ(k̃2

x + k̃2
y) + β

njc

]
+

k̃2
y

[
τ(k̃2

x + k̃2
y)j

njc
− βj2

nj2
c

]
= 0 (58)
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2.4 The dispersion relation for λ̃
We have found a new quadratic equation which is similar to equation(20)in Rakhmanovs

paper[1]. The main point in this quadratic equation compared to the one in [1], has a new parameter
β :

β =
b2jc|∂jc

∂T |µ0

C
(59)

This extra parameter is important for dispersion relation because we want b to be temperature
independent. When b is fixed, it means that β is fixed. In paper [1], the writers assumed it to be
1.

But we want to add this new parameter such that we can study what happens with thermo-
magnetic instability or what are physical behaviour when the parameterβ is no longer 1 and it
can vary, decreasing or increasing. The new quadratic or dispersion relation forλ̃ is

α2λ̃2 + Pαλ̃+Q = 0 (60)

where
P = k̃2

x +
k̃2
y

n

j

jc
− β j

jc
+ τ(k̃2

x + k̃2
y) (61)

Q = τ

(
k̃4
x + n+ 1

n
k̃2
xk̃

2
y

j

jc

)
+ β

n

(
k̃2
x − k̃2

y

j

jc

)
j

jc
(62)

Thesis focuses only on <(λ̃) > 0 and <(λ̃) < 0,therefore we choose α = 1. We defined in pre-
vious chapter (equ.[52][53]) that these two parameters as: τ = σκµ0

C and β = b2jcµ0
|∂jc

∂T C where
σ is the electric conductivity,C is the specific heat capacity, ρ0 is the resistance, µ0 is the perme-
ability, jc is the critical current density and κ is the thermal conductivity.

The system is unstable if <λ̃(kx, ky) > 0
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3 Thermomagnetic instability in bulk superconductor without metal coating

Chapter 3

3 Thermomagnetic instability in bulk superconductor wit-
hout metal coating

3.1 Thermal contact
The avalanches extends the physical picture of the critical state description presented in pre-

vious chapter. Under certain conditions, the instability develops into a flux jumps. I was mentioned
in introduction section that these instabilities were already subject of many studies in the early
1960 [21].

Thermo-magnetic instability has been explained to be origin of flux jumps by Bean [40], Mints
and Rakmanov [2], and others. Qualitatively the idea involves two main observations[4]:
(i) motion of magnetic flux releases energy and hence increases the local temperature; and (ii) the
temperature rising decreases flux pinning, and hence facilitates the flux motion.

The conventional theory of the thermo-magnetic instability[2], [22]predicts ”uniform” flux jumps,
when the flux front is essentially flat. In this chapter the spatial patterns of the instability in bulk
superconductor is studied using the conventional approach presented in previous chapter- linear
analysis of set of differential equations describing small perturbations in the electric field E and
temperature T . This approach leads to a dispersion equation (60) that determines whether the
system is unstable (assuming α = 1, n is a constant and j = jc):

λ̃2 + Pλ̃+Q = 0 (63)

where
P = k̃2

x +
k̃2
y

n
− β + τ(k̃2

x + k̃2
y) (64)

Q = τ

(
k̃4
x + n+ 1

n
k̃2
xk̃

2
y

)
+ β

n

(
k̃2
x − k̃2

y

)
(65)

The solutions to this equation are:

λ̃2
1 = −P +

√
P 2 − 4Q

2 (66)

λ̃2
2 = −P −

√
P 2 − 4Q

2 (67)

The flux jumps depends on several material parameters [see subsection 1.4]. There are two im-
portant parameters which are useful in study of thermo-magnetic instability- parameter τ and
β. The first one,τ , is the ratio of thermal and magnetic diffusion coefficients. The another one,β,
is the characteristic perturbation from external source. In next subsection, their definition and
estimation of maximum and minimum values will be presented.
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3.2 The key dimensionless parameters

3.2 The key dimensionless parameters
β and τ are the key dimensionless parameters for thermo-magnetic model. One sees in Equ.(52)

that β is a function of temperature T and τ is a function of electric field E. They are useful for
studying instability under dependency of increasing/decreasing temperature, magnetic field or
electric field. Their maximum and minimum values can be estimated(with values of Table.1): (i)
Parameter β is the characteristic perturbation from external source ,and it is defined in (53) as

β =
b2jcµ0|∂jc

∂T |
C

(68)

where b is the characteristic length for adiabatic instability. Assume that b is fixed, one can estimate
the maximum and minimum of parameter β since it is a function of temperature. Also, one can
derive it with temperature T and put it equal zero. This is the analytic way to find his max/min
and using values from Table.1, it gives

βmax =
(0.02)2(1011)(4π)(10−7)(1010)( TTc

)−3

3500 ≈ 4.8( T
Tc

)−3 (69)

βmin =
(6.6(10−6))2(1011)(4π)(10−7)(1010)( TTc

)−3

3500 ≈ 0.02( T
Tc

)−3 (70)

The plot of parameterβ as function of temperature T : Parameter β in Equ.(68)contains the cha-

Figur 7: The plot of parameter β as function of temperature T .β is max when the characteristic
length scale b is max(b = 2mm)and β is min when b is min(b = 6.6µm) according to Equ.(68)

racteristic length for adiabatic instability b which is proportional to inverse wave numbers that
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3.2 The key dimensionless parameters

characterize the scale for perturbation kx and ky. In thesis, the max b = 2mm and the min
b = 6.6µm. Beyond/under maximum/minimum of these values the dispersion equation (63) is
meaningless.

(ii) Parameter τ is the ratio of thermal and magnetic diffusion coefficient, and it is defined as:

τ = Dth

Dm
= κµ0σ

C
(71)

Where Dth is the thermal diffusion coefficient and Dm is the magnetic diffusion. The thermal
diffusion coefficient is defined as the thermal conductivity divided by volumetric heat capacity(we
assume this density equal 1) such that

Dth = κ

C
(72)

The magnetic diffusion coefficient is obtained by using power law and Maxwell equation. In Bean
critical state model, the power law is defined as E

Ec
=
(
j
jc

)n
. We saw previously that Bean mo-

del is only valid for equilibrium condition and satisfies the magnetic diffusion equation under the
steady- state condition. Parameter τ is a function of electric field. The resistivity will increases
with exponent in power law,therefore we choose a small n since we know that the magnetic dif-
fusion coefficient is small because of low resistivity in the vicinity j = jc[see details in Appendix
G]. For the Bean model, the minimum electric field Emin = Ḃcb(≈ 10−5V/m) and the maximum
electric field Emax = ρ0jc0 = 7.103V/m,where ρ0 is the resistivity and Bc is the critical mag-

netic field defined as Bc = Bc(0)
[
1−

(
T
Tc

)2
]
, Bc(0) = µ0λjc within the London depth λL and

critical current density jc.Using values from table.1 and from figure 8 above, one might estimate
τmax ≈ 4.6.106 and τmin ≈ 0.01 according to equ.(71)

Figur 8: The plot of parameter τ as function of electric field [log(E/Emax)].τ is maximum when
the electric field E is minimum(E = 10−5V/m)and τ is minimum when E is maximum(E =
7.103V m)according to Equ.(71).
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3.3 Result and discussion

3.3 Result and discussion
The problem about the thermo-magnetic instability in superconducting sample without depo-

sed metal is solved more exactly, and start by establishing the proper boundary conditions .

3.3.1 Boundary conditions

According to Equ.(70) small τ correspond to high electric field. It will be showed in later discus-
sion that a finger structure may appear only for τ < 1. It means that the magnetic diffusion is
faster that thermal diffusion. Consequently, only the electrodynamic boundary condition is needed.

Also, the magnetic field has only z-component, and the first boundary condition is δEy = 0,x = 0.
It means that current does not flow across the superconductors surface,δjx is proportional to
δEx = 0 at x = 0. The second condition is that δEy = 0,x = l where l is the flux penetration
depth [see fig.6].

3.3.2 The physical interpretation of dispersion equation for λ̃

Many solutions come out from equations (66) and (67). My thesis is related to one of them, more
precisely, there are two cases. The first one is the real part(when P 2 > 4Q) and the second one is
the imaginary part(when P 2 < 4Q) and the onset/offset of instability (when P 2 = 4Q). Let start
with the study of the system when the electric field is high and when it is low. It is known now
from equation (71) the ratio of thermal and magnetic diffusion coefficient τ approaches zero with
high electric field and vice versa.

Assume the real part solution of dispersion equation (63) when P 2 > 4Q, the parameter β = 1
and j = jc(see Appendix F). The dispersion equation for λ becomes more transparent when the
heat conductivity can be omitted, i.e, τ = 0. Then

λ2 + λ

(
k2
x +

k2
y

n
− β

)
+
(
k2
x + k2

y

)
n

= 0 (73)

At kx = 0 the system is always unstable(see fig.9.a,for τ = 0). The reason is that there is a
fixed transport current heating by the electric field under adiabatic condition. When the electric
field increases or for high electric field the ratio τ becomes smaller. For perturbations uniform in
y-direction(ky = 0) the instability develops only if kx < 1. However if ky → ∞, then the system
becomes unstable for all kx and arrive at max growth rate, λ = 1.

The uniform mode of instability can be determined by checking1 if the maximum real part of
λ, note as λmax in thesis,always corresponds to ky = 0. However, for high electric field or small
τ ,λmax can occur for a nonzero ky. Moreover, it is possible that the system is stable with respect
to uniform perturbations, while unstable for perturbations with finite ky. This means that a non-
uniform structure along the y-direction will be formed.Starting with very low electric field, the
instability becomes uniform when the heat conductivity increases while it has non-uniform mode
when the heat conductivity has a very small value close to zero. For small applied magnetic fields
the system is stable. As the field increases, the flux penetration depth grows, and hence kx goes
down (see fig.9.b). It is clear that the instability range extends to large ky for high electric field.
Since λmax always corresponds to ky = 0, therefore we can argument that the instability develops
in a uniform mode for relatively large τ .
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3.3 Result and discussion

Figur 9: The instability increment Re(λ) found from Eq.(63) for n = 10 ,β = 1,and different kx:
a. Slow heat diffusion,the maximal <(λ) is at finite ky. b.fast heat diffusion,<(λ) corresponds to
uniform perturbations(ky = 0).
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3.3 Result and discussion

The characteristic perturbation from external source β has proved to be a effective parameter
in stabilizations process. It affects the system stability since it is connected to the temperature
T through the critical current density jc and to the wave numbers that characterize the scale for
perturbation kx and ky.

Let assume that the size of the sample is fixed with kx. The parameter β will depend only on
temperature T . One expects that the system becomes more stable when β decreases. Thus, the
system is always stable for β = 0. The physical reason might be the fact that β is related to the
critical current density jc. And when T ≈ Tc the sample is close to ohmic state since jc decreases
dramatically to zero. This process is available for uniform and non-uniform mode.[see fig.10] In

Figur 10: The plot of increment Re(λ(ky)) from Equ.(63) with different β. These plots show that
the decreasing of parameter β stabilize the system.

previous chapter one assumed that k̃x,y = bkx,y such that bkx,y = 2π
l b. The maximum and mi-

nimum values are bmax = 2mm and bmin = 6.6µm respectively. It means that the largest k̃ that
one can have is

k̃x,y = 2π
b
b = 2π, l = b (74)

and similar for smallest k̃
k̃x,y = 2πb

1mm, l = 1mm (75)

where l is the flux penetration length.[see fig.6]

I mentioned above, parameter β is proportional to inverse kx,y. It is obvious that the system
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stabilizes when kx,y increases. In others word, larger kx,y corresponds to smaller β. The zero
contour plot of maximum Re(λ) or λmax in parameters τ and β shows this effect[see fig.11]. The

Figur 11: The zero contour plot of max Re(λ) in τ and β.The left side of λ = 0line is stable
region and the right side is unstable region. The stability of system corresponds to increasing kx,y
according to Equ.(68).

red and the blue lines in zero contour plot above(see fig.11) correspond to the onset/offset of
instability. These lines separate the stable and unstable regions. Analytically, it exist for solutions
P = 0 where P 2 < 4Q, for Q = 0 when P 2 > 4Q and finally when both P and Q are zeros. The
another two cases Re(λ) > 0 and Re(λ) < 0 are summarized in Table.2 [see page 56 ]

3.4 Summary
The thermo-magnetic instability in superconductor is studied with linear stability analysis

of heat diffusion and Maxwell equations. It leads to a dispersion equation that can be used to
determine whether the system is unstable. The new dispersion equation is similar to dispersion
equation from Rakhmanovs paper[1]. A new parameter,called β, is induced [21]. It characterises
the perturbation from external source. Parameter β seems to stabilize the system when it decrea-
ses. The system becomes always stable when β reach zero. Parameter β, when the characteristic
scale length for adiabatic instability b is fixed, is temperature dependent since it is proportional
to the critical current density jc(T )[see Equ.(68) and subsection 1.4].It is obvious to expect that
the system stabilises when the temperature T decreases. Figure (10) is devoted to show the stabi-
lisation of system with parameter β.

Both high electric field (corresponding to small parameter τ) and low electric field(corresponding
to high parameter τ) background are exploited. The results show that the fingering instability
occurs if the background of electric field is so high that magnetic flux diffusion proceeds much
faster than the heat diffusion. This confirms that thermal conductor is the origin of flux jumps in
superconducting sample.
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4 Suppression of thermomagnetic instability in bulk superconductor with metal coating

Chapter 4

4 Suppression of thermomagnetic instability in bulk su-
perconductor with metal coating

4.1 Magnetic braking

It was claimed in previous chapter that the thermal conduction is the suppression of flux jumps
in superconductor [2],[6].Recently however, Fabiano and many others experiments[2], [3], [4], [9]
have shown that the suppression of avalanches occurs even with no contact between the metal and
superconducting sample.

It has been suggested that the stabilization of avalanches to a magnetic braking effect due to
eddy currents generated in the added metal layer[49]. To shed light on this suggestion, a model is
caring out that takes into account the deposed metal part on bulk superconductors.

4.2 Model for suppression of thermomagnetic instability with metal
coating

In this subsection, the goal is to build a model for electrodynamic braking as a cause for
suppression of avalanches with deposed metal. The model will lead to a new dispersion equation
for λ̃ compared to equ.(63). The fraction of superconducting specimens is called x and for non-
superconducting is (1 − x), for example metal [see fig.12]. It is a simple model that helps me to
find the dispersion equation for λ̃ with metal coating. The principle of this model is based on
an article written by Gurevich and Mints,[4]. In section ”composite superconductors” from this
article, they explained that the metal greatly reduces the thermal, electrodynamical, and mecha-
nical instabilities characterizing hard superconductors. To avoid repeating calculations as i did in
previous chapter, i used the superconductor-metal geometry as seen on figure 12.

The model has two conductors in parallel, one ohmic conductor and one superconductor, such
that the total current density is defined as

j(1) = σ(1)E (76)

where the total electrical conductivity σ(1) = xσ
(1)
s + σ

(1)
m (1− x).The superscript ’(1)’ distinguis-

hes the differential and non-differential conductivity. The differential conductivity is defined as
σ ≡ ∂(σ(1)E)

∂E .

The electrical conductivity of superconductor is σs = x
∂(σ(1)

s E)
∂E and the electrical conductivity

of metal is σm = (1− x) ∂(σ
(
s

1)E)
∂E . The ratio between the electrical conductivity and its differential

for superconductor is the parameter:

s = σ
(1)
s

σs
(77)

29



4.2 Model for suppression of thermomagnetic instability with metal coating

Figur 12: Geometry of superconductors with deposed metals in sandwich form

In previous chapter concerning thermo-magnetic instability without metal coating, the ratio (76)
was called n and it was a constant. In present case, thermo-magnetic with deposed metal, the
parameter n for total (superconductor and metal) is:

n = σ(1)

σs
(78)

The electrical conductivity of metal σm is a constant. Let us recall the calculation of the differen-
tial electrical conductivity and it will helps to find the total current in (75). The calculation of

the electrical conductivity in the superconducting sample leads to σ(1)
s = σ0

(
E
E0

)−(1− 1
S )

(see Ap-
pendix D) such that the current density is defined through the superconducting sample (without
deposed metal) as

j(
s

1) = σ0

(
E

E0

)−S−1
S

E (79)

Derive (79) to find the differential conductivity in the case of non-metal coating,

σs = ∂j
(1)
s

∂E
= 1
s
σ0

(
E

E0

) 1−S
S

= 1
s
σ(1)
s (80)

The current density of the superconductor coating by metal (fig.12) becomes

j(1) = σ(1)E =
(
xσ(1)

s + (1− x)σ(1)
m

)
E (81)

In the model n is no longer expected to be independent of electric field and constant. Assume
j(1) = jc and the total current density is defined as

j = σ(1)E (82)

Using equation (79) and (77) where n is well defined, this leads to a new parameter n(E) as
function of the electric field (see Appendix E),

n = σ(1)

σ
= s

xσ
(1)
s + (1− x)σ(1)

m

xσ
(1)
s + s(1− x)σ(1)

m

= s
xσ

(1)
s + σ

(1)
m

xsσ
(1)
s + s(1− x)σ(1)

m + (1− s)xσ(1)
s

(83)

One notices in (79) that xσ(1)
s +σ

(1)
m = j

E such that n can be written as dependent of electric field:

n(E) = s
j

j − (1− s)(1− x)σmE
(84)
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4.3 Result and Discussion

In thesis, I work with parameter τ in stead of electric field E. Also, n in(83)can be written
as function of parameter τ . Parameter τ here is the sum of ratio in superconducting state and in
ohmic state (for metal part),

τ = τs + τm (85)

The parameter τ for superconductor is τs = κµ0xσs

SC and the electric conductivity in supercon-
ductor is σs = τssC

xµ0κ
. Same for metal, the parameter τ is τm = κµ0(1−x)σm

C such that the electric
conductivity in metal is σm = τmC

(1−x)µ0κ
. Insert all these parameters into (82), it gives n as function

of τ ,
n(τ) = sτs + τm

τs + τm
(86)

The parameter τtotal is know from (84),(85) can be written in form:

n(τ) = s− (s− 1) τm
τ

(87)

This is important result because it makes easy to find the new dispersion equation for deposed
metal case. In others words, insert (86) into equation (60), it gives (with assumption α = 1 and
j
jc

= 1):
λ̃2 + Pλ̃+Q = 0 (88)

where
P = k̃2

x +
k̃2
y

n(τ) − β + τ(k̃2
x + k̃2

y) (89)

Q = τ

(
k̃4
x + n(τ) + 1

n(τ) k̃2
xk̃

2
y

)
+ β

n(τ)
(
k̃2
x − k̃2

y

)
(90)

The system is unstable if <(λ̃(k̃x, k̃y)) > 0

4.3 Result and Discussion
The model developed in previous subsection above led to dispersion equation for λ̃ in (87).

The dispersion equation here takes in account the metal coating part and it determines when the
system is unstable if <(λ̃) > 0.

Let start estimating the parameters τ and β for superconductors with metal coating geometry
[see fig.12]. The calculations process is the same as in previous chapter. Here, the electric field
must be calculated with the total electric conductivity σtotal = x

nσs + (1−x)σm that includes the
metal part.

Hereby the total electric field is E = jc

nσtotal
such that

τmax = κµ0jc
nCEmin

≈ 3.7.1010 (91)

and
τmin = κµ0jc

nCEmax
≈ 0.02 (92)

The minimum and maximum of parameters β and the wave numbers that characterise the scale
of the perturbation along the y and x axes (ky and kx) are the same as in previous chapter,
namely βmin = 0.02 ,βmax = 4.8 and min kx,y = 0.02 and max kx,y = 2π for l = b and l =
1mm,respectively.
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4.3 Result and Discussion

The results will be presented in 4 main parts (or subsubsections): a. phase diagram for flux
jumps instability without metal coating, b. stability with deposed metal, c. the role of metals
proprieties and d. the role of thickness.
Finally all important results will be concluded in subsection ’summary’.

4.3.1 Phase diagram for flux jumps instability without metal coating

In chapter 3, several plots and contour plots were made to study the instability in system without
metal coating[fig.9,10 and 11].Those plots were analysed locally,i.e, they showed the instability for
specific values of wave numbers kx and ky. Also, it does not represent the whole process in the
system. To avoid this lack, Rakhmanov and co-authors in [1] already proposed a ”hand” drawn
phase diagram that predicts the whole instabilities in the system: stability’s region, uniform jumps
and fingering. I want to check out quantitatively this prediction/phase diagram. The result is in
agreement with Rakhmanovs paper [1]. Let first consider the spatially uniform case where there
exist a well-known criterion for thermo-magnetic instability[6]. With ky = 0 and for very slow
thermal diffusion,τ << 1, the system is unstable if kx < 1 according to equation(63). For Bean
model, where l = H

jc
, this is expressed as

H > Hadiab = π

2

√
CTc
µ0

(93)

In Rakhmanov paper[1],λmax(see list of parameters,page 49) for kx and ky are calculated,

k∗x = 1√
nτ

(94)

and

k∗y =
(

2
n

) 1
4 1√

τ
(95)

such that one can establish the threshold criterion for uniform and fingering,

E > Euc
nif = π2

4

(
kT

jcl2

)
(96)

and
E > Efc

ing = µ0κjc
C

(97)

In thesis, I work with parameters τ and β. Parameter β is proportional to inverse wave number
kx that indicates the penetration depth of flux in superconductor. Using Bean model,the magnetic
filed H = jcl where l = π

2kx
,and it gives

1
kx

= 2H
jcπ

(98)

Finger instability can be obtained by using the heat capacity from (97) and (93). For E > Ec, it
gives

Hf ing = π

2

√
CTcjc
E

, (99)

One observes that there is a good agreement between analytical lines (96), (97), (99) and numerical
calculation [see fig.13].
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4.3 Result and Discussion

Figur 13: Instability phase diagram in the plane magnetic field-electric field. The horizontal line
corresponds to the adiabatic criterion for uniform jumps,Eq.(93).For E > Ec, the instability has
a finger structure, and the criterion is given by Eq.(99)
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4.3 Result and Discussion

4.3.2 Stabilization of thermo-magnetic instability with metal coating

In previous chapter, the dispersion equation for λ̃ determines whether the system is unstable on
criterion if <(λ̃) > 0. This is supported by plots and contours plots where the characteristic high
and low electric field, and temperature dependent have been well showed[see fig.9,10 and 11]. On
the other hand, alternative mechanism to stabilize the system have also been suggested, namely
the metal coating.

To clarify this issue, the model built early in this chapter is a way to carry out a numerical
solution to thermal and Maxwell equation.Let start with high and low electric field cases,i,e, with
small and large parameter τ . Small τ means that the the instability increment <(λ̃) from (88)pro-
vides two mechanisms: a. slow heat diffusion where there is superconductor-Metal contact such
that <(λ̃) is at finite ky, b. the eletro-dynamic braking uses an electromagnetic force to suppress
the fingers nucleating where there is not SC-Metal contact.

The suppression of the avalanches by providing a good thermal contact strongly suggests that
the avalanches growth is associated with local heating. This is valid for uniform instability process
with these two mechanisms above. Figure(14) reproduces figure(9) from chapter 3 and shows that
the system becomes more stable when τm has a finite value different from zero.

Figur 14: The instability increment Reλ(ky)foundfromEq.(88).Bothcases, with/withoutmetalcoatingfor :
a.smallτs,high electric field, b. for large τs, low electric field. Both plots show that the system
becomes more stable when τm 6= 0,i.e,metal contribution.

In figure 14 parameter β is fixed,β = 1. This means that the system is temperature independent
from external source. Let draw a contour plot of λ̃max as function of τ and β. And the penetration
depth

l = 2π
kx

(100)

Figure 15 shows that the system was initial unstable in region between [1.28,1.6]. This region is
stabilized with metal coating. In addition, figure 15 shows that kx,y ensure the system to become
more stable with increasing of their values. This is expected since kx,y is related to flux penetration
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4.3 Result and Discussion

Figur 15: This is zero contour plot of max <(λ) from Eq.(88) as function of parameters τ and β.
The blue line is the case with no metal coating(τm = 0), the green and the red line is the case with
metal coating(τm = 0.1).s = 10 in Equ.(87). One sees the deposed metal makes the system to be
more stable,i.e, it increases the stability region.In addition red line shows that the system becomes
more stable when kx, the wave number that characterises the flux penetration,increases.
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4.3 Result and Discussion

depth. The lack to the contour plot and the plot in figure 14 and 15 is that the values of kx,y are
fixed. This means that the stabilization is studied locally and it limits our knowledge for the rest of
system. I mentioned early that the phase diagram solves this problem [see fig.13]. It represent the
entire system with electric field and magnetic field in x and y-axes,respectively.Figure 16 shows
this later statement,i.e, the region where stability in system occurs for all kx and ky.[see fig.16]

Figur 16: This is the instability phase diagram in the plane magnetic field-electric field.Stability’s
area increases after been coated with metal.This shows that the metal suppressed the sudden appea-
rance of the fingering flux avalanches.

Numerical estimates in figure 16 were made using parameters for low-temperature superconduc-
tors at helium temperatures: jc = 1010A/m2, C = 103J/Km3, Tc = 39K,and n = 30. Figure 16
shows that the uniform instability development is preferable for low electric fields, more exactly for
E < Ec/n [see fig.15]. One observe from figure 16 that the finger instability occurs only at rather
large background electric field (≈ 0.18V/m,bear in mind that is log10(E)in x-axe). I mean, let
increase the magnetic field with a rate ofH by starting moving along a straight line form the origin.

For large Ḣ , the stability is destroyed for smaller H, and resulting in formation of a nonuni-
form spatial structure. Metal coating suppress this nucleation ,i.e, increases the stability’s area as
i mentioned early. This can be considered as covered part in superconductor. One observes that
no finger patterns are seen to be nucleating in the covered part. Even fingers that nucleated in the
uncovered part of the superconductor do not propagate into the adjacent covered part [2].
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4.3 Result and Discussion

4.3.3 Role of metal proprieties in stabilisation process

It is clear above that the metal coating affects the thermomagnetic instability in superconductors.
In my numeric calculation and analytic, it means that the value of parameter τ is different from
zero or larger than zero. It is experimentally confirmed that the metal deposition does no adversely
affect the superconducting properties. In others words, the presence of metal has no other conse-
quence for the current carrying capacity of the superconductors than to suppress the instability.

The <(λ̃) in (88) decreases dramatically when parameter τm, the ratio between thermal and
magnetic diffusion in metal, increases. It means that the conductivity of metal has a crucial role in
stabilisation of thermomagnetic instability in superconductors. Metal with high thermal conducti-
vity κ correspond to thermal contact as reason for suppression of avalanches, and with high electric
conductivity corresponds to electrodynamic braking as reason for suppression of avalanches. Fi-
gure 17.a shows phase diagrams with two different metals(ρ = 1.310−9Ωm,ρ = 1.310−10Ωm). In
figure 17.b, both metals are compared with superconductor without metal coating (τm = 0). This
shows that the system is more stabilized for metal with low resistivity(ρ = 1.310−10Ωm) than
the another one with resistivity ρ = 1.310−9Ωm. This is an expected result and it can simply be
explained with equations in section 4.2 (on pages 30-32). I am talking about the conductivity of
metal σm. It is known that the conductivity is defined as inverse resistivity ρ. It has been seen in
section(4.2) that the ratio between the thermal and magnetic diffusion τm in metal is proportional
to the conductivity ,

σm = τmC

κµ0(1− x) (101)

where (1− x) is the non-superconducting parts(see fig.12).

Larger conductivity in metal corresponds to larger ratio τm and meaning larger τtotal since it
is the sum of superconducting and metallic parts. It was shown in chapter 3 that the system has
uniform mode for large parameter τ such that it becomes more stable if τ keeps increasing. He-
re the importance of thermal stabilization between superconductor-metal is necessary to explain
thermomagnetic instability. Using numeric estimations above, the electric conductivity σm gives,

σm = 1012

4π τm = 1011τm (102)

such that the electric field gives,
E = jc

σm
= 10−1 1

σm
(103)

The instability occurs essentially when τs ' τm,where σm = jc

SE in superconductor. The electric
field now is

E = 10−1 1
Sτm

(104)

Estimations for electric fields with resistivity ρm = 10−9Ωm is E ' 0.3V/m(log10(E) ' −0.53V/m
in fig.17) and with resistivity ρm = 10−10Ωm is E ' 0.03V/m. Thus, the stabilisation of the system
depends on proprieties of metal. A metal with high conductivities will stabilize the superconduc-
tors better than metal with poor conductivity.
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4.3 Result and Discussion

Figur 17: This is the instability phase diagram in the plane magnetic-electric field showing the
stabilisation with two different metals: a. metal A (with ρ = 10−9Ωm) and metal B (with ρ =
10−10Ωm). b. the stabilisation area for metal B is larger than the one for metal A.This means
that metal with low resistivity or high conductivity stabilizes the system better than poor metal with
high resistivity or low conductivity.
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4.3.4 The role of thickness in stabilisation process

Until now i started with assumption that I choose a specific value of x for equations above. All
plots and contour plot were drawn on this assumption. the parameter x is the fraction of super-
conducting part and (1− x) is the fraction of non-superconducting part ”metal”. Figure 18 shows
the suppression of avalanches or the stabilisation of the system has a gradual tendency, directly
related to the decrease of the metal-superconductor spacing. The physical interpretation is that
the braking will by Faraday induction low act in opposition to the rapid temporal variation in the
flux. This means that the system becomes more stable when x decreases. Group of professor Choi
showed this statement with experiment[see fig.2 in chapter 1].

To make a contour plot showing the effect of thickness on stability, I had to include x in my
Matlab code. The simple way to do it was like this: Parameter β depends on critical density jc
and jc has superconducting fraction x (see Appendix E). Using equation (53) in chapter 2, it
makes parameter β to be proportional to x2 such that

β = x2β0 (105)

Similar for anther parameters contains x

τm = (1− x)τm0 (106)

τs = xτs0 (107)

and
r = j

jc
= 1 + 1

s

(1− x)τm0

xτs0
(108)

where τm0, τs0 and β0 are constant.
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4.3 Result and Discussion

Figur 18: This is the stability phase diagram in the plane magnetic-electric field showing the stabili-
sation of the system with covered metal (With τs0 = 0.1 and τm0 = 0.01,see Eq.106-107) thickness
of: a)a = 1, b)x = 0.5, c)x = 0.1.In fig.18 B all three phase diagrams are represented together.
The diagrams show that the system becomes more stable with decreasing x.Parameter τm(or σm)
increases as consequence of decreasing x. Higher conductivity σm stabilized the system as showed
in fig.17 above.
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4.4 Summary
The suppression of avalanches with metal coating is studied in chapter 4. This effect or suppres-

sion is due to the electromagnetic braking that takes place during the deposing of metal. The metal
does not need to be in contact with the superconductor and has no other consequence for the car-
rying capacity of superconductor.

Electrodynamic braking effect is suggested to be responsible for suppression of finger in super-
conductors. One might consider this effect as a complementary of thermal contact described in
previous chapter. By using a simple model built to support the electrodynamic brake, it led to a
dispersion equation for λ̃. This quadratic equation determines the instability of the system.

Plots and contour were made from it to show the stability dependency on metal proprieties,
on thickness and to confirm the fact that metal coating indeed suppress the thermo-magnetic
instability in superconductor. Another observation is the dependency on kx. The wave number kx
characterises the perturbation scale in superconductor.It is obvious that the system becomes more
stable for corresponding larger kx since this wave number is proportional to flux jumps penetration
length.
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Chapter 5

5 Onset/Offset of oscillations

This chapter can be considered as an extra part of thesis. It is about the study of oscillations
that might be observed under certain conditions. I found interesting to take a quick look on it.
There are not many papers treating the case of imaginary solution even if it has no really scientific
interest. Early in thesis, solutions to dispersion equation for λ̃ were found as:

λ̃1 = −P +
√
P 2 − 4Q

2 (109)

and
λ̃2 = −P −

√
P 2 − 4Q

2 (110)

where
P = k̃2

x +
k̃2
y

n(τ) − β + τ(k̃2
x + k̃2

y) (111)

Q = τ

(
k̃4
x + n(τ)(τ) + 1

n(τ) k̃2
xk̃

2
y

)
+ β

n(τ)
(
k̃2
x − k̃2

y

)
(112)

Following Table.2 (page 56), one expects to observe oscillations when P 2 < 4Q. Let start with
mathematical analysis of this system such that it gives an overview and finally a physical inter-
pretation can be suggested. It is clear that solutions in (109) and (110) belong to imaginary part
if the condition above is satisfied. It implies that

Q >
P 2

4 ∈ < (113)

There are two possibilities in (113), P = 0 and P 6= 0. Let us focus on the first one:

P = 0 means that Q > 0 and (101) gives

λ̃ = ±
√
−Q (114)

These are complex solutions since Q > 0 and Q < 0 does not fulfil the main condition, namely
P 2 < 4Q. But Q = 0 gives one solution λ = 0. Insert Q with condition Q > 0 into (95) and one
find the condition for onset of oscillation when P = 0:

τ >
β
(
k̃2
y − k̃2

x

)(
nk̃4

x + (n+ 1)k̃2
xk̃

2
y + k̃4

y

) (115)

For metal case, it is similar but it is best to find the condition with parameter β in stead of τ
since parameter n is function of τ . Also, it gives

β >
τ
(
k̃4
x + n(τ)+1

n(τ) k̃xk̃y + k̃4
y

n(τ)

)
k̃2
y − k̃2

x

(116)

where n(τ) = s− (s− 1) τm

τ For both cases,with and without deposed metal, the observations are
equivalent since n(τ) does not change much the imaginary solutions.

The physical interpretation concerning the onset/offset of oscillations is that the oscillations appear
when one attains the borders zone between stable and unstable regions. The system has tendency
to go up to ”unstable state”, then goes down to ” stable state”. This up-down motion is called
thermo-magnetic oscillations.
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Chapter 6

6 Main conclusions

The idea to suppress the avalanches with metal is old; several theoretical and experimental
frameworks have been established to describe this phenomenon[2],[3],[4],[9]. Superconducting cab-
les are embedded in metal such that the suppression of flux jumps takes place in superconductors.
It can be due to the improved heat conductivity in the metal layer. Recently, Fabianos experiment
[49] showed that the metal does not need to be in contact with superconducting sample to observe
suppression of thermomagnetic instability in superconductor. It means that the thermal contact is
not the only reason for stabilization of thermomagnetic instability, but the electrodynamic braking
might be responsible for this effect.

In thesis, I essentially apply the known idea about the thermo-magnetic instability to electrodyna-
mic braking. The electrodynamic braking is suggested to describe the suppression of avalanches in
superconductor with metal in sandwich form geometry[see fig.12]. This effect stops or suppresses
the motion of flux jumps in superconducting sample using electromagnetic force. My work focused
on this breaking effect. A model for electrodynamic braking was made to explain the suppression
of exciting type of avalanches and to prove that the early experiments [2] and [3] work theoretically.

To study the thermomagnetic instability that takes place in superconductor, the linear stability
analysis of thermal diffusion and simple electrodynamic equations of Maxwell seems to be useful. I
analyzed the thermomagnetic instability in superconductor by starting to establish the boundary
condition and solving the quadratic equation. The suppression of thermomagnetic instability due
to thermal contact is briefly treated in chapter 3 since there are many publications that confirm
theoretically and experimentally this case.

For electrodynamic braking theory, a simple model based on Gurevich and Mints paper [3] was
built. The model consists of a superconducting sample coating by a metal layer in sandwich form.
The model leads to a dispersion equation for instability increment. Solving this quadratic or dis-
persion equation, it gives physical interpretation of stability in steak of superconductors and metal,
and the results are:

a. Factor n(τ) in (86) decreases when the conductivity for metal is added. Decreasing n(τ) cor-
responds to large stability in superconductors since the maximal real part of dispersion equation
for instability increment becomes negative. Also, the system becomes more stable against nuclea-
tion.[see fig.14 , fig.15 fig.16]

b. Increasing values of the wave number k̃x ensure that the system becomes more stable. This
is related to the fact that large values of k̃x corresponds to small depth of flux penetration, and
hence to more stable situation.[see fig.15]

c. Larger conductivity of metal leads to large stability in superconducting sample. The conducti-
vity of metal σm corresponds to small parameter in equation (54) such that the system becomes
more stable [see fig.17]. The result in this figure 17 is a prediction that can be tested on a new
experiment.

d. Increasing the thickness of metal layer leads to stabilize the superconducting sample effici-
ently. This is based on equation (87) taking in account the metallic part through ratio between
the current density j and critical current density jc(see Appendix F). The result is in agreement
with experimental results[5].[see fig.18]
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List of parameters
• j: current density.

• jc: critical current density.

• b: The length scale.

• C: specific heat capacity.

• T : temperature.

• Tc: critical temperature.

• τ : dimensionless parameter, ratio between thermal and magnetic diffusion

• τm: ratio between thermal and magnetic diffusion in metal.

• τs: ratio between thermal and magnetic diffusion in superconductor.

• β: dimensionless parameter that characterize the perturbation form external source.

• t0: the time scale.

• λ: dimensionless parameter(see Equ.60).

• λ̃: λ̃ = t0λ.

• λ̃max: maximum real solutions of dispersion equation for λ̃ and determine whenever the
system is unstable.

• λL: London penetration depth

• ξ: coherence length

• κ: a) thermal conductivity, b) Ginzburg-Landau parameter,ratio between London penetra-
tion depth and coherence length.

• ρ: resistivity.

• ρ0: initial resistivity.

• kx and ky: wave numbers that characterizes the scale for perturbation.

• k̃x and k̃y: ˜kx,y = bkx,y

• σ: differential electric conductivity defined as σ = ∂j
∂E .

• x: the fraction of superconducting part (see fig.12)

• σ
(
s

1): electric conductivity in superconductor.

• σs: differential conductivity in superconductor.

• σm: electric conductivity in metal.

• s: ratio between the electric conductivity and differential conductivity

• σ(1): total electric conductivity of superconductor coated with metal

• j
(
s

1): current density in superconductor

• α: dimensionless parameter, defined as the product between the resistivity and the electric
conductivity.
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Figurer
1 Dendritic flux structures seen on the image where they abruptly penetrate the film in

response to slowly increasing applied field. Bright green color corresponds to magne-
tic field penetrated into body of superconductor. The dendrites were formed at applied
field 17 mT and temperature 9.9 K. Pictures are taken from the internet site of Su-
perconductivity Laboratory at the University Oslo (http://WWW.fys.uio.no/super/) 3

2 Magneto optical (MO) images of flux penetrations into the virgin states of MgB2
thin films at 3.8 K for gold thickness of (a) 0, (b) 0.2, (c) 0.9, and (d) 2.55Âµm.
The images were taken at an applied field of 34mT . Pictures are taken from the
internet site Eun-,I CChoi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 difference between Helmholtz free energy density in the superconducting(α < 0 or
T < Tc ) and normal (α > 0 or T > Tc) state, depending on the order parameter
in the Ginzburg-Landau theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 The structure of magnesium diboride, Magnesium in blue color and Boron in yel-
low/red color (image from [45] grants anyone the right to use this work for any
purpose, without any conditions, unless such conditions are required by law). . . . . 9

5 Dependence of the internal field Bz(x) , current density jy(x) and applied field given
by: (a) Bapp

µ0jca
= 1

2 ,(b)
Bapp

µ0jca
= 1, and (c) Bapp

µ0jca
= 2 . This and subsequent figures are

drawn for the Bean model from [40]. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Superconductor geometry without metal coating . . . . . . . . . . . . . . . . . . . . 13
7 The plot of parameter β as function of temperature T .β is max when the charac-

teristic length scale b is max(b = 2mm)and β is min when b is min(b = 6.6µm)
according to Equ.(68) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 The plot of parameter τ as function of electric field [log(E/Emax)].τ is maximum
when the electric field E is minimum(E = 10−5V/m)and τ is minimum when E is
maximum(E = 7.103V m)according to Equ.(71). . . . . . . . . . . . . . . . . . . . 23

9 The instability increment Re(λ) found from Eq.(63) for n = 10 ,β = 1,and different
kx: a. Slow heat diffusion,the maximal <(λ) is at finite ky. b.fast heat diffusion,<(λ)
corresponds to uniform perturbations(ky = 0). . . . . . . . . . . . . . . . . . . . . . 25

10 The plot of increment Re(λ(ky)) from Equ.(63) with different β. These plots show
that the decreasing of parameter β stabilize the system. . . . . . . . . . . . . . . . . 26

11 The zero contour plot of max Re(λ) in τ and β.The left side of λ = 0line is stable
region and the right side is unstable region. The stability of system corresponds to
increasing kx,y according to Equ.(68). . . . . . . . . . . . . . . . . . . . . . . . . . 27

12 Geometry of superconductors with deposed metals in sandwich form . . . . . . . . . 30
13 Instability phase diagram in the plane magnetic field-electric field. The horizontal

line corresponds to the adiabatic criterion for uniform jumps,Eq.(93).For E > Ec,
the instability has a finger structure, and the criterion is given by Eq.(99) . . . . . 33

14 The instability increment Reλ(ky)foundfromEq.(88).Bothcases, with/withoutmetalcoatingfor :
a.smallτs,high electric field, b. for large τs, low electric field. Both plots show that
the system becomes more stable when τm 6= 0,i.e,metal contribution. . . . . . . . . 34

15 This is zero contour plot of max <(λ) from Eq.(88) as function of parameters τ
and β. The blue line is the case with no metal coating(τm = 0), the green and the
red line is the case with metal coating(τm = 0.1).s = 10 in Equ.(87). One sees
the deposed metal makes the system to be more stable,i.e, it increases the stability
region.In addition red line shows that the system becomes more stable when kx, the
wave number that characterises the flux penetration,increases. . . . . . . . . . . . . 35

16 This is the instability phase diagram in the plane magnetic field-electric field.Stability’s
area increases after been coated with metal.This shows that the metal suppressed the
sudden appearance of the fingering flux avalanches. . . . . . . . . . . . . . . . . . 36
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17 This is the instability phase diagram in the plane magnetic-electric field showing the
stabilisation with two different metals: a. metal A (with ρ = 10−9Ωm) and metal B
(with ρ = 10−10Ωm). b. the stabilisation area for metal B is larger than the one for
metal A.This means that metal with low resistivity or high conductivity stabilizes
the system better than poor metal with high resistivity or low conductivity. . . . . . 38

18 This is the stability phase diagram in the plane magnetic-electric field showing the
stabilisation of the system with covered metal (With τs0 = 0.1 and τm0 = 0.01,see
Eq.106-107) thickness of: a)a = 1, b)x = 0.5, c)x = 0.1.In fig.18 B all three phase
diagrams are represented together. The diagrams show that the system becomes more
stable with decreasing x.Parameter τm(or σm) increases as consequence of decreas-
ing x. Higher conductivity σm stabilized the system as showed in fig.17 above. . . . 40
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Appendix

A. Proof of δE = δEy and δj = δjy,assume Ex = 0 and jx = 0

E + δE =
√

(Ex + δEx)2 + (Ey + δE)2

=
√
E2
x + 2ExδEx + Ex + 2EyδEy + E2

y

=
(
E2 + 2Ey

)1 /2 = E + δEy
E + δE = E + δEy (117)

Similar process for the current density, j + δj =
√

(jx + δjx)2 + (jy + δj)2

=
√
j2
x + 2jxδjx + jx + 2jyδjy + j2

y

=
(
j2 + 2jδjy

)1 /2

j + δj = j + δjy (118)

B. Proof of the current voltage curve

The exact form of current voltage curve can be written in this form,

−→
j = j (T,E)

(−→
E

E

)
(119)

Since the vector −→E is parallel to the yaxis, it has been showed in appendix A δE = δEy. As result
of linearisation of current-voltage curve, one can show that

δ
−→
j =

(
∂jc
∂T

δT + σδEy

) −→
E

E + jc
δEx

E

(120)

also,
−→
j + δ

−→
j = −→j (E, T ) + ∂

−→
j

∂Ex x
+ ∂
−→
j

∂Ey y
+ ∂
−→
j

∂T
δT (121)

Reduce (121) with definition in (119) and it gives,

δ
−→
j = ∂

−→
j

∂Ex
δEx + ∂

−→
j

∂Ey
δEy + ∂

−→
j

∂T
δT (122)

Insert the differential conductivity σ = ∂
−→
j

∂Ey
in (122) and assume −→j = jc in x-axis, it gives

δ
−→
j = ∂

−→
jx

∂Ex
δEx + σδEy + ∂jc

∂T
δT (123)

Thus the linearisation of (123) can finally be shown,

−→
j
(−→
E + δ

−→
E , T + δT

) −→E
E

=
(−→
j + δ

−→
j
) −→E
E

(124)

δ
−→
j =

(
∂jc
∂T

+ σy

) −→
E

E
+ jc

δEx
E

(125)
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C. The electric conductivity in SC σs

The total current density is defined as

−→
j = σs

−→
E (126)

where the total electric conductivity σtotal = xσs + (1− x) and x is the factor of superconducting
part. By choosing x = 1, it gives

−→
j = σs

−→
E (127)

The electric conductivity in superconductor can be found now. One often uses the power law
relation:

E = ρ0

(
j

jc

)n
jc (128)

Let find the fraction
(
j
jc

)n
= E

ρ0jc
,

j

jc
=
(
E

ρjc

) 1
n

(129)

Insert (129) into (128), it gives

E = ρ

(
E

ρ0jc

)n−1
n −→

j (130)

Such that −→j = 1
ρ0

(
E
ρ0jc

)n−1
n −→

E = σs
−→
E . Also, the electric conductivity in superconductor is

σs = σ0

(
E

E0

)n−1
n

(131)

D. Relationship between differential conductivity σ and conductivity in SC σs

In appendix C above, the current density was found to be

j = σ0

(
E

E0

)n−1
n −→

E = σ0

E−0
1

(
E

E0

) 1
n

(132)

The differential conductivity is σ = ∂j
∂E such that it gives

σ = ∂j

∂E
= 1
n
σ0

(
E

E0

)n−1
n

(133)

σ = 1
n
σs (134)

Also, the relationship between differential conductivity and conductivity in SC without metal
coating is

σ = 1
n
σs (135)
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E. n as function of parameter τ

The parameter n is defined as n ≡ jc

σE and assuming Mints and Gurevichs model in [3], the
total conductivity is σ(1) = σtotal = xσs + (1− x)σm. Using (), it gives

E = j

xσs + (1− x)σm
(136)

Insert (136) into n ≡ jc

σE , it gives

n = s
xσs + (1− x)σm
xσs + s(1− x)σm

(137)

Where the electric conductivity in metal is σm = τmC
µ0κ(1−x)

Insert the rest of parameters into (137) , n can be written in another form as function of electric
field ,

n(E) = s
j

j − (1− s)(1− x)σmE
(138)

Or as a function of parameter τ ,

n(τ) = s− (s− 1) τm
τtotal

(139)

F. Dimensionless ratio j
jc

Assume the superconductor geometry in sandwich form (see fig.12), the total current density
is sum of metal and superconductor parts:

j = xjs + (1− x)σmE (140)

Where jc is the current density in superconductor,x is the superconducting fraction part and
(1− x)the non-superconducting part, and σm is the electric conductivity in metal.

Consider js = jc in superconductor such that the dimensionless ratio:

j

jc
= xjc + (1− x)σmE

xjc
= 1 + (1− x)σmE

xjc
(141)

Let call this ratio r = j
jc

and r can be express with parameter τ terms. The parameter τ is
the sum of superconducting and metal parts,

τ = τs + τm (142)

Where τs = xµ0κσs

C and (1−x)µ0κσm

C The fraction between these two ratios σm and σs is

τm
τs

= −xσmsE
xjs

(143)

Insert (143) into (141), it gives
r = j

jc
= 1 + 1

s

τm
τs

(144)
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Resistivity ρ 7µωcm
Thermal conductivity κ 170 W/Km( TTc

)3

Heat Capacity C 35kJ/Km3( TTc
)3

Critical temperature Tc 39 K
Critical current at T = 0K 1011A/m2

Thickness d 400 nm
Strip half-width 2 mm
Temperature T0 0.15Tc

Max <(λ̃) < 0 Max <(λ̃) > 0 λ̃ = −P+
√
P 2−4Q

2
Stable; No oscillations Unstable No oscillations P 2 > 4Q, real solutions

Stable Unstable P 2 < 4Q, imaginary solution
Oscillations Oscillations P 2 < 4Q, imaginary solutions

Table.1 and 2 : 1. parameters values of MgB2, 2. Solutions to dispersion equation for λ̃

55



.

56



Referanser
[1] A.L.Rakhmanov, D.V.Shantsev, Y.M.Galperin and T.H.Johansen: Phys.Rev, B 70 ,224502

(2004)

[2] R.G.Mints, A.L.Rakhmanov: Rev.Mod.Phys, 53 ,551 (1981)

[3] A.V.Gurevich: ’Self heating’, New York (1997)

[4] E.M.Choi, H.S.Lee, H.J.Kim and B.Kang: App.Rev., Let.87 ,152501(2005)

[5] D.V.Denisov, D.V.Shantsev, Y.M.Galperin, E.M.Choi, H.S.Lee, S.I.Lee, A.V.Bobyl,P.E.Goa,A.A.F.Olsen
and T.H.Johansen: Phys.Rev, Lett. 97 ,077002(2006)

[6] D.V.Denisov, D.V.Shantsev, Y.M.Galperin and T.H.JOhansen: Phys.Rev, B 73,014512(2006)

[7] V.V.Yurchenko, D.V.Shantsev, M.R.Nevala, I.J.Maasilta, K.Senapati, R.C.Budhani and
T.H.Johansen: Phys.Rev, B 90 ,224442 (2007)

[8] A.P.Sutton: Oxford,’Electronic Structure of Materials’ Oxford Science Publications2004)

[9] Z.Fisk, H.R.Ott: Elsevier, ’Comtemporary Concepts of Condensed Matter Science’ (2011)

[10] A.K.Saxena: Springer, ’High Temperature Superconductors’, Springer(2010)

[11] D.J.Griffiths: ’Introduction to Quantum Mechanics’ Pearson,Second Edition(2005)

[12] R.Tilley: Willey Longman Edition ’Understanding Solids’(2011)

[13] D.V.Schroeder: ’Thermal Physics’ Willey Longman Edition(2000)

[14] M.Baziljevich, D.V.Shantsev, Y.M.Galperin, E.M.Choi, H.S.Lee, S.I.Lee, P.E.Goa and
T.H.Johansen: Europhys, Lett. 59 ,599(2002)

[15] G.Mints, A.L.Rakhmanov: J.Phys, Appl.hys. 9 ,2281(1976)

[16] M.N.Wilson: ’Superconducting magnets’, Oxford ClarendonPress(1983)

[17] B.Surzhenko, S.Schauroth, D.Litzkendorf, M.Zeisberger, T.Habisreuther and W.Gawalek: Su-
percond., Sci.Techno. 14 ,70(2001)

[18] R.G.Mints: JETP., Lett. 27 ,417(1978)

[19] Hancox: Phys.Rev, Lett. 16 ,208(1965)

[20] U.Bolz, J.Schiessling, B.U.Runge, P.Leiderer: Physica., B. 284 ,288757(2000)

[21] C.P.Bean: Phys.Rev.Lett., B. 8 ,250(1962)

[22] C.P.Bean: Mod.Phys.Rev, B. 36 ,31(1964)

[23] J.Albrecht and H.U.Habermeier: Phys.Rev, Lett. 98 ,117(2007)

[24] D.V.Denisov: et al.Phys.Rev, B. 73 ,014512(2006)

[25] M.Baziljevich: et al.Phys.Rev. Amsterdam, C. 369 ,93(2002)

[26] M.Xu, D.Shi and F.Fox: Phys. Rev., B. 42 ,10773(1990)

[27] L.Ji, R.H.Sohn, G.C.Spalding,C.J.Lobb and M.Tinkham: Phys. Rev., B. 40 ,10936(1989)

[28] Y.B.KIM, C.F.Hempstead and A.R.Stranad: Phys. Rev., B. 9 ,306-309(1989)

[29] L.Legrand, I.Rosenman, C.Simon and G.Collin: Physica, C. 211 ,239(1993)

57



[30] K.Eliasen: Master thesis, ’Investigation of thermomagnetic instability in superconducting NbN
thin-films by automated real-time magneto-optical imaging’(2007)

[31] A.Abrikosov: Soviet Physics JETP 5., B. 1442 ,1452(1957)

[32] H.Kamerlingh Onnes: Leiden Communications, 12 ,120(1911)

[33] F.Kedves: Estimation of maximum electrical resistivity of High Critical Temperature, Solid
State Communications ,63:991-992(1987)

[34] C.Poole, H.Farach, R.Creswick and R.Prozorov: Academic Press, Second Edition(2007)

[35] "CERN releases analysis of LHC incident"(Press release). CERN Press Office. 16 October
2008. Retrieved 2009-09-28.

[36] "CERN inaugurates the LHC"(Press release). CERN Press Office. 21 October 2008. Retrieved
2008-10-21.

[37] E.Altshuler and T.H.Johansen: Phys.Rev.Mod.,0034-6861 Volume ,76(2004)

[38] A.Abrikosov: Soviet Physics JETP 5., B. 1442 ,1452(1957)

[39] V.K.Christensen,V.Malthe-SÃ¸rensen,J.Feder,T.JÃ¸ssang and P.Meakin: Nature.London
379 ,49(1996)

[40] R.R.Cruz and E.Altshuler: Phys.Rev., B. 63 ,094501(2001)

[41] C.J.C.Reichhardt and F.Nori: Phys.Rev., B. 56 ,6175(1997)

[42] de Gennes,P.G: Superconductivity of Metals and Alloys, (Benjamin ,New York)((1966)

[43] R.J.Zieve, J.R.Clem, M.McElfresh, and M.Darwin: Phys.Rev, (B 49)9802((1966)

[44] G.Blatter, M.V.Feigel’man, A.I.Larkin, and V.M.Vinokur: Mod.Rev, (66), 9802((1994)

[45] C.A Duran: Phys.Rev, B 52), 751195((1995)

[46] P.Leideren: et al.Phys.Rev, Lett. 71), 751195((1993)

[47] S.Jin, H.Mavoori, C.Bower: Nature, 411, 563-565(2001)

[48] I.Aranson, A.Gurevich, M.Welling, R.Wijngaarden, V.Vlasko-Vlasov, V.Vinokur, and
U.Welp: Phys.Rev.Lett., B 94), 037002((2005)

[49] C.Fabiano, E.Choi, J.Lee, S.I.Lee, E.J.Patino, M.G.Blamire, and T.H.Johansen: et al.
App.Phys.Rev., ISSN 003-6951((2010)

[50] L.Wipf: Cryogenics, 31,936(1991)

58



.




	FRONTPAGE1.pdf
	thesisphysSC2012.pdf
	Introduction
	Short word about the history of Superconductor
	Motivation for this thesis
	General description of thermomagnetic instability
	Materials parameters
	Ginzburg- Landau Theory
	Ginzburg-Landau equation
	Coherence length and London penetration depth
	Superconductor type I and type II

	Superconductor MgB_2
	The Bean model
	Road-map

	Linearised equation for thermomagnetic instability
	Sample geometry
	Basic Equation
	Perturbation Analysis
	Linearisation of dimensionless equation
	Calculations
	Dimensionless Parameters

	The dispersion relation for 

	Thermomagnetic instability in bulk superconductor without metal coating
	Thermal contact
	The key dimensionless parameters
	Result and discussion
	Boundary conditions 
	The physical interpretation of dispersion equation for 

	Summary

	 Suppression of thermomagnetic instability in bulk superconductor with metal coating
	Magnetic braking
	Model for suppression of thermomagnetic instability with metal coating 
	Result and Discussion
	Phase diagram for flux jumps instability without metal coating
	Stabilization of thermo-magnetic instability with metal coating
	Role of metal proprieties in stabilisation process
	The role of thickness in stabilisation process

	Summary

	Onset/Offset of oscillations
	Main conclusions


