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This paper develops methodology that provides a toolbox for routinely
fitting complex models to realistic spatial point pattern data. We consider
models that are based on log-Gaussian Cox processes and include local inter-
action in these by considering constructed covariates. This enables us to use
integrated nested Laplace approximation and to considerably speed up the
inferential task. In addition, methods for model comparison and model as-
sessment facilitate the modelling process. The performance of the approach
is assessed in a simulation study. To demonstrate the versatility of the ap-
proach, models are fitted to two rather different examples, a large rainforest
data set with covariates and a point pattern with multiple marks.

1. Introduction.

1.1. Complex point process models. These days a large variety of complex
statistical models can be fitted routinely to complex data sets as a result of widely
accessible high-level statistical software, such as R [R Development Core Team
(2009)] or winbugs [Lunn et al. (2000)]. For instance, the nonspecialist user can
estimate parameters in generalized linear mixed models or run a Gibbs sampler to
fit a model in a Bayesian setting, and expert programming skills are no longer re-
quired. Researchers from many different disciplines are now able to analyze their
data with sufficiently complex methods rather than resorting to simpler yet nonap-
propriate methods. In addition, methods for the assessment of a model’s fit as well
as for the comparison of different models are widely used in practical applications.

The routine fitting of spatial point process models to complex data sets, how-
ever, is still in its infancy. This is despite a rapidly improving technology that
facilitates data collection, and a growing awareness of the importance and rele-
vance of small-scale spatial information. Spatially explicit data sets have become
increasingly available in many areas of science, including plant ecology [Burslem,
Garwood and Thomas (2001); Law et al. (2001)], animal ecology [Forchhammer
and Boomsma (1995, 1998)], geosciences [Naylor et al. (2009); Ogata (1999)],
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molecular genetics [Hardy and Vekemans (2002)], evolution [Johnson and Boer-
lijst (2002)] and game theory [Killingback and Doebeli (1996)], with the aim of
answering a similarly broad range of scientific questions. Currently, these data
sets are often analyzed with methods that do not make full use of the available
spatially explicit information. Hence, there is a need for making existing point
process methodology available to applied scientists by facilitating the fitting of
suitable models.

In addition, real data sets are often more complex than the classical data sets
that have been analyzed with point process methodology in the past. They often
consist of the exact spatial locations of the objects or events of interest, and of
further information on these objects, that is, potentially dependent qualitative as
well as quantitative marks or spatial covariates [Burslem, Garwood and Thomas
(2001); Moore et al. (2010)]. There is an interest in fitting complex joint models to
the marks (or the covariates) as well as to the point pattern. So far, the statistical
literature has discussed few examples of complex point process models of this
type.

There have been previous advances in facilitating routine model fitting for spa-
tial point processes, in particular, for Gibbs processes. Most markedly, the work
by Baddeley and Turner (2000) has facilitated the routine fitting of Gibbs point
processes based on an approximation of the pseudolikelihood to avoid the issue of
intractable normalizing constants [Berman and Turner (1992); Lawson (1992)] as
well as the approximate likelihood approach by Huang and Ogata (1999). Work by
Baddeley et al. (2005) and Stoyan and Grabarnik (1991) has provided methods for
model assessment for some Gibbs processes. Many of these have been made read-
ily available through the library spatstat for R [Baddeley and Turner (2005)].

However, most Gibbs process models considered in the literature are relatively
simple in comparison to models that are commonly used in the context of other
types of data. In an attempt to generalize the approach in Baddeley and Turner
(2005), Illian and Hendrichsen (2010) include random effects in Gibbs point pro-
cesses but more complex models, such as hierarchical models or models including
quantitative marks, currently cannot be fitted in this framework. Similarly, meth-
ods for model comparison or assessment considered in Baddeley et al. (2005) and
Stoyan and Grabarnik (1991) are restricted to relatively simple models. Further-
more, both estimation based on maximum likelihood and that based on pseudo-
likelihood are approximate so that inference is not straightforward. The approx-
imations become less reliable with increasing interaction strength [Baddeley and
Turner (2000)].

Cox processes are another, flexible, class of spatial point process models
[Møller and Waagepetersen (2007)], assuming a stochastic spatial trend makes
them particularly realistic and relevant in applications. Even though many the-
oretical results have been discussed in the literature for these [Møller and
Waagepetersen (2004)], the practical fitting of Cox point process models to point
pattern data remains difficult due to intractable likelihoods. Fitting a Cox process
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to data is often based on Markov chain Monte Carlo (MCMC) methods. These
require expert programming skills and can be very time-consuming both to tune
and to run [Møller and Waagepetersen (2004)] so that fitting complex models
can easily become computationally prohibitive. For simple models, fast mini-
mum contrast approaches to parameter estimation have been discussed [Møller
and Waagepetersen (2007)].

However, approaches to routinely fitting Cox process models have been dis-
cussed very little in the literature; similarly, methods for model comparison or
assessment for Cox processes have rarely been discussed in the literature [Illian
and Rue (2010); Illian et al. (2012)]. To the authors’ knowledge, Cox processes
have not been used outside the statistical literature to answer concrete scientific
questions. Within the statistical literature Cox process models have focused on the
analysis of relatively small spatial patterns in terms of the locations of individual
species. Very few attempts have been made at fitting models to both the pattern and
the marks [Ho and Stoyan (2008); Myllymäki and Penttinen (2009)], in particu-
lar, not to patterns with multiple dependent continuous marks, and joint models of
covariates and patterns have not been considered.

This paper addresses two issues. It develops complex joint models and, at the
same time, provides methods facilitating the routine fitting of these models. This
provides a toolbox that allows applied researchers to appropriately analyze realistic
point pattern data sets. We consider joint models of both the spatial pattern and
associated marks as well as of the spatial pattern and covariates. Using a Bayesian
approach, we provide modern model fitting methodology for complex spatial point
pattern data similar to what is common in other areas of statistics and has become
a standard in many areas of application, including methods for model comparison
and validation. The approach is based on integrated nested Laplace approximation
(INLA) [Rue, Martino and Chopin (2009)], which speeds up parameter estimation
substantially so that Cox processes can be fitted within feasible time. In order to
make the methods accessible to nonspecialists, an R package that may be used
to run INLA is available and contains generic functions for fitting spatial point
process models; see http://www.r-inla.org/.

1.2. Cox processes with local spatial structure. Applied researchers are aware
that spatial behavior tends to vary at a number of spatial scales as a result of differ-
ent underlying mechanisms that drive the pattern [Wiegand et al. (2007); Latimer
et al. (2009)]. Local spatial behavior is often of specific interest but the spatial
structure also varies on a larger spatial scale due to the influence of observed or
unobserved spatial covariates. Cox processes model spatial patterns relative to ob-
served or unobserved spatial trends and would be ideal models for these data sets.

However, Cox processes typically do not consider spatial structures at different
spatial scales within the same model. More specifically, a specific strength of spa-
tial point process models is their ability to take into account detailed information
at very small spatial scales contained in spatial point pattern data, in terms of the
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local structure formed by an individual and its neighbors. So far, Cox processes
have often been used to relate the locations of individuals to environmental varia-
tion, phenomena that typically operate on larger spatial scales. However, different
mechanisms operate at a smaller spatial scale. Spatial point data sets are often col-
lected with a specific interest in the local behavior of individuals, such as spatial
interaction or local clustering [Law et al. (2001); Latimer et al. (2009)].

We consider an approach to fitting Cox process models that reflects both the
local spatial structure and spatial behavior at a larger spatial scale by using a con-
structed covariate together with spatial effects that account for spatial behavior at
different spatial scales. This approach is assessed in a simulation study and we
also discuss issues specific to this approach that arise when several spatial scales
are accounted for in a model.

This paper is structured as follows. The general methodology is introduced in
Section 2. In Section 3 we investigate the idea of mimicking local spatial behavior
by using constructed covariates in a simulation study in the context of (artificial)
data with known spatial structures and inspect patterns resulting from the fitted
models. Section 4 discusses a joint model of a large point pattern and two empirical
covariates along with a constructed covariate and fits this to a rainforest data set.
A hierarchical approach is considered in Section 5, where both (multiple) marks
and the underlying pattern are included in a joint model and fitted to a data set of
eucalyptus trees and koalas foraging on these trees.

2. Methods.

2.1. Spatial point process models. Spatial point processes have been dis-
cussed in detail in the literature; see Stoyan, Kendall and Mecke (1995), van
Lieshout (2000), Diggle (2003), Møller and Waagepetersen (2004, 2007) and Illian
et al. (2008). Here we aim at modeling a spatial point pattern x = (ξ1, . . . , ξn), re-
garding it as a realization from a spatial point process X. For simplicity we con-
sider only point processes in R

2, but the approaches can be generalized to point
patterns in higher dimensions.

We refer the reader to the literature for information on different (classes of)
spatial point process models such as the simple Poisson process, the standard
null model of complete spatial randomness, as well as the rich class of Gibbs
(or Markov) processes [van Lieshout (2000)]. Here, we discuss the class of Cox
processes, in particular, log-Gaussian Cox processes. Cox processes lend them-
selves well to modeling spatial point pattern data with spatially varying envi-
ronmental conditions [Møller and Waagepetersen (2007)], as they model spatial
patterns based on an underlying (or latent) random field �(·) that describes the
random intensity, assuming independence given this field. In other words, given
the random field, the point pattern forms a Poisson process. Log-Gaussian Cox
processes as considered, for example, in Møller, Syversveen and Waagepetersen
(1998) and Møller and Waagepetersen (2004, 2007), are a particularly flexible



FITTING COMPLEX SPATIAL POINT PROCESS MODELS WITH INLA 1503

class, where �(s) has the form �(s) = exp{Z(s)}, and {Z(s)} is a Gaussian ran-
dom field, s ∈ R

2. Other examples of Cox processes include shot-noise Cox pro-
cesses [Møller and Waagepetersen (2004)].

Here, we consider a general class of complex spatial point process models based
on log-Gaussian Cox processes that allows the joint modeling of spatial patterns
along with marks and covariates. We include both small and larger scale spatial
behavior, using a constructed covariate and additional spatial effects. The resulting
models can be regarded as latent Gaussian models and, hence, INLA can be used
for parameter estimation and model fitting.

2.2. Integrated nested Laplace approximation (INLA). Cox processes are a
special case of the very general class of latent Gaussian models, models of an out-
come variable yi that assume independence conditional on some underlying latent
field ζ and hyperparameters θj , j = 1, . . . , J . Rue, Martino and Chopin (2009)
show that if ζ has a sparse precision matrix and the number of hyperparameters is
small (i.e., ≤7), inference based on INLA is fast.

The main aim of the INLA approach is to approximate the posteriors of interest,
that is, the marginal posteriors for the latent field π(ζi |y), and the marginal poste-
riors for the hyperparameters π(θ j |y), and use these to calculate posterior means,
variances, etc. These posteriors can be written as

π(ζi |y) =
∫

π(ζi |θ ,y)π(θ |y) dθ ,(2.1)

π(θj |y) =
∫

π(θ |y) dθ−j .(2.2)

The nested formulation is used to compute π(ζi |y) by approximating π(ζi |θ ,y)

and π(θ |y), and then to use numerical integration to integrate out θ . This is feasi-
ble, since the dimension of θ is small. Similarly, π(θj |y) is calculated by approxi-
mating π(θ |y) and integrating out θ−j .

The marginal posterior in equations (2.1) and (2.2) can be calculated using the
Laplace approximation

π̃(θ |y) ∝ π(ζ , θ,y)

π̃G(ζ |θ ,y)

∣∣∣∣
ζ=ζ ∗(θ)

,

where π̃G(ζ |θ ,y) is the Gaussian approximation to the full conditional of ζ , and
ζ ∗(θ) is the mode of the full conditional for ζ , for a given θ . This makes sense,
since the full conditional of a zero mean Gauss Markov random field can often
be well approximated by a Gaussian distribution by matching the mode and the
curvature at the mode [Rue and Held (2005)]. Further details are given in Rue,
Martino and Chopin (2009) who show that the nested approach yields a very ac-
curate approximation if applied to latent Gaussian models. As a result, the time
required for fitting these models is substantially reduced.
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2.3. Fitting log-Gaussian Cox processes with INLA. The class of latent Gaus-
sian models comprises log-Gaussian Cox processes and, hence, the INLA ap-
proach may be applied to fit these. Specifically, the observation window is
discretized into N = nrow × ncol grid cells {sij }, each with area |sij |, i =
1, . . . , nrow, j = 1, . . . , ncol. The points in the pattern can then be described by
{ξijkij

} with kij = 1, . . . , yij , where yij denotes the observed number of points in
grid cell sij . We condition on the point pattern and, conditionally on ηij = Z(sij ),
we have

yij |ηij ∼ Po(|sij | exp(ηij ));(2.3)

see Rue, Martino and Chopin (2009).
We model ηij as

ηij = β0 + f (zc(sij )) + f1s(sij ) + · · · + fps(sij ) + uij ,(2.4)

where the functions f1s(sij ) + · · · + fps(sij ) are spatially structured effects that
reflect large scale spatial variation in the pattern. These effects are modeled using
a second-order random walk on a lattice, using vague gamma priors for the hy-
perparameter and constrained to sum to zero [Rue and Held (2005)]. In the mod-
els that we discuss below, the spatially structured effects relate to observed and
unobserved spatial covariates as discussed in the examples in Sections 4 and 5.
Including spatial covariates directly in the model as fixed effects in addition to
the random effects is straightforward. For simplicity, we omit these in equation
(2.4) since this is not relevant in the specific data sets and models discussed below.
uij denotes a spatially unstructured zero-mean Gaussian i.i.d. error term, using a
gamma prior for the precision.

Further, zc(sij ) denotes a constructed covariate. Constructed covariates are sum-
mary characteristics defined for any location in the observation window reflecting
inter-individual spatial behavior such as local interaction or competition. We as-
sume that this behavior operates at a smaller spatial scale than spatial aggregation
due to (observed or unobserved) spatial covariates, and hence the spatially struc-
tured effects. The use of constructed covariates yields models with local spatial
interaction within the flexible class of log-Gaussian Cox process models. It avoids
issues with intractable normalizing constants that are common in the context of
Gibbs processes [Møller and Waagepetersen (2004)], since the covariates operate
directly on the intensity of the pattern rather than on the density or the conditional
intensity [Schoenberg (2005)].

The functional relationship between the outcome variable and the constructed
covariate is typically not obvious and might often not be linear. We thus estimate
this relationship explicitly by a smooth function f (zc(sij )) and inspect this es-
timate to gain further information on the form of the spatial dependence. This
function will be modeled as a first-order random walk, also constrained to sum to
zero.
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The constructed covariate considered in this paper is based on the nearest point
distance, which is simple and fast to compute. Specifically, for each center point
of the grid cells we find the distance to the nearest point in the pattern outside this
grid cell as

zc(sij ) = d(sij ) = min
ξl∈x\sij

(‖cij − ξl‖),(2.5)

where cij denotes the center point of cell sij and ‖ · ‖ denotes the Euclidean dis-
tance. Defined this way, the constructed covariate can be used both to model local
repulsion and local clustering.

During the modeling process, methods for model comparison based on the de-
viance information criterion (DIC) [Spiegelhalter et al. (2002)] may be used to
compare different models with different levels of complexity. Furthermore, both
the (estimated) spatially structured field and the error field in (2.4) may be used to
assess the model fit. The spatially structured effect may be used to reveal remain-
ing spatial structure that is unexplained by the current model and the unstructured
effects may be interpreted as a spatial residual. This provides a method for model
assessment akin to residuals in, for example, linear models.

This approach yields a toolbox for fitting, comparing and assessing realistically
complex models of spatial point pattern data. We show that different types of flex-
ible models can be fitted to point pattern data with complex structures using the
INLA approach within reasonable computation time. This includes joint models
of large point patterns and covariates operating on a large spatial scale and local
clustering (Section 4) as well as of a pattern with several dependent marks which
also depend on the pattern (Section 5).

2.4. Issues of spatial scale. In the natural world, different mechanisms operate
at different spatial scales [Steffan-Dewenter et al. (2002)], and hence are reflected
in a spatial pattern at these scales. It is crucial to bear this in mind during the anal-
ysis of spatial data derived from nature, including spatial point pattern data. Some
mechanisms, such as seed dispersal in plants or territorial behavior in animals,
may operate at a local spatial scale, while others, such as aggregation resulting
from an association with certain environmental covariates, operate on the scale of
the variation in these covariates, and hence often on a larger spatial scale. In ad-
dition, a spatial scale that is relevant in one application may not be relevant for
a different data set. Hence, the analysis of a spatial point pattern always involves
a consideration of the appropriate spatial scales at which mechanisms of interest
may operate, regardless of the concrete analysis methods. Even as early as at the
outset of a study, when an appropriately sized observation window has to be cho-
sen, relevant spatial scales operating in the system of interest have to be taken into
consideration.

During the analysis the researcher has to carefully decide if variation at a spe-
cific scale constitutes noise or whether it reflects a true signal. It is hence crucial
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to be aware of which mechanisms operate at which spatial scales prior to any spa-
tial data analysis. This may be done based on either background knowledge (such
as existing data on dispersal distances in plants or the sizes of home ranges in
territorial animals) or common sense.

In the models we discuss here, we explicitly take mechanisms operating at
several different scales into account and have to choose these sensibly, based on
knowledge of the systems. The spatially structured effect reflects spatial autocorre-
lation at a large spatial scale, whereas the constructed covariate is used to describe
small scale inter-individual behavior. In addition, since we grid the data in this
approach, the number of grid cells clearly determines the spatial resolution, espe-
cially at a small scale, and is clearly linked to computational costs and the extent
to which information is lost through gridding the data. In the following, we dis-
cuss issues related to each of these three parts of the models where spatial scale is
relevant.

A spatially structured effect is typically included in a spatial model as a spatially
structured error term, that is, in order to account for any spatial autocorrelation
unexplained by covariates in the model. INLA currently supports the 2nd order
random walk on a lattice as a model for this, with a gamma prior for the variance of
the spatially structured effect. The choice of this prior determines the smoothness
of the spatial effect and through this, the spatial scale at which it operates. This
prior has to be chosen carefully to avoid overfitting. This is particularly crucial in
the context of spatial point patterns with relatively small numbers of points, where
the gridded data are typically rather sparse [Illian et al. (2012)]. If the spatial effect
is chosen to be too coarse, it explains the spatial variation at too small a scale,
resulting in a coarse estimate of the spatially structured effect. This estimate would
perfectly explain every single data point, resulting in overfitting rather than in a
model of a generally interpretable trend. Given the role of the spatially structured
effect, it appears plausible to choose the prior so that the spatial effect operates
at a similar spatial scale as the covariate. Problems can occur when the spatially
structured effect operates at a smaller scale than the covariate, as it is then likely
to explain the data better than the covariates, rendering the model rather useless.
In the absence of covariate data, background knowledge on spatial scales may aid
in choosing the prior.

Small scale inter-individual spatial behavior is modeled by the constructed co-
variate. As mentioned, this is done to account for local spatial behavior if this is
of specific interest in the application. Again, there is a danger of overfitting, es-
pecially since the constructed covariate is estimated directly from the data. We
discuss the practicality of using a spatial constructed covariate in detail in Sec-
tion 3 and only point out here that it has to be carefully chosen, if possible with
appropriate knowledge of the specific system the data have been derived from.

The choice of prior for the spatially structured effect is strongly related to the
choice of grid size. However, in our experience the overall results often do not
change substantially when the grid size was varied within reason. In applications,
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the locations of the modeled objects as well as spatial covariates are sometimes
given on a grid with a fixed resolution. We recommend using a grid that is not
finer than that given by the data in the analysis.

3. Using a constructed covariate to account for local spatial structure—a
simulation study. In Section 4 we use a constructed covariate primarily to incor-
porate local spatial structure into a model, while accounting for spatial variation
at a larger spatial scale. To illustrate the use of the given constructed covariate
and to assess the performance of the resulting models, we simulate point patterns
from various classical point-process models. Note, however, that we do not aim at
explicitly estimating the parameters of these models but at assessing (i) whether
known spatial structures may be detected through the use of the constructed covari-
ate, as suggested here, and (ii) whether simulations from the fitted models generate
patterns with similar characteristics. In the applications we have in mind, such as
those discussed in the example in Section 4, the data structure is typically more
complicated.

For the purpose of this simulation study we consider three different situations:
patterns with local repulsion (Section 3.1), patterns with local clustering (Sec-
tion 3.2) and patterns with local clustering in the presence of a larger-scale spa-
tial trend (Section 3.3). We generate example patterns from different point process
models with these properties on the unit square. For all simulation results this ob-
servation window has been discretized into a 100 × 100 grid.

In Sections 3.1 and 3.2 we initially assume that there is no large-scale spatial
variation, with the aim of inspecting only the constructed covariate, and we con-
sider

ηij = β0 + f (zc(sij )),(3.1)

using the notation in Section 2.3. In Section 3.3 we consider both small- and large-
scale spatial structures by including a spatially structured effect fs(sij ) in addition
to the constructed covariate zc(sij ) and

ηij = β0 + f (zc(sij )) + fs(sij ).(3.2)

To evaluate a fitted model, we apply the Metropolis algorithm [Metropolis et al.
(1953)] to simulate patterns from these models and then compare characteristics
of the simulated patterns with the generated example patterns. More specifically,
for i = 1, . . . , nrow and j = 1, . . . , ncol, denote the joint distribution of y = {yij }
given the latent field η = {ηij }, by

p(y|η) = ∏
i,j

p(yij |ηij ) = ∏
i,j

exp(−λij )
λ

yij

ij

yij ! ,

where the mean λij = |sij | exp(ηij ). For a given example pattern, we first apply
INLA to find the estimate η̂ of the latent field for all grid cells. To evaluate the
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estimated function of the constructed covariate for all arguments, we apply the
splinefun command in R to perform cubic spline interpolation of the original
data points. Using the Metropolis algorithm, we assume an initial pattern x(0),
which is randomly scattered in the unit square, having the same number of points
as the original pattern. The kth step of the algorithm is performed by randomly
selecting one point of the pattern x(k−1) and proposing to move this point to a
new position drawn uniformly in the unit square. The proposal is accepted with
probability

α = min
(

1,
p(y(k)|η̂)

p(y(k−1)|η̂)

)
, k = 1,2, . . . ,

where y(k) denotes the resulting grid cell counts for x(k). The simulated patterns in
Sections 3.1–3.3 each result from 100,000 iterations of the algorithm.

3.1. Modeling repulsion. To inspect the performance of the constructed co-
variate for repulsion, we generate patterns from a homogeneous Strauss process
[Strauss (1975)] on the unit square, with medium repulsion β = 700 (intensity
parameter), γ = 0.5 (interaction parameter) and interaction radius r = 0.05 [see
Figure 1(a) for an example]. We then fit a model to the pattern as in equation
(3.1) using the constructed covariate in (2.5) [Figure 1(b)]. The shape of the esti-
mated functional relationship between the constructed covariate and the outcome
variable is shown in Figure 1(c). This function illustrates that the intensity in a
grid cell is influenced by the calculated distance in (2.5), as higher distances will
give higher intensities. Thus, the intensity is positively related to the value of the
constructed covariate, clearly reflecting repulsion. At larger distances (>0.05) the
function levels out distinctly, indicating that beyond these distances the covariate
and the intensity are unrelated, that is, the spatial pattern shows random behavior.
In other words, the functional relationship not only characterizes the pattern as
regular but also correctly identifies the interaction distance as 0.05.

The pattern resulting from the Metropolis–Hastings algorithm [Figure 1(d)]
shows very similar characteristics to those in the original pattern. This indicates
that the model based on the nearest point constructed covariate in equation (2.5)
captures adequately the spatial information contained in the repulsive pattern.

The estimated L-function [Besag (1977)] for the simulated pattern and the orig-
inal pattern confirm this impression, as they look very similar [Figure 1(e)]. Addi-
tionally, we have calculated simulation envelopes for the L-function of Strauss pro-
cesses with the given parameter values, using 50 simulated patterns and 100,000
iterations of the Metropolis algorithm for each pattern [Figure 1(f)]. We notice that
the estimated L-functions of the original patterns are well within the simulation
envelopes for all distances.
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(a) (b)

(c) (d)

(e) (f)

FIG. 1. Simulated Strauss process with medium repulsion (r = 0.05, β = 700, γ = 0.05) (a), the
associated constructed covariate for this pattern (b), the estimated functional relationship between
the outcome and the constructed covariate (c), a pattern simulated from the fitted model after 100,000
iterations (d), the estimated L-function for the original pattern (solid line) and for the simulated
pattern (dashed line) (e) and simulation envelopes for the L-function for 50 simulated patterns (f).



1510 J. B. ILLIAN, S. H. SØRBYE AND H. RUE

3.2. Modeling clustering. In order to assess the performance of the model in
(3.1) in the context of clustered patterns, we generate patterns from a homoge-
neous Thomas process [Neyman and Scott (1952)] in the unit square, with param-
eters κ = 10 (the intensity of the Poisson process of cluster centers), σ = 0.05 (the
standard deviation of the distance of a process point from the cluster center) and
μ = 50 (the expected number of points per cluster) [see Figure 2(a) for an exam-
ple]. We fit the model in equation (3.1) using the constructed covariate in (2.5)
[Figure 2(b)]. The shape of the estimated functional relationship between the con-
structed covariate and the outcome variable [Figure 2(c)] now indicates that the
intensity is negatively related to the value of the constructed covariate as the inten-
sities increase for smaller distances, reflecting local clustering. At larger distances
(>0.1) the function levels out, indicating that at these distances the covariate and
the intensity are unrelated.

The pattern simulated from the fitted model [Figure 2(d)] shows that the con-
structed covariate introduces some clustering in the model. However, the resulting
pattern shows fewer and less distinct clusters than the original pattern. Similarly,
the estimated L-function for the pattern simulated from the fitted model shows a
weaker local clustering effect than the original pattern [Figure 2(e)]. This is also
illustrated by the simulation envelopes for 50 patterns of the fitted model which do
not include the true L-function [Figure 2(f)].

3.3. Modeling small scale clustering in the presence of large-scale inhomo-
geneity. So far, we have considered constructed covariates only for patterns with
local interaction to illustrate their use. In applications, however, different mech-
anisms operate at different spatial scales. Patterns may be locally clustered, for
example, due to dispersal mechanisms, but may also show aggregation at a larger
spatial scale, for example, due to dependence on underlying observed or unob-
served covariates. Hence, the main reason for using constructed covariates in the
data example in Section 4 is to distinguish behavior at different spatial resolutions,
in order to provide information on mechanisms operating at different spatial scales.

We illustrate the use of constructed covariates in this context by generating an
inhomogeneous, locally clustered pattern mimicking a situation where different
mechanisms have caused local clustering and large scale inhomogeneity. In appli-
cations, the inhomogeneity may be modeled using suitable spatially varying co-
variates or assuming an unobserved spatial variation or both. We generate patterns
from an inhomogeneous Thomas process with parameters σ = 0.01 and μ = 5 and
a simple trend function for the intensity of parent points given by κ(x1, x2) = 50x1.
Each pattern is then superimposed with a pattern generated from an inhomoge-
neous Poisson process with trend function λ = x1/4 [Figure 3(a)].

We again use the constructed covariate in (2.5) [see Figure 3(b)] and fit the
model in (3.2). The inspection of the functional relationship between the con-
structed covariate and the outcome [Figure 3(c)] shows that at small values of the
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Simulated Thomas process with parameters κ = 10, σ = 0.05 and μ = 50 (a), the asso-
ciated constructed covariate for this pattern (b), the estimated functional relationship between the
outcome and the constructed covariate (c), a pattern simulated from the fitted model after 100,000
iterations (d), the estimated L-function for the original pattern (solid line) and the simulated pattern
(dashed line) (e) and simulation envelopes for the L-function for 50 simulated patterns (f).
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Realization of an inhomogeneous Thomas process with parameters σ = 0.01, μ = 5 and
trend function κ(x1, x2) = 50x1 superimposed on an inhomogeneous Poisson process with trend
function λ = x1/4 (a), the associated constructed covariate for this pattern (b), the estimated func-
tional relationship between the outcome and the constructed covariate (c), the estimated spatially
structured effect (d), a pattern simulated from the fitted model after 100,000 iterations (e) and the
inhomogeneous L-function for the original pattern (solid line) and the simulated pattern (dashed
line) (f).
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FIG. 4. Inhomogeneous Thomas process. Simulation envelopes for 50 patterns generated from the
fitted model using 100,000 iterations, the inhomogeneous L-function for a Poisson process (bold
solid line), the mean of the inhomogeneous L-function for the generated (solid) and simulated
(dashed) patterns.

covariate the intensity is negatively related to the constructed covariate, reflect-
ing clustering at smaller distances. The estimated spatially structured effect picks
up the larger-scale spatial behavior [Figure 3(d)]. Patterns simulated from the fit-
ted model look quite similar to the original pattern [Figure 3(e)]. However, local
clustering is slightly stronger in the original pattern than in the simulated pattern
[Figure 3(f)].

This is again confirmed by the simulation envelopes for the simulated patterns
from the fitted model, as shown in Figure 4. The mean estimated L-function for
the generated patterns is very close to the upper edge of the simulation envelopes
and partly outside, indicating that the fitted model does not reflect the strength of
clustering sufficiently well.

3.4. Discussion on constructed covariates. With the aim of assessing the
performance of models with constructed covariates reflecting small scale inter-
individual spatial behavior, we consider a number of simulated point patterns for
three different scenarios: repulsion, clustering and small-scale clustering in the
presence of large scale inhomogeneity. In all cases, the local spatial structure can
be clearly identified. The constructed covariate does not only take account of local
spatial structures but also characterizes the spatial behavior. The functional form
of the dependence of the intensity on the constructed covariate clearly reflects the
character of the local behavior.

This section presents only a small part of an extensive simulation study; the
results shown here are typical examples. We have run simulations from the same
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models as above with different sets of parameters and have obtained essentially
the same results. Further, fitting the model in equation (3.1) to patterns simulated
from a homogeneous Poisson process resulted in a nonsignificant functional re-
lationship, that is, the modeling approach does not pick up spurious clustering or
regularity.

The approach allows us to fit models that take into account small-scale spa-
tial behavior, regularity as well as clustering, in the context of log-Gaussian Cox
processes, that is, as latent Gaussian models. Since these can be fitted using the
INLA approach, fitting is fast and exact. In addition, we avoid some of the typical
problems that arise with Gibbs process models, that is, we do not face issues of
intractable normalizing constants, and regular as well as clustered patterns may be
modeled.

However, the simulations also show that the approach of using constructed co-
variates works clearly better with repulsive patterns than with clustered patterns.
This is akin to similar issues with Gibbs processes, where repulsive patterns are
less problematic to model than clustered patterns. Certainly, this is related to the
fact that it is difficult to tell apart clustering from inhomogeneity [Diggle (2003)].
When working with constructed covariates the issues highlighted, that is, that local
clustering may have been underestimated, have to be taken into account, especially
in the interpretation of results.

Certainly, the constructed covariate in equation (2.5) that we consider here is not
the only possible choice. A covariate based on distance to the nearest point is likely
to be rather “short-sighted,” so that other constructed covariates might be more
suitable for detecting specific spatial structures. In particular, taking into account
these limitations, it is not surprising that patterns simulated from models show less
clustering than the original data. More general covariates such as the distance to the
kth nearest point may be considered. Other covariates, such as the local intensity
or the number of points within a fixed interaction radius from a location s ∈ R

2, are
certainly also suitable. A nice property of the given constructed covariate based on
nearest-point distance is that it is parameter-free. For this reason, it is not necessary
to choose explicitly the resolution of the local spatial behavior, for example, as an
interaction radius. Also, note that since the distance to the nearest point in point
pattern x for a location s ∈ R may be interpreted as a graph associated with x∪{s},
other constructed covariates based on different types of graphs [Rajala and Illian
(2012)] may also be used as constructed covariates. Similarly, an approach based
on morphological functions may be used for this purpose. Note that one could also
consider constructed marks based on first or second order summary characteristics
[Illian et al. (2008)] that are defined only for the points in the pattern and include
these in the model.

Distinguishing spatial behavior at different spatial scales is clearly an ill-posed
problem, since the behavior at one spatial scale is not independent of that at differ-
ent spatial scales [Diggle (2003)]. The approach we take here will not always be
able to distinguish clustering at different scales. However, different mechanisms
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that operate at very similar spatial scales are likely to be nonidentifiable by any
method, irrespective of the choice of model or the constructed covariate. Con-
structed covariates hence only provide useful results when the processes they are
meant to describe operate at a spatial scale that is distinctly smaller than the larger
scale processes in the same model.

Admittedly, the use of constructed covariates is of a rather subjective and ad
hoc nature. Clearly, in applications the covariates have to be constructed carefully,
depending on the questions of interest; different types of constructed covariates
may be suitable in different contexts. However, similarly subjective decisions are
usually made when a model is fitted that is purely based on empirical covariates,
as these have been specifically chosen as potentially influencing the outcome vari-
able, based on background knowledge. In addition, due to the apparent danger of
overfitting, constructed covariates should only be used if there is an interest in the
local spatial behavior in a specific data set and if there is reason to believe that
small- and large-scale spatial behavior are operating at scales that are different
enough to make them identifiable.

4. Joint model of a point pattern and environmental covariates.

4.1. Modeling approach. In this example we consider a point pattern x =
(ξ1, . . . , ξn), where the number of points n is potentially very large and several
spatial covariates have been measured. The point pattern is assumed to depend
on one or several (observed or unobserved) environmental covariates for which
data z1, . . . , zp exist. In the application that we have in mind the values of these
have been observed in a few locations that are typically different from locations
of the objects that form the pattern. In previous modeling attempts the values of
the covariates in the locations of the objects are then either interpolated or modeled
separately so that (estimated) values are used for locations were the covariates have
not been observed. However, these covariates are likely to have been collected with
both sampling and measurement error. In the specific case we consider here (see
Section 4.2) they concern soil properties, which are measured much less reliably
than the topography covariates in models such as those in Waagepetersen (2007),
Waagepetersen and Guan (2009). In addition, it is less clear for soil variables than
for topography covariates if these influence the presence of trees, or whether the
presence of trees impacts on the soil variables. Whereas models in which the soil
variables are considered fixed and not modeled alongside the pattern, the model
we deal with here does not make any assumption on the direction of this influence.

As a result, we suggest a joint model of the covariates along with the pattern
that uses the original (noninterpolated) data on the covariates and accounts for
measurement error. That is, we fit the model in equation (2.4) to x and jointly fit a
model to the covariates. The pattern and the covariates are linked by joint spatial
fields. An additional spatially structured effect is used to detect any remaining
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spatial structures in the pattern that cannot be explained by the joint fields with the
covariates.

In the case of p = 2 we fit the following model, where the pattern is modeled as

ηij = β0 + f (zc(sij )) + fs(sij ) + gs(sij ) + hs(sij ),(4.1)

and the covariates as

z1ij = fs(sij ) + uij ,(4.2)

and

z2ij = gs(sij ) + vij ,(4.3)

where z1ij and z2ij are the observed covariates in grid cells where the covariates
have been measured and missing where they have not been measured. f (zc(sij ))

represents the function of the constructed covariate (2.5). fs(·) and gs(·) are spa-
tially structured effects, that is, reflect a random field for each of the covariates and
hs(·) reflects spatial autocorrelation in the pattern unexplained by the covariates;
uij and vij are spatially unstructured fields used to account for measurement or
sampling error.

In addition to the spatial effect reflecting the empirical covariates, which are
likely to have an impact on the larger scale spatial behavior, we use the constructed
covariate to account for local clustering. In the application we have in mind (see
Section 4.2) this clustering is a result of seed-dispersal mechanisms operating on
a much smaller spatial scale than that of the aggregation of individuals due to an
association with environmental covariates.

4.2. Application to example data set.

4.2.1. The rainforest data. Some extraordinarily detailed multi-species maps
are being collected in tropical forests as part of an international effort to gain
greater understanding of these ecosystems [Condit (1998); Hubbell et al. (1999);
Burslem, Garwood and Thomas (2001); Hubbell, Condit and Foster (2005)]. These
data comprise the locations of all trees with diameters at breast height (dbh) 1 cm
or greater, a measure of the size of the trees (dbh), and the species identity of the
trees. The data usually amount to several hundred thousand trees in large (25 ha
or 50 ha) plots that have not been subject to any sustained disturbance such as
logging. The spatial distribution of these trees is likely to be determined by both
spatially varying environmental conditions and local dispersal.

Recently, spatial point process methodology has been applied to analyze some
of these data sets [Law et al. (2009); Wiegand et al. (2007)] using nonparamet-
ric descriptive methods as well as explicit models [Waagepetersen (2007); Guan
(2008); Waagepetersen and Guan (2009); Yue and Loh (2011)]. Rue, Martino
and Chopin (2009) model the spatial pattern formed by a tropical rain forest tree
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(a) (b)

FIG. 5. Spatial pattern of the species Aporusa microstachya in Pasoh Forest Reserve, Peninsular
Malaysia and locations where soil variables have been measured.

species on the underlying environmental conditions and use the INLA approach to
fit the model.

We analyze a data set that is similar to those discussed in the above references.
Since the spatial structure in a forest reflects dispersal mechanisms as well as as-
sociation with environmental conditions, we include a constructed covariate to ac-
count for local clustering. The model is fitted to a data set from a 50 ha forest
dynamics plot at Pasoh Forest Reserve, Peninsular Malaysia. This study focuses
on the species Aporusa microstachya consisting of 7416 individuals [Figure 5(a)].
The environmental covariates have been observed in 83 locations that are distinct
from the locations of the trees [Figure 5(b)]. The plot lies in a forest that has
never been logged with very narrow streams on almost flat land. The data col-
lected in 1995 are used here when the plot contained 320,903 stems from 817
species. The species is the most common small tree on the plot. It is of interest if
this species, as an aluminium accumulator, covaries with magnesium availability,
as aluminium uptake might constrain its capacity to take up nutrient cations such as
magnesium. In addition, its covariation with phosphorus is considered here as the
element thought to be the nutrient primarily limiting forest productivity and indi-
vidual tree growth in tropical forests [Burslem, personal communication (February
2011)].

4.2.2. Results. We run the full model as described in equations (4.1) to (4.3),
in which the observation area is discretized into 50 × 100 grid cells. The spatial
effect of the two empirical covariates, phosphorus fs(·) and magnesium gs(·), are
displayed in Figure 6(a) and (b). We notice that these effects are very smooth, but
we have to remember that the covariate information is sparse and only available in
83 grid cells. In terms of DIC, the empirical covariate terms explain some spatial
structure of the pattern as DIC increases from 15,379 to 15,440 if these two terms
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Rainforest data. Top panels: The estimated spatially structured effect for the covariates
phosphorus (a) and magnesium (b). Middle panels: The calculated constructed covariate (c) and the
estimated function of the constructed covariate (d). Bottom panels: The estimated spatially structured
effect for the pattern with (e) and without the constructed covariate term in the model (f).

are not included. High phosphorus seems to coincide with low tree density and a
similar, but less clear, pattern emerges for magnesium. Currently, the ecological
literature cannot explain these results, but they could be related to resource parti-
tioning along axes of soil nutrient availability [Burslem, personal communication
(September 2011), John et al. (2007)]. In addition, it is currently also unclear if
the soil properties cause an aggregation of trees, as they provide suitable growing
conditions, or whether a high tree intensity leads to low levels of magnesium or
phosphorus resulting from the chemical composition of the leaf litter.

The plot of the constructed covariate in Figure 6(c) illustrates the resolution
of the local clustering represented by it. The resulting estimated function of the
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constructed covariate is shown in Figure 6(d), which indicates that it accounts for
clustering of up to a distance of 15 metres. The estimated spatial effect hs(·) for the
pattern is given in Figure 6(e), while Figure 6(f) displays the estimated spatially
structured effect if the constructed covariate is left out of the full model. This
last figure shows clear local structure in the spatial effect and might give a model
which is overfitted to the actual pattern. Including the constructed covariate, the
local structure of the spatial effect is removed, making the spatial effect smoother.
This indicates that spatial behavior at a local scale has been picked up by the
constructed covariate. In this way the model can account for spatial structures at
different scales. The two unstructured spatial fields in equations (4.2) and (4.3)
do not show any particular pattern (results not shown). Fitting this model took 55
minutes to run (2.66 GHz Intel Core i7 processor).

4.3. Discussion on rainforest data. In this section we consider a log Gaussian
Cox process model and fit it jointly to a point pattern data set with a large number
of points and two covariates that have been observed at a relatively small number of
points within the plot. Waagepetersen (2007) and Waagepetersen and Guan (2009)
model the patterns formed by rainforest tree species with this data structure, using
Thomas processes to include local clustering resulting from seed dispersal. This
approximate approach is based on the minimum contrast method for parameter es-
timation. Rue, Martino and Chopin (2009) consider the same data in the context
of Cox processes to demonstrate that log-Gaussian Cox processes can be fitted
conveniently to a large spatial point pattern using INLA relative to environmental
covariates which are assumed to be known everywhere and fixed. In many typical
applications, however, the values of spatial covariates in the location of the points
forming the point process are not known. Similarly, the direction of the relation-
ship between soil properties and tree presence may be not clear. We generalize the
approach in Rue, Martino and Chopin (2009) here and fit a joint model of the pat-
tern and the covariates. This approach distinguishes between locations where the
values of the covariates are available but potentially subject to measurement error
and those where they are not. In addition, it does not assume that the soil variables
impact on the pattern but not vice versa. We also consider a constructed covariate
that reflects local clustering as a result of local seed dispersal, as discussed above.

The given approach accommodates model comparison and model assessment,
both of which are of practical value in many applications. An inspection of the esti-
mated spatially structured effect in Figure 6(e) indicates that some spatial structure
still remains in the point pattern which cannot be explained by the current model,
that is, the current model can still be improved on. Hence, judging by Figure 6(e),
it might be possible to improve the model by including further covariates and the
structure of the estimated spatial effect might be used to suggest a suitable covari-
ate. Previous approaches to fitting a model to these data [Waagepetersen (2007);
Waagepetersen and Guan (2009)] neither have been able to reveal the shortcom-
ings of the models nor to provide mechanisms that help identify covariates that
might improve the model.
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The function of a constructed covariate [Figure 6(d)], which reflects local clus-
tering up to a distance of 15 metres, may be interpreted as a seed dispersal kernel.
Biological research has shown that this species is likely to be dispersed primar-
ily by small understorey birds that feed in the canopy and mostly drop the seeds
beneath the parent tree. Since trees of the species Aporusa microstachyathese are
relatively small, 15 m reflect the maximum radius of the tree crown [Burslem,
Garwood and Thomas (2001)].

The approach discussed here can be extended easily to allow more complex
models to be fitted, such as a model of both the spatial pattern and associated
marks, along the lines of the model discussed in Section 5. For instance, this may
include a model of both the spatial pattern and the size and the growth of the trees.
Here, both size and growth might depend on the spatial pattern and growth might
also depend on size.

5. Modeling marks and pattern in a marked point pattern with multi-
ple marks. Modeling the behavior of individuals in space based simply on
the individuals’ locations and ignoring their properties is certainly a gross over-
simplification for many systems. In practice, researchers hence often collect data
on the locations of the individuals along with data on additional properties, that is,
marks. In this section we discuss a marked point pattern with several dependent
marks, which also depend on the spatial pattern, and consider a joint model of the
marks and the pattern. Models where marks depend on the point pattern have re-
cently been considered in the literature [Menezes (2005); Ho and Stoyan (2008);
Myllymäki and Penttinen (2009)]. Also note the work by Diggle, Menezes and Su
(2010), where a point process with intensity dependent marks is used in the con-
text of preferential sampling in geostatistics. The model we fit here is more general
than these related models, since we model multiple dependent marks jointly with
the pattern.

5.1. Data structure and modeling approach. We analyze a spatial point
pattern x = (ξ1, . . . , ξn) together with several types of nonindependent asso-
ciated marks. We consider only two marks m1 = (m11, . . . ,m1n) and m2 =
(m21, . . . ,m2n) here, but the approach can be generalized in a straightforward way
to include more than two marks. The m1 are assumed to follow an exponential
family distribution F1θ1 with parameter vector θ1 = (θ11, . . . , θ1q) and to depend
on the intensity of the point pattern, while the m2 are assumed to follow a (differ-
ent) exponential family distribution F2θ2 with parameter vector θ2 = (θ21, . . . , θ2q)

and to depend both on the intensity of the point pattern and on the marks m1. With-
out loss of generality, the parameters θ11 and θ21 are the location parameters of the
distributions F1 and F2, respectively.

We discretize the observation window as discussed in Section 2.3, and for the
spatial pattern we assume the model

ηij = β01 + f (zc(sij )) + β1 · fs(sij ) + uij ,(5.1)
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using the same notation as in (2.4). For the marks, we construct a model where
the marks m1 depend on the pattern by assuming that they depend on the same
spatially structured effect fs(sij ). Specifically, we assume that m1(ξijkij

)|κijkij
∼

F1θ1(κijkij
, θ12, . . . , θ1q) with

κijkij
= β02 + β2 · fs(sij ) + vijkij

,(5.2)

where vijkij
is another error term. The marks m2 are assumed to depend both

on the spatial pattern through fs(sij ) and on the marks m1. We thus have that
m2(ξijkij

)|νijkij
∼ F2θ2(νijkij

, θ22, . . . , θ2q) with

νijkij
= β03 + β3 · fs(sij ) + β4 · m1(ξijkij

) + wijkij
,(5.3)

where wijkij
denotes another error term.

5.2. Application to example data set.

5.2.1. Koala data. Koalas are arboreal marsupial herbivores native to Aus-
tralia with a very low metabolic rate. They rest motionless for about 18 to 20 hours
a day, sleeping most of that time. They feed selectively and live almost entirely
on eucalyptus leaves. Whereas these leaves are poisonous to most other species,
the koala gut has adapted to digest them. It is likely that the animals preferentially
forage leaves that are high in nutrients and low in toxins as an extreme example
of evolutionary adaptation. An understanding of the koala-eucalyptus interaction
is crucial for conservation efforts [Moore et al. (2010)].

The data have been collected in a study conducted at the Koala Conservation
Centre on Phillip Island, near Melbourne, Australia. For each of 915 trees within a
reserve enclosed by a koala-proof fence (Figure 7), information on the leaf chem-
istry and on the frequency of koala visits has been collected. The leaf chemistry
is summarized in a measure of the palatability of the leaves (“leaf mark” mL).
Palatability is assumed to depend on the intensity of the point pattern. In addition,
“frequency marks” mF describe for each tree the diurnal tree use by individual
koalas collected at monthly intervals between 1993 and March 2004. The mF are
assumed to depend on the intensity of the point pattern as well as on the leaf marks.

There are no additional covariate data available for the given data set. Hence,
for the locations of the trees we use the model in (5.1) with notation as above.
For the leaf and frequency marks we use the models in equations (5.2) and (5.3),
respectively. The leaf marks are assumed to follow a normal distribution and the
frequency marks a Poisson distribution, that is, mL(ξijkij

)|κijkij
∼ N(κijkij

, σ 2)

and mF (ξijkij
)|νijkij

∼ Po(exp(νijkij
)).

5.2.2. Results. With these distributional assumptions for the marks, we fit a
joint model as given in equations (5.1)–(5.3) to the data set. The results are based
on an observation window discretized into 1571 grid cells. In order to fit spatial
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(a)

(b)

FIG. 7. Spatial pattern formed by the locations of the eucalyptus trees in the koala data set; the di-
ameters of the circles reflect the value of the leaf marks (a) and the frequency marks (b), respectively.

effects, we embed this area within a rectangular area. For the constructed covariate,
we perform a simple edge correction for the distances in (2.5), assuming missing
values in grid cells in which the distance from the center point to the border is
shorter than the nearest-point distance.

When fitting complex models it can be useful to apply a stepwise procedure
to study the impact of each term in the model. Table 1 illustrates DIC-values and
computation time (in seconds) of models of increasing complexity. In the first three
steps we initially run a model with only error terms and then add intercepts and

TABLE 1
DIC values and computation time for different fitted models for the koala data

Model Terms DIC Time (s)

1. Only error terms 11,308 4
2. Add intercepts 8362 4
3. Add fixed covariate (β4) 7640 5

4. Add spatial effect
– Only for pattern 7511 25
– For pattern and leaf marks 7312 71
– For pattern and frequency marks 7193 61
– For pattern and both marks (final model) 6943 142

5. Add constructed covariate 6943 189
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(a) (b)

(c) (d)

FIG. 8. Plots of the estimated common spatial effect (a) and the three unstructured effects uij ,
vijkij

and wijkij
(b)–(d) for the koala data set.

the fixed covariate for the frequency marks. Step 4 illustrates the effect of adding
the spatial effect fs(·) in modeling the pattern together with one or both of the two
marks, in which DIC decreases to 6943. Inclusion of the constructed covariate in
(5.1) does not improve the model fitting for this data set. This is not surprising, as
the original pattern does not seem to exhibit any strong local clustering effect and
as a result the estimated function of the constructed covariate is not significantly
different from 0.

The estimated common spatial effect [Figure 8(a)] represents spatial autocor-
relation present in the pattern and the marks which might be the result of related
environmental processes such as nutrient levels in the soil. The estimated param-
eter value for β2 and β3 have opposite signs (Table 2). The negative sign for β2
indicates that palatability is low where the trees are aggregated, which might have
been caused by competition for soil nutrients in these areas. The positive sign for
β3 reflects that the koalas are more likely to be present in areas with higher inten-
sity. Recalling that the data have been accumulated over time, this might be due to
the koalas being more likely to change from one tree to a neighboring tree where
the trees are aggregated. The mean of the posterior density for the parameter β4 in
the final model is 1.38, indicating a significant positive influence of palatability on

TABLE 2
Posterior means and 95% credible intervals

for parameters in the koala model

Parameter Mean 95% credible interval

β2 −1.18 [−1.39,−0.96]
β3 1.72 [1.45,1.98]
β4 1.38 [1.24,1.52]
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the frequency of koala visits to the trees. The three unstructured terms are given
in Figures 8(b)–(d). A slight trend in the residuals for the leaf marks may be ob-
served in Figure 8(c), with lower values toward the bottom left probably reflecting
an inhomogeneity that cannot be accounted for by the joint spatial effect fs(sij ).

5.3. Discussion of koala data. The example considered in this section is a
marked Cox process model, that is, a model of both the spatial pattern and two
types of dependent marks, providing information on the spatial pattern at the same
time as on the marks and their dependence. In cases where the marks are of primary
scientific interest, one could view this approach as a model of the marks which
implicitly takes the spatial dependence into account by modeling it alongside the
marks. The model we use here is similar to approaches taken in Menezes (2005),
Ho and Stoyan (2008), Myllymäki and Penttinen (2009). Since our approach is
very flexible, it can easily be generalized to allow for separate spatially structured
effects for the pattern and the marks and to include additional empirical covariates;
these have not been available here. Hence, using the approach considered here, we
are able to fit easily a complex spatial point process model to a marked point
pattern and to assess its suitability for a specific data set.

Marked point pattern data sets where data on marks are likely to depend on
an underlying spatial pattern are not uncommon. Within ecology, for instance,
metapopulation data [Hanski and Gilpin (1997)] typically consist of the locations
of subpopulations and their properties, and have a similar structure to the data set
considered here. These data sets may be modeled using a similar approach and
it is straightforward to fit related but more complex models, including empirical
covariates or temporal replicates. Similarly, marks are available for the rainforest
data discussed in Section 4. As mentioned there, a model that includes the marks
of the trees may also be fitted using the approach discussed here.

6. Discussion. Researchers outside the statistical community have become fa-
miliar with fitting a large range of different models to complex data sets using soft-
ware available in R. This paper provides a very flexible framework for routinely
fitting models to complex spatial point pattern data with little computational effort
using models that account for both local and global spatial behavior. We consider
complex data examples and demonstrate how marks as well as covariates can be
included in a joint model. That is, we consider a situation where the marks and
the covariates can be modeled along with the pattern and show that it is computa-
tionally feasible to do so. We can take account of local spatial structure by using a
constructed covariate, which we discuss in detail in Section 3.

The two models discussed here indicate that our approach can be applied in a
wide range of situations and is flexible enough to facilitate the fitting of other even
more complex models. It is feasible to fit several related models to realistically
complex data sets if necessary, and to use the DIC to aid the choice of covariates.
The posterior distributions of the estimated parameters can be used to assess the
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significance of the influence of different covariates in the models. Through the
use of a structured spatial effect and an unstructured spatial effect it is possible to
assess the quality of the model fit. Specifically, the structured spatial effect can be
used to reveal spatial correlations in the data that have not been explained with the
covariates and may help researchers identify suitable covariates to incorporate into
the model. Spatially unstructured effects may be used to account for and identify
extreme observations such as locations where covariate values have been collected
with a particularly strong measurement error.

There is an extensive literature on descriptive and nonparametric approaches to
the analysis of spatial point patterns, specifically on (functional) summary charac-
teristics describing first and second order spatial behavior, in particular, on Ripley’s
K-function [Ripley (1976)] and the pair correlation function [Stoyan, Kendall and
Mecke (1995)]. In both the statistical and the applied literature these have been dis-
cussed far more frequently than likelihood based modeling approaches, and pro-
vide an elegant means for characterizing the properties of spatial patterns [Illian
et al. (2008)]. A thorough analysis of a spatial point pattern typically includes an
extensive exploratory analysis and in many cases it may even seem unnecessary
to continue the analysis and fit a spatial point process model to a pattern. An ex-
ploratory analysis based on functional summary characteristics, such as Ripley’s
K-function or the pair-correlation function, considers spatial behavior at a multi-
tude of spatial scales, making this approach particularly appealing. However, with
increasing complexity of the data, it becomes less obvious how suitable summary
characteristics should be defined for these, and a point process model may be a
suitable alternative. For example, it is not obvious how one would jointly analyze
the two different marks together with the pattern in the koala data set based on
summary characteristics. However, as discussed in Section 5, it is straightforward
to do this with a hierarchical model. In addition, most exploratory analysis tools
assume the process to be first-order stationary or at least second-order reweighted
stationary [Baddeley et al. (2000)]—a situation that is both rare and difficult to as-
sess in applications, in particular, in the context of realistic and complex data sets.
The approach discussed here does not make any assumptions about stationarity but
explicitly includes spatial trends into the model.

In the literature, local spatial behavior has often been modelled by a Gibbs pro-
cess. Large-scale spatial behavior may be incorporated into a Gibbs process model
as a parametric or nonparametric, yet deterministic, trend, while it is treated as
a stochastic process in itself here. Modeling the spatial trend in a Gibbs process
hence often assumes that an explicit and deterministic model of the trend as a func-
tion of location (and spatial covariates) is known [Baddeley and Turner (2005)].
Even in the nonparametric situation, the estimated values of the underlying spatial
trend are considered fixed values, which are subject neither to stochastic variation
nor to measurement error. Since it is based on a latent random field, the approach
discussed here differs substantially from the Gibbs process approach and assumes a
hierarchical, doubly stochastic structure. This very flexible class of point processes



1526 J. B. ILLIAN, S. H. SØRBYE AND H. RUE

provides models of local spatial behavior relative to an underlying large-scale spa-
tial trend. In realistic applications this spatial trend is not known. Values of the
covariates that are continuous in space are typically not known everywhere and
have been interpolated. It is likely that spatial trends exist in the data that cannot
be accounted for by the covariates. The spatial trend is hence not regarded as deter-
ministic but assumed to be a random field. This approach allows to jointly model
the covariate and the spatial pattern as in the model used for the rainforest example
data set. Clearly, unlike Gibbs processes, log Gaussian Cox processes do not allow
second order inter-individual interactions to be included in a model. In a situation
where these are of primary interest, Cox processes are certainly not suitable.

In order to make model fitting feasible, the continuous Gaussian random field is
approximated here by a discrete Gauss Markov random field. While this is compu-
tationally elegant, one might argue that this approximation is not justified and is too
coarse, resulting in an unnecessary loss of information. Clearly, since any model
only has a finite representation in a computer, model fitting approaches often work
with some degree of discretization. However, and more importantly, Lindgren, Rue
and Lindström (2011) show that there is an explicit link between a large class of
covariance functions (and hence the Gaussian random field based on these) and
Gauss Markov random fields, clearly pointing out that the approximation is indeed
justified. In addition, based on the results discussed in Lindgren, Rue and Lind-
ström (2011), the approaches taken in this paper may be extended to avoid the
computationally wasteful need of having to use a regular grid [Illian and Simpson
(2011)]. Illian et al. (2012) also mention the issue of complex boundaries structures
that are particularly relevant for point process data sets where the observation win-
dow has been chosen to align with natural boundaries that may impact on pattern.
While this is clearly not an issue for the rainforest data set since the boundaries
have been chosen arbitrarily, the koala data set, however, has been observed in an
observation window surrounded by a koala proof fence. This fence does probably
not impact on the locations of the trees nor the leaf chemistry but might increase
the frequency of koala visits near the fence. The approach in Lindgren, Rue and
Lindström (2011) may be used to define varying boundary conditions for different
parts of the data set, and hence allow for more realistic modeling for data sets with
complicated boundary structures.

In summary, the methodology discussed here, together with the R library R-
INLA (http://www.r-inla.org/), makes complex spatial point process models ac-
cessible to scientists outside the statistical sciences and provides them with a tool-
box for routinely fitting and assessing the fit of suitable and realistic point process
models to complex spatial point pattern data.
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