
On hybrid classification using model assisted posterior estimates

Anil. K. Ghosha,∗, Fred Godtliebsenb

aTheoretical Statistics and Mathematics Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road,

Kolkata 700108, India.
bDepartment of Mathematics and Statistics, University of Tromsø, N-9037 Tromsø, Norway.

Abstract

Traditional parametric and nonparametric classifiers used for statistical pattern recognition

have their own strengths and limitations. While parametric methods assume some specific

parametric models for density functions or posterior probabilities of competing classes, non-

parametric methods are free from such assumptions. So, when these model assumptions

are correct, parametric methods outperform nonparametric classifiers, especially when the

training sample is small. But, violations of these assumptions often lead to poor perfor-

mance by parametric classifiers, where nonparametric methods work well. In this article, we

make an attempt to overcome these limitations of parametric and nonparametric approaches

and combine their strengths. The resulting classifiers, denoted the hybrid classifiers, per-

form like parametric classifiers when the model assumptions are valid, but unlike parametric

classifiers, they also provide safeguards against possible deviations from parametric model

assumptions. In this article, we propose some multiscale methods for hybrid classification,

and their performance is evaluated using several simulated and benchmark data sets.

Keywords: Bayes rule, cross-validation, LDA, misclassification rates, multiscale analysis,

nearest neighbor classification, QDA, stacking.

1. Introduction

Because of their simplicity and ease of calculation, linear discriminant analysis (LDA,

see e.g., Fisher, 1936), quadratic discriminant analysis (QDA) and nearest neighbor (NN)

∗Corresponding author
Email addresses: akghosh@isical.ac.in (Anil. K. Ghosh), fred.godtliebsen@uit.no (Fred

Godtliebsen)

Preprint submitted to Pattern Recognition October 29, 2011

classification (see e.g., Cover and Hart 1967) are arguably the most popular classifiers in

the field of statistical pattern recognition. However, each of these popular methods has its

own strengths and limitations. Though Fisher (1936) introduced LDA from a different per-

spective, it is optimal when the underlying distributions are Gaussian. QDA also assumes

parametric (Gaussian) models fj(·) = fj(θj, ·), j = 1, 2, . . . , J for population densities and

uses the training data to estimate the model parameters θj . Estimates of posterior prob-

abilities, p1(· | x), can be obtained from the formula p1(j | x) = πj f̂j(x)/[
∑J

k=1 πkf̂k(x)],

where f̂j(·) = fj(θ̂j , ·) is the parametric estimate of fj, and πj is the prior probability of the

j-th class. When the πjs are not known, one can estimate them using sample proportions

of different classes. Instead of modeling the fjs, some parametric classifiers like logistic

discriminant analysis assume parametric models for posterior probabilities and directly esti-

mate them. Clearly, the performance of these parametric classifiers depends on the validity

of associated model assumptions. If they are valid, parametric methods perform substan-

tially better than nonparametric methods, especially when the training sample is small. But

violations of these assumptions often lead to poor performance by parametric classifiers.

NN-classifier, on the other hand, is nonparametric and free from all parametric model

assumptions. So, when violations in model assumptions lead to poor performance by para-

metric methods, it can still work well. However, it is not above all limitations. Since the

convergence of nonparametric estimates is rather slow, it suffers from statistical instability

when we have a small training set. Moreover, nonparametric methods like the NN-classifier

do not use any information about the parametric structure of population distributions.

Therefore, even when one has some insights about the distribution structure of underlying

populations, that important information is not utilized to modify the classification rule.

So, it would be ideal if one can develop a classifier that performs like a parametric clas-

sifier when the model assumptions hold and like a nonparametric classifier when they do

not hold. In this article, we develop such classifiers by hybridizing LDA and QDA with the

NN-classifier. The main goal of this hybridization is to overcome the limitations of para-

metric and nonparametric approaches and combine their strengths. Though similar hybrid

methods have been proposed in the literature for density estimation (see e.g., Olkin and

2

Spiegelman, 1987; Hjort and Glad, 1995; Jones et. al., 1995; Hjort and Jones, 1996; Hoti

and Holmstrom, 2004) and regression (see e.g., Glad, 1998), they are somewhat missing

for classification problems. One can develop a hybrid classifier using hybrid density esti-

mates (see e.g., Chaudhuri et. al., 2009). But, there are several parametric (e.g., logistic

discriminant analysis) and nonparametric classifiers (e.g., NN-classifier, classification trees,

neural networks) that give estimates of posterior probabilities but do not yield any density

estimate. Even for discriminative methods like support vector machines, one can find es-

timates of posterior probabilities (see e.g., Ghosh and Chaudhuri, 2005), but no estimates

of density functions. Keeping that in mind, in this article, we present a hybridization tech-

nique that does not involve any density estimation. Because of computational simplicity,

here we have used LDA, QDA and the NN-classifier for hybridization. But, in principle,

the proposed method can also be used for hybridizing other parametric and nonparametric

classifiers. Our hybridization technique is much simpler than those proposed in Chaudhuri

et. al. (2009), and unlike their methods, it can even be used for simultaneous hybridization

of several parametric and nonparametric classifiers.

2. Hybridization of parametric and nonparametric classifiers

We begin with a simple method of hybridization, where we consider a class of hybrid

posterior estimates S =
{

pλ(· | x) = λ p1(· | x) + (1 − λ) p0(· | x); 0 ≤ λ ≤ 1
}

and use

the training data to choose a member from S (or equivalently a value of λ) to be used for

classification. Here p1 and p0 stand for parametric (LDA or QDA) and nonparametric (NN)

estimates, respectively. Clearly, this includes the possibility of selecting the parametric

(in case of λ = 1) or the nonparametric classifier (in case of λ = 0). In that sense, it

is model selection over a larger class. Note that when parametric model assumptions are

correct, p1(· | x) usually have
√

n convergence (where n is the training sample size) to the

true posterior p(· | x), but p0(· | x) has much slower rate of convergence, which becomes

even slower as the dimension increases. In such cases, if we can choose λ that converges

to 1 at an appropriate rate, pλ(· | x) also have
√

n convergence to p(· | x). As a result,

the hybrid classifier performs as good as the parametric classifier and much better than

3

the nonparametric classifier, especially when the training sample is small compared to the

dimension of the data. On the contrary, when these model assumptions are not correct,

p1(· | x) does not converge to p(· | x), but p0(· | x) converges to p(· | x) as before. In

this case, if we can choose λ that shrinks to 0 at an appropriate rate, the hybrid classifier

can match the performance of the nonparametric classifier. So, hybridization can improve

the performance of parametric and nonparametric classifiers if λ is chosen appropriately.

However, in addition to λ, here we need to choose the number of neighbors (k) involved in

nonparametric estimation of posterior probabilities. Existing theoretical results (see e.g.,

Loftsgaarden and Quesenberry 1965; Cover and Hart 1967) suggest that k should tend to

infinity and k/n should tend to zero as the training sample size n increases. But in practice,

one needs to estimate it from the training data. So, instead of S, here we consider the

class S∗ =
{

pλ,k(· | x) = λ p1(· | x) + (1 − λ) p0,k(· | x); 0 ≤ λ ≤ 1, k = 1, 2, . . . , (n − 1)
}

,

where p0,k(· | x) stands for the k-NN estimate of p(· | x). If kj out of k neighbors of x come

from the j-th population (j = 1, 2, . . . , J), the ratio kj/k is taken as p0,k(j | x). To choose

the optimum values of k and λ, one can use resampling techniques like cross-validation

(CV) (see e.g., Hastie et. al., 2009) or likelihood cross-validation (LCV) (see e.g., Silverman

1986). In LCV, optimum k and λ are chosen by maximizing the loglikelihood function

L(λ, k) =
∑n

i=1 log pλ,k
−i (ci | xi), where ci is the class label of xi, and pλ,k

−i denotes the hybrid

posterior estimate computed from the training data using the leave-one-out method when

xi is not used as a data point. In CV, we choose λ and k that minimize the cross-validation

estimate of error rate ∆̂(λ, k) = 1
n

∑

I{argmaxj pλ,k
−i (j | xi) 6= ci}. Note that LCV and

CV can be used to choose the value of k in usual NN-classification as well. In future, we

will refer to these two NN-classifiers as NN-LCV and NN-CV, respectively. Similarly, two

hybrid classifiers will be denoted by Hybrid-LCV and Hybrid-CV, respectively.

Now, let us consider a simple example with two bivariate normal distributions having

the same location parameter (0, 0) but different dispersion matrices I2 (the 2×2 identity

matrix) and 4I2. In this classification problem, x
′

x = 16
3
log2 is the optimal class boundary.

We generated 50 observations from each class (see the scatter plot in Figure 1) to form the

training sample and used different classification methods to estimate this class boundary.

4

−5 0 5
−5

0

5
(a) LDA

−5 0 5
−5

0

5
(b) QDA

−5 0 5
−5

0

5
(c) NN [LCV]

−5 0 5
−5

0

5
(d) NN [CV]

−5 0 5
−5

0

5
(e) Hybrid : LDA + NN [LCV]

−5 0 5
−5

0

5
(g) Hybrid : QDA + NN [LCV]

−5 0 5
−5

0

5
(f) Hybrid : LDA + NN [CV]

−5 0 5
−5

0

5
(h) Hybrid : QDA + NN [CV]

Figure 1: Class boundaries estimated by parametric, nonparametric and hybrid classifiers.

Note that LDA assumes the population distributions to be normal with different location

parameters but the same dispersion matrix. On the contrary, here the competing population

distributions have the same location but different scatter matrices. Due to this deviation

from model assumption, LDA led to a poor estimate of the class boundary (see Figure

1a). However, for NN-classifiers, these estimates (see Figures 1c and 1d) were of much

better shapes. When we hybridized LDA with NN-classifiers, very small values of λ were

selected (0.28 and 0.10, respectively, for LCV and CV), which is desirable in such cases.

So, in spite of model mis-specification, hybrid classifiers performed like NN-classifiers and

much better than LDA (see Figures 1e and 1f). In this example, QDA makes the correct

5

model assumption, and it yielded an estimate of the class boundary close to the optimal

one (indicated by the black curve). Hybrid classifiers also took the advantage of this correct

model assumption when we hybridized QDA with NN-classifiers. They had similar estimates

of the class boundary (see Figures 1g and 1h) as obtained in QDA. Note that in this case,

the selected values of λ were much higher (0.91 and 0.72 for LCV and CV, respectively),

which one should expect when the parametric model assumptions are correct.

2.1. Results on simulated examples

We used six simulated data sets to evaluate the performance of hybrid classifiers. In

the first five examples, generating equal number of observations from competing classes, we

formed 500 training and test sets of size 100 and 200, respectively. In Example-6, 75% of

the observations were generated from class-1 and the rest from class-2. Except for Example-

5, in all other cases, we considered classification problem between two competing classes.

Average test set error rates of Hybrid-CV and Hybrid-LCV over these 500 trials are reported

in Table 1 along with their corresponding standard errors. For Hybrid-CV, we had multiple

minimizers of ∆̂(λ, k) in some cases. Among them, we considered those having the smallest

value of k, and then the one with the smallest value of λ was selected. However, one can

choose any one of these optimizers, and usually that does not lead to any visible difference

in the final result. Error rates of the Bayes classifier, LDA, QDA, NN-LCV and NN-CV are

also reported to facilitate comparison. Throughout this section, training sample proportions

of the competing classes are taken as their prior probabilities.

We begin with the example with two bivariate normal distributions discussed earlier (call

it Example-1). We have observed that this is an ideal set up for QDA, but since there is

no difference in locations of the two classes, LDA is expected to have poor performance.

We observed the same phenomenon in our experiment. While LDA misclassified almost

half of the test cases, QDA yielded an average error rate (27.53%) close to the Bayes risk

(26.38%). NN-LCV and NN-CV had average error rates around 33%. When we hybridized

LDA with NN-classifier, in spite of model mis-specification, hybrid methods could match the

performance of NN-classifiers. However, when we chose the right parametric model, hybrid

6

classifiers had much better performance. Hybridization of QDA and NN-classifiers yielded

average error rates close to that of QDA and the Bayes classifier.

In Example-2, two competing classes again differ only in their scales. In class-1, X1 and

X2 are distributed as X1 = R cosθ and X2 = R sinθ, for R ∼ U(0, 1) and θ ∼ U(0, 2π) being

statistically independent. In class-2, R and θ have the same distributions, but X1 and X2

are defined as X1 = 3R cosθ and X2 = 3R sinθ. Here also, NN-LCV and NN-CV performed

much better than LDA, and hybridizing LDA with NN-classifiers, we obtained error rates

similar to those of NN-classifiers. QDA once again outperformed the NN-classifiers, but

hybridization of QDA with NN-classifiers yielded even lower error rates than QDA.

The importance of hybrid classification becomes more transparent if we add five N(0, 1)

variables as noise to the data generated in Example 2 (call it Example-3). In this high

dimensional setting, statistical instability of nonparametric methods becomes more clear.

While QDA was less affected (average error rate = 24.89%) due to this noise, its effect on

NN-classifiers was substantially higher. NN-LCV and NN-CV had average error rates of

40.67% and 37.41%, respectively. However, hybridization of QDA and NN-classifiers yielded

average error rates even lower than that of QDA. LDA had almost 50% error rate in this

example, but hybridizing LDA with NN-classifiers, we could achieve much lower error rates.

Note that in Example-1, when the population distributions were normal, it was not possible

to beat QDA, but in Examples 2 and 3, Hybrid-CV led to significant improvement (at 5%

level) over QDA. One should also notice that in all these three examples, QDA had standard

errors much smaller than NN classifiers, which shows its better statistical stability. Table 1

clearly shows that hybrid classifiers were as stable as QDA in all these examples.

In Example-4, each class is an equal mixture of two bivariate normal distributions each

having the same dispersion matrix with diagonal entries (1,1) and the off-diagonal entry

-0.75. For class-1, location parameters of these two distributions are (10,10) and (12,12),

whereas those for class-2 are (11,11) and (13,13). In this example, both LDA and QDA

had average error rates close to 44%, but NN-classifiers yeilded error rates around 17%.

However, unlike parametric methods, hybrid classifiers did not get much affected by model

mis-specification, and they yielded error rates comparable to that of NN-classifiers.

7

Table 1 : Error rates (in %) of different classifiers on simulated examples and their standard errors.

Example-1 Example-2 Example-3 Example-4 Example-5 Example-6

Bayes risk 26.38 16.67 16.67 11.79 14.23 16.81

LDA 48.99 (0.17) 46.54 (0.17) 49.81 (0.16) 44.32 (0.12) 44.01 (0.17) 24.09 (0.05)

QDA 27.53 (0.14) 20.76 (0.13) 24.89 (0.15) 43.58 (0.12) 31.79 (0.16) 17.83 (0.10)

NN(LCV) 33.38 (0.20) 26.86 (0.18) 40.57 (0.24) 17.11 (0.13) 28.91 (0.23) 24.68 (0.03)

NN(CV) 33.01 (0.19) 25.78 (0.17) 37.41 (0.18) 17.02 (0.14) 25.57 (0.18) 22.65 (0.12)

Hybridization of LDA and Nearest neighbor

Hybrid(LCV) 34.20 (0.21) 26.26 (0.17) 40.65 (0.22) 17.65 (0.15) 26.45 (0.19) 23.21 (0.10)

Hybrid(CV) 34.30 (0.21) 26.02 (0.18) 40.99 (0.21) 17.01 (0.14) 25.46 (0.18) 22.74 (0.11)

Hybridization of QDA and Nearest neighbor

Hybrid(LCV) 27.73 (0.14) 20.66 (0.13) 24.87 (0.15) 17.64 (0.15) 24.78 (0.18) 17.89 (0.10)

Hybrid(CV) 28.69 (0.15) 19.94 (0.13) 23.91 (0.15) 17.44 (0.14) 23.00 (0.16) 18.47 (0.11)

So far, we have considered some examples, where the parametric classifier (QDA) is

either better (Examples 1-3) or worse (Example-4) than the nonparametric classifier over

the entire measurement space. In most of these cases, our hybrid classifiers performed as

good as the better of the parametric and the nonparametric classifiers. Only in Examples

2 and 3, Hybrid-CV outperformed both of them. Now, we consider an example (call it

Example-5), where QDA is superior to the NN classifiers in one part of the measurement

space, whereas the NN classifiers are better in the other part. A combination of Example-

2 and Example-4 is used to construct such an example with four competing classes. In

this example, NN-classifiers had lower error rates than LDA and QDA. But hybridizing

QDA with NN classifiers, we achieved even lower errors rates. While NN-LCV and NN-

CV had average error rates of 28.91% and 25.57%, those for Hybrid-LCV and Hybrid-CV

were 24.78% and 23.00%, respectively. We had some improvements over the error rates of

NN-classifiers even when LDA was used for hybridization.

Example 6 deals with the two classes as in Example 1, but here the training and the test

sets contain 75% observations from class-1. However, this unbalancedness did not make any

change in our findings. Hybridization of QDA and NN classifier led to the error rates close

to that of QDA, which was the best among the parametric and nonparametric classifiers.

2.2. Results on benchmark data sets

We analyze 18 benchmark data sets for further illustration of proposed methods. Among

them, there are two vowel recognition data sets, one containing 10 dimensional observations

8

from 11 classes, and the other containing bivariate observations from 10 classes. We will

refer to them as the vowel data and the 2D-vowel data, respectively. The latter one was

generated by Petersen and Barney (1952). Salmon data can be found in Johnson and Wich-

ern (1992). The rest of the data sets and their descriptions are available either at UCI

Machine Learning Repository (http://www.ics.uci.edu/∼mlearn) or at CMU Data Archive

(http://lib.stat.cmu.edu). In the case of biomedical data, we ignored the observations with

missing values and carried out our analysis with the remaining 194 cases. A brief summary

of these data sets is given in Table 2. Unless mentioned otherwise, throughout this section,

we use Gaussian distributions as parametric models, and hybrid classifiers are developed by

hybridizing LDA or QDA with NN-classifiers. In some of these data sets, the measurement

variables are not of comparable units and scales. So, in all these cases, we use the Ma-

halanobis distance (with the moment based estimate of the pooled dispersion matrix) for

finding nearest neighbors. For data sets having specific training and test sets (see Table 2),

test set error rates of different classifiers are reported in Table 3. When a classifier led to an

error rate ∆, its standard error was computed as
√

∆(1 − ∆)/nt, for nt being the size of the

test set. In case of other data sets, we formed 500 training and test sets by randomly parti-

tioning the data. Sizes of these training and test samples for different data sets are reported

in Table 2, and average test set error rates of different methods over these 500 partitions

are reported in Table 3 along with their corresponding standard errors. In all these cases,

training sample proportions of different classes are used as their prior probabilities.

In some of these data sets, parametric methods (either LDA or QDA or both) had better

performance than NN-classifiers. In such cases, the performance of hybrid classifiers was

comparable to the corresponding parametric classifier and better than NN-classifiers. For

instance, in cases of biomed and diabetes data, NN classifiers had significantly higher error

rates than QDA, but the error rates of hybrid classifiers were close to that of QDA. On the

other hand, in some other cases (e.g., letter recognition data and vowel data), both LDA and

QDA had error rates much higher than NN-classifiers. Clearly, in these cases, the underlying

distributions were far from being normal. But, in spite of invalid model assumptions, hybrid

classifiers could match the performance of NN classifiers. In the case of Sonar data, they

9

Table 2 : Brief description of benchmark data sets.

Data sets d J Train Test

Salmon 2 2 50 50

Synthetic• 2 2 250 1000

2D-vowel• 2 10 338 333

Biomed 4 2 100 94

Iris 4 3 75 75

Diabetes 5 3 100 45

Data sets d J Train Test

Crab 5 4 100 100

Pima Indian 8 2 400 368

Vowel• 10 11 528 462

Wine 13 3 100 78

Letter• 16 26 16000 4000

Kangaroo 18 2 80 21

Data sets d J Train Test

Vehicle 18 4 400 446

Waveform 21 3 3000 2000

WDBC 30 2 300 269

Satimage• 36 6 4435 2000

Sonar 60 2 150 58

Control chart 60 6 450 150
• Data sets have specific training and test sets.

Table 3 : Error rates (in %) of different classifiers on benchmark data sets and their standard errors.

Data sets LDA QDA Likelihood CV Cross-validation

NN LDA+NN QDA+NN NN LDA+NN QDA+NN

Salmon 8.21 (0.14) 7.69 (0.13) 8.46 (0.15) 8.56 (0.14) 8.09 (0.14) 8.97 (0.15) 8.83 (0.15) 8.62 (0.15)

Synthetic 10.80 (0.98) 10.20 (0.96) 10.00 (0.95) 10.40 (0.97) 10.30 (0.96) 11.70 (1.02) 11.70 (1.02) 10.20 (0.96)

2D-Vowel 25.26 (2.38) 19.83 (2.19) 22.82 (2.30) 19.24 (2.16) 19.83 (2.19) 18.06 (2.11) 19.25 (2.16) 19.25 (2.16)

Biomed 15.72 (0.13) 12.66 (0.12) 18.70 (0.16) 15.75 (0.13) 12.69 (0.12) 17.72 (0.15) 16.43 (0.15) 13.38 (0.13)

Iris 2.51 (0.07) 2.78 (0.07) 2.75 (0.08) 2.69 (0.07) 2.87 (0.07) 2.98 (0.08) 2.96 (0.08) 2.93 (0.08)

Diabetes 10.48 (0.18) 9.41 (0.18) 14.65 (0.31) 10.61 (0.18) 9.33 (0.18) 10.04 (0.18) 9.69 (0.19) 9.60 (0.18)

Crab 5.75 (0.09) 6.36 (0.09) 6.66 (0.10) 5.99 (0.09) 6.42 (0.09) 6.80 (0.10) 6.61 (0.10) 6.12 (0.10)

Pima 23.37 (0.07) 25.98 (0.08) 25.66 (0.07) 23.41 (0.07) 25.68 (0.09) 25.76 (0.07) 23.98 (0.07) 25.61 (0.08)

Vowel 55.62 (2.31) 52.81 (2.32) 48.27 (2.32) 46.54 (2.32) 45.02 (2.31) 46.75 (2.32) 46.75 (2.32) 46.75 (2.32)

Wine 2.00 (0.06) 2.47 (0.09) 2.40 (0.07) 2.23 (0.07) 2.27 (0.08) 2.34 (0.07) 2.32 (0.07) 2.30 (0.07)

Letter 30.94 (0.73) 12.42 (0.52) 4.22 (0.32) 4.77 (0.34) 4.84 (0.34) 4.22 (0.32) 4.57 (0.33) 4.59 (0.33)

Kangaroo 29.70 (0.44) 43.43 (0.42) 36.22 (0.35) 31.30 (0.41) 36.48 (0.38) 36.52 (0.36) 31.66 (0.40) 36.37 (0.37)

Vehicle 22.19 (0.06) 16.42 (0.07) 22.04 (0.07) 20.46 (0.07) 16.77 (0.09) 21.93 (0.08) 20.84 (0.07) 16.49 (0.07)

Waveform 14.18 (0.03) 15.18 (0.03) 22.62 (0.04) 14.18 (0.03) 15.18 (0.03) 15.75 (0.03) 14.39 (0.03) 15.20 (0.03)

WDBC 4.71 (0.05) 4.65 (0.05) 13.68 (0.14) 8.21 (0.11) 8.37 (0.11) 9.63 (0.09) 5.44 (0.05) 4.52 (0.05)

Satimage 16.03 (0.82) 14.11 (0.78) 21.65 (0.92) 16.42 (0.83) 15.75 (0.81) 16.49 (0.83) 14.18 (0.78) 14.23 (0.78)

Sonar 26.84 (0.24) 31.91 (0.24) 25.64 (0.25) 25.04 (0.23) 24.19 (0.25) 27.47 (0.26) 25.68 (0.25) 27.33 (0.26)

Control chart 2.78 (0.05) 25.72 (0.17) 7.00 (0.09) 2.77 (0.05) 6.76 (0.09) 7.20 (0.09) 3.46 (0.06) 5.28 (0.08)

had lower error rates than that of both parametric and nonparametric classifiers. Mainly

motivated by the normality of underlying distributions, in all these examples, we used LDA

and QDA as parametric classifiers. But this normality assumption may not be valid in some

cases, where we can further improve the performance of hybrid classifiers by choosing more

appropriate parametric models. For instance, in the case of synthetic data, if we assume

each of the two populations to be a mixture of two bivariate normal distributions and use the

EM algorithm (see e.g., MacLachlan and Krishnan 1997) to estimate the model parameters,

Hybrid-LCV and Hybrid-CV can achieve error rates of 9.1% and 9.2%, respectively.

10

3. Multiscale approach in hybrid classification

In the previous section, we considered the class of models S∗ and chose one of them for

classification of all observations. However, this way of selecting only one classifier ignores the

uncertainty involved in model selection. Further, in addition to depending on the training

data, a good choice of k and λ may depend on the observation to be classified. Therefore,

in practice, instead of using a fixed (λ, k) over the entire measurement space, it may be

more useful to consider the results for different choices of k and λ and then aggregate them

judiciously. Here k is the smoothing parameter that controls the scale of smoothing involved

in nearest neighbor estimation of posterior probabilities. If k gets larger, p0,k and hence pλ,k

tend to be smoother in some sense. The parameter λ also controls the smoothness of the

hybrid estimate. If λ is small, pλ,k behaves like a nonparametric estimate, which is supposed

to be a local estimate, whereas for bigger λ, it behaves like a parametric estimate, which

is global in some sense. So, the local variation or the roughness of pλ,k is expected to be

smaller as λ increases. Therefore, different values of λ and k can be viewed as different scales

of smoothing, and the aggregated classifier can be referred to as the multiscale classifier.

The usefulness of multiscale analysis has been discussed in the literature in the context

of function estimation (see e.g., Chaudhuri and Marron 1999, 2000; Godtliebsen et. al.,

2002) and classification (see e.g., Holmes and Adams 2002; Ghosh et. al., 2005; Ghosh et.

al., 2006). One popular way to aggregate the results of different classifiers is to use the

weighted average of posterior probabilities. The aggregated classifier is given by dA(x) =

argmaxj

∑

λ,k w(λ, k) pλ,k(j | x), where w(λ, k) is the weight (
∑

λ,k w(λ, k) = 1) assigned to

the classifier indexed by (λ, k). Following Ghosh et. al. (2005), one can adopt the multi-scale

version of cross-validation, and use the Gaussian-type weight function

w(λ, k) = C exp

−1

2

∆̂(λ, k) − ∆̂(λ0, k0)
√

∆̂(λ0, k0)(1 − ∆̂(λ0, k0))/n

that decreases with the cross-validation error rate ∆̂(λ, k) of a classifier at an exponential

rate. Here ∆̂(λ0, k0) = min
λ,k

∆̂(λ, k), and C is a normalizing constant. Note that ∆̂(λ0, k0)

and {∆̂(λ0, k0) (1− ∆̂(λ0, k0))}/n can be viewed as estimates for the mean and the variance

11

of the empirical misclassification rate of the hybrid classifier with the best choice of λ and

k, when it is used to classify n independent observations. Also note that this estimated

variance converges to zero as n tends to infinity. So, when the training sample size is very

large, it puts almost all weights on the classifiers having the lowest cross-validation error. If

this classifier is unique, multiscale method performs almost like a single scale method. But

when the sample size is not so large, due to high stochastic variation of the cross-validation

estimate of error rate, the single scale method often fails to select the best model even when

such a model (which is uniformly better than other models over the entire measurement

space) exists. Multi-scale method takes care of this model uncertainty and aggregate the

results obtained by several good classifiers by putting higher weights on them. The use

of the Gaussian type weight function also helps us to appropriately weigh down the poor

classifiers (classifiers with poor choices of λ and k) by putting almost zero weights on them.

The multiscale method based on this Gaussian weight function led to fairly good results

in our examples. Our empirical experience also suggests that the final result is not very

sensitive to the choice of the weight function as long as it decreases at an exponential rate.

For multiscale version of LCV, one can assign weights to different values of (λ, k) depend-

ing on the corresponding likelihood L(λ, k). Given the training data X = (x1,x2, . . . ,xn),

their class labels C = (c1, c2, . . . , cn) and the value of (λ, k), pλ,k(. | x) can be viewed as the

conditional probability p(. | x,X, C, λ, k). Clearly, these posterior probability estimates and

the resulting classifier depend on the selected model (i.e. the values of λ and k). To remove

this model uncertainty, we compute p(· | x,X, C), which is free from k and λ, and given by

p(· | x,X, C) =
∑

k

∫

p(. | x,X, C, λ, k) π(λ, k | x,X, C) dλ

=
∑

k

∫

pλ,k(. | x) π(λ, k | x,X, C) dλ,

where π(λ, k | x,X, C) denotes the posterior distribution of (λ, k) given x,X and C. If

ξ(λ, k) denotes the prior distribution of (λ, k), we have π(λ, k | x,X, C) = C0 ξ(λ, k) L(λ, k),

where C0 is a constant that does not depend on k and λ. So, one can forget about C0 and

use the usual quadrature formula to compute p(· | x,X, C). However, sometimes it is

computationally advantageous to use the Markov Chain Monte Carlo (MCMC) algorithm

12

(see e.g., Gilks et. al., 1996). Using MCMC, one can generate sufficiently many observations

(λ(1), k(1)), (λ(2), k(2)), . . . , (λ(M), k(M)) from π(λ, k | x,X, C) and then approximate the

integral by 1
M

∑M

m=1 pλ(m),k(m)
(· | x). In this article, we have always generated a Markov

chain consisting of 11000 observations, and leaving the first 1000 for burning, the rest have

been used to compute posterior probability estimates of different classes. Since π(λ, k |
x,X, C) does not depend on x, one does not need to generate MCMC samples repeatedly

for different observations, and this leads to substantial saving in computing time. However,

π(λ, k | x,X, C) depends on the prior ξ(λ, k). In this article, for all data analytic purpose,

we have used uniform prior both for λ and k assuming their independence. This prior is

non-informative and gives no preference to any value of (λ, k). For generating the MCMC

sequence, we consider the proposal distribution N(λ, σ) × U(k, k ± 1, k ± 2, k ± 3) with

appropriate boundary corrections, where σ is chosen during the simulation to have 30%

acceptance. Here also, if the training sample size is vary large compared to the dimension

of the data, one can show that this multiscale version of LCV puts all almost all weights

on the model having the highest likelihood, and in that case, it behaves almost like the

single scale version. However, when the sample size is not so large, it usually outperforms

its single scale analog by considering the results of several good classifiers. This multiscale

method performed quite well in our data sets. In all these cases, we used both quadrature

and MCMC methods, and the error rates of these two methods were almost the same.

3.1. Comparison among single scale and multiscale hybrid classifiers

Here we analyze the benchmark data sets used in Section 2 to compare the performance

of multiscale hybrid classifiers with their single scale analogs (Hybrid-LCV and Hybrid-CV).

We ran the multiscale classifiers on the same training and test sets used before, and their

test error rates are reported in Table 4 along with their corresponding standard errors. Error

rates of Hybrid-LCV and Hybrid-CV are also reported to facilitate comparison. Note that

we have two multiscale hybrid classifiers, one based on LCV and the other one based on

CV. In future, we will refer to them as MSLCV and MSCV, respectively. In Section 2, we

observed that though in some cases, hybrid classifiers outperformed both parametric and

13

Table 4 : Error rates (in %) of different classifiers and their standard errors.

Hybridization of LDA and nearest neighbor classifiers

Salmon Synthetic 2D-Vowel Biomed Iris Diabetes Crab Pima Indian Vowel

Select-LCV 8.65 (0.15) 10.00 (0.95) 25.26 (2.38) 15.81 (0.13) 2.81 (0.07) 11.16 (0.20) 6.00 (0.10) 23.74 (0.08) 48.27 (2.32)

Hybrid-LCV 8.56 (0.14) 10.40 (0.97) 19.24 (2.16) 15.75 (0.13) 2.69 (0.07) 10.61 (0.18) 5.99 (0.09) 23.41 (0.07) 46.54 (2.32)

MSLCV 8.10 (0.14) 9.20 (0.91) 18.64 (2.13) 15.89 (0.13) 2.44 (0.06) 10.60 (0.18) 5.77 (0.09) 23.20 (0.07) 46.75 (2.32)

Select-CV 9.01 (0.15) 11.70 (1.02) 18.06 (2.11) 17.38 (0.15) 2.99 (0.08) 10.04 (0.18) 6.80 (0.10) 24.26 (0.09) 46.75 (2.32)

Hybrid-CV 8.83 (0.15) 11.70 (1.02) 19.25 (2.16) 16.43 (0.15) 2.96 (0.08) 9.69 (0.19) 6.61 (0.10) 23.98 (0.07) 46.75 (2.32)

MSCV 8.06 (0.13) 10.70 (0.98) 21.37 (2.25) 16.17 (0.14) 2.50 (0.07) 10.48 (0.18) 5.73 (0.09) 23.17 (0.07) 46.75 (2.32)

Wine Letter Kangaroo Vehicle Waveform WDBC Satimage Sonar Control chart

Select-LCV 2.33 (0.07) 30.94 (0.73) 36.20 (0.36) 21.99 (0.07) 14.18 (0.03) 8.26 (0.11) 16.03 (0.82) 25.66 (0.23) 2.76 (0.05)

Hybrid-LCV 2.23 (0.07) 4.77 (0.34) 31.30 (0.41) 20.46 (0.07) 14.18 (0.03) 8.21 (0.11) 16.42 (0.83) 25.04 (0.23) 2.77 (0.05)

MSLCV 1.82 (0.06) 4.77 (0.34) 29.79 (0.43) 20.35 (0.07) 14.51 (0.03) 5.69 (0.06) 17.25 (0.84) 24.40 (0.23) 2.77 (0.05)

Select-CV 2.34 (0.07) 4.22 (0.32) 34.42 (0.39) 21.93 (0.07) 14.18 (0.03) 5.05 (0.05) 16.03 (0.82) 25.68 (0.25) 2.83 (0.06)

Hybrid-CV 2.32 (0.07) 4.57 (0.33) 31.66 (0.40) 20.84 (0.07) 14.39 (0.03) 5.44 (0.05) 15.75 (0.81) 25.63 (0.25) 3.46 (0.06)

MSCV 1.81 (0.06) 4.04 (0.31) 29.42 (0.43) 21.40 (0.07) 14.27 (0.03) 5.25 (0.06) 16.49 (0.83) 23.91 (0.24) 2.82 (0.05)

Hybridization of QDA and nearest neighbor classifiers

Salmon Synthetic 2D-Vowel Biomed Iris Diabetes Crab Pima Indian Vowel

Select-LCV 7.93 (0.14) 10.20 (0.96) 19.83 (2.19) 15.33 (0.17) 2.88 (0.08) 10.50 (0.22) 6.48 (0.09) 25.82 (0.08) 52.81 (2.32)

Hybrid-LCV 8.09 (0.14) 10.30 (0.96) 19.83 (2.19) 12.69 (0.12) 2.87 (0.07) 9.33 (0.18) 6.42 (0.09) 25.68 (0.09) 45.02 (2.31)

MSLCV 7.76 (0.13) 10.10 (0.95) 19.83 (2.19) 12.67 (0.12) 2.67 (0.07) 9.30 (0.18) 6.29 (0.09) 25.66 (0.08) 45.45 (2.32)

Select-CV 8.65 (0.15) 10.20 (0.96) 19.83 (2.19) 13.42 (0.13) 2.97 (0.08) 10.04 (0.18) 6.70 (0.09) 25.95 (0.08) 46.75 (2.32)

Hybrid-CV 8.62 (0.15) 10.20 (0.96) 19.25 (2.16) 13.38 (0.13) 2.93 (0.08) 9.60 (0.18) 6.12 (0.10) 25.61 (0.08) 46.75 (2.32)

MSCV 7.72 (0.13) 10.10 (0.95) 19.83 (2.19) 12.66 (0.12) 2.69 (0.07) 9.24 (0.18) 6.14 (0.09) 25.61 (0.08) 46.75 (2.32)

Wine Letter Kangaroo Vehicle Waveform WDBC Satimage Sonar Control chart

Select-LCV 2.46 (0.08) 12.42 (0.52) 36.22 (0.36) 20.98 (0.12) 15.18 (0.03) 10.98 (0.13) 14.11 (0.78) 24.26 (0.25) 7.03 (0.09)

Hybrid-LCV 2.27 (0.08) 4.84 (0.34) 36.48 (0.38) 16.77 (0.09) 15.18 (0.03) 8.37 (0.11) 14.18 (0.78) 24.17 (0.25) 6.76 (0.09)

MSLCV 1.57 (0.07) 4.84 (0.34) 35.70 (0.38) 16.37 (0.07) 15.18 (0.03) 4.70 (0.05) 14.52 (0.79) 27.33 (0.29) 6.72 (0.10)

Select-CV 2.38 (0.07) 4.22 (0.32) 36.64 (0.37) 16.50 (0.07) 15.18 (0.03) 5.07 (0.05) 14.11 (0.78) 27.63 (0.27) 7.20 (0.09)

Hybrid-CV 2.30 (0.07) 4.59 (0.33) 36.37 (0.37) 16.49 (0.07) 15.20 (0.03) 4.52 (0.05) 14.23 (0.78) 27.35 (0.26) 5.28 (0.08)

MSCV 1.21 (0.06) 4.29 (0.32) 39.13 (0.45) 16.36 (0.07) 15.11 (0.03) 4.71 (0.05) 14.08 (0.78) 25.17 (0.26) 4.87 (0.08)

nonparametric classifiers, in most of the cases, they performed as good as the better of these

two methods. So, instead of going for hybridization, one may be tempted to use either LCV

or CV to select either the parametric or a nonparametric classifier and use it for classification

of all test cases. Table 4 also reports the error rates of these two methods, which are referred

to as Select-LCV and Select-CV, respectively.

Table 4 clearly shows the effectiveness of the multiscale approach in hybrid classification.

In 53 out of 72 (18 × 4) cases, multiscale classifiers had the lowest error rates, and in 25

out of these 53 cases (written using grey colors in Table 4), differences between their error

14

1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

Hybrid classifiers

(a) Hybridization using LDA

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

Hybrid classifiers

(b) Hybridization using QDA

Figure 2: Efficiencies of different classifiers : [1] Select-LCV, [2] Hybrid-LCV, [3] MSLCV, [4] Select-CV, [5]

Hybrid-CV, [6] MSCV.

rates and those of their competitors were found to be statistically significant at 5% level

when the usual t-test was used for comparison. To compare the overall performance of these

classifiers, following Chaudhuri et. al. (2009), we computed efficiencies of different methods

across different data sets, and they are presented in Figure 2 using box plots. On a particular

data set, the efficiency of the t-th classifier is defined as et = ∆0/∆t, where ∆t is the test

set misclassification rate of t-th classifier and ∆0 = min ∆t. Clearly, et takes the value 1

for the best classifier and et < 1 for other classifiers. Also, a small value of et indicates the

lack of efficiency of the classifier t. Box plots in Figure 2 clearly shows the superiority of

multiscale hybrid classifiers. It also strongly indicates that using hybrid classifiers is better

than selecting one of the parametric and nonparametric classifiers.

3.2. Computationally efficient multiscale hybrid classifiers and their comparison with other

methods of aggregation

Since pλ,k is a convex combination of p1 and p0,k, the multi-scale classifiers discussed

above can also be expressed as dA(x) = arg maxj

{

w0 p1(j | x) +
∑

k wk p0,k(j | x)
}

, where

w0, w1, . . . are positive constants and
∑

k≥0 wk = 1. Therefore, instead of assigning weights to

hybrid classifiers, one can assign weights directly to parametric and nonparametric classifiers

to come up with a new method of aggregation or classifier combination. Note that the second

15

method requires less computation, and one can use that idea to develop alternative versions

of our multiscale methods discussed earlier. In future, we will refer to these alternative

versions of MSLCV and MSCV as MSLCV-2 and MSCV-2, respectively. There is a vast

literature on the area of classifier combination (see Kittler et. al., 1998 for discussion), but

almost all aggregation methods can be broadly divided into two main categories. One class

of methods use the same classifier on different subsamples to develop different classification

rules and then aggregate them to arrive at the final classifier. Popular ensemble methods like

bagging (see e.g., Breiman 1996b) and boosting (see e.g., Schapire et. al. 1998; Friedman,

Hastie and Tibshirani 2000) belong to this class. Another class of methods use different

classifiers on the same data set and then aggregate them. These classifier combination

methods are known as stacking (see e.g., Wolpert, 1992; Breiman, 1996a). Ofcourse, there

are other aggregation methods like cascading (see e.g., Alpaydin and Kayank, 1998; Kayank

and Alpaydin, 2000) and gating (see e.g., Jacobs et. al., 1991). In cascading, one uses

a simple and computationally efficient classifier (like LDA or QDA) to all observations

and then a relatively complex classifier (like k-NN) is used to classify those cases, which

were not confidently (in terms of estimated posterior or otherwise) classified by the simple

classifier. However, instead of a single NN classifier, here we work with a class of NN

classifiers, and it is difficult to judge which one is more simple and to be used before. If

one uses the 1-NN classifier before others, it gives posterior estimates either 0 or 1 and

hence leaves no room for other classifiers to be used. Moreover, in some examples (e.g.,

Example-4 in Section 2), parametric classifiers misclassify many observations with high

confidence (in terms of estimated posterior). Cascading will fail to correctly classify those

observations. Gating on the other hand, adopts a probabilistic approach to decide which of

the classifiers is to be used for classification of a specific observation. These probabilities

(also known as weights) are dynamically adjusted during classification. This can be viewed

as a locally adaptive version of Select-CV and Hybrid-CV (or Select-LCV and Hybrid-LCV)

where different models may get selected for classification of different observations. However,

this differs from our multiscale approach, where we do not choose any particular model

(classifier) but consider the results of all classifiers to arrive at the final decision. Locally

16

adaptive versions of our multiscale methods will be discussed later in Section 3.4, and that

is why here we do not discuss gating separately.

Note that unlike bagging and boosting, here we do not deal with different subsamples.

From the above discussion, it is also quite clear that stacking is more relevant in our con-

text. In stacking, the major issues are the choice of level-0 and level-1 classifiers and also the

choice of the input variables for level-1 classification. In our case, these level-0 classifiers are

well defined (i.e., parametric and nonparametric classifiers), and we want to choose a good

level-1 classifier. Ting and Witten (1999) proposed to use posterior probability estimates

of different classes obtained by level-0 classifiers as input features for level-1 generalization.

For level-1 classification, they used the multiple linear regression (MLR) method under the

non-negativity constraint on the regression coefficients as suggested by Breiman (1996a).

Dzeroski and Zenko (2004) compared the performance of different stacking algorithms on

several benchmark data sets and showed that MLR with posterior probability estimates usu-

ally performs better than most of other stacking algorithms, and its performance is usually

better than the method based on cross-validation, especially when there are diversities among

the level-0 classifiers. Since the parametric classifier and the nonparametric classifiers with

different choices of k are expected to have reasonable diversities among themselves, here one

can expect to have better performance using the stacking algorithm. In this article, we have

used the MLR method of Ting and Witten (1999) for stacking, where the non-negativity

constraint is imposed using the algorithm given in Lawson and Hansen (1995).

Since LDA, QDA and NN-classifiers are all stable classifiers, one cannot expect to have

significant diversity in the decision rules if one of these classifiers is used on different sub-

samples (see e.g., Breiman, 1996b; Zhou and Yu, 2005). So, bagging or boosting is not a

good option for our classifier combination. Moreover, bagging and boosting needs repetitive

use of NN-classifiers on different subsamples, which increases the computing cost and also

requires substantial memory space to keep track of these subsamples. However, one can still

adopt the weight function used in bagging or boosting for aggregation. Note that bagging

assigns equal weight to all classifiers, but like MSCV, boosting assigns different weights to

different classifiers based on their misclassification rates. However, instead of an exponential

17

Table 5 : Average computing times (in seconds) for classification of all test cases.

Data sets LDA NN-LCV NN-CV Sel.-LCV Sel.-CV Hyb.-LCV Hyb.-CV MSLCV MSCV MSLCV-2 MSCV-2 Stacking

Salmon 0.0003 0.0014 0.0013 0.0016 0.0016 0.0103 0.0115 0.0425 0.0163 0.0020 0.0019 0.0022

Synthetic 0.0050 0.1098 0.1061 0.1139 0.1106 0.8373 0.9720 0.4846 1.5162 0.1133 0.1104 0.1512

2D-Vowel 0.0025 0.1005 0.1073 0.1026 0.1092 1.2400 2.9781 0.6879 3.9143 0.1045 0.1098 1.9893

Biomed 0.0013 0.0095 0.0089 0.0106 0.0098 0.0532 0.0487 0.1057 0.0704 0.0101 0.0097 0.0111

Iris 0.0012 0.0043 0.0039 0.0045 0.0042 0.0280 0.0317 0.0933 0.0492 0.0051 0.0045 0.0070

Diabetes 0.0012 0.0078 0.0061 0.0086 0.0070 0.0498 0.0623 0.1148 0.0869 0.0177 0.0168 0.0343

Crab 0.0016 0.0108 0.0107 0.0121 0.0119 0.0538 0.0792 0.1327 0.1250 0.0120 0.0123 0.0189

Pima 0.0085 0.1418 0.1394 0.1492 0.1473 5.0403 5.2136 1.4405 5.4991 0.1477 0.1467 0.2097

Vowel 0.0230 0.2503 0.2671 0.2694 0.2838 2.1470 5.2662 1.1587 7.7196 0.3552 0.3056 4.3016

Wine 0.0044 0.0141 0.0139 0.0181 0.0180 0.0558 0.0632 0.1148 0.0869 0.0177 0.0167 0.0343

Letter 0.7056 161.88 164.00 168.52 172.20 275.01 573.97 223.31 615.94 172.52 173.39 998.92

Kangaroo 0.0028 0.0069 0.0073 0.0088 0.0089 0.0347 0.0352 0.0792 0.0395 0.0096 0.0099 0.0108

Vehicle 0.0267 0.1573 0.1587 0.1781 0.1812 0.5316 0.9147 0.5998 1.0111 0.1992 0.2019 0.2608

Waveform 0.2031 7.2063 7.1989 7.2761 7.2744 11.348 12.200 10.446 12.907 7.3414 7.3296 7.7936

WDBC 0.0361 0.1212 0.1206 0.1420 0.1413 0.3512 0.3342 0.4046 0.3459 0.1573 0.1562 0.1617

Satimage 0.5172 17.621 17.625 18.469 18.547 25.703 31.437 25.750 32.125 19.031 18.991 23.985

Sonar 0.0379 0.0669 0.0665 0.0996 0.0986 0.1657 0.1626 0.2191 0.1781 0.1205 0.1197 0.1409

Control chart 0.1500 0.3386 0.3398 0.5349 0.5445 1.0428 1.6359 0.9303 1.7394 0.6911 0.6995 0.7944

weight function, it uses the log of the odd ratio (see e.g., Zhu et. al., 2005 for details on

multi-class adaboost algorithm). We can assign these logarithmic weights either to hybrid

classifiers (as it was done in Section 3.1) or to parametric and nonparametric classifiers (as it

was done in stacking, MSLCV-2 and MSCV-2). Based on that, we get two different versions

of aggregation, and we will refer to them as LogWeight and LogWeight-2, respectively.

We used all these aggregation methods on 18 benchmark data sets, but instead of report-

ing their error rates in another table, to save space and to have better visualization, these

results are summarized using box-plots in Figure 3. Average computing times of these meth-

ods are also reported in Table 5. Since the computing times of LogWeight and Logweight-2

were similar to that of MSCV and MSCV-2, we do not report them here. For MSLCV, we

have reported the computing time for the method based on the MCMC technique, which

was found to be computationally efficient than the quadrature method in most of the cases.

From Figure 3, it is quite clear that in terms of error rate, MSCV-2 and MSCV had com-

parable performance. This result is quite encouraging because MSCV-2 is computationally

efficient than MSCV (see Table 5), and it can be used for combining several parametric and

18

1 2 3 4 5 6 7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ef
fic

ie
nc

y

Aggregation methods

(a) Hybridization using LDA

1 2 3 4 5 6 7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ef
fic

ie
nc

y
Aggregation methods

(b) Hybridization using QDA

Figure 3: Efficiencies of different aggregation methods : [1] MSLCV, [2] MSCV, [3] MSLCV-2, [4] MSCV-2,

[5] Stacking, [6] LogWeight, [7] LogWeight-2.

nonparametric classifiers, which may not be computationally feasible for MSCV. However,

that was not the case for MSLCV-2. It had comparatively higher error rates than MSLCV.

But that doesn’t harm much since the MSLCV method based on the MCMC technique is

not computationally very expensive (see Table 5). The stacking classifier based on MLR

had higher computing time than MSCV-2 and MSLCV-2, especially when there are several

competing classes. Though stacking performed quite well in these examples, MSCV-2 had

an edge over stacking both in terms of computing time and average misclassification rate.

The logarithmic weight function could not weigh down the poor classifiers properly, and as a

result, LogWeight and LogWeight-2 often had significantly higher error rates. This matches

with the findings of Ghosh et. al. (2006), and we will not further investigate these logarith-

mic weighting schemes in this article. The performance of the equal weightage schemes was

even worse, and we do not report them here.

3.3. Aggregation of several parametric and nonparametric classifiers

Our aggregation methods can be used for hybridizing several parametric and nonpara-

metric classifiers as well. Let us consider a set of T classifiers, and let pβt

t (· | x) be the

posterior probability estimate obtained from the t-th classifier (t = 1, 2, . . . , T), when βt is

19

Table 6: Error rates (in %) of different aggregation methods and their corresponding standard errors.

Salmon Synthetic 2D-vowel Biomed Iris Diabetes Crab Pima Vowel

MSLCV 7.88 (0.13) 10.10 (0.95) 19.83 (2.18) 12.71 (0.11) 2.35 (0.06) 9.00 (0.18) 5.66 (0.08) 25.22 (0.09) 46.75 (2.32)

MSLCV-2 8.01 (0.14) 10.10 (0.95) 19.83 (2.18) 15.13 (0.13) 2.49 (0.07) 11.19 (0.19) 6.06 (0.09) 23.79 (0.08) 52.81 (2.32)

MSCV-2 8.01 (0.13) 9.80 (0.94) 18.94 (2.15) 14.79 (0.14) 2.43 (0.07) 9.52 (0.18) 6.16 (0.09) 24.69 (0.08) 46.75 (2.32)

Stacking 8.49 (0.14) 10.20 (0.96) 20.73 (2.22) 12.12 (0.12) 2.82 (0.08) 9.49 (0.18) 5.99 (0.09) 23.82 (0.08) 46.75 (2.32)

Wine Letter Kangaroo Vehicle Waveform WDBC Satimage Sonar Control chart

MSLCV 1.07 (0.05) 4.41 (0.32) 36.48 (0.34) 16.62 (0.08) 14.98 (0.04) 4.77 (0.05) 14.24 (0.78) 26.86 (0.25) 3.15 (0.05)

MSLCV-2 1.99 (0.07) 12.42 (0.52) 36.01 (0.31) 20.67 (0.07) 15.18 (0.03) 7.84 (0.11) 16.03 (0.82) 27.07 (0.25) 2.77 (0.05)

MSCV-2 1.96 (0.06) 3.93 (0.31) 34.32 (0.33) 17.43 (0.09) 14.71 (0.04) 4.70 (0.05) 14.10 (0.78) 25.93 (0.24) 3.12 (0.06)

Stacking 2.36 (0.07) 3.83 (0.30) 33.11 (0.38) 16.93 (0.08) 14.52 (0.03) 4.83 (0.05) 13.30 (0.76) 26.57 (0.25) 8.14 (0.08)

used as the associated smoothing parameter (ignore βt for parametric methods like LDA

and QDA, which do not involve any smoothing parameter). Now, for aggregation of these

T classifiers, we can consider the class of models S∗∗ = {pλ,β(· | x) =
∑T

t=1 λt pβt

t (· | x);

λt, βt ≥ 0 ∀ t,
∑

λt = 1}. Clearly, this class may contain a large number of models, and it

could be computationally difficult to use LCV or cross-validation to find the best candidate

in this class. For the same reason, it could be difficult to use MSCV. But we do not have this

problem for MSLCV that explores the model space using the MCMC technique. Computa-

tionally efficient aggregation methods like stacking, MSCV-2, MSLCV-2 can also be used.

Unlike MSLCV, instead of putting weights on all hybrid models in S∗∗, they put weights

only on parametric and nonparametric models (as discussed in Section 3.2) to compute the

aggregated posteriors for different classes. We have seen that in some of the benchmark data

sets, hybridization of LDA yielded better performance than hybridization of QDA, whereas

in some other cases, the latter one was better. One can test the validity of the homoscedastic

assumption (same variance-covariance structure in different populations) made by LDA to

decide which parametric method is to be used for hybridization. However, if classification is

our prime concern, we can bypass this testing problem, and as a safeguard, use LDA, QDA

and NN-classifiers simultaneously for hybridization.

Table 6 presents the error rates of these aggregation methods, and these results are

summarized using box plots in Figure 4(a). They clearly show that MSCV-2 is a good

option as a computationally efficient alternative, but one should avoid using MSLCV-2.

This is consistent with what we observed before. Among different aggregation methods,

20

1 2 3 4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ef

fic
ien

cy

MSLCV MSLCV−2 MSCV−2 Stacking

(a) Hybridization of LDA, QDA and NN classifiers

1 2 3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ef
fic

ien
cy

 LDA + NN QDA + NN LDA + QDA + NN

(b) Hybrid classifiers based on MSLCV

Figure 4: Hybridization of LDA, QDA and NN classifiers : efficiencies of different aggregation methods.

overall performance of MSLCV and MSCV-2 was better than the rest. Though MSLCV

had a slight edge over MSCV-2 in terms of error rate, MSCV-2 had substantial advantage in

terms of computing time. In terms of average (median) efficiency, stacking and MSCV-2 were

comparable, but the latter one had a clear advantage in terms stability (see Figure 4(a)).

It showed more stable performance than stacking across these benchmark data sets and

required less computing time as well. Box plots in Figure 4(b) also show that for MSLCV, we

could achieve much better performance when both LDA and QDA are simultaneously used

for hybridization. We observed the same phenomenon also for the other three aggregation

methods considered here.

3.4. Locally adaptive aggregation

Instead of using same weights over the entire region, sometimes it is more reasonable

to use different weights for aggregation in different parts of the measurement space. This

could be helpful if the parametric classifier is better in one part of the measurement space

and the nonparametric method is better in another part. For example, let us consider the

‘easy’ and the ‘difficult’ examples considered in Hastie et. al. (2009, p. 468). We com-

bined these two examples as described below to generate observations from two competing

classes. We generated some 10 dimensional random vectors X = (X1, X2, . . . , X10), where

X1, X2, . . . , X10 are independent U(0, 1) variables. For the first half of the data, we assigned

X to class-1 if X1 > 0.5 and to class-2 otherwise. For the rest half, we assigned X to class-1

21

1 2 3 4 5 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

Aggregation methods

Figure 5: Efficiencies of locally adaptive and non-adaptive weighing scheme : [1] MSLCV-2, [2] MSLCV-2

(local), [3] MSCV-2, [4] MSCV-2 (local), [5] Stacking, [6] Stacking (local).

if (X1−0.5)(X2−0.5)(X3−0.5) > 0, to class-2 otherwise. For each X in the second half, we

increased the value of X4 by 10 so that the generated data form two distinct clusters. Now,

in one part of the measurement space, since the Bayes classifier is linear, LDA is expected

to work better than NN-classifiers, whereas in the other part, NN-classifiers are expected to

outperform LDA. So, if we hybridize LDA with the NN-classifiers, it would be appropriate to

put more weight on LDA in the first part and small weight on it in the other part. In order

to have this locally adaptive nature in aggregation, for classification of x, different weights

ωx(xi) can be assigned to different data points xi depending on their distances ‖xi − x‖
from x. Using these weights, one can compute the weighted error rate or the weighted like-

lihood function for different classifiers to put locally adaptive weights on them. Similarly,

for an adaptive version of stacking, we can perform weighted linear regression under the

non-negativity constraint. Here, we used a simple method for computing ω. We assigned

ω = 1 for all points in a neighborhood of x and ω = 0 for the rest. Following Hastie and

Tibshirani (1996), we chose a neighborhood containing max(50, n/5) observations subject

to a maximum of 200.

We generated 500 training and test sets each of size 100 and 200 respectively, and com-

puted the average error rates for adaptive and non-adaptive versions of stacking, MSCV-2

and MSLCV-2 (these three methods were chosen because of their computational efficiency).

While non-adaptive versions of MSLCV-2, MSCV-2 and stacking had average error rates

of 31.84%, 31.26% and 31.40%, those for their adaptive versions were 31.09%, 30.12% and

22

30.77%, respectively. In view of corresponding standard errors (0.15% for all these meth-

ods), the improvement was statistically significant in all these cases. When we considered it

as a four class problem, average error rates for non-adaptive versions were 28.86%, 28.62%,

28.47% respectively, whereas those for adaptive versions were 28.59%, 27.67% and 28.21%.

We observed the same phenomenon in Example-5 discussed in Section-2. Recall that

hybridization of QDA and NN-classifiers led to the best result in this example. Hybrid-

LCV and Hybrid-CV yielded average error rates of 24.78% and 23.00% respectively. In

this example, non-adaptive multiscale methods could not provide significant improvement

in terms of error rates, but adaptive versions of MSLCV-2, MSCV-2 and stacking yielded

average error rates of 22.76%, 22.18% and 21.86%, respectively, with corresponding standard

errors of 0.19%, 0.17% and 0.16%.

We used these locally adaptive aggregation techniques to analyze the 18 benchmark data

sets used in this article, and the results are summarized using box plots in Figure 5. This

figure shows that the overall performance of the adaptive versions were somewhat better

than their non-adaptive analogs, especially in the case of MSLCV-2.

4. Concluding remarks

In this article, we have developed and studied hybrid classification methods to improve

the performance of parametric and nonparametric classifiers. When the underlying distri-

butions are close to the assumed parametric models, hybrid methods usually perform better

than nonparametric classifiers and match the performance of parametric methods. But un-

like parametric classifiers, hybrid methods provide automatic safeguards against parametric

model mis-specifications. When the true population distributions are far from the assumed

parametric models, hybrid classifiers perform substantially better than parametric methods

and yield error rates either lower or comparable to that of nonparametric classifiers. Also,

in some case, specially when the parametric classifier is better in one part of the measure-

ment space and the nonparametric classifiers are better in other part, hybrid methods can

outperform both of them. Using several simulated and benchmark data sets, in this article,

we have amply demonstrated these important features of hybrid classifiers.

23

The aggregation methods discussed in Section 3 are simple and easy to implement. They

combine the results obtained by different classifiers, which are expected to have reasonable

diversities among themselves. So, intuitively it seems more advantageous to use the aggre-

gation technique, and our analysis of benchmark data sets also supports this intuition. The

MSLCV algorithm based on the MCMC technique can also be used for classification with

missing values. In the missing value problem, one either ignores the full observation or uses

EM type algorithm to replace the missing value by the expected value of the variable. But

instead of fixing this value, one can consider the results for different choices of the miss-

ing value and aggregate the results. In the same spirit, it can be used for semi-supervised

classification as well. However, its performance on such problems needs to be investigated.

Acknowledgement

We are thankful to three anonymous referees for their careful reading of earlier versions

of the paper and providing us with several helpful comments.

References

[1] Alpaydin, E. and Kayank, C. (1998) Cascading classifiers. Kybernetika, 34, 369-374.

[2] Breiman, L. (1996a) Stacked regressions. Machine Learning, 24, 49-64.

[3] Breiman, L. (1996b) Bagging predictors. Machine Learning, 24, 123-140.

[4] Chaudhuri, P. and Marron, J. S. (1999) SiZer for exploration of structures in curves. J. Amer.

Statist. Assoc. 94, 807-823.

[5] Chaudhuri, P. and Marron, J. S. (2000) Scale space view of curve estimation. Ann. Statist.

28, 408-428.

[6] Chaudhuri, P., Ghosh, A. K. and Oja, H. (2009) Classification using hybridization of parame-

teric and nonparametric classifiers. IEEE Trans. Pattern Anal. Machine Intell., 31, 1153-1164.

[7] Cover, T. M. and Hart, P. E. (1967) Nearest neighbor pattern classification, IEEE Trans. Info.

Theory, 13, 21-27.

[8] Dzeroski, S. and Zenko, B. (2004) Is combining classifiers with stacking better than selecting

the best one? Machine Learning, 54, 255-273.

24

[9] Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Ann. Eugen.,

7, 179-188.

[10] Friedman, J. H., Hastie, T. and Tibshirani, R. (2000) Additive logistic regression : a statistical

view of boosting (with discussion). Ann. Statist., 28, 337-374.

[11] Ghosh, A. K. and Chaudhuri, P. (2005) On data depth and distribution free discriminant

analysis using separating surfaces. Bernoulli, 11, 1-27.

[12] Ghosh, A. K., Chaudhuri, P. and Murthy, C. A. (2005) On visualization and aggregation of

nearest neighbor classifiers. IEEE Trans. Pattern Anal. Machine Intell., 27, 1592-1602.

[13] Ghosh, A. K., Chaudhuri, P. and Sengupta, D. (2006) Classification using kernel density

estimates : multi-scale analysis and visualization. Technometrics, 48, 120-132.

[14] Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996) Markov Chain Monte Carlo in

Practice, Chapman and Hall, London.

[15] Glad, I. (1998) Parametrically guided nonparametric regression. Scand. J. Statist., 25, 649-

668.

[16] Godtliebsen, F., Marron, J. S. and Chaudhuri, P. (2002) Significance in scale space for bivariate

density estimation. J. Comput. Graph. Statist., 11, 1-22.

[17] Hastie, T. and Tibshirani, R. (1996) Discriminant adaptive nearest neighbor classification.

IEEE Trans. Pattern Anal. Machine Intell., 18, 607-616.

[18] Hastie, T., Tibshirani, R. and Friedman, J. H. (2009) The Elements of Statistical Learning :

Data Mining, Inference and Prediction. Springer Verlag, New York.

[19] Hjort, N. L. and Glad, I. (1995) Nonparametric density estimation with a parametric start.

Ann. Statist., 23, 882-904.

[20] Hjort, N. L. and Jones, M. C. (1996) Locally parametric nonparametric density estimation.

Ann. Statist., 24, 1619-1647.

[21] Holmes, C. C. and Adams, N. M. (2002) A probabilistic nearest neighbor method for statistical

pattern recognition. J. Royal Statist. Soc., Series B, 64, 295-306.

[22] Hoti, F. and Holmstrom, L. (2004) A semiparametric density estimation approach to pattern

classification. Pattern Recognition, 37, 409-419.

[23] Jacobs, R. A., Jordon, M. I., Nowlan, S. J. and Hinton, G. E. (1991) Adaptive mixtures of

local experts. Neural Computation, 3, 79-87.

25

[24] Johnson, R. A. and Wichern, D. W. (1992) Applied Multivariate Statistical Analysis. Prentice

Hall, New Jersey.

[25] Jones, M. C., Linton, O. and Nielsen, J. P. (1995) A simple and effective bias reduction method

for density and regression estimation. Biometrika, 82, 327-338.

[26] Kayank, C. and Alpaydin, E. (2000) Multistage cascading of multiple classifiers : one man’s

noise is other man’s data. Proc. 17th Inter. Conf. Mach. Learn., Stanford, U.S.A.

[27] Kittler, J., Hatef, M., Duin, R. P. W. and Matas, J. (1998) On combining classifiers. IEEE

Trans. Pattern Anal. Machine Intell., 20, 226-239.

[28] Lawson, C. L. and Hanson, R. J. (1995) Solving Least Squares Problems, SIAM Publications.

[29] Loftsgaarden, D. O. and Quesenberry, C. P. (1965) A nonparametric estimate of a multivariate

density function. Ann. Math. Statist., 36, 1049-1051.

[30] MacLachlan,G. and Krishnan, T. (1997) The EM Algorithm and Extensions. Wiley, New York.

[31] Olkin, I. and Spiegelman, C. H. (1987) A Semiparametric approach to density estimation. J.

Amer. Statist. Assoc., 82, 858-865.

[32] Peterson, G. E. and Barney, H. L. (1952) Control methods used in a study of vowels. J. Acoust.

Soc. Amer., 24, 175-185.

[33] Schapire, R. E., Fruend, Y., Bartlett, P. and Lee, W. (1998) Boosting the margin : a new

explanation for the effectiveness of voting methods. Ann. Statist., 26, 1651-1686.

[34] Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and

Hall, London.

[35] Ting, K. M. and Witten, I. H. (1999) Issues in stacked generalization. J. Art. Intell. Res., 10,

271-289.

[36] Wolpert, D. H. (1992) Stacked generalizations. Neural Networks, 5, 241-259.

[37] Zhou, Z. H. and Yu, Y. (2005) Ensembling local learners through multimodal perturbations.

IEEE Trans. Systems, Man, Cybern. B, 35, 725-735.

[38] Zhu, J., Rosset, R., Zhou, H. and Hastie, T. (2005) Multi-class adaboost. Tech. Report, Dept.

of Stat., Univ. of Michigan.

26

