Large amplitude blob propagation in the Alcator C-Mod scrape-off-layer

Ralph Kube ${ }^{1,2}$, O.E. Garcia ${ }^{1,2}$, B. LaBombard ${ }^{2}$, J.L. Terry ${ }^{2}$, S. Zweben ${ }^{3}$
${ }^{1}$ Institute of Physics and Technology, University of Troms \varnothing, Norway ${ }^{2}$ Plasma Science and Fusion Center, MIT
${ }^{3}$ Princeton Plasma Physics Laboratory, Princeton

April 12, 2012

Outline

Theory predicts blob velocity scaling with varying cross-field size. Do blobs observed in Alcator C-Mod adhere to this scaling?

Velocity scaling in the interchange model

Blob tracking with the GPI diagnostic

Results and comparison

Interchange model

Interchange model

Average equations along B, assume blob has no structure along B:

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+\mathbf{b} \times \nabla \phi \cdot \nabla\right) \ln n & =\kappa\left(\nabla_{\perp}^{2} \ln n-\left(\nabla_{\perp} \ln n\right)^{2}\right) \\
\left(\frac{\partial}{\partial t}+\mathbf{b} \times \nabla \phi \cdot \nabla\right) \Omega+\frac{\partial \ln n}{\partial y} & =\mu \nabla_{\perp}^{2} \Omega+\Lambda \phi \\
\Omega & =\nabla_{\perp}^{2} \phi \\
n & =N+\Delta n \times \theta(x, y)
\end{aligned}
$$

Normalization: $x \rightarrow x^{\prime}=x / \ell, t \rightarrow t^{\prime}=\gamma_{0} t$

Inertial term
Polarization current

Interchange term
Mag. curvature + ∇ B drifts
Causes polarization of blob structure

Parallel currents

Sheath dissipation parameter

$$
\Lambda=\frac{c_{s} \ell^{2}}{\gamma_{0} L_{\|} \rho_{s}^{2}} \sim \ell^{5 / 2}
$$

Inertial velocity scaling: $V \sim \sqrt{\ell}$
Curvature and $\nabla \mathbf{B}$ currents are balanced by polarization currents, $\Lambda \ll 1$

$$
\begin{gathered}
\underbrace{\left(\frac{\partial}{\partial t}+\hat{z} \times \nabla \phi \cdot \nabla\right) \Omega}_{\sim V^{2}}+\underbrace{\frac{\partial \ln n}{\partial y}}_{\sim \frac{\Delta n}{N+\Delta n}}=\mu \nabla_{\perp}^{2} \Omega+\Lambda \Phi \\
\Rightarrow V^{2} \sim \triangle n / N+\triangle n .
\end{gathered}
$$

Velocity scaling for small ℓ

$$
\frac{V}{C_{s}} \sim\left(\frac{2 \ell}{R} \frac{\Delta n}{N+\triangle n}\right)^{1 / 2}
$$

Sheath dissipated velocity scaling: $V \sim \ell^{-2}$

Curvature and $\nabla \mathbf{B}$ currents are balanced by parallel currents,

$$
\Lambda \gg 1
$$

$$
\left(\frac{\partial}{\partial t}+\hat{z} \times \nabla \phi \cdot \nabla\right) \Omega+\underbrace{\frac{\partial \ln n}{\partial y}}_{\sim \frac{\Delta n}{N+\Delta n}}=\mu \nabla_{\perp}^{2} \Omega+\underbrace{\Lambda \phi}_{\sim V}
$$

$$
\Rightarrow V \sim 1 / \Lambda, \text { when assuming large } \triangle n .
$$

Dimensional velocity scaling for large ℓ

$$
\frac{V}{C_{s}} \sim \frac{2 L_{\|} \rho_{s}^{2}}{R \ell^{2}}
$$

Does V scale for intermediate ℓ ?

For small $\Lambda: \quad V \sim \ell^{1 / 2}$
For large $\Lambda: \quad V \sim \ell^{-2}$
The scaling in between is found by balancing all terms:

$$
\underbrace{\left(\frac{\partial}{\partial t}+\hat{z} \times \nabla \phi \cdot \nabla\right) \Omega}_{\sim V^{2}}+\underbrace{\frac{\partial \ln n}{\partial y}}_{\sim \frac{\Delta n}{N+\Delta n}}=\mu \nabla_{\perp}^{2} \Omega+\underbrace{\Lambda \Phi}_{\sim V}
$$

Assuming all terms are of order unity, this defines a length scale where filaments assume maximum velocity:

$$
\Lambda=\left(\frac{\ell}{\ell_{*}}\right)^{5 / 2}=1 \Rightarrow \ell_{*}=\left(\frac{2 L_{\|}^{2} \rho_{s}^{4}}{R}\right)^{1 / 5}
$$

Does V scale for intermediate ℓ ?

For small $\Lambda: \quad V \sim \ell^{1 / 2}$ For large $\Lambda: \quad V \sim \ell^{-2}$

The scaling in between is found by balancing all terms:

$$
\underbrace{\left(\frac{\partial}{\partial t}+\hat{z} \times \nabla \phi \cdot \nabla\right) \Omega}_{\sim V^{2}}+\underbrace{\frac{\partial \ln n}{\partial y}}_{\sim \frac{\Delta n}{\frac{\Delta n}{\partial N} c_{2}}}=\mu \nabla_{\perp}^{2} \Omega+\underbrace{\Lambda \phi}_{\sim V c_{1}}
$$

Write balance of terms as a quadratic equation in V .
If we find c_{1}, c_{2}, we have $V(\Lambda)$ for a given $\triangle n / N+\Delta n$.

$$
V^{2}+c_{1} \Lambda V+c_{2} \frac{\Delta n}{N+\Delta n}=0
$$

Blob velocity scaling with ℓ
Determine c_{1}, c_{2} from numerical simulations of blob propagation with varying Λ and fixed $\triangle n$.

$$
\frac{V}{V_{*}}=\frac{c_{2}}{2}\left(\frac{\ell}{\ell_{*}}\right)^{3}\left[-1+\sqrt{1+\frac{4 c_{1}}{c_{2}}\left(\frac{\ell_{*}}{\ell}\right)^{5} \frac{\triangle n / N}{1+\Delta n / N}}\right]
$$

R. Kube and O.E. Garcia, Phys. Plasm. 18 102314 (2011)

Gas-puff imaging (GPI): localized picture of the turbulence

 Side View

Top View
Toroidal view of Outboard Edge

Measure atomic line emission intensity from neutral gas puff (He) with fast camera @ 396 kHz framerate, $2 \mu \mathrm{~s}$ integration time.

Blob tracking method developed
frame 17600

Fluctuations in SOL are different for GPI and Probes

Fluctuations in SOL are different for GPI and Probes

$I=I_{0} \times f\left(n_{e}, T_{e}\right)$, neglects T_{e} for length analysis.

Fluctuations in SOL are different for GPI and Probes

$I=I_{0} \times f\left(n_{e}, T_{e}\right)$, neglects T_{e} for length analysis.
Identify blobs as fluctuations exceeding a threshold $\zeta=1.5 \ldots 2.5$ in a triggering domain in the SOL:

$$
I\left(r_{i}, z_{i}, t\right) \geq \zeta \times I_{R M S}\left(r_{i}, z_{i}\right) \quad \forall\left(r_{i}, z_{i}\right) \in \text { triggering domain }
$$

Blob velocity and size statistics

Shots \# 1100803005-\# 1100803020, $B=4.0 \mathrm{~T}, I_{p}=0.6 \mathrm{MA}$, LSN, Ohmic L-Mode.

Blob velocity and size statistics

Shots \# 1120217008-\# 1120217021, $B=5.4 \mathrm{~T}, I_{p}=0.8 \mathrm{MA}$, LSN, Ohmic L-Mode.

Comparison to velocity scaling

Shots \# 1100803005-\#1100803020, $B=4.0 T, I_{p}=0.6 M A$, LSN, Ohmic L-Mode.

Comparison to velocity scaling

Shots \# 1120217008-\# 1120217021, B $=5.4 T, I_{p}=0.8 M A$, LSN, Ohmic L-Mode.

Conclusion and next steps

Results and conclusion

1. Blob tracking routine developed and successfully applied to GPI data
2. GPI data complements probe data with superior spatial resolution and good time resolution.
3. Blob velocities increase with $\overline{n_{e}}$, blob sizes remain constant
4. Blobs velocities adhere less to sheath-dissipated scaling for increasing $\overline{n_{e}}$. We need to account for their parallel structure.
5. Cond. avg. results compare favorably with results from correlation analysis

Conclusion and next steps

Results and conclusion

1. Blob tracking routine developed and successfully applied to GPI data
2. GPI data complements probe data with superior spatial resolution and good time resolution.
3. Blob velocities increase with $\overline{n_{e}}$, blob sizes remain constant
4. Blobs velocities adhere less to sheath-dissipated scaling for increasing $\overline{n_{e}}$. We need to account for their parallel structure.
5. Cond. avg. results compare favorably with results from correlation analysis

Future work

- Radial $I_{\text {sat }}$ - and V_{fl}-profiles from scanning probe downstream and at divertor for varying $\overline{n_{e}}$.

