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BACKGROUND: Cellular quiescence is a state of reversible proliferation arrest that is induced by anti-mitogenic signals. The endogenous
cardiac glycoside ouabain is a specific ligand of the ubiquitous sodium pump, Na,K-ATPase, also known to regulate cell growth
through unknown signalling pathways.
METHODS: To investigate the role of ouabain/Na,K-ATPase in uncontrolled neuroblastoma growth we used xenografts, flow
cytometry, immunostaining, comet assay, real-time PCR, and electrophysiology after various treatment strategies.
RESULTS: The ouabain/Na,K-ATPase complex induced quiescence in malignant neuroblastoma. Tumour growth was reduced by
450% when neuroblastoma cells were xenografted into immune-deficient mice that were fed with ouabain. Ouabain-induced S-G2
phase arrest, activated the DNA-damage response (DDR) pathway marker gH2AX, increased the cell cycle regulator p21Waf1/Cip1

and upregulated the quiescence-specific transcription factor hairy and enhancer of split1 (HES1), causing neuroblastoma cells to
ultimately enter G0. Cells re-entered the cell cycle and resumed proliferation, without showing DNA damage, when ouabain was
removed.
CONCLUSION: These findings demonstrate a novel action of ouabain/Na,K-ATPase as a regulator of quiescence in neuroblastoma,
suggesting that ouabain can be used in chemotherapies to suppress tumour growth and/or arrest cells to increase the therapeutic
index in combination therapies.
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Cardiac glycosides constitute a class of naturally derived
compounds that bind to the ubiquitous sodium pump,
Na,K-ATPase. For many years, members of this class (e.g. ouabain,
digoxin, and digitoxin) have been in clinical use for the treatment
of different heart diseases (Prassas and Diamandis, 2008).
Interestingly, preclinical and retrospective patient data indicate
that cardiac glycosides also can reduce the growth of various
cancers, including breast, lung, prostate, and leukaemia (Stenkvist,
1999; Lopez-Lazaro, 2007; Mijatovic et al, 2007; Khan et al, 2009).
Several signalling pathways have been proposed to account for this
preferential cytotoxicity in cancer cells, including calcium (Ca2þ )
and Apo2L/TRAIL-induced apoptosis (McConkey et al, 2000; Frese
et al, 2006). The recent interest in using cardiac glycosides to treat
cancers has resulted in the initiation of a number of clinical trials
(Vaklavas et al, 2011).

The ability of cells to cycle and exit into senescence or
quiescence is important for cell differentiation, tissue develop-
ment, and prevention of tumourigenesis (Evan and Vousden, 2001;
Liu et al, 2004; Lapenna and Giordano, 2009; Malumbres and

Barbacid, 2009). In response to mitogens, cells overcome the G1
restriction point and commit to synthesise DNA and divide. The
restriction point is regulated by the retinoblastoma protein (Rb)
under the strict control of cyclin D-cyclin-dependent kinase
(CDK)2 and cyclin E-CDK4 (Planas-Silva and Weinberg, 1997).
These cyclin-CDK complexes phosphorylate Rb, thereby cancelling
the growth-inhibitory function of Rb, to stimulate G1-S transition
and S-phase progression. The CDK inhibitor p21Waf1/Cip1 (p21)
binds to and inhibits the activity of cyclin-CDK2 or -CDK4
complexes, and causes G1 arrest in response to DNA damage
(el-Deiry et al, 1994). p21 has also been reported to have a critical
role in the transition out of the cell cycle and in maintaining cells in a
quiescent state (Liu et al, 2009; Sang et al, 2008). Combinatorial
therapies, in which cells are arrested in certain cell cycle phases
thereby enhancing sensitivity to chemotherapy and reducing
unwanted side effects, are becoming increasingly common in
treating patients with cancer (Luo et al, 2009; Waldman et al,
1997). The cell signalling mechanisms that control how cells enter
or exit from quiescence are not known. Slow proliferation rate and
quiescence-like states in cancer cells are controlled by CDK
inhibitors downstream of p53, for example p21. However, it was
recently shown that a reduction in p21 per se was not sufficient to
push arrested cells back into the cell cycle (Sang et al, 2008). This
study identified the basic helix-loop-helix transcription factor
hairy and enhancer of split1 (HES1) to be necessary for reversing
the cell cycle arrest.
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Human neuroblastoma, the most common childhood solid
tumour, is characterised by an extensive clinical heterogeneity
ranging from spontaneous regression to extremely aggressive
variants (Maris et al, 2007). The spontaneous regression is thought
to take place through a constitutively active DNA-damage response
(DDR) pathway, which is a negative regulator of cell cycle
progression that may induce cellular senescence (Brodeur, 2003).
Chemotherapy induces cellular responses that protect the cell from
severe cellular damage, of which the activation of the DDR pathway
is one such response (Downs, 2007; Bonner et al, 2008). DDR signal
transduction senses genotoxic stress and coordinates the response
into DNA repair, cell death, and/or growth arrest. The major
regulators of the DDR pathway are the phosphoinositide 3-kinase
(PI3K)-related protein kinases ATM (ataxia telangiectasia mutated)
and ATR (ATM and Rad3-related), which phosphorylates histone
H2AX on Ser 139 (gH2AX) (van Attikum and Gasser, 2009). The
DDR pathway in cancer cells influences genome stability, cellular
senescence and counteracts activated oncogenes and tumour
progression (Bartek et al, 2007; Halazonetis et al, 2008).

The inducers of replication stress in early tumours have not yet been
identified. Intriguingly, embryonic stem cells have an elevated DDR
pathway basal activity (Andang et al, 2008), similar to the early stages
of cancer, as a result of increased ion channel activity. The ion
homeostasis and electrochemical gradients are critically maintained in
all eukaryotic cells. The gradient is established primarily by the Na,K-
ATPase through which three intracellular Naþ ions and two
extracellular Kþ ions are exchanged for every molecule of ATP
hydrolysed (Kaplan, 2002). The Na,K-ATPase is a heteromer of a- and
b-subunits and serves as a functional receptor for the steroid hormone
ouabain, forming a signalling complex (Kaplan, 2002; Aperia, 2007).
Endogenous ouabain and ouabain-like compounds are synthesised in
the adrenal cortex (Huang et al, 2006; Bagrov et al, 2009), the
hypothalamus (Murrell et al, 2005) and the placenta, (Hilton et al,
1996) and can serve in a local niche or as a systemic signalling
molecule. Several studies have demonstrated that the ouabain/Na,K-
ATPase-complex triggers signalling cascades, involving Ca2þ , PI3K/
Akt, Ras/Raf, MAPK and/or Src (Schoner and Scheiner-Bobis, 2007).
These signalling events have been shown to activate gene transcription,
regulate cell growth, promote differentiation, and stimulate or protect
against apoptosis (Kulikov et al, 2007; Desfrere et al, 2009; Tian et al,
2009; Li et al, 2010).

Given these observations, we investigated in this study the
in vivo and in vitro role of the endogenous cardiac glycoside
ouabain in regulating the cell growth of malignant neuroblastoma
cells through various reported (Schoner and Scheiner-Bobis, 2007)
and unreported ouabain-mediated signalling pathways. We asked
whether the aggressive neuroblastoma proliferation could be
reversibly or irreversibly suppressed by the treatment of cells with
physiological concentrations of ouabain.

MATERIALS AND METHODS

Cell culture

The human neuroblastoma SH-SY5Y, Kelly, and SK-N-AS cells
were purchased from the American Type Culture Collection
(Manassas, VA, USA) and were cultured according to the
manufacturer’s instructions. All cell culture reagents were from
Invitrogen (Bleiswijk, Netherlands).

Xenografts and in vivo administration

Four- to six- week- old female NMRI nu/nu mice were injected
subcutaneously on the right/left rear flank with 20� 106 SH-SY5Y
cells. When tumour sizes had reached approximately 0.2 ml, the
mice were randomised to receive 2 mg kg� 1 per day ouabain per
oral (p.o.) or no treatment for 13 consecutive days. On a daily

basis, animals were weighed and tumours were measured with
digital calipers and the volume was calculated using the formula:
length�width2� 0.44 (Tomayko and Reynolds, 1989; Wassberg
et al, 1999). No differences in food intake, body weight, or signs of
toxicity were observed between animals treated with or without
ouabain. On day 13 the animals were killed and the tumours were
excised, weighed, and snap frozen for further analysis. The animal
experiments were approved by the regional ethics committee for
animal research (N234/05) in accordance with national regulations
(SFS 1988 : 534, SFS 1988 : 539 and SFS 1988 : 541).

Reagents

Reagents and concentrations used were as follows: ouabain
(concentrations as indicated), 5-bromo-20-deoxyuridine (BrdU,
10mM), hexokinase (5 U ml� 1), staurosporin (1mM) (all from
Sigma, St Louis, MO, USA), nifedipine (50mM), KN93 (5 mM),
STO-609 (5mg ml� 1), W-13 (15 mg ml� 1), H89 (10mM), GF109203X
(2.5mM), 4-aminopyridine (1 mM), KB-R7943 (10mM), suramin
(100mM) (all from Tocris, Bristol, UK), PP2 (10 mM, Calbiochem,
Merck, Darmstadt, Germany), and U0126 (5 mM, Cell Signaling,
Danvers, MA, USA).

86Rbþ uptake assay

Neuroblastoma SH-SY5Y cells were plated in 12-well tissue culture
plates until they reached approximately 80% confluency. Cells
were then incubated with PBS containing the indicated ouabain
concentrations for 30 min at 37 1C. In each well B1.5 mCi ml� 1

86Rbþ was added for another 10 min. Uptake was then inhibited by
2 mM ouabain and the value at this point was taken as the maximal
rate of active uptake. At the end of incubation, cells were rinsed
four times in PBS containing 5 mM BaCl2. Then cells were extracted
with 0.3 ml of 1 M NaOH for 10 min. Samples were counted in a
scintillation counter and each data point represents the average
radioactivity present in four separate wells.

Electrophysiology

Electrophysiological experiments were performed on SH-SY5Y
cells incubated with 50 nM ouabain in culture medium for 2 days at
room temperature in ACSF containing 150 NaCl, 3 KCl, 10
Dextrose, 10 HEPES (in mM) and pH 7.3 supplemented with 3 mM

CaCl2 and 1 mM MaCl2 using a MultiClamp 700B (Molecular
Devices, Berkshire, UK). A glass pipette (6–12 MO, Warner
Instruments, Hamden, CT, USA) was filled with an internal
solution containing 10 NaCl, 10 KCl, 135 KMeSO4, 2.5 MgATP, 0.3
NaGTP, 10 HEPES (in mM) and pH 7.3. Resting membrane
potentials were estimated in a current clamp mode without any
current injection.

Immunostaining

Cells cultured on 0.2% gelatin-coated coverslips were fixed with
4% paraformaldehyde, and blocked with 5% goat serum and 0.25%
TritonX-100. Then cells were incubated with rat anti-BrdU
(Abcam, Cambridge, UK) and/or rabbit anti-Ki-67 (NeoMarkers,
Lab Vision, Fremont, CA, USA) primary antibodies followed by
Alexa Fluor 488 goat anti-rat IgG (Hþ L) and/or Alexa Fluor 555
donkey anti-rabbit IgG (Hþ L) secondary antibodies (Invitrogen).
When staining for BrdU, cells were treated with 2 M HCl for 15 min
at 37 1C before staining. Nuclei were stained with TO-PRO-3
(Invitrogen). Slides were mounted using the Prolong Antifade Kit
(Invitrogen) and scanned in a Carl Zeiss LSM 5 Exciter confocal
microscope (Carl Zeiss, Göttingen, Germany). Images were
analysed and quantified using ImageJ (NIH). Staining with only
secondary antibodies was carried out as control.
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Sections from xenograft tumours were incubated with primary
antibodies detecting Ki-67 (NeoMarkers), active caspase-3 (R&D
Systems, Abingdon, UK) or gH2AX (Ser 139, Cell Signaling).
Secondary immunostaining was performed using a Superpicture
Polymer detection kit (Invitrogen) with antibodies conjugated with
horseradish peroxidise (HRP).

Western blot

Western blotting was performed as described elsewhere (Desfrere
et al, 2009) with anti-Akt, phospho-Akt (Ser473), CDK1, CDK2,
CDK4, cyclin A, cyclin B1, cyclin D3, cyclin E, Rb, phospho-Rb
(Ser795), phospho-Rb (Ser807/811), p21Waf/Cip and b-actin (all
from Cell Signaling), and gH2AX (Ser 139, Abcam) antibodies. The
cells were lysed using modified RIPA buffer for 20 min at 4 1C.
Protein concentration was determined using a BCA protein assay
(Pierce, Thermo Fisher Scientific, Cramlington, UK) and equal
amounts of cellular protein (B10–20 g) were separated on a 10%
sodium dodecyl sulphate gel electrophoresis, followed by a transfer
to a nitrocellulose membrane. Secondary antibodies were con-
jugated with HRP (Sigma) and films were developed with the ECL
enhanced chemiluminescence system (Amersham, GE Healthcare
Biosciences, Pittsburgh, PA, USA).

Comet assay

Comet assays were performed using a kit (Trevigen, Gaithersburg,
MD, USA) and an Alkaline Comet Assay protocol according to the
manufacturer’s instructions. Data was analysed and the tail
moment was calculated using the software CometScore (TriTek,
Sumerduck, VA, USA).

Flow cytometry

Cell cycle analyses were performed using cells that were fixed
overnight with 70% ethanol and rehydrated in PBS with RNase and
propidium iodide (Sigma). Paraformaldehyde (4%) was used when
cells were double stained with gH2AX (Ser 139, Upstate, Millipore,
Billerica, MA, USA) and propidium iodide. Cleaved caspase-3 was
stained using an apoptosis kit (BD Pharmingen, Oxford, UK).
When staining for BrdU, cells were treated with 2 M HCl before
adding the FITC-conjugated anti-BrdU antibody (BD Pharmingen).
Membrane potential was measured with bis-(1,3-dibutylbarbituric
acid)trimethine oxonol (DiBAC4(3), 1mM, Invitrogen). Flow cytome-
try was performed on a FACScan instrument (Becton Dickinson) and
data were analysed with CellQuest Pro software (Becton Dickinson)
or FlowJo software (Tree Star, Ashland, OR, USA).

Real-time RT–PCR

Total RNAs were extracted from SH-SY5Y cells using RNeasy Mini
Kit coupled with DNase treatment (Qiagen, Valencia, CA, USA)
and reverse transcribed with High Capacity cDNA Reverse Trans-
cription Kit (Applied Biosystems, Bleiswijk, The Netherlands).
Resulting cDNAs were analysed in triplicates using SYBR-Green
Master PCR mix (Applied Biosystems). Relative mRNA concen-
trations were determined by 2� (Ct�Cc) where Ct and Cc are
the mean threshold cycle differences after normalising to
b2-microglobulin (B2M) values. Primers used for PCR were:
B2M Fw: 50-TTCTGGCCTGGAGGCTATC-30, B2M Rev: 50-TCAG
GAAATTTGACTTTCCATTC-30, HES1 Fw: 50-GAAGCACCTCCG
GAACCT-30, and HES1 Rev: 50-GTCACCTCGTTCATGCACTC-30.

Data analysis

Data are presented as mean±s.e.m. of a minimum of three
experiments, unless indicated otherwise. Statistical significance
was accepted at Po0.05 as determined by unpaired two-tailed

t-test (GraphPad, La Jolla, CA, USA) or one-way analysis of
variance (ANOVA) followed by a Tukey post-hoc test (SigmaPlot,
San Jose, CA, USA).

RESULTS

Neuroblastoma proliferation

To study the impact of the cardiac glycoside ouabain on
neuroblastoma proliferation, human SH-SY5Y cells were exposed
to various concentrations of ouabain and the in vitro incorpora-
tion of bromodeoxyuridine (BrdU) was examined. Treatment of
the cells with 50–500 nM ouabain reduced BrdU incorporation
dose-dependently (Figures 1A and B). The number of BrdU-
positive cells was significantly lower when the ouabain concentra-
tion exceeded 50 nM (Figure 1B). Cells were also treated with BrdU
for various exposure times to investigate whether ouabain caused a
delay in cell cycle progression or a complete cell cycle arrest. The
number of BrdU-positive cells did not increase following
prolonged BrdU exposure (Supplementary Figure S1), thus
suggesting that ouabain had caused complete growth arrest.

Cleaved caspase-3 was measured to verify that the observed
inhibition of cell growth was not an effect of early apoptosis. These
experiments demonstrated that 50 nM ouabain for 2–7 days failed
to induce significant cleavage of caspase-3 in neuroblastoma cells
(Figure 1C). However, when the ouabain concentration was
increased 10-fold to 500 nM, substantial caspase-3 cleavage was
observed (Figure 1C), similar to the response triggered by the
positive control staurosporine. These data indicated that low doses
of ouabain could induce growth arrest without promoting
apoptosis.

Exit from the cell cycle can be irreversible, often caused by DNA
damage, or reversible, as in non-dividing quiescent cells (Linke
et al, 1996). Neuroblastoma cells were treated with ouabain for 7
days to determine whether arrested cells could remain in a non-
proliferative state for an extended period of time. The vast
majority of cells were negative for BrdU after 7 days with 50 nM

ouabain (Figure 1D), indicating that cells had stopped proliferat-
ing. To determine whether cells were in the cell cycle, immunos-
taining for Ki-67 was conducted. Virtually all cells were negative
for Ki-67 after 7 days of treatment with ouabain (Figure 1D),
showing that the neuroblastoma cells had withdrawn from the cell
cycle into the G0 phase. Thereafter ouabain was washed out and
the cells were grown in ouabain-free culture medium. Two days
later, on day 9, the majority of cells had efficiently resumed
proliferation and re-entered the cell cycle, as shown by BrdU
incorporation and Ki-67 staining (Figure 1D). This response was
not unique to SH-SY5Y cells as a similar reversal of growth arrest
was observed when the neuroblastoma cell lines Kelly and SK-N-
AS were exposed to ouabain (Supplementary Figure S2). Increased
expression of the HES1 gene is required for quiescence to be
reversible (Sang et al, 2008). Indeed, neuroblastoma cells treated
with ouabain for 7 days had increased abundance of HES1 mRNA
(Figure 1E). Together these results demonstrated that ouabain in
low concentrations has an anti-proliferative effect capable of
inducing quiescence in neuroblastoma cells.

Xenografted neuroblastoma

The effect of ouabain on tumour growth in vivo was investigated
by xenografting neuroblastoma SH-SY5Y cells subcutaneously on
the right/left rear flank of immune-deficient mice. Xenografted
animals were treated orally with ouabain (2 mg kg� 1) on a daily
basis. Following this protocol, neuroblastoma growth measured as
tumour volume (Figure 2A) was significantly reduced on day 5 and
beyond, in animals receiving the treatment, as compared with
untreated control animals. At the end of the experiment, on day 12,
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the tumour volume in animals receiving ouabain was significantly
reduced, by 54%, compared with animals receiving no treatment
(P¼ 0.045, Figure 2A). Additionally, tumour weight at autopsy on
day 12 was significantly reduced in treated animals (P¼ 0.019,
Figure 2B). The level of early apoptosis in tumour xenografts was
analysed immunohistochemically on day 12. This analysis revealed
a significant decrease of caspase-3 cleavage in treated animals
(P¼ 0.016, Figure 2C). These data demonstrated that ouabain has
anti-proliferative effects on tumour growth in vivo.

Biophysical effects

Ouabain ligand-binding to Na,K-ATPase has been shown to trigger
signalling cascades both dependent on and independent of pump
inhibition (Schoner and Scheiner-Bobis, 2007). To determine the
pump inhibitory effect in this cell model system, ouabain at
various concentrations was administered to neuroblastoma
cultures and 86Rbþ -uptake was measured. 86Rbþ -uptake corre-
lates with Kþ -uptake, thus reflecting the turnover rate of the
pump. This experiment showed that ouabain inhibits Na,K-ATPase
in SH-SY5Y cells with an IC50 of 246 nM (95% CI) for ouabain
(Figure 3A). An ouabain concentration of 50 nM used in
subsequent experiments, inhibited active 86Rbþ uptake by
12.7±4.4% (n¼ 4). Resting membrane potential following ouabain
treatment was next investigated using single cell patch clamp
recordings (Figure 3B). These experiments revealed an insignif-
icant decrease in the resting membrane potential (� 35.8±1.6 to
� 32.1±1.5 mV, n¼ 20 for each group) in cells treated with
ouabain for 2 days (Figure 3C). To analyse a larger population of

cells (n¼ 10 000), flow cytometry was carried out using a dye
sensitive to membrane potential, DiBAC4(3). Neuroblastoma SH-
SY5Y cells treated with ouabain for 1 h or 2 days displayed a
continuous increase in DiBAC4(3) fluorescence intensity
(Figure 3D), reflecting a decrease in membrane potential. Together
these data show that low concentrations of ouabain only partially
inhibit Na,K-ATPase, and this has a minor net effect on the cellular
ion homeostasis.

Cell cycle phase

The cell cycle phase of ouabain-treated neuroblastoma cells was
next examined. Flow cytometry analyses of propidium iodide-
stained SH-SY5Y cells revealed that ouabain exposure for 2 days
caused depletion of cells in G0/G1 (69 to 40%) and accumulation in
S (15 to 20%) and G2/M (16 to 40%) (Figure 4A). These results
together with the BrdU data suggest activation of the S-phase
checkpoints in the DDR pathway. Five days later, on day 7, the
majority of cells had entered into G0/G1 (82%), without showing
DNA synthesis. Strikingly, very few cells were detected in the
S-phase (9%). Eukaryotic cell cycle progression is dependent on
regulated activities of cyclins and CDK complexes. Western blot
analyses of cyclin A, B1, D3, and E, as well as CDK1, 2, and 4
showed reduced expression levels after 7 days of treatment with
ouabain (Figure 4B).

The cyclin D3, CDK4 and 6 activities in the mid-late G1 phase
control the G1 restriction point and activation of the cyclin
E/CDK2 complex (Planas-Silva and Weinberg, 1997). Both these
cyclin complexes are required for phosphorylating the tumour
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suppressor protein Rb and for a commitment to replicate.
Phosphorylated Rb (pRb) was attenuated in neuroblastoma cells
exposed to ouabain for 7 days (Figure 4B). CDK inhibitors, such as
the G0/G1 checkpoint regulator p21, are critical in enforcing long-
term growth arrest, that is, quiescence or senescence (Cheng et al,
2000), as a response to, for example, replication stress. Immuno-
blot experiments demonstrated that neuroblastoma cells treated
with ouabain had increased p21 (Figure 4B). The expression levels
of Rb, cyclin A, B1, D3, and E as well as CDK1, 2, 4, and p21 were
all rescued when ouabain was removed after 7 days (Figure 4B). In
summary, these results, together with the BrdU and Ki-67 data,
show that ouabain can activate a cellular programme that induces
quiescence of neuroblastoma cells.

Signalling pathways

It has been previously reported that ouabain/Na,K-ATPase signal
transduction elevates the cytosolic Ca2þ concentration to activate
downstream cellular effectors (Miyakawa-Naito et al, 2003; Liu
et al, 2004). The influence of Ca2þ signalling on ouabain-induced
quiescence was therefore examined. Inhibiting L-type voltage-
dependent Ca2þ channels with nifedipine or CaM kinases with
KN93 failed to reverse the reduced BrdU incorporation caused by
ouabain (Figures 5A and B). Altered expression levels of the cell
cycle regulators cyclin D3, E, CDK1, 2, and 4 were partially affected
by nifedipine and KN93 (Figure 5C). However, STO-609 or W-13,
which block CaM kinase kinases and calmodulin, respectively, had
no effect on the cell cycle regulators. Increased p21 and decreased
pRb were unaffected by nifedipine, KN93, or STO-609. W-13
reduced the basal level of pRb. It has also been shown that ouabain
impacts on the PI3K/Akt, Ras/Raf, MAPK and/or Src signalling
cascades (Schoner and Scheiner-Bobis, 2007). The influence of
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these signalling cascades on ouabain-induced cellular quiescence
was next examined. Inhibiting Src with PP2, MEK/MAPK with
U0126, or PKA with H89 had no effect on the altered expression
levels of pRb, cyclins, CDKs, and p21 (Figure 5D). Protein kinase C
blockade with GF109203X suppressed the basal level of pRb
but was without effect on the other cell cycle regulators.
Moreover, immunoblotting phosphorylated Akt revealed no
increased activation by ouabain (Figure 5E). Inhibiting plasma
membrane Kþ channels, Naþ /Ca2þ -exchangers or extracellular
ATP signalling were likewise without effect (Supplementary Figure S3).
These results suggest that the neuroblastoma quiescence induced
by ouabain was activated by an, as yet, unreported signalling
pathway.

Treating neuroblastoma SH-SY5Y cells with ouabain for 2 days
caused accumulation in the late S-G2/M cell cycle phase, thereby
suggesting activation of the DDR pathway. gH2AX is a marker for
DDR pathway activity in response to replication stress and DNA
damage. Flow cytometric recordings showed that gH2AX levels
were rapidly increased (within 4–8 h) by ouabain (Figures 6A and B).
This effect coincided with the onset of reduced BrdU
incorporation (Figure 1), and therefore indicated a mechanistic
connection. DNA tail comet assays revealed no overt DNA damage
after 7 days of ouabain treatment (Figure 6C). In contrast, when
cells were exposed to 10 mM doxyrubicin for 12 h significant DNA
damage was observed. The signalling basis of ouabain-induced
neuroblastoma quiescence was next investigated in an in vivo
setting. Immunohistochemical analysis of SH-SY5Y xenograft
tumours derived from mice fed daily with ouabain (2 mg kg� 1)
for 12 days showed augmented gH2AX activation as compared
with tumours from untreated animals (Figures 6D and E).
Statistical analysis showed that animals fed with ouabain had a
significant increase in gH2AX (Figure 6F). Staining for the
proliferation marker Ki-67 in xenografted tumours revealed that
neuroblastoma cells exposed to ouabain had entered into the G0
phase (Figure 6G). Performing a statistical analysis showed a
significant difference in Ki-67 staining between treated and
untreated animals. In summary these data suggest that

neuroblastoma quiescence in vivo and in vitro is caused by a
similar signalling pathway.

DISCUSSION

The ouabain/Na,K-ATPase-complex has previously been reported
to trigger signal transduction through Ca2þ , PI3K/Akt, Ras/Raf,
MAPK, and/or Src (Schoner and Scheiner-Bobis, 2007). In human
neuroblastoma cells 1–10 mM ouabain has been shown to down-
regulate the anti-apoptotic proteins Bcl-2 and Bcl-XL in addition to
trigger cytochrome c release and caspase-3 activation (Kulikov
et al, 2007). The current study, however, demonstrates that
neuroblastoma cells treated with 50 nM ouabain show growth arrest
and tumour restraint that are regulated by a novel and heretofore
unreported signalling pathway. The data demonstrate that
ouabain, in a low concentration that only marginally inhibits
Na,K-ATPase pump activity and membrane potential, stimulates
the DDR pathway which activates gH2AX. This signalling event
stimulates p21 which inhibits cyclins and CDKs, and results in
dephosphorylation of Rb, which causes neuroblastoma cells to exit
the cell cycle, as revealed by loss of Ki-67 expression. It has been
shown that the expression of CDK inhibitors, such as p21, enforces
a non-dividing senescence-like state (Sherr and Roberts, 1995;
Sang et al, 2008). Ouabain has previously been shown to activate
the mTOR pathway through p21 to slow down proliferation of
human breast and prostate cancer cells (Tian et al, 2009). Our
results, including elevated expression level of the quiescence-
specific gene HES1, indicate that cells retain the ability to resume
proliferation after extensive growth arrest. Thus, ouabain is
inducing a quiescence-like state in neuroblastoma cells. The link
between ouabain-binding to Na,K-ATPase and the subsequent
genotoxic stress that activates DDR remains to be elucidated. It is
plausible that the long-term ouabain exposure applied in the
current study results in an accumulative low-level pump inhibi-
tion of Na,K-ATPase. The subsequent altered ion homeostasis can
then cause replication stress that activates the DDR pathway,
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as previously reported for GABA (Andang et al, 2008). Another
plausible scenario is that a pump-independent mechanism, in
which Na,K-ATPase acts as a receptor and signal transducer, is
triggering DDR. Further studies are required to determine each
step in the signalling cascade by which ouabain is inducing
quiescence in neuroblastoma cells.

As is ubiquitously expressed, we speculate that endogenous
ouabain has a developmental role in modulating cell cycle
progression. Such a universal cell signalling mechanism could
regulate cell growth in general and explain the elevated circulating
levels of ouabain and ouabain-like factors during pregnancy and in
newborn infants (Schoner and Scheiner-Bobis, 2007; Bagrov et al,
2009). Ouabain is synthesised in the brain and adrenal glands
(Schoner and Scheiner-Bobis, 2007), the environment where most
neuroblastoma tumours reside (Maris, 2010; Park et al, 2010). It is
conceivable that endogenous ouabain has a role in the sponta-
neous regression of neuroblastoma, thought to be modulated by
the DDR pathway (Brodeur, 2003). The concentration of endo-
genous ouabain in the developing embryonic human nervous
system (with or without neuroblastoma) is unknown, but is
predicted to be within the subnanomolar-to-nanomolar range
(Schoner and Scheiner-Bobis, 2007; Bagrov et al, 2009). Further-
more, in the nervous system, there are multiple Na,K-ATPase
a-subunit isoforms that each have cell-type-specific and develop-
mental-specific expression patterns (Wetzel et al, 1999; Richards
et al, 2007), as well as different ouabain affinities (Kim et al, 2007;
Richards et al, 2007). These spatial and temporal expression
patterns of various Na,K-ATPase a-subunit isoforms remain
largely unknown but may have an important role during
development and in mediating ouabain-induced signalling. Indeed,
ouabain has previously been shown to stimulate dendritic growth
in cortical neurons (Desfrere et al, 2009). Perturbed ouabain/Na,K-
ATPase signal transduction could therefore be an inducing factor
of neuroblastoma in children.

The major drawback of cancer chemotherapy is systemic
toxicity and drug resistance. This has led to extensive research

towards reducing unwanted side effects and increasing the actual
drug activity (Tyagi et al, 2002). To meet these demands,
combination chemotherapies using compounds with known
mechanisms of action that increase the therapeutic index
of the clinical anticancer drug have received growing attention
(Millikan et al, 2001). We speculate that ouabain, which arrests
proliferating neuroblastoma cells first in S-G2/M and then in G0,
in combination with other chemotherapy, could improve chemo-
sensitivity for more efficient tumour eradication. Such alternative
entry points into the cell cycle constitute an interesting target for
therapeutic interventions. Supporting the hypothesis that ouabain
could act as a potent combination drug are previous reports of
elevated DDR pathway activity leading to reduced proliferation
and chemoresistance in cancer cells (Bartkova et al, 2005; Bao et al,
2006). Attenuating the protective function of the DDR pathway may
cause irreversible DNA damage to ouabain-treated cancer cells.

This study demonstrates that the endogenous cardiac glycoside
ouabain can induce quiescence in neuroblastoma cancer cells.
Xenografting neuroblastoma into immune-deficient mice revealed
that the ouabain/Na,K-ATPase-complex suppresses tumour
growth in vivo. Ouabain-arrested cells showed activation of
gH2AX and upregulation of the quiescence-specific gene HES1.
Upon removal of ouabain, cells resumed proliferation and reversed
the levels of p21, cyclins, CDKs, and pRb, without showing overt
DNA damage. These results reveal a novel function of ouabain/
Na,K-ATPase as a putative tumour suppressor inducing quies-
cence in malignant neuroblastoma.
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