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Abstract

This thesis presents the development of theoretical models for the calcu-

lations of one- and two-photon absorption, and computational studies on

solvated systems and biomolecules. The photon-absorbing chromophore is

described by density functional theory, while the effects of the surround-

ings are taken into account by means of polarizable embedding models. The

theory and implementation of a three-layered fully polarizable method is

presented in this thesis. In this method, the short-range electrostatic po-

tential due to the solvent is treated by a polarizable molecular mechanics

force field, while the long-range effects are described by a dielectric con-

tinuum. This QM/MM/PCM implementation was tested on three organic

molecules solvated in water and shown to converge faster with respect to

system size compared to calculations using quantum mechanics/molecular

mechanics (QM/MM) only. Further, the parallelization of the QM/MM mod-

ule in the Dalton program is decribed, making it possible to do calculations

on large molecular systems with the use of modern supercomputers. This

implementation was used to calculate the one- and two-photon absorption

properties in fluorescent proteins, demonstrating the importance of describ-

ing the protein surrounding the chromophore by a polarizable embedding.
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Nothing happens in a vacuum

Preface

In recent years, computational modelling has become an indispensable tool

for many researcher in the fields of physics and chemistry. An important goal

of such in silico modelling is not only to reproduce but also to predict the

outcome of experiments. In computational chemistry we are interested in re-

producing and predicting experiments performed on molecules and molecular

systems. These experiments are normally not performed on molecules alone

in a vacuum, but molecules in an environment. There is no doubt that the

environment, for instance a solvent or a protein, is affecting the properties of

the molecules under study. However, the use of quantum mechanical meth-

ods is mandatory when calculating many molecular properties, such as the

absorption of photons, and the main limitation of modern quantum mechan-

ical methods is the computational cost when doing calculations on medium

to large size systems. When the size of the system (number of atoms) is

increasing, the computational time increases tremendously due to the scaling

of these methods.

An aim of the work behind this thesis has been to reduce the gap between

theory and experiments by making it possible to perform advanced quantum

mechanical calculations on chromophores in complex systems. This has been

made possible by the use of so-called “focused methods”. In short, the part

of the system that are of most interest is treated at a high-level theory, that

is quantum mechanics, and the surroundings are treated at a much coarser

level, with a polarizable embedding.

1
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The introduction to this thesis is organized as follows. The theoretical frame-

work of ground-state quantum mechanics is presented in Chapter 1, the po-

larizable embedding methods used in this thesis are introduced in Chapter 2,

and the theory behind the calculations of molecular electronic properties are

presented in Chapter 3. In the end there are summaries of the papers in this

thesis (Chapter 4).



Chapter 1

Ground-state quantum

mechanics

In this chapter the basic concept of nonrelativistic quantum chemistry for

the ground-state will be introduced1, with a special emphasis on Kohn-Sham

density functional theory (KS-DFT, Section 1.3).

1.1 Wavefunctions and Schrödinger equations

In quantum mechanics, the electrons in a molecule can be described by an

N -electron wavefunction Ψ(r1, r2, . . . , rN , t), where rn is related to the co-

ordinates of electron n as well as its spin. According to one of the postulates

of quantum mechanics, the wavefunction has to fulfill (and therefore can be

determined by) the time-dependent Schrödinger equation2

ĤΨ(r1, r2, . . . , rN , t) = i
∂

∂t
Ψ(r1, r2, . . . , rN , t) (1.1)

1Hartree atomic units (~ = e = m = 1) are used throughout this thesis if not stated

otherwise.
2E. Schrödinger, Phys. Rev., 1926, 28, 1049–1070.
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where Ĥ is the Hamiltonian of the molecule. Within the Born-Oppenheimer

approximation3,4 and without taking into account relativity, the time-dependent

Schrödinger equation for a molecule can be expressed with a Hamiltonian

consisting of one-electron (ĥ) and two-electron (ĝ) operators

Ĥ =
∑
n>m

V̂nm +
∑
i

T̂i +
∑
i,m

V̂im +
∑
i>j

V̂ij

= hnuc + ĥ+ ĝ

(1.2)

where the first sum (hnuc) is the repulsion between the nuclei. The second and

third sums (collected in ĥ) are over all the electrons, and include the kinetic

energies of the electrons (T̂i) as well as the attraction between electrons and

nuclei (V̂im). The last sum takes into account the interaction energies between

all pairs of electrons. In the second quantization formalism5 the electronic

terms of the Hamiltonian operator can be expressed as6

ĥ =
∑
pq

hpqÊpq (1.3)

ĝ =
∑
pqrs

gpqrsêpqrs (1.4)

where the Êpq and êpqrs are the one- and two-electron excitation operators.

The singlet excitation operator is defined as

Êpq = a†pαaqα + a†pβaqβ (1.5)

while êpqrs is the two-electron excitation operator, defined as

êpqrs = a†pαa
†
rαasαaqα + a†pβa

†
rβasβaqβ = ÊpqÊrs − δqrÊps (1.6)

a† and a are the creation and annihilation operators, respectively.

3M. Born and R. Oppenheimer, Ann. Phys.-Berlin, 1927, 389, 457–484.
4C. Eckart, Phys. Rev., 1934, 46, 383–387.
5V. Fock, Z. Phys. A: Hadrons Nucl., 1932, 75, 622–647.
6T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure Theory, John

Wiley & Sons, Ltd, Chichester, 2000.
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Equations 1.3 and 1.4 are written as general one-electron and two-electron

operators in the second quantization formalism. In the case of the electronic

Hamiltonian, the one- and two-electron integrals hpq and gpqrs are given as

hpq =

ˆ
φ∗p(r)

(
−1

2
∇2

)
φq(r) dr −

∑
m

Zm

ˆ
φ∗p(r)φq(r)

|r −Rm|
dr (1.7)

gpqrs =

¨
φ∗p(r1)φq(r1)φ∗r(r2)φs(r2)

|r1 − r2|
dr1 dr2 (1.8)

where φ are the spin-orbitals, and m runs over all nuclei with charge Zm and

position Rm.

It can be shown, by the separation of variables, that particles in a time-

independent potential can be described by the time-independent Schrödinger

equation

Ĥ ψ(r1, r2, . . . , rN) = E ψ(r1, r2, . . . , rN). (1.9)

where E is the total energy of particles described by the time-independent

N -electron wavefunction ψ(r1, r2, . . . , rN).

It is not possible to derive the exact wavefunction for molecules with more

than one electron and one nucleus. Therefore, approximate wavefunctions

have to be derived. As a first step, the electronic wavefunction can be ex-

pressed as molecular orbitals (MO), where there are two electrons in each

occupied MO for a closed shell molecule (one with α spin and one with β

spin). Each MO can be expanded in terms of functions located on the nuclei,

the so-called linear combination of atomic orbital (LCAO) approximation7

φMO
p =

∑
µ

cµpχ
AO
µ (1.10)

where χAO
µ is basis function (or atomic orbital) µ, and cµp are the molecular

orbital coefficients8. To ensure that it is antisymmetric and that it fulfils the

7J. E. Lennard-Jones, Trans. Faraday Soc., 1929, 25, 668–686.
8All Greek letters, except α and β, are related to atomic orbitals and Latin letters are

related to molecular orbitals in the remainder of this section, if not stated otherwise.
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Pauli exclusion principle9, the wavefunction for a system of N electrons is

often written as a linear combination of Slater determinants10,11

ψ(r1, r2, . . . , rN) ≡ |0〉 =
1√
N

∣∣∣∣∣∣∣∣∣∣
φ1α(r1) φ1β(r1) · · · φN

2
β(r1)

φ1α(r2) φ1β(r2) · · · φN
2
β(r2)

...
...

. . .
...

φ1α(rN) φ1β(rN) · · · φN
2
β(rN)

∣∣∣∣∣∣∣∣∣∣
(1.11)

where φn is a molecular orbital, as given in Equation 1.10. In second quan-

tiation, on the other hand, the N -electron determinant can be written as

a product of creation operators acting on what is called the vacuum state.

For a wavefunction with only doubly occupied orbitals, the determinant is

written as12

|0〉 =

(∏
i

a†iαa
†
iβ

)
|vac〉 (1.12)

The antisymmetric property of this wavefunction, and therefore also the Pauli

exclusion principle9, is fulfilled due to the definition and properties of the

creation operator6.

One of the cornerstones of quantum chemistry methods is the variational

principle. The energy of an approximate wavefunction is higher or equal

to the exact ground-state energy13. Thus, we can search for the ground-state

energy wavefunction by minimizing the expectation value of the Hamiltonian

E = 〈0|Ĥ|0〉 (1.13)

This is done by finding the minimum of the expectation value by varying the

9W. Pauli, Z. Phys. A: Hadrons Nucl., 1925, 31, 765–783.
10J. Slater, Phys. Rev., 1929, 34, 1293–1322.
11The bra-ket notation (P. A. M. Dirac, Math. Proc. Camb. Philos. Soc., 1939, 35,

416-418) is used in the remainder of this thesis.
12The letters i, j and k refer to fully occupied molecular orbitals, while p refers to a

general MO.
13F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, Ltd, 2007.
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molecular orbital coefficients in the wavefunction

∂〈0|Ĥ|0〉
∂cµp

= 0 (1.14)

1.2 Hartree-Fock

In Hartree-Fock theory14 (HF), the wavefunction is described by a linear

combination of determinants, called a configuration state function (CSF)

|CSF〉 =
∑
i

Ci|0〉 (1.15)

where |0〉 is defined in Equation 1.12. For closed-shell HF, the CSF is a single

determinant, thus

|CSF〉 =

(∏
i

a†iαa
†
iβ

)
|vac〉 (1.16)

In the Roothaan formulation of HF theory15 we will use the atomic orbitals

(AOs) given in Equation 1.10 and minimize the energy with respect to the

MO coefficients cµp. The closed-shell HF energy expression is given as one-

and two-electron integrals (Eqs. 1.7 and 1.8)

E(c) = 2
∑
i

hii +
∑
ij

(2giijj − gijji) + hnuc (1.17)

where the subscrips i and j are running over all fully occupied molecular

orbitals. The first term represents the kinetic energy of the electrons as

well as their attractions to the nuclei, while the second term is the Coulomb

interaction (giijj) between electrons as well as the exchange (gijji). The last

term accounts for the interactions between the nuclei and is constant in the

14D. R. Hartree, Math. Proc. Camb. Philos. Soc., 1928, 24, 89-110; V. Fock, Z. Phys.

A: Hadrons Nucl., 1930, 61, 126-148.
15C. C. J. Roothaan, Rev. Mod. Phys., 1951, 23, 69–89.
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Born-Oppenheimer approximation. The MOs (φp in Equation 1.10) have to

fulfill the following condition during the optimization

〈φi|φj〉 = δij. (1.18)

That is, all the MOs have to be orthonormal. A way of achieving this is to

introduce the Hartree-Fock Lagrangian

L(c) = E(c)− 2
∑
ij

λij(〈φi|φj〉 − δij) (1.19)

The Lagrangian is then minimized with respect to the elements cµk, where µ

is related to the atomic orbitals, and k is related to the occupied molecular

orbitals
∂L(c)

∂cµk
= 0 (1.20)

In the AO basis we then end up with the following set of equations6∑
ν

fAO
µν cνk = εk

∑
ν

Sµνcνk (1.21)

for all occupied molecular orbitals k. These HF equations (Eq. 1.21) can be

written in matrix form as

fAOc = Scε (1.22)

where ε is a diagonal matrix containing the orbital energies. The elements

of the Fock matrix fAO
µv , in AO basis, are

fAO
µν = hµν +

∑
ρσ

DAO
ρσ

(
gµνρσ −

1

2
gµσρν

)
(1.23)

where DAO
ρσ is the one-electron density matrix in AO basis, and given by

DAO
ρσ = 2

∑
i

cρicσi (1.24)

In other words, one HF equation depends on all the other molecular orbital

coefficients (cµk) and we have to solve this problem iteratively. In the most
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basic approach the matrix c from iteration n − 1 is used to calculate DAO
ρσ

(Eq. 1.24), which then are used to calculate fAO
µv (Eq. 1.23). A new set of

c is derived by diagonalizing the Fock matrix fAO (see Equation 1.22). This

is done until convergence. In practice, more sophisticated methods are used

to improve the convergence. The most widely used is the Direct Inversion of

Iterative Subspace (DIIS) method16.

The HF wavefunction is in many cases not accurate enough to describe molec-

ular systems and molecular properties, but is the starting point for several

other more advanced and accurate methods, such as coupled-cluster17, con-

figuration interaction and Møller-Plesset pertubation theory18. More impor-

tantly for this thesis, the methods and mathematical derivations can easily

be transfered to density functional theory.

1.3 Density Functional Theory

Density functional theory (DFT) is by far the most popular and widely used

method in quantum chemistry today19. The main reason is the low compu-

tational cost compared to other methods, such as coupled-cluster, but at the

same time giving results of comparable accuracy20. A brief introduction to

DFT is presented in this section.

For a general external potential, the non-relativistic Hamiltonian for N in-

16P. Pulay, Chem. Phys. Lett., 1980, 73, 393-398; P. Pulay, J. Comput. Chem., 1982, 3,

556-560.
17J. C̆́ız̆ek, J. Chem. Phys., 1966, 45, 4256; J. Paldus, J. C̆́ız̆ek, and I. Shavitt, Phys.

Rev. A, 1972, 5, 50-67.
18C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618–622.
19J. P. Perdew and A. Ruzsinszky, Int. J. Quantum Chem., 2010, 110, 2801–2807.
20M. Swart and J. G. Snijders, Theor. Chem. Acc., 2003, 110, 34-41; P. Sa lek, T. Hel-

gaker, O. Vahtras, H. Ågren, D. Jonsson, and J. Gauss, Mol. Phys., 2005, 103, 439-450.
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teracting electrons is given as

Ĥ = −1

2

∑
i

∇2
i +

∑
i

v(ri) +
1

2

∑
i 6=j

1

|ri − rj|
(1.25)

According to the Hohenberg-Kohn theorem21 there is a one-to-one relation-

ship between the electronic density and an external potential. In other words,

for a given potential v(r) there is only one electronic density ρ(r), and vice

versa. For molecules, this external potential is the Coulomb attractions from

all the nuclei

v(r) = −
∑
m

Zm
|r −Rm|

(1.26)

Since the electronic density determines the number of electrons by integra-

tion, as well as the positions and charges of the nuclei (and consequently

also the Hamiltonian Ĥ in Equation 1.25), the ground-state energy can be

uniquely determined by the electron density21. More general, all properties

that can be determinded by the the Hamiltonian can be determined by the

density22. The energy as a functional of the electronic density ρ is given as

E[ρ] =

ˆ
ρ(r)v(r) dr + T [ρ] + V [ρ] (1.27)

where the nuclear repulsion term is known, while the kinetic energy density

functional (T [ρ]) and the electron repulsion density functional (V [ρ]) are

unknown. Kohn and Sham23 suggested to extract two large contributions

from these two unknown functionals and add a new unknown functional. T [ρ]

is replaced by the kinetic energy of non-interacting electrons Ts[ρ], and V [ρ] is

replaced by a classical interaction energy expression. The new and unknown

term is called the exchange-correlation energy functional. The energy is then

given as

E[ρ] = Vne[ρ] + Ts[ρ] + J [ρ] + EXC[ρ] (1.28)

21P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864–B871.
22W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem., 1996, 100, 12974–12980.
23W. Kohn and L. Sham, Phys. Rev., 1965, 140, A1133–A1138.
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where Ts[ρ] is the kinetic energies of the non-interacting electrons, Vne[ρ]

is the potential energies of the electrons due to the nuclei, and J [ρ] is the

Coulomb interaction energy between the electrons. The last term is the

exchange-correlation functional, and will be treated in more detail in the

following section.

The density can in principle be found by minimizing this energy functional.

To achieve this, Kohn and Sham introduced orbitals23, where the density is

given as

ρ(r) =
N∑
i

φ2
i (r) (1.29)

The Hamiltonian is then expressed as an Hamiltonian for a system of non-

interacting electrons moving in an effective external potential veff(r). The

Hamiltonian then becomes

Ĥ = −
N∑
i

1

2
∇2
i +

N∑
i

veff(ri) (1.30)

The effective potential is such that the electronic density corresponding to

the effective potential veff(r) for a system of non-interacting electrons is the

same as the density corresponding to interacting electrons in the potential

v(r) given in the Hamiltonian (Eq. 1.25). The exact wavefunction is then

constructed from one-electron orbitals that are solutions of the Kohn-Sham

equations

fiφi(r) = εiφi(r) (1.31)

where the Kohn-Sham operator fi is

fi = −1

2
∇2
i + veff(ri) (1.32)

The effective potential is given as

veff(r) = v(r) +
∂J [ρ]

∂ρ(r)
+
∂EXC[ρ]

∂ρ(r)
(1.33)

where v(r) is the original potential due to the nuclei , the second term is the

Coloumb interaction due to the electronic density, and the last term is the

exchange-correlation potential.
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1.3.1 The exchange-correlation functionals

Kohn-Sham DFT is, in principle, an exact theory, but the exchange-correlation

functional EXC[ρ] is not known and is therefore the holy grail of DFT. It

is probably not possible to get an exact exchange-correlation functional,

and there is no systematic way of getting functionals with a higher level

of accuracy22, as we are used to for wavefunction based methods with its hi-

erarchy of methods. It should be noted that Perdew and Schmidt introduced

a Jacob’s ladder24 of exchange-correlation functionals where each step in the

ladder brings us closer to DFT heaven25.

Originally, Kohn and Sham suggested to use a local density approximation

(LDA) for the exchange-correlation functional23 that was later refined with

the local spin density approximation (LSDA)26. LDA is exact for a uniform

electron gas, but the electronic densities in molecules are far from uniform.

The L(S)DA approach is therefore in many cases not accurate enough for

quantum chemistry27. In the generalized gradient approximation (GGA)28,

such as used in the PBE functional29, the gradient of the spin density was in-

cluded. After the development of GGA, DFT became an interesting method

also for chemists19. Becke later recognized the importance of including some

exact Hartree-Fock exchange to the exchange-correlation functional30. The

hybrid functional suggested by Becke was then modified by Stephens et al.31

and giving us by far the most widely used exchange-correlation functional in

quantum chemistry today, namely B3LYP. The B3LYP functional is given as

EB3LYP
XC = 0.2EHF

x + 0.8ELSDA
x + 0.72∆EB88

x + 0.81ELYP
c + 0.19EVWN

c (1.34)

24Named after the biblical Jacob’s dream about a ladder to heaven (Genesis 28:10-19).
25J. P. Perdew and K. Schmidt, AIP Conf. Proc., 2001, 577, 1–20.
26U. von Barth and L. Hedin, J. Phys. B: Solid State Phys., 1972, 5, 1629–1642.
27R. O. Jones and O. Gunnarsson, Rev. Mod. Phys., 1989, 61, 689–746.
28J. P. Perdew and Y. Wang, Phys. Rev. B, 1986, 33, 8800–8802.
29J. Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.
30A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
31P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem.,

1994, 98, 11623–11627.
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and consist of Hartree-Fock exchange30 (EHF
x ), LSDA exchange26 (ELSDA

x )

and Becke’s gradient corrections to the exchange functional32 (∆EB88
x ) to

describe the exchange, and a combination of the Lee-Yang-Parr33 (ELYP
c )

and the Vosko-Wilk-Nusair34 (EVWN
c ) correlation functionals to describe the

correlation.

The enormous popularity of B3LYP is due to its very good performance, and

one of the main goals of the development of new XC functionals is therefore

to outperform B3LYP. One successful approach has been methods based on

the so-called long-range exchange correction scheme35.

For B3LYP, the amount of Hartree-Fock exchange and LDA (local density ap-

proximation) exchange is 0.2 and 0.8 respectively (see Equation 1.34), while

for range-separated functionals, the ratio between Hartree-Fock and LDA ex-

change vary with the distance between the interacting electrons. In short, the

long-range exchange correction schemes divide the electron repulsion opera-

tor into two terms, namely a short-range and a long-range term. Originally36,

the error function was used to separate this operator

1

r12

=
1− erf(µr12)

r12

+
erf(µr12)

r12

= SR + LR (1.35)

where the contribution from LDA exchange ELDA
x goes from one for r → 0 to

zero for r →∞, while it is opposite for the Hartree-Fock exchange EHF
x con-

tribution, going from zero to one. This way of separating the functionals did

not improve on the B3LYP, so a modification was introduced by adding two

32A. D. Becke, Phys. Rev. A, 1988, 38, 3098–3100.
33C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 1988, 37, 785–789.
34S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 1980, 58, 1200–1211.
35T. Leininger, H. Stoll, H.-J. Werner, and A. Savin, Chem. Phys. Lett., 1997, 275,

151-160; H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys., 2001, 115, 3540;

Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys., 2004,

120, 8425-8433.
36T. Leininger, H. Stoll, H.-J. Werner, and A. Savin, Chem. Phys. Lett., 1997, 275,

151–160.
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more parameters37. In the case of CAM-B3LYP, the amount of HF exchange

and LDA exchange are given according to the following function

1

r12

=
1− [α + β · erf(µr12)]

r12

+
α + β · erf(µr12)

r12

(1.36)

where the first term is related to the short-range interactions while the sec-

ond term is related to the long-range interactions. This functional showed

improved performance when calculating excitation energies38. The contribu-

tions is demonstrated in figure 1.1. In the original work, the parameter α was

correlation functionals examined in this study. The
Becke 1988 exchange functional is used in all of the LC
and CAM functionals, and is mixed with the HF ex-
change according to Eq. (7). For the partner correlation
functionals, we use the OP correlation functional, the
Lee–Yang–Parr (LYP) [19], and the correlation func-
tional employed in B3LYP, which is 0.19 VWN5+0.81
LYP, where the VWN5 functional is the local correla-
tion functional of Vosko, Wilk and Nusair (VWN) [20]
parameterized with the data of Ceperley and Alder [21].
Note that this is different to the standard B3LYP im-
plemented in GAUSSIANAUSSIAN which uses VWN1 instead of
VWN5 [18], we refer to this functional as B3LYP(G).
The possible combinations of the exchange–correlation
functionals are termed CAM-BOP, CAM-BLYP, CAM-
B3LYP, LC-BOP, and LC-BLYP. For the parameter l,
the same value is used as in Tawada’s study [1],
l ¼ 0:33. The parameter a, which determines the con-
tribution of the HF exchange at the short-range region,
was chosen to be 0.2 for the three functionals, CAM-
BOP, CAM-BLYP, and CAM-B3LYP. We vary the
parameter b so that the HF exchange could contribute
to the long-range region with aþ b ¼ 0:6; 0:8; or 1:0 for
three functionals.

We compare the present functionals with four kinds
of the widely used, well-examined exchange–correlation
functionals, HCTH/93 [22], BLYP, B3LYP(G) (VWN1),
and B3LYP (VWN5). We used the INTEGRANTEGRA [23] as a
part of the UTCHEMTCHEM 2004 program package [24,25] to
carry out Kohn–Sham self-consistent field (KS-SCF)
calculations with the LC and CAM methods. The KS-
SCF calculations with the standard BLYP, HCTH,
B3LYP(G), and B3LYP were performed using
NWCHEMWCHEM program package version 4.5 [26].

4. Results

4.1. Atomization energies, ionization potentials, and
atomic energies

We calculated 53 atomization energies and 22 ioni-
zation potentials from the molecules of the G2 set
[27,28]. All calculations were performed with sufficiently
accurate correlation-consistent aug-cc-pVQZ Gaussian
basis sets. Tables 2 and 3 show the statistical data for
atomization energies and ionization potentials with
comparison to the experimental data, which are taken

Table 1
Summary of the exchange–correlation functionals

Name Exchange functional a aþ b Additional exchange Correlation functional

LC-BOP Becke88 0.0 1.0 OP
LC-BLYP Becke88 0.0 1.0 LYP
CAM-BOP Becke88 0.2 1.0 OP

0.8
0.6

CAM-BLYP Becke88 0.2 1.0 LYP
0.8
0.6

CAM-B3LYP Becke88 0.2 1.0 0.19 VWN5+0.81 LYP
0.8
0.6

B3LYP(G) Slater 0.2 0.2 0.72 DBecke88 0.19 VWN1(RPA)+ 0.81 LYP
B3LYP Slater 0.2 0.2 0.72 DBecke88 0.19 VWN5+0.81 LYP
BLYP Becke88 0.0 0.0 LYP
HCTH xHCTH 0.0 0.0 cHCTH

0 ∞r12

B3LYP (α=0.2, α+β=0.2)  

HF

DFT

0 ∞r12

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
LC (α =0.0,α +β=1.0)  

HF

DFT

0 r12

1

0.8

0.6

0.4

0.2

0
CAM (α=0.2, α +β=0.6)  

HF

DFT

α
+β

∞

(a) (b) (c)

Fig. 2. Schematic plots of the contributions to exchange from r#1
12 , apportioned into DFT and HF, for: (a) B3LYP, (b) LC, and (c) CAM.

T. Yanai et al. / Chemical Physics Letters 393 (2004) 51–57 53

Figure 1.1: The contribution from DFT (LDA) and HF exchange as a

function of inter-electronic distance r12 for the B3LYP (a), LC (b) and

CAM-B3LYP (c) functionals. Reprinted from Yanai at al.37 Copyright

(2004) with permission from Elsevier

set to 0.2, β was either 0.4, 0.6 or 0.8, and µ was set to 0.33. The calculations

in this thesis have been performed with α 0.19 and β 0.46, while µ as for

the original CAM-B3LYP article. This corresponds to the values used in the

study by Peach et al.38.

37T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51–57.
38M. J. G. Peach, P. Benfield, T. Helgaker, and D. J. Tozer, J. Chem. Phys., 2008, 128,

044118.
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Polarizable embedding

The two methods discussed so far, Hartree-Fock and KS-DFT, scale formally

as N3, where N is the number of basis functions (χ in Equation 1.10)39.

Therefore, for very large and more realistic molecular systems such as pro-

teins and a molecule solvated in water, purely quantum-mechanical calcu-

lations are computationally too demanding. One way of being able to do

calculations on such systems is to use a so-called “focused model”. These

models separate the system into parts, illustrated in Figure 2.1, and these

parts are treated at a different level of theory. The inner region, in our case

the solute, is typically treated with quantum mechanics, while the outer re-

gion, the solvent, is treated at a much lower level of theory. The inner region

will then “feel” the surrounding solvent, which will influence the energy and

electronic structure of this solvated QM treated region. If the surrounding

solvent is described by a polarizable model, the surrounding will also “feel”

the solute.

The simplest way of describing the outer region is with an implicit model,

39The implementations of DFT and HF are scaling as N2 in most of modern quan-

tum chemistry programs, but also linear scaling has been achieved. See for instance C.

Ochsenfeld, J. Kussmann, and D. S. Lambrecht, Rev. Comput. Chem., 2007, 23, 1-82.
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Outer region 

Inner
region

Figure 2.1: The principle of the focused models

where for instance the environment is treated as a dielectric continuum and

not as individual particles40. Two of the main benefits of this approach are

that it takes into account long-range electrostatic interactions and that the

dynamics of the system is taken care of by the method. Besides, partly

because the dynamics is included implicitly, the overall computational cost

is normally much lower than explicit models. The main disadvantage of the

continuum compared to explicit models is the lack of specific solute-solvent

interactions, for instance hydrogen bonds. A way to circumvent the latter

is to include some of the solvent molecules closest to the solute into the

quantum-mechanical treated region41. This requires that we reintroduce the

dynamics of the system by, for instance, molecular dynamics calculations

since there will no longer be an implicit treatment of the dynamics of the

system.

In the explicit models, the outer region is described as discrete particles, such

as water molecules in the case of a molecule solvated in water. These particles

are typically described with classical molecular mechanics (MM)42, and will

take into account the specific electrostatic interactions with the quantum-

40J. G. Kirkwood, J. Chem. Phys., 1934, 2, 351; L. Onsager, J. Am. Chem. Soc., 1936,

58, 1486-1493; J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 2005, 105, 2999-3093.
41J. Kongsted and B. Mennucci, J. Phys. Chem. A, 2007, 111, 9890–9900.
42A. Warshel and M. Levitt, J. Mol. Biol., 1976, 103, 227–249.
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mechanically described solute. In such QM/MM methods, the dynamics

of the system has to be dealt with, and can for instance be introduced by

molecular dynamics43. This normally requires QM/MM calculations on a

large number of molecular structures, making it much more computationally

expensive than dielectric continuum models.

Another discrete description of the solvent, which will only be mentioned

briefly, is quantum-mechanical-based methods. The system is divided into

fragments and each fragment is treated at the same level. The interactions

between each fragment is then treated by different techniques depending

on the method. An example of such a method is the fragment molecular

orbital method (FMO)44. A benefit of such methods, besides the much lower

computational cost than pure QM calculations because of linear scaling, is

the possibilities to do massively parallell calculations45.

A common feature of the two solvation models used in this thesis is that

they are fully self-consistent polarizable schemes. In short, the surroundings

not only affects the quantum mechanically described solute, but the solute

also influences the surroundings. This is achieved since the surroundings or

embeddding are polarizable, therefore the term “polarizable embedding”. A

consequence is that the interaction between solute and embedding has to be

determined iteratively.

In general, for the solvent methods discussed in this thesis, the gas-phase

Hamiltonian is replaced by an effective Hamiltonian

Ĥeff = Ĥ0 + v̂PE (2.1)

where Ĥ0 is the vacuum Hamiltonian and v̂PE is the solute-solvent interaction

term. The form of the latter depends on the method.

43B. J. Alder and T. E. Wainwright, J. Chem. Phys., 1959, 31, 459–466.
44K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi, Chem. Phys. Lett., 1999,

313, 701–706.
45G. D. Fletcher, D. G. Fedorov, S. R. Pruitt, T. L. Windus, and M. S. Gordon, J.

Chem. Theory Comput., 2012, 8, 75–79.
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2.1 The integral equation formalism of the

polarizable continuum model

The integral equation formalism of the polarizable continuum model (IEF-

PCM)46 is based on the original PCM method47. In the PCM methods, the

solvent is implicitly described by a cavity surrounding the solute and the

following equations are then describing the electrostatics between the solute

and the solvent48

−∇2V (r) = 4πρ(r) inside the cavity (2.2)

−ε∇2V (r) = 0 outside the cavity (2.3)

V (r) is the electrostatic potential due to the charge distribution inside the

cavity, ρ(r) is the charge density of the solute, and ε is the dielectric constant

of the solvent. The right-hand side of Equation 2.3 is zero since we assume

that the electron density is zero outside the cavity. The following boundary

conditions have to be fulfilled

Vinside = Voutside (2.4)(
∂V

∂n

)
inside

= ε

(
∂V

∂n

)
outside

(2.5)

where n is a unit vector pointing outwards and perpendicular to the surface.

In other words, there has to be a continuity of the potential across the surface

(Eq. 2.4), as well as for the gradient of the field (Eq. 2.5).

IEF-PCM is an apparent surface charge (ASC) method, according to the

categories of PCM methods introduced in the review by Tomasi and Persico49.

46E. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys., 1997, 107, 3032-3041; E.

Cancès and B. Mennucci, J. Math. Chem., 1998, 23, 309-326; J. Tomasi, B. Mennucci,

and R. Cammi, Chem. Rev., 2005, 105, 2999-3093.
47E. Miertus̆, E. Scrocco, and J. Tomasi, Chem. Phys., 1981, 55, 117–129.
48From the general Poisson equation, see for instance E. Kreyszig, Advanced Engineering

Mathematics, John Wiley & Sons, Ltd, 1999.
49J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027–2094.
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In ASC methods, the potential due to the apparent charge on the surface (σ)

is given as

Vσ(r) =

ˆ
σ(s)

|r − s|
ds ≈

∑
k

σ(sk)Ak
|r − sk|

=
∑
k

qk
|r − sk|

(2.6)

The sum is introduced since the PCM cavity is discretized into tesserae, where

Ak is the area of tessera k and sk the position. A graphical representation of

a cavity with its tesseration is given in Figure 2.2.

Figure 2.2: To the left: a graphical representation of acetone enclosed in

a PCM cavity. To the right: the partition of the cavity into tesserae with

the positions s, areas A and surface charges q, as described in the text.

The KS Hamiltonian in the Schrödinger equation (Eq. 1.25) is modified to

include the interaction energy between the solute and the apparent charge

on the cavity surface. The extra term in the effective solvent Hamiltonian is

given as

v̂PE =
∑
k

q̂kV̂k (2.7)

where the sum runs over all tesserae, qk is the apparent charge on tessera k

due to the electrons and nuclei of the solute, while V̂k is the potential due to

the solute. This term can be divided into four terms depending on the origin
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of the apparent charges and potentials.

Ĵ =
∑
k

V̂ e
k q

N
k =

∑
pq

JpqÊpq (2.8a)

Ŷ =
∑
k

V N
k q̂

e
k =

∑
pq

YpqÊpq (2.8b)

X̂ =
∑
k

V̂ e
k q̂

e
k =

∑
pqrs

XpqrsÊpq〈0|Êrs|0〉 (2.8c)

ÛNN =
∑
k

V N
k q

N
k (2.8d)

where we once again are using the second quantization formalism. The con-

tributions 2.8a and 2.8b are formally identical, since the potential V is con-

nected to the apparent surface charge q through

V = K · q (2.9)

where the matrix K depends on the dielectric constant of the medium and the

geometry of the cavity, and V and q are vectors where the number of elements

equals the number of tesserae. This also means that it is only necessary to

know the potential on the cavity surface due to the charge density of the

solute to solve the PCM equations. To get the apparent surface charge, K

has to be inverted50.

In many situations, PCM and other implicit solvent models fail to describe

the interaction between the solute and the solvent, for instance if there are

strong hydrogen bonds. The solvent molecules then has to be explicitly

included in the system. This can either be done in a super-molecule way,

where the molecules closest to the soluted molecule is included in the QM

region, while the remaining molecules are included implicitly by PCM, or

by using an explicit model with classically treated solvent molecules, thus

QM/MM. In the next section, one such polarizable QM/MM method will be

presented.

50Equation 2.9 can also be solvet iteratively. See for instance G. Scalmani, V. Barone,

K. N. Kudin, C. S. Pomelli, G. E. Scuseria, and M. J. Frisch, Theor. Chem. Acc., 2004,

111, 90-100.
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2.2 Quantum Mechanics/Molecular Mechan-

ics (QM/MM)

In the quantum mechanics/molecular mechanics (QM/MM) approach, the

solvent is treated classically and the potential due to the classical region

enters the Hamiltonian of the solute. In one of the simplest versions of

QM/MM, the solvent is described by partial point charges and therefore

the method neglects the polarization of the solvent due to the QM region51.

A more realistic description of the environment is obtained by introducing

polarizable classical sites52.

Figure 2.3: An example of the separation of a protein (GFP) into a QM

region and a MM region. The QM treated region is represented by sticks,

while classically treated embedding is represented by lines and cartoons.

The Kohn-Sham Hamiltonian is modified due to the contributions from the

surrounding polarizable embedding with a PE operator consisting of two

51D. Bakowies and W. Thiel, J. Phys. Chem., 1996, 100, 10580–10594.
52J. Applequist, J. R. Carl, and K.-K. Fung, J. Am. Chem. Soc., 1972, 94, 2952-2960;

B. Thole, Chem. Phys., 1981, 59, 341-350.
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contributions53

v̂PE = v̂es
PE + v̂ind

PE , (2.10)

where the first one is the interaction between the static multipoles and the

electron density, and the second term is the interaction between the induced

dipoles and the electron density. These terms are

v̂es
PE =

S∑
s=1

K∑
k=0

(−1)(k)

k!
Q(k)
s F̂

(k)

s,el (2.11)

v̂ind
PE = −

S∑
s=1

µind
s F̂

(1)

s,el (2.12)

where the sums over s are over all the classical sites54, the sum over k is over

the order of the multipole moments (k = 0 for charges. k = 1 for dipoles

etc.). S is the total number of classical sites, and K is the truncation level

of the multipole expansion. Q
(k)
s is the kth order multipole moment on site

s, that is Q
(0)
s = qs, Q

(1)
s = µs etc. The operator F̂

(k)

s,el is defined as

F̂
(k)

s,el =
∑
pq

t(k)
s,pqÊpq (2.13)

where Êpq is, as always, the single excitation operator given in Equation 1.5,

and t
(k)
s,pq is

t(k)
s,pq = −

ˆ
ρpq(r)T(k)

s (r) dr (2.14)

T
(k)
s (r) is the interaction tensor55, written as

T(k)
s (r) = ∇k 1

|r −Rs|
(2.15)

53The remainder of this section is based on the work and derivation of Kongsted and

co-workers: J. M. Olsen, K. Aidas, and J Kongsted, J. Chem. Theory Comput., 2010, 6,

3721-3734, J. M. H. Olsen and J. Kongsted, Adv. Quantum Chem., 2011, 61, 107-143.
54The sums over s in Equations 2.11 and 2.12 are not necessarily over the same s. In

other words, the multipole moments and the induced dipoles do not have to be located on

the same classical sites.
55A. J. Stone, The Theory of Intermolecular Forces, Oxford University Press, 1996.
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The induced dipole on each classical site (µind
s ) is given as42

µind
s = αsFs (2.16)

where αs is the (isotropic or anisotropic) polarizability and Fs is the local

electric field on site s. The electric field is due to the nuclei and electrons in

the quantum-mechanically described region, as well as due to the permanent

multipoles and induced dipoles on the other classic sites

Fs = Fnuc + Fel + Fmul + Find (2.17)

The induced dipole moments are also depending on all the other induced

dipole moments, so Equation 2.16 has to be solved iteratively or directly by

a matrix-vector multiplication

µind = A−1F (2.18)

The matrix A is of size 3N × 3N , where N is the number of classical sites,

and given as56

A =


α−1

1 T
(2)
12 · · · T

(2)
1N

T
(2)
21 α−1

2
. . .

...
...

. . . . . . T
(2)
(N−1)N

T
(2)
N1 · · · T

(2)
N(N−1) α−1

N

 (2.19)

αa are the polarizability tensors for the classical sites and the interaction

tensors T
(2)
ab are given in Equation 2.1557. Since the induced dipoles depend on

the electric field from the electron density, the interaction operator between

the electronic density and the induced dipoles has to be updated in every

SCF iteration. Thus, the polarization is treated self-consistently.

56J. Applequist, J. R. Carl, and K.-K. Fung, J. Am. Chem. Soc., 1972, 94, 2952–2960.
57Equation 2.15 refers to the interaction between the electron density and a multipole

moment, while the interaction tensors in equation 2.19 refer to the interaction between

two induced dipoles.
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The contribution from the polarizable QM/MM embedding to the total DFT

energy, analogues to the contribution to the KS Hamiltonian, consists of two

extra terms in addition to the original pure DFT term

EPE
tot = EPE

DFT + EPE
es + EPE

ind (2.20)

The first term EPE
DFT is the energy of the isolated QM-treated region, EPE

es is

the contribution to the energy due to the interaction between the multipoles

and the QM region, while EPE
ind is the energy contribution due to the interac-

tion between the induced dipole moments on the classical sites and electronic

charges, nuclear charges and static multipole moments. One important point

is that, even if the energy is separated into QM and QM/MM contributions,

the energy term EPE
DFT is not independent of the PE potential. This means

that the DFT energy calculated without the surrounding embedding will not

be identical to the EPE
DFT energy term. The reason is that the electronic dis-

tribution, and therefore consequently the energy, is changed due to the extra

potential from the classical region.

The contribution to the energy due to the interaction between the quantum-

mechanically described solute and the multipoles are given as

EPE
es =

S∑
s=1

K∑
k=0

(−1)k

k!

(
F (k)
s,nuc + 〈0|F̂

(k)

s,el|0〉
)

Q(k)
s (2.21)

resembling the static multipole contribution to the KS Hamiltonian (Eq.

2.11), except that the interactions between the multipoles and nuclei (m

with charge Zm) are included, and that the contribution from the electron-

multipole interaction is given as an expectation value of the F̂
(k)

s,el operator,

defined in Equation 2.13. The nuclear contribution is defined as

F (k)
s,nuc =

M∑
m

ZmT(k)
ms(Rm) (2.22)

where T
(k)
ms(Rm) is the interaction tensor (Eq. 2.15) between the nucleus m

and multipole moment s of order k. The energy contribution due to the
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interaction between the induced dipoles and the quantum-mechanical region,

as well as with the static multipole moments, are given as

EPE
ind = −1

2

S∑
s

(Fnuc + Fel + Fmul)µ
ind
s (2.23)

where, as for the contribution to the KS Hamiltionian (Eq. 2.12), the induced

dipole moments are induced by the total electric field, given in Equation 2.17.

From a computational point of view, the way the polarizations are derived in

the PCM and QM/MM polarizable embedding schemes are very similar. In

the case of PCM, the apparent charges due to the potential from all electrons

and nuclei are calculated for every tesserae, while for QM/MM, the induced

dipoles due to the electric field at every classical site from the electrons and

nuclei of the solute are calculated. The apparent surface charge for PCM

can be obtained by solving Equation 2.9 (page 20), while the induced dipoles

for QM/MM can be obtained by solving Equation 2.18 (page 23). In both

cases it is necessary to invert an often large matrix that depends on fixed

parameters, or iteratively solve a set of linear equations. The matrix K in

Equation 2.18 (PCM) depends, as mentioned before, on the cavity structure

and the dielectric constant of the medium, and the matrix A in Equation

2.19 (QM/MM) depends on the polarization of the classical sites and their

positions.





Chapter 3

Molecular Electronic Properties

3.1 Time-dependent DFT

The Hohenberg-Kohn theorems, as discussed in Section 1.3, are only valid for

ground-state energies58. In time-dependent DFT we instead have the Runge-

Gross theorem that states that there is a one-to-one correspondence between

a time-dependent external potential and a time-dependent electronic density,

up to a time-independent constant59.

The time-dependent Kohn-Sham equation for a system |t〉 exposed to an

external potential V̂ (t) is given as(
Ĥ(t) + V̂ (t)

)
|t〉 = i

∂

∂t
|t〉 (3.1)

V (t) is a small perturbation to the time-dependent KS Hamiltonian, where

the time-dependent KS Hamiltonian is given as

Ĥ(t) =
∑
pq

fpq(t)Êpq (3.2)

58R. Gaudoin and K. Burke, Phys. Rev. Lett., 2004, 93, 173001.
59E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52, 997–1000.
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fpq(t) is the KS operator defined in Equation 1.32, except that the Coloumb

interaction term jpq and the exchange-correlation term vxc,pq now are time-

dependent

fpq(t) = hpq + jpq(t) + vxc,pq(t) (3.3)

since they depend on the time-dependent density. The two first terms are

known and “simple”. The third term is, as for ground-state DFT, a complex

functional including many-body effects that are not included in the two other

terms. In most cases, and also in this thesis, the adiabatic approximation60

is used. In the adiabatic approximation, the same functionals as for the

time-independent KS-DFT are used, as well as a time-independent density

at fixed time61.

3.2 Response theory

Response theory is a way to derive molecular properties with the use of

perturbation theory62. In this work, the properties calculated are the one-

photon and two-photon absorption (OPA and TPA). That is, the excitation

of electrons due to the absorption of one photon, or the absorption of two

photons simultaneously63. The absorption of photons will only happen if the

energy of a photon matches the energy difference between two quantum states

of the molecular system, or, in the case of TPA, if the total energy of two

photons matches the energy difference between two quantum states of the

molecular system.

The first step is to look at the expectation value of a time-independent op-

erator Â for a time-dependent system |t〉, and then expand this expectation

60R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454–464.
61R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218–

8224.
62J. Olsen and P. Jørgensen, J. Chem. Phys., 1985, 82, 3235–3264.
63M. Göppert-Mayer, Ann. Phys.-Berlin, 1931, 401, 273–294.
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value in orders of the perturbation

〈t|Â|t〉 = 〈t|Â|t〉(0) + 〈t|Â|t〉(1) + 〈t|Â|t〉(2) + . . . (3.4)

The first term is the expectation value for the unperturbed wavefunction,

〈0|Â|0〉. The second and third terms describe the linear and quadratic re-

sponse to the perturbation, respectively, and can be written in a Fourier

transform representation as

〈t|Â|t〉(1) =

ˆ
〈〈Â; V̂ ω〉〉ωe−iωt dω (3.5)

〈t|Â|t〉(2) =
1

2

¨
〈〈Â; V̂ ω1 , V̂ ω2〉〉ω1,ω2e

−i(ω1+ω2)t dω1 dω2 (3.6)

These expressions are the so-called response functions62, where 〈〈Â; V̂ ω〉〉ω is

the linear response function, and 〈〈Â; V̂ ω1 , V̂ ω2〉〉ω1,ω2 is the quadratic response

function.

The linear response function contains poles at resonance frequencies and will

therefore diverge for frequencies close to resonance of an electronic transition64.

This is easily seen if the response functions are derived for an exact state.

Then we get the following linear response function62

〈〈Â; V̂ ω〉〉ω =
∑
k>0

(
〈0|Â|k〉〈k|V̂ ω|0〉

ω − ωk
− 〈0|Â|k〉〈k|V̂

ω|0〉
ω + ωk

)
(3.7)

where the sum k runs over all excited states |k〉, and the frequencies ωk =

En−E0. The linear response function will have poles at ω = ωk, thus at the

excitation energies for one-photon absorption. The oscillator strength of an

electronic transition with frequency ωk is given as

f0k =
2

3ωk
Sα (3.8)

where α is one of the three Cartesian directions (x, y or z). The dipole

transition strength Sα is given as the residue of the linear response function65,

64P. Norman, Phys. Chem. Chem. Phys., 2011, 13, 20519–20535.
65Jeppe Olsen and Poul Jørgensen, in Modern Electronic Structure Theory, ed. David

R. Yarkony, World Scientific, 1995, ch. 13, pp. 857–990.
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with the operators Â and V̂ ω equal the electric dipole operator

Sα = lim
ω→ωk

(ω − ωk)〈〈µ̂α; µ̂α〉〉ω = 〈0|µ̂α|k〉〈k|µ̂α|0〉 (3.9)

Similary, The two-photon absorption properties are obtained from the poles

in the quadratic response functions. The two-photon absorption cross section

for linearly polarized light is given, in atomic units, as

δTPA
au =

1

15

∑
α,β

[
SααS

∗
ββ + SαβS

∗
αβ + SαβS

∗
βα

]
, (3.10)

where the two photon transition matrix element Sαβ for absorption of two

photons with identical energies is given by the residue of the quadratic re-

sponse function

Sαβ =
∑
n>0

(
〈0|µ̂α|n〉〈n|µ̂β|k〉

ωn − ωk/2
+
〈0|µ̂β|n〉〈n|µ̂α|k〉

ωn − ωk/2

)
. (3.11)

3.2.1 KS-DFT response functions

In this section we will derive explicit expression for the response functions

for a case of KS-DFT66. The time-dependent KS determinant can be written

with an exponential parametrization as

|t〉 = e−κ̂(t)|0〉 (3.12)

where |0〉 is the time-independent, unperturbed KS determinant, and κ̂(t) is

the time-evolution operator. The time-evolution operator is given as

κ̂(t) =
∑
pq

κpq(t)Êpq (3.13)

66The formalism used in this section is mainly based on the work by Sa lek et al.: P.

Sa lek, O. Vahtras, T. Helgaker, and H. Ågren, J. Chem. Phys., 2002, 117, 9630-9645.
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where Êpq is the excitation operator (Eq. 1.5). The time-dependent density

is given as the expectation value of the density operator ρ̂(r)

ρ(r, t) = 〈t|ρ̂(r)|t〉 = 〈0|eκ̂(t)ρ̂(r)e−κ̂(t)|0〉 (3.14)

where the density operator is given as

ρ̂(r) =
∑
pq

φ∗p(r)φq(r)Êpq (3.15)

The expression for the density can be expanded with a Baker-Campbell-

Hausdorff (BCH) expansion

ρ(r, t) = ρ(r, 0) + 〈0|[κ̂(t), ρ̂(r)]|0〉+
1

2
〈0|[κ̂(t), [κ̂(t), ρ̂(r)]]|0〉+ . . . (3.16)

The time-evolution operator in Equation 3.13 can be expanded as

κ̂(t) = κ̂(1)(t) + κ̂(2)(t) + . . . (3.17)

The latter expansion is used in Equation 3.16 and we get

ρ(r, t) = ρ(r, 0) + 〈0|[κ̂(1)(t), ρ̂(r)]|0〉+ 〈0|[κ̂(2)(t), ρ̂(r)]|0〉
+ 〈0|[κ̂(1)(t), [κ̂(1)(t), ρ̂(r)]]|0〉+ . . . (3.18)

Collecting zeroth-, first- and second-order terms, and using Equation 3.15,

we get the zeroth-, first- and second-order perturbed densities

ρ(0)(r, t) =
∑
pq

φ∗p(r)φq(r)〈0|Êpq|0〉 =
∑
pq

φ∗p(r)φq(r)D(0)
pq (3.19)

ρ(1)(r, t) =
∑
pq

φ∗p(r)φq(r)〈0|[κ̂(1), Êpq]|0〉 =
∑
pq

φ∗p(r)φq(r)D(1)
pq (3.20)

ρ(2)(r, t) =
∑
pq

φ∗p(r)φq(r)

(
〈0|[κ̂(2), Êpq]|0〉+

1

2
〈0|[κ̂(1), [κ̂(1), Êpq]]|0〉

)
=
∑
pq

φ∗p(r)φq(r)D(2)
pq (3.21)
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where the perturbed density matrices have been introduced (D
(0)
pq , D

(1)
pq and

D
(2)
pq ). The time-dependent KS Hamiltonian can be expanded in orders of the

perturbation, n, as well, since it depends on the functionals of the density

Ĥ(t) =
∑
n

∑
pq

(
δ0nhpq + j(n)

pq + v(n)
xc,pq

)
Êpq (3.22)

The time-dependent KS determinant (Eq. 3.12) can be used to write the

expectation value of the time-independent operator Â

〈t|Â|t〉 = 〈0|eκ̂(t)Âe−κ̂(t)|0〉 (3.23)

This expectation value can be expanded by the use of a BCH expansion, as

in Equation 3.16

〈0|eκ̂(t)Âe−κ̂(t)|0〉 = 〈0|Â|0〉+ 〈0|[κ̂(t), Â]|0〉+
1

2
〈0|[κ̂(t), [κ̂(t), Â]]|0〉+ . . .

(3.24)

An expansion of the time-evolution operator up to second-order (Eq. 3.17)

is then inserted into Equation 3.24

〈0|eκ̂(t)Âe−κ̂(t)|0〉 =〈0|Â|0〉
+ 〈0|[κ̂(1)(t), Â]|0〉+ 〈0|[κ̂(2)(t), Â]|0〉

+
1

2
〈0|[κ̂(1)(t), [κ̂(1)(t), Â]]|0〉+

1

2
〈0|[κ̂(2)(t), [κ̂(1)(t), Â]]|0〉

+
1

2
〈0|[κ̂(1)(t), [κ̂(2)(t), Â]]|0〉+ . . .

(3.25)

Since we are only interested in linear and quadratic response properties in

this thesis, we will only keep terms that are up to second-order in the per-

turbation. That is

〈0|eκ̂(t)Âe−κ̂(t)|0〉 =〈0|Â|0〉+ 〈0|[κ̂(1)(t), Â]|0〉+ 〈0|[κ̂(2)(t), Â]|0〉

+
1

2
〈0|[κ̂(1)(t), [κ̂(1)(t), Â]]|0〉

(3.26)
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This expansion can be divided into zeroth-, first- and second-order terms

〈t|Â|t〉(0) =〈0|Â|0〉 (3.27)

〈t|Â|t〉(1) =〈0|[κ̂(1)(t), Â]|0〉 (3.28)

〈t|Â|t〉(2) =〈0|[κ̂(2)(t), Â]|0〉+
1

2
〈0|[κ̂(1)(t), [κ̂(1)(t), Â]]|0〉 (3.29)

By using the Fourier transformed of the κ̂(n)(t) operators we end up with the

following linear (Eq. 3.30) and quadratic (Eq. 3.31) response functions

〈〈Â; V̂ ω〉〉ω = 〈0|[κ̂ω, Â]|0〉 (3.30)

〈〈Â; V̂ ω1 , V̂ ω2〉〉ω1,ω2 = 〈0|[κ̂ω1,ω2 , Â]|0〉+ P̂12〈0|[κ̂ω1 , [κ̂ω2 , Â]]|0〉 (3.31)

where P̂12 is the symmetrizer operator defined as

P̂12f(ω1, ω2) =
1

2
(f(ω1, ω2) + f(ω2, ω1)) (3.32)

The next step is to find an expression where we can derive κ̂ω, κ̂ω1 , κ̂ω2 and

κ̂ω1,ω2 in Equations 3.30 and 3.31. The Ehrenfest theorem67 can be written

as68

〈0|
[
Q̂, e

ˆκ(t)

(
Ĥ(t) + V̂ (t)− i d

dt

)
e−

ˆκ(t)

]
|0〉 = 0 (3.33)

where Ĥ(t) is the perturbed Hamiltonian given in Equation (3.22), and Q̂

can be any time-independent one-electron operator. By using a vector q̂

consisting of all the excitation operators Êpq (Eq. 1.5, page 4) we obtain a

set of equations

〈0|
[
q̂, e

ˆκ(t)

(
Ĥ(t) + V̂ (t)− i d

dt

)
e−

ˆκ(t)

]
|0〉 = 0 (3.34)

Once again we can use a BCH expansion (Eq. 3.16) with the KS Hamiltonian

expanded in orders of the perturbation, and collect all terms that are of first-

and second-order. The first-order terms are collected as

〈0|[q̂, [κ̂(1), Ĥ(0)] + Ĥ(1)]|0〉+ i〈0|[q̂, κ̂(1)]|0〉 = −〈0|[q̂, V̂ (t)]|0〉 (3.35)

67P. Ehrenfest, Z. Phys. A: Hadrons Nucl., 1927, 45, 455–457.
68P. Sa lek, O. Vahtras, T. Helgaker, and H. Ågren, J. Chem. Phys., 2002, 117, 9630–

9645.
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where the nth-order KS hamiltonian is given as

Ĥ(n) =
∑
pq

(
δ0nhpq + j(n)

pq + v
(n)
XC,pq

)
Êpq (3.36)

and V̂ (t) is a first-order term. In the frequency domain, Equation 3.35 be-

comes

〈0|[q̂, [κ̂ω, Ĥ(0)] + Ĥω]|0〉+ ω〈0|[q̂, κ̂ω]|0〉 = −〈0|[q̂, V̂ ω]|0〉 (3.37)

Equation 3.37 is used to find the parameters κ̂ω for the linear response func-

tions (Eq. 3.30). The second-order terms, in the frequency domain, are

〈0|[q̂, [Ĥ(0), κ̂ω1,ω2 ]− Ĥω1,ω2 ]|0〉 − (ω1 + ω2)〈0|[q̂, κ̂ω1,ω2 ]|0〉
= P̂12〈0|[q̂, [κ̂ω1 , [κ̂ω2 , Ĥ(0)]] + 2[κ̂ω1 , V̂ ω2 + Ĥω2 ] + ω2[κ̂ω1 , κ̂ω2 ]]|0〉 (3.38)

where P̂12 has been defined in Equation 3.32. The second-order KS Hamil-

tonian Ĥω1,ω2 can be separated into two terms

Ĥω1,ω2 =1Ĥω1,ω2 +2Ĥω1,ω2 (3.39)

where 1Ĥω1,ω2 depends only on the first-order parameters κ̂ω1 and κ̂ω2 , and
2Ĥω1,ω2 depends only on the second-order parameters κ̂ω1,ω2 . Equation 3.38

can then be written

〈0|[q̂, [Ĥ(0), κ̂ω1,ω2 ]−2Ĥω1,ω2 ]|0〉 − (ω1 + ω2)〈0|[q̂, κ̂ω1,ω2 ]|0〉 =

P̂12〈0|[q̂, [κ̂ω1 , [κ̂ω2 , Ĥ(0)]] + 2[κ̂ω1 , V̂ ω2 + Ĥω2 ] + ω2[κ̂ω1 , κ̂ω2 ] +1Ĥω1,ω2 ]|0〉
(3.40)

where all the second-order parameters now are on the left-hand side.

To solve the quadratic response functions (Eq. 3.31), the first-orden pa-

rameters κ̂ω1 and κ̂ω2 are found by solving Equation 3.37. Then the κ̂ω1,ω2

parameter is found by solving Equation 3.40. In practice, these parameters

are found by using a so-called trial vector (response vector) consisting of all

the κpq in Equation 3.13.
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3.3 PE contributions to the response func-

tions

So far, the solvent effects through a polarizable embedding has been kept out

of the discussion. The contributions from the polarizable embedding meth-

ods, that is both the explicit (QM/MM) and implicit (IEF-PCM) methods,

do not enter the response functions (Eqs. 3.30 and 3.31) directly, but as an

extra term in the nth-order Kohn-Sham Hamiltonian (Eq. 3.36)

Ĥ(n) =
∑
pq

(
δ0nhpq + j(n)

pq + v
(n)
XC,pq + v

(n)
PE,pq

)
Êpq (3.41)

where v
(n)
PE,pq is the PE contribution to the nth-order expansion term of the

time-dependent KS Hamiltonian. When working with linear and quadratic

response theory we are only interested in the zeroth-, first- and second-order

terms. That is v
(0)
PE,pq, v

(1)
PE,pq and v

(2)
PE,pq. In the frequency domain, these con-

tributions are given as v
(0)
PE,pq, v

ω
PE,pq and vω1,ω2

PE,pq. The zeroth-order contribution

v
(0)
PE,pq is, obviously, identical to the PE contribution to the time-independent

KS Hamiltonian (Eq. 2.1 on page 17).

3.3.1 QM/MM response contributions

In the case of the explicit model developed by Kongsted and co-workers69,70,

the first-order (Eq. 3.42) and second-order (Eq. 3.43) terms from the PE,

contributing to the first- and second-order KS Hamiltonian, are given as

vωi
PE =−

S∑
s=1

µind
s (F̃

ωi
)F̂

(1)

s,el (3.42)

vω1,ω2

PE =−
S∑
s=1

µind
s (F̃

ω1,ω2
)F̂

(1)

s,el (3.43)

69J. M. Olsen, K. Aidas, and J Kongsted, J. Chem. Theory Comput., 2010, 6, 3721–3734.
70J. M. H. Olsen and J. Kongsted, Adv. Quantum Chem., 2011, 61, 107–143.



36 Chapter 3. Molecular Electronic Properties

where the induced dipoles are induced by the electric field from the perturbed

densities. The operator F̂
(1)

s,el, where the superscript (1) is not related to the

first-order transformation but to the interaction tensor (Eq. 2.15 on page

22), is defined as

F̂
(1)

s,el = −
∑
pq

ˆ
ρpq(r)T (1)

s (r) drÊpq (3.44)

where T
(1)
s (r) is the rank 1 interaction tensor55.

The second-order term (Eq. 3.43) can be divided into two terms, one de-

pending only on first-order terms and one depending on second-order terms,

as for the KS Hamiltonian (Eq. 3.39)

vω1,ω2

PE = 1vω1,ω2

PE + 2vω1,ω2

PE

= −
S∑
s=1

µind
s (1F̃

ω1,ω2
)F̂

(1)

s,el −
S∑
s=1

µind
s (2F̃

ω1,ω2
)F̂

(1)

s,el

(3.45)

The induced dipole moments entering Equations 3.42 and 3.45 are calculated

using the transformed electric fields, given as

F̃
ωi

=〈0|[κ̂ωi , F̂
(1)

s,el]|0〉 (3.46)

1F̃
ω1,ω2

=〈0|[κ̂ω1 , [κ̂ω2 , F̂
(1)

s,el]]|0〉 (3.47)

2F̃
ω1,ω2

=〈0|[κ̂ω1,ω2 , F̂
(1)

s,el]|0〉 (3.48)

The polarizable QM/MM method is fully self-consistent at the response level,

as it was for the ground-state energy. On the one hand, QM/MM contributes

to the first- and second-order KS Hamiltonian, so it has an effect on the

perturbed electronic density. On the other hand, the QM/MM contributions

are polarized by the perturbed electronic density.

3.3.2 PCM response contributions

The derivation of the contribution to the response equations due to PCM is

equivalent to QM/MM. In the nonequilibrium solvation regime, the apparent
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charges due to the electronic density is divided into a dynamic and an inertial

component71

qi = qN + qei (3.49)

qd = qed (3.50)

where only the dynamic ASC are taken into account when calculating the

nth-order ASC. The reason for dividing the apparent charges into a dynamic

(fast) and inertial (slow) part is that only the electrons in the solvent will

move fast enough to react on the perturbed density of the solute72. The nuclei

of the solvent will still be oriented as if the solute was in its ground-state.

The way the separation is done is by using a matrix Kd that is depending

on the optical dielectric constant of the solvent (ε∞), instead of the static

dielectric constant (ε0) that the matrix K was depending on in Equation

2.9 (on page 20). The inertial component is then defined as the difference

between the original and the dynamice one

qi = qN + qe − qd (3.51)

The first- and second-order terms are then given as

vωi
PE,pq = V ωi · (qe + qN) + (V e + V N) · qωi

d (3.52)

vω1,ω2

PE,pq = V ω1,ω2 · (qe + qN) + P̂12V
ω1 · qω2

d + (V e + V N) · qω1,ω2

d (3.53)

where V ωi and qωi
d are the potentials and apparent surface charges on the

tesseraes due to the first-order perturbed electronic density, and V ω1,ω2 and

qωi,ω2

d are related to the second-order perturbed electronic density.

As for the polarizable QM/MM method, the PCM method is fully self-

consistent in the response theory. Since PCM contributes to the nth-order

71L. Frediani, H. Agren, L. Ferrighi, and K. Ruud, J. Chem. Phys., 2005, 123, 144117.
72This separation is automatically taken care of in the polarizable QM/MM method,

where the static multipoles corresponds to the inertial components while the dynamical

components is represented by the polarizabilities.
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KS Hamiltonian, the PCM will affect the perturbed density. At the same

time, the PCM response operators depend on the same perturbed electronic

density.



Chapter 4

Summary of the papers

A short introduction to the papers included in this thesis will be presented

in this chapter. The papers are listed on page VII. In Section 4.1 the three

layered QM/MM/PCM model from Paper I is presented, while the paral-

lelization of the QM/MM module in Dalton (Paper II) is presented in Sec-

tion 4.2. In the last section of this chapter (Sec. 4.3), studies of one- and

two-photon absorption properties in fluorescent proteins (Papers III, IV and

V) are presented.

4.1 The three-layered QM/MM/PCM model

In Paper I, the implementation and theory of a fully polarizable three lay-

ered quantum mechanics/molecular mechanics/polarizable continuum model

up to linear response was presented73. The short-range interactions between

the solute and the solvent were treated explicitly with polarizable classical

mechanics (MM), while the long-range interactions were treated implicitly

by means of a polarizable dielectric contiuum model (PCM).

73A. H. Steindal, K. Ruud, L. Frediani, K. Aidas, and J. Kongsted, J. Phys. Chem. B,

2011, 115, 3027–3037.
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Figure 4.1: The dependence of cutoff radii on the excitation energies

(eV) in acrolein surrounded by water molecules, as reported in Paper I

This was the first implementation74 where the interaction between polar-

izable MM and PCM was included at the response level. Previously, the

interactions where only present when computing the energy, while the inter-

action between MM and PCM was not included when solving the response

equations75. In practice, the coupling between MM and PCM was obtained

by deriving the apparent surface charges and potentials on the cavity in PCM

in the presence of the static multipoles and induced dipoles from the MM

region (see equations 2.8 on page 20). At the same time, the induced dipoles

in the MM module was calculated in the presence of the electric field due to

the ASC. Thus, the MM and PCM are coupled and the calculations have to

be done self-consistently. The coupling between MM and PCM is done in

an equivalent way when calculating linear respone properties: the induced

74But not the last. See for instance S. Caprasecca, C. Curutchet, and B. Mennucci, J.

Chem. Theory Comput., 2012, 8, 4462-4473 and F. Lipparini, C. Cappelli, G. Scalmani,

N. De Mitri, and V. Barone, J. Chem. Theory Comput., 2012, 8, 4270-4278.
75See for instance H. Li, J. Chem. Phys., 2009, 131, 184103.
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dipoles due to the perturbed electric field is taken into account when calcu-

lating the ASC, while these ASCs are taken into account when calculating

the induced dipoles.

Our implementation was tested by studying the one-photon vertical excita-

tions in three molecules in aqueous solution, namely acetone, acrolein and

pyridine. A faster convergence with respect to system size was found for

QM/MM/PCM compared to QM/MM (see for instance Figure 4.1). In other

words, the amount of explicit water molecules needed in the calculations were

dramatically reduced.

4.2 Parallelization of the QM/MM module

In Paper II the parallelization of the PE-DFT module in the Dalton pro-

gram was described, as well as demonstration of the scaling efficiency. The

parallelization was performed for all parts of the code where one-electron

integrals had to be computed, that is calculating the contribution to the KS

Hamiltonian (Eq. 2.10), as well as the PE contribution to the nth-order KS

Hamiltonian (Eq. 3.41) up to third-order (cubic response).

The so-called master-slave approach was used, where one of the computing

cores is distributing tasks to all the other cores. The master core is told when

a slave core is free to do another task. In that way a good load balance was

achieved. A satisfactory gain factor was obtained up to 1000 cores76, as shown

in Figure 4.2 One reason why the master-slave approach was beneficial for

the QM/MM module was that the calculations consisted of a large number

of independent tasks, namely calculations for every classical site.

The parallelization of the QM/MM module in Dalton was absolutely neces-

sary for us in order to do calculations on the fluorescent proteins as investi-

76A. H. Steindal, J. M. H. Olsen, L. Frediani, J. Kongsted, and K. Ruud, Mol. Phys.,

2012, 110, 2579–2586.
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Figure 4.2: Scaling of the QM/MM module in the DALTON code, as

given in Paper II.

gated in Papers III, IV and V.

4.3 Polarizable embedding on fluorescent pro-

teins

The parallelized QM/MM module was used to calculate the one-photon and

two-photon absorption properties in the green fluorescence protein (GFP)77.

This work is presented in Paper III. The crystal structure with the pdb-

code 1EMB was used, and the polarizable embedding where the protein was

represented by an advanced force-field consisting of higher-order multipoles

and anisotropic polarizabilities located on every atom.

The importance of polarization was demonstrated, as well as the importance

77A. H. Steindal, J. M. H. Olsen, K. Ruud, L. Frediani, and J. Kongsted, Phys. Chem.

Chem. Phys., 2012, 14, 5440–5451.
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Figure 4.3: The full calculated absorption spectrum of GFP, as reported

in Paper III.

of including crystal water surrounding the chromophore. The latter had to be

described by quantum mechanics when the neutral chromophore was investi-

gated in order to reproduce experimental data (see Figure 4.3). A comparison

between classical and quantum mechanical description of amino acid in vicin-

ity of the chromphore was also conducted, and the classical description was

found to be on par with the quantum mechanical description.

We went a step further in Paper IV, calculating OPA in a selection of different

fluorescent proteins by the use of PE-DFT. Several approaches were inves-

tigated, including the use of the crystal structure directly, as done in Paper

III, the use of molecular dynamics calculations, and optimizing the structures

with QM/MM while keeping the protein fixed. Contrary to the previous ar-

ticle, we were not able to reproduce the experimental observed excitation

energies. On the other hand, we demonstrated the importance of optimiz-

ing the chromophore of the crystal structures prior to the excitation energies

calculations. Both the difference in excitation energies between different

protein mutants, as well as the bathochromic shift in excitation energies be-
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tween vacuum and protein for wtGFP were reproduced (see Figure 4.4). The
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Figure 4.4: The excitation energies in fluorescent proteins calculated

with different models (no embedding, non-polarizable embedding and po-

larizable embedding), as reported in Paper IV

bathochromic shifts, especially for the anionic wtGFP chromophore, were

more pronounced for the polarizable embedding (PE) compared to no em-

bedding (NE) and non-polarizable embedding (NPE).

In Paper V the importance of the surrounding protein on the two-photon

absorption intensities in DsRed, a fluorescent protein, was investigated78.

Our calculations demonstrated an increase in TPA cross section, as well as

a blue-shift in the excitation energy, in the DsRed chromphore when it was

inside the protein, compared to the chromophore in vacuum. These changes

were both because of structural changes of the chromophore and because

of interaction between the chromophore and the surrounding protein. The

78N. H. List, J. M. H. Olsen, H. J. A. Jensen, A. H. Steindal, and J. Kongsted, J. Phys.

Chem. Lett., 2012, 3, 3513–3521.
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increase in TPA cross section was found to originate from an increased change

in the permanent dipole moment between the ground and excited states.

Further, we demontrate the importance of certain amino acids on the optical

properties of the DsRed protein.
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