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Abstract

Optical waveguides are used to confine propagating light. In a dielectricwaveguide,
a small part of the propagating light travels along and just outside the waveguide
surface. is evanescent field can interact with objects on the waveguide surface.
Two effects of this light-matter interaction are presented, optical forces and Raman
scattering.

Optical forces are caused by changes in the momentum of radiation. e forces are
exerted on objects interacting with a propagating field. emagnitude of the force
is dependent on the difference in permittivity and permeability between the object
and the surrounding medium. e forces can be used to trap and control micro-
and nanoparticles.

In Raman scattering, the scattered field exchanges energy with the scatterer. e
amount of energy that is lost or gained depends on the molecular structure of the
scatterer. By collecting the spectra of the scattered light, the molecules in the scat-
terer can be analyzed and characterized.

Two numerical studies have been performed to simulate optical forces on a range
of micrometer-sized objects trapped and propelled on a waveguide. A numerical
model of a hollow glass sphere provides new insights on how the optical force de-
pends on the glass thickness. A numerical model of a red blood cell studies the
force dependence on cell shape and refractive index. A model of a real-sized cell is
made.

Two experimental studies have used Raman spectroscopy to characterize and an-
alyze objects subject to optical forces. One study looks at the viability of using
Raman scattering to characterize objects trapped on waveguides. It was found that
characterization with Raman spectroscopy is viable with the use of an external, fo-
cused light source, while excitation using the evanescent field is difficult. A second
study investigates a new technique for proliferationmeasurements of non-adherent
cells. A combined optical trapping - Raman spectroscopy setup is used to show
that a Raman probe can be used to measure proliferation of actively replicating
cells, even in a sample were the cell growth is slow or negative.

e presented studies were performed to investigate the potential of combining
characterization with optical trapping on waveguides. is could be of use in an
optical lab-on-a-chip for cells.
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Chapter 1

Introduction

Background

Light has been a subject of studies for a long time, reaching back to the philoso-
phers in ancient Greece discussing the properties of sight. e development of
light as a science accelerated in the Islamic world around 1000 AD, and continued
in Europe with the resurgence of science, philosophy and art during the renais-
sance. In the 17th century, systematic studies of optical phenomena lead to the
development of the wave and particle theories of Huygens and Newton. By the end
of the 19th century, optics had been found to be electromagnetic radiation, and
with Maxwell’s equations, the observable optical phenomena of the time could be
explained. However, the development of optical sciences continued when the in-
sights from quantum physics were introduced in the 20th century, and studies of
light-matter interactions contribute to the understanding of optical processes up
to this day.

A range of optics based applications surfaced with the invention of the laser in the
late 1950’s. e most influential of these is probably optical signal transmission,
which combined with new communication and information technology has been
connecting the world for the last 20 years. e transmission of optical signals is
done by guiding electromagnetic fields in passive structures. e common name
for these structures is optical waveguides. e best known is the silica optical fi-
bre, but light is guided using other designs and materials. Embedded waveguides
are researched in sensing, laser, and integrated circuit and processor technologies.
ese developments would bring the guiding of light to microchips.
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A different application of waveguides is optical trapping. e evanescent field
outside a dielectric waveguide core allows controlled propulsion of micro- and
nanoparticles. Transportation with optical forces could potentially be used in lab-
on-a-chip devices, contributing to studies and analyses of chemical and biochem-
ical processes. e starting point for the work presented in this thesis was to study
characterization of microparticle trapped on optical waveguides. Combined with
waveguide switches and junctions, this could lead to particle sorting in lab-on-a-
chip-devices.

With characterization on waveguides as the starting point, Raman spectroscopy
and optical forces in evanescent fields became the two main topics of the thesis. In
the following chapters, four different studies are presented, two focused on optical
forces and two focused on Raman spectroscopy.

Numerical simulations are used to study the forces exerted onmicroparticles trapped
by the evanescent field of a waveguide. Two kinds of microparticles are examined,
hollow glass microspheres and red blood cells. e studies on hollow spheres look
at how the thickness of the glass shell and the diameter of the sphere influenceds
the forces (chapter 4). e studies of red blood cells look at how small refractive
index changes and the shape of the cell influence the forces (chapter 5)

e Raman studies involve two different setups. One microscope setup is modi-
fied to combine Raman spectroscopy studies with waveguide trapping. is is used
in experiments involving different waveguide designs and different Raman excita-
tion sources. e aim of these studies is to analyze microspheres propelling on the
waveguide (chapter 8). e second microscope setup is specifically designed for
cell trapping. is is used to investigate a recently proposed method to measure
cell proliferation (chapter 7).

Structure

roughout the thesis, chapters presenting results are preceded with chapters pre-
senting a brief theoretical background. e theory chapters are meant to give a
brief and unified introduction, sufficient to give an understanding of the topical
subject. is leads to the following structure of the thesis:

Chapter 2 introduces waveguides and optical forces. e chapter starts with a pre-
sentation of basic electromagnetic theory, which is followed by a theoretical section
on slab waveguides. e chapter continues with a description of channel waveg-
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uides, and the topic of waveguide theory is concluded with sections on the fabrica-
tion process and the properties of the waveguides used in the experiments of later
chapters. e last sections of the chapter introduces the principles behind optical
trapping. First, the origins of the optical force are described, and then details on
trapping of dielectric particles in strongly focused and evanescent electromagnetic
fields are given.

Chapter 3 presents the numericalmodel used in the simulations. To beginwith, the
principles behind the finite element method are outlined. is is followed by a de-
scription of the numerical model, including the calculation procedure, the imple-
mentation of the physics and the model geometry. In the last section, the validity
of the model is discussed.

Chapter 4 presents results from the hollow microsphere force simulations. e
chapter starts with a description of hollow microspheres and their properties, and
continues with the results from the simulations. A simple mathematical model is
then introduced to explain some of the results, and the simulations are compared
with experimental results.

Chapter 5 presents results from the red blood cell simulations. e chapter starts
with a description of the red blood cell properties that are of interest for waveguide
trapping, and looks at earlier optical studies of such cells. Aer this, details of the
numericalmodel are described, and simulation results are presented and discussed.
Finally, experimental velocities are compared to the simulation results.

Chapter 6 gives a brief presentation of the principles of Raman scattering. A semi-
classical approach is used to explain how the properties of the target material in-
fluence the Raman signal, and how this gives each material a unique signature.

Chapter 7 presents results from the Raman based cell proliferation study. e first
section describes cell replication and presents different methods used to measure
cell proliferation. is is followed by a description of the measurement procedure,
the experimental setup, and the data analysis. A separate section then describes the
results from the experiment, which in the last section are analyzed and discussed.

Chapter 8 presents results from the study using Raman scattering to characterize
microspheres on top of waveguides. e chapter begins with a description of the
experimental setups and the waveguide designs. e following section describes
the experimental procedures and presents the resulting spectra from each setup
configuration. Finally, the possibilities and limitations of each experiment is dis-
cussed, and setup improvements are suggested.

3



Chapter 9 concludes the thesis. e main aim and the main results of the work are
summed up, and future possibilities are discussed.

Published results

Some of the results in the thesis have been presented at conferences, some have
been a part of peer reviewed publications, and some have not yet been published.
It is not yet decidedwhich parts will be edited for further publishing. e following
list includes publications the author has been contributing to during the work with
the thesis. An asterisk denotes publications which include work that is described
in the thesis. e reason some of the publications is not described is due to the
topic being out of the scope of the thesis. is applies to the work of Rao et al.,
which focuses on surfaced-enhanced Raman spectroscopy, the work of Gastinger
et al., which focuses on low coherence speckle interferometri, and the latest work
of Ahluwalia et al., which focuses on waveguide loop simulations.

• Balpreet Singh Ahluwalia, Olav Gaute Hellesø, Pål Løvhaugen, Ananth Z.
Subramanian, and James S.Wilkinson. Surface transport and stable trapping
of particles and cells by an optical waveguide loop. Lab on a Chip, 2012

• ∗Balpreet Singh Ahluwalia, Pål Løvhaugen, and Olav Gaute Hellesø. Waveg-
uide trapping of hollow glass spheres. Optics Letters, 36(17), 2011

• ∗Pål Løvhaugen, Balpreet SinghAhluwalia,omasR.Huser, PeterMcCourt,
and Olav Gaute Hellesø. Optical trapping forces on biological cells on a
waveguide surface. In Proceedings of SPIE, volume 7902, 2011

• ∗Pål Løvhaugen, Balpreet Singh Ahluwalia, and Olav Gaute Hellesø. Optical
waveguide trapping forces on hollow glass spheres. In Proceedings of SPIE,
volume 7950, 2011

• Satish Rao, Štefan Bálint, Pål Løvhaugen, Mark Kreuzer, and Dmitri Petrov.
Measurement ofmechanical forces acting onoptically trappeddielectric spheres
induced by surface-enhanced raman scattering. Physical ReviewLetters, 102:087401,
2009

• Kay Gastinger, Pål Løvhaugen, and Ola Hunderi. Numerical simulations of
interferometrical deformation measurements in multi-layered objects. In
Proceedings of SPIE, volume 6995, 2008
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Chapter 2

Optical Waveguides and Optical
Forces

2.1 Introduction

is chapter is meant to provide the reader an understanding of the principles be-
hind the experimental and numerical work presented in the thesis. Background
theory on two topics are presented in the chapter; optical waveguides (confine-
ment of the optical field) and optical forces (trapping by the optical field)1. Some
of the theory described here will also be used in chapter 6 on Raman scattering.

e chapter starts with presenting some basic electromagnetic theory in section
2.2. Section 2.3 gives an overview of fundamental waveguide theory, describing
how the field propagates in an optical waveguide. Section 2.4 introduces waveguide
production methods and presents materials, dimensions and loss properties of the
waveguides used in the experiments described in chapter 8. Section 2.5 presents
a general background on how a field exerts a force on a dielectric object and how
the forces can be calculated. Finally, section 2.6 presents how optical forces are
used to trap small particles, either with a Gaussian beam or on top of a waveguide.
e brief descriptions of theories and methods are complemented with relevant
references throughout the chapter.

1In this context, the term light refers to radiation in the visible, ultraviolet and infrared spectra.
However, the wavelengths considered in the thesis are in the near infrared spectrum.
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2.2 Basic Electromagneticeory

e theory of propagation of electromagnetic fields is well known, and described
in any textbook on electromagnetic theory, e.g. Jackson [7]. Much of the theory
described in the following sections follow the derivations given by Lee [8].

is section describes the parts of electromagnetic theory that are relevant for later
sections and chapters. To start with, Maxwell’s equations and Lorentz’ force equa-
tion are stated, followed byHelmholtz’ equation for monochromatic fields. Finally,
reflection, refraction and polarization properties of a plane wave are presented.
is provides a brief, but sufficient background for the topic of optical waveguides
in section 2.3. e treatment of optical forces in section 2.5 is also based on this
section, but will in addition be supplemented with some theory on electrostatic
fields.

2.2.1 Maxwell’s Equations

e behavior of electromagnetic fields are described by Maxwell’s equations, de-
rived in the nineteenth century,

∇× E(r, t) = − ∂

∂t
B(r, t) (2.1)

∇×H(r, t) =
∂

∂t
D(r, t) + J(r, t) (2.2)

∇ ·D(r, t) = ρ(r, t) (2.3)
∇ ·B(r, t) = 0. (2.4)

Here, r is the position in space and t is the time. J is the current density and ρ is
the charge density in the medium. E andH are the electric and magnetic field vec-
tors, respectively, and D=ϵE and B=µH is the electric and magnetic displacement
vectors, describing the fields inside electrically and magnetically polarized media,
respectively. e permittivity ϵ=ϵrϵ0 is the polarization factor of the medium, and
the permeability µ=µrµ0 is themagnetization factor of themedium, using ϵ0 as the
permittivity in vacuum and µ0 as the permeability in vacuum.
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2.2.2 Lorentz’ Force Equation

estarting point for the derivations of optical forces given in section 2.5 is Lorentz’
force equation

f(r, t) = ρ(r, t)E(r, t) + J(r, t)× B(r, t). (2.5)

is equation states how the charge density ρ and current density J in the local
electric and magnetic fields E and B relate to an applied force density f.

2.2.3 Helmholtz’ Equation

When the electromagnetic field propagates as a time harmonic wave with a field
amplitudeA0, each of the magnetic and electric fields can be described by an equa-
tion

A(r, t) = A0(r)eȷωt−ȷkr, (2.6)

where ȷ is the imaginary unit, ω is the angular frequency of the field, and k is the
wave number of the field. ewave number gives direction and velocity to the field.
It is inversely proportional to the wavelength λ/n, |k|=k=2πn/λ=ωn/c, where c is
the propagation velocity of the field in vacuum and n is the refractive index of the
medium.

If a time harmonic field propagates in a non-magnetic media without free currents
J and free charges ρ, Maxwell’s equations can be written

∇× E(r) = −ȷωB(r) (2.7)
∇×H(r) = ȷωD(r) (2.8)
∇ ·D(r) = 0 (2.9)
∇ ·B(r) = 0. (2.10)

Equations (2.7) and (2.8) can then be used to give [8]

∇×
(
1

µ
∇× E(r)

)
= ω2ϵE(r) (2.11)

∇×
(
1

ϵ
∇×H(r)

)
= ω2µH(r). (2.12)
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For an isotropic medium, these two last equations will, by the use of the vector
identity∇×∇×X = ∇(∇ ·X)−∇2X, as well as equations (2.9) and (2.10), give
Helmholtz’ equation for respectively the electric field

∇2E(r)− ω2ϵµE(r) = 0, (2.13)

and the magnetic field
∇2H(r)− ω2ϵµH(r) = 0. (2.14)

Fromhere on, only discretely separated isotropic and homogeneousmedia are con-
sidered. In such media, the electric field component of a harmonic plane wave is
described by E(r)=E0e

−ȷkr. Equation (2.13) then gives the propagation constant

k2 = k2x + k2y + k2z = ω2ϵµ ≡ k20n
2, (2.15)

where k0 is defined as the wave number in vacuum, the refractive index in the
medium is defined as n=√ϵrµr= c

√
ϵµ, and the propagation speed of the field in

empty space is given by c=1/√ϵ0µ0.

Equation (2.15) is the dispersion relation in the isotropic andhomogeneousmedium.
In general, a dispersion relation describes the dependencies between the velocity,
phase and frequency of the field in a medium.

2.2.4 Reflection and Refraction

At the boundary between two media, a propagating field is reflected and transmit-
ted. e polarization and direction of the field and the permittivity and perme-
ability of the media determines the nature of the reflected and transmitted fields,
as shown in the following paragraphs.

Figure 2.1 a) shows the transmitted and reflected fields of a plane wave incident on
the horizontal plane between two homogeneous media with permittivities ϵ1 and
ϵ2 and permeabilities µ1 and µ2. e directions of the fields are described relative
to the surface normal with θi, θr and θt, where the subscripts i, r and t indicate
incident, reflected and transmitted fields, respectively. At a boundary, Maxwell’s
equations require the tangential component of the electric and magnetic fields to
be continuous [9]. Assuming (without loss of generality) that the boundary plane
is situated such that the perpendicular component r⊥ (x in figure) is 0, only the
tangential directions r∥ (parallel to the boundary, z in figure) need to be considered:[

E0ie
−ȷk∥i r

∥
+ E0re

−ȷk∥r r∥
]∥

=
[
E0te

−ȷk∥t r∥
]∥

, (2.16)
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Figure 2.1: An incident field with wave vector ki is refracted and reflected at the boundary
between twomedia with permittivities ϵ1<ϵ2. e direction of each field is defined relative
to the surface normal. e tangential wave vector components k∥ are equal for the fields.

where E0 indicates electric field amplitudes and ∥ indicates that the components are
tangential. e relation in equation (2.16) is independent of the position r∥ where
the field intersects the plane. us the tangential components of the wave vectors
kmust be constant and equal,

k∥i = k∥r = k∥t ≡ k∥, (2.17)

such that the wave numbers only depend on the medium; |ki|=|kr|=k1=2πn1/λ in
medium 1 and |kt|=k2=2πn2/λ in medium 2.

From figure 2.1,
k1 sin θi = k1 sin θr = k2 sin θt . (2.18)

e equality implies that both the reflected and transmitted fields lie in the plane
defined by the incident field. e relation also gives the directions of the reflected
and transmitted fields:

θi = θr (reflection law) (2.19)
n1 sin θi = n2 sin θt (refraction law). (2.20)

e thesis will only consider non-magneticmedia. us, the relative permeabilities
µr can be assumed to be equal to 1, and (from equation (2.15)) n=

√
ϵr in all media.
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For a field propagating into a medium with lower refractive index (n2<n1) as in
figure 2.1 b), incidence angles larger than a critical angle θc= sin-1(n2/n1) are un-
defined from the refraction law, equation (2.20). For such angles, there is total in-
ternal reflection, and no field is transmitted into medium 1. From equations (2.17)
and (2.18) and figure 2.1 it can be found that

k⊥t = ±
√

k2t − k∥t = ±
√
k2t − k∥r = ±

√
k22 − k21 sin2 θr. (2.21)

For k1 sin θi larger than k2 (θi> θc), the wave vector in the low-index medium k⊥t is
imaginary,

k⊥t = ±ȷ
√

k21 sin2 θi − k22 = ±ȷk̃⊥t = −ȷk̃⊥t . (2.22)

e negative value of the square root is chosen to avoid unphysical exponential
growth of the transmitted field (r⊥> 0). e field amplitude of the transmitted field
is then decaying away from the boundary plane,

Et = E0te
ȷ(ωt−kt · r) = E0te

−k̃
⊥
t r⊥e

ȷ
(
ωt−k∥t r∥

)
. (2.23)

e power flow of a field is represented by the real Poynting vector [8] S=E×H∗,
where ∗ indicates the complex conjugate. In the case of total internal reflection,
and for a unity vector r̂⊥ in the direction perpendicular to the boundary plane, the
power flow in the direction out of the medium is found from the time average of
S · r̂⊥ in medium 2,

1

2
Re
{
(Et ×H∗

t ) · r̂
⊥} ∝ Re

{
kt · r̂⊥

}
= Re

{
k⊥t · r̂⊥

}
= 0. (2.24)

since from equation (2.22), k⊥t is purely imaginary for total internal reflection.
us, the evanescent field does not lead to power dissipating out of the medium.

2.2.5 Polarization and the Fresnel Equations

An electromagnetic field oscillates transversal to the propagation direction. e
direction of the oscillation is called the polarization of the field. e intensity and
phase changes of the field at a boundary can only be described by including the
polarization. When the polarization of electric field is orthogonal to the plane of
incidence (pointing out of the page, the y-direction in figure 2.1), the field is said to
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be transverse electric (TE). When the polarization of the magnetic field is orthog-
onal to the plane of incidence, the field is said to be transverse magnetic (TM).

e continuity conditions at the boundary are different for TE and TM polar-
ized fields. is leads to different relations for the coefficient R of the reflected-
to-incident field ratio and the coefficient T of transmitted-to-incident field ratio,
which are related by [8]

1 + R = T (2.25)

1− R =
k⊥t
k⊥i

µ1

µ2

T. (2.26)

e coefficients are described by the Fresnel equations. For TE waves the coeffi-
cients are

RTE =
1− (µ1/µ2)(k⊥t /k

⊥
i )

1 + (µ1/µ2)(k⊥t /k
⊥
i )

(2.27)

TTE =
2

1 + (µ1/µ2)(k⊥t /k
⊥
i )
, (2.28)

and for TM waves the coefficients are

RTM =
1− (ϵ1/ϵ2)(k⊥t /k

⊥
i )

1 + (ϵ1/ϵ2)(k⊥t /k
⊥
i )

(2.29)

TTM =
2

1 + (ϵ1/ϵ2)(k⊥t /k
⊥
i )
. (2.30)

e coefficients of reflection and transmission contain information on both ampli-
tude and phase, and are not limited to real values.

In the case of total internal reflection (θi ≥ θc), k⊥t =−ȷk̃
⊥
t is imaginary. us,

|RTE| = |RTM| = 1, (2.31)
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and the reflection phase shis are found from R=|R|eȷϕ to be2

ϕTE = 2 tan−1

(
µ1

µ2

k̃
⊥
t

k⊥i

)
(2.32)

and

ϕTM = 2 tan−1

(
ϵ1
ϵ2

k̃
⊥
t

k⊥i

)
. (2.33)

2.3 Principles of Optical Waveguides

Waveguides are passive structures where a propagating electromagnetic field fol-
lows the structure geometry. e confinement of the fields is due to total internal
reflection caused by the refractive index difference between the passive structure
and the surrounding regions. In the waveguide cross section transversal to the en-
ergy flow, standing wave patterns, like the ones seen in figure 2.6, arise. e pattern
is determined by the wavelength, geometry and refractive indices of the structure.
For a dielectric waveguide material, there is a strong real field inside the waveguide
and a weaker, decaying field in the regions outside the waveguide. e decaying
field is called the evanescent field.

Monochromatic and coherent laser light can be confined in sub-micrometer sized
waveguides. Such structures can be used for sensing [11, 12] or propagation of
micro- and nanoparticles [13, 14]. As the cross sections of such waveguides are
in the wavelength range, low-loss materials and smooth surfaces are necessary to
prevent significant scattering losses. In this section, the basic properties of waveg-
uide modes in one and two dimensions are described using the properties of total
internal reflection that was described in section 2.2.4.

2.3.1 SlabWaveguides

When the field is confined in only one direction, the guiding structure is called a
slabwaveguide. Figure 2.2 shows the cross section of an asymmetric slabwaveguide
of thickness d. In the waveguide, the guiding, or core, medium has a permittivity

2A short derivation can be found in e.g. Born &Wolf [10], section 1.5.4.

12



ϵg, which is greater than the surrounding permittivities ϵs of the substrate medium
and ϵc of the cover medium.

εc 

εg 

εs 

x 

z 
θi

 

θ 

θT 

x=d/2 

x=-d/2 
kg

|| 

kc
|| 

ks
|| 

kg
 

kc
 

ks
 

Figure 2.2: A propagating field in the xz-plane of a slab waveguide. e field continuity
conditions at the guide-cover and guide-substrate boundaries are satisfied, such that the
tangential wave vector components are equal, k∥c = k∥g = k∥s = k∥. Total internal reflec-
tion leads to purely imaginary perpendicular wave vector components in the cover and
substrate, Re{k⊥c , k

⊥
s }=0, and all propagating fields are bounded in the x-direction with

transversal distributions given by standing wave patterns

At some input angles θi, the fields create standingwaves in the orthogonal direction
in the guiding core medium. e spatial distribution of the field’s standing wave
pattern is called thewaveguidemode. emode is generatedwhen the propagating
rays combine and create a common wavefront. e field of the propagating modes
can be described when the field is decaying in the cover and substrate media and
the continuity conditions of the field are satisfied. Defining wave numbers kc, kg
and ks in the cover, guiding core and substrate media, respectively, the calculations
are described by Lee [8]. For the cross section in the xz-plane shown in figure 2.2,
the field is

Ay(x, z) = A0


cos(k⊥g d/2 + ψ)e−k̃

⊥
c (x−d/2)

cos(k⊥g d/2 + ψ)

cos(k⊥g d/2− ψ)e+k̃
⊥
s (x+d/2)

 e−ȷk∥z
x > d/2
|x| ≤ d/2
x < −d/2

(2.34)
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where ψ is a polarization dependent parameter given by

k⊥g d/2 + ψ = 1
2
ϕTE
c ± pπ

k⊥g d/2− ψ = 1
2
ϕTE
s ± pπ

}
for TE polarized fields, and (2.35)

k⊥g d/2 + ψ = 1
2
ϕTM
c ± pπ

k⊥g d/2− ψ = 1
2
ϕTM
s ± pπ

}
for TM polarized fields, (2.36)

with phase shis given by

ϕTE
c =2 tan−1

(
(µgk̃

⊥
c )/(µck⊥g )

)
(2.37)

ϕTE
s =2 tan−1

(
(µgk̃

⊥
s )/(µsk⊥g )

)
(2.38)

ϕTM
c =2 tan−1

(
(ϵgk̃

⊥
c )/(ϵck

⊥
g )
)

(2.39)

ϕTM
s =2 tan−1

(
(ϵgk̃

⊥
c )/(ϵck

⊥
g )
)
, (2.40)

and p is a positive integer called the mode number. From equations (2.35) and
(2.36), the dispersion relations for mode p is found to be

2k⊥g d− ϕTE
c − ϕTE

s = 2pπ (TE) (2.41)

and

2k⊥g d− ϕTM
c − ϕTM

s = 2pπ (TM) (2.42)

for the two polarizations.

By introducing an effective permittivity ϵeff, an effective refractive indexneff=
√
ϵeff/ϵ0

can be defined, leading to a propagation constant k∥=ω√µϵeff. From this, the dis-
persive relations can be written as

ωd
√
µϵ0

√
ϵg − ϵTEeff,p

ϵ0
= pπ+

tan−1

(√
ϵc
ϵg

√
ϵTEeff,p/ϵc − 1

1− ϵTEeff,p/ϵg

)
+ tan−1

(√
ϵs
ϵg

√
ϵTEeff,p/ϵs − 1

1− ϵTEeff,p/ϵg

)
(TE) (2.43)
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and

ωd
√
µϵ0

√
ϵg − ϵTMeff,p

ϵ0
= pπ+

tan−1

(√
ϵg
ϵc

√
ϵTMeff,p/ϵc − 1

1− ϵTMeff,p/ϵg

)
+ tan−1

(√
ϵg
ϵs

√
ϵTMeff,p/ϵs − 1

1− ϵTM,
eff,p/ϵg

)
(TM) (2.44)

with the help of the relations

k̃
⊥
c =

√
k∥2 − k2c , k⊥g =

√
k2g − k∥2 and k̃

⊥
s =

√
k∥2 − k2s ,

and assuming a non-magnetic medium (µr=1) as mentioned in section 2.2.4.

Equations (2.43) and (2.44) show that there is a unique effective permittivity for
each mode number and polarization. Four other observations can also be noted.

First, an increase of the frequencyω or thickness d allows solutions for larger p such
that a higher number of modes are possible. A single-mode waveguide is realized
when only one mode exists (p=0). In a multi-mode waveguide, the p=0 mode is
called the fundamental mode.

Second, solutions to the dispersion relations can only be found when the guiding
core permittivity is larger than the cover and substrate permittivities. is satisfies
the condition of total internal reflection. e effective permittivity of the mode
always has a value between the material permittivities such that ϵg>ϵeff>{ϵc, ϵs}.

ird, if the waveguide thickness is close to the free space wavelength (ωd≃1), and
the effective permittivity is close to the waveguide core permittivity, the differences
between all the permittivities are small. is means that the field is distributed
far into both the cover and substrate regions (the decay constants k̃

⊥
are small).

Conversely, an effective permittivitymuch smaller than the waveguide permittivity
implies that the field is largely confined in the guiding core medium.

Finally, the arctangent arguments differs between the TE and TM dispersion rela-
tions. A large waveguide permittivity ϵg leads to a small TE arctangent argument
and a large TM arctangent argument. Since the waveguide permittivity also con-
tributes to the le hand side of the equation, the TE mode requires a lower fre-
quency than the TM mode to fulfill the equality. As such, for a specific frequency,
the first allowed mode in the slab structure is a TE mode.
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2.3.2 Channel Waveguides

By confining the field in two directions, a channel waveguide is formed. e cross
section geometry of the channel waveguide determines the field distribution. e
most commoncross sections are the circular and the rectangular. e circle-symmetric
cross section, for which an analytical solution involving Bessel functions3 can be
found, is commonly used in optical fibers. e rectangular cross section is dis-
cussed in this paragraph, and will be used in the following chapters. Other cross
sections include graded-index structures, where the index transition between the
media is smooth, for example due to an ion exchange process [16], and the pho-
tonic crystal cross section, which uses a periodic structure for guiding. Photonic
crystal fibers can be designed for specific photonic bandgaps, and a short review by
Russel is given in [17]. Figure 2.3 shows cross sections of different channel waveg-
uide structures.

a) b) c) d) 

Figure 2.3: Cross sections of a) circular, b) rectangular, c) graded-index and d) periodic
photonic crystal channel waveguides. Light and dark shading indicates the permittivity
distribution.

Strip waveguides

Rectangular channel waveguides can be configured in different structures, as seen
in figure 2.4. A strip waveguide structure has the channel set on top of the substrate
medium such that the cover medium surrounds the guiding core medium on the
top and sides. When the guiding core medium is buried in the substrate, the struc-
ture is called an embedded strip waveguide. A strip waveguide set on top of a slab
waveguide confines the field in the region close to the strip, thereby forming a rib
waveguide structure.

3See e.g. Stratton [15], section 6.4.
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a) b) c) εg 

εg 

εg 

εs 

εc 

Figure 2.4: Rectangular a) strip, b) embedded strip and c) rib channel waveguides config-
urations.

As for the slabwaveguide, the permittivity and the dimensions of the guidingmedium
determine how fields propagate in a channel waveguide. e modes need to be
described in two dimensions, and are difficult to calculate analytically. Lee [8]
describes the effective index method to approximate strip waveguide modes. is
method uses the slab calculation introduced in section 2.3.1 successively in the ver-
tical and horizontal directions, as illustrated in figure 2.5. First, a primary effective
index n′

eff,g is calculated in the vertical direction at the center of the waveguide with
the use of ns, ng, nc and the thickness d. en, n′

eff,g is used with nc and the width
w in the transversal horizontal direction to calculate the final effective index of the
mode, neff. is approximation gives good results for modes well confined inside
the waveguide.

x y 

ng 

ns 

nc 

ns 

nc 

ns 

nc d 

a) 
nc 

w 

z y 

neff,g nc 

b) 

Figure 2.5: Cross sections of a strip waveguide structure illustrating the effective index
method. a) A primary effective index n′eff,g is found in the vertical direction at the center of
thewaveguidewith a a slabwaveguide calculation (vertical cross section). b)e calculated
effective index is implemented in a slab waveguide calculation in the transversal horizontal
direction to find the effective index of the waveguide mode, neff (horizontal cross section).

For more precise calculations and more challenging geometries, numerical solu-
tions are necessary to find the propagating modes. Figure 2.6 shows results from a
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finite element method simulation4 where the effective index of a rectangular struc-
ture is found for a set of modes. If the electric field is tangential to the horizontal
surfaces, the polarization would be transverse electric. If the electric field is tan-
gential to the vertical surfaces, the polarization would be transverse magnetic. e
fields in a rectangular waveguide are not perfectly polarized in the horizontal and
vertical directions, and are therefore called TE-like and TM-like. e discontinu-
ities and continuities described by the boundary conditions are seen in the figure.

e effective indices, and therefore the propagation constants, of the TE-likemodes
are seen to be higher than for the TM-like modes, confirming the statement made
in section 2.3.1 that the first allowed mode in a structure is a TE mode. A different
way to see why this is the case, is to consider the critical angle, which is larger for
higher-index media. erefore, TE-like modes, which have a higher effective re-
fractive index, give total internal reflection for smaller angles than TM-like modes.

neff=1.72 

neff=1.69 

neff=1.54 

neff=1.52 

TM TE 

Figure 2.6: Numerical calculation of the effective index, shown with field distributions of
the waveguide cross section for the first two modes (p=0, p=1) of TE and TM polarization.
e materials in the structure have indices ng=2.1, nc=1.33, ns=1.45.

4Properties of simulations are described in chapter 3.
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2.4 Tantalum Pentoxide Waveguides

e experiments described in the thesis use channel waveguides of tantalum pen-
toxide (Ta2O5) made by Balpreet Ahluwalia andAnanth Subramanian at the Opto-
electronic Research Centre (ORC) in Southampton, UK. e production and op-
timization process is described by Ahluwalia et al. [18]. A short overview of the
waveguide production process is given in section 2.4.1. Loss measurements per-
formed on the waveguides in the lab are described in section 2.4.2.

2.4.1 Waveguide Fabrication

Subsection 2.6.2 describes how particles in the evanescent field of a waveguide can
be optically trapped. To increase the optical trapping forces, the evanescent field
and the field gradient need to be strong. is requires strong confinement of the
field as well as low waveguide losses.

Ta2O5 is a metal oxide with high refractive index (nTa2O5=2.10@1064 nm). Us-
ing this as a waveguide material on a silica substrate (nSiO2=1.45) results in a large
refractive index difference (∆n=0.65). is allows waveguide modes for cross sec-
tions as small as 200 nm times 1 µm, and gives strong confinement of the field.
Ta2O5 is also found to have a high damage threshold and low absorption at opti-
cal wavelengths. All this makes the material suitable for waveguide trapping. e
production process of the waveguides is described in the following paragraphs.

Magnetron sputtering A tantalum pentoxide film is deposited on a 5 µm thick
oxidized silicon (predominantly silica) substrate with magnetron sputtering. In
the sputtering process, Ta2O5 molecules are released from a bulk sample (target) by
ionized argon gas in a low-pressure chamber containing the substrate. e released
molecules deposit in a thin layer on the substrate. A magnetic field controls the
distribution of the ionized gas plasma to optimize the sputtering efficiency [19].

As described by Ahluwalia et al. [18], the parameters of the sputtering process were
adjusted to minimize scattering losses in the waveguide. e optimal parameters
are given in table 2.1, and gave losses of 0.4 dB/cm at 633 nm for the 200 nm thick
slab waveguides, determined with prism coupling measurements.
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Table 2.1: Sputtering parameters
substrate temperature 200 ◦C
magnetron power 300 W
oxygen flow rate5 5 sccm
argon flow rate 20 sccm

Photolithography 1-10 µmwide channel waveguides were patterned on the slab
waveguide using a standard photolithography technique. A summary of the pro-
cess is shown in figure 2.7. First, a layer of photoresist (a chemical sensitive to light)
is distributed evenly on the slab waveguide. en, the slab is covered with a pho-
tomask and exposed to UV light. e photoresist regions exposed to light are then
removed with plasma ashing, before the exposed Ta2O5 is removed with ion beam
milling, leaving Ta2O5 waveguide patterns on the silica substrate.

coat with 
photoresist 

expose to UV light 
with photomask 

ion beam milling 
+ remove 
remaining resist 

remove exposed 
photoresist with 
plasma ashing 

Figure 2.7: Photolithography for channel waveguide production. A thin layer of photore-
sist is applied to a slab waveguide and exposed to UV light under a photomask pattern.
Aer plasma ashing and ion beam milling, only unexposed waveguide material remains,
creating channel waveguides with the pattern of the photomask.

5the flow rate unit of the gas, sccm, is defined as cubic centimeters per minute at standard tem-
perature (0 ◦C) and pressure (1 atm).
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Ion-beammilling An argon ion beam was used to create the waveguide pattern.
e waveguide material remains in the regions covered by photoresist, and thus
becomes a copy of the photomask pattern. e ion beam was employed at a 45◦
angle with the surface to reduce the waveguides’ side-wall roughness.

Plasma ashing Before and aer ion-beam milling, plasma ashing was used to
remove photoresist. In the process, reactive monatomic oxygen was introduced on
the sample, oxidizing the exposed photoresist to make it easy to remove from the
sample.

Annealing To relieve the waveguide structure from stresses that arised during
the production process, the sample was heated for 5 hours. e temperature was
kept at 600 ◦C, with heating and cooling rates of 3 ◦C/min. is reduced propa-
gation losses in the channel waveguides to 1 dB/cm [18].

2.4.2 Waveguide Losses

Scattering, coupling and absorption reduce the power of the light propagating in
the waveguide. is leads to decreased intensity of the light interactingwithmicro-
particles on the waveguide surface, and thus also decreases the efficiency of trap-
ping and excitation. is section discusses the magnitude of losses in the waveg-
uides used in the experiments, and compares losses for wavelengths of 785 nm and
1070 nm in one set of waveguide widths. Since only straight waveguides have been
considered, bending losses have not been taken into account.

Absorption losses

e tantalum pentoxide waveguides used in the experiments were sensitive to heat
damage for high input powers, especially for the narrowest waveguides. Absorp-
tion by hot spots randomly situated along the waveguide could also lead to perma-
nent disruption of the power flow. To avoid destruction of waveguides and waveg-
uide input facets, the experiments reduced the laser output in the experiments to
1.3W (out of 5W) for the 1070 nm laser and 0.5-1W (out of 2.5W) for the tunable
785 nm laser.
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Propagation losses

e sum of scattering and absorption losses gives the total propagation losses for
straight waveguides. Earlier examinations [20–22] did not find strong propaga-
tion losses in tantalum pentoxide waveguides. However, on narrow waveguides,
waveguide trapping experiments were found to be very challenging. A short study
of propagation losses was performed to look into this.

Propagation losses in the experimental setup were found by imaging the intensity
scattered from the waveguide with a CCD camera. Images were acquired for three
different exposure times at positions 1 mm apart along the waveguide. Measure-
ments were done for guiding of both the 785 nm and 1070 nm lasers. Figure 2.8
shows five example images of scattered light (1070 nm) from a 1 µm wide waveg-
uide. e 785 nm laser was linearly polarized at 45 degrees, which indicates that
most of the field coupled into the thin waveguide was TE-like. Propagation losses
were calculated by integrating the intensity in the waveguide region in each image,
and plotting this as a function of propagation length. In the integration, only inten-
sity values close to the center of the waveguide (along the whole waveguide) were
included. is was done to reduce contributions to the integral from scatterers on
the substrate.

3 mm 

6 mm 

9 mm 

12 mm 

15 mm 

Figure 2.8: Images of 1070 nm light scattered from a 1 µm waveguide at positions 3 mm
to 15 mm from the input facet. Integration of the scattered light in each image was used to
estimate the propagation losses.

Relative intensity data were found by normalizing the data with the measurement
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Figure 2.9: Relative scattered intensity along the waveguide for 1070 nm light. Simple
linear regression at 50, 100 and 200 ms exposure times are shown for one 1 µm and one
1.5 µm wide waveguide. e average regression line slope give the propagation loss value
in table 2.2.

closest to the input facet. e relative intensity data were plotted as a function
of distance, as seen in figure 2.9 for 1 µm and 1.5 µm wide waveguides. Loss per
unit lengthwas found using simple linear regressions. To prevent effects fromCCD
saturation, the average slope from three exposure times were used to find the prop-
agation loss values. e values are found in table 2.2. e losses in the 1 µm wide
waveguide are significantly stronger than the losses in the wider waveguides. is
is in line with the experience from the waveguide trapping experiments (see chap-
ter 8), where trapping on 1 µm wide waveguides only was possible very close to
the input facet.

e high losses for the narrow waveguides are probably due to the optical field
distribution in the waveguide (see figure 2.6). Small scatterers on the surface of
the waveguide, especially on the sidewalls, interact with a much larger part of the
field compared to larger waveguides, where most of the field is confined inside the
waveguide. is leads to stronger scattering, and thus higher losses.

Quantitative analysis was only performed on only one set of waveguide widths.
Qualitatively, the images acquired for the analysis looked similar to images from
other experiments, but standard deviations for the estimated propagation loss val-
ues have not been found. However, for the measured waveguides, the loss values
seem correct for the narrow waveguides. For these, the coefficients of determi-
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nation R2, which describes how well the fit describes the data, are high. In table
2.2, the average R2 from the three exposures are given. e R2 values decrease
for wider waveguides. is trend can be explained by the smaller losses. Smaller
losses makes the relative intensity variation larger, and also makes the measure-
ments more sensitive to contributions from random scatterers on the waveguides.

Table 2.2: Losses versus width and wavelength for a 200 nm thick tantalum pen-
toxide waveguide core

Width Propagation Loss R2 Coupling Loss
(µm) (dB/cm) (dB)

785 nm,
300 mW
input power

1 32.1 0.95 -
1.5 6.5 0.85 25.7
2 3.3 0.69 19.0

1070 nm,
680 mW
input power

1 29.6 0.93 -
1.5 6.0 0.68 17.3
2 2.7 0.24 10.8

In table 2.2, the 785 nm light is seen to have slightly larger scattering losses than the
1070 nm light. Scattering theory (see chapter 6) predicts a wavelength dependence
of the fourth power, leading to 5.4 dB more scattering from the 785 nm light. e
reason for the found discrepancy is not known. It is possible that the 785 nm light
experience less scattering since that wavelength is more confined inside the waveg-
uide than the 1070 nm light. is would lead to less interaction between the light
and the waveguide surface, decreasing the losses.

Coupling losses

e total waveguide loss was found by collimating and measuring the power from
the waveguide output. e power lost by coupling light into the waveguide was ap-
proximated by comparing the measured output power with the input power enter-
ing the coupling lens. e estimated propagation losses, the length of the waveg-
uide, and the measured coupling lens losses (≃3 dB) was then used to find the
coupling losses. e losses calculated from this are shown in table 2.2. e mode
profile of the tunable 785 nm laser was non-Gaussian, as seen in figure 2.10. e
low mode quality suggests why there is a 8 dB coupling loss difference between
the two different wavelengths, and could also explain the low threshold for heat
damages of the input facet (0.5 W) for this laser.
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Figure 2.10: Beamprofile of the 785 nm tunable laser. Picture courtesy of Firehun Tsige
Dullo [22].

Loss summary

Measurements of one set of waveguide widths show that propagation losses in-
crease significantly when the waveguide width decreases down to 1 µm. An exact
loss estimate is not found, but the trend agrees with experience from other waveg-
uide experiments. Coupling losses are similarly higher for narrowwaveguides, and
are noticeably higher for the tunable 785 nm laser due to its a non-Gaussian mode
profile.
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2.5 Principles of Optical Forces

When a light field interacts with matter, forces are exerted on the objects in the
field. In the following sections, the forces exerted on a dielectric in an optical field
are described, and to a minor extent derived.

In section 2.5.1, the influence of an electrostatic field on dielectric fluids and solids
is shown, and a stress tensor formulation for the force is introduced. en, section
2.5.2 presents the equivalent formulation for magnetostatic fields. Finally, section
2.5.3 introduces forces from electromagnetic fields by considering conservation of
energy and momentum. e electromagnetic stress tensor is then compared with
the results from the static formulations. e derivations and order of presentation
follow the more thorough derivations given by Stratton [15].

Before the theoretical treatment of sections 2.5.1, 2.5.2 and 2.5.3, though, the fol-
lowing two paragraphs give some physical intuition for the optical forces. Hope-
fully, this will provide the reader with a better understanding of the later theory.

Momentum view on forces

When light is incident on a scatterer, the momentum of the photons in the field
changes. e change in momentum is transferred to the scatterer. In this way,
forces are exerted on the scatterer. e exact change of momentum of light and
scatterer is dependent on the properties of the field and the scatterer, and can only
be analytically described for some cases: Forces on objects much smaller than the
wavelength can be described with Rayleigh theory; forces on objects much larger
than the wavelength can be described with geometrical optics; and forces on spher-
ical objects with sizes comparable to the wavelength can be described with Mie
theory. In general, a strong field gradient attracts objects when its refractive index
is larger than that of the surrounding medium. A full physical description is given
by Maxwell’s equations.

Energy view on forces

As can be seen from the force law, equation (2.5), work is required to introduce a
charged particle into a field. is work increases the energy in the field region. For
an uncharged particle entering a field, though, it is not evident how the energy of

26



the system would change. e particle becomes polarized, and creates a counter-
field outside its boundaries. is changes the overall field strength, and the energy
in the field region changes. e polarization increases with the permittivity, as seen
from the Clausius-Mossotti relation

ϵ/ϵ0 − 1

ϵ/ϵ0 + 2
∝ τα, (2.45)

where τ is the mass density and α is the polarizability of the particle. e following
paragraphs will show that the negative gradient of the permittivity is proportional
to the force. us, an increasing permittivity gives a smaller force. Since a smaller
force means that less work had to be done to move the particle, the energy in the
field region decreases. Transversely, a decrease of the refractive index in the region
increases the energy in the field region. In the brief derivation given here, it has
been presumed (through the relation between refractive index and polarization)
that the mass density in the region is unchanged. It turns out that this is not a
necessary condition.

2.5.1 Electrostatic Fields

Potential energy in an electrostatic field

In a static electric field E, the force F on charge density ρ of volume V can be found
from Lorentz’ force law, equation (2.5), to be F=

∫
V
ρE dv. Since the electrostatic

field is irrotational, the field can be expressend as the gradient of an electric poten-
tial Φ,

E = −∇Φ. (2.46)

e work W done by moving a charge in the field a distance r with force F is
W=

∫ r

0
F · dr′. us, the acquired potential energy U of the charge distribution∫

V
ρ dvmoving from position 0 to r can be expressed with the electric potential as

U(r) = −W =

∫ r

0

∫
V

ρ∇Φ dv · dr′ =
∫
V

ρΦ(r) dv, (2.47)

where the independence of dr′ and dv has been used to apply the fundamental
theorem of calculus in the last step.

e energy relation, equation (2.47), will be used as a basis for the force derivations
for electrostatic fields described in the following paragraphs.
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Effect on the potential energy when the charge is changed

Some work needs to be done to change the charge in a uniformmedium inside the
electric potential Φ with a small value δρ. e required energy can be expressed
with the electric field E and displacement fieldD by the usingMaxwell’s law for the
divergence ofD, equation (2.3),

δU =

∫
V

Φδρ dv =

∫
V

Φ∇ · (δD) dv =

∫
V

(∇ · (ΦδD)− δD ·∇Φ) dv

=

∫
V

(∇ · (ΦδD) + δD ·E) dv =

∫
V

E · δD dv, (2.48)

where the divergence theorem is used in the last step, assuming a finite charge dis-
tribution and a very large integration surface. As the potential decreases as r−1,
the displacement decreases as r−2, and the surface increases as r2, the integral in
the first term goes to zero. From equation (2.48) a change of energy density in the
region can be defined as

δu = E · δD, (2.49)

a parameter which will be of use later.

For an isotropic and linear medium, D = ϵE. e total potential energy resulting
from changing the charge to ρ is then

U =

∫
ρ

δU =

∫
V

∫
ρ

E · δ(ϵE) dv =
1

2

∫
V

ϵE2 dv, (2.50)

which is equal to the work required to bring the charge ρ into V . us, the in-
troduced charge increases the energy by changing the electric displacement in the
medium

Effect on the potential energy when the dielectric constant is changed

By introducing a body with dielectric constant ϵ2 and volume V into an external
electrostatic field E in an isotropic and linear medium with ϵ1, it can be shown
(section 2.10 of Stratton [15]) that the change of energy is

δU =
1

2

∫
V

(ϵ1 − ϵ2)E ·E′ dv, (2.51)
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where E′ is the field aer the introduction of the body. It has been assumed that
the curls of both E and E′ are zero (electrostatic fields), and that the distribution of
the original field sources remains unchanged by the introduction of the body (such
that the divergence is unchanged,∇ · (D−D′) = 0. Equation (2.51) states that the
energy of the system decreases by introducing higher-permittivity objects. is
also implies that the energy decreases by increasing the external field. us, higher-
permittivity bodies will move toward high field intensities and lower permittivity
regions tominimize the total energy. is alsomeans that an infinitesimal increase
of permittivity in the system would change the energy by

δU = −1

2

∫
δϵE2 dv, (2.52)

since for an infinitesimal change, E ·E′ ≃ E2. is result is not analogous to the
result in the last paragraph, where an increased charge give a higher total energy.
Instead, increasing the permittivity give a lower energy, as mentioned in the energy
view paragraph on page 26.

Effect on the force density when a dielectric fluid is displaced

When a dielectric fluid in a constant electrostatic field is displaced at all points r by
an infinitesimal distance s, some work has been done, and the energy of the system
is changed. If the sources of the field are kept constant, any change of energy is
purely due to a change of permittivity, as seen in equation (2.52). Assuming the
permittivity ϵ=ϵ(r, τ) only depends on position r and mass density τ , the displace-
ment of a small element in the fluid leads to a change in permittivity (section 2.21
of Stratton [15])

δϵ = −s ·∇ϵ+ ∂ϵ

∂τ
δτ, (2.53)

where the first term describes the permittivity change due to the new position of
the element, and the second term describes the permittivity change due to the new
mass density of the element. e mass of the element remains the same,

τ1 dv1 = τ2 dv2 = τ2(1 +∇ · s) dv1, (2.54)

which gives the infinitesimal change of mass density

δτ = τ2 − τ1 = −τ∇ · s. (2.55)
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Using the product rule, this gives (from equation (2.52))

δU =
1

2

∫
V

(
∇ϵ · s+ τ

∂ϵ

∂τ
∇ · s

)
E2 dv

=

∫
V

[
1

2
E2∇ϵ− 1

2
∇
(
E2τ

∂ϵ

∂τ

)]
· s dv +

1

2

∫
V

∇ ·
(
E2τ

∂ϵ

∂τ
s
)

dv.

(2.56)

Applying the divergence theorem on the last integral, and letting the region of inte-
gration be much larger than the extent of the field,E2 becomes zero at the surface,
and only the first integral remains. For some force density f in a region V , the work
done to change the energy by δU is δW =

∫
V
f · s dv. us, from equation (2.56),

the force density in the fluid is

f = −1

2
E2∇ϵ+ 1

2
∇
(
E2τ

∂ϵ

∂τ

)
. (2.57)

is means that a slight shi in the fluid position creates a force which depends on
both the field strength and how the permittivity varies with space andmass density.
Since the volume of the fluid is not changed, the total force on the medium is zero.
us, mechanical forces exerted on the medium by the electric field are balanced
by elastic forces within the medium.

Effect on the force density when a dielectric solid is displaced

When a dielectric solid in an electrostatic field is displaced without a change of
volume, the permittivity changes can be expressed purely by strains in themedium.
Assuming the medium to be anisotropic and linear, the changes can be described
with the permittivity tensor

δϵjk =
3∑

l=1

3∑
m=1

∂ϵjk
∂elm

δelm, (2.58)

where elm are the strain components of the solid body describing the direction and
magnitude of the displacement, and j, k, l andm each represents the three spatial
dimensions6. From this, the energy density change given in equation (2.49), can

6elm is defined as ∂sl
∂xm

for l=m, and 1
2

(
∂sl
∂xm

+ ∂sm
∂xl

)
for l ̸=m, where s is the displacement

vector and x is the position vector. From this it can also seen that∇ · s = e11 + e22 + e33.
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be described

δu = −1

2

3∑
j=1

3∑
k=1

3∑
l=1

3∑
m=1

∂ϵjk
∂elm

EjEk δelm, (2.59)

since E · δD = D · δE in an anisotropic linear medium. Equation (2.59) describes
the change of energy density in an anisotropic solid due to strains from an electric
field.

For the specific case of a solid which is isotropic with regards to both electric and
elastic properties, it is possible to describe the energy change simpler than in equa-
tion (2.59). Directional and rotational invariance due to the isotropy imply that
it is sufficient to describe the energy density change in equation (2.59) with only
two classes of strain parameters, a1 and a2 (section 2.22 of Stratton [15]). When
the permittivity changes due to the deformation are small, the parameters can be
expressed

a1 ≡
∂ϵjj
∂ejj

and a2 ≡
∂ϵjj
∂ekk

. (2.60)

a1 corresponds to increasing permittivity due to elongations in the direction of the
electric field. a2 corresponds to increasing permittivity due to strains perpendicu-
lar to the electric field.

e change in electrostatic energy density due to the strain in themedium can then
be derived from equations (2.59) and (2.60) to be (section 2.22 of Stratton [15])

δus = −1

2

[(
a1E

2
1 + a2E

2
2 + a2E

2
3

)
δe11 + (a1 − a2)E2E3δe23+(

a2E
2
1 + a1E

2
2 + a2E

2
3

)
δe22 + (a1 − a2)E1E3δe13+(

a2E
2
1 + a2E

2
2 + a1E

2
3

)
δe33 + (a1 − a2)E1E2δe12

]
, (2.61)

where E1, E2 and E3 represent the three spatial components of the electric field.

In addition to the electrostatic energy due to strains, the electrostatic energy den-
sity in a solid changes due to small internal translations in the medium as for the
dielectric fluid. From equation(2.57) this change is found to be

δut =
1

2
E2∇ϵ · δs. (2.62)

For completeness, internal intermolecular forces in the medium will also be con-
sidered here. ese are elastic forces that resist displacements due to the external
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stress. is process increases the internal elastic energy in themedium. e change
in elastic energy density due to the elastic forces is found to be (sections 2.3 and
2.22 of Stratton [15])

δue = (λ1∇ · s+ λ2e11) δe11 + (λ1∇ · s+ λ2e22) δe22+

(λ1∇ · s+ λ2e33) δe33 +
λ2
2
(e12δe12) +

λ2
2
(e23δe23) +

λ2
2
(e13δe13) , (2.63)

where it has been assumed small elastic forces which are in an equilibriumwith the
stresses, and isotropic elastic properties in the medium. λ1 and λ2 are the Lamé
parameters, elastic constants dependent on the medium, which are defined from
Young’s modulus7 and Poisson’s ratio8. λ1 relates the bulk and shear modulus. λ2
is the shear modulus, describing strains due to tangential stresses (nonexistent in
a fluid).

A strain tensor can be constructed from the energy densities from electrostatic and
elastic stresses, us andue. Considering only the electrostatic contribution, the force
density for the strain in the isotropic medium is found to be (sections 2.3 and 2.22
of Stratton [15])

(fs)i = −1

2

3∑
k=1

∂

∂xk
[(a1 − a2)EiEk]−

1

2

∂

∂xi

(
a2E

2
)
, (2.64)

where i and k represent spatial dimensions. e equation expresses how changes of
a1 and a2, the relations between permittivity and strain, contribute to the forces in
themedium. enegative sign shows how the force works to prevent such changes.
Equation (2.64) and the first term of equation (2.57) describes the total force den-
sity in a solid, uncharged and isotropic dielectric medium due to an electrostatic
field. e force densities will be used in the following paragraphs to derive the
stress tensor of the electrostatic field.

Total force density for an isotropic solid in an electrostatic field

Summing up the forces acting on an isotropic dielectric from an electrostatic field,
there is a contribution fs due to internal strain (from equations (2.61) and (2.64)),

7Young’s modulus describes longitudinal tension relative to elongation per unit length, i.e. how
large displacement an average force induces.

8Poisson’s ratio describes lateral contraction relative to longitudinal extension.
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a contribution ft due to inhomogeneous permittivity (from equations (2.62) and
(2.57)), and a contribution fc from electrical charges in the dielectric (from equa-
tion (2.5)), giving a total force

FE =

∫
V

(
ρE− 1

2
E2∇ϵ+ fs

)
dv. (2.65)

e force is proportional to charge density, spatial permittivity variations, and spa-
tial variations of the permittivity-strain relations, and also depends on the electric
field.

Stress tensor formulation for an isotropic solid in an electrostatic field

e total force acting on a closed surface in a solid isotropic dielectric medium
can be found by solely considering the field values on the outside of that surface.
is can be done by writing the integrand in equation (2.65) as the divergence of
a tensor and applying the divergence theorem. e integral then only includes the
tensor values on the surface. e tensor is called the electromagnetic stress tensor,
and is expressed by

(σE)ij = ϵEiEj −
ϵ

2
E2δij +

a2 − a1
2

EiEj −
a2
2
E2δij, (2.66)

such that

FE =

∮
S

σE ·n da, (2.67)

where n is the unit normal pointing out of the surface S. To express the integrand
in equation (2.65) as a divergence, ρ = ∇ ·D (equation (2.3)) was exchanged for
the first term and the product rule was used on the second term. e third term
was already expressed as a divergence in equation (2.64). e vector identities

∇ (ϵE ·E) = E2∇ϵ+ ϵ∇ (E ·E) =
E2∇ϵ+ ϵ [(E ·∇)E+ (E ·∇)E+ E× (∇× E) + E× (∇× E)] =

E2∇ϵ+ 2ϵ (E ·∇)E+ 2ϵE× (∇× E) (2.68)
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and

∂

∂x1
(Dx1E) +

∂

∂x2
(Dx2E) +

∂

∂x3
(Dx3E) =

Dx1

(
∂

∂x1
E
)
+Dx2

(
∂

∂x2
E
)
+Dx3

(
∂

∂x3
E
)
+ (∇ ·D)E =

(D ·∇)E+ (∇ ·D)E (2.69)

were also used in the derivation. As before,∇× E is zero for an electrostatic field.

Equation (2.66) expresses that the total force on the closed volume can be found if
the field values, the permittivity and the relation between permittivity and strain,
a1 and a2, are known. However, it turns out that if the closed volume contains
a solid body and is surrounded by a fluid, the integral can be performed on any
surface S in the fluid which contains the body (section 2.26 in Stratton [15]). In
the fluid, shear strains are nonexistent and the only strain is along the principal
axes (only ejj are nonzero). It can be shown (section 2.22 in Stratton [15]) that
this leads to a1=a2=−τ ∂ϵ

∂τ
. If the fluid is incompressible, it is sufficient to know the

values of the first two terms of the stress tensor, and the total force on the body is
given by,

FE =

∮
S

3∑
i

3∑
j

(
ϵEiEj −

ϵ

2
EiEjδij

)
·n da, (2.70)

only requiring knowledge of the field, the permittivity and the unit normal of the
integration surface.

2.5.2 Magnetostatic Fields

e derivation of magnetic force densities will not be treated in this text. However,
a derivation similar to that of the electric fields can be found in sections 2.14-2.18
and 2.27 in Stratton [15]. is leads to a magnetic energy

UH =
1

2

∫
V

µH2 dv, (2.71)

and a total force

FH =

∫
V

(
µJ×H− 1

2
H2∇µ+ fH,s

)
dv. (2.72)
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e force is analogous to the electrostatic field, with fH,s given by

(fH,s)i = −1

2

3∑
k=1

∂

∂xk
[(b1 − b2)HiHk]−

1

2

∂

∂xi

[
b2H

2
]
, (2.73)

and the dependency of the permeability on the strain given by

b1 ≡
∂µjj

∂ejj
and b2 ≡

∂µjj

∂ekk
. (2.74)

e total force in the magnetostatic field can be expressed with a magnetic stress
tensor

(σH)ij = µHiHj −
µ

2
H2δij +

b2 − b1
2

HiHj −
b2
2
H2δij. (2.75)

such that
FH =

∮
S

σH ·n da, (2.76)

For a solid body in an incompressible fluid, the strain-dependent terms disappear
from the integrand (b1=b2=−τ ∂µ

∂τ
), and the total force from the magnetostatic field

is given by

FH =

∮
S

3∑
i

3∑
j

(
µHiHj −

µ

2
HiHjδij

)
·n da, (2.77)

only requiring knowledge of the field, the permeability and the unit normal of the
integration surface.

2.5.3 Electromagnetic Fields

e assumptions made for electro- and magnetostatic fields being rotation-less
cannot be applied for media in electromagnetic fields. However, a electromagnetic
stress tensor similar to the ones found for the static fields can be devised for the
case of no contributing elastic or strain properties. In the following paragraphs,
energy and momentum conservation in a region with an electromagnetic field will
be considered to find the energy flow, forces and stress tensor in a linear isotropic
dielectric.

e Lorentz force law, equation (2.5), describe the force on a charge density dis-
tribution in an electromagnetic field. e force can also be expressed as the time

35



derivative of the momentum p,

dp
dt

= ρE+ J× B. (2.78)

By applying Maxwell’s equations (2.2) and (2.3) to the equation, and integrating
over the region of interest, the total force is given by

dP
dt

=

∫
V

dp
dt

dv =

∫
V

(∇ ·D)E− B×
[
∇×H− ∂D

∂t

]
dv, (2.79)

where P is the momentum of all charge densities in the region. Rearranging the
terms, and assuming the medium to be isotropic and linear, a more complex, but
symmetric relation is derived,∫

V

[
dp
dt

+
∂

∂t
(D× B)

]
dv

=

∫
V

[
ϵE (∇ ·E)− ϵE× (∇× E) +

1

µ
B (∇ ·B)− 1

µ
B× (∇× B)

]
dv. (2.80)

In the derivation, B × ∂D
∂t

= ∂
∂t
(D× B) − ∂B

∂t
× D and equation (2.1) have been

used. In addition, a zero term (equation (2.4)) has been added for symmetry. e
integrand to the right of the equality may be written as the divergence of a tensor
σ. According to the divergence theorem, the integral is then evaluated solely along
the closed surface,

dPtot

dt
=

∫
V

∇ ·σ dv =

∮
S

σ ·n da. (2.81)

e tensor σ is the electromagnetic stress tensor, and is expressed by

σij = ϵEiEj +
1

µ
BiBj −

1

2

(
ϵE2 +

1

µ
B2

)
δij. (2.82)

is can be seen by considering the x1 component of the second term on the right
hand side of equation (2.80),

[E× (∇× E)]x1
=

∂

∂x1

(
E2

1 −
1

2
E2

)
+

∂

∂x2
(E2E1) +

∂

∂x3
(E3E1)− E1∇ ·E, (2.83)
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and performing the same expansion on all the cross products in that equation.

Equation (2.82) is similar to the sum of the electric and magnetic stress tensors in
equations (2.66) and (2.75). is suggests that the total force on an isotropic, lin-
ear dielectric object in an incompressible fluid can be found by applying equation
(2.81), requiring knowledge only of the permeability, permittivity and field values
in a region around the object.

Two things in the previous derivation should be noted. First, Ptot includes the mo-
menta of charged particles in the field, the momentum of the electromagnetic field
itself, and the momentum of the medium in which the field propagates. e exact
distribution of momenta between the field and the medium is not explicitly given,
and there is not general consensus on this distribution in the literature. Brevik [23]
has given a comprehensive review on this topic, and a more recent summary is
given by Griffiths [24]. Second, strains inside the body have not been considered.
e formulas derived for the electrostatic and magnetostatic fields may be applica-
ble, but this will not be looked further into. None of these issues influence results
presented in the thesis, as only the total forces on a body in an incompressible fluid
are considered.

Equations (2.81) and (2.82) provide a good method to calculate the forces exerted
by an electromagnetic field on an object. However, the force equations for the
electro- and magnetostatic fields, (2.57), (2.65) and (2.72), describe the causes of
the physical interaction better. Along with the force on charges and currents in the
field directly seen from Lorentz’ force equation (2.5), spatial variation in perme-
ability and permittivity contributes to the force. is property is taken advantage
of in optical trapping, an experimental technique where microscopic particles are
confined to a spatial region given by the distribution of an optical field. Section 2.6
briefly considers some cases of optical trapping that can be treated analytically.

Finally, it should be mentioned that the derivations in sections 2.5.1 and 2.5.2,
which lay the foundation for this theory, supposed electrostatic fields. e origins
of the force for electrodynamic fields have not been properly explained. However,
the author has not succeeded in finding more rigorous derivations of the source of
the optical force in electrodynamic fields. As such, it seems like the physical ori-
gin of optical forces not yet has been properly described9. In practice though, the
theory seems to predict experimental phenomena satisfyingly.

9Such theories are necessarily based on relativistic physics, which may explain why no such
derivations hasn’t been found.
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2.6 Principles of Optical Trapping

Trapping of microscopic particles using an optical field have become a common
technique in research laboratories in recent years. Trapping can for example be
used in non-invasive studies of single cells (see chapter 7). is section describes
how the optical forces can be calculated for particles in three different size regimes.
e size regimes are given by the relation between the particle size and the wave-
length of the field. For particles small compared to the wavelength, Rayleigh parti-
cles, a dipole approximation is used to find a solution. For spherical particles large
compared to the wavelength, a geometrical approximation is used to find a solu-
tion. And finally, for a spherical particle with size comparable to the wavelength,
Mie calculations are used to find a solution. ese three regimes are discussed first
for particles in a Gaussian beam, and then for particles in the evanescent field of
an optical waveguide.

2.6.1 Gaussian Beam Trapping

emost commonly used optical trap is the optical tweezer, where the microparti-
cle is held in place by a strongly focused Gaussian beam, as indicated in figure 2.11.
By shiing the position of the focus spot, the position of the particle is controlled
in three dimensions without the need of physical contact with the object.

Rayleigh particles

In the case of dielectric particles being much smaller than the wavelength of the
field, Rayleigh scattering occurs, in which the particle can be described as a point
dipole in a uniform electromagnetic field, with dipole moment p. Stenholm [25]
derives the force on such a particle to be

Fgrad = p · [∇ · (E+ v× B)] +
d
dt

(p× B) , (2.84)

where v is the velocity of the particle. Stenholm further argues that the contribution
from the last term is negligible for times longer than the periodicity of that term,
and that the contribution from the second term is negligible due to the smallness of
B compared to E. is leads to the gradient of the field mostly contributing to the
force. is means that a plane wave only would push the particle in the direction
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Gaussian Beam 

Figure 2.11: Sketch of an optical tweezer. e focus of a Gaussian beam attracts a mi-
croparticle, thereby controlling its position.

of the field, while a strong focus would attract the particle toward the focus. is
force is called the gradient force.

Equation (2.84) only consider forces related to dipole scattering. In addition, there
is a contribution from a scattering force. is force is proportional to the cross
section s of the particle, and is given by Svoboda and Block [26] to be

Fscat =
s⟨S⟩
c/nc

, (2.85)

where ⟨S⟩ is the time average of the power flow of the field, c is the speed of light
andnc=

√
ϵc is the refractive index of themedium surrounding the particle. Harada

et al. [27] consider the force on a homogeneous spherical Rayleigh particle with ra-
dius a less than λ/20 in a weakly focused Gaussian beam. With the dipole moment
proportional to the field, p=αE, where α is the polarizability of the particle, gradi-
ent and scattering forces are found to be

Fgrad = αE ·∇E =
α

2
∇E(r, t)2 = πϵ0a

3

(
n2
p − n2

c

n2
p + 2n2

c

)
∇|E(r)|2 (2.86)

and

Fscat =
nc

c
sI(r) =

4

3
πϵ0(ka)4a2

(
n2
p − n2

c

n2
p + 2n2

c

)2

|E(r)|2, (2.87)
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where np is the refractive index of the dielectric particle, ∇ × E is assumed to be
zero, and the intensity of the beam is given by

I(r) = |⟨S(r, t)⟩| = 1

2
nccϵ0|E(r)|2. (2.88)

e equations show that the trapping force is in the direction of the field gradient,
while the scattering force is strongly dependent of the radius, and proportional to
the intensity. ey also reveal that a strong focus is necessary for the gradient force
to exceed the scattering force.

Large spheres

In the case of dielectric spheres being much larger than the wavelength of the field,
the force calculations can be done using momentum conservation and ray optics.
Figure 2.12 shows how the momentum from a focused beam attracts a sphere to-
ward the focus.

θi 

r1 

r2 

θr p1 

p2 

p 

θi 

θr 

p1 

p2 
p 

r1 

r2 

Figure 2.12: Momentum conservation for rays focused by a lens to the back and to the
front of the sphere center. Rays r1 and r2 are focused by the lens on the le and induce the
momenta p1 and p2 on the sphere, respectively.

For a sphere axially centered under a microscope lens, Ashkin [28] derives two
force components, analogous to theRayleigh regime’s gradient and scattering forces.
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For circularly polarized rays (averaging the polarizations parallel and perpendic-
ular to the plane of incidence), the gradient and scattering forces for one ray are
found to be

Fgrad =
ncP

c

[
R sin 2θi −

T 2 [sin(2θi − 2θr) +R sin 2θi]
1 +R2 + 2R cos 2θr

]
(2.89)

and

Fscat =
ncP

c

[
1 +R cos 2θi −

T 2 [cos(2θi − 2θr) +R cos 2θi]
1 +R2 + 2R cos 2θr

]
, (2.90)

where Fscat is parallel, and Fgrad is perpendicular to the incident ray. R andT are the
Fresnel reflection and transmission coefficients at the boundary of the sphere, and
θi and θr are the angles of incidence and refraction relative to the surface normal
at the point of incidence. Ashkin’s derivation does not take into account effects for
strongly focused beams. However, Gussgard et al. [29] state an error of about 15%
for a beam focus diameter as small as the wavelength and sphere diameters above
30 wavelengths.

Mie particles

In the case of particles with sizes in the range of thewavelength, the theory becomes
more complex. A useful starting point has been solutions based onMie theory [10],
where the scattering of plane waves from spherical particles is described in series of
spherical functions. Generalized Lorenz-Mieeory (GLMT) has developed from
solutions for spheres in Gaussian beams [30] to solutions for spheroidal particles
arbitrarily located and oriented in arbitrarily shaped beams, a work mostly led by
Gouesbet, Gréhan et al. [31]. is theory is similar to the Arbitrary Beameory
(ABT) developed by Barton et al. [32]. Lock [33,34] useGLMT to derive the optical
force for an axially centered sphere in the focus of a Gaussian beam in the axial
direction

Faxial =
ncP

c
Q. (2.91)

e beam power at a plane in the center of the particle is found from

P ≃ ncE
2
0

µ0c

πw2
a

2
, (2.92)
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where the focused beam has a waist radiuswa and a field strengthE0. e trapping
efficiencyQ is found from

Q =
2ξ

nckwa

, (2.93)

where ξ is a series of products of beam shape coefficients and sphere scattering am-
plitudes expressed with spherical functions. e trapping efficiencyQ determines
both magnitude and direction of the force in equation (2.91).

For spherical particles with diameters larger than a few wavelengths, a resonance
behavior becomes evident. e behavior is sensitive to the ratio of the wavelength
and the circumference of the sphere. e resonances are caused by a coupling of
the incident field into the sphere. Certain wavelengths create whispering gallery
modes, which are standing waves along the sphere circumference. e resonances
are sharp and strong if the losses are small, and contribute significantly to the opti-
cal force. Examples of resonances can be found in the early paper of Ren et al. [35].

2.6.2 Waveguide Trapping

It is also possible to use the evanescent field of on optical waveguide for optical trap-
ping. e transversally decaying part of the guided field is the source of an attrac-
tive force, while the propagating part of the field is the source of a scattering force.
An object on the waveguide surface is thus pulled toward and propelled along the
waveguide surface. To increase the intensity and gradient of the evanescent field,
narrow, single mode waveguides with high refractive index are used. Examples of
trapping of microparticles and cells on waveguides are given in chapters 4, 5 and 8.

Rayleigh particles

Ng et al. [36] describe the forces on Rayleigh particles interacting with the evanes-
cent field of the fundamental TEmode of a slab waveguide. In the cover region, the
field is described with refractive index nc and wavenumber kc=ȷk̃

⊥
c x̂+ (k∥ + ȷγ)ẑ,

where γ is the horizontal decay constant, describing propagation losses. e forces
on a dielectric Rayleigh particle can then be described similarly to the Rayleigh
forces for the Gaussian beam,

Fgrad = αE ·∇E = −πϵ0a3
(
n2
p − n2

c

n2
p + 2n2

c

)
|E(r)|2(k̃⊥c x̂+ γẑ) (2.94)
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and

Fscat =
neff

c
sI(r) =

4π

3

n2
eff

n2
c
ϵ0(k∥a)4a2

(
n2
p − n2

c

n2
p + 2n2

c

)2

|E(r)|2ẑ, (2.95)

where the intensity of the field is given by

I(r) =
1

2
neffcϵ0|E(r)|2. (2.96)

Both forces are proportional to the intensity and depend strongly on the radius a, as
well as the ratio of refractive indices between the particle and cover medium. e
gradient force is proportional to the decay constant k̃

⊥
c in the direction toward the

waveguide surface and proportional to the much smaller decay constant γ in the
backwards direction (opposite to the field’s propagation direction). e scattering
force is strongly dependent on the propagation constant k∥ and the effective index
of the mode neff.

Large spheres

For a large sphere interacting with the waveguide field, equations (2.89) and (2.90)
for the gradient and scattering forces derived from the ray optics approximation
are still applicable. e main differences in this case are that the field distribution
on the sphere is asymmetric, and that reflections between the waveguide surface
and the sphere contribute to the force. Figure 2.13 shows howmomentum transfer
from the field to a sphere attracts the sphere toward the waveguide surface and
pushes the sphere in the field propagation direction (multiple reflections are not
considered). In the figure, pvertical corresponds to the gradient force and phorizontal
corresponds to the scattering force from the Gaussian beam results. It should be
noted that only a small portion of the sphere interacts with the evanescent field.
e ray optics approximation for the evanescent field can be used with iterative
methods or with ray tracing. Prieve andWalz [37,38] give some numerical results
for a sphere in an evanescent field created by total internal reflection.

Mie particles

For a spherical object with a diameter between one twentieth of a wavelength and
thirty wavelengths, calculations based on Lorenz-Mie theory must be used to gain
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Figure 2.13: Momentum conservation for evanescent rays scattered by a particle on the
waveguide surface. e figure does not consider multiple reflections, neither in the sphere
or between sphere and waveguide surface.

insight in the interaction between the particle and the evanescent field. Trapping
Mie particles with evanescent fields originated with Kawata’s work [13, 39], and
have been studied mathematically with Arbitrary Beam eory by Jaising et al.
[40, 41] in the case of evanescent fields on a waveguide surface, and Brevik et al.
[42, 43] in the case of evanescent fields from total internally reflected laser beams.
Both authors use the force expression derived by Barton [32], which is based on
Maxwell’s stress tensor equation (2.82). By integrating the product of tensor and
surface normal at a spherical surface far from the object, an expression of the total
force is found. e expression is a series of spherical functions representing the
fields in spherical coordinates.

By considering incident evanescent fields and summing the series numerically,
Jaising finds horizontal and vertical forces for both singlemode TE and TMwaveg-
uide modes. Whispering gallery mode resonances become evident for sphere di-
ameters above 4 µm for polystyrene spheres in water on a low-index waveguide,
but the effects are small for spheres with diameters smaller than 8 µm.
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Chapter 3

Numerical Modeling of Optical
Forces andWaveguides

3.1 Introduction

Optical trapping using the evanescent field of a waveguide is described in chapters
2 and 8. Mathematical analysis of trapping on waveguides have previously been
performed for spherical objects using Mie theory [40, 42, 44]. For non-spherical
particles, a pure numerical treatment is necessary. e finite element method is a
powerful numerical technique for solving complex physical systems, among them
electromagnetic problems [45, 46]. Optical forces on nanoparticles trapped on a
waveguide have previously been studied by Néel et al. [47] and Yang et al. [48].

is chapter describes amodel developedwith the commercial finite elementmethod
soware Comsol Multiphysics1 to find the forces on micrometer-sized objects in
the evanescent field of an optical waveguide. First, section 3.2 gives a short intro-
duction to the theory behind the finite elementmethod. en, section 3.3 describes
the implementation and properties of the waveguide trapping model. Finally, sec-
tion 3.4 analyzes and validates the model by looking at results from some basic
simulations, and also compare these with results fromMie calculations.

1COMSOL, Stockholm, Sweden
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3.2 Principles of the Finite Element Method

efinite elementmethod (FEM) is a numericalmethoddeveloped to solve bound-
ary value problems. Such a problem can be described generally by the equation
Lφ = f inside the domain Ω with a boundary Γ. φ is the unknown function
which is to be found, the operatorL describes the general physical conditions, and
the function f describes the specific physical conditions in the study. A unique
solution can then be found using the boundary conditions on Γ.

A specific example of a boundary value problem is the Poisson equation, ∇2Φ =
ρ/ϵ. is problem uses the operator ∇2 to find the electric potential Φ around
charge density distribution ρ in the case of a linear, isotropic, and homogeneous
domain with permittivity ϵ. For a large domain, it is reasonable to assume that the
function Φ is zero at the boundaries, and a unique solution can be found.

Subsections 3.2.1 to 3.2.5 give a brief introduction to finite element theory and
theory related to solving such problems. edescription generally follows themore
comprehensive derivations given by Jin [49].

3.2.1 Basiceory

Boundary value problems are solved numerically with FEM by dividing the do-
main of interest Ω into small elements e, and finding approximate solutions to the
many small problems Lφ̃=f , where φ̃ is the exact solution in an element. To do
this, test functions φ̃e, representing φ̃, are chosen for each element. To approximate
a solution, the test functions are optimized such that the combined error from all
elements is minimized. is turns one complex problem into a lot of simple prob-
lems which can be solved numerically. e accuracy and speed of the calculation
is determined by the complexity of the test functions and the size and number of
elements.

In general, twomethods are used to optimize the test functions, a variationalmethod,
and a weighted residuals method. Our work, using the commercial FEM soware
Comsol Multiphysics, is based on Galerkin’s method, which use weighted residuals
to solve the boundary value problem.

e sketch in figure 3.1 shows a domainΩwhich is divided into in totalM elements
e. N nodes j, which are positioned at xj , connect the elements. Each element is
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connected to n of the N nodes, as shown in figure 3.2. ese are called the local
nodes of that element. e local nodes are denoted by je, and numbered from 1
to n. e approximate solution in each element is found using the local nodes.
is is done by formulating the boundary value problem for that element using
the test function φ̃e. Since neighboring elements share nodes, the formulas for all
the nodes are connected, and can be implemented into one large matrix formula
suitable for numerical calculation.

As the optimized φ̃e does not give an exact solution, a residual error re is introduced
by each element e,

Lφ̃e − f = re ̸= 0. (3.1)

re reaches zero when φ̃e = φ(xje) at all the element’s nodes. is is the case when
the element is infinitesimally small.

e 
j 

Γ 
e-1 e+1 ... ... 

j+1 
j-1 ... 

... 

Ω 

Figure 3.1: DomainΩwith boundary Γ. e do-
main is discretized intoM elements e connected
by in totalN nodes j. Node j corresponds to the
local element node n in figure 3.2

e 

je 

n 

1 ... 

... 

Figure 3.2: Element e (sub-
domain Ωe) from figure 3.1
consists of n out of the N
nodes, locally denoted je.

e test functions φ̃e are composed of a sum of coefficients Cj attached to shape
functions (basis functions) ζj specific to the nodes j. Only the n local nodes con-
nected to an element contributes to the sum. Renaming the local nodes around
element e to je, the test function for element e becomes

φ̃e =
n∑

je=1

Cjeζje = CeTζe = ζeTCe, (3.2)
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whereCe is the coefficient vector and ζe is the basis function vector of the element’s
nodes. ζe is only defined for element e, such that it is zero for all other elements
{1, . . . , e−1, e+1, . . . ,M}. is is done by requiring each shape function to be
non-zero only for the node where it is defined.

e residue from an element is minimized by adjusting the values of the coefficient
vector. is can be done by introducing a weighting function to each node. is
function is unique to the node. It is denoted ωj in the context of the full domain
and ωje in the context of the local element. e weighted residual from one of the
nodes of the element is then

Re
je =

∫
Ωe

ωjer
e dΩ. (3.3)

In Galerkin’s method, each weighting function ωje is chosen equal to the shape
function of the node, ζje . Equations 3.1, 3.2 and 3.3 then give

Re
je =

∫
Ωe

ζje (Lφ̃e − f) dΩ

=

∫
Ωe

ζjeL
(
ζeTCe

)
dΩ−

∫
Ωe

ζjef dΩ, (3.4)

and the sum of weighted residues from the nodes associated to element e can then
be described as a matrix equation

Re =
n∑

je=1

∫
Ωe

ζjeL
(
ζeTCe

)
dΩ−

∫
Ωe

ζjef dΩ

=

∫
Ωe

ζeLζeT dΩCe −
∫
Ωe

ζef dΩ

= KeCe − be, (3.5)

where the n× 1 vector Re contains the residuesRe
je , the n× n stiffness matrixKe

contains elements Kjeie=
∫
Ωe ζjeLζie dΩ, the n × 1 vector be contains constraints

bje=
∫
Ωe ζjef dΩ, and the n× 1 vector Ce contains the constant test function coef-

ficients Ce
je .

By mapping the element node numbers je back to the global node numbers j, the
error of all nodes (the full domain) can be given by one single equation. Summing
all elements, the total error becomes

R =
M∑
e=1

Re =
M∑
e=1

(
Ke Ce − be

)
, (3.6)
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where the lines above the matrices imply renumbering of the indices from local to
global nodes. is converts each matrix and vector to N dimensions. However,
the test functions ζeie are zero everywhere outside element e. is means that a
very large part of the elements in the resulting stiffness matrix are zero, making it a
sparse2 matrix. is is important for the numerical efficiency of the finite element
method solutions, as will be discussed in section 3.2.5.

By letting the error at each node go to zero (R=0) a full algebraic expression can be
set up, from which the problem is solved at every node,

KC = b. (3.7)

is equation can be solved numerically to find the unknown test function param-
etersC. To increase the solution accuracy, it is necessary to increase either the node
density, at the cost of a largermatrix, or the complexity of the shape function, at the
cost of a more complex equation. Sections 3.2.2 to 3.2.5 discuss different aspects
regarding the process of solving the matrix problem.

3.2.2 Discretization Into a Mesh

Discretization of the domain into elements is critical to solve the finite element
problem in an efficient way. e grid of elements is called a mesh, and gives the
position of all the nodes in the domain. e optimal shape of the elements depends
on the shape of the geometry in the domain. Surfaces are usually divided into rect-
angular or triangular elements, and volumes into tetrahedral prisms, rectangular
prisms or triangular prisms. Triangular surface elements and tetrahedral volume
elements are useful for discretization of curved or irregular geometries. e num-
ber of element nodes depends on the chosen shape function. is will be discussed
further in section 3.2.3.

Designing the mesh to fit a specific model can greatly enhance the efficiency and
accuracy of a solution. A dense mesh should be applied to domains where the
solution is expected to vary fast or have large values, while a looser mesh can be
applied to domains where the solution is expected to vary slowly and have small
values. Also, the angles of the mesh elements should neither be too small (∼ 0◦),
nor too large (∼180◦). is will lead to either poor discretization of the domain or

2A large number of the matrix elements are zero.
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Figure 3.3: Examples of surface meshes. A rectangular and a triangular mesh are seen on
the straight surfaces, while a triangular mesh is used on the spherical surface.

large magnitude differences between elements in the stiffness matrixK, degrading
the solution accuracy [50, 51].

3.2.3 Choice of Test Functions

e test function of an element is a superposition of shape functions from each
element node, as described in section 3.2.1. e structure of the shape function
is chosen by considering numerical efficiency and solution accuracy, but it also
depends on the type of problem that is to be solved. e functions are usually
continuous, and oen also smooth. e chosen shape functions determine the
name of the element in the domain, such that using a linear shape function give a
system of linear elements.

A simple shape function is easy to implement and solve for, but the accuracy of
the solution can be too low, and large models can converge slowly. More complex
shape functions increase the accuracy and converge faster, at the cost of higher
computer memory demands. e memory cost is due to the bandwidth3 of the

3e bandwidth refers to matrices with non-zero elements only close to the diagonal. emax-
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stiffness matrixK. Simple test functions tend to have a narrow bandwidth, achiev-
ing close to diagonal matrices which are quick to solve. Complex test functions
have wider bandwidths and fewer zero elements, and therefore require more com-
puter memory.

e accuracy and speed of higher order functions oenmake these preferable. Dif-
ferent shape functions have specific advantages and disadvantages, and the most
popular functions are Lagrange and vector shape functions.

Lagrange functions

Lagrange functions are polynomials which are continuous across elements by de-
manding the polynomial to have a set value at one element node, and be zero at
all other element nodes (f(xje=i) = a and f(xje ̸=i) = 0). e degree of the poly-
nomial determines the shape function complexity, with linear functions being the
most basic function. Examples of linear, quadratic and cubic functions for one di-
mension can be seen in figure 3.4. e number of nodes connected to an element is
adjusted to enable the required function shape (a linear function needs two points
for interpolation, a quadratic function needs three points, and so on). As the num-
ber of nodes increase, the problem complexity increases.

Linear Quadratic Cubic 

Figure 3.4: Examples of Lagrange polynomials for a one-dimensional model.

Vector functions

Whendeciding the shape functions, it is convenient to keep the physics of the prob-
lem in mind. In a problem involving electromagnetic fields, the tangential electric

imum number of non-zero elements across the diagonal, along some row or column, is the matrix
bandwidth.
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field components should be continuous across boundaries. However, field compo-
nents along the element boundaries cannot be described by singular nodes, which
only would be efficient for studying scalar potentials.

By using shape functions defined from node pairs, the field along the edges of
the mesh elements can be defined. ese functions can be used to describe tan-
gential field continuities, and allow perpendicular field discontinuities across el-
ements [52]. Elements described with such vector, or edge, shape functions are
called edge elements. Using vector shape functions in electromagnetic models en-
sures a more correct solution and avoids unphysical solutions for the waveguide
modes, which tend to be a problem [53]. Higher order edge elements use higher
order Lagrangian functions on the node pairs [54]. A detailed introduction to vec-
tor shape functions is given by Bossavit and Mayergoyz [52].

3.2.4 Removing Propagating Fields

e boundaries of physical systems describing radiation are challenging to treat
numerically. When the radiation propagates out of the domain, it needs to be re-
movedwithout influencing the physics inside. is requires an absorbing and non-
reflecting boundary. One way to achieve this is to perfectly match the impedance
of the outer surface of the domain with the outgoing fields. However, this requires
calculation and implementation for all possible fields. Amore efficient way is to in-
troduce a non-reflecting absorbing layer outside of the physical domain, which effi-
ciently removes radiation from the numerical domainwithout any previous knowl-
edge of the field propagation.

Berenger [55] was the first to introduce such a layer, the perfectly matched layer
(PML). In this outside layer, the material and field properties are slightly different
from the ones on the inside domain. e changes in material are introduced by
the artificial electric and magnetic conductivities. ese have two functions, ab-
sorbing the radiation and matching the impedances between the physical domain
and the PML.e change of the fields is done by splitting up both the electric field
and the magnetic field into two transversal components, independent of radiation
polarization. ese changes ensures a non-reflecting boundary for radiation from
all incidence angles. e PML absorbs fields in both propagating directions, such
that any remaining field reflected from the outer PML boundary continues to decay
until it reaches the physical domain again.
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Ω1 

Γ 

Ω2 

Figure 3.5: Perfectly matched layer. Radiation is absorbed without reflection in the do-
main Ω2 outside the boundary Γ of the physical domain Ω1.

It can be shown that the absorption in the PML is proportional to the cosine of
the incidence angle and the PML conductivity [55]. us, radiation incident on
the PML nearly tangential with the boundary will not be efficiently absorbed. e
design of the PML should take this into consideration.

A high conductivity in the PML is favorable to achieve a small numerical model.
However, abrupt conductivity changes in a discretized system will lead to numeri-
cal reflections. is can be improved by letting the conductivity increase gradually
in the PML.

An evanescent field is already a decaying field. e introduction of a PML (con-
ductive medium) will not increase the field decay, but only change the propagation
constant of the field in some way. If necessary, the field decay can be increased by
introducing an imaginary PML conductivity, but usually, the evanescent decay in
itself is sufficient to avoid boundary reflections.

e material and field property changes in a PML has been found to be equivalent
to a coordinate transform in that domain [56]. A coordinate transform provides a
simpler way to implement the PML in the numerical equation.

3.2.5 Solving the Matrix Equation

efinite elementmethodmatrix equation is linear and contains a large and sparse
stiffness matrixK. Conveniently, this means that solving does not need to involve
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full Gaussian elimination. From the 1980’s, much work has been done to optimize
solving large, sparse and linear matrix equations numerically [57]. Several tech-
niques have been developed, many of them suitable for parallelization. e solvers
can be divided in two main groups, direct and iterative solvers.

Direct solvers

Direct solvers solve linear matrix equations KC = b by pivoting (Gaussian elimi-
nation). In this process, the matrix elements are eliminated from the equation by
subtracting rows or columns from each other. Using this technique, it is computa-
tionally demanding (O(N3) operations) to find the inverse ofK, and direct solvers
cannot always be used. Unless mentioned specifically, the following paragraphs re-
garding direct solvers are based on the work of Duff [58, 59].

Factorization By factorizing the matrix into its lower and upper triangular ma-
trices LU, the equation can be solved in two less demanding steps (O(N2) opera-
tions)4, Lz = b and UC = z.

e factorization is most efficient if the triangular matrices keep the sparsity of
the stiffness matrix. is can be done by pivoting the rows and columns with the
least number of elements, and by ensuring that the pivot is not much smaller (by
some set threshold factor) than the largest entry in its row or column (threshold
pivoting).

Frontal method Some methods exploit the sparsity of the stiffness matrix by di-
viding the matrix into submatrices which can be independently pivoted. is re-
quires that the matrix elements in rows and columns coinciding with a submatrix
are zero. Methods using this technique are called frontal methods, and avoids as-
sembly of the whole stiffness matrix, since coefficients belonging to only one mesh
element are eliminated before the matrix is constructed.

Frontal methods save memory and are suitable for parallelization, and the con-
cept can be expanded by letting pivoted submatrices become elements of other

4e LU factorization is in principle as computationally demanding as finding the inverse, but
properties of sparsematricesmakes the processmore efficient. Also, if the same stiffnessmatrix can
be used to solve different problems, LU factorization needs to be done only once for all problems.
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submatrices, thus creating a nested pivoting system. Such techniques are called
multifrontal methods, which are even more efficient for parallelization.

Examples of direct solvers for sparse matrices which use LU factorization and
multifrontal methods are MUMPS (MUltifrontal Massively Parallel sparse direct
Solver, suitable for distributed memory computers) [60], SPOOLES (SParse Ob-
ject Oriented Linear Equations Solver, suitable for symmetric or Hermitian matri-
ces) [61], and PARDISO (suitable for computers where multiple processors share
memory) [62]. e Comsol Multiphysics soware has the option to use any of
these solvers.

Iterative solvers

Iterative solvers solve a linear matrix equation KC = b by guessing an initial trial
solution C0, comparing the computed and correct results, and using some method
to refine the trial solution. is process is repeated until the computed trial so-
lution are sufficiently close to the real solution (within some preset accuracy). In
this way, no inversion or factorization of the stiffness matrix is necessary, and only
matrix-vector calculations are performed (O(N2) operations [57]). e method
used to refine the trial solution determines the efficiency at each step, and there-
fore the convergence rate. For large equations, a fast convergence rate is necessary
to achieve a solution. Unfortunately, no general methods exist which guarantee
convergence for all problems. Unless stated differently, the following paragraphs
regarding iterative solvers are based on the work of Golub [63].

Stationary methods A trial solution C′ will give a residue r0=KC′-b. is can
be compensated by adjusting the trial solution, K(C′+δC)=b. Stationary methods
implement this adjustment iteratively by choosing C′=Ck and δC=Ck-Ck-1, where
k is the iteration step. is leads to the iteration formula Ck=Ck-1+M-1(b-KCk-1),
whereM is an easily invertible matrix similar toK. Stationary iterative techniques
differ in their choice ofM. ese techniques include the Gauss-Seidel method and
the Successive Over-Relaxation (SOR) method.

Projection methods For large sparse matrix equations, stationary methods are
inefficient, and projection methods are commonly used. ese methods optimize
a trial solution in some subspace of the equation, and expand the subspace for the
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next iteration, optimizing the trial solution each time. Several methods are devel-
oped using a so-called Krylov subspace K [64], which is spanned by the residual
from the initial guess, and residual-matrix products;Km(r0,K) = {r0,Kr0, . . . ,Kmr0}
inm dimensions.

e projection methods differ in how the solutions are optimized in each step.
Some methods construct solutions which are orthogonal to the subspace (e.g. the
conjugate gradients method [65]), and some methods minimize the norm of the
residual in the subspace (e.g. the generalized minimal residue method (GMRES)
[66]). e vectors of the Krylov subspace are oen orthogonalized, thereby mini-
mizing numerical errors which can result from using almost identical subspaces.

Preconditioning Improving the convergence is critical for solving many equa-
tions iteratively. Preconditioning is an essential tool to give faster convergence,
and works by multiplying the stiffness matrix with a similar, but simpler, inverted
matrix; M−1KC = M−1b. Finding a good preconditioning matrix simplifies the
equation, and increase the convergence speed. Some procedures used to find ap-
propriate preconditioning matrices are discussed by Golub [63].

3.3 eWaveguide Model

e objective of the numerical waveguide model presented in the thesis is to study
themagnitude of optical forces on objects close to thewaveguide surface. By chang-
ing the object size, shape, and refractive index, objects ranging from plastic and
glass microspheres to metal particles and cells can be studied.

is section describes how the waveguide model is implemented and solved in
Comsol Multiphysics, as well as the advantages and limitations of the model. First,
an overview of the procedure is given in section 3.3.1, and then the physical for-
mulas are introduced in section 3.3.2. Finally, section 3.3.3 presents the specific
properties of the model.

56



3.3.1 Procedure of the Numerical Model

e optical force on an object on a waveguide surface is found with the help of an
electromagnetic stress tensor. is has been done using a three-step procedure,
where the initial values at the waveguide input face are found first, the field in the
three-dimensional domain is found next, and finally, the stress tensor equation is
used to find the force. e fundamental TEmode is chosen as the propagating field
in all simulations, since this mode would be predominant in experiments (having
the largest neff, see section 2.3.2).

1st step. Propagation constant

efield at the input face of themodel and the propagation constant for the waveg-
uide are used as initial values in the boundary value problem describing the full
three-dimensional domain. ese initial values are themselves found with a two-
dimensional boundary value problem. For a given frequency, the propagation con-
stants (effective refractive indices) of the waveguide are found. e fundamental
mode is chosen as basis for the full field simulation step. Figure 3.6 shows the fun-
damental mode (TE) for a 3 µm wide and 200 nm thick waveguide,

y 
x 

Figure 3.6: Plot of the field norm of the fundamental mode of a 3 µm wide and 200 nm
high waveguide. Axis directions are indicated.

2nd step. Stationary solution of the field

A new boundary value problem is solved to describe the field distribution in the
whole domain. A stationary solution is found, describing the stabilized state of
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the system. e three-dimensional problem is far more computationally intensive
than the mode calculation, and the mesh and geometry have to be carefully chosen
to allow numerical solutions to the problem. A longitudinal cross section of the
waveguide is given in figure 3.7, showing how an electric field propagates along a
waveguide with the evanescent field decaying above and below the waveguide and
with the field being absorbed in the PML region at the right.

z 
x 

Figure 3.7: Plot of the transversal component of the electric field propagating in the pos-
itive z direction along a 3 µm wide and 200 nm high waveguide. e field is absorbed in
the PML region at the end of the waveguide.Axis directions are indicated. e color code
is arbitrary, and not equal to the one in figure 3.8.

3rd step. Force calculation

e electric field distribution from the boundary value problem is used to find
Maxwell’s electromagnetic stress tensor5 values on the object of interest. e prod-
uct of the tensor and the surface normal at each surface point of the object gives
three stress values at each object surface point, one for each spatial direction. Sum-
ming up the stress at all surface points gives the total force on the object for each
direction.

5See section 2.5.3 for the stress tensor derivation.
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3.3.2 Physics of the Numerical Model

e numerical model describes a monochromatic wave propagating in a low loss
dielectric medium. ewave is guided by total internal reflection, and is described
by the Helmholtz equation

∇× 1

µr

(∇× E)− k20

(
ϵr −

ȷσ

ωϵ0

)
E = 0, (3.8)

derived fromMaxwell’s equations with time-harmonic electric andmagnetic fields
(see section 2.2). e Helmholtz equation and the given boundary conditions lead
to a second order elliptic boundary value problem. Linear elliptic equations are
well suited for numerical calculations, since solutions (from a wide-ranging math-
ematical space) exist and are unique [67].

Weak formulation

eHelmholtz equation (3.8) is seen to require twice differentiable solutions E. A
reformulation of the equation can allow solutions with less restrictive smoothness
properties. is makes it easier to find numerical solutions. Such a transformation
gives a so called weak formulation, for which the solution is called a weak solution.
In this context, ‘weak’ refers to the solution not needing to be twice differentiable.
e weak solution does not necessarily satisfy the original Helmholtz equation,
only the weak form of it. e weak solutions are also the source of the unphysical
(spurious) waveguide modes mentioned in section 3.2.3, which can be prevented
by the use of vector test functions.

A weak formulation is usually found by introducing an infinitely differentiable test
function ψ and integrating by parts, thereby moving the differentiability require-
ment from the solution to the test function. Helmholtz equation can be rewritten
in weak form with the help of the triple vector product a · (b× c) = b · (c× a), the
product rule for vector cross products (a×b)′ = a′×b−b′×a, and the divergence
theorem

∫
V
∇ · F dV =

∫
∂V

F · dS. is gives∫
V

[
∇×ψ ·

1

µr

∇× E− k20

(
ϵr −

ȷσ

ωϵ0

)
E ·ψ

]
dV =∮

∂V

1

µr

(∇× E)×ψ · dS, (3.9)
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where the test functionψ satisfies the same boundary conditions as E. e bound-
ary conditions of the problem determine how the surface integral is treated. If
the fields at the boundary are zero, then the boundary integral will be zero, but
in a radiation problem, special boundary conditions are necessary to avoid back-
reflections, as discussed in section 3.2.4. e exact formulation of the boundary
conditions in the Comsol soware is not given, but the properties of the chosen
boundary conditions are described in section 3.3.3.

Force calculation

e field from the simulation can be used to calculate Maxwell’s stress tensor σ,
which is implemented in the Comsol soware as

σij =
1

2
Re
{
ϵ0n

2
cover(E

out
i )(Eout

j )∗ +
1

µ0

(Bout
i )(Bout

j )∗

−δij ·
1

2

(
ϵ0n

2
cover|Eout|2 · |B

out|2

µ0

)}
, (3.10)

where i and j spans the upward, lateral and propagation directions x, y and z,
the superscript out indicates that only field values from the outer object surface are
included, the superscript ∗ denotes the complex conjugate, δij is the Kronecker
delta, ncover is the refractive index of the medium outside the object, and Re takes
the real value of the expression.

For each spatial dimension i, the stressTi at object surface position r is found from
the product of the tensor components and the surface normal

Ti(r) =
∑

j={x,y,z}

σij ·nj(r) , i = {x, y, z}. (3.11)

A plot of the stress in each spatial direction can be seen in figure 3.8 for a 2 µm
diameter glass sphere (n=1.5) interacting with the evanescent field from a 3 µm
wide waveguide. Red values are positive, and blue values are negative. Stress is
only experienced by the part of the sphere close to the waveguide. In the vertical
x direction, the stresses work toward the waveguide. In the lateral y direction, the
stresses act toward the center of the waveguide. In the horizontal z directions, the
stresses are pushing the front of the sphere and pulling the end of the sphere. A
non-rigid sphere would thus be flattened onto the waveguide, compressed in the
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lateral direction, and elongated in the horizontal direction. e figure is discussed
further in section 3.4.2 in the context of numerical noise in the model.

e total force experienced by the object is found by summing up the stress around
the whole object surface

Fi =
∑

object surface

Ti(r), i = {x, y, z}. (3.12)
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Figure 3.8: Plots showing the distribution of the stress (Ti=
∑

j σij ·nj , i, j={x, y, z})
on the surface of a 2 µm diameter glass sphere (n=1.5) on top of a 3 µm wide waveguide,
with the field propagating in the positive z direction. e stress in the upward (x), lateral
(y), and propagation z directions are shown from le to right. In the top row, the sphere
is seen from underneath. e lemost and rightmost plot in the bottom row shows the
sphere seen from the side. e center plot in the bottom row shows the sphere seen from
the front. e color scale is similar for all the plots, with local stress values ranging from
-700 (blue) to +700 (red) N/m2
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3.3.3 Properties of the Numerical Model

For the numericalmodel to give accurate results, it is necessary to properly describe
the field propagating in the waveguide, the field interacting with the object, and
to absorb the propagating and scattered field at the boundaries of the numerical
domain. In this section, the properties of the model used in the simulations are
described and discussed.

Symmetry

emodel describes an object on the surface of a dielectric waveguide with a rect-
angular cross section, as shown in figure 3.9. e geometry has a symmetry plane
at the lateral center of the waveguide. is is not used to halve themodel size, since
the field scattered off the object cannot be perfectly mirrored with a simple bound-
ary condition. For the precision necessary for small horizontal forces, a halving
introduces too big errors.

Domain

enumerical domain consists of several subdomains; a silica substrate, a tantalum
pentoxide waveguide, a water cover region, and the object of interest. e subdo-
mains are defined by their refractive indices. e object is placed 25 nm above the
waveguide surface, centered in the lateral direction. e object is not placed closer
to the surface since the mesh density between the waveguide and the object would
become too high, substantially increasing the number of nodes in the numerical
model. e physical domain is surrounded by absorbing PML domains at the top,
bottom and end surfaces. All the domains are shown in figure 3.9. In all the sub-
domains, conductivities are set to zero and relative permeabilities are set to one.

Mesh

e substrate, cover, waveguide, and object domains aremeshedwith triangular el-
ements on surfaces and tetrahedral elements in volume regions. e PML domains
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Figure 3.9: Simulation geometry. e physical domain consists of substrate, waveguide,
cover, and object regions. An absorbing PML surrounds the physical domain at the top,
bottom and end surfaces.

Figure 3.10: Surface meshes of the different domains in the model, seen on the outside
(le) and inside (right). A triangular surface mesh is used in the physical domains, while a
rectangular sweptmesh is used in the PML regions. e tetrahedral elements in the volume
regions are not shown.
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are swept outward from the physical domain boundary with rectangular elements.
Figure 3.10 shows the surface meshes in the whole domain.

e number of mesh points (nodes) determines the size of the numerical model.
e mesh should reflect the field distribution in the domain, with a dense mesh
where the field is strong or strongly varying. A looser mesh can be used in regions
where the field is weak and slowly varying. Using quadratic shape functions, five
or more mesh elements per wavelength are required for an accurate simulation of
a propagating wave [68]. e relationship between the geometric size of the model
and the wavelength thus determines the numerical size of amodel. ismeans that
simulating a field propagating in a long and wide waveguide will be demanding. In
the waveguide trapping model, the length of the waveguide is set as small as pos-
sible. is means that it is the size of the trapped object that limits the model size.
Large objects thus give considerably larger numerical models than small objects.
In narrow spaces between separate domains, the mesh density should also be high,
increasing model size. us, thin or narrow regions should as far as possible be
avoided to limit the model size.

To create strong evanescent fields, tightly confined waveguide modes are preferred
in the experiments. is means the field is mainly concentrated very close to the
waveguide, and a dense mesh must be set in this domain. As the evanescent field
quickly decay, the mesh density is set to gradually decrease moving away from the
waveguide. An example of mesh densities used in the simulations can be seen in
figure 3.11, which shows a cross section of the domain along the propagation direc-
tion. Since only the waveguide and its immediate surroundings experience strong
and strongly varying fields, the coarsely meshed regions far from waveguide and
object contribute much less to the size of the numerical model.

Test Functions

e default test functions in Comsol are used in the model. For electromagnetic
models, this corresponds to quadratic vector shape functions. As described in sec-
tion 3.2.3, vector functions ensures continuity of the tangential electric field and
allows discontinuity of the normal field across elements, thereby preventing un-
physical solutions.
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Figure 3.11: Cross section along the center of the waveguide showing the mesh density in
different regions of the model. e color legend indicates the size of a mesh element in the
domain.
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Boundary Values

e field distribution in the model is found using the Helmholtz equation. An
accurate solution requires proper boundary conditions. For each surface, a suit-
able boundary condition is chosen depending on the distribution and propagation
direction of the field.

Perfectly conductingboundary eboundaries that interact very littlewith prop-
agating or scattered fields are set to be perfectly conducting for a polarization di-
rection. e tangential components of the electric or magnetic field will be set to
zero, while perpendicular components will be reflected. is boundary condition
will thus only remove tangential fields. e two alternative boundary equations
implemented through functions ∇ × E = 0 for a perfect electric conductor and
∇× B = 0 for a perfect magnetic conductor.

In the two-dimensional boundarymode analysis, the boundaries are the four outer
surface edges. Only the TE polarized (horizontal electric field) fundamental mode
will be considered in the simulations. us, the top and bottom edges are set to
be perfect electric conductors while the side edges are set to perfect magnetic con-
ductors. In the three-dimensional model, the side boundaries are set to be perfect
magnetic conductors. As the field decays quickly away from the waveguide, prac-
tically no field is seen by the edges and the side boundaries.

Port boundary e fundamental mode propagating constant and field distri-
bution is calculated in a two-dimensional boundary mode analysis of the input
boundary face. ese values are used to excite the waveguide field in the full three-
dimensional analysis. e coupling between the analyses is done using Comsol’s
‘port’ boundary condition. e port boundary absorbs fields with similar propa-
gation constant as the excited field. Field components which do not exist in the
excited field will be partially reflected. Such reflections have not been observed
in the waveguide simulations. S-parameters at the port give reflection ratios of
around 1 part in 10 000.

Perfectly matched layer A boundary surface does not suffice to completely ab-
sorb propagating and scattered fields with unknown propagation constants. To
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remove these fields, the perfectly matched layer domain described in section 3.2.4
is introduced at the end, at the top and at the bottom of the model

e top and bottom surface is covered with PML domains absorbing fields prop-
agating in vertical directions. ese PML domains are followed by perfect electric
conductors which absorb the tangential components of the remaining field. e
end surface is covered with a PML domain absorbing fields propagating in hori-
zontal directions. is PML domain is followed by a scattering boundary surface
(see next paragraph), which removes plane waves. e PML thickness is 0.5 µm,
scaled to one wavelength by coordinate transformation, which is found to be suf-
ficient to stop reflections within the required accuracy.

Scattering boundary e scattering boundary condition is designed to remove
planewaves. ismeans anywaves described byE = E0 exp−ȷk0r+Escattered exp−ȷkr,
where k is the propagation constant of the scattered field and E0 represents the
initial value plane wave. Waves at normal incidence are completely removed, while
other plane waves are partially reflected.

Perfect electric conductor 

PML 

Perfect magnetic conductor 

Port boundary 

Scattering boundary 

Figure 3.12: Boundary conditions on the surface of the three-dimensional model.
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Solver

e simulations were done on two different computers. e first simulations were
done with Comsol version 3.5, and used the SPOOLES solver on an 8-core, 32 GB
memory computer. Random disconnections from the license server made these
simulations problematic. Most of the simulations were done with Comsol version
4.2 on the computer cluster Stallo [69], mostly using 8 nodes, each with 8 cores
and 16 GBmemory (85.12 Gigaflop/s/node). eMUMPS solver was used due to
good parallelization properties.

3.4 Model Validation

e numerical model was tested by simulating cases with easily verifiable results.
ree tests were performed to study the force magnitude, the force direction, and
to compare noise level and resolution for different model parameters. For the first
test, the sphere was displaced sideways on the waveguide to confirm expected force
magnitudes and directions. For the second test, a sphere with similar refractive
index as the cover mediumwas used, such that all calculated forces should be zero.
is zero-force model was used to test the mesh convergence, to relate the mesh
density to the noise level, and to indicate the resolution of the simulations. For the
final test, the accuracy of the model was compared with Mie calculations.

e model was found to give reliable results with a mesh density of 6 points per
wavelength in the strong-field regions. is gave a resolution of around 1 pN for
the horizontal force and around 4 pN for the vertical force.

3.4.1 Lateral Displacement

A spherical object is stably trapped laterally in the center position on a waveguide
surface. By displacing the sphere laterally, an optical force would arise to attract the
sphere back toward the waveguide center. By simulating the sphere at different off-
center positions, a range of lateral forces are calculated. Figure 3.13 shows a cross
section of the simulated geometry with a 1 µm diameter glass (n=1.5) sphere on
top of a 1 µm wide waveguide. Relative lateral force magnitudes on the displaced
sphere are shown with arrows in the figure, and the calculated forces at 8 positions
to the right of the center are listed in table 3.1.
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e calculated lateral forces are found to be negative at all displaced positions, con-
firming that the sphere is pulled toward the center position. e lateral force be-
comes stronger with distance from the center, with a maximum for a displacement
of 300 nm. At the center position, the calculated lateral force is 1 pN, and not zero
as expected. is can be attributed to numerical errors, further described in section
3.4.2. e discrepancy gives an estimate of the noise level in the lateral direction.

e results in table 3.1 show that the total force is stronger at positions near the
center of the waveguide. is is to be expected, since the field gradient is stronger
in the center. In addition, the field interacts with a larger region of the sphere in
the center.

e results from the displacement test qualitatively validates the simulations. e
displaced sphere is attracted toward the centre and toward thewaveguide andpushed
forward in the horizontal direction. It is also reasonable that the magnitude of the
vertical force dominates the horizontal and lateral forces, considering the strong
gradient and weak intensity of the evanescent field.

y = 0 nm 
y = +250 nm 
y = +500 nm y 

x 

Figure 3.13: Illustration of forces on a laterally displaced 1 µm diameter glass sphere
(n=1.5) on a 1 µm wide waveguide. e force values are found in table 3.1. e arrow
length indicates lateral force magnitude
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Table 3.1: Forces on a 1 µm diameter glass sphere (n=1.5) laterally displaced on a 1 µm
wide waveguide

Lateral Displacement Vertical Lateral Horizontal Total Force
(nm) Fx (pN) Fy (pN) Fz (pN)

√
F 2
x + F 2

y + F 2
z

0 -203.9 1.0 19.0 204.8
25 -202.8 -7.8 20.6 204.0
50 -205.9 -10.7 24.7 207.7
100 -195.2 -16.5 15.1 196.5
200 -168.6 -28.2 12.3 171.4
300 -128.6 -32.5 12.6 133.2
400 -88.2 -30.6 8.67 93.8
500 -55.5 -21.9 5.86 60.0

3.4.2 Resolution

Field-dependent resolution

e uncertainty of the model results was estimated with simulations of a spherical
object with the same refractive index as the surrounding medium. Without any
index difference, any optical forces on the object should be absent. However, any
numerical inaccuracies will result in force simulation errors. is can be under-
stood from how the force is calculated. e total force on the object is found by
summing up the stress over the object surface. e stress is found by the product
of the stress tensor and the surface normals and is dependent of the field through
Maxwell’s stress tensor, as shown in equation (3.10). Any change the field experi-
ences inside the object is interpreted as a scattering incident. Whether the change
is the result of an inaccurate field value or the result of an actual scattering event is
not taken into account. To avoid numerical errors, the mesh density must be suf-
ficient to properly describe the propagating and scattered fields inside the object.

Figure 3.8 showed the local stress distribution for each spatial direction on the sur-
face of a glass sphere interacting with an evanescent field. In the vertical x di-
rection, the stress adds up and the sphere experiences a strong force toward the
waveguide. us, even if the relative noise level is low, the absolute noise levels can
be be high compared to the forces in the horizontal and lateral directions. In the
horizontal z direction, the stress values are strong and opposite in the front and
back of the sphere. us, the horizontal force on the sphere depends on the differ-

70



ence between two large numbers. ismakes accurate numerical force calculations
challenging, and requires a high mesh density both on the surface and inside the
sphere. In the lateral y direction, the stress values are weaker and opposite on the
le and right side of the sphere. For a centered sphere the expected total lateral
force is zero, as the stresses are symmetric. Section 3.4.1 showed a lateral noise
level of around 1 pN, and most simulations show sub-piconewton lateral forces.

Mesh-dependent resolution

Table 3.2 and figure 3.14 show results from force simulations for a 2 µm diameter
sphere with refractive index equal to the cover medium (n=nc=1.33), on a 3 µm
wide waveguide. Calculations were done using Comsol’s MUMPS solver on the
Stallo computer cluster [69] using 8 cluster nodes, each with 8 cores and 16 GB
memory. e mesh density is set to a maximum value (mesh points per wave-
length) inside the waveguide and in a region reaching from the waveguide surface
up to 400 nm above the surface. e same mesh density is set on the waveguide
and sphere surfaces. In the surrounding regions, the mesh is set to grow slowly.
e set maximum value then determines the mesh density in the whole model.
ese meshes are not optimized for simulation accuracy, but give a good overview
of how the resolution depends on the mesh density.

Table 3.2: Force convergence for increasing mesh densities for a 2 μm diameter water
sphere submerged in water. Any calculated force deviating from zero is the result of nu-
merical inaccuracies. Simulations were performed using the direct MUMPS solver on the
Stallo computer cluster using 8 nodes, each with 8 cores and 16 GB memory.

Density Vertical Lateral Horizontal Degrees of Freedom Solver Time
(mesh points

λ
) (pN) (pN) (pN) (1000) (s)

2 293.9 -3.9 43.2 318.3 168
3 62.5 -4.1 11.7 432.4 197
4 31.1 1.8 -3.2 551.5 286
5 12.8 -0.2 1.3 772.2 422
6 4.9 -0.3 -0.5 1099.2 671
7 2.3 -0.2 1.5 1450.2 4100
8 2.1 0.4 -1.9 1936.3 1369a

aFor 8 mesh points per wavelength, the number of processors was increased from 64 (8 nodes)
to 128 (16 nodes), as 64 processors was unable to solve the problem in 8 hours.
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Figure 3.14: Accuracy depending on mesh-density. Forces from a 3 µm wide waveguide
for different mesh densities using 2 µm diameter spheres with the same refractive index as
the cover medium. Any non-zero forces result from numerical inaccuracies. Calculations
were donewithComsol’sMUMPS solver on the Stallo cluster computer using 8 nodes, each
with 8 cores and 16 GB memory.

e sudden increase of solver time shown in table 3.2 and figure 3.14 shows how
the model is easily solved with a direct solver as long as there is sufficient memory
available. Each node has 16 GB available memory. e simulation slows down ex-
ponentially when the amount ofmemory is insufficient. By increasing the available
memory, larger models can be solved. Table 3.2 does not show the solution time
for the model with 1.9 million degrees of freedom. is model could not be solved
in 8 hours on 8 nodes, but was solved in slightly more than 20 minutes using 16
nodes.

e results shown in the table and the figure suggest that 6 mesh points per wave-
length gives a decent accuracy within a reasonable solver time. e accuracy does
not increase noticeablywith higher densities in thewaveguide and the region above
the waveguide, and the mesh can be adjusted in weak-field regions in the domain
to further improve the accuracy. In the simulations in chapters 4 and 5, the meshes
have been optimized by minimizing the resolution of the horizontal force using a
model where the sphere and covermedia have equal refractive indices. e specific
mesh parameters used in each model will not be given.
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Object size-dependent resolution

e available memory limits either the physical size or the resolution of a model.
Accurate results demand a high mesh density in all regions with strong or strongly
varying fields. If the field is strongly scattered, themesh density needs to be high in
a large region. is limits the size of the total region. e field distribution around
a waveguide is strongly confined to the region inside and a small region surround-
ing the waveguide, unless the field is scattered away. Introducing an object on the
waveguide surface significantly increase the mesh density requirements in the re-
gion where the field is scattered. As scattering is stronger for higher-index objects,
the allowed model size also depends on object refractive index. In addition to this,
the object size influences the numerical size of the model, even if only a small part
of the object is close to the waveguide. e waveguide needs to be at least as long
as the diameter of a spherical object. Since the waveguide has a high mesh density,
this limits the allowed size of the sphere, even if the scattering is very weak (for the
case of a refractive index very similar to that of the cover medium).

3.4.3 Comparison with Mie Calculations

Mie theory, briefly explored in sections 2.6.1 and 2.6.2, analytically describes the
fields around a spherewith spherical functions expressed in series. efield expres-
sions can be used to numerically calculate forces on the spheres. e calculations
derived by Jaising et al. [40, 44] are used to compare Mie and finite element calcu-
lations for solid glass spheres and infinitely thin shells (air bubbles) on a waveguide
surface. Sphere dimensions and refractive indices are identical for the calculations.
In addition, the input powers were chosen such that the intensity at the centre of
the waveguide surface was equal. e forces found with the two different methods
are shown in figure 3.15 and figure 3.16. e figures mostly show the same general
dependence between force and sphere diameter, but the force magnitudes differ.

e vertical forces are repulsive for air bubbles and attractive for glass spheres, and
are 1.5 times stronger in the FEM simulations compared to the analytical Mie cal-
culations. e horizontal forces are smaller, and the Mie simulation forces tend to
be stronger than the FEM simulation forces. e horizontal force on glass spheres
increases, reaching a stable value for large diameters, while the horizontal force
on air bubbles reaches a maximum for diameters slightly above 1 µm diameter. A
small comment on the Mie results is also given at the end of section 4.4.2.
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Figure 3.15: Mie-FEM comparison of ver-
tical optical forces.
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Figure 3.16: Mie-FEM comparison of hor-
izontal optical forces.

e Mie calculations presuppose a uniform evanescent field distribution in the
cover region, using the values from the center of the waveguide. is implies a
stronger horizontal force in the Mie calculation, as the constant-height evanescent
field gives a larger intersection area (the field does not taper off laterally). A similar
reasoning explainswhy the vertical force is larger in the FEMsimulation, as the gra-
dient is stronger for the non-uniform evanescent field in the intersection region of
the field and the sphere. ese considerations account for some of the discrepancy
between the models. In addition, interactions between the sphere and waveguide,
such as multiple reflections, are taken into account in the FEM simulation, but not
considered in the Mie calculations.

3.5 Conclusions

A numerical model is constructed for simulations of microparticle trapping on an
optical waveguide surface. e model is implemented in the commercial soware
Comsol Multiphyscs, which solves the problem using the finite element method.
is method is suitable for problem geometries of any shape. e simulations are
run on the computer cluster Stallo using the MUMPS solver.

Lateral displacement tests and comparisons with Mie calculations provide qualita-
tive results that validate the use of the numerical model. ere is a strong depen-
dence on mesh density and accurate field propagation to acquire accurate results.
is means that each simulation geometry requires a specifically designed mesh.
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e validation tests give reason to believe that models using spherical objects with
more than 6 mesh points per wavelength in strong field regions are accurate to
within 5 pN in the vertical direction and 2 pN in the horizontal direction. e fol-
lowing two chapters present calculations of optical forces for different microparti-
cles.
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Chapter 4

Modeling HollowMicrospheres on a
Waveguide

4.1 Introduction

Hollow microspheres are gas-filled organic or inorganic spherical shells. ey are
used in biomedicine as ultrasound contrast agents [70], and has the potential to be
used for drug delivery or drug targeting [71]. e shells aremade fromorganicma-
terial or glass. Organic shells are very thin, while the shell thickness of the hollow
glass microspheres is difficult to control accurately in the manufacturing process,
giving a large distribution of thicknesses. Gas bubbles can be considered to be
hollow spheres with infinitely thin shells, and have been studied experimentally in
solution [72].

In the context of optics, hollow microspheres are interesting because of their aver-
age refractive index, which decreases due to the gas cavity inside the shell. When
the refractive index is lower than that of the surrounding liquidmedia, the gradient
force in an optical trap (see chapter 2) is repulsive. us, optical trapping becomes
a challenge and special optical designs are necessary for trapping.

is chapter presents a numericalmodel of optical forces exerted on ahollow sphere
by an evanescent field. A full range of glass shell thicknesses is used, from gas bub-
bles to solid spheres. e results are compared with two simpler models, as well
as experimental results. e chapter first discusses properties of hollow spheres,
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how such low-index particles can be trapped optically, and the limits of the trap-
ping. en, in section 4.3, trapping of hollow spheres on waveguides is described,
and some experimental results are presented. In section 4.4, the computer simu-
lations of the waveguide trapping are described. With the use of simple analytical
models described in section 4.5, this gives some insights in the hollow sphere trap-
ping properties. Finally, section 4.6 compares experimental velocities to velocities
calculated from the simulations, discrepancies are discussed, and the chapter is
concluded in section 4.7.

4.2 Hollow Sphere Properties

is section introduces a way to calculate the density and refractive index of a hol-
low sphere. ese parameters will not be used until section 4.5, but are presented
early to provide some insights in the properties of hollow spheres.

4.2.1 Buoyancy

For thin shells, the mass density of hollow spheres is lower than themass density of
water. Such particles would float in solution. is makes the particles challenging
to trap close to surfaces covered with water. e hollow sphere density τHS can be
calculated as

τHS =
τshell ·Vsphere − τshell ·Vcavity + τcavity ·Vcavity

Vsphere

= τshell + (τcavity − τshell)
(a− T )3

a3
, (4.1)

where a is the sphere radius, T is the shell thickness, τshell is the mass density of the
shell, τcavity is themass density of the cavity, and the sphere and cavity have volumes

Vsphere =
4π

3
a3 and Vcavity =

4π

3
(a− T )3 . (4.2)

Another useful parameter will also be introduced at this point. is is the volume
of a spherical cap, the region cut off a sphere by a planar surface. With h being
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the cap height (the longest distance perpendicular to the planar surface), the cap
volume is given by

Vcap =
πh2

3
(3a− h) , (4.3)

where h is the height of the cap.

In the simulations, the chosen material for the shell is glass with a mass density
τglass = 2.2 g/cm, and the chosen material for the cavity is air with a mass density
τair = 0.001 g/cm. e mass density of water is τwater = 0.998 g/cm. Spheres with
an average mass density lower than τwater float.

4.2.2 Refractive Index

e total (average) refractive index of hollow spheres, nHS, can be calculated in a
similar way as its mass density. is gives

nHS = nshell + (ncavity − nshell)
(a− T )3

a3
, (4.4)

where nshell is the refractive index of the shell and ncavity is the refractive index of
the cavity. In the simulations, the glass shell is chosen to have a refractive index
nglass = 1.5 and the air cavity is chosen to have a refractive index nair = 1.

Particles with an average refractive index higher than their surrounding medium
are called high-index particles, while particles with lower average refractive index
than their surroundings are called low-index particles. High-index particles expe-
rience an attractive force near a field gradient, while low-index particles experience
an repulsive force near a field gradient.

4.3 Trapping of Hollow Spheres

4.3.1 Trapping with a Strongly Focused Beam

Figure 4.1 shows sketches of high- and low-index spheres in focused Gaussian and
non-Gaussian beams. e directions of the optical forces are indicated in the fig-
ure, and show how a low-index sphere is repelled from a Gaussian beam trap and
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trapped with a non-Gaussian beam. Such beams include vortex beams [73–75],
Bessel beams of different order [76, 77], and self-imaged bottle beams [78], which
all contain a vortex or discontinuity point and are constructed bymanipulating the
wavefront of a Gaussian beam. e intensity distribution in the focal plane of such
beams surrounds the low-index particle. e particle cavity is repelled away from
the field gradient, while the shell is attracted toward the field gradient, locking the
particle in place as suggested in the rightmost sketch in the figure. Manipulating the
spatial distribution with a circularly scanning beam [79, 80] or by an interference
patterns [81] also allows Gaussian beams to be used for low-index trapping. e
working principle is similar to the non-Gaussian beam traps, and the techniques
require precise spatial and temporal control of the field distribution.

Fside 

Fforward 

Fside 

Fforward 

Gaussian beams Vortex beam 

Fside 

Fforward 

Figure 4.1: Optical forces in free space focus traps. (le) A solid high-index sphere is at-
tracted to a Gaussian beam focus. (center) A hollow low-index sphere is repelled from a
gaussian beam focus. (right) e shell and cavity of a hollow low-index sphere is respec-
tively attracted to and repelled from the high-intensity regions in the non-Gaussian beam
focus.

4.3.2 Trapping on aWaveguide

e methods for low-index trapping depend mostly on repulsive optical forces.
ese methods surround the particle with an optical field, thus creating a low-
energy potential well for the particle inside the field. However, attractive optical
forces can also contribute by trapping only a small high-index part of the particle.
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e evanescent field above an optical waveguide would attract the shell and repel
the cavity of the hollow sphere. When the attractive forces dominate, the hollow
sphere is trapped by the evanescent field. e trapping force magnitude and direc-
tion depends on the waveguide field distribution, the sphere radius and the shell
thickness, as well as cavity and shell refractive indices. A sketch of waveguide field
distribution near a hollow sphere is shown in figure 4.2

T 
a 

d
w 

nair 

nglass 

nwater x 

y 
nTa2O5  

nSiO2 

Figure 4.2: Cross section transversal to the waveguide showing a hollow glass sphere with
radius a and shell thicknessT on aTantalumpentoxidewaveguidewithwidthw and height
d. e fundamental TE mode of the waveguide is shown with a plot of the field intensity
across the waveguide.

Experiments where waveguide trapping was used to trap hollow microspheres [2]
instigated the numerical study of optical force dependency on shell thickness pre-
sented in this chapter. e experiments showed that some hollow spheres where
trapped while others were not. An analytical model shows how the trapping prop-
erties can be explained by the average refractive index of the sphere region experi-
encing the evanescent field. is chapter, expanding on previous work by Løvhau-
gen et al. [4], presents the simulation results, and compare them with the experi-
mental data and the analytical analysis.

Experiments with hollow spheres on waveguides

Experiments with hollow spheres, performed and presented by B. S. Ahluwalia et
al. [2], studied velocity and shell thickness distributions of samples of hollow and
solid glass spheres. Figures 4.3 and 4.4 present results from this work for spheres
with diameters under 7 µm.
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Figure 4.3 shows the shell thickness distribution for a number of hollowglass spheres.
At one micrometer intervals, mean values and standard deviations of shell thick-
nesses and diameters are found. ese values are plotted with error bars in the
figure. A dashed blue line indicates the boundary between floating and sinking
hollow spheres in water. A dotted red line indicates the boundary between high-
and low-index hollow spheres. Gaussian beam trapping is only possible for the
particles above the red transition line.

Most of the particles from the batch of hollow glass spheres could be trapped on
waveguides. e particle velocities of solid and hollow spheres are shown in figure
4.4 as function of the particle diameter. At one micrometer intervals, the velocity
means and standard deviations are plotted with error bars. e input laser power
in the experiments was 1.5 W.
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Figure 4.3: Distribution of sphere diameters and shell thicknesses in a batch of 59 hollow
glass spheres. Only a small part of the spheres are floating. e large hollow spheres are
mostly low-index, while the small hollow spheres are mostly high-index, as expected when
the shell thicknesses are fairly constant (increase slowly) over the range of sphere diameters.
Data from [2].

e exact optical properties of the hollow and solid spheres are not known. e
refractive indices were not given by the manufacturer, and the surface structure of
the spheres are not known. For the hollow spheres, some detergent was applied
in the sample solution to allow propulsion. is suggests that some surface effect
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Figure 4.4: Distribution of sphere diameters and velocities for samples of 22 solid (solid
rings) and 23 hollow (empty rings) glass spheres on a 3 µmwide waveguide at 1.5 W laser
input power. e hollow spheres travel markedly slower than the solid spheres. At one
micrometer intervals, error bars show mean and standard deviation of diameters and ve-
locities. Data from [2].
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between the spheres and the waveguide was present. is effect is not accounted
for in the simulations.

4.4 Simulations of Hollow Spheres onWaveguides

e simulations were done using the finite element method soware Comsol Mul-
tiphysics, as described in chapter 3. e model simulates a sphere on a 3 µmwide
waveguide. e sphere was laterally centered on the waveguide, situated 25 nm
above its surface. e small vertical gap was used to avoid very small mesh ele-
ments. Sphere diameters ranged from 0.2 to 6 µm, with thicknesses from 25 to
500 nm, and also included solid spheres and air bubbles. e length of the waveg-
uides in the model were only slightly longer than the sphere diameter to minimize
computational effort, but still allow simulations of whole spheres.

Forces in horizontal and vertical directions were found by integrating Maxwell’s
stress tensor over the sphere surface. e results are presented in figures 4.5-4.10.
In the figures, empty ring markers indicate simulated gas bubbles, solid ring mark-
ers indicate simulated solid glass spheres, and cross markers indicate simulated
hollow spheres.

It is important to note that every simulation has been optimized with zero-index
difference simulations (see section 3.4.2). e offset force found from these simu-
lations have been subtracted from the results presented here. is means the pre-
sented results have been shied within the force resolution of the simulations; at
most 2 pN for the horizontal force and 5 pN for the vertical force.

4.4.1 Shell thickness dependence

Figure 4.5 shows calculated forces in the vertical direction as a function of shell
thickness. e origin of these forces is mainly the gradient of the field. e results
are given for 8 different diameters. For larger spheres, the evanescent field interacts
with more of the sphere surface than for smaller spheres. us, large spheres ex-
perience larger forces. For thin shell thicknesses, repulsive forces push the spheres
away from the waveguide. When the shell thickness increases, the repulsive force
decreases, and the force becomes attractive when the shell thickness approaches
around 65 nm. e attractive forces reach a constant value for thicknesses around
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250 nm. A close-up of the transition point between repulsive and attractive forces
are given in figure 4.7. is shows that the transition point increases with sphere
size up to 1µmdiameter, where the transition points stabilizes close to 65 nm. is
has to do with the sphere and cavity surfaces as well as the range of the evanescent
field, and will be further discussed in section 4.5.
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Figure 4.5: Vertical forces on hollow spheres from 0.2 to 6 µm diameter as function of
shell thickness. Larger spheres experience larger forces, and the transition from repulsive
to attractive forces occur close to 65 nm shell thickness. e legend indicates sphere diam-
eters.

Figure 4.6 shows calculated forces in the horizontal direction as a function of shell
thickness. e origin of the force is mainly scattering of the field. e results are
given for 8 different diameters. e horizontal forces are found to be more than
one order of magnitude weaker than the vertical forces. Aminimum force is found
close to 100 nmshell thickness for all sphere diameters. It is reasonable to relate this
minimum to the zero vertical force in the same shell thickness region. Apparently,
for spheres with this shell thickness, the field is only slightly perturbed, and the
scattered field is very similar to the incident field.

A close-up of the horizontal force minimum is given in figure 4.8. is plot also
includes results for a 0.2 µm diameter sphere. e horizontal forces near the min-
imum are so weak that the results are below the resolution limit of the simulations.
is is particularly noticeable for thin shells and large diameters, as the mesh at
some point becomes so big that the geometry of the shell region cannot be prop-
erly approximated. For the simulations of a 6 µm diameter hollow sphere, results
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Figure 4.6: Horizontal forces on hollow spheres from 0.5 to 6 µmdiameter as function of
shell thickness. e force resolution is around 2 pN. A force minimum is found close to
100 nm thickness for all sphere diameters. e legend indicates sphere diameters.
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Figure 4.7: Close-up of figure 4.5, show-
ing the transition points between repulsive
and attractive gradient forces on the hollow
spheres.
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Figure 4.8: Close-up of figure 4.6, show-
ing the minimum propagation force of the
hollow spheres.
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for thin shells show higher uncertainties than the other spheres. In the plot, the
force offsets from the zero-index difference simulations have been subtracted, as
mentioned at the start of the section. e close-up also reveals a slight shi of the
force minimum toward thinner shells for smaller spheres. is is again analogous
with the vertical force results, and will be discussed in section 4.5.2.

4.4.2 Sphere diameter dependence

Figures 4.9 and 4.10 present the force distributions as function of sphere diameter.
is is just a different presentation of the data shown in figures 4.5 and 4.6. How-
ever, only results from air bubbles, 50, 100 and 250 nm thick shells and solid glass
spheres are included.

e vertical force in figure 4.9 shows a linear relationship between diameter and
force for all thicknesses. Air bubbles and spheres with 50 nm thick shells are re-
pelled from the waveguide, while the remaining spheres are attracted to the waveg-
uide. A vertical force of zero is experienced for a shell thickness between 50 and
100, found to be close to 65 nm for large spheres in figure 4.7.
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Figure 4.9: Vertical forces on solid spheres, and spheres with 0, 50, 100, 250 nm shell
thickness as function of the sphere diameter. Spheres where air dominates are repelled
from the waveguide. Spheres where glass dominates are attracted to the waveguide. e
transition point is close to 65 nm shell thickness. e forces are linearly dependent on the
diameter. e legend indicates the shell thicknesses in nanometers.
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e horizontal force in figure 4.10 shows maxima close to 3 µm for the solid glass
sphere and close to 1 µm for the air bubble. e hollow spheres experience least
forces, with minimum forces for a 100 nm thick shell and force maxima for diam-
eters between 1 and 2 µm. e plots provide some insights into the nature of the
weak horizontal force. First, very small spheres experience very small horizontal
forces as the Rayleigh force strongly depend on sphere size (section 2.6.2). Sec-
ond, large spheres experience small horizontal forces as the evanescent field only
interacts with a very narrow cap of the sphere. is means that the incident angle
of the field is very large, close to tangential. For this reason, the incident field re-
flect off the surface with only a slight perturbation. us, very little momentum is
transferred to the sphere. e sphere diameters represented in the figure are bigger
than Rayleigh particles, but small enough to experience the field (as seen in figure
4.11 for a 1 µmdiameter sphere). For these spheres, the field can be refracted into,
or reflected back from, the sphere. us, momentum transfer to the sphere can
occur. e reflectivity from the air bubble is larger than from the glass shell, giv-
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Figure 4.10: Horizontal forces on solid spheres, and spheres with 0, 50, 100 and 250 nm
shell thickness as function of the sphere diameter. Solid glass spheres have a maximum
force near 3 µm, air bubbles have a maximum force near 1 µm, and the hollow spheres
have maxima between 1 and 3 µm. e resolution of the simulations is between 1 and
2 pN. e legend indicates the shell thicknesses in nanometers.

ing larger forces for the (more reflecting, less refracting) smaller spheres. e de-
creasing force for larger air bubbles and the force maximum for the 3 µmdiameter
sphere can be explained by looking at the gradient force. Imagining the spheres to
act as a micro-lenses for the incident field, the scattered field will be converging for
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the solid glass sphere and diverging for the air bubble. ese fields create a small
field gradient, positive for the converging and negative for the diverging field. From
Gaussian field optics, it is known that the narrowest focus occurs when the incident
field match the lens width. us, the strongest gradient force occur for the sphere
best matching the 3 µm width of the waveguide. For smaller and larger spheres,
the evanescent field ‘overfills’ or ‘underfills’ the sphere lens. us, the strongest
positive horizontal gradient force is experienced for the 3 µm diameter solid glass
sphere, and the strongest negative horizontal gradient force is experienced for the
3 µm diameter air bubble. No minimum is found for the air bubble though, as the
force decrease with sphere size, as discussed previously in this paragraph.

e same effect can be used to explain the horizontal force discrepancy between
FEM and Mie calculations shown in section 3.4.3. For forces calculated with Mie
theory, the width of the incident field is set to be infinite, and the ‘lens effect’ de-
scribed above is not seen.

For the hollow spheres, a combination of the air bubble and solid glass sphere ef-
fects takes place. Figure 4.10 shows the smallest forces for the spheres with 100 nm
thick shells and force maxima between 1 and 2 µm. Surprisingly, the shell thick-
ness needs to be much larger than the extent of the evanescent field to experience
the same force as the solid spheres. us, field perturbations from small cavities in
a sphere significantly influence the horizontal force.

4.5 Refractive Index Dependent Force Models

As seen in section 4.3.2, low-index spheres can be optically trapped on a waveguide
surface due to the evanescent field interacting mainly with the high-index shell.
is section will present two simple models which give a physical understanding
of when hollow spheres are attracted to the waveguide, and when they are not. e
model is based on the refractive index difference between the hollow sphere and
the surrounding medium. e results will be compared to results from the full
three-dimensional model.
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4.5.1 Weighted Refractive Indices

e refractive index of a hollow sphere is described in section 4.2.2. However, if
only parts of the sphere interact with a field, or if a field is non-uniform across
the sphere, the total refractive index can be calculated differently to better describe
the physical behavior of the sphere. By introducing a weighted refractive index,
only the interaction region shared by field and sphere is included. Two differ-
ent weighted effective indices will be described in the following to model a hollow
sphere on a waveguide surface. e first weighted index uses a step weighting func-
tion with height h. is corresponds to the evanescent field being approximated
by a weak, constant field with fixed height. e second weighted index uses an ex-
ponentially decaying weighting function. is gives a more precise approximation
of the evanescent field, being constant only in the lateral direction.

h 

T 
a 

x 

z 
e-kc(x+a) 

~+ 

Figure 4.11: Cross section along the waveguide showing a hollow glass sphere with radius
a and shell thickness T . e two evanescent function approximations are indicated. h
denotes the extent of the step weighting function and e−k̃

⊥
c (x+a) is the decaying weighting

function. e origin is set in the center of the sphere.

Step weighting function

Results from the stepweighting functionhave previously beendescribed byAhluwalia
et al. [2]. e approximation assumes a constant field with height hwhich only in-
teracts with the bottom cap of the sphere. e height h is defined from the decay
length of the field, e−1, at the center of thewaveguide. From section 2.3.1 in chapter
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2, this gives

E(x=h, y=0, z) = E(y=0, z)e−k̃
⊥
c h = E(y=0, z)e−1, (4.5)

such that
h =

1

k̃
⊥
c

=
1√

k∥2 − k2c
. (4.6)

eweighted index calculation is similar to the average index calculation, equation
(4.4). However, for the weighted index, only the cap region is considered.

e cap of a hollow sphere with radius a and shell thickness T have four distinct
weighted refractive index regions, depending on the height of the field h. e four
different categories are shown in figure 4.12.

h 

h ≥ 2a 2a ≥ h ≥ 2a-T 2a-T ≥ h ≥ T h ≤ T 

Vsphere 

Vcavity 

Vtop Vcap 

Vcavity-cap Vcavity 

Figure 4.12: e four categories describing the weighted indexwith a stepweighting func-
tion, showing the relation between sphere radius a, shell thicknessT and field heighth. e
refractive index for each case is given in equations (4.7), (4.8), (4.10) and (4.11).

In the first case, the whole sphere is covered by the field (h ≥ 2a). e weighted
index is simply the average refractive index of the whole hollow sphere, described
in section 4.2.2,

n
cap (1)
HS =

nshellVsphere − (ncavity − nshell)Vcavity
Vsphere

, (4.7)

where Vsphere and Vcavity are the volumes of the full sphere and the cavity, respec-
tively.

In the second case, the shell is partially covered, and the cavity is fully covered by
the field (2a ≥ h ≥ 2a− T ). e weighted index is then given by

n
cap (2)
HS =

nshellVtop + (ncavity − nshell)Vcavity
Vtop

, (4.8)
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with Vtop is the volume of the sphere covered by the field, shown by both the light
and dark diagonally shaded regions in figure 4.12,

Vtop =
4πa3

3
− π(2a− h)2

3
(3a− (2a− h)) . (4.9)

In the third case, both shell and cavity regions are partially covered by the field
(2a− T ≥ h ≥ T ). e weighted index is given by

n
cap (3)
HS =

nshellVcap + (ncavity − nshell)Vcavity-cap
Vcap

, (4.10)

where Vcap is the sphere region covered by the field, shown by both the light and
dark diagonally shaded region in figure 4.12, and Vcavity-cap is the cavity region cov-
ered by the field, shown by the light diagonally shaded region in figure 4.12,

Vcap =
πh2

3
(3a− h) and Vcavity-cap =

π(h− T )2

3
(3(a− T )− (h− T )) .

(4.11)

In the fourth case, the cavity does not experience the field, which only covers parts
of the shell (h ≤ t), and the weighted index is the same as the shell index,

n
cap (4)
HS = nshell. (4.12)

For a hollow sphere with radius a and shell thickness T in a field with height h,
the appropriate equation is found by choosing from (4.7), (4.8), (4.10), and (4.11).
is will be the weighted refractive index ncap

HS of the hollow sphere for the step-
weighting function.

Exponentially decaying weighting function

e exponentially decaying weighting function can be used if one assumes the ef-
fective index contribution to be proportional to the field strength. efield strength
is described by an exponentially decaying field with a decay constant k̃

⊥
c . e prin-

ciple of the decaying effective index calculation is the same as for the other effective
indices, with the exception of representing the outer (radius a) and inner (radius
a− t) weighted volumes with parameters B and C .

n
exp
HS =

nglassB + (nair − nglass)C

B
, (4.13)
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where the weighted volumes are found from the integrals in equations

B =

∫ a

−a

dx e−k̃
⊥
c (x+a)

∫ √
a2−x2

0

r dr
∫ 2π

0

dθ = π

∫ a

−a

dx e−k̃
⊥
c (x+a)(a2 − x2)

(4.14)
and

C =

∫ a−T

−a+T

dx e−k̃
⊥
c (x+a)

∫ √
(a−T )2−x2

0

r dr
∫ 2π

0

dθ

= π

∫ a−T

−a+T

dx e−k̃
⊥
c (x+a)

(
(a− T )2 − x2

)
. (4.15)

e integrals assume ahollow spherewith radiusa and shell thicknessT , an evanes-
cent field with decay constant k̃

⊥
c , and use cylindrical coordinates with origin in the

sphere center, as seen in figure 4.11.

Equations (4.14) and (4.15) are straightforward to solve using integration by parts,
resulting in the following expressions,

B =
2π

(k̃⊥c )3

{
ak̃

⊥
c − 1 + e−2ak̃

⊥
c

(
ak̃

⊥
c + 1

)}
(4.16)

and

C =
2π

(k̃
⊥
c )

3

{
e−k̃

⊥
c (2a−T )

(
k̃
⊥
c (a− T ) + 1

)
+ e−k̃

⊥
c T
(
k̃
⊥
c (a− T )− 1

)}
. (4.17)

Inserting the equations forB andC into equation (4.13) gives an expression for the
weighted refractive index. is weighted index only depends on the knowledge of
sphere radius, shell thickness, and decay constant. e decay constant can for ex-
ample be found from a two-dimensional simulation, giving the weighted refractive
index presented in section 4.5.2.

4.5.2 Transition Between Low and High Index Hollow Spheres

e transition between low- and high-index spheres exists for sphere indices which
are equal to the index of the surrounding medium. e boundary determines
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whether a sphere is attracted or repelled by an optical gradient, and thus if it can
be optically trapped.

e waveguide’s evanescent field only interacts with the bottom cap of a sphere.
us, the weighted function formulas derived in the previous section for refractive
indices can be used to give an estimate of the trapping properties of hollow spheres
by considering only radius and shell thickness data.

From two-dimensional simulations, the decay constant k̃
⊥
c is found to be1 14, and

the constant field height h is found to be 150 nm. Assuming glass shells with
nshell=nglass=1.5 and air cavities with ncavity=nair=1, the index equations depend the
sphere radius and the shell thickness. By setting the index equations equal to the
refractive index of water (nwater=1.33), equations (4.7), (4.8), (4.10), and (4.13) can
be used to find how the transition between high and low indices depends on sphere
diameters and shell thicknesses.

Figure 4.13 shows the transition lines for a hollow sphere fully covered in a uniform
field (dotted red, nHS), a hollow sphere partially covered by a uniform field (solid
black, ncap

HS ), and a hollow sphere partially covered by an exponentially decaying
field (dash-dotted black, nexp

HS ). e regions above the lines indicate high-index
spheres, while the regions below the lines indicate low-index spheres. e fig-
ure also shows the line of transition between floating and sinking spheres (dashed
blue), and the transition points from the three-dimensional FEM simulations (red
crosses, obtained from figure 4.7). As expected, hollow spheres with a thin shell
(large cavity) tend to be low-index, while spheres with a thicker shell tend to be
high-index. Figure 4.14 shows a close-up of the transition lines for small sphere
diameters, including more transition points from the FEM simulations.

e calculated transition lines show the weighted index models and the FEM sim-
ulations to have similar transition points. is supports the assumption that the
average refractive index in the intersection region between a field and an object can
be used to explain the boundary between attracted and repelled objects. e FEM
simulations consider spheres placed 25 nm above the waveguide surface. is has
not been taken into account in the refractive indexmodels. However, the transition
point is not expected to vary significantly due to the waveguide–sphere distance.

For large spheres (diameters above 250 nm), the transition value converges to a
shell thickness between 60 and 70 nm. is agrees with the aggregation of transi-

1e decay is found using intensity (|E|2) data.
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Figure 4.13: Regions of high- and low-index hollow spheres. e solid and dash-dotted
black transition lines represent the two weighted index functions (equation (4.13) and
equations (4.7), (4.8), (4.10), and (4.11)). e dotted red transition line represents the
average index of a hollow sphere fully covered by a constant field (equation (4.7), equal to
equation (4.4)). Transition points for the FEM simulations are shownwith red crosses. e
dashed blue transition line represents the transition between floating and sinking hollow
spheres. e values of the weighted index models both agree well with the finite element
results. Data from [2].
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Figure 4.14: Close-up of figure 4.13 showing the transition lines for small hollow spheres.
e exponential decaying model is seen to give slightly better agreement with the FEM
simulations in this region.

tion points for larger spheres seen in figure 4.14. However, spheres with diameters
larger than 0.6 µm have transition points in the region where they would be float-
ing. is would make it difficult to verify these transitions experimentally. Smaller
spheres are mostly covered by the evanescent field, which should give good agree-
ment between the FEM and weighted function transition points. However, there
is a small discrepancy, suggesting that the average refractive index model do not
fully explain the transitions.

e two weighted index models give very similar results. us, it is sufficient to
use the simpler step weighting function to find the trapping properties of hollow
spheres on waveguides. However, both these functions have only been tested on
spherical shapes. Findings in chapter 5 suggest that other geometries don’t give as
precise results with the weighted index methods. is is related to the fact that it is
the surfaces, not the volumes, that usually are responsible for the index gradients,
and will be discussed further in section 5.3.3.
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4.6 Comparing Simulations with Experimental Data

4.6.1 Calculated Velocities

e horizontal forces on the hollow spheres can be translated into steady state ve-
locities with Stokes’ law,

Fz = 6πµav, (4.18)

where µ is the viscosity of the fluid and v is the velocity of the sphere. However,
since the spheres are close to the waveguide surface, wall effects have to be taken
into consideration. Depending on the relation between sphere radius and sphere-
wall distance, corrections are given by O’Neill [82] and Goldman [83]. Goldman
discusses the case of spheres large relative to the distance to the wall, which is rel-
evant to the waveguide simulations. For non-rotating particles very close to the
wall, Goldman’s correction gives

Fz = 6πµav

(
8

15
ln
(
δ

a

)
− 0.9588

)
, (4.19)

where δ is the shortest distance from the waveguide surface to the sphere surface.
In the simulations, δ was chosen to be 25 nm to avoid too high mesh densities.
It is difficult to get a measure of the experimental δ, but as long as the sphere is
translated forward, and not rolling, the forward thrust will li the sphere slightly,
such that δ is non-zero, even if the waveguide strongly attracts the sphere.

Figure 4.15 shows the predicted velocities for solid and hollow spheres given by
equations (4.18) and (4.19), where the forces are found from the FEM simulations
results in figure 4.6. e simulation parameters have been set close to the exper-
imental parameters. Assuming 10 dB coupling losses, the waveguide power is set
to 0.15 W.

evelocities of the solid glass spheres in figure 4.15were calculated from the forces
found in figure 4.10. For the hollow spheres, the mean values of the sphere size
distribution in figure 4.3 was used to find representative experimental sphere di-
ameters and shell thicknesses. Forward forces corresponding to these sphere pa-
rameters were found by linear interpolation of the simulation results in figure 4.6,
and these forces were used to find the hollow sphere velocities in figure 4.15. e
shell thicknesses used for each diameter are noted in the figure.
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enear-wall corrected velocities are smaller than the pure Stokes law velocities for
both solid and hollow spheres. e glass spheres show velocity maxima between
1 and 3 µm diameter, and the hollow spheres show a decreasing velocity trend for
increasing sphere diameters. e shell thicknesses distribution in figure 4.3 does
not give data for spheres smaller than 2.5 µm diameter.
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Figure 4.15: Calculated velocities for solid and hollow spheres from the force simulations
using Stokes lawwith (black) andwithout (red) near-wall correction. enear-wall correc-
tion gives smaller velocities, but the general trend is similar for the different calculations.

4.6.2 Experimental Velocities

Figure 4.16 combines the experimental velocity data from figure 4.4 with the near-
wall corrected simulated velocities from figure 4.15. e magnitude of calculated
and observed velocities are found to be similar, but the trend of decreasing veloci-
ties for larger spheres is not seen in the experiments. Instead, the highest velocities
are found for the 6 µmdiameter solid spheres2 and the velocities are fairly constant
for the hollow spheres .

Differences between simulation and experiment could be due to unknown proper-
ties of hollow and solid spheres, such as different refractive indices, surface proper-

2e experimental velocities decreased for spheres with diameters above 6 µm.
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ties or shell thicknesses. For example, a lubricant was added to allow hollow sphere
trapping experiments, probably due to surface effects. However, the velocity in-
crease measured for larger spheres is significantly different from the simulation
results, as a large force increase would be necessary to overcome the drag forces
given by Stokes’ law. It is evident that some important parameter is not taken into
account by the simulations.
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Figure 4.16: Near-wall corrected calculated velocities plotted together with experimental
velocities for solid and hollow spheres. e waveguide power is 0.15 W for simulations
and experiments, where a 10 dB coupling loss have been assumed.

4.6.3 Force Ratio of Solid and Hollow Spheres

A different comparison between the simulations and experiments looks at the re-
lationship between the solid and hollow spheres. For a perfect model, the ratio
of the experimental velocity and the ratio of the simulated forces would be equal.
is makes the comparison less dependable on unknown parameters like guided
power, losses and systematic numerical errors, as well as uncertainties of the ve-
locity calculations. In the comparison, only 3, 5, and 6 µm diameter spheres will
be used.

e experimental data in figures 4.3 and 4.4 givemean velocity ratios between solid
and hollow spheres of 2.5, 3.2 and 3.2 for 0.51, 0.64 and 0.68 µm shell thicknesses
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and 3, 5, and 6 µm diameters, respectively. By comparison, the force simulations
in figure 4.6 give force ratios between solid and hollow spheres of 1.1, 1.3 and 1.7
for 0.5 µm shell thickness and 3, 5, and 6 µmdiameters, respectively3. ese ratios
confirm that there are differences between the solid and hollow spheres which the
simulations do not find. ese differences could be due to material properties, as
mentioned in section 4.6.2.

4.7 Conclusions

Optical trapping of hollow microspheres is challenging, and demands specific op-
tical designs to avoid repelling the low-index cavity inside the sphere. e short
reaching evanescent field above an optical waveguide only interact with the outer
cap of a sphere, and therefore can be used to trap and propel hollow spheres.

is chapter has shown, with finite element method simulations, how the optical
forces from the waveguide field depend on the shell thickness of a hollow sphere.
Spheres with very thin shells are repelled from the waveguide, as the evanescent
field interacts with the cavity. As the shell thickness increases, the attractive force
increases up to shell thicknesses of 0.5 µm, where it becomes stable.

e transition point between repulsive and attractive forces determine whether a
sphere can be trapped. For spheres larger than 1 µm diameter, the transition oc-
curs at a shell thickness of 65 nm. However, spheres smaller than 1 µm diameter
have transition points for thinner shells. e transition points can be explained
with refractive index calculations. Amodel is presented which looks at the average
refractive index in the interaction region of the field and the sphere. For an average
index lower than the surrounding medium refractive index, the sphere is consid-
ered low-index, and repelled from the waveguide. Conversely, if the average index
is higher, it is considered high-index, and will be optically trapped. Approxima-
tions for the evanescent field is done with two different weighting functions, which
both are found to give results comparable to the full FEM simulations. e mod-
els successfully predict the transition points, but some signs suggest that a better
model would consider the boundary surfaces interacting with the field instead of
the interacting hollow sphere volumes.

A sphere trapped on a waveguide also experiences forces in the horizontal direc-

3Note that the 6 µm sphere simulation might be unreliable due to the model’s large size.
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tion, being pushed along the waveguide surface. ese forces are more than one
order of magnitude smaller than the vertical forces, and difficult to simulate accu-
rately. e simulations show minimum horizontal force for about the same shell
thickness as the vertical force gave a transition point, indicating that for specific
shell thicknesses, the field pass almost uninterrupted through the sphere. is
trend is found for all the simulated sphere diameters.

e horizontal forces are used to compare the simulations with experimental re-
sults. Spheres trapped on a waveguide similar to the one in the numerical model
have been propelled, and their velocities registered. Stokes’ law with a near-wall
correction is used to calculate expected velocities from the force simulations. Ex-
perimental and calculated velocities have the same order of magnitude, but show
different dependencies on sphere diameter. e deviations could be due to un-
known sphere material properties. However, even the trend seen between sphere
diameter and velocity was not correctly predicted, suggesting that some other fac-
tor influences the spheres in the waveguide experiments.
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Chapter 5

Modeling Red Blood Cells on a
Waveguide

5.1 Introduction

Numerical analyses of scattering from red blood cells have been done for a long
time [84, 85]. More recent studies include simulations of optical forces on RBC in
optical traps [86], but little work has been done on forces from evanescent fields.
is chapter presents simulations of a red blood cell on a waveguide surface. Force
dependencies on cell refractive index and size have been studied for spherical RBC,
and results for spherical and disk shaped cells are compared. e first part of the
chapter describes red blood cells and optical studies of red blood cells in section
5.2. en, section 5.3 presents the numerical model and the results from the simu-
lations, and also compares the results with experimental velocities. Finally, section
5.4 sums up the findings in the chapter.

5.2 Red Blood Cells

e red blood cell (RBC, erythrocyte) is the most numerous cell type in human
blood. e cells are small, contain hemoglobin, do not have an internal structure,
and are used to transport oxygen throughout the body. RBChave a biconcave shape
(see figure 5.1) with a diameter of about 8 µm and a thickness that varies between
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0.5 and 2.5 µm [87]. RBC absorb light in the green spectral region, and optical
studies with RBC are usually done with red or near-infrared light to reduce photo-
damage.

In RBC studies done outside the body (in vitro), the cells are kept in solution.
Osmotic pressure differences between the cell and the solution cause the cells to
change shape. In hypotonic solutions, with a low ion concentration, living RBC
swell to a spherical shape and eventually burst. In hypertonic solutions, the ion
concentration is high, and the RBC shrink. In isotonic solutions, the ion concen-
tration of the solution is similar to that inside the cell, and the cell shape remains
unchanged. To study cells in vitro, an isotonic solution is preferable. However,
studies are oen done in slightly hypotonic solutions, such that the cells are spher-
ical. In vitro studies can also be done with fixed cells. Fixing is a procedure which
kills the cell, but prevents cell decay, and stabilize and strengthen the cell structure.
us, the shape remains constant in such studies.

Figure 5.1: A model of the biconcave shape of a red blood cell. e diameter across is
around 8 µm and the thickness varies from 0.5 to 2.5 µm.

5.2.1 Optical Red Blood Cell Studies

e important medical and biological properties of the RBCmake them a popular
study object. With the introduction of the optical tweezer, the RBC have also be-
come an important object in optical research. e tweezer is a good fit for the cells,
which are small and easily available. Combined with Raman spectroscopy, stud-
ies of both mechanical [88–90] and spectral [91–93] properties of single red blood
cells have been conducted. e studies have provided insight in both the physical
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and chemical properties of the cell, including cell deformability, cell elasticity and
cell hemoglobin concentration.

e refractive index ncell of a RBC is dependent on its hemoglobin content, and
thus gives both optical and biochemical information about the cell. In the litera-
ture, the value ranges from 1.376 to 1.43, with the most recent studies giving mean
values of 1.399 (measured with a wavelength of 514 nm) [94] and 1.418 (measured
at 663 nm) [87] for healthy cells.

Early studies of RBC scattering reported that their light scattering properties were
strongly affected by small changes in refractive index [84]. In addition, a correla-
tion between the cell’s hemoglobin content (osmolarity) and refractive index was
found [95]. A range of different optical techniques have since been used to study
RBC scattering and refractive index. In recent years, studies have looked at refrac-
tive index differences between deoxygenated and oxygenated hemoglobin [96] and
between healthy and unhealthy RBC, for example from people with diabetes [97]
or malaria [94].

5.2.2 Waveguide Trapping of Red Blood Cells

Trapping and propelling red blood cells onwaveguides have been done experimen-
tally by Gaugiran et al. [21] and Ahluwalia et al. [98]. Two challenges limit efficient
trapping and propulsion of cells on a waveguide. First, the small refractive index
difference ∆n between the cell and the surrounding medium makes the optical
forces smaller for cells than for higher-index dielectric objects. Stronger optical
gradients are needed to provide comparable forces. is is achieved experimen-
tally by using narrow waveguide cores with high refractive index. Second, live cells
tend to stick strongly to surfaces [99]. us, only non-adherent cells like RBC have
been trapped and propelled on waveguides. But RBC also stick to the waveguide
and substrate surfaces in most cell culture media. Ahluwalia [98] reported propul-
sion of RBC only in hypotonic water and isotonic sucrose solutions. Fixed cells are
less prone to sticking, and are oen used in experimental studies.

Potential applications for waveguide trapping can be cell transport, cell sorting and
cell elasticity studies. e strong dependence of scattering on index differences
suggests that small index differences can be revealed with waveguide trapping, ei-
ther by velocity differences or by trapping force differences (for example combined
with microfluidics, as done by Schmidt et al. [100]).
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5.3 Simulations of a Red Blood Cell on aWaveguide

e simulations presented in this section are similar to the ones presented in chap-
ter 4, and based on the theory described in chapter 3. Aer a brief introduction
of the numerical model in sections 5.3.1 and 5.3.2, the optical force dependency of
the cells’ refractive index, size and shape is presented in sections 5.3.3 and 5.3.4.
Finally, comparisons between simulation results and experiments are discussed in
section 5.3.5.

5.3.1 Cell model

Figure 5.2 shows the geometries of two numerical models of an RBC on a waveg-
uide. e spherical model (figure 5.2 a)) is used in most simulations since the the
mesh density requirements are lower than the disk model (figure 5.2 b)), thus re-
quiring smaller simulations. e spherical shape is a good approximation to cells
in a hypotonic solution, and is commonly used in RBC simulations. e spherical
model is used to study the optical forces dependency on refractive index. Spher-
ical models with diameters up to 6 µm have been modeled, corresponding to the
actual size of RBC in hypotonic solution. An ellipsoidal model was considered, but
the disk model was chosen as its shape better resembles the cell shape. However,
for studies of incremental changes in the cell shape, the ellipsoid model could be
suitable.

e shape of a living RBC (in isotonic solution) trapped on a waveguide is not
known. e gradient force from the evanescent waveguide field attracts the cell to-
ward the surface and the cell’s biconcave shape is altered. A reasonable assumption
is that the cell surface will be pulled close to the waveguide. us, a disk shaped
cell model (figure 5.2 b)) is used to approximate a RBC trapped on the waveguide.
Simulations have been run using a 4 µmdiameter and 1 µmthick disk shapedRBC
model.

In both the cell models, the cell is set 25 nm above the waveguide surface. is
gap is used to avoid extremely many small mesh elements in the region between
waveguide and cell, which would strongly increase the model size. For the disk
model, the gap region is large, and it will be seen in section 5.3.4 that this makes
these simulations susceptible to numerical mesh errors.

emedium surrounding the cells in the trapping experimentswas a 0.2 mol/L su-
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Figure 5.2: Two different cell models are used in the simulations. a) shows the mesh of
a 1 µm diameter sphere. b) shows the mesh of a 4 µm diameter disk. Both models use a
waveguide that is 3 µm wide and 0.2 µm thick. e mesh density on the disk surface is
denser than on the sphere surface. Other mesh parameters are similar in the two models.

crose isotonic solution with a refractive index nsucrose=1.345. is sucrose medium
was used in a previous numerical model [3], but the models presented here use a
pure water medium with refractive index nwater=1.33. By choosing a medium with
a lower refractive index, the index contrast is increased, and the calculated opti-
cal forces are stronger. is makes it easier to exceed the numerical noise level
(increase the resolution) for large models. It should be noted that this choice of
medium in some way justifies the use of a spherical model (hypotonic solution),
but compared to the experimental results in section 5.3.5, the calculated forces are
stronger than what the exact experimental parameters would give.

5.3.2 Mesh and Resolution

e precision of the numerical model is strongly dependent on the mesh density.
A dense mesh is necessary in regions and on surfaces with strong or changing field
values, as was described in section 3.2.2. In the RBC models, the mesh density is
set to a minimum of six points per wavelength inside and close to the waveguide.
is value varies with the refractive index of themedia. e cell surface close to the
waveguide is set to have a maximum mesh density of 55 nm to avoid too narrow
or too wide mesh element angles (see section 3.2.2).
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As described in section 3.4.2, the resolution, or numerical noise level, of the model
is found by simulating amodel with no refractive index difference between cell and
medium. e resolution is mesh-dependent, giving different values for different
cell diameters, since the mesh pattern changes when the model geometry changes.
When studying refractive index changes without changing the cell size, the mesh is
similar for all indices. us the resolution is the same for all these simulations. Like
the hollow sphere simulations (section 4.4), the force offset given by a specificmesh
is subtracted from the force calculated for the models using that specific mesh.
For the vertical force, the subtracted force offsets (resolutions) range from 0.7 pN
for small cells to 6 pN for big cells. For the horizontal force, the subtracted force
offsets range from 0.2 pN for small cells to 1 pN for big cells. e horizontal force
resolution of the disk model is very low, and will be discussed in more detail in
section 5.3.4.

5.3.3 Vertical Forces

Figure 5.3 shows simulated vertical forces (x direction) for an RBC on a waveguide
in water medium. For the sphere model, results for diameters up to 6 µm and
refractive index differences∆n between 0 (ncell=1.33) and 0.17 (ncell=1.5) are given.
For the 4 µmdiameter diskmodel, results for refractive index differences∆n=0.05
(ncell=1.38) and∆n=0.07 (ncell=1.4) are given. For the∆n=0.05 results, forces from
four different disk meshes are plotted (not distinguishable in the figure).

As expected from the hollow sphere results given in chapter 4, the direction of the
force in the plot is negative, meaning that the cells are pulled toward the waveg-
uide. For the sphere model, the forces increase with refractive index difference
and sphere size. e disk model results, plotted with rings, show that the disks
experience markedly stronger forces than the spheres. For the disks, a refractive
index difference of 0.02 increases the force with more than 250 pN1. us, for the
disk model, the force is strongly sensitive to index changes. For the sphere model,
this effect is weaker.

e simulation results in chapter 3 suggested that only the part of the sphere surface
interacting with the field contributes to the force. is means that the main contri-
bution to the forces is the sphere cap region 150 nm above the waveguide surface.
is can be used to explain why the force increases for larger sphere diameters.

1Too few data points are found to describe the force as a function of the refractive index.
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Figure 5.3: Calculated vertical forces on spherical and disk shaped cells as function of
refractive index difference between cell and medium. e forces are increasing with re-
fractive index difference and with cell size. e calculated force offset (resolution) have
been subtracted from each simulation.

When the diameter increases, the sphere surface area and sphere volume interact-
ing with this field also increases. ere is good agreement between the increases in
size and vertical force, as shown in figure 5.4. In the figure, the cap surface area2 is
compared to the vertical force for each sphere diameter. e surface area and the
force are normalized with respect to their values for the 6 µmdiameter sphere. For
a thin cap (i.e. a large diameter or a thin evanescent field), the sphere cap volume
and sphere cap surface area have the same dependency on sphere diameter, such
that the same agreement with the force holds for the cap volume.

For the diskmodel, the surface area close to the surface is not similar to cell volume
close to the waveguide. Comparing the 4 µm diameter disk with the 4 µm diam-
eter sphere, the surface area ratio within 150 nm above the waveguide surface is
5.4, while the the volume ratio is 10.4. e force ratio between the sphere and the
disk is 5.8, similar to the surface area ratio. is suggests that it is the surface area
interacting with the field that determines the optical forces, not the sphere volume
interacting with the field. is result is confirmed by the physical understanding
of the force, which states that the index gradient is responsible for the force (see
for example equation (2.65)). e only index gradient in the cell model is at the
surface. is suggests that the average index calculations in chapter 3 are not ap-

2e cap surface area is defined as the sphere surface up to 150 nm above the waveguide.
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plicable to geometries with large differences between surface area and volume in
the region close to the waveguide.
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Figure 5.4: Force (red) and sphere cap surface area (black) shows the same trend for the
sphere diameters used in the RBC simulations. e data points have been normalized by
their respective values for the 6 µm diameter sphere.

5.3.4 Horizontal Forces

Figure 5.5 shows the simulated horizontal forces (z direction) of an RBC on a
waveguide in water medium. Cell sizes and refractive index differences are the
same as presented for the vertical force simulations, with sphere diameters ranging
from 2 to 6 µm diameter and refractive index differences ranging from 0 to 0.17
and a 4 µm diameter disk with refractive index differences ∆n=0.05 (four differ-
ent meshes), and ∆n=0.07. As before, the force offset has been subtracted from
the results. e calculated forces on the spherical model are discussed first.

Sphere

Similar to the hollow sphere simulation results in chapter 4, the horizontal forces
are more than one order of magnitude smaller than the vertical forces, with 3 and
4 µm diameter spheres giving the strongest forces (the pink dash-dotted and cyan
dashed lines in figure 5.5). e lens effect argument used for the hollow spheres
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Figure 5.5: Horizontal forces on spherical (crosses) and disk shaped (rings) cells for re-
fractive index differences between 0 (ncell=1.33) and 0.17 (ncell=1.5). Simulations with four
different meshes are shown for the disk model at ∆n=0.05. Each simulation series have
been normalized such that the force is zero for∆n=0.

can be used again to explain this maximum, as the strongest gradient occurs when
the sphere size matches the width of the waveguide (i.e. the evanescent field).

For small index differences, the forces are very small. Figure 5.6 gives a closer look
at the refractive index differences between 0 and 0.08. e two figures show that
there is an exponential increase of force with the index difference. A quadratic
dependence on small index differences is given for small spheres. is can be seen
from the Rayleigh force equation in the evanescent field from chapter 2,

Fscat =
neff

c
sI(r) =

4π

3
n2
effϵ0(k

∥a)4a2
(
(np/nc)

2 − 1

(np/nc)2 + 2

)2

|E(r)|2ẑ, (2.95)

wherenp is set to the cell refractive indexncell andnc is set to themedium refractive
index nwater. For small refractive index differences, the Clausius-Mosotti factor in
the equation can be shown to be proportional to to∆n,(

(ncell/nwater)
2 − 1

(ncell/nwater)2 + 2

)
=

(
(1 + ∆n/nwater)

2 − 1

(1 + ∆n/nwater)2 + 2

)
≃
(

2∆n/nwater

3 + 2∆n/nwater

)
≃
(

2∆n

3nwater

)
, (5.1)
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Figure 5.6: Close-up of figure 5.5 for refractive index differences between 0 (ncell=1.33)
and 0.08 (ncell=1.41). Each simulation series has been normalized such that the force is
zero for∆n=0.

where quadratic terms in ∆n were dismissed at the third step, and it is assumed
that ∆n/nwater≪1 at the last step. In equation (2.95), the Clausius-Mosotti fac-
tor represents the polarizability of an isotropic dielectric. Implementing equation
(5.1), it can be seen that the force for small spheres has a quadratic dependence on
small refractive index differences.

Looking more closely at the plots in figures 5.5 and 5.6, it can be seen that the hor-
izontal force for smaller spheres increases more quickly than for the larger spheres
up to an index difference of about 0.09. From that point on, the larger spheres
catches up. Specifically, it can be measured (not shown in the figure) that the force
for the 2 µm diameter sphere is proportional with (∆n)2.7, the 4 µm diameter
sphere is proportional with (∆n)3 and that the 6 µm diameter sphere is propor-
tional with (∆n)4. is indicates that the growth increases with sphere size. is is
reasonable, as more of the sphere is interacting with the evanescent field when the
diameter increases. us, the quadratic increase from the refractive index change
is combined with an increase in the intersection region of the field and the cell.

To see how much the refractive index influences light scattering, figure 5.7 illus-
trates the propagating field above the waveguide surface. e field in a cross sec-
tion along the center of the waveguide structure is plotted for index differences of
∆n=0.05 (ncell=1.38) and∆n=0.12 (ncell=1.5) for 2 µmand6 µmdiameter spheres.
e magnitude of the field is enhanced 100 times to reveal the weak evanescent
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field outside the waveguide core. For the larger sphere, the field propagates along
almost the full circumference. If the field was coupled all the way, a standing wave
could arise inside the sphere. Such resonances are calledwhispering gallerymodes.
ese modes are the cause of the resonances seen in Mie scattering. As the largest
simulated spheres are 6 µm diameter, the figure indicates that no such resonances
occur in the size range of the simulations. Jaising’s Mie calculations [44] confirm
that resonances starts occuring for larger diameters.

6μm 
Δn=0.05 

6μm 
Δn=0.12 

2μm 
Δn=0.12 

2μm 
Δn=0.05 

Figure 5.7: e field scattering is much stronger for higher index spheres, giving much
stronger forces. 2 and 6 µm diameter spheres with refractive index differences of 0.05
(ncell=1.38) and 0.17 (ncell=1.5) are plotted. e magnitude of the field is enhanced 100
times to reveal the weak scattering.

Disk

e disk simulation results are plotted with rings in figure 5.5. e four different
meshes at ∆n=0.05 were adjusted by increasing the mesh density inside the disk.
However, the results did not converge with increased model size. us, the nu-
merical resolution of the disk model is presumably too low to calculate accurate
horizontal forces within reasonable memory use (up to 40 computer nodes, each
with 16GB memory). e reason for the low accuracy is the 25 nm thin layer be-
tween the disk and the waveguide, as explained in the following paragraphs.
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e forces in on the disk are found by summing up the stress over the whole disk
surface. e stress components in each direction (as introduced in section 3.3.2)
are plotted for a ncell=1.4 disk in figure 5.8. e stresses are seen on the bottom disk
surface in vertical (Tx), lateral (Ty), and horizontal (Tz) directions. e red stress
values are positive, and the blue stress values are negative.

By enhancing the values of the stress in the horizontal direction Tz , the reason for
non-converging forces becomes apparent. Figure 5.9 plots the stresses enhanced
1000 times, seen from the front, side, bottom and end of the disk. e horizontal
force is a sum of large positive and large negative values, and is thus sensitive to the
unexpected variations seen at the bottom surface. e region subject to the large
variations is the 25 nm thin layer between disk and waveguide. e mesh in this
region is not sufficiently dense to describe the field across the region. For the sphere
model, this region is very small, and does not contribute to low quality mesh and
numerical errors. e vertical force on the disk is also affected by the mesh quality,
but is not as sensitive to the noise since the relative error is very small.
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Figure 5.8: Stress distribution on the disk in vertical (Tx), lateral (Ty) and horizontal (Tz)
directions. e upper row shows the disk from the bottom, the bottom row shows the disk
from the side (le and right figure) and from the front (center figure). e local stress
values range from -850 (blue) to +850 (red) N/m2.
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Figure 5.9: Stress distribution on the disk in the horizontal direction seen from the front,
bottom, back and side. Low quality mesh elements in the narrow region between the disk
and the waveguide lead to incorrect field propagation and numerical noise. emagnitude
is enhanced 1000 times compared to figure 5.8 to reveal numerical noise at the bottom
surface.
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5.3.5 Red Blood Cell Trapping Experiments

In their experiments, Ahluwalia et al. [98] describe RBC propagation velocities of
between 0.5 and 1 µm/s on 3 µmwide tantalum pentoxide waveguides in sucrose
solution with 1000 mW input power. e paper also gives a velocity ratio of 1.38
between cells in water and cells in sucrose solution using 1000 mW input power
on 10 µm wide waveguides, and a velocity ratio of 1.33 between cells on 3 µm
and 10 µmwide waveguides. A linear extrapolation of these values gives expected
velocities for RBC inwater on 3 µmwidewaveguides of between 0.9 and 1.8 µm/s.

For the 6 µm diameter spherical cell model with refractive index n=1.41, the sim-
ulated horizontal force of 0.73 pN corresponds to a velocity in water of 4.13 µm/s,
using the near-wall correction of Goldman [83] presented in section 4.6. e cal-
culated velocity assumes a waveguide power of 1000 mW, and does not consider
any losses. Experiments suggest losses giving about 10 dB power decrease, leading
to a velocity of 0.41 µm/s.

e higher experimental velocity may be due to the refractive index of the cell
membrane, which may have a higher value than the cell interior. is has not been
considered in the simulations. A difference between cell mean refractive index
and membrane refractive index have been found in liver cells [101], but such a
difference has not been reported for RBC. A better explanation for the velocity
discrepancy can be grounded in the cell shape. When the cell is attracted to the
waveguide surface, its shape changes. us, a larger part of the cell interacts with
the evanescent field, leading to a stronger horizontal force. e disk shaped cell
model attempted to simulate this situation. As seen in the horizontal force results,
such calculations were not successful, and the explanation cannot be confirmed.
A last argument for the velocity difference is the unknown distance between the
cell and the waveguide. If the RBC were closer to the surface than 25 nm, the cell
would interact with a larger, and stronger, evanescent field. e calculations would
then give increased horizontal forces. On a last note, the focusing effect seen for the
spherical cell would contribute less to the the disk shaped cell. us, themaximum
seen for the 3 to 4 µm diameter spherical cell would presumably not be seen for
the disk shaped cell.
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5.4 Conclusions

Numerical simulations have been performed on spherical and disk shaped red
blood cells interacting with the evanescent field of an optical waveguide. Verti-
cal and horizontal forces were derived as a function of cell refractive index and cell
size. e disk cell model is half as long as a real red blood cell. However, since the
cell in the simulations fully covers the waveguide width, qualitative results should
be similar to those for real cells.

e simulations show that a strong vertical force attracts the cell toward the waveg-
uide. is presumably leads to a deformation of the cell geometry. e vertical
force increased with both cell refractive index and size. e size dependency was
found to be proportional to the amount of surface area inside the evanescent field
since the refractive index changes occur at the surface only. In addition, a disk
shaped cell experienced significantly stronger vertical forces and showed high sen-
sitivity to refractive index changes.

e horizontal forces were found to be very weak for small index differences, and
more than one order of magnitude smaller than the vertical forces. A power law
dependence on refractive index was found for the cell–medium index differences,
with a quadratic dependence for Rayleigh particles and higher powers for larger
sphere diameters. is relation can be explained with the polarizability depen-
dence (Clausius-Mossotti factor) of forces on Rayleigh particles together with the
increasing interaction between sphere surface area and evanescent field for larger
spheres.

emodeled geometries are large compared to thewavelength of the field, and thus
computationally intensive. In the simulations, up to 640GB ofmemory distributed
on 40 computer nodes were used. Still, for the disk-shaped cell model, horizontal
force calculatioins did not converge. e stress on a modeled disk revealed that
this was due to a low quality (too coarse) mesh in the narrow region between the
cell and the waveguide. By integrating the stress tensor around the object surface,
the horizontal force results from the difference between two very large numbers.
us, a more precise mesh, outside the available computational power, is required
for accurate simulations.

By comparing velocities calculated from the horizontal forces with experimental
velocities of cells, it is found that the calculations underestimates the velocity. is
can be due to a cell membrane index larger than the average cell index used in the
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simulations, but more likely is due to the experimental cell shape being different
from the spherical cell model.
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Chapter 6

Principles of Raman Scattering

6.1 Introduction

In a light scattering event, the incident light interacts with the electron distribution
in the target molecule. However, this interaction is not an absorption-emission
process. When the light scatters, the energy of the field is not high enough to per-
manently excite electrons to higher energy levels. e field instead interacts with
the lower energy vibration and rotation levels in the molecule. is involves the
movement and position of the atom nuclei relative to the electrons, a fairly com-
plex system. A basic description of the interaction can explain the process by intro-
ducing a temporary energy state and only considering the electrons’ energy levels.
When light is scattered without any change of energy, it is called elastic or Rayleigh
scattering. is is by far the most common scattering event. When the scattering
is inelastic, the scattered light gain or lose energy to the molecule. is is called
Raman scattering.

In 1878, Lommel [102] calculated inelastic scattering using classical theory. His
treatment was based on a wave incident on a vibrating molecule, where the vibra-
tion induced sum and difference frequencies in the wave. However, inelastic scat-
tering was not described specifically until the early 1920’s by Sir C. V. Raman [103].
Raman then considered this to be an optical analogue to X-ray Compton scatter-
ing. Experimental results from his lab were presented in a series of publications
in 1928 [104–108]. At this time, Raman acknowledged the need for quantum me-
chanical principles for a proper description of the phenomenon. Incidentally, in
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the period between 1923 and 1928, important works on the quantum theoretical
principles of light-matter interaction were published by A. Smekal [109], H. A.
Kramers and W. Heisenberg [110], E. Schrödinger [111] and P. A. M. Dirac [112].
A summary of the theoretical developments was given by Breit shortly aer [113].

Chapters 7 and 8 present experiments that use Raman scattering for sample anal-
ysis. is chapter provides a background on Raman scattering theory. It will not
give a complete description of the theory, but presents general results following the
semi-classical introductions of G. Glockler [114], and J. Brandmüller et al. [115],
which both refer to the full theory given by G. Placzek [116]. e first part of the
chapter briefly describes how the scattered light intensity relates to a molecule’s
dipole moment. en, a very brief introduction to some quantum mechanical
principles is given. e last part of the chapter treats the scattered light intensity
in the context of a quantum mechanical dipole moment.

6.2 Scattering From a Dipole

6.2.1 e Dipole Moment

e charge distribution in a molecule is perturbed by any incident electrical field
E. When the wavelength of the field is much larger than the molecule, the field can
be treated as uniform and static across themolecule1. e change of the charge dis-
tribution affects both the polarization α and the dipole moment p of the molecule,
and influences the scattered field2. e polarizability relates the dipole moment to
the field as

p = αE = α
(
E0e

−ȷ2πν0t + E∗
0e

ȷ2πν0t
)
, (6.1)

when the incident field is considered to be monochromatic with frequency ν0. In
the case of non-isotropic molecules, α takes the form of a tensor.

For an isolatedmolecule (gas) without permanent dipolemoment, interacting with
a monochromic, harmonic field, the scattered dipole radiation is found to have a

1As the field energy is much lower than the electron energy, the field frequency is much slower.
us, the field can be considered constant.

2In general, contributions from higher order moments are also involved, but only the dipole
moment is considered here.
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total intensity (Born &Wolf [10], section 2.3)

I =
2

3c3
⟨p̈⟩ (6.2)

far from the dipole, where ⟨p̈⟩ is the time average of the twice time differentiated
dipole moment. e theory of field-matter interaction can be used to derive the
dipole moment, and thus lead to a description of the scattered radiation. As men-
tioned previously, quantum mechanics is necessary to further develop the theory.

6.2.2 Principles of QuantumMechanics

Quantum mechanics describe the physics of atoms and molecules using systems
with discrete energy levels. Any configuration, or state, of the physical system is
then described with a wave function. e wave function is found as a solution of
the Schrödinger equation, which describes the energy properties of the system. e
condition of the system cannot be known exactly, but is described with a probabil-
ity distribution. For example, the probability of some parameter N to move from
discrete state k to discrete state n in a system is described by a distribution given
by an integral involving the wave functionsΨk andΨn of the two states,∫

Ψ∗
k NΨn dτ, (6.3)

where ∗ implies the adjoint of a function and τ are the spatial coordinates. e inte-
gral in itself represents the probability amplitude of the quantum transition. In the
following, a time-dependentwave function is denotedΨ, while a time-independent
wave function is denoted ψ. e properties of quantummechanics will not be dis-
cussed further.

6.2.3 Dipole Perturbations

e incident field’s perturbation of the molecule vibration induces a change in the
molecule’s electric moment. A modified Shrödinger equation can be used to find
the new wave functionΨ′. If the molecule initially is in state k with energyEk, the
electric moment can then be described by [114–116]∫

Ψ′
kpΨ

′
n dv = p(0) + p(1) = p(0) + Ekne

−ȷ2π(ν0+νkn)t, (6.4)
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when the molecule ends up in state n with energy En. e term p(0) contains the
permanent dipole moment and terms for spontaneous emission, and the last term
describes the electric moment involved in Raman scattering, with

Ekn =
∑
r

{[
|E0|

∫
(ψ∗

kpψr) dv
]
·
∫
(ψ∗

rpψn) dv
hνrk − hν0

+∫
(ψ∗

kpψr) dv ·
[
|E0|

∫
(ψ∗

rpψn) dv
]

hνrn + hν0

}
. (6.5)

In the expression for Ekn, r represents all quantum states in the molecule different
than k and n, |E0| is the amplitude of the incident field, and νkn=(Ek − En)/h
is the frequency shi of the field, where h is Planck’s constant. e functions ψ
represents the wave function of intermediate, initial and final quantum states r, k
and n.

Equation (6.5) shows that Raman scattering occur when both the initial and final
state have a possible transition to a common intermediate state (both ψ∗

kpψr and
ψ∗
rpψn are nonzero). Only then can energy be transferred from the molecular vi-

bration to the incident field. If one of the integrands are zero for all intermediate
states r, no scattering occur in the transition between k and n.

6.2.4 Rayleigh Scattering

If the initial and final state are the same (k=n), the scattered field has the same
energy and the same phase as the incident field (νkn=0). is is the Rayleigh scat-
tering. Rayleigh scattering only requires a possible transition between the original
state and an intermediate state, and is thus the most common scattering.

6.2.5 Scattered Intensity

By introducing the last term from equation (6.4) into equation (6.2), the intensity
of the field scattered from the molecule can be found. is procedure mix clas-
sical and quantum mechanical equations, but it can be shown [115] that this is a
valid approximation, giving the same results as if the field was quantized. e total
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spatially averaged scattered intensity from state k to state n is then [115, 116]

Ikn =
26π4

3c4
(ν0 + νkn)

4 |Ekn|2 . (6.6)

6.2.6 Stokes and Anti-Stokes Scattering

If the initial state is at a lower energy level than the final state, the frequency of the
scattered field decreases. is is called Stokes scattering. Conversely, if the initial
state is at a higher energy level than the final state, the frequency of the scattered
field increases. is is called anti-Stokes scattering. Stokes scattering usually dom-
inate the scattering, as most occupied states are at a low energy level. Increasing
the temperature of the matter increase the population of higher level states, and
thus the amount of anti-Stokes scattering.

6.2.7 Uniqueness

As the energy levels are unique for all molecules sharing the same structure, Ekn

and νkn are specific to one molecule geometry. us, the scattering signature is
unique for different molecules. is can be used to recognize molecules and, by
looking at the intensity distributions, to study the internal properties of amolecule.

6.2.8 Polarizability

Equation 6.5 shows that Raman intensities depend on the interaction between the
electric moment and the quantum states. As stated in equation (6.1), the induced
electric moment depends on the polarizability of the molecule∫

ψkp
(1)ψn dτ = E

∫
ψk(q)

(
αxixj

(q)
)
ψn(q) dq, (6.7)

where q is the displacement in the vibrating molecule. From equation (6.7), the
intensity can be expressed using the polarizability tensor [116, 117]

Ikn =
27π5

32c4
I0(ν0 + νkn)

4
∑
xi,xj

∣∣(αxixj

)
kn

∣∣2 , (6.8)
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where xi and xj are spatial dimensions, and the polarizability tensor is expressed
as

(
αxixj

)
kn

=
∑
r

{[∫
(ψ∗

kpxi
ψr) dv

]
·
∫
(ψ∗

rpxj
ψn) dv

hνrk − hν0
+∫

(ψ∗
kpxi

ψr) dv ·
[∫

(ψ∗
rpxj

ψn) dv
]

hνrn + hν0

}
. (6.9)

Describing the Raman scattering is thus dependent on finding the transition prob-
abilities (integrals) in equation (6.9).

6.2.9 Molecule Symmetry

Solutions to the Schrödinger equation find that wave functions ψ are Hermitian
functions, and that almost all allowed transitions are by only one quantum num-
ber (n=k ± 1). Hermitian functions are odd for odd numbers and even for even
numbers, such that the product of two ’neighboring’ functions always is an odd
function. For the integral on the right hand side in equation (6.7) to be nonzero,
the polarizability component also needs to be an odd, or antisymmetrical, function
of q. is means that the symmetry properties of a molecule and the molecule’s
vibrations are fundamental in determining the Raman scattering properties. G.
Glockler [114], J. Brandmüller et al. [115] and Ferraro et al. [118] generalize and
discuss such properties. For this introduction it is sufficient to mention that when
the derivative of the polarizability at the center of the vibration is nonzero, the vi-
bration is Raman active, (i.e. can cause inelastic scattering).

As an example, figure 6.1 shows one Raman-active and one Raman-inactive vi-
bration in the linear CO2 molecule. e polarizability of the two vibrations are
shown on the side with a polarizability ellipsoid, which represent the polarizability
with 1/

√
α in each spatial direction. e polarizability ellipsoid shows how eas-

ily the molecule aligns with a field, with the narrow dimensions corresponding to
ease of alignment. In the figure, the bending vibration on the le gives a symmetric
polarizability change about the centre position of the vibration, and thus is Raman-
inactive. e stretching vibration on the right gives an asymmetric polarizability
change about the centre position of the vibration, and thus is Raman-active. All
vibrations in a molecule need to be considered when the Raman spectrum is inter-
preted. For complex molecules, this is difficult, but the process can be somewhat
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simplified by classifying the molecular symmetries using group theory. is is de-
scribed thoroughly in for example the text book of Ferraro et al. [118].

q+ C O O C 
O O 

q0 C O O C O O 

q– C O O 
C 

O O 

α–1/2 Vibration Vibration Position α–1/2 

Figure 6.1: Two vibrations in the linear CO2 molecule, with corresponding polarizability
ellipsoids.
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Chapter 7

Quantitative Study of Cell
Proliferation Using Raman Probes

7.1 Introduction

is chapter describes an experiment that tracks a Raman-activeDNAprobe as it is
incorporated into, and travels frommother to daughter cells in non-adherent cells.
e experimental setup combines Raman spectroscopy and optical tweezers, and
the results provide data on how fast the cells replicate, or proliferate. Techniques
that measures cell proliferation are called proliferation assays, and Yamakoshi et
al. [119] were the first to perform this Raman specific assay in 2011. is study
looks at quantitative properties of the assay. e experiment was performed at
Center for Biophotonics (CBST) atUniversity of CaliforniaDavis in a collaboration
withomas Huser, Deannaompson and Ana Popovich.

e dedicated Raman tweezers system at CBST achieves much stronger Raman
signals than the setup presented in chapter 8. Combining the level of sensitivity
achieved at CBST with optical waveguides should enable for example rapid cell
sorting experiments based on cell proliferation. e results in these two chap-
ters demonstrate the feasibility of such experiments in the future. However, the
combination of waveguide sorting and an optimized Raman setup has not been
demonstrated.

e chapter starts out with a section on cell proliferation and measurements of
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cell proliferation. Sections 7.3 and 7.4 then describe the experimental properties,
procedure and data handling, and the measurement results. Finally, the results are
discussed and conclusions are given in sections 7.5 and 7.6.

7.2 Cell Proliferation Assays

Cell proliferation is studied to understand basic cell biology, and to see how cells re-
spond to different external influences. One method of measuring cell proliferation
is to introduce a label molecule into the DNA and follow the label concentration
over time. e results provide information on the proliferation properties of the
cell. Such measurement procedures are called proliferation assays.

e label molecule is brought into the DNA by modifying the nucleosides in the
growth medium. e cell incorporates the labeled nucleosides in the DNA during
DNA replication. Different measurement techniques are used to detect different
labels, for example radioactive, fluorescent or Raman active labels.

e following three parts first describe cell replication and cell death and then de-
scribe different proliferation assays and their differences. e fist part is central
to get an understanding of the results described in section 7.4, while the last part
provides a background to the experimental procedure.

7.2.1 Cell Replication and Cell Death

Cells replicate by division. Before a cell splits into two new cells, a copy of its DNA
molecule is produced. e new DNA is assembled with building blocks called nu-
cleosides which are present in the growth medium surrounding the cell1. e di-
vision, or mitosis, is the last part of the cell’s life cycle. To prepare this process,
the cell goes through a growth phase, a DNA replication phase and a new growth
phase, aer which it is ready to divide. e two new cells then proceed with their
own, equivalent cell cycles. e time a cell uses to complete a cell cycle is called the
replication time, indicating the rate of replication. In addition to the mentioned
phases, the cell can enter a stable phase of rest (a quiescent state). Given the right
conditions, a quiescent cell can return to the ordinary cell cycle [120].

1Inside the DNA molecule, the nucleosides are connected with phosphate groups. e nucleo-
side coupled to the phosphate group is called a nucleotide.
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When the DNA replicates, the two DNA strands in the mother cell separate and
become templates for new DNA strands, as sketched out in figure 7.1. Nucleo-
sides are paired with matching nucleotides on the strands to create two new sets of
DNA. Four nucleosides exist in DNA, adenine (A) which matches with thymidine
(T), and cytosine (C) which matches with guanine (G). Section 7.2.3 describes a
molecule similar to thymidine called EdU (5-ethynyl-2’-deoxyuridine). As these
two molecules are similar, both can possibly be matched with the adenine nu-
cleotide on an original DNA strand. e two new DNA strands incorporates an
amount of EdUcorresponding to theEdU to thymidine ratio in the growthmedium.
e original DNA strands from the mother cell do not change during the replica-
tion.
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G 

C T A EdU 

G 
A 

T 
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Figure 7.1: DNA replication. emother cell’s two DNA strands (represented by the long
straight lines) are connected with pairs of nucleotides. During DNA replication, enzymes
in the cell separate the nucleotide pairs (right) and attach matching nucleosides from the
growth medium to the each separated strand. ymidine (T) or EdU match with adenine
(A), cytosine (C) match with guanine (G). is process creates two copies of the mother
cell DNA, each copy with one old and one new DNA strand.

Cancer cells divide indefinitely when their living conditions allow it. Ideally, the
number of cells would double aer each replication period, such that N cells be-
come N · 2i cells aer i replications. However, the living conditions influence the
cell growth. If nutrient supply is impaired, the proportion of replicating cells can
decrease, the replication time can increase, and the proportion of cell death can
increase (chapter 7 in [121]).

It is not obvious to point out exactly when a cell is dead. One definition of cell
death is that the cell permanently loses all proliferation capacity [121]. is loss
can be brought on in one of four different ways, apoptosis, autophagy, necrosis and
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senescence. Apoptosis is controlled cell death, were the dying cell is disassembled
by other cells. Autophagy is a kind of self-eating, which can occur when the envi-
ronments are lacking nutrients. Necrosis is death from external influences (strong
injuries). Finally, senescence is an age-related death which leads to an inability of
the cell to divide. e cell’s senescent state can last for a long time.

7.2.2 Tritiatedymidine and BrdU

Traditionally, the label molecule in proliferation assays has been attached to the
thymidine nucleoside. is results in a molecule called a thymidine analogue. Fig-
ure 7.2 shows the structure of the thymidine molecule. e two most commonly
used thymidine analogues have been tritiated thymidine and BrdU (5-bromo-2’-
deoxyuridine).

In tritiated thymidine, the hydrogen atoms in the thymidine molecule are replaced
with tritium atoms (3H), and the label concentration is measured with autoradio-
graphy. e tritiated thymidine was first used in the late 1950’s [122] and has been
a very common proliferation assay since. However, tritium is radioactive and it is
time-consuming to analyze the tritium concentration.

In BrdU, themethyl group in thymidinemolecule is replaced with a bromine atom,
and the label concentration is measured with fluorescence microscopy aer a flu-
orophore has been attached to the bromine location. As the BrdU assay is quick
to analyze and non-radioactive, it has become the more common technique in re-
cent years [123]. Unfortunately, the bromine atoms slightly change the structure of
the DNA, changing cell behavior. In fact, both tritiated thymidine and BrdU have
been found to be toxic for the cell in vivo [124]. is means that the results found
in these proliferation assays are more accurate for DNA replication measurements
than for cell division measurements.

7.2.3 EdU

e amount of BrdU in the DNA is measured by fluorescence microscopy. To de-
tect fluorescence, it is necessary to fix the cells and attach fluorescent antibodies
to the bromine atoms. However, access to the bromine atoms for the antibodies
is blocked by the double helix structure of the DNA, and strong chemicals need
to be used to reveal the bromine in the DNA structure in the fixed cells. To avoid
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Figure 7.2: EdU (5-Ethynyl-2’-deoxyuridine) and thymidine molecule structures. e
methyl group of thymidine is replaced with an alkyne in EdU.

the use of these chemicals, a slightly different assay was developed by Salic and
Mitchison [125]. Instead of BrdU, EdU (5-ethynyl-2’-deoxyuridine) is used. is
is a thymidine analogue where the methyl group is replaced with an alkyne. Figure
7.2 shows the structure of EdU next to the structure of thymidine.

Similar to the BrdU assay, fluorescentmolecules are used tomeasure the amount of
EdU in the DNA. But instead of using antibodies, fluorescent azides2 are attached
to the alkyne labels in a so-called “click” chemistry reaction3. is is a sensitive and
fast reaction, and since the fluorescent azides are much smaller than the antibodies
used in the BrdU assay, they are allowed into the double helix structure, and the
use of strong chemicals is prevented.

Recently, Yamakoshi et al. [119] performed an EdU proliferation study where the
“click” chemistry step was skipped. Yamakoshi took advantage of the fact that the
triple bond in the alkyne is a strongRaman scatterer in awavenumber regionwhere
the cell otherwise is a weak Raman scatterer (a Raman-silent region). By measur-
ing the Raman signal from living HeLa cells4, the authors showed that the Raman
signature from the alkyne could be used to measure cell proliferation.

By using Raman spectroscopy to quantify the EdU signal, there is no need to mod-
ify the sample before a measurement. e cell is not affected by the scattering

2Azides aremolecules containing a negatively charged group of nitrogen atoms that are involved
in chemical reactions.

3e “click” reaction creates a covalent bonding between the alkyne and an azide, using copper
as a catalyst

4eHeLa cell line consists of cervical cancer cells.
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process, the Raman signal is stable, and does not degrade over time. All these
properties are advantageous compared to using a fluorescent label. A fluorophore
needs to be attached to the DNA, may be toxic to the cell, and have a limited life
span. us, the Ramanmeasurements allow different proliferation studies. Unique
cell signatures can be tracked over time, cell proliferation can be measured under
specific constraints, and it could be possible to study whether the strength of the
EdU Raman signal can determine how many times a cell has replicated since the
label was introduced.

e remainder of this chapter presents a quantitative study of the EdU Raman pro-
liferation assay using living, non-adherent Jurkat cells. e study shows how EdU
in the growthmedium accumulate in the cells’ DNA and how removal of EdU from
the growth medium leads to reduction of the EdU content in the cells’ DNA.

7.3 Method

e EdU Raman cell proliferation experiment was performed to study how EdU
incorporates in the cell DNA. is was done to gain an insight in the cells’ prolif-
eration rate and development. In order to study this, two samples of living Jurkat
cells was followed over the course of five days, 118 hours. One sample was grown
as a control. In the other sample, the growth medium contained a small concen-
tration of EdU molecules for the first 50 hours, aer which the growth medium
was replaced. From this point in time, the only EdU molecules in the sample were
the ones incorporated in the DNA of the cells. Raman signals were acquired from
between 20 and 50 cells in the EdU sample every 8 to 10 hours during the whole
experiment. In addition, the cell concentration was measured by manual count-
ing in a hemocytometer once every day to control cell health and cell proliferation
in the experiment. At the same time, a small cell sample was collected and fixed
for later fluorescence measurements. e intent of the fluorescence measurements
was to obtain an independent reference of the label uptake seen in the Ramanmea-
surements. e fixation of the sample was a necessary step in the “click” chemistry
process of attaching a fluorophore to the EdU molecule. Deanna ompson and
Ana Popovich at CBST helped to performmuch of the work, including preparation
of cell samples, cell counting and fixation, and fluorescence measurements.

e following parts of the Method section describes the cell culture, the setup and
the procedure of the measurements, and the analysis of the acquired Raman spec-
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tra.

7.3.1 Cell Culture

e experiment used cells from the Jurkat cell line. Jurkat cells are lymphocytes,
a type of white blood cells. e cells are non-adherent, and between 6 to 15 µm
in diameter, well suited for optical trapping experiments. e cells were grown in
RPMI growth medium inside a cell culture flask, and kept in an incubator at 37◦C
and 5% CO2 concentration. Two cell culture flasks were prepared, a control flask
without EdU, and a flask with a 10 µmol/L EdU concentration. e initial cell
concentrations were 5 · 105 cells/mL. e EdU was provided from Invitrogen’s5
Click-iT® package.

Figure 7.3: White light Image of a single Jurkat T cell, optically trapped in the laser tweez-
ers Raman spectroscopy setup. e image is acquired in a measurement session 83 hours
into the experiment.

5Life Technologies, Paisley, UK
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7.3.2 Measurement Setup

Micro Raman spectroscopy system

Figure 7.4 shows a sketch of the micro Raman spectroscopy setup. e measure-
ments were done using an inverted microscope from Olympus6, where the cell
sample is kept in a modified cell culture flask. Single cells in the sample were
trapped, excited and imaged with a water immersion objective lens (60XWNA1.2,
Olympus), and the Raman signal is collected through the same lens. e excita-
tion light was a continuous wave 785 nm laser (CrystaLaser7) operated at 80 mW.
A telescope modified the diameter of the excitation beam to 6 mm, and the beam
is reflected into the objective lens with a long-pass dichroic filter. Single cells are
trapped and excited 20 µm above the cover slip surface of the culture flask. e
collected Raman signal pass trough the dichroic filter and a 785 nm notch filter to
remove excitation light. e background signal is removed with a spatial filter; a
100 µm pinhole confocal with the laser focus. e Raman spectrum is acquired
in a spectrometer (PI Acton8) with a 600 grooves/mm grating, and registered on a
thermoelectrically cooled CCD camera. Spectra were acquired using the Winspec
soware program (PI Acton), and imported to Matlab9 for data analysis.

Cell culture flasks

e cells were grown in modified cell culture flasks (Sarstedt10). A 1 cm diameter
hole was drilled in the center of the flask bottom, and a #1.5 cover slip was attached
with super glue to cover the hole. Figure 7.5 shows a sketch of the flask. rough
the cover slip, a high NA objective lens could image the sample, trap single cells,
and excite and collect Raman signal from single cells inside the flask.

e color of the RPMI medium changes from orange to pink when the pH of the
medium decreases and to yellow when the pH of the medium increases. is hap-
pens because the chemical equilibrium in the blood changes when the outer CO2

concentration decreases. e system of cells and surroundings strives to reach a

6Tokyo, Japan
7Reno NV, USA
8Trenton NJ, USA
9MathWorks, Natick MA, USA
10Nümbrecht, Germany
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Figure 7.4: Sketch of the micro Raman spectroscopy system. Cells in the culture flask
are excited with a 785 nm laser. Raman excitation and collection is done through a water
immersion objective lens (60X NA1.2). e collected signal is brought to a spectrometer
trough a dichroic filter, a notch filter and a spatial filter to remove excitation light and
background signal. Alternatively, white light images of the sample can be acquired with a
CCD camera in the collection path.
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new chemical equilibrium. is is achieved by the release of H+ ions from the
blood cells, increasing the pH in the medium. e color change gives a good in-
dication on cell health. Outside the incubator, the samples changed color aer 20
to 30 minutes. Each measurement session lasted approximately 30 minutes. To
prevent severe sample degradation, the region around the sample was heated to
a temperature between 31 and 33 ◦C. is was done by covering the microscope
with a cardboard hood and heating the sample region with a thermostatic heater
(Nevtek) through a hole in the hood. e CO2 levels inside the hood were not
controlled.

trapped cell 

cover slip (#1.5) 

modified cell culture flask 

objective lens 

laser source & 
spectrometer 

60XW 
NA1.2 

vented cap 

Figure 7.5: Modified cell culture flask with an optically trapped cell. ewater immersion
objective lens of the invertedmicroscope excites and collects Raman scattering through the
cover slip attached to the cell culture flask. A Jurkat cell is trapped in the focus of the laser,
20 µm above the surface of the cover slip. e figures are not to scale.

7.3.3 Experimental Procedure

Five procedures were performed in the experiment; Raman spectrum acquisitions,
cell counting, sample fixation, “click” chemistry and fluorescence microscopy. Ra-
man spectra were acquired at intervals of between 8 and 10 hours, while counting
and fixation was done once a day. About halfway through the experiment, the
growth medium containing EdU was replaced with normal growth medium (the
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“washing” process). Aer the Raman experiment was finished, “Click” chemistry
and fluorescence microscopy were performed on the fixed cells.

Spectrum acquisition

For spectrum acquisitions, the EdU sample flask was taken from the incubation
chamber to the laser tweezers Raman setup, and single, living cells were trapped
and excited through the cover slip at the bottom of the cell culture flask. No cells
were removed from the cell culture flask. Measurement sessions usually lasted
around 30 minutes, and gave spectra from 20 to 30 single cells11. e cells were
trapped with the excitation laser and held 20 µm above the cover slip surface dur-
ing the 30 seconds acquisition time. Aer the acquisition, the laser lightwas blocked
to release the cell, and the sample stage of themicroscopewas translated to trap and
excite a new cell. Aer the measurement session, the flask was returned to the in-
cubator. e sample pH increased during a measurement session, according to
changes in the sample medium color. However, the pH had returned to normal
levels when the next session began 8 to 10 hours later.

Before each measurement session, the spectrometer was calibrated with a 3 µm
diameter polystyrene sphere, and a background spectrum was acquired from the
growth medium in the cell culture flask.

Counting and fixation

For counting and fixation, a 1 mL sample was extracted from the EdU flask. 10 to
15 µL of the sample was counted on a hemocytometer, while the remaining vol-
ume was fixed for “click” chemistry and fluorescence imaging. e counting with
a hemocytometer is done by applying a small sample of cell solution in many com-
partmentswith precisely defined volumes, and counting the number of cells in each
compartment using a microscope. is gives a measure of the cell concentration
in the sample. To fixate the cells, the sample was centrifuged three times at 3000
rpm for 5 minutes to separate the cells from the medium. Aer the first centrifuge,
the mediumwas replaced with 4% paraformaldehyde in phosphate-buffered saline

11A few sessions were divided in two, where in total 50 spectra were acquired in two 20 to 30
minute long sessions. ese shorter sessions were separated by a one hour break in the incubator.
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solution (Dulbecco’s PBS), and le for 15 minutes. Aer the second and third cen-
trifuges, the paraformaldehyde was replaced with pure PBS. Aer the fixation pro-
cess, the sample was refrigerated at 4◦C until the cells were plated for fluorescent
imaging.

Washing

Aer 52 hours, the growth medium with EdU in the cell culture flask was replaced
with unmodified growth medium. Aer the medium replacement, any remaining
EdUmolecules in the sample are inside the cells, incorporated in the cell DNA. To
exchange the medium, the cell sample was extracted to a test tube and centrifuged
at 3000 rpm for 5minutes. e growthmedium containing EdUwas then replaced
with pure growth medium. e medium replacement process was repeated three
times. e sample flask was thoroughly rinsed with pure growth medium before
the washed cell sample was returned. Before washing, the cell concentration was
counted. e amount of new growthmedium in the sample was adjusted such that
the cell concentration was 4 · 105 per mL. e control sample concentration was
also adjusted to this concentration. Spectrum acquisitions, counting and fixing
continued for 67 more hours aer washing and concentration adjustments.

“Click” chemistry

e“click” chemistry reactionwas obtained following the instructions in the Click-
iT® EdU Imaging Kit from Invitrogen [126]. In the procedure, the fixed cell sample
was introduced into a solution of reaction buffer, fluorescent azide and a copper
sulphate catalyst. Aer 30 minutes, the fluorescent molecules were attached to the
EdU in theDNAof the cells. e solutionwaswashed out with PBSwith 3%bovine
serum albumin (BSA) and finally pure PBS.

Fluorescence microscopy

Fluorescencemeasurements of the cells that had been treatedwith “click” chemistry
were done to independently check the Raman experiment results. Samples from
each day were distributed in sterile silicone holders on poly-l-lysine covered glass
slides, where they dried for two hours. e remaining liquid was removed, and
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the cells were covered with Prolong Gold (Invitrogen) and a cover slip. Aer one
day, the cover slips were sealed with nail polish. One slide was prepared for each
of the five fixed cell samples. Fluorescence imaging of the samples was done on a
deconvolution microscope (DeltaVision12).

7.3.4 Data Treatment

e spectral data were imported to Matlab. A script was written to extract the
size of peaks in the spectra in order to reveal the amount of EdU in the DNA. In
each measurement session, each cell provides a unique spectrum. e EdU uptake
is shown by the Raman peak distribution in a spectrum. Several numerical pro-
cedures were performed on each spectrum to give an accurate description of the
time development of EdU uptake. e following paragraphs describe how the peak
magnitudes were found from the spectral data. As calibration and background ac-
quisitions were done at each measurement session, the series of spectra from each
session were treated separately in the calculations.

Finding the amount of EdU incorporated in the DNA of the cell

When the Raman signal is acquired, the cell is trapped by the focused laser. As
Raman scattering is proportional to the intensity of the incident light, the part of
the cell in the focal point scatters most light. e cell nucleus has a slightly larger
refractive index than the other parts of the cell, and usually settles in the focal point.
However, to be sure that the collected EdU signal originates in the nucleus, its peak
value is compared to the peak value of a DNA specific signal. us, two peaks are
analyzed in each spectrum; the peak from the alkyne group in EdU (at 2120 cm−1),
and a peak from the phosphate backbone in DNA (at 1093 cm−1). e ratio of
the EdU and DNA backbone peaks is used as a measure of the amount of EdU
incorporated in the DNA of the cell. Figure 7.6 shows spectra from a cell in the
control sample (without EdU) and a cell in the EdU sample, pointing out EdU and
DNA backbone peaks.

Examples of fit procedures are shown in figure 7.7 for three spectra. All spectra
show similar DNA backbone peak amplitudes, while the EdU peak amplitudes
varies. e top spectrum shows a large peak, the centre spectrum shows a small

12Applied Precision, Issaquah WA, USA
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Figure 7.6: Raman spectra from a cell in the control sample (red line) and a cell in the
growth medium with 10 µmol/L EdU (blue line) aer 52 hours. e signal of the control
spectrum is shied to make the DNA peaks of the two spectra equal. Backgrounds have
been subtracted.

peak and the bottom spectrum shows no peak. Since the DNA peaks are simi-
lar, the three spectra would give one large, one small and one zero peak amplitude
ratio.

Subtracting backgrounds and filtering

efirst step in the data processing is to subtract the spectral backgrounds from the
cell spectra. For each session, two to three background spectra were acquired from
a region of the sample without cells. ese spectra were averaged and filtered with
a 5-point median filter and a 3-point boxcar filter. e filters remove contributions
from cosmic rays, and smooth out high-frequency noise. Aer subtracting the fil-
tered background from the cell spectra, the cell spectra themselves were filtered by
a 5-point median filter to remove cosmic ray contributions. e resulting spectra
(shown with red lines in figure 7.7) provided the base for the remaining numerical
analysis.
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Determining the peak amplitude with a curve fitting procedure

e amplitude of a peak was found by fitting the Cauchy-Lorentz function,

f(ν̄) =
Ib2

(ν̄ − a)2 + b2
, (7.1)

to the spectrum in a wavenumber region close to the peak13. e fit was done
with Matlab’s ‘fit’ function, which optimizes the fit with a nonlinear least square
algorithm. is gave estimates of the peak amplitude I , the peak center position a
and the peak’s full width at half maximum value (FWHM) 2b for wavenumbers ν̄.

e Matlab algorithm provides goodness-of-fit statistics. How well the model fits
the data can be described by the coefficient of determination R2. e unbiased
coefficient of determination R̃2was used, togetherwith the calculated peak position
a, to automatically determine whether the fit represented a real peak or not14.

e fit parameters were defined to describe a real peak if the fit’s R̃2 value was larger
than 0.55 and the peak position was within 2 wavenumbers from the average peak
position of that measurement session. e average peak position was defined from
the spectra in that session which had R̃2 values larger than 0.7 and a peak position
between 1070 and 1110 cm−1 for the DNA backbone peak, and between 2105 and
2130 cm−1 for the EdU peak. To prevent faulty spectra to influence the results,
spectra without a DNA backbone peak was rejected from the analysis. e chosen
limits of R2 and wavenumbers were found by testing reasonable values in several
datasets such that the peaks found numerically corresponded to visible peaks in
the spectra.

e Raman-silent region above the EdU peak tend to have an linearly increasing
or decreasing slope aer the background has been subtracted. For some spectra,
the fit algorithm fails to recognize the EdU peak because of the slope. To make
sure that these peaks are included in the analysis, a linear regression is done in
the spectral region above the EdU peak15. is regression line is then subtracted

13ν̄ from 2080 to 2160 cm−1 for the EdU peak, ν̄ from 1030 to 1140 cm−1 for theDNAbackbone
peak.

14Strictly speaking, the biased coefficient of determination R2 would have given a more correct
measure of the goodness-of-fit, as the fit used all wavenumbers in the region and not a sampling.
However, using R̃

2
only lead to slightly lower values than would have been found using R2, and

does not influence the results.
15ν̄ from 2160 to 2500 cm−1.
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Figure 7.7: e fitting process shown for both EdU and DNA backbone peaks. Spectra
from three cells are included, one with a strong EdU signal (top le), one with a weak
EdU signal (middle le), and one with no EdU signal (bottom le). e cells have similar
DNA backbone peaks, as seen on corresponding plots on the right. By subtracting the
background, straightening (for the EdU peak) and setting the minimum value to zero, the
optimization algorithm finds a Lorentzian fit. e three EdU peak plots share similar axes,
and the three DNA backbone peak plots share similar axes.
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from the original spectrum. e amplitude of the EdU peak is not affected by the
straightening operation, as the regression line is close to zero at the peak position.

e last step before the peak fitting procedure is to shi the spectrum vertically
such that the minimum value in the region above the peak position (the linear
regression region) is zero. is provides the basis for the fit, which is shown by the
blue lines in figure 7.7.

7.4 Results

Interpretation of the experimental results needs special consideration, as the results
are connected to each other. us, only brief comments are given on the results to
allow a more coherent discussion in section 7.5.

7.4.1 RamanMeasurements of EdU Signal

e EdU concentration in DNA

e development of EdU concentration in the cells’ DNA over time is shown in
figure 7.8. e vertical axis represents the amplitude ratio between the EdU peak
around 2120 cm−1 and the DNA phosphate backbone peak around 1093 cm−1.
e figure plots ratios from all spectra (blue crosses), in addition to themean (black
squares) and the standard deviation of each measurement session. Only spectra
where an EdU peak has been found are included in the plot. In the figure, the EdU
concentration in the DNA increases until the sample is washed. Aer the EdU is
washed out of the growth medium, the EdU concentration in DNA decreases for
around 30 hours, before the concentration increases again during the last 34 hours.
e exact concentration of EdU in the DNA has not been found, due to problems
with dissolving high EdU concentrations in PBS for reference concentration values.
us only the trends of EdU accumulation and dissipation in the DNA have been
found.
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Figure 7.8: Scatter plot of the EdU concentration in the DNA during the experiment.
Means and standard deviation bars are superimposed. e concentration increases steadily
as long as the growthmedium contains EdU.Aer 52 hours, the EdU is washed out, and the
EdU concentration starts decreasing. 30 hours aer the washing, the EdU concentration
again starts to increase. Only cells showing an EdU peak have been included in the plot
(corresponding to the red crosses in figure 7.9).

146



e ratio of cells with EdU

A different plot of the same dataset is given in figure 7.9. is figure shows the
number of measured cells in each session as well as the number of cells where EdU
peaks were found. e ratio of cells with a measurable amount of EdU is fairly
constant throughout the experiment.
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Figure 7.9: e number of cells and ratio of cells where EdU was detected. e ratio is
fairly constant throughout the experiment, with a slight decrease aer the EdU is washed
out of the growth medium at 52 hours.

7.4.2 Fluorescence Measurements of EdU Signal

efixed cell samples extracted at daily intervals were imaged in amicroscope aer
fluorophore staining (“click” chemistry treatment) and plating. Figure 7.10 shows
the number of fluorescent cells, similar to the Raman data shown in figure 7.9.
Unfortunately, the total number of measured cells is small, due to low cell concen-
trations in the extracted samples. Since fluorescence provides stronger signals than
Raman scattering, the measured number of cells containing EdU was expected to
be higher for these measurements. However, the ratio in figure 7.10 does not re-
veal that trend. is could be due to the small sample size, or it could be due to an
unsuccessful “click” chemistry reaction. A separate “click” chemistry fluorescent
measurement of 87 cells showed 70% uptake of EdU 20 hours into the experiment.
e fluorescent data in the figure suggests that the ratio of cells containing EdU
was stable, similar to the Raman measurements.
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Figure 7.10: Fluorescent signal from plated and “click” chemistry treated cells were mea-
sured in a DV microscope. e number of cells containing EdU is lower than the Raman
measurements, contrary towhat is expected, as the fluorescent signal ismuch stronger than
the Raman signal. is result is probably due to the small number of measured cells.

7.4.3 Cell Counting

Figure 7.11 shows the cell count of the the control and EdU samples at daily in-
tervals during the experiment. e cells were counted in a hemocytometer. e
start concentration of the samples is 5 · 105 cells per milliliter, and the concentra-
tion aer the washing is set to 2 · 105 and 3 · 105 cells per milliliter for the control
and the EdU sample, respectively. It is evident from the figure that cell prolifera-
tion in the EdU sample is severely limited. e control sample data suggest that
the number of cells doubles aer around 77 hours before the washing and around
36 hours aer the washing, giving replication times of 77 and 36 hours, respec-
tively. Earlier experience with the same cell culture indicates a replication time of
around 22 hours [127], and Nuñez reports a replication time for Jurkat cells of 32
hours [128]. is suggests that also the control sample proliferation was restricted
before the washing.

Previous studies do not report significant decrease in cell proliferation due to EdU
[119, 125]. us, other factors should be considered to explain the cell death and
the slow replication rate found by counting the EdU and control samples, respec-
tively. It is likely that the reason for the observed cell concentration development
was the treatment of the cells during measurement sessions. Color change in the
growth medium (section 7.3.2) showed that lower temperatures and lower carbon
dioxide levels for more than 30minutes did affect the cells adversely. In the control
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Figure 7.11: Cell concentrations calculated from hemocytometer counts during the ex-
periment. Formulas describing the replication rate of the control sample are superimposed
on the plot. When the EdU is washed out, new cell concentrations are set in both samples,
adjusted by the amount of new growth medium. e slow replication rate of the control
and the decline in the EdU sample suggest that the measurement sessions were stressful
for the cells.
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sample, shorter measurement sessions lasting around 20 minutes were performed
regularly up to the time of washing. Aer that time, only one brief measurement
was done. is could explain the increased cell replication time seen in the figure
aer the washing, and indicates that the living conditions during the measurement
sessions indeed were responsible for cell death and limited the number of cells.

e replication times given by figure 7.11 points to a shortcoming of using cell
counting as a proliferation assay. ere is no way to know whether a cell in the
hemocytometer is actively replicating or not. And as long as a cell has not dissolved,
it will be counted. By including non-replicating cells in the count, the measured
replication time will be slower than the true replication time. is effect could also
have contributed to the slow replication time found for the control sample in the
measurement.

Lastly, it should be noted that both the cells that did and did not show EdU signa-
tures looked healthy in the microscope during the Raman measurements. How-
ever, a few spectra showed strong lipid peaks (at around 1450 and 1650 cm−1),
indicating membrane blebbing, which is a sign of apoptosis and autophagy (see
section 7.5.1).

7.5 Discussion

e developments of the EdU concentration in the DNA, the ratio of cells with
EdU, and the cell proliferation that were presented in figures 7.8, 7.9 and 7.11 de-
mand careful analysis. It will be helpful for the analysis of the results to first look
at the expected cell proliferation and development of EdU concentration. As such,
section 7.5.1 describes how EdU is incorporated into DNA. In the following sec-
tion, 7.5.2, it is discussed how the results match these expectations and how dis-
crepancies can be explained. ree cases are considered separately: the ratio of
cells with EdU, the EdU concentration increase and decrease in the period from
EdU is added to it is washed out, and the subsequent period of increasing EdU
concentration.
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7.5.1 Expected Uptake of EdU

e ratio of cells with EdU

ephases of the cells in a sample are randomly distributed. When EdUmolecules
are added to the growthmedium, the molecules incorporate in the cells’ DNA dur-
ing the replication phase. Some cells incorporate EdU immediately, while cells
which just ended their previous replication will not incorporate EdU until a full
cell cycle has passed. us, during the first 22 to 36 hours (depending on the ac-
tual replication time), the number of cells containing EdU would increase linearly.
When the time of one full cell cycle has passed, all replicating cells have incorpo-
rated some EdU.

e EdU concentration in DNA

e concentration of EdU in the cells’ DNA increases for each cell replication until
a plateau is reached. is plateau is expected to be given by the EdU to thymidine
ratio in the growth medium. e incorporation of EdU andymidine molecules
is a stochastic process, giving the cells a distribution of EdU concentrations. Each
measurement session should include a large number of cells to find a representative
mean value of the EdU concentration.

Aer i replications in a growth medium with an EdU to thymidine ratio16 of Xt,
the average EdU concentration Ci is given by

Ci =
2i − 1

2i
Xt. (7.2)

is can be seen by considering the ratio of ‘new’ to ‘original’ DNA strands: Aer
one division, all replicating cells contain one original DNA strand without EdU,
aer two divisions, a fourth of the replicating cells contain oneDNA strandwithout
EdU, and so on. Note that any individual cell’s DNA would contain EdU in either
both strands or only one strand.

Aer the EdU is washed out, new DNA strands cannot incorporate any EdU. Only
EdU molecules already inside the DNA are le in the sample. is means that the

16e amount of EdU molecules divided by the sum of EdU and thymidine molecules.
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average EdU concentration in the DNA is halved aer each new replication. us,
the average EdU concentration is given by

Ci =
1

2i−rwash
Crwash , (7.3)

where rwash (> i) is the number of replications before the washing. If the cells were
allowed to replicate 5 times before (rwash=5) and 5 times aer the washing, the av-
erage EdU concentration in the cell sample would then develop as shown in figure
7.12.
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Figure 7.12: Expected development of EdU concentration in the DNA for a cell in a
medium with an EdU to thymidine ratio of Xt with 5 full replication cycles before and
aer the EdU is washed out.

7.5.2 Actual Uptake of EdU

e ratio of cells containing EdU

eplots in figures 7.9 and 7.10 show the number of cells with ameasurable content
of EdU from the Raman and fluorescent measurements in absolute numbers and
as ratios. Between 40% and 50% of the cells contained an observable amount of
EdU before the EdUwas washed out. Aer washing, the average ratio decreased to
around 30%. is is contrary to the expected result; that all cells would incorporate
EdU before washing, and that the ratio of cells with EdU would decrease rapidly
aerwards. In addition, the expected linear increase during the first cell cycle is
not seen, but this was probably due to the fact that nomeasurements were done for
the first 20 hours of the experiment.
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e reason why the observed trends do not match the expected results can be ex-
plained by two hypotheses. First, it is possible that many of the cells, for some
unknown reason, do not incorporate EdU in their DNA. is implies that there
are some fundamental structural difference between the cells. However, all the
cells should be exactly equal, coming from the same cell culture. Second, there is
a possibility that many of the measured cells are not actively replicating, but are
either dead, but not dissolved, or put on hold, living in a resting state. is looks to
be the most reasonable explanation, since the senescent and quiescent states and
deathmay be caused by tough living conditions. However, further experiments are
required to confirm this hypothesis.

Predicted increase and decrease of the EdU concentration

Figure 7.8 shows that the incorporation of EdU into the cells’ DNA matches the
expected trends fairly well. is plot differs from the plot in figure 7.9 in two ways.
First, only spectra from cells containing EdU are included. As only replicating
cells incorporate EdU, measurement errors introduced by non-replicating cells are
avoided. In addition, the normalization performed by plotting the ratio between
EdU and DNA peaks decreases errors introduced by differences in excitation in-
tensity, signal collection and trapping region in each measurement. is gives a
more true picture of the activity of the replicating cells. When the experimental
mean values are combined with the expected EdU uptake calculated with equa-
tions (7.2) and (7.3), the development of the incorporation can be compared with
different replication times.

Plots a) and b) in figure 7.13 showhow the EdU concentration inDNA, represented
by the average experimental EdU to DNA peak ratios, match the calculated uptake
for the shortest and longest replication times given in section 7.4.3, 22 and 36 hours
respectively. e values are normalized such that the maximum peak ratio coin-
cides with the calculated concentration at 52 hours, the time of the washing. e
EdU to thymidine ratio in the growth medium is indicated byXt (from equations
(7.2) and (7.3)). e cell cycle times are indicated with crosses. A comparison be-
tween the two plots in the figure shows that the increase in concentration before
the washing best matches the slower replication time, while the decrease in con-
centration best matches the faster replication time. A numerical fit of the first four
peak ratios aer the washing to equation (7.3) gives a replication time of 22.6 hours
with a 95% confidence interval between 13.7 and 31.6 hours. e peak ratios be-
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fore thewashing cannot be fitted to equation (7.3). Note that both the experimental
and calculated values represent average concentration. e EdU concentration in
individual cells would increase stepwise in time with the replication time. e in-
crease in concentration during the last thirty hours is discussed separately on the
next page.
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Figure 7.13: emean values of normalized experimental peak ratios (black squares) are
superimposed on plots of the expected time development of EdU concentration. Plot a)
shows calculated values for a 36 hour replication time, and plot b) shows calculated values
for a 22 hour replication time. In each plot, the experimental data are normalized to the
same maximum value of the calculations at the time of the washing.

e steady increase of EdU up to the time of washing indicates that the average
EdU content in the DNA still increased at the time the EdU in the growth medium
was removed. is is supported by figure 7.12, which suggests that the EdU con-
centration is not saturated aer more than 4 full cell cycles. is would at best
take 88 hours with the shortest replication time of 22 hours. Looking closely at the
distribution of peak ratios in figure 7.8, it can be seen that the minimum and max-
imum peak ratios are fairly stable up to the 37 hour measurement session. At the
next measurement session in hour 46, the minimum and maximum ratios jump.
is suggests that all the cells have replicated (i.e. taken up EdU) two or three
times at that time in the experiment. is fits for replication times of approximately
22 hours (third replication) and approximately 36 hours (second replication). In
context of the better fit aer the washing for a 22 hours replication time, it seems
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likely that 22 hours is the best approximation. e result does, however, differ from
the 36 hour and 77 hour replication times suggested by the hemocytometer mea-
surements. Due to the fact that only data from replicating cells are included, it is
likely that the Raman tweezersmethod provides better estimates of the active (non-
quiescent) cells’ replication time. However, more experimental data is necessary
to confirm this result, and to provide a more precise value.

Unpredicted increase in EdU concentration aer the washing

e increase in EdU concentration during the last 30 hours of the experiment was
not expected. All the extracellular EdU had been removed from the sample 20
hours prior to the increase, and the only possible source of EdU molecules were
the cells in the sample17. Four hypotheses can explain the cause of the increase,
all of which relates to the decreasing number of cells in the sample. First, the EdU
could come from dissolved dead cells in the sample, freeing up EdU that were in-
corporated in the DNA of the remaining replicating cells. Second, the EdU could
come from extranuclear parts inside the replicating cell, for example the cytosol18
or the cellmembrane. ird, the observed increase could have been caused bymea-
surements of quiescent or senescent cells with high EdU concentration. Fourth,
the EdU could come from pieces of DNA from dissolved dead cells which were
attached to the measured cell. e hypotheses are discussed in the following para-
graphs, but no final conclusion can be reached without data from further studies.

1. EdU from dissolved cells e cell concentration shown in figure 7.11 indi-
cates that the number of cells had been halved 20 hours aer washing. is would
lead to a large amount of cell fragments in the sample. e existence of dissolved
and dissolving cells supports the first hypothesis; that the EdUoriginates fromdead
cells. It would take time for the dying cells to dissolve, making it plausible that the
EdU increase began 30 hours aer thewashing (assuming thatmost dead cells were
removed when the sample was washed). However, the EdU from these cells is not
freely available, but attached to larger molecules from the dead cells. In addition,
the released amount of EdU would give a much lower EdU to thymidine ratio due
to the new growth medium added to the sample aer the EdU was washed out.

17Contamination of the sample is possible, but not plausible, as the sample was contained inside
a closed container throughout the experiment.

18e cytosol is the intracellular gel/liquid.
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2. EdU from the cell itself e peak normalization (EdU/DNA ratio) in figure
7.8 was required to see any trend of increasing and decreasing concentrations. e
EdU peaks alone did not show any development over time. is suggests that EdU
exists in extranuclear regions of the cell and that this EdU contributes to the Raman
signal. e existence of such EdU supports the second hypothesis; that EdU in the
cytosol or the membrane is incorporated during the DNA replication. e tough
living conditions suggested by the decreased cell concentration could have lead
to cell autophagy. Autophagy is a process where the cell eats its own internals to
survive (section 7.5.1). However, blebbing, which is commonly associated with
autophagy, was not found to dominate the measured cells in neither the Raman
spectra or visually in the microscope. Also, the 30 hours delay in the increase is
not explained by this hypothesis.

3. Measurements of quiescent and senescent cells Tough living conditions may
have forced cells to stop replicating and turn into a resting (quiescent) or dying
(senescent) state. is supports the third hypothesis; that the measured cells con-
taining EdU have stopped replicating and that the observed increase is caused by
the random sampling. is is supported by the low number of measured cells con-
taining EdU.e average concentration was calculated from 11, 8 and 7 cells in the
last three measurement sessions. ere would be far between replicating cells con-
taining EdU (a low probablility ofmeasuring these cells). It is not unlikely that 30%
of the cells were in a quiescent state and containing EdU, as the ratio of quiescent
cells at the beginning of the experiment was found in figure 7.9 to be around 50 to
60%. is hypothesis implies that all the measurements aer the washing contain
quiescent cells with EdU, undermining the calculated replication time found from
the decrease in EdU concentration aer the washing.

4. DNAfromdissolved cells efourth hypothesis; that cells incorporate strings
of DNA from dissolved cells, combines elements from the first and third hypothe-
ses, explaining the increase with EdU coming fromdead cells and the random sam-
pling of measured cells. Pieces of DNA from dissolving cells would be too small
to observe in the microscope. If incorporated into or attached to a measured cell,
this external DNA could be the source of a Raman signal containing both EdU and
DNA peaks. ere would be no way to distinguish this signal from that of the cell’s
own DNA, and the measurement would not represent the measured cell. Similar
to the first hypothesis, the delayed increase could be explained be the time it would
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take to release the DNA.

Testing some hypotheses Figure 7.14 plots the expected increase in EdU con-
centration if EdU was released in the growth medium 22 hours aer washing. Two
concentrations are tested: e original EdU to thymidine ratio (Xt, red dotted
line), and the concentration given by the average EdU to thymidine ratio in the
DNA at the time of the washing (read off be 0.81Xt, blue dotted line). e rings in
the plot represent the cell replication time of 22 hours. e time of the reintroduc-
tion of EdU is chosen to give time for the dying cells to dissolve and release EdU,
for simplicity set one full cell cycle aer the washing.
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Figure 7.14: e increase of incorporated EdU the last 30 hours can be outlined by the
release of an EdU concentration similar to that in the top point at 52 hours (blue) and
similar to EdU conc. in medium (red) of EdU, 22 hours aer the EdU is washed out.

e plot indicates that the calculated increases fit the shape of the experimental
increase aer 83 hours fairly well. Since the cells already contain EdU at this time,
the calculations slightly underestimate the EdU concentration. However, the ex-
isting EdU would also lead to a slower uptake, making the estimations slightly
overestimate the concentration. e two errors thus partially cancels out. More
importantly, the plot shows that the amount of EdU necessary to give the observed
increase in concentration is close to the original concentration. Neither the first
nor the second hypothesis would provide sufficient EdU to explain the observed
increase. is makes the third and the fourth hypothesis the most plausible ex-
planations for the increase. However, as mentioned previously, further studies are
necessary to say anything conclusive about the second increase in EdU concentra-
tion.
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7.6 Conclusions

It has been shown in this chapter that EdU can be used as a Raman probe for pro-
liferation measurements of non-adherent cells. e incorporation and dissipation
of EdU in the DNA was followed for 118 hours: e first 52 hours in a growth
medium containing EdU, aer which the EdU was washed out. A steady increase
in EdU concentration up to the time of washing and decrease in concentration up
to hour 83 was found. e measured concentrations matched a cell replication
time of 22 hours, which agree well with earlier observed replication times in that
specific cell culture found under ideal proliferation conditions. In the literature, 32
hours and longer replication times are also reported, and cell counting in a hemo-
cytometer gave a replication time of at least 36 hours. However, hemocytometer
count is prone to include non-replicating cells, which are avoided in the first stages
of the Raman measurements. (If cells containing EdU become quiescent or senes-
cent, these would also be included in the Raman measurements.)

A Raman based proliferation assay would allow measurements on living cell cul-
tures without the use of radioactive or fluorescent markers. Cells would remain
alive aer the measurements, and fast results would be provided. e presented
results suggest that the Raman measurements could be a solid alternative to the
established proliferation assays, but further investigations are required to better
understand the proliferation process. First, less than half of the measured cells
were found to incorporate EdU, and expected periods of increasing and decreas-
ing ratios were not observed. Second, living conditions during the measurement
sessions influenced cell proliferation, making interpretations of the results chal-
lenging. Finally, comparative fluorescent measurements were not successful, and
could not confirm the results.

e low degree of EdU incorporation may have been due to the low sensitivity
of Raman detection. However, the ratios of cells containing EdU were not larger
in the fluorescent measurements, even though these measurements were done on
very few cells. is indicates that a large portion of the cells were not replicating19.

e fairly constant ratio of cells containing EdU aer the EdU is washed indicates
that actively proliferating cellsmight have becomequiescent aer thewashing. is
change in behavior could be caused by the living conditions duringmeasurements.

19A single, independent fluorescent measurement session of 72 cells gave EdU uptake ratios of
72% aer 20 hours, indicating that the uptake potentially could be larger.
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A large decrease in the number of cells in the sample indicates thatmany cells strug-
gled throughout the experiment. is could prolong the average cell cycle times of
the replicating cells. However, based on the assumption that the best adopted cells
survive, it is possible that the cells that managed to live in experimental conditions
grew at the same rate as before.

If further studies were to be done on EdU incorporation and the use of Raman
probes for proliferation assays, it would be recommended to have more frequent,
but shorter measurement sessions. is could reveal the expected increase in the
ratio of cells containing EdU at the start of the experiment. A second improve-
ment that could be considered would be to extract cells from the cell culture flask
for measurements and keep the cell culture in an incubator throughout the ex-
periment. Both these methods would ensure a healthier cell culture and simplify
interpretation of the results. An alternative would be to have more control sam-
ples, which got the exact same treatment as the EdU cell cultures. A third im-
provement could be achieved by designing the experiment for more efficient Ra-
man techniques, like stimulated Raman scattering or coherent anti-Stokes Raman
spectroscopy. However, such methods would lead to much more complex mea-
surement procedures. Finally, a more thorough comparison between Raman and
fluorescent measurements should be implemented to provide information on the
efficiency of the Raman assay.

e ability to follow the proliferation of a cell culture over time with a minimum
of interventions and with the option to leave the cells in the sample throughout the
experiment could lead to a simpleway of testing the proliferation of cells in different
conditions. Using EdU as a Raman probe looks to be a promising technique to
achieve this.
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Chapter 8

Raman Spectroscopy onWaveguides

8.1 Introduction

Optical trapping on waveguides has since the mid-1990’s been shown to be a high-
precision, low-velocity transportation method for cells and microparticles [13, 98,
129,130]. e technique uses the evanescent field to propel micrometer-sized par-
ticles on top of the waveguide, and thus controls the motion precisely without
exposing the particle to high optical intensities. Sorting and assembly line-like
transportation have been previously been demonstrated on waveguides, either us-
ing Y-branched waveguides or combined with microfluidics. [100, 131]. However,
analysis of the trapped particles besides size or refractive index estimates, cannot
be done by the waveguide trapping technique alone.

Raman spectroscopy gives detailed information on the identity and structure of
objects under study. By combining Raman spectroscopy with waveguide trapping,
a tool could be made for highly specific sorting of particles trapped on the waveg-
uide. In addition, Raman analysis could provide information on structural changes
caused by the evanescent field, for example deformations, or be used to study the
effect waveguide surface coatings would have on trapped objects.

Different waveguide designs allow different trapping experiments. Straight waveg-
uides work as conveyor belts, efficiently transporting several particles on the same
path. A ‘gap’ design which trap particles in one place by the use of counterprop-
agating beams would be favorable for Raman spectroscopy, where long exposure
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times may be necessary to collect enough signal. Both the gap and the straight
waveguide designs have been used in this chapter.

is chapter presents methods and results from combined waveguide trapping –
Raman spectroscopy setups, and give insight in the advantages, challenges, and
limits of the combined techniques. e goal of the implementation has been to
acquire Raman signals. However, more work is required to optimize the sensitivity
of the setup. Both promising results and major challenges are found, encouraging
further studies.

8.2 Experimental Setups and Equipment

is section begins with presenting the setups, including the waveguiding, micro-
cope and spectrometer parts. is is followed by descriptions of the specific waveg-
uide designs used in the experiments. e section is concludedwith two brief parts
on sample preparation and data treatment of the collected spectra.

8.2.1 Setups

Twodifferent setupswere used to acquireRaman signatures fromparticles optically
trapped on top of the waveguide. One setup uses two different lasers for waveguide
trapping and excitation. e experimental method using this setup is referred to as
external Raman excitation. e other setup use the same laser for both waveguide
trapping and excitation. e experimental method using this setup is referred to
as internal Raman excitation. e use of each setup differs in regards to excitation
power, acquisition time and waveguide design.

Setup for External Raman excitation

e external Raman excitation setup is shown in figure 8.1. e main purpose
of this setup is analysis and characterization of microparticles propagating on a
waveguide, potentially to be combined with sorting waveguide designs [131]. e
setup uses two laser sources. Laser L1 in the figure couples laser light into the
waveguide, and laser L2 excites Raman scattering. e use of two lasers gives inde-
pendent control of microparticle propulsion and Raman excitation. Particularly,

162



an independent laser for excitation controls both the position of the acquisition and
the excitation power. In addition, free-space optical trapping is possible. However,
two laser sources comes with the cost of a larger setup and amore demanding setup
alignment.

X-Y-Z Trans-
lation stages  

80X 
NA0.9 

10X 
NA0.25 Waveguide 

Piezo-
electric 
controller 

Chamber with 
microparticles 

X-Y-Z Trans-
lation stage  

Vacuum 
suction 

Laser L1 
5W@ 1070nm PD 

60XW 
NA1.2 

Translation stage 

BS2 CCD 

Infrared filter 

Laser L2 
100mW@785nm DM 

Spectrometer 

CCD 

Longpass filter 

Coupling lens f=30 mm 

White light 
BS1 

Figure 8.1: Setup for external Raman excitation. 1070 nm laser L1 is coupled into awaveg-
uide with a NA0.9 objective lens. e waveguide is imaged with a modified microscope
(inside the dotted line). 785.8 nm laser L2 is focused with a NA1.2 objective lens to excite
scattering from particles on the surface. Scattered light is collected by the microscope, fil-
tered, and sent to the spectrometer for analysis. A separate white light source and CCD
camera is used to image the waveguide.

e setup consists of three parts, a waveguiding section, a microscope section, and
a spectrometer. ese parts are described separately in the following paragraphs.
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Waveguiding section e waveguiding section controls the waveguide trapping
and microparticle propagation, and is represented in figure 8.1 as all the elements
underneath the 60X objective lens. e section consists of one laser source and
three translation stages. efirst translation stage aer the laser is piezo-electrically
controlled to optimize light coupling into the waveguide. e second translation
stage holds the waveguide, which is held in place by a vacuum suction. A sample
chamber is situated on top of the waveguide. e third translation stage holds an
objective lens which collects the output light from the waveguide into a photode-
tector.

Light passes through the waveguiding section in the following order: e beam
from laser L1, a high-power 1070 nmfiber laser (table 8.1), passes a beam expander
tomatch the entrance aperture of an IR coated objective lens (80XNA0.9, Nachet1).
e lens couples the laser beam into the waveguide. Propagating in the waveguide,
the evanescent field of the light interacts with microparticles in the sample cham-
ber. Exiting the waveguide, the light is collected by an objective lens (10X NA0.25,
Leitz2) for output powermeasurements. Due to risk of burning the waveguides, no
more than 1.3 W of input laser power was used in the experiments.

Microscope section emicroscope section controls Raman excitation and col-
lection and imaging of the sample. is section is outlined by the dotted line in
figure 8.1, and consists of a laser source, a white light source, a CCD camera and
different optical elements. It is based on an upright Olympus microscope, modi-
fied by standard and custom made parts. e whole microscope section is placed
on a computer controlled translation stage to allow movement independent of the
waveguiding section and spectrometer.

Light passes through themicroscope section in the following order: ebeam from
laser L2, a fiber coupled 785.8 nm solid state laser (table 8.1), is collimated onto
dichroic mirror DM. e mirror reflects the laser beam through beamsplitter BS2
(pellicle 92/8) and beamsplitter cube BS1. e beam is focuses onto the sample
with a water immersion objective lens (60X NA1.2, Olympus). During excitation
and collection, beamsplitter BS1 is moved out of the beam path to minimize re-
flections. Light scattering from a particle in the sample is again collected by the
water immersion lens. Collimated Stokes-shied scattered light is allowed to pass
through the pellicle beamsplitter, the dichroic mirror (17 dB@785 nm) and a long

1Paris, France
2Leica, Wetzlar, Germany
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pass filter (60 dB>792.9 nm). e remaining light is coupled into a multimode
fiber (NA=0.275,orlabs3) by a NIR coated lens (f=30 mm) and sent to the spec-
trometer.

e white light source is used for sample illumination. e light enters the sample
through a removable beamsplitter cube (BS1). A 92/8 pellicle beamsplitter (BS2)
reflects collected light to a CCD camera connected to a computer. e white light
source is turned off and the beamsplitter cube BS1 is moved out of the light path
during excitation and collection of Raman signals. us, no sample images can be
acquired at those times.

Spectrometer efiber coupled light is sent to an imaging spectrometer (Triax320,
320 mmfocal length4). e spectrometer uses a 900 lines/mmgratingwith 850 nm
blaze angle, giving 2 cm−1 resolution at 800 nmwith awater-cooled, high-resolution
CCD camera (Newton DU940N-UV5) with quantum efficiency between 0.2 and
0.5.

Setup for Internal Raman excitation

e internal Raman excitation setup is shown in figure 8.2. e main purpose
of this setup is to integrate transportation and analysis in a smaller apparatus with
simpler alignment, potentially developing into anon-chip device. is iswell suited
for analysis of particles propagating on a waveguide with a loop and gap design, as
the setup uses the waveguide light for Raman excitation. Alignment of a second
laser in not necessary, but signal strength is limited by propagation losses in the
waveguide and background signal from the waveguide. e instrumentation is
similar to the setup used for external excitation, with the exception of laser source
and objective lenses.

Instrumentation In the setup, excitation and propagation are both done with a
high power tunable laser (table 8.1) set to≃ 785 nm, combined with a 60 dB laser
line filter (3 nm FWHM, Semrock6). e beam is sent directly through a coupling

3Newton NJ, USA
4Jobin Yvon, Horiba, Kyoto, Japan
5Andor Technology, Belfast, UK
6Rochester NJ, USA
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objective lens, and scattered light is collected from an imaging objective lens. Due
to risk of waveguide burning damage, nomore than 0.5 W of laser power was used
in the experiments.

X-Y-Z Trans-
lation stages  

100X NA0.8 
WD3.4mm 
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BS2 

Coupling lens f=30 mm 

BS1 

White light CCD 

Infrared filter CCD 
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Translation stage 

Figure 8.2: Setup for internal Raman excitation. A tunable laser set to 785 nm is coupled
into a waveguide with a long working distance objective lens. e guided light is used for
Raman excitation. ewaveguide is imaged with amodifiedmicroscope (inside the dotted
line). Scattered light is collected by the microscope, filtered, and sent to the spectrometer
for analysis. A separate white light source andCCD camera is used to image thewaveguide.

Coupling and propagation losses (see section 2.4.2) in the waveguides make it nec-
essary to collect the scattered light close to the waveguide input. us, there is less
space for the high NA objective lenses used for waveguide coupling and signal col-
lection. To make room for both lenses, the objective lens for waveguide input cou-
pling is changed to an IR coated long working distance 100X objective lens (NA0.8
WD3.4 mm, Olympus), and the objective lens for signal collection is changed to
a long working distance 20X objective lens (NA0.4 WD12 mm, Olympus). e
lower NA of the new lenses decrease both coupling efficiency and signal collection
compared to the external Raman excitation setup.

Due to lower coupling efficiency and stronger propagation losses (narrower waveg-
uides are used), no output light could be measured for this setup. us, in these
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experiments, no collection lens was necessary at the waveguide output.

Table 8.1: Lasers used in experiments. Manufacturer data.
Use Type Wavelength Power Line width M2 Manufacturer

(nm) (W) (nm)
Propagation Ytterbium fiber 1070 0.3-5 - <1.1 IPG Photonics7
Excitation Solid state 785.8 0.1 <10−4 <1.2 CrystaLaser
Propagation
& excitation

Diode, tunable
(Littman/Metcalf)

770-798.7 0.3-2.5 <10−4 <1.7 Sacher Lasertechnik8

8.2.2 Waveguide Designs

In the experiments, two waveguide designs are employed, straight waveguides and
waveguides ending in a loop. At the far end of the loop design, an opening, or gap,
is incorporated, as seen in figure 8.3. us, all the light in the waveguide diverges
from the ends of the loop into the gap. All waveguides are strip waveguides, with
a rectangular core of tantalum pentoxide on a silica substrate. e waveguide di-
mensions range from 165 to 200 nm in thickness and 1 to 10 µm in width. Some
waveguides also have a top cladding of silica. e waveguides were produced as
described in chapter 2.

Straight waveguide e experiments using straight waveguides use the power
of the evanescent field in the cover medium either to propagate microparticles or
to excite Raman scattering in microparticles. When the waveguide was used for
propagation, a 7 µm wide and 200 nm thick waveguide was used, and an external
785 nm laser was used for excitation. When the waveguide was used for Raman
excitation, a 1 µmwide and 185 nm thick waveguide was used, and the micropar-
ticles were not propagating, but rested motionless on top of the waveguide.

Waveguide loop with gap e waveguides incorporating a loop with gap were
used to propel microparticles to the gap. e use of the gap design allows transport

7Oxford MA, USA
8Marburg, Germany
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on top of the waveguide to a predefined and small region with a strong light inten-
sity. At the same time, stable trapping in the gap allow long Raman acquisitions.
When the particle reaches the gap fromone of the two ends, the two diverging fields
stably trap the particle in the gap. At this position, twomethods are possible for Ra-
man excitation. Either an external laser can be used, exciting the particle from the
collection objective lens. Or the diverging fields can be used, exciting the particle
from the waveguide. By using the diverging waveguide light, only one laser source
is required for the experiment. When the waveguide light is used for excitation on
the straight waveguide, only the evanescent field is contributing to the scattering.
Much higher intensities are available when the diverging waveguide light in the gap
is used for excitation. As the gap experiments were performed with an objective
lens with long working distance and low NA, the results from these experiments
should be considered as preliminary, or proofs of concept. A study of waveguide
trapping in waveguide loops have been performed by Ahluwalia et al. [1]

In the gap experiments, 1 µm wide and 185 nm thick waveguides were used, with
a loop diameter of 100 µm and gap length of 2 or 10 µm. A sketch of the gap
design is shown in figure 8.3 and figure 8.4 shows a scanning electron microscope
micrograph of a 2 µm long gap. Figure 8.5 shows a plot from [1]where scattering of
the field in a 2 µm gap has been simulated. e divergence close to the waveguide
ends is very strong, as expected.

loop diameter 

gap width = 1 μm 

Figure 8.3: Illustration of gap design.

!

Figure 8.4: Scanning ElectronMicroscope
micrograph of 2 µm gap.

e exact origin of the trapping force in the gap is not obvious. ree explanations
can be given. Either the gradient force from the diverging fields is stronger than
the scattering force (see chapter 2 for an introduction to optical forces), trapping
the particle at one of the waveguide ends. Or the particle is trapped at the center
of the gap, held in place by the two diverging fields’ equal and opposite scattering
forces, similar to the counter-propagating beam optical trap [132]. Or the opposite
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Figure 8.5: Cross section across a 2 µm gap showing simulation results of a 1070 nm
wavelength optical field propagating and scattering on a 1 µm polystyrene sphere. Plot
from Ahluwalia et al. [1].

fields in the gap region interfere, creating an intensity pattern with several optical
gradients which may trap particles. In the experiments, trapping occurs either at
the end of a waveguide or centered in the gap, supporting the two first explana-
tions. e simulations of Ahluwalia et al. [1] support the last explanation for 2 µm
wide gaps, showing interference patterns in the gap at positions supported by ex-
perimental observations.

Cladded waveguides

Cladded waveguides were used for some internal excitation experiments. ese
waveguides are covered with a 0.5 to 1 µm thick layer of silica to decrease the
waveguide-surface index contrast, and thereby also the propagation losses (by con-
fining the field more inside the waveguide) and scattering losses (by decreasing the
refractive index contrast and by preventing dirt from aggregating on the waveg-
uide surface). No evanescent field reaches above the cladding. is means than
the waveguide trapping must be done in uncladded regions of the waveguide. In
the waveguide gap designs, the cladding is removed in a small region close to the
gap (see figure 8.15 in section 8.3.2).

8.2.3 Sample Preparation

For both internal and external excitations, Raman spectra were acquired frommi-
crospheres trapped or placed on top of the waveguides or in the gaps. e micro-
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spheres were polystyrene particles (n=1.59) fromDuke Scientific9 [133] and Bangs
Laboratories10 [134]), and borosilicate glass11 particles (n=1.56) from Duke Scien-
tific.

e waveguide trapping experiments were performed in a dilute solution of mi-
crospheres in water. Two different sample chambers were used, a Gene Frame well
(25 µL, 250 µm thick, ABGene12), and a PDMS well (1 to 2 mm thick). e wells
were completely filled and covered with a cover slip. e thin Gene Frame well
was used for experiments with the 60X water immersion objective lens, while the
PDMS wells were used for experiments with the 20X long working distance objec-
tive lens.

Experiments that did not involve optical trappingwere donewith drymicrospheres
(no solution) or without microspheres (acquiring signal from the liquid in the
well). e microspheres were placed on the waveguide either by applying a so-
lution with quickly evaporating ethanol, or by moving the spheres manually to the
desired position with a cotton swab. None of these methods gave precise control
of the microsphere placement, but the large number of waveguides on a slab and
the large number of particles gave sufficient positioning to allow experiments on a
few waveguides on the chip.

8.3 Experimental Procedures and Results

Using the two setups and the two waveguide designs, five different experiments
were conducted. Excitation power and background contribution determined the
specific experimental method used in each experiment. e experiments demon-
strated particle characterization on the waveguide, and signals were acquired for
all configurations. e signal strengths differ strongly between the experimental
methods, but are in general weak. For the case of a polystyrene sphere internally
excited in the gap, the signal is close to nonexistent. e results from all configu-
rations are presented to give an idea of the sensitivity limits of the current setups.

9ermo Fisher Scientific, WalthamMA, USA
10Bangs Laboratories, Fishers IN, USA
11Duke Scientific specifies the typical composition of these to be 52.5% silica, 22.5% calcium

oxide, 14.5% aluminum oxide, 8.6% boron oxide, 0.3% sodium oxide, 0.2% potassium oxide, and
0.2% iron oxide.

12ermo Fisher Scientific, WalthamMA, USA
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Aer a brief paragraph describing the numerical procedures performed on the
spectra, the experimental procedures and acquired spectra are presented in sec-
tions 8.3.1 and 8.3.2. Section 8.3.1 covers the experiments done using an external
laser for Raman excitation on straight and loop waveguides. Section 8.3.2 covers
the experiments done using guided light for Raman excitation on straight and loop
waveguides. Unless otherwise stated, all images of the experiments are acquired
through a 60X magnification objective lens.

Data treatment All the spectral data presented in this chapter have been digitally
smoothedwith a 2-pointmedian filter and a 3-point average filter. Spectra from the
internal excitation experiments needed more elaborate optimization due to strong
background signal from the waveguide and the cladding. As such, they are shown
as averages of several spectra, where a smoothed and scaled background has been
subtracted. Since the backgrounds strongly dominate these spectra, the scaling of
the background was done such that the areas of the background and target spectra
within some spectral region were equal before subtraction.

8.3.1 External Raman Excitation

estrongest Raman signatureswere acquired in the experiments using an external
laser for excitation. Efficient particle characterization were demonstrated on both
straight waveguides and waveguides with a loop and gap design.

Spectra from particles propagating on a straight waveguide e first experi-
ments were done with straight waveguides, where Raman spectra were acquired
from microspheres on the waveguide surface. e procedure was as follows: e
1070 nm laser was used to propel 7 µm diameter polystyrene spheres and 8 µm
diameter borosilicate glass spheres on top of a 7 µm wide waveguide, as shown in
figures 8.6. e 785 nm laser was focused with the high NA objective lens on a
point a few micrometers above the waveguide surface. When a sphere propelling
on the waveguide reaches the position of the focus, it is optically trapped and held
in place by the focus, as shown in figure 8.7. Scattered light was collected from the
trapped sphere for 1 second and sent to the spectrometer. Aer a spectrumwas ac-
quired, the external laser was blocked to release the sphere. e sphere continued
to propel along the waveguide, and a new sphere was trapped and analyzed. Figure
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8.8 shows a time series of the two polystyrene and one borosilicate glass spheres
from figure 8.6 being trapped, analyzed, and released.

Waveguide  

8 µm  Waveguid
ing laser 

Borosilicate 
glass 

sphere 

Polystyrene 
sphere 

7 µm  7 µm  

Figure 8.6: Overview of the straight
waveguide experiment. Different mi-
crospheres are being propelled along the
waveguide by the evanescent field toward
the external laser focus spot.

Trapped 
micro-
sphere 

Figure 8.7: External laser trapping. When
a microsphere reaches the laser focus spot,
it is trapped in place, and spectral data can
be collected. e external laser excites the
scattering.

e spectra acquired from spheres P1 and B in figure 8.8 are shown in figure
8.9. Plot a) represent the 7 µm diameter polystyrene sphere and plot b) repre-
sents the 8 µm diameter borosilicate glass sphere. ree Raman peaks can be dis-
tinguished in the polystyrene sphere spectrum; 621 cm−1 (benzene ring deforma-
tion), 1001 cm−1 (benzene ring breathing), and 1031 cm−1 (CH in-plane bend-
ing). e strong peak in the spectra at 520 cm−1 comes from silicon, the substrate
base material. Other spectral background contribution comes from the waveguide
substrate, vitreous silica (SiO2) and the waveguide, Tantalum pentoxide (Ta2O5).

To be able to visually distinguish borosilicate glass spheres frompolystyrene spheres,
the chosen glass spheres were slightly larger. is makes it possible to single out
glass spheres by their size and propagation velocity. e spectrum in b) confirms
the visual observation, with no visible peaks in theRaman active region of polystyrene.

Spectra from particles trapped in a waveguide gap e second set of experi-
ments was done on waveguides with a loop and gap design, where Raman spectra
were acquired from microspheres optically trapped in the gap. e procedure was
as follows: A 2 µm diameter polystyrene sphere was propelled by the 1070 nm
laser along the 1 µm wide loop waveguide into the gap. In the gap, the sphere
was trapped by the light diverging from the waveguide ends. e 785 nm laser was
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Figure 8.8: Using the Gaussian beam to trap and release microspheres propagating on the
waveguide. Micrographs of the borosilicate glass sphereB and polystyrene spheresP1 and
P2 are acquired at four points in time, separated by between three and five seconds. In the
first picture (t0) (the same as in figure 8.6), the external laser is blocked, and the spheres
are being propelled to the right. In the second picture (t1) (the same as in figure 8.7), the
P2 sphere is trapped by the external laser while spheresB andP1 still are propagating. e
two last pictures (t2 and t3) similarly show the trapping of spheresB andP1. A one second
Raman spectrum was collected from each of the trapped spheres.
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Figure 8.9: Spectra from external excitation, 1 second acquisition. Experiments are done
on a straight waveguide with a) a 7 µm diameter polystyrene microsphere. b) an 8 µm
diameter borosilicate glass microsphere.

then focused with the highNA objective lens at the trapped sphere to excite Raman
scattering13. During excitation, the 785 nm laser traps the sphere, as its trapping
power is much stronger than the diverging light’s. Figures 8.10 and 8.11 show an
overview of the gap region and the scattering from a trapped sphere, respectively.
Scattered light was collected from the trapped sphere for 2 seconds and sent to the
spectrometer. Aer a spectrum was acquired, both the external laser and guided
laser were blocked, letting the microsphere diffuse away. When the guided light
was turned on again, a new microsphere is propelled into the gap for new analysis.
Spheres larger than 2 µm could not be successfully trapped and propelled along
the waveguide, due to the power of the guided light being too low close to the gap.

Figure 8.12 shows a spectrum acquired from a 2 µm diameter polystyrene particle
trapped in a 2 µm gap. e spectrum have been smoothed with a 2-point me-
dian filter. Plot a) shows the spectrum at full scale, while plot b) shows the same
spectrum using the axes from figure 8.9 a) for signal strength comparisons. ree
dotted lines are drawn at equal heights in a) and b) to show the range of the scaling.

13e1070 nm laser also scatters light, but the sensitivity of the CCD camera in the spectrometer
is very small in this wavelength range, and no light in this wavelength range contributes to the
spectrum.
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Figure 8.10: Overview of the waveguide
gap experiment. 2 µm diameter micro-
spheres are trapped and propelled along the
waveguide into the gap. 5 µmdiameter mi-
crospheres could not be propelled on the
waveguide.
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Figure 8.11: Excitation in the gap. When
the 2 µm diameter microsphere is trapped
in the gap, an external laser is focused on
the sphere to excite Raman scattering.

eRaman signal from the 2 µm sphere decrease compared with the 7 µm sphere
in the straight waveguide experiment. Increasing signal by increasing the acquisi-
tion time to 2 seconds also increase the background levels in the spectrum. In addi-
tion, more scattered light is collected from regions outside the polystyrene sphere,
due to the sphere’s smaller size.

8.3.2 Internal Raman Excitation

e light propagating in the waveguide was used to excite Raman scattering from
microspheres in the setup for internal Raman excitation. To collect signals in the
wavelength region where the spectrometer CCD camera is sensitive, the wave-
length in the waveguide was changed from 1070 nm to 785 nm. Two means of
excitation are possible, exciting with the evanescent field on the waveguide surface
and exciting with the guided light from the gap.

Compared to the 1070 nm laser, the tunable 785 nm laser has lower available power,
higher coupling losses, and a mode distribution with a slightly smaller evanescent
field for the same waveguide dimensions. is prevented efficient trapping both
on the waveguide and in the gap, and also decreased the intensity of the excitation
light. Asmentioned in section 8.2.1, the higher lossesmeant that Raman excitation
had to be done closer to the input facet of the waveguide. is again meant that
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Figure 8.12: Spectrum from external excitation, 2 seconds acquisition. Experiments are
done with the waveguide gap design with a 2 µm diameter polystyrene microsphere. a)
shows the spectrum at full scale. b) shows the same spectrum with similar axes as figure
8.9 a). e three dotted lines in each figure are inserted for comparison of signal level in
a) and b).

a long working objective lens had to be used. is lens’ NA of 0.4 decreased the
collection efficiency of the microscope. e procedures of the external excitation
experiments thus had to be modified. e following sections describe the exper-
imental changes and the reason for the changes. ey also present the acquired
spectra, such that the results from the two setups easily can be compared.

Evanescent field excitation Strong scattering from microspheres on 1 µm wide
waveguides suggested that Raman signal could be acquired by collecting the scat-
tered evanescent field. e low power of the evanescent field intensity meant that
long acquisition times were required. us, the scattering particles needed to stay
still, and not be propelled by the waveguide. is was achieved by not exciting
microspheres in solution, but instead use dry microspheres.

Exciting with the evanescent field yields very low intensities, requiring as large as
possible evanescent field strength. As the waveguides used for waveguide trapping
are developed to maximize the evanescent field, they are clearly the most suitable
waveguides also for this purpose. To optimize the intensity from the evanescent
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field, narrow, 1 µm wide waveguides were used.

Low scattering intensity from the evanescent field and lower NA objective lens
in the microscope decreased the acquired Raman signal. is was compensated
by implementing three changes to the sample. First, a cluster of 3 µm diameter
polystyrene was used instead of single particles to increase the excitation and col-
lection volume of the Raman scattering from polystyrene. Second, a 1 µm wide
waveguide was used instead of the 7 µm wide waveguide to maximize scattering
from the evanescent field. ird, the cluster was placed close (≃2 mm) to the input
facet to minimize propagation losses in the waveguide. In addition, the particles
were at rest, so much longer acquisition times could be used. Figure 8.14 shows
scattering of the evanescent field from a cluster of polystyrene spheres.

Light scattered from a small group of spheres was collected for 60 seconds using an
excitation wavelength of 784.2 nm. Spectra from two slightly different positions
are shown in figure 8.13. e total amount of scattered light is different at the two
positions, probably due to the random topology of the cluster. Plot a) shows the
strong background contribution. Plot b) is found by subtracting a separate and
normalized background spectrum from the average of the two spectra in a). A
pure polystyrene spectrum, scaled to the evanescent spectrum peak at 1001 cm−1,
is included in b), making a good fit with the spectrum from the evanescent field ex-
citation. e experiment was repeated with waveguides wider than 1 µm without
showing any improvement in signal strength. is was probably due to the smaller
power of the evanescent field for larger waveguide cores.

Gap excitation e guided light diverging into the gap should be more powerful
than the evanescent field, and should be able to excite Raman scattering from an
object situated in the gap. However, Raman scattering from the core, substrate
and claddingwould accumulate throughout thewaveguide before reaching the gap,
thus yielding a strong background signal.

e strong propagation losses in the 1 µmwidewaveguides and the available power
from the tunable 785 nm meant no microspheres could be propelled further than
5 mm from the input facet of the waveguides by the evanescent field. However,
the smallest distances from the input facet to a gap for the available waveguides
were between 6 and 10 mm. us, no microspheres could be propelled into the
gap. is meant excitation had to be done on a substance already present in the
gap. Two options were possible. Either a microsphere could be brought to the
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Figure 8.13: Spectra acquired from evanescent field excitation of a 3 µm diameter
polystyrene particle cluster. a)Two original spectra b)A subsection of the averaged spectra
from a) with background subtracted and a scaled pure polystyrene spectrum laid over.
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Figure 8.14: Overview of evanescent field
excitation. A cluster of 3 µm diame-
ter polystyrene spheres are placed on the
waveguide close to the input. Imaged with
a 20X objective lens.
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Figure 8.15: Overview of gap excitation. A
3 µmdiameter polystyrene sphere is placed
in the 2 µm gap in an uncladded region of
the waveguide. Imaged with a 20X objec-
tive lens.

178



gap position manually, or a Raman active liquid in the gap could be excited. Both
options were tested.

Liquid ethanol Ethanol is a strong Raman scatterer. By covering a 10 µm wide
gap with ethanol, all of the diverging light excited Raman scattering, and the the
objective lens collected Raman scattering from the whole focal spot volume (‘col-
lection volume’). However, the scattering cross section in the direction of the ob-
jective lens’ NAwas small. To reduce propagation losses, a cladded waveguide with
an uncladded region near the gap, similar to the waveguide seen in figure 8.15, was
used.
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Figure 8.16: Spectra from ethanol excited at a 10 µm long gap. a)Average of spectra from
three 60 seconds acquisitions. b)e average spectrum from a) where the background is
subtracted. Superimposed is a scaled pure ethanol spectrum (red).

Light diverging into the gap with an excitation wavelength of 784.2 nm was ac-
quired for 60 seconds for each spectrum. Figure 8.16 a) shows an average of three
spectra collected from a liquid ethanol sample at the gap. 8.16 b) shows the spec-
trum from plot a) where a background acquired with a liquid water sample has
been subtracted. Apure ethanol spectrum, scaled to fit the peak height at 890 cm−1,
is superimposed on the graph. e ethanol Raman signature from the experiment
is recognizable from the strong peak at 890 cm−1.

Polystyrene particle A cotton swab was used to manually place a 3 µm diameter
polystyrene sphere in a 2 µm gap, as seen in figure 8.15. To reduce propagation
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losses, a cladded waveguide with an uncladded region near the gap was used. Since
no trapping takes place, the sphere is not pulled to the highest-intensity region of
the field. us, the scattering is weaker than it would be for a trapped sphere.

Figure 8.17 shows several spectra collected from the sphere with acquisition times
of 30 seconds using an excitation wavelength of 784.5 nm. Plot a) shows the spec-
tra to be completely dominated by the background signal. In plot b), all the spec-
tra have been normalized in a subsection between 800 and 1300 cm−1. e re-
sulting spectra shows a slight bump in the ridge close to 1000 cm−1, hinting of a
polystyrene signal. 8.17 c) shows the resulting spectrum when a background sig-
nal, scaled to the level of a normalized subspectrum, has been subtracted from the
average of several spectra. A peak at 1001 cm−1 can be seen with a peak compara-
ble to the standard deviation of the noise. us, no firm conclusion can be made
regarding the validity of a polystyrene peak.
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Figure 8.17: Spectra from a 3 µm diameter polystyrene particle excited in a 2 µm gap. a)
Original spectra are dominated by background. b)A subsection of plot a)with normalized
spectra. c) By averaging the spectra from plot b) and subtracting the background, a small
peak at noise level shows up. A red, pure polystyrene spectrum, scaled to fit the peak at
1001 cm−1 in plot c) is superimposed in plots b) and c).
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8.4 Discussion

e experiments described in the previous section show Raman spectroscopy to
be a possible technique for characterization of microparticles trapped on and pro-
pelling along an optical waveguide. Waveguide trapping and Raman spectroscopy
work well in combination, as both techniques are highly specific, handling the mi-
croparticles one at a time. Also, since the long acquisition times of Raman scatter-
ing match the slow speed of the particles on the waveguide, none of the techniques
are slowed down by the other.

Compared to pure Raman acquisition setups, the collection efficiency of the pre-
sented setups can potentially be increased substantially. Due to this, strong Raman
scatterers with clearly distinguishable peaks have been used in the experiments.
For weaker Raman scatterers, like red blood cells, more efficient Raman collection
and reduction of background signal are necessary for proper characterization. is
would also be the case for faster characterization of the strong scatterers.

In the following sections, the acquired spectra and the setups’ influence on the
spectra are discussed. First, this is considered in light of how the waveguide affect
the results. en, the results from each experimental configuration are examined.
Finally, improvements of the setups are suggested.

8.4.1 Waveguide Considerations

Raman spectra are preferably acquired in regions with minimal background sig-
nal. By acquiring spectra from particles on a waveguide surface, the influence of
the waveguide should be considered. is is of course even more important when
Raman scattering is excited with guided light. Some considerations are described
in the following paragraphs.

Spectral background

Exciting and collecting spectra close to the waveguide surface increases the back-
ground levels and reduces the signal-to-noise ratio of the desired Raman signal.
e spectral contribution from the waveguide and the substrate contribute to vary-
ing extent to all the acquired spectra.
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When the acquisition time increases due to low Raman scattering from the target,
the spectral signature of the waveguide begins to dominate. Figure 8.18 shows the
average of two spectra collected from the output of a 1.8 cm long tantalum pen-
toxide waveguide with a 40X objective lens and an acquisition time of 120 seconds.
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Figure 8.18: Raman spectrum collected from the output of a Ta2O5 waveguide. Average
of two signals with 120 s acquisition times. and a 40X objective lens used for collection.

e wide peak between 600 and 700 cm−1 and the small ridge between 800 and
1000 cm−1 in the background spectrum can be recognized in all the acquired spec-
tra. e silicon peak at 520 cm−1, which is prominent in the experimental spectra,
cannot be seen. e signal was collected directly from the waveguide and not from
the substrate. is suggests that the substrate and the waveguide contribute inde-
pendently to the spectral background, and thatmuch of the collected light originate
from the substrate. is should be especially prominent for external excitations. It
is possible that trapped microspheres act as a lens, focusing light in the waveguide
and substrate regions, generating strong Raman scattering there.

ewaveguide contribution fromfigure 8.18 is least in the external excitation setup
spectra (figures 8.9 and 8.12), as the acquisition times are short and the excitation
light is focused on the polystyrene sphere. e spectral waveguide contribution
is stronger in the spectra which are internally excited from the gap (figures 8.16
and 8.17). is is to be expected, as the acquisition times are long and Raman
signal has accumulated throughout the waveguide. A strong contribution is also
found when the evanescent field is used for excitation (figure 8.13). is either
suggests that the evanescent field accumulates Raman signal from the waveguide
core, or it suggests that the excitation is done by light from the waveguide core due
to scattering. Further studies are required to reach any conclusion as to whether
the evanescent field accumulate Raman signal from the core or not.
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By acquiring background spectra, much of the spectral contribution from these
regions can be subtracted from the microsphere spectrum. As the scattering prop-
erties change when a particle is introduced, it is necessary to normalize the back-
ground before subtraction. Normalizations are based on a unique Raman peak in
the background spectrum to make the subtraction process less dependent on the
increased scattering from the sphere.

Interface reflections

ere is one small advantage of collecting spectral data close to the waveguide:
Reflection from the waveguide and substrate surfaces. Some of the downward-
scattered excitation light reflect into the microscope, and increase the collection
efficiency in the experiment. At 785 nm, the reflectivities at normal incidence are
19% for silicon-silica14, 0.5% for silica-water, 5.04% for water-tantalum pentoxide,
and 3.78% for tantalum pentoxide-silica. is suggests that a noticeable part of the
downward-scattered light is reflected back from the silicon-silica surface.

8.4.2 External Raman Excitation

eexperiments where an external laser is used for Raman excitation gave stronger
Raman signatures. is is mostly due to stronger excitation intensity (around
50 mWof the laser light is focused by the objective lens), butmay also be caused by
the larger polystyrene microspheres, which leads to a higher signal-to-background
ratio and allows shorter spectrum acquisition times. Power and position of the
excitation laser are well controlled in these experiments, all in all being the most
successful way of combining waveguide trapping with Raman spectroscopy.

Straight waveguide

Spectral characterization anddifferentiation of the borosilicate glass andpolystyrene
microspheres propelling along the waveguide was shown in the straight waveguide
experiment. Short acquisition times were used such that interruption of the flow of
the propelling particles was avoided. e propulsion speed on the waveguide can
be adjusted with the input guided light power. is means the characterization

14Reflectivity for silicon found from [10], page 757, using nSi=3.691+0.005ȷ.
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procedure can be timed such that the acquisition times match the particle veloci-
ties. As the gradient forces are stronger than the propulsion forces, the particles do
not diffuse away at lower input powers. us, also longer acquisition times would
be possible. Also, if the sensitivity of the setup was increased, shorter acquisition
times would allow faster particle propulsion, speeding up the characterization pro-
cess.

Differentiation of microspheres can also be possible by comparing propulsion ve-
locities. For the same sphere size, higher index spheres would travel faster along
the waveguide. However, particle accumulation and waveguide losses would make
this an unreliable characterization method.

Waveguide with loop and gap

Much weaker Raman signals were collected from the 2 µm diameter polystyrene
microspheres trapped in the gap. If the waveguide width was increased to 2 or
3 µm, larger particles, with larger scattering cross sections, could probably have
been propelled into the gap. is would allow external excitation with the same
efficiency as the straight waveguide experiment. e advantage of the gap is the
possibility to keep themicrosphere at rest, allowing longer acquisition times. In this
sense, the gap design is probably better fitted for internal excitation experiments.

8.4.3 Internal Raman Excitation

Recognizable Raman signatures were acquired with evanescent field excitation and
waveguide gap excitation. However, lower light intensity, lower collection effi-
ciency, and smaller microspheres decreased signal-to-background ratios signifi-
cantly compared to the experiments with a focused external excitation beam.

High coupling and propagation losses were the underlying reasons for the weak
Raman signals. Propagation losses would decrease significantly, perhaps by more
than 20 dB, by using waveguides wider than 1 µm (confer table 2.2 in chapter 2).
Wider waveguides would both allow waveguide trapping on the loop design with a
785 nm laser, and increase the light intensity in the gap. In addition, improving the
quality of the mode of the 785 nm laser could increase waveguide coupling by up
to 10 dB comparing to the 1070 nm laser according to table 2.2. e mentioned
changes would increase trapping ability, and possibly make room for the NA1.2
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water immersion lens, which collects around 7 times more light than the NA0.4
long working distance objective lens.

e signal-to-background ratio could also be improved by reducing the background
contribution. e background could be reduced or spectrally shied by changing
waveguide materials. However, the materials used in these waveguides are not es-
pecially strong Raman scatterer, so the gain would not be significant. Increasing
excitation intensity or collection efficiency would be amore efficient improvement.

Evanescent field excitation

A distinct polystyrene Raman signature was acquired from the cluster of particles
excited by the evanescent field when the background signal had been subtracted.
e long acquisition time and need of a group of scatterers limit practical applica-
tions of this technique. It is however interesting to see that the evanescent field can
be used for Raman excitation. As an extension of this experiment, it is intriguing
to see whether gold or silver colloids applied on a small section of the waveguide
can act as localized plasmons excited by the waveguide field. If this was possi-
ble, surface enhanced Raman spectroscopy (SERS) which increase Raman signal
manyfold, could be an option.

Waveguide gap

e low intensity of the light diverging into the gap made Raman excitation in the
gap challenging. e acquired liquid ethanol signature shows that Raman signal
from microparticles is possible if the excitation and collection is optimized. Un-
fortunately, all waveguides with loops and gaps available for the experiments were
1 µm wide, so experiments with larger intensities (less losses) could not be per-
formed. As the light scattering onto a sphere is diverging, the intensity decrease
with the sphere’s distance from the gap. is means that the positioning of the
sphere is essential for Raman signal optimization. For further investigations of
waveguide gap Raman excitation, waveguides with different dimensions are nec-
essary. Ideally, a tapered waveguide should be used, 8 µm wide at the input to
decrease coupling losses, and 2-3 µm wide throughout the loop to decrease prop-
agation losses while not decreasing the mode intensity too much.
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Further investigations of the gap design could introduce specific geometry adjust-
ments or surface treatments. For example, barriers could be introduced, to allow
particles entry the gap only from one direction. Or substances could be attached
on the surface close to the gap to study for example localized surface chemistry
reactions.

8.4.4 Improving the Setup

e presented setups do not have the sensitivity of single-purpose Raman spec-
trometers. Signal collection efficiency would need to be improved to establish a
useful combination of waveguide trapping and Raman spectroscopy. is section
suggests two different setup designs that would simplify alignment and increase
the collection efficiency of the microscope section.

At each beamsplitter, between 8% and 10% of the incident light is reflected away.
By shiing beamsplitter BS2 from figure 8.1 to the white light illumination path,
a measurable improvement of signal strength can be achieved. Shiing the beam-
splitter also decrease the path length of the collected light. A shorter path would
be easier to screen off from stray light, and would give a more stable setup, less
sensitive to vibrations. Increased stability would allow alignment of a single mode
fibre to the spectrometer providing stronger spatial filtering of the signal. Figure
8.19 suggests how such a configuration would look. e excitation and imaging
paths are now introduced by dichroic mirror DM, minimizing interruption with
the light collection path. In the white light illumination path, the excitation laser is
introduced through notch filter NF, and light is sent to the imaging CCD camera
by pellicle beamsplitter BS. Filtering the white light illumination with a shortpass
filter prevents white light from passing the dichroic mirror, and could make it pos-
sible to image the sample and acquire Raman signal at the same time. With this
design, it is easy to switch between the external and internal excitation setups, as
the collection light path is the same in the two cases. Amirror is proposed for fibre
coupling to the spectrometer, but an achromatic lens could also be used. Lenses
for CCD imaging and Köhler illumination are not shown in the figure.

e setup in figure 8.19, optimized for collection efficiency, aligns both excita-
tion laser and fibre coupling inside the microscope. is is challenging if the path
lengths are short. A setup optimized for alignment is suggested in figure 8.20. By
coupling both excitation and collection light into the same optical fibre, the exci-
tation and collection are automatically aligned to the same focal spot. is means
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Figure 8.19: Suggested redesign of the imaging and excitation section of the setup. e
design is adapted for both external and internal Raman excitation and optimized for light
collection. e collected Raman scattered light only pass through dichroic mirror DM and
a longpass filter before it is coupled to the spectrometer. e external laser is introduced by
notch filter NF. Beamsplitter BS sends light to the imaging CCD camera. e white light is
sent through a short pass filter to enable imaging while acquiring spectra.

that the microscope can be moved independently of the fiber coupling and makes
adjustments much easier. Introducing a removable beamsplitter in the imaging
path reduce reflections in the optical path during spectrum acquisitions. Com-
pared to the setup optimized for collection, coupling into and collimation out of
the fiber in this setup give slightly higher losses. e setup optimized for alignment
would be less prone to dri, and is probably preferable in daily use.
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Figure 8.20: Suggested redesign of the imaging and excitation section of the setup. e
design is adapted for both external and internal Raman excitation and optimized for easy
alignment. e excitation laser and the scattered light are coupled into the same fiber, and
share light path through themicroscope. is ensures consistent positioning for collection
of the excited Raman scattered light. Imaging is possible through removable beamsplitter
BS.
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8.5 Conclusions

Two setups for exciting Raman spectra from microspheres trapped on an optical
waveguide have been tested, one using an external excitation laser at 785 nm, and
one using guided light at 785 nm for excitation. When the external excitation laser
was used, waveguide trapping was done with a high power 1070 nm laser. Collec-
tion of Raman signatures of objects close to the waveguide leads to spectral con-
tributions from the waveguide materials. ese background signals can be sub-
tracted, but will influence the results, especially for objects that are weak Raman
scatterers.

e external excitation laser setup gave the strongest microsphere Raman signa-
tures. Raman signatures of polystyrene and borosilicate glass microspheres pro-
pelling on a straight waveguide were clearly distinguishable with one second ac-
quisition times. Two seconds Raman acquisitions of polystyrene microspheres
trapped using a loop-gap waveguide design were weaker, but still clearly recog-
nizable. Strong losses in the narrow loop waveguides limited the size of spheres
trapped in the gap to 2 µm diameter. Increasing the waveguide width in the gap
design, would allow trapping of larger spheres. e high reflectivity of the silicon
base under the waveguide leads to a higher light intensity near the microspheres.
is increases the object’s Raman signal, but also increases the signal contribution
from the waveguide.

e internal excitation laser setup used guided light to excite Raman scattering.
Recognizable Raman signatures were acquired with evanescent field excitation and
with excitation by the field diverging into the waveguide gap. Due to weak excita-
tion intensities, the spectra had low signal-to-background ratios. is lead to in-
creased acquisition times and stronger background signal compared to the external
excitation laser configuration. Background subtraction was necessary to achieve
recognizable spectral signatures. To improve the strength of the Raman signal, in-
creasing the width of the waveguide with gap, or improvingmode quality or power
of the tunable 785 nm laser propagating in the waveguide would be necessary.

e ability to characterize microparticles propelled along the waveguide without
interrupting the flow of particles could lead to automated sorting and characteri-
zation applications. By using a narrow sample chamber around the waveguide, the
ratio of characterized particles in a sample would increase. e waveguide would
act like a conveyor belt, propelling particles into and out of the characterization
region, analyzing each particle only once. is would give a precise, but time con-
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suming, characterization of a full sample. Microfluidic transport would give faster,
but less precise characterization. If strong Raman signatures were achieved with
internal excitation, true lab-on-a-chip characterization would be possible.

Improvements of the imaging and excitation section of the setups would improve
the quality of collected Raman signatures. e suggested redesign in figure 8.19
would give higher mechanical stability, simpler alignment, and higher transmis-
sion of both excitation light and collected Raman signal. An implementation of
this is recommended for further Raman waveguide studies, especially if weaker
Raman scatterers are to be analyzed. A different approach for signal improvement
could be to utilize the proximity of the waveguide surface to the object. By at-
taching metal colloids on the waveguide surface for surface plasmon excitation
(surface-enhanced Raman spectroscopy), the intensity of the light would signif-
icantly increase, enhancing the Raman signal by several orders of magnitude.
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Chapter 9

Concluding Remarks

9.1 Overview

As mentioned in the introduction, waveguide trapping and Raman spectroscopy
became the topics of the thesis based on the goal of characterizing objects trapped
and propelled on top of a waveguide.

To provide a background to the topics presented in the thesis, basic properties of
optical forces, waveguides, waveguide trapping, finite elementmethod simulations,
and Raman scattering were presented in chapters 2, 3 and 6. ese are all well es-
tablished topics, and the theorywas presented to give a unified, short and physically
intuitive introduction to the fields.

e remaining chapters of the thesis presented procedures and results from simu-
lations and experiments. e simulations in chapters 4 and 5 were performed to
find the forces exerted on various objects in the evanescent field on top of an opti-
cal waveguide. e experiments in chapters 7 and 8 studied applications of Raman
spectroscopy, both as ameasure of cell proliferation and for characterization ofmi-
croparticles trapped on a waveguide. e following sections will sum up the results
presented in these chapters.
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9.2 Waveguide Simulations

e evanescent field outside the core of a waveguide can be used to propel micro-
and nanoparticles on top of the waveguide structure. is makes it possible to
create a narrow and highly specific conveyor belt for particles of this scale. Such
structures are similar to optical tweezers in the sense that no mechanical contact is
required to control the particle position. ere are threemajor differences between
the tweezers and the waveguide techniques. e first difference is the interaction
volume of the particle and the field, which is much smaller for the waveguide trap-
ping. e second difference is the position control of the trapping. For the tweez-
ers, the control is three dimensional, only depending on the position of the focusing
lens, while the waveguide only controls the particle on top of the waveguide sur-
face. e third difference is the surrounding media. e waveguide trapping takes
place along the surface of a dielectric, while the optical tweezers traps particles in
free space. A fourth, more minor difference, is the intensity of the trapping light,
which is much weaker in waveguide trapping.

In chapters 4 and 5, results from three dimensional finite element method simula-
tions of optical forces were presented to study the advantages of the unique waveg-
uide trap abilities. Simulations of trapped objects up to six micrometer in diameter
were performed.

9.2.1 Hollow Spheres

e small interaction volume of the trapwas found to be advantageous for the trap-
ping of hollow spheres. Within the field, the thin shell of the sphere experienced an
attractive force toward the waveguide, while the enclosed gas cavity of the sphere
experienced a repulsive force away from the waveguide. us, for a specific shell
thickness, no vertical attraction force is experienced by the hollow sphere. is can
make it possible to levitate hollow spheres above the waveguide. However, special
consideration must be given to buoyant and gravitational forces to achieve this. In
the same way, the hollow sphere experiences a minimum propulsive force in the
horizontal direction for similar shell thicknesses. It was found that the force on
hollow spheres can be described in a simple way by looking at the average refrac-
tive index in the region interacting with the evanescent field. A closer investigation
revealed that a more precise model would be based on the refractive index differ-
ences of the hollow sphere surfaces within the evanescent field.
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9.2.2 Red Blood Cells

Trapping of cells is difficult as the cell and its surroundingmedium are very similar.
is leads to a small refractive index difference and small forces. e simulations
found the horizontal propagation force of spherical cell models to have a quadratic
dependence on small changes in refractive index. However, the magnitudes found
were below the accuracy of the numerical model for typical cell refractive indices.
e vertical forces were found to be more than one order of magnitude larger than
the horizontal forces, and increased slowlywith the size of the spherical cellmodels.
e increase is due to the larger interaction volume of the sphere and the evanes-
cent field when the diameter increases. To approach the shape of biconcave red
blood cells, a four micrometer diameter disk shaped model was constructed. Due
to the large narrow region between the disk and thewaveguide, no horizontal forces
could be accurately simulated with the available computer power. However, the
attractive force increased significantly compared to the spherical cell models, and
also increased markedly with the refractive index of the cell.

9.3 Raman Scattering Experiments

Raman experiments were performed on two different setups, one specifically de-
signed for optical tweezer Raman studies, and one specifically designed for Ra-
man studies of particles on waveguides. e optical tweezer setup had a much
higher sensitivity, and was used to study the proliferation of weakly scattering cells.
e waveguide setup was much less sensitive, and was used to study signals from
strongly scattering polystyrene spheres. Both experiments showed promising re-
sults, but the results could be significantly improved by optimizations of experi-
mental procedures and setup designs. Such improvements would probably lead to
efficient analysis and characterization techniques for routine analysis.

9.3.1 Cell Proliferation

Cell growth is commonly measured by studying the uptake in DNA of labeled
molecules incorporated during DNA replication. Previous methods were cum-
bersome to work with, and required removal of the measured cells. In chapter 7,
a newly proposed proliferation assay was tested and quantified on non-adherent
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cells. EdU, a thymidine analogue which contain a highly specific ethyne Raman
peak, was incorporated into Jurkat white blood cells. With a setup combining opti-
cal tweezers and micro Raman spectroscopy, the incorporation and dissipation of
EdU in the DNAwas followed in a sample of living cells over a period of 118 hours.
In spite of decreasing cell numbers, a clear increase and decrease in EdU concen-
tration in the DNA was found when EdU was present in the growth medium and
aer EdU was washed away, respectively. e results matched the expected devel-
opment fairly well, and suggested a cell proliferation time of 22 hours. However,
a sudden increase in concentration of EdU for the last 30 hours of the experiment
could not be explained satisfactorily.

Due to the heterogeneity of cell cultures, uptake ratio and replication time can vary
strongly from cell to cell. Combined with an unknown ratio of non-replicating
cells, this makes proliferation studies difficult to analyze. Raman based EdU assays
would give simultaneous data on uptake ratio and uptake concentration, and allow
rapid and exact proliferation data from cell cultures and single cells.

9.3.2 Characterization of Objects onWaveguides

An automated differentiation process could give accurate and fast sorting of differ-
ent microparticles. Since Raman spectroscopy gives highly specific characteriza-
tion based on the target’s molecular structure, precise and real time characteriza-
tion for sorting purposes can be achieved by collecting Raman scattered light from
objects trapped on the waveguide. Special waveguide designs could then be used
to sort different particles to different regions of the waveguide.

Chapter 8 presents results fromcharacterization experiments of particles onwaveg-
uides using Raman spectroscopy. It is found that by using an external laser for ex-
citation, Raman signatures of polystyrene microspheres can be acquired in 1 to 2
seconds, depending on the sphere diameter. On a straight waveguide, an external
laser is used to trap and excite the target particle when it reaches the laser’s focus
spot. On a waveguide with a loop and gap design, the target particle is trapped
in the gap incorporated in the loop. e stationary particle is then trapped and
excited by an external laser. Potentially, the particle could be excited by the di-
verging guided light in the gap. It is shown that the Raman signature of liquid
ethanol can be acquired with guided light excitation, but high losses in the 1 mi-
crometer wide loop waveguide prevents proper characterization (and trapping) of
polystyrene microspheres in the gap. Finally, it is shown that microspheres on the
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waveguide surface can be characterized by the scattering of the evanescent field.
However, this requires a large, stationary scatterer. In all the experiments, back-
ground signal from the waveguide and waveguide substrate contribute to the sig-
nal, and in some experiments it is required to subtract the background to see the
Raman peak signatures. Low light collection efficiency limited the quality of the
acquired Raman signatures. us, improvements of the microscope setups were
suggested for simpler alignment and increased signal throughput.

9.4 Summary

e results presented in the thesis show that there are diverse applications for both
waveguides and Raman spectroscopy. Different waveguide designs and micropar-
ticle properties can trap moving and stationary microparticles, among them non-
adherent cells, and could even allow particle levitation for hollow spheres. Com-
bined with the precise characterization of Raman spectroscopy, efficient micropar-
ticle sorting could be achieved. e thesis also show promising properties of a Ra-
man tweezer based cell proliferation assay using non-adherent cells.

All the presented results have potential for improvements. For the simulations,
the mesh density was a limiting factor for accurate horizontal forces, and could be
improved by increasing computer memory. For the Raman proliferation assay, a
more thorough comparison with fluorescent measurements, as well as improving
measurement conditions of the Raman measurements would further improve the
validity of the results. For the microsphere Raman characterization, the sensitivity
of the Raman setup could be increased by simplifying the microscope design.
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