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Abstract—This paper proposes a novel unsupervised, non-
Gaussian, contextual segmentation method that combines
an advanced statistical distribution with spatial contex-
tual information for multi-look polarimetric SAR (PolSAR)
data. This extends on previous studies that have shown the
added value of both non-Gaussian modeling and contextual
smoothing individually, or for intensity channels only. The
method is based on a Markov random field (MRF) model
that integrates a K-Wishart distribution for the PolSAR
data statistics conditioned to each image cluster and a Potts
model for the spatial context. Specifically, the proposed
algorithm is constructed based upon the stochastic expec-
tation maximization (SEM) algorithm. A new formulation
of SEM is developed to jointly perform clustering of the
data, and parameter estimation of the K-Wishart distribu-
tion and the MRF model. Experiments on simulated and
real PolSAR data demonstrate the added value of using an
appropriate statistical representation, in combination with
contextual smoothing.

Index Terms—Polarimetric synthetic aperture radar (Pol-
SAR); stochastic expectation-maximization (SEM); K-
Wishart distribution; Markov random field (MRF); unsu-
pervised segmentation.

I. Introduction

CLASSIFICATION techniques play an important role
in automatic analysis of remote sensing data. This pa-

per addresses image segmentation of polarimetric synthetic
aperture SAR (PolSAR) data using an unsupervised classi-
fication approach. PolSAR data are multi-channel complex
data sets that, when multi-looked, are given in terms of
complex sample covariance matrices. This data represen-
tation poses challenges with regards to finding appropriate
statistical models, as well as creating efficient classifica-
tion strategies. Many studies have reported various meth-
ods with greater classification accuracies using polarimetric
radar data instead of conventional single-polarization SAR
data [1], [2].

Polarimetric SAR image segmentation is commonly per-
formed with the Gaussian-based Wishart clustering al-
gorithm operating on a pixel-by-pixel basis [3]. Anal-
ysis of PolSAR images often reveals that non-Gaussian
models give better representation of the scattering vec-
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tor statistics, compared to complex Gaussian distribu-
tions, implying that processing algorithms based on non-
Gaussian statistics should improve performance. The dou-
bly stochastic product model has been widely used in non-
Gaussian modeling, processing, and analysis of single- and
multi-PolSAR images [4]. The model states that, under
certain conditions, the complex-valued scattering vector re-
sults as the product of two independent random variables:
a circular complex multinormal speckle noise component
and a real scalar texture component. Several distributions
could be used to model SAR image texture with differ-
ent spatial correlation properties and various degrees of
inhomogeneity [5], [6]. For the multi-look covariance ma-
trix data, the product model produces models that devi-
ate from the Wishart model. In the context of this paper,
the term “non-Gaussian” will refer to models that deviate
from the Wishart distribution. Statistical properties are
widely used for feature extraction, image segmentation and
land cover classification of PolSAR data, and several su-
pervised and unsupervised classification schemes have been
proposed in the literature [7]–[9]. In this study, we use the
non-GaussianK-Wishart clustering algorithm [10], that ac-
counts for potential textural differences in the classes, to
represent the individual pixelwise statistical properties.

The potential of Markov random field (MRF) models
to retrieve spatial contextual information is desired to im-
prove the accuracy and reliability of the image clustering.
Previous studies have shown the added values of both non-
Gaussian modeling and contextual smoothing individually.
This paper addresses the problem of unsupervised contex-
tual polarimetric SAR image segmentation by combining
advanced statistical modeling and spatial context within
an MRF framework. MRF models have been used in re-
mote sensing to address many image analysis problems,
including (supervised and unsupervised) classification, seg-
mentation, texture extraction, denoising, and change de-
tection (see e.g., [8], [11]–[18]).

The proposed contextual clustering method uses a spe-
cific Markovian energy function for integrating the K-
Wishart distribution for the PolSAR data statistics con-
ditioned to each image cluster and a Potts model for the
spatial context. This algorithm thereby combines the ben-
efits of a flexible non-Gaussian model for the covariance
matrix data classes and an MRF for contextual smoothing.
The algorithm is implemented as a stochastic expectation
maximization (SEM) algorithm [19]. SEM is an iterative
parameter estimation technique developed for parametric
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modeling problems characterized by data incompleteness.
In each iteration, the current cluster parameter estimates
are used to segment the image, and the new segments are
used to recompute the cluster parameters. Here, a novel
formulation of SEM is developed by formulating the max-
imum a posteriori (MAP) decision rule such that it jointly
addresses data clustering and parameter estimation [20],
[21].

The SEM is an improvement of the classical expectation
maximization (EM) algorithm that incorporates a stochas-
tic sampling procedure on every iteration. It is therefore
more likely to avoid local maxima in the log-likelihood
function during iterations. The SEM algorithm was used
by Moser et al. [22] to estimate the distribution of single-
polarization SAR data. In the context of multi-look Pol-
SAR data, the EM and SEM algorithms have been ap-
plied by several authors to the problem of unsupervised
segmentation. Kersten et al. [23] first applied the EM
algorithm to this problem under the assumption of com-
plex Wishart distributed data. Reigber et al. [14] aug-
mented the Wishart mixture model, which was again re-
solved by the EM algorithm, with spatial context imple-
mented in terms of relaxation labeling. Doulgeris et al.
[10] used the SEM algorithm to solve a mixture model
with K-Wisharted-distributed components. The approach
proposed in this paper uses SEM to address parameter esti-
mation when the K-Wishart distribution is combined with
a spatial MRF model. Thus, it represents a new step in the
evolution which joins an advanced model of pixel statistics
with contextual information.

This paper is organized as follows. In Section II, we
describe the pixelwise data format, followed by a descrip-
tion of the product model and the K-Wishart distribution.
In Section III, the general concepts of Markov random
fields, the chosen MRF model, and the estimation method
are discussed. In Section IV, the scheme of the textural-
contextual classifier is explained. Section V demonstrates
the performance of the method with simulated and real
SAR data and discusses the results. Section VI is dedi-
cated to a summary and conclusions.

II. Pixelwise model

Assuming that the reciprocity principle is satisfied, the
backscattering of a monostatic polarimetric SAR system is
characterized by the complex scattering vector

k = [SHH ,
√

2SHV , SV V ]T , (1)

where the elements represent the three complex backscat-
tering coefficients in horizontal transmit horizontal receive
(HH), horizontal transmit vertical receive (HV) and ver-
tical transmit vertical receive (VV) polarization, respec-
tively, and the superscript T denotes the matrix transpose.
Usually, polarimetric data are transformed into the form of
multi-looked sample covariance matrices in order to reduce
speckle noise, i.e.,

C =
1

L

L∑
l=1

klk
H
l , (2)

where L is the nominal number of looks used for averaging,
and the superscript H means complex conjugate transpose.
Hence, after multi-looking, each pixel s in the image is a
realization of the d× d stochastic matrix variable denoted
C, and the image is referred to as the multi-look complex
(MLC) covariance image.

A. Multi-look Product Model

The non-Gaussian product model describes C as the
product of a texture term and a speckle term [6]. Assum-
ing that the texture has spatial correlation lengths larger
than the local neighborhood size [10], the doubly stochas-
tic product model for multi-looked PolSAR data is given
by [4] as

C = ZW, (3)

where the strictly positive, unit mean scalar variable Z
models texture, and represents the backscatter variability
due to heterogeneity of the radar cross section. The texture
term is scalar because of the assumption of equal textural
variations for all polarimetric channels. The second contri-
bution, the speckle noise term W, follows a scaled complex
Wishart distribution [24], denoted sW(L,Σ), with param-
eters L, the nominal number of looks, and Σ, the mean
sample covariance matrix E{W}. The probability density
function (PDF) of W is given as

pW(W)=
LLd|W|L−d

Γd(L)|Σ|L
exp

(
−Ltr(Σ−1W)

)
, (4)

where tr(·) and | · | denote the trace and determinant, re-
spectively, and Γd(L) is a normalization constant

Γd(L) = π
d(d−1)

2

d∏
i=1

Γ(L− i+ 1). (5)

named the multivariate gamma function in [24], while Γ(·)
is the standard Euler gamma fuction.

The non-Gaussian nature of the product model depends
on the specific model for the scalar texture variable Z [5],
[6], [10].

B. K-Wishart Distribution

Assume that the texture term of the product model fol-
lows the gamma distribution with PDF given by

pZ(z;α) = αα
zα−1

Γ(α)
exp (−αz) . (6)

α > 0 is called the shape parameter, and we impose unit
mean, i.e., E{Z} = 1. Then the marginal distribution for
C may be obtained by integrating the conditional PDF
over the prior distribution of Z, that is

pC(C)=

∫ ∞
0

pC|Z(C|z)pZ(z)dz, C|z ∼ sW(L, zΣ).

(7)
The resulting distribution for C was called the K− dis-

tribution in the seminal paper [5]. We refer to it as the K-
Wishart distribution (as did [10]), denoted KW(L,α,Σ),
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to distinguish the matrix-variate form from other members
of the K distribution family. It is given in closed form as

pC(C) =
2|C|L−d (Lα)

α+Ld
2

Γd(L)Γ(α)|Σ|L
(
tr(Σ−1C)

)α−Ld
2

×Kα−Ld

(
2
√
Lαtr(Σ−1C)

)
,

(8)

where Kρ(·) is the modified Bessel function of the second
kind with order ρ. Note that the PDF is parameterized
by the shape parameter α, the number of looks L, and the
scale matrix Σ. As α→∞, the texture variable tends to
a constant, and the K-Wishart model converges in distri-
bution to the standard Wishart model. The flexibility of
the K-Wishart model is indicated in Fig. 1, by showing the
PDF of intensity variations for increasing values of α.

Fig. 1. Non-Gaussian flexibility of K-Wishart model with different
shape parameter values. Lower values of α represent extreme texture
and higher values represent low texture with the KW asymptotically
tending toward the Wishart distribution. Therefore, the flexible KW
distribution better captures real data variations. Plotted is the 1-
dimensional representation of intensity variations.

C. Parameter Estimation of the K-Wishart Model

The shape parameter α in the K-Wishart PDF is esti-
mated with the method of matrix log-cumulants (MoMLC)
[24]. This method is founded on Mellin transform theory
[25], [27], has been proved to be a feasible and effective es-
timation technique associated with the multi-look polari-
metric product model. In [24] it was shown that the νth or-
der log-cumulant equations for C separate the texture and
speckle contributions under the multi-look product model,
such that

κν{C} = κν{W}+ dνκν{Z} (9)

The matrix log-cumulant equations of the K-Wishart dis-
tribution are given as

κ1{C}= ln |Σ|+ψ0
d(L) + d

(
ψ0(α)− ln(αL)

)
,

κν{C}= ψν−1d (L) + dνψν−1(α), ν > 1, (10)

where ψνd (·) and ψν(·) are the νth order multivariate and
the ordinary polygamma functions, respectively [24], and
the relation between log-moments and log-cumulants is

given by

κν{·} = µν{·} −
ν−1∑
i=1

(
ν − 1

i− 1

)
κi{·}µν−i{·}. (11)

where
(·
·
)

represents the binomial coefficient. Several sam-
ple matrix log-cumulants 〈κν〉 can hence be obtained from
the sample matrix log-moments, which are calculated from
the data as

〈µν〉 =
1

n

n∑
i=1

(log |Ci|)ν . (12)

The weighted least squares method is subsequently used
to estimate the K-Wishart parameters from an overde-
termined system of matrix log-cumulant equations. The
method is explained in detail in [28], where it is referred to
as the maximum asymptotic likelihood (MAL) estimator.

Fig. 2. Second-order neighborhood system and pairwise cliques.

III. Markov Random Field (MRF) model

Let S = {si,j ;1≤ i≤R,1≤ j ≤M} be regarded as a 2-D
pixel lattice, where si,j is site (i, j), R and M are the num-
ber of rows and columns of the image, respectively, and let
L = {1,2, ...,J} denote the set of all possible labels in the
clustering map. A label random field X = {Xs;Xs ∈ L,
s ∈ S} defined on S is an MRF with respect to a given
neighborhood system if, and only if, the following two con-
ditions hold:
1) The positivity condition: P (X)> 0,
2) Markovianity condition: P (Xs|XS\s) = P (Xs|XN (s)),
where S\s denotes the set containing all sites in S except
s, and N (s) is the neighborhood of s [20], [29].
According to the Hammersley-Clifford theorem [30], the
joint probability distribution of an MRF is a Gibbs distri-
bution [29], which enables the field to be characterized by
its local, instead of its global, properties. Therefore, the
PDF of X has the form

P (X) = W−1exp (−U(X)) , (13)

where U is an energy function

U(X)=
∑
c∈C

Vc(Xc). (14)

c is a clique and C is the collection of all cliques with re-
spect to the adopted neighborhood system, Xc is the set
of samples Xs such that s belongs to c, and Vc is the po-
tential associated with clique c. W =

∑
X exp(−U(X)) is

a normalization constant called the partition function [20].
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Consequently, the local spatial correlations of Xs with
respect to its neighbors are modeled by defining suitable
potential functions Vc. This actually is an essential prob-
lem in all MRF models. For simplicity of computations,
the current work confines the neighborhood system to an
isotropic second-order system, with the related set of pair-
wise cliques depicted in Fig 2.

A. Potts MRF Model

We will use the classical homogeneous Potts model to
model the spatial correlation between pixels. According to
this model, a single global parameter β > 0, which is known
as the spatial interaction parameter, regulates the pairwise
pixel interactions.1 With cliques consisting of up to two
sites, the second-order energy function of the homogeneous
MRF model is given as [20], [29]

U(X) =
∑
s∈S

V1(Xs) + β
∑
s∈S

∑
r∈N (s)

V2(Xs, Xr), (15)

where Xs is the label of the central pixel s, Xr is the
label of a neighboring pixel in the neighborhood system
of s. The first term of the energy function,

∑
s∈S V1(Xs),

is determined by the pixelwise PDF, and the second term
conveys the contextual information. For a single pixel, s,
the contextual energy term is the sum over the second-
order cliques of the neighborhood, i.e.,

U(Xs|XN (s)) = β
∑

r∈N (s)

V2(Xs, Xr), (16)

which for the global Potts model is given as

V2(Xs, Xr) = −δ(Xs, Xr) =

{
−1 if Xs =Xr

0 otherwise
(17)

This potential function results in the following conditional
probability mass function (PMF) of Xs, given its neigh-
bors:

P (Xs|XN (s);β) =
exp

(
−β
∑
r∈N (s)V2(Xs,Xr)

)
∑
Xs∈L exp

(
−β
∑
r∈N (s)V2(Xs,Xr)

)
=

exp(βmXs(s))∑
l∈L exp(βml(s))

,

(18)

where mXs(s) is the number of neighbors of pixel s with
label equal to Xs.

B. MRF Parameter Estimation

The main difficulty of MRF parameter estimation is that
the maximum likelihood (ML) method is computationally
intractable for most MRF models. An alternative is to
adopt the maximum pseudo-likelihood (MPL) technique,
which is computationally feasible and simple to implement.

1 Spatially inhomogeneous MRF models allow the β-parameter to
change over the field, in which case the models are defined by a set
of local conditional density functions [31].

The pseudo-likelihood (PL) approach consists in approxi-
mating the likelihood in Eq. (13) as follows [32], [33]:

PL(X;β) =
∏
s∈S

P (Xs|XN (s);β), (19)

By substituting the local conditional probabilities from Eq.
(18) into (19), an approximation of P (X) in Eq. (13) is
obtained by

PL(X;β) =
∏
s∈S

P (Xs|XN (s);β)

=
∏
s∈S

exp(βmXs(s))∑
l∈L exp(βml(s))

,
(20)

Taking the logarithm, the above equation leads to the max-
imization of

Φ(β) =
∑
s∈S

[
βmXs(s)− log

(∑
l∈L

exp (βml(s))

)]
. (21)

This function is optimized by a simulated annealing algo-
rithm to estimate the MRF parameter β, a computation-
ally intensive global minimization approach [33], [34].

IV. Textural – Contextual Classifier

Let C={Cs; s ∈ S} be an MLC image, and let X =
{Xs;Xs ∈ L, s ∈ S} be the class labels of C. The un-
observed class labels, X, are now considered as a discrete
Potts MRF with the energy function U depending on the
parameter β [29]. The MLC image is statistically modeled
as a mixture of K-Wishart distributions, where the pix-
els are assumed to be conditionally independent given the
label field X, i.e.,

pC|X(C|X;θ) =
∏
s∈S

pCs|Xs(Cs|Xs;L,Σ, α), (22)

and θ = {L,α,Σ} is the vector of the parameters of the K-
Wishart distribution. In order to develop the K-Wishart
MRF classifier using the MAP criterion, a feasible and
computationally affordable approach is the iterated con-
ditional mode (ICM) technique for MRF energy minimiza-
tion [20], [35]. Accordingly, we need to obtain the condi-
tional probability mass function of the label random field
X given an observation of the MLC image C. Pixelwise,
this conditional PMF can be formulated using the Bayes
rule as

PXs|Cs(Xs|Cs) ∝ pCs|Xs(Cs|Xs;θ)PXs(Xs), (23)

where PXs is the prior PMF and PXs|Cs is the posterior
PMF of the class label, i.e., the latter is the probability that
pixel s belongs to class Xs, given the observation Cs. In
the homogeneous Potts MRF model Xs is then estimated
by

X̂s = arg max
Xs∈L

{PXs|Cs(Xs|Cs,XN (s);Θ)}

= arg max
Xs∈L

{pCs|Xs(Cs|Xs;θ)PXs|XN(s)
(Xs|XN (s);β)},

(24)
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and Θ = (θ, β) has to be estimated in the iterative seg-
mentation process. The posterior probability of Xs given
Cs becomes

P (Xs|Cs,XN (s); Θ)=
exp

(
−U(Xs|Cs,XN (s); Θ)

)∑
Xs∈L exp

(
−U(Xs|Cs,XN (s); Θ)

) ,
(25)

and the associated local posterior energy function [35]

U(Xs|Cs,XN (s);Θ)= U(Xs|XN (s);β) +U(Cs|Xs;θ)

=−βmXs(s) + log

(∑
l∈L

exp(βml(s))

)
− logpCs|Xs(Cs|Xs;θ).

(26)

A. SEM Clustering Process

The proposed contextual MRF-based classifier consists
of two processing stages: a non-contextual stage and an
MRF stage.

Non-contextual stage: In this stage, an initial non-
contextual segmentation map is to be estimated. We as-
sume that the MLC image is a realization drawn from a
mixture of K-Wishart distributions, i.e., at each site the
probability density function of the sample covariance ma-
trix is given as

pCs(Cs) =
∑
l∈L

πlpl(Cs;θl), (27)

where the non-negative mixture proportions πl satisfy the
relation

∑
l∈L πl = 1, pl(Cs;θl) are densities for each in-

dividual class l, and θl is the parameter vector of the lth

K-Wishart mixture component. Since both the class la-
bels and the parameters are unknown and must be esti-
mated from the observations, we have a so-called incom-
plete data problem [29], which can be solved by apply-
ing the SEM algorithm. For a given number of J com-
ponents, the task is to estimate the vector of parameters
ΘNC = (π1, π2, · · · , πJ ,θ1,θ2, · · · ,θJ) that maximizes the
log-likelihood function

LL(ΘNC) =
∑
s∈S

(
log

(∑
l∈L

πlpl(Cs;θl)

))
. (28)

The SEM algorithm starts with an initial segmentation

with J classes and parameter vector Θ
(0)
NC , and works in

an iterative manner where, in each iteration, the current
cluster parameter estimates are used to segment the image,
and the new segments are used to recompute the cluster
parameters. The SEM algorithm has three steps [19]:

1. An expectation (E) step, in which, for each given ob-
servation, the posterior probabilities associated with
the clusters are estimated using the current class-
conditional PDF components and mixture propor-
tions.

2. A stochastic (S) step, which randomly samples the
label of each sample covariance matrix according to
the current estimated posterior PMF from the E-step.

3. A maximization (M) step, which updates all class pa-
rameters, i.e., the K-Wishart parameters using the
log-cumulant estimators discussed in Section II-C, and
πl using the relative frequency of assignment to each
class.

The SEM algorithm does not stop by convergence and
has to be terminated by simply setting a fixed number of it-
erations, for example 200. The above-mentioned steps are
carried out in each iteration to produce a homogeneous
Markov chain of parameter estimates, and the estimate
that maximizes the log-likelihood function LL(ΘNC) is se-
lected. According to [19] this procedure should result in a
final solution close to the global maximum likelihood esti-
mate. The algorithm results in a final segmentation and
associated model parameters for each class.

MRF stage: The pixelwise model is now combined with
the MRF model to take into account the spatial correlation
between class labels. The classifier based on pixel statistics
only is severely affected by overlapping class statistics due
to speckle noise. This problem is reduced by incorporat-
ing spatial contextual information. The SEM algorithm is
modified to include the contextual energy in the calculation
of the posterior probabilities, and also the spatial interac-
tion parameter of the Potts MRF model, β, is estimated
in the iteration process. The corresponding log-likelihood
function becomes

LL(ΘMRF ) =
∑
s∈S

(
log

(∑
l∈L

πl(s)pl(Cs;θl)

))
, (29)

where ΘMRF = (θ1,θ2, · · · ,θJ , β), and the mixture pro-
portions πl have been replaced by the local priors πl(s),
defined as the conditional probabilities in (18). We specif-
ically note that πl(s) depends on the site s through the
labels of its entire neighborhood N (s). Starting from an

initial parameter vector Θ
(0)
MRF , estimated as the maxi-

mum of the log-likelihood function of the non-contextual
stage, an iteration of the MRF stage SEM algorithm con-
sists of three steps:

1. An E-step, where the posterior probabilities associ-
ated with the clusters are estimated for each given
observation, using the current component PDFs and
local priors (see Eq. (25)).

2. An S-step, which randomly samples the label of each
sample covariance matrix according to the current es-
timated posterior PMF.

3. An M-step, which updates all class parameters, i.e.,
the K-Wishart parameters and the parameter of the
Potts MRF model, β, discussed in Section III-B.

We use the mode-field approach to approximate the like-
lihood function, which makes the SEM algorithm compu-
tationally affordable [29]. Contextual SEM continues af-
ter pixelwise SEM on the segmentation result produced
in the non-contextual stage. The same method is used to
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terminate the contextual SEM as discussed above for the
non-contextual stage. Due to the added influence of spa-
tial contextual information among neighboring pixels, we
terminate the algorithm with less number of iterations, for
example 15.

B. Number of Classes

One of the key issues in unsupervised image segmenta-
tion is to determine the appropriate number of segments,
J . In most algorithms, J is assumed to be known. In our
case, the number of clusters is automatically determined
in a preclustering process in the way proposed by Doul-
geris et al. [7]. According to this method, the number of
mixture classes is dynamically determined in a goodness-
of-fit stage, which regularly tests how well each class his-
togram matches a theoretically predicted PDF model. The
algorithm will keep clusters with a good match unaltered;
clearly mixed, multi-modal clusters will be split into two
clusters, whereas virtually identical competing clusters will
be merged. Note that the non-contextual SEM stage could
be replaced by the automated clustering algorithm pro-
posed by Doulgeris et al. However, we do not do this in
order to have consistent comparison of SEM algorithm with
and without MRF. We therefore need to fix both the num-
ber of clusters and the underlying SEM algorithm in both
processing steps.

C. Initialization

The non-contextual SEM clustering process can be ini-
tialized in two ways.
K-means initialization: K-means clustering is applied to
a vector image consisting of the logarithmic intensities of
the individual polarimetric channels. Then, the original
MLC image is given the same partitioning. The MoMLC
technique is subsequently used to estimate the parameters
of each partition.
Random initialization: In this case the image is randomly
partitioned into a given number of segments. In the MRF
stage, the Potts MRF model is initialized with β = 1, and
the partition result from the non-contextual stage.

D. Effective number of looks (ENL) estimation

One of the parameters in the pixelwise PDF is the num-
ber of independent looks, L. Because there is some corre-
lation between pixels in real images, this number is differ-
ent from the nominal number of looks used in the multi-
looking. Hence, the nominal number of looks needs to
be replaced with an estimated effective number of looks
(ENL). We incorporate the ENL estimation technique from
[36], where the ENL is estimated using MoMLC in a pre-
analysis of the image.

V. Experimental Results and Analysis

In this section, we analyze the performance of the pro-
posed algorithm on both simulated and real polarimetric
SAR data. It is noted that even though the theory review
in section II was carried out for the full polarimetric
case, the algorithm can also be applied to dual and single

polarimetric data. Our study includes the following four
segmentation experiments:
i) A pixelwise standard Wishart model, i.e., the non-
textured case, denoted W.
ii) A pixelwise standard Wishart model and an MRF
model for spatial context, i.e., the non-textured contextual
case, denoted W-MRF.
iii) A pixelwise K–Wishart model, i.e., the textured case,
denoted KW.
iv) A pixelwise K-Wishart model and an MRF model for
spatial context, i.e., the textured contextual case, denoted
KW-MRF.

The data sets include a simulated dual-pol image,
a quad-pol airborne scene over an agricultural area in
Foulum, Denmark, and an ENVISAT ASAR scene over the
Kongsvegen glacier on Svalbard. The simulated data al-
lows a quantitative analysis of the classification accuracies,
whereas the real data only will permit a visual comparison
due to insufficient ground truth data.

A. Simulated SAR Image with Seven Classes

The simulated image is 250 × 250 pixels in size, it
is dual-pol, and generated with 8-look, K-Wishart dis-
tributed matrix data. The covariance matrix and texture
parameters are taken from a real dataset to simulate classes
with properties of a real image. Fig. 3(a) shows the Quasi-
Pauli image (dual-pol) of the simulated test pattern and
intensity variations of each simulated class is plotted with
its shape parameter in Fig. 3(b). Highly skewed curves
indicate high texture regions and less skewed curves repre-
sent low texture regions. Class 5 (pink curve) in Fig. 3(b)
clearly has extreme skewness compared to the others. This
class was simulated with the statistical properties of an ur-
ban area. Classes 2, 3 and 4 come from a forest area with
moderate texture. Class 6 (cyan curve) is representative of
a homogeneous area and has the lowest texture. As seen
in Fig. 3(b), the cyan PDF is the narrowest and the stan-
dard Wishart distribution can model such a class for the
given number of looks. Other classes are simulated with
the statistics of agricultural crops and vegetation areas.

To initialize the SEM process, each observation is as-
signed randomly to one of seven classes. As the generated
samples are independent, the ENL is equal to the nominal
number of looks. Then, the first stage of the classification
is implemented for each of the textured (KW) and non-
textured (W) models. Figs. 3(c) and 3(d) show the results
for theW and KW MAP classifiers on the same K-Wishart
test image. Both classifiers already provide good classifica-
tion performances in the non-contextual step, with accura-
cies higher than 80% for most classes and overall accuracy
of approximately 89% and 97%, respectively. The biggest
difference in performance is observed for the highly non-
Gaussian urban class (class 5), which has a classification
accuracy of 49.45% for theW and 84.8% for the KW. Since
the W model has limited variance, it has difficulties with
grouping the highly non-Gaussian classes into single clus-
ters, and therefore it fits two or more Gaussian-constrained
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Fig. 3. Experiment with 8-look, dual-pol, K-Wishart distributed simulated pattern: (a) Quasi-Pauli (dual-pol) RGB image with class labels;
and (b) textured model intensity curves for each simulated class indicating the texture variation among the classes; (c) Standard Wishart
(W); (d) K-Wishart (KW); (e) Standard Wishart MRF (W-MRF), and (f) K-Wishart MRF (KW-MRF) segmentation results.

TABLE I

Classification accuracies for Experiment 1, including Overall Accuracy (OA), the kappa coefficient and its variance.

Classifier Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 OA K̂ σ̂2
K

W 94.81% 99.87% 90.20% 96.92% 49.45% 93.09% 87.30% 89.46% 0.8893 4.33e-6
KW 99.83% 99.74% 99.85% 99.77% 84.80% 93.89% 100% 97.25% 0.9725 9.93e-7
W- MRF 100 % 99.96% 99.94% 99.98% 66.78% 99.97% 100% 97.58% 0.9759 9.88e-7
KW- MRF 100% 100% 100% 100% 100% 100% 100% 100% 1.0000 3.89e-7
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Fig. 4. Comparison between fitted models and class histograms of trace(Σ−1C) for all clusters found in the simulated test pattern, (a) The
left figure shows that the W-MRF model is not fitted well to the histograms of some clusters. (b) The right figure shows the good visual fit
of the KW-MRF model to all class histograms.

distributions to the non-Gaussian data classes [10]. The
KW can better model such intensity variations in one class,
yielding significant improvement and a 35.35% increase in
the accuracy for the urban class. Table I summarizes a
quantitative evaluation of the classification performance,
including the classification accuracies for all classes, over-
all accuracy, the Kappa coefficient, and its asymptotic vari-
ance [37] for the proposed models. Even though the con-
sidered operational setting is unsupervised, such a quan-
titative accuracy analysis is feasible for this dataset, since
the true label of each pixel is known. As expected, classi-
fication results appear noisy because the contextual infor-
mation is disregarded by the pixelwise SEM technique.

The contextual W-MRF and KW-MRF classifiers im-
prove the results, yielding nearly perfect and perfect seg-
mentation of the seven classes, respectively. Figs. 3(e) and
3(f) demonstrate the results. The contextual stage results
in a strong smoothing of homogeneous areas, while class
boundaries are preserved. As unsupervised algorithms do
not produce a unique class numbering, the labels were ad-
justed to make all results comparable, before computing
the confusion matrices for all classifiers. Figs. 4(a) and 4(b)
depict class histograms and fitted model PDFs of the entity
trace(Σ−1C) for all segments produced by the W-MRF
and KW-MRF classifiers, respectively. The transforma-
tion trace(Σ−1C) compacts the matrix-variate data into
a scalar such that the model goodness-of-fit can be visu-
alized. The theoretical models for trace(Σ−1C) are deriv-
able for the respective models for C, because the quan-
tity is a linear combination of d whitened terms and each

model possess infinite divisibility [38]. Therefore, Wishart
data leads to a Wishart model, W(Ld,d) for this quantity,
which is equivalent to the one dimensional gamma distri-
bution. Similarly, KW data leads to a KW(Ld,α,d), which
is equivalent to the intensity K-distribution.

For low texture and homogeneous regions (class 1, 6
and 7), both the W-MRF and the KW-MRF models pro-
duce partitions that excellently match the original simu-
lated image. The model fit of the class histograms is also
good. For moderate texture areas (classes 2, 3 and 4), even
though the W-MRF provides excellent classification accu-
racies, the model fit is not good in Fig. 4(a). Most notably,
the W-MRF has problems with the urban class (class 5).
The MRF model cannot fully compensate for the weakness
of the pixelwise model, which does not capture the large
variance of this highly textured class. Still, the contextual
smoothing improves the accuracy from 49.45% for the W
classifier to 66.78% for the W-MRF classifier. The model
is a bad fit for several class histograms. Conversely, the
KW-MRF model provides a good visual fit to all classes.

The estimated Kappa coefficient, K̂, and asymptotic
variance, σ̂2

K , are given in Table I for each classification.
We can evaluate significant differences between any pair of
classification results by a test statistic ∆K̂ given in [39] as

∆K̂ =

∣∣∣K̂2 − K̂1

∣∣∣√
σ̂2
K2

+ σ̂2
K1

. (30)

At the 95% confidence level two results may be considered
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significantly different if ∆K̂ exceeds 1.96. By computing
∆K̂ for each pair of classifiers, as seen in Table II, we found
that all classification results are significantly different in a
statistical sense. This confirms that adding texture, adding
context, or adding both, significantly improves the segmen-
tation. As seen in Table I, the KW andW-MRF classifiers
produce similar accuracies, but this is almost certainly only
a coincidence for this particular dataset. The relative sig-
nificance between texture and context is irrelevant since
our proposal exploits both simultaneously.

TABLE II

∆K̂ values for Test of Significant Differences between

pairs of classifiers (∆K̂>1.96 is significant)

W KW W- MRF KW- MRF

W 0.00 36.07 37.53 50.98
KW 0.00 2.376 23.413
W- MRF 0.00 20.604
KW- MRF 0.00

B. Foulum Example

In the second experiment, a small section of the image
of an agricultural area from an airborne EMISAR L-band
quad-pol acquisition over Foulum, Denmark, from 1998
is tested. An enhanced Pauli composite image (R=HH-
VV, G=HV, B=HH+VV) is shown in Fig. 5. The SLC
data is multi-looked to 8-looks. The ENL value was esti-
mated to 6.4 in a pre-analysis of the image (as discussed in
Section IV-D). The appropriate number of classes for this
real dataset is automatically determined in advance by the
goodness-of-fit testing method proposed by Doulgeris et al.
[7]. As expected theoretically, this gives a different num-
ber of classes depending on the constraints of the chosen
model. The KW classifier found 14 classes for this data.
However, to more easily compare results, the number of
classes is fixed to 14 the other classifiers. As seen from
Figs. 6(a) and 6(b), the W classifier splits fields A and
B into two classes (red and dark blue), whereas the KW
classifier groups them as a single class (red). This happens
also for field C, where the brown, light green, and yellow
classes in the W result correspond to the (mostly) brown
and yellow class in the KW result. For forest areas (field D
and E), the KW classifier seems to distinguish significant
differences in forest density correctly, at least by visual
inspection.

Again, the segmentations are noisy due to the low num-
ber of looks and the pixelwise SEM procedure, whereas
the W-MRF and KW-MRF classifiers are able to gener-
ate spatially homogeneous segmentation results. Figs. 6(c)
and 6(d) show these results. In field C it is observed
that the KW classifier already does a good job in smooth-
ing the field into a quite homogeneous area. The field is
further smoothed by the KW-MRF classifier, but without
removing small distinct targets. Specifically, the brown
segment in Fig. 6(d) is now relatively smooth, and the
purple and yellow features retained are clearly visible in

the Pauli image. The main conclusion of this experiment
is that the combination of a non-Gaussian density model
with an MRF model improves the segmentation results.
The KW-MRF classifier, therefore, produces the most re-
liable clustering, as seen in Fig. 6(d).

C. Kongsvegen Glacier Example

The final experiment uses an ENVISAT ASAR C-band
dual-pol image over the Kongsvegen glacier, Svalbard,
from 2005. The polarimetric channels recorded were VV
and VH. A Quasi-Pauli composite image (R=VV, G=VH,
B=VV) is shown in Fig. 7(a). The SLC data are geocoded
and multi-looked to produce MLC images with 30 m reso-
lution and 24 looks. The ENL was estimated to be 18 for
this image. A mask is applied to mask out mountains and
isolate the glacier pixels for classification. The segmenta-
tion algorithm was therefore working with 2×2 covariance
matrix data.

The three major zones of interest to glaciologists: glacier
ice, superimposed ice and firn, can be visibly identified in
Fig. 7(a) by their dark, medium and bright intensities, re-
spectively. Comparing the W and KW results: the W
found two subclasses (red and gray) for the firn area; and
the KW also found those classes. Also note that both
classifiers have a bit of trouble in distinguishing the super-
imposed ice/glacier ice boundary due to overlap between
classes. Figs. 7(b) and 7(c) show the results.

The regularization and homogenization obtained by a
subsequent MRF stage can be seen in the Figs. 7(d) and
7(e). TheW-MRF has trouble with firn area, and it seems
that the MRF cannot compensate for the restriction im-
posed by the pixelwise model (similar to the urban class
of the Exp. 1). The KW-MRF smooths the firn region
perfectly into one class and the gray speckly parts (class
7) has mostly disappeared after incorporating the MRF.

VI. Conclusions

In this paper, a novel unsupervised contextual segmen-
tation algorithm for PolSAR imagery has been developed
by combining an advanced statistical distribution with spa-
tial contextual information. The algorithm has been con-
structed based on a Markov random field (MRF) model
that integrates a K-Wishart (KW) distribution for the Pol-
SAR data statistics conditioned to each image cluster and
a Potts model for the spatial context. The method is to-
tally unsupervised, which is an advantage since in many
cases ground truth is not available.

The added value of combining the flexible non-Gaussian
KW distribution and the Potts MRF model were tested
on three examples. The segmentation results before and
after MRF modeling for both the standard Wishart and
the KW classifier have been obtained. The segmenta-
tions have been compared in terms of discriminability of
non-Gaussian regions with KW with respect to standard
Wishart model and contextual smoothing with MRF. The
effectiveness of MRF models in improving the accuracy
(quantified for simulated data) and reliability of PolSAR
image clustering has been remarked for all examples. The
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Fig. 5. Left: EMISAR L-band quadpol acquisition over Foulum, Denmark, multi-looked with 8 looks, shown as Pauli decomposition
composite image. Right: Enlarged version of test area annotated with field labels referenced in the discussion.

Fig. 6. 14 class segmentation results for (a) Standard Wishart (b) K-Wishart (c) Standard Wishart MRF, and (d) K-Wishart MRF classifier.
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Fig. 7. Dual-pol ENVISAT image multi-looked with 24 looks ( ENL=18): (a) Quasi-Pauli image of Kongsvegen glacier and its location on
Svalbard. The three major zones of the image: glacier ice, superimposed ice, and firn, can be visibly identified by their dark, medium, and
bright intensities, respectively. (b) Standard Wishart (c) K-Wishart (d) Standard Wishart MRF, and (e) K-Wishart MRF segmentation
results, 7 classes found.
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results show improvement with respect to segmentation of
pixelwise clustering. Future developments of this study will
include extending the proposed MRF modeling to change
detection applications with PolSAR data. In regard to the
computation time, the whole process is slightly slower than
the original pixelwise SEM algorithm due to the additional
MRF stage in the clustering scheme. Even on the basis of
data with a low number of looks (and therefore a high de-
gree of speckle), the proposed approach is able to generate
homogeneous and reliable clustering results.
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