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ABSTRACT

The field of spatial statistics has been growing steadily in the last decades. Increasing computational

resources make it feasible to do statistical analysis of huge spatial and spatiotemporal data sets

across many disciplines such as climatology, epidemiology or geology. Real world processes are

put into a model framework to describe observations in space and time. One part in spatial statistics,

and the focus of this thesis, is the analysis of lattice data. Both regular and irregular lattice data are

of interest. The first is addressed in Papers I and II by wavelet-based methods for random fields and

the latter in Paper III by spatiotemporal modeling of infectious disease spread in North Norway.

Paper I describes an extension of the pyramid algorithm for efficient Maximal Overlap Dis-

crete Wavelet Transform (MODWT) coefficient calculation. As opposed to common usage of two-

dimensional wavelet decomposition, it here also allows for different scales in the vertical and hor-

izontal direction. Wavelet variances, i.e., the variances of the wavelet coefficient processes, are in-

vestigated for scale-dependent analysis of spatial patterns. A practical geoscience application with

Synthetic Aperture Radar (SAR) images of sea ice illustrates its potential. Physical changes of the

sea ice over the course of one year are connected with changes in statistical properties of its SAR

images.

Paper II uses much of the same underlying theory as Paper I. Here, wavelet variances are used

to develop a novel test for isotropy of random fields. Isotropy is frequently assumed in spatial mod-

eling. It requires the covariance or variogram function of a stationary or intrinsically stationary

spatial process to depend only on the distance between two locations, independent of direction. In

a simulation study, the presented test for isotropy is applied to realizations of various isotropic and

anisotropic Gaussian random fields. Its performance is superior compared to existing methods, both

on the general applicability and the consistent rejection rate close to the nominal level for isotropic

fields, while the power for anisotropic fields is comparable to or better than other methods. Further-

more, an example connected to the manufacturing of paper also demonstrates practical applicability

of the wavelet-based isotropy test.

In Paper III microbiology test results of influenza A disease counts in the sparsely populated

municipalities of North Norway are modeled to study the pattern of disease spread. The focus is to

link the disease incidence to movement networks, with human travel patterns described by actual

traffic data or a power law approach. Models with fixed, seasonal and random effects are used and

extended with covariates accounting for different population sizes in the municipalities, reporting

bias and immigration from outside the considered region. An additional analysis is performed by

grouping the data into adults and non-adults. All models are compared by one-step-ahead predic-

tions using proper scoring rules.
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1
I NTRODUCT ION

Spatial statistics is a broad field, where spatial patterns are reduced to clear and useful sum-

maries, and compared with expectations from theory about their potential origin and develop-

ment (Ripley, 1981). Spatial models are applied in a variety of disciplines such as climatology

and geology (Chilès and Delfiner, 2012), epidemiology (Lawson, 2006) or image processing

(Gonzalez and Woods, 2008). Data are collected from different spatial locations sss that follow

a spatial process {X(sss) : sss ∈ D}, where D is a subset of the d-dimensional Euclidean space,

D ⊂ Rd . It can be extended to a spatiotemporal process {X(sss, t) : sss ∈ D(t), t ∈ T} with time t

from domain T ∈ R. Cressie (1993) categorizes spatial data into geostatistical data, point pat-

terns and lattice data. In the first category the spatial index sss varies continuously over a region

D. For point patterns the focus is the location of spatial events, hence to determine whether the

pattern shows spatial randomness, clustering or regularity. Lattice data are used, e.g., for image

restoration, quantifying spatial correlations, or constructing and analyzing explicative models

(Gaetan and Guyon, 2010). Here the data depend on properties of their locations, which Cressie

(1993) groups into (i) regular or irregular, (ii) points or regions and (iii) indices for continuous

or discrete random variables.

The focus of this thesis is statistical analysis of lattice data, where the locations represent:

1. Regular point indices for continuous random variables,

2. Irregular region indices for discrete random variables.

Papers I & II address the first point and present analyses of wavelet variances for random fields

on a regular lattice. Related basic terminology and motivation is introduced in Section 1.1. In

Paper III the second point is addressed by comparing models for person-to-person transmitted

infectious disease spread in North Norway incorporating human travel patterns. Section 1.2 pro-

vides an introduction to the spatiotemporal data used in Paper III. All papers are summarized and

discussed in Section 2. The main part of this thesis is Part II which contains the full manuscripts

of Papers I, II and III.
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1.1 WAVELET VAR IANCE ANALYS I S

1.1.1 General definitions

First, necessary terms will be defined. Let {X(sss) = Xu,v : sss = (u,v) ∈ Z
2} denote a random

field or random process on a regular two-dimensional lattice. An important class of random

processes is Gaussian fields. Here, for any location sss1, ...,sssk ∈Z
2, [X(sss1), ...,X(sssk)]

T is normally

distributed with mean μ(s) = E {X(s)} and covariance C(sssi,sss j) = cov
{

X(sssi),X(sss j)
}

for all

sssi,sss j ∈ Z
2.

A random field is second-order stationary (also known as weakly or wide-sense station-

ary), henceforth denoted as stationary, when it has constant mean E(Xu,v) = μ and the co-

variance between its elements depends only on the relative displacement of the locations, i.e.,

C(sss,sss +κκκ) = C(κκκ) = cov{Xu,v,Xu+κ1,v+κ2
} for all lags κκκ = (κ1,κ2) ∈ Z

2. If only the incre-

ment process {Xu,v −Xu+κ1,v+κ2
} is stationary, then {Xu,v} is called intrinsically stationary. In

this case the increments have finite variances, which are expressed by semivariogram γ(κκκ) =
γX ,κ1 ,κ2

= 1
2
var{Xu,v −Xu+κ1,v+κ2

}, or variogram 2γ(κκκ) respectively. The variogram is a structure

function that describes how the values at two points become different with increasing separation

between the points (Chilès and Delfiner, 2012). For stationary processes, the following relation

is valid: γ(κκκ) = 1
2
(C(0)−C(κκκ)).

If the semivariogram of a (intrinsically) stationary process {Xu,v} is only a function of the

distance between two locations, i.e., γ(κκκ) = γ(||κκκ||), then {Xu,v} is called isotropic, otherwise

anisotropic. Stationary isotropic processes can also be expressed in terms of the covariance

function not being dependent on direction, i.e., C(κκκ) =C(||κκκ||). In Paper II a test for isotropy is

presented based on wavelet variances over different scales. See the next section for an introduc-

tion to the necessary wavelet theory.

1.1.2 Wavelets

Throughout this thesis wavelet coefficients are obtained by the Maximal Overlap Discrete Wave-

let Transform (MODWT), which is characterized by the fact that it does not involve sub-sampling

of the output, as opposed to the commonly used Discrete Wavelet Transform (DWT). Thus the

coefficient processes are of the same size as the input for all wavelet levels.

In one dimension, e.g., the time-series case, the MODWT is based on two unit-level filters

known as the wavelet filter {h1,l} and scaling filter {g1,l}, each of which is of even length L. The
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most common and here used filters are of the Daubechies class (Daubechies, 1992), meaning

they satisfy

L−1

∑
l=0

h1,l = 0,
L−1−2n

∑
l=0

h1,lh1,l+2n = 0, n = 1, . . . ,
L
2
−1, and g1,l = (−1)l+1h1,L−1−l .

The wavelet filters {h j,l} perform differencing operations, whereas averages are obtained with

the scaling filters {g j,l}. The simplest example is the Haar wavelet (L = 2), for which h1,0 =

1/2 = −h1,1. Other Daubechies filters used in this thesis are the D(4) wavelet of length L = 4

and the least asymmetric filter of length L = 8, LA(8). See Fig. 1 for an example plot of these

wavelet and scaling filters.

Let H1(·) and G1(·) denote the transfer functions of {h1,l} and {g1,l}, i.e.,

H1( f ) =
L−1

∑
l=0

h1,le−i2π f l and G1( f ) =
L−1

∑
l=0

g1,le−i2π f l.

The unit-level filters can be used to create the jth level wavelet filter {h j,l} and scaling filter

{g j,l} via the inverse Fourier transforms of

Hj( f ) = H1(2
j−1 f )

j−2

∏
l=0

G1(2
l f ) and G j( f ) =

j−1

∏
l=0

G1(2
l f ).

These jth level filters have length L j = (2 j −1)(L−1)+1 and are normalized such that

L j−1

∑
l=0

h2
j,l =

L j−1

∑
l=0

g2
j,l = 1/2 j.

Level j is a scale index, with the scale being given by τ j = 2 j−1 for {h j,l} and by 2τ j = 2 j for

{g j,l} (for details see, e.g., Percival and Walden, 2000).

Haar D(4) LA(8)
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a) Wavelet filters

Haar D(4) LA(8)
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) Scaling filters

Figure 1: Illustration of three different sets of unit-level MODWT wavelet and scaling filters.
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In two dimensions, for a random field {Xu,v} usually a tensor product of the one-dimensional

wavelet and scaling filters is used to define different two-dimensional wavelet coefficient pro-

cesses (Mondal and Percival, 2012b), i.e., wavelet-wavelet (ww) {Wj, j′(u,v) : (u,v) ∈ Z
2}, sca-

ling-wavelet (sw) {Uj, j′(u,v) : (u,v) ∈ Z
2}, wavelet-scaling (ws) {Vj, j′(u,v) : (u,v) ∈ Z

2} and

scaling-scaling (ss) coefficient process {Z j, j′(u,v) : (u,v) ∈ Z
2}:

Wj, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

h j,lh j′,l′Xu−l,v−l′ , (1)

Uj, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

g j,lh j′,l′Xu−l,v−l′ , (2)

Vj, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

h j,lg j′,l′Xu−l,v−l′ , (3)

Z j, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

g j,lg j′,l′Xu−l,v−l′ . (4)

For the wavelet-wavelet coefficients Wj, j′(u,v), wavelet filters are applied both to rows at

scale τ j and columns at scale τ j′ , capturing simultaneously both horizontal and vertical (thus

diagonal) structure. Uj, j′(u,v) coefficients are the result of averaging the rows at scale 2τ j and

differencing the columns at scale τ j′ , i.e., Uj, j′(u,v) calculates a horizontal difference, which

makes it capture vertical structure. The opposite is done with Vj, j′(u,v), focusing on horizontal

structure. Z j, j′(u,v) contains only averages, which makes it the least interesting part. However,

it is needed to calculate higher level coefficients.

Using the Haar wavelet, it is illustrated in Fig. 2 how the different filter operations manipulate

Xu−2τj+1,.

X.,v−2τj′+1 X.,v

Wj,j′(u, v) Uj,j′(u, v) Vj,j′(u, v)

Xu,.
τj′

2τj′

τ j
2τ

j

Figure 2: Illustration of two-dimensional wavelet coefficient operations on Xu,v using the Haar wavelet at

levels j, j′.
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the input for a realization of {Xu,v}, resulting in coefficients Wj, j′(u,v), Uj, j′(u,v) and Vj, j′(u,v)

for levels j, j′ and u > L j,v > L j′ . The coefficients are calculated on a block with upper left cor-

ner Xu−2τ j+1,v−2τ j′+1 and lower right corner Xu,v. This block is arranged in four non-overlapping

sub-blocks of size τ j × τ j′ , each of which is averaged. The wavelet coefficients Wj, j′ , Uj, j′ and

Vj, j′ at location (u,v) are then obtained as means of the corresponding signed sub-blocks shown

in Fig. 2.

Paper I presents in detail how to calculate the coefficients in Eq. (1) – (4) for all possible

combinations of levels j, j′ based on an efficient one-dimensional pyramid algorithm (see Per-

cival and Walden, 2000, p. 178 for pseudo-code). The case of j = j′ is referred to as diagonal

coefficients as the averaging and/or differencing operations are applied on the same scales hor-

izontally and vertically. Note that this term was previously used by others (see, e.g., Lark and

Webster, 2004) to describe the wavelet-wavelet coefficients from Eq. (1).

Let {Cj, j′(u,v)} denote either coefficient process {Wj, j′(u,v)}, {Uj, j′(u,v)}, {Vj, j′(u,v)} or

{Z j, j′(u,v)} for levels j, j′. Then the wavelet variance is defined as

ν2
C, j, j′ = var

{
Cj, j′(u,v)

}
.

As shown in Mondal and Percival (2012b), for realizations of stationary or intrinsically station-

ary fields of dimension (N,M), an unbiased estimator for the wavelet variance ν2
C, j, j′ is

ν̂2
C, j, j′ =

1

NjMj′

N−1

∑
u=L j−1

M−1

∑
v=L j′−1

C2
j, j′(u,v), (5)

where Nj = N −L j +1 and Mj′ = M−L j′ +1. There also exist other estimators for the wavelet

variance, e.g., ones that are more robust towards contamination (Percival and Mondal, 2012;

Mondal and Percival, 2012a). In Paper I both the unbiased estimator from Eq. (5) as well as

a more robust estimator based on the median instead of the mean of the wavelet coefficients

are presented along with the confidence intervals for the true unknown wavelet variances. They

are applied to a spatiotemporal set of satellite images of sea ice, linking changes in statistical

properties of the images with changes in physical properties of the ice.

1.2 SPAT IOTEMPORAL INFECT IOUS D I SEASE DATA

Together with several project partners, the Norwegian Centre for Integrated Care and Tele-

medicine (NST) hosts a project called Snow project (Bellika et al., 2007), named after the British

physician and epidemiologist John Snow (1813-1858), with focus on medical data processing

of distributed electronic health records. The Snow system is implemented in the Norwegian

Health Network, which allows secure information exchange between healthcare professionals,
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such as general practitioners, hospitals and laboratories. It consists of several services, includ-

ing a real-time disease surveillance based on laboratory and syndromic disease data. Via the

Snow client, available online at snow.cs.uit.no, also the general public is able to access

epidemiological data in real-time.

In Paper III spatiotemporal infectious disease data are modeled for the North Norwegian

counties Troms and Finnmark based on the microbiology laboratory data from UNN and thus

contributing to the Snow project with information on how communicable diseases spread in this

region, which in this thesis will be denoted as North Norway (contrary to the common usage of

this term that, in addition, includes the county of Nordland). The region consists of i = 1, ...,44

municipalities and is characterized by a sparse population. Cressie (1993) suggests that a lattice

D can be formed by an identifying feature unique for each municipality like their geographical

center given by longitude xi and latitude yi, i.e., D = {(xi,yi) : i = 1, ...,44}. Another possibility

is based on the adjacency structure between the municipalities, i.e., D = {(i,ni) : i = 1, ...,44}
with ni = { j : j ∼ i} being the number of neighbors of municipality i, where neighborhood is

defined as municipalities i and j sharing a common border.

North Norway is rather isolated at the top of continental Europe surrounded by the Norwegian

sea and Barents sea towards the West and North, neighboring the Norwegian county Nordland

as well as Sweden and Finland in the South, and having a short border with Russia in the East.

There are only a few streets from Finland, one from Russia and none from Sweden directly

accessing the considered region. Air traffic is a way of transportation, both within the region

and from outside. Most air passengers from outside this region arrive to Tromsø, with its around

70000 inhabitants being by far the largest municipality in North Norway.

The microbiology laboratory data set of UNN covers person-to-person transmitted respiratory

and gastrointestinal infectious diseases and contains information about

• Time (registration date in the laboratory, analysis date, date when the result was sent back

to the test requester),

• Patient (gender, year of birth, postal and municipality code, hashed ID),

• Doctor’s office requesting the analysis (postal and municipality code, hashed ID),

• Analysis (type, name, material, result).

Besides the test result (which can be either positive or negative) it is made use of registration

date (the earliest possible date contained in this data set), patient year of birth (to derive the

age as year of registration date minus the year of birth) and the municipality code of the test

requesting doctor’s office (as the patient’s official registered municipality code might differ from

the actual place of living). Furthermore, the hashed patient ID is needed to ensure a 90 day rule,

i.e., further positive test results belonging to the same patient within 90 days are discarded.
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Due to its high number of cases, influenza A is investigated in Paper III. The data set contains

both the infectious agents for the general seasonal influenza A H3N2 and influenza A H1N1,

commonly known as "swine flu". When the latter agent arose to an outbreak in 2009, initially it

was registered in the laboratory database with the codes for general influenza A, such that the

available influenza A data of the two agents H3N2 and H1N1 has to be considered as one entity

in this setting. The data are aggregated to counts yi,t per municipality i = 1, ...,44 and week

t = 1, ...,234 from 1 January 2008 to 25 June 2012.

Skrøvseth et al. (2012) used the microbiology data set from UNN for influenza A and pertus-

sis cases to retrospectively detect outbreaks as changes in the disease incidence, with a causal

formulation of the SiZer (Significant Zero Crossings of derivatives) scale-space methodology

from Chaudhuri and Marron (1999). In Paper III scale is referred to in terms of geographic

scale. Like in Brockmann et al. (2006), the number of humans traveling a distance x is modeled

as a power law, where the number of people decreases with increasing x. Movement network

data are part of the model for spatiotemporal disease spread presented in Paper III. Here the

influence of different power law approximations is investigated, both by regression fit based on

actual traffic data and by the order of adjacency o−d
i, j . The latter is determined by the adjacency

structure between the municipalities i and j and power law coefficient d ≥ 0.
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2
RESULTS AND D ISCUSS ION

2.1 PAPER I - WAVELET VAR IANCE EST IMAT ION

This paper, Geilhufe et al. (2013), presents an efficient calculation of two-dimensional MODWT

coefficients for all levels j, j′ by an extended version of the one-dimensional pyramid algorithm.

This forms the computational basis for the work in Paper II. Wavelet variance estimates and

confidence intervals are given both for the mean and median case. Its usefulness is demonstrated

on a spatiotemporal set of sea ice SAR images from the Arctic Ocean north of Alaska taken

between November 1997 and October 1998 (see Stern and Moritz, 2002, for more information

about the data set). Here, changes in statistical properties of the ice images are connected with

changes in physical properties of the ice over the course of one year.

2.1.1 Anisotropy in sea ice images

In Paper I three sea ice images were analyzed more thoroughly, see Section 5 of Paper I including

Fig. 5 for a visualization of the sea ice images. Henceforth, these are denoted as image 5a, 5b and

5c. The investigation in Paper I indicates that images 5a and 5c show some isotropic behavior,

whereas 5b is seen as anisotropic. With the help of the wavelet-based test presented in Paper II,

these images are tested for isotropy using the Haar wavelet (as in Paper I) and diagonal scales

for levels j = 1, ...,9. See Table 1 for the resulting p-values of the test statistic based on the ratio

of the estimated diagonal scaling-wavelet and wavelet-scaling variance for level j, denoted as
ν̂2

U, j, j

ν̂2
V, j, j

. While none of the images is isotropic on every scale, it appears that 5a shows the most

isotropic structure out of the three considered sea ice images. Here, the test does not reject the

null hypothesis on a 5% significance level for four of the nine tested diagonal scales. There is no

evidence against the assumption of isotropy on single levels j = {3,7,8,9}. On the other hand,

Table 1: P-values for the single level test statistic based on diagonal sw/ws variance ratios using the

isotropy test presented in Paper II on the sea ice images from Figure 5 in Paper I.

ν̂2
U,1,1

ν̂2
V,1,1

ν̂2
U,2,2

ν̂2
V,2,2

ν̂2
U,3,3

ν̂2
V,3,3

ν̂2
U,4,4

ν̂2
V,4,4

ν̂2
U,5,5

ν̂2
V,5,5

ν̂2
U,6,6

ν̂2
V,6,6

ν̂2
U,7,7

ν̂2
V,7,7

ν̂2
U,8,8

ν̂2
V,8,8

ν̂2
U,9,9

ν̂2
V,9,9

5a < 0.0001 < 0.0001 0.16 < 0.0001 0.0001 0.015 0.40 0.85 0.18

5b < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.03

5c < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.011 0.03 0.018
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images 5b and 5c are significantly anisotropic on all considered scales, though the significance

is less for 5c on the highest levels j = {7,8,9}, i.e., there might be some but not enough isotropic

structure on these scales τ j.

2.1.2 Future work

The methodology is not bound to monitoring of sea ice. Since Paper I comes with a MATLAB

implementation for efficient two-dimensional MODWT coefficient calculation and wavelet vari-

ance estimation, it is open for everybody to use and might prove useful to several other appli-

cations, for instance in medical imaging. One possibility is the analysis of texture in pigmented

skin lesion images, e.g., for monitoring benign lesions (Geilhufe et al., 2010) or for automatic de-

tection of melanoma (Skrøvseth et al., 2010). Here, wavelet variance estimates at certain scales

could be included as a feature for detecting changes.

2.2 PAPER I I - WAVELET-BASED TEST FOR I SOTROPY

In this manuscript a test for isotropy on second-order stationary and intrinsically stationary

random fields based on MODWT wavelet coefficients is presented. The test uses the property

that under isotropy scaling-wavelet variances for levels j, j′ and wavelet-scaling variances for

levels j′, j are the same, similarly wavelet-wavelet variances for j, j′ versus those for j′, j, i.e.,

ν2
U, j, j′ = ν2

V, j′, j ⇔ log

(
ν2

U, j, j′

ν2
V, j′, j

)
= 0,

ν2
W, j, j′ = ν2

W, j′, j ⇔ log

(
ν2

W, j, j′

ν2
W, j′, j

)
= 0.

First, a single level test for the log-ratios is derived, followed by the more general simultane-

ous test over multiple ratios. The test statistic is χ2-distributed with r degrees of freedom, r being

the number of ratios included. In order to perform the test, the basic wavelet filter, the maximum

horizontal and vertical level J and the log-ratios of interest have to be chosen. The asymptotics

take effect already for small image sizes. In a simulation study on exponential, spherical and

fractional Brownian fields, including comparison with existing methods (Guan et al., 2004; Lu

and Zimmerman, 2005; Richard and Bierme, 2010), the presented test performs well concern-

ing both the general applicability and its rejection rates. These are close to the nominal level for

isotropic fields, and for anisotropic fields comparable to or exceeding the rejection rates of the

other considered methods. Its practical usefulness is demonstrated on examples of mass density

plots of paper handsheets.
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2.2.1 Other anisotropy types

In the simulation studies of Paper II the test was applied only to fields exhibiting geometric

anisotropy. This kind of anisotropy model is often used in spatial literature and is caused by axis

stretching, shrinking and rotation, i.e., there exists a positive definite matrix BBB which linearly

transforms an isotropic semivariogram γ0 to an anisotropic semivariogram γ(κκκ) = γ0
(√

κκκTBBBκκκ
)

for all lags κκκ = (κ1,κ2) ∈ Z
2. Even though geometric anisotropy is the only spatial anisotropy

type directly defined in, e.g., Cressie (1993), there also exist other types referred to as zonal

anisotropy (Journel and Huijbregts, 1978; Chilès and Delfiner, 2012). A finer categorization

was introduced by Zimmerman (1993):

• Sill anisotropy. It is caused by distinct sills (limiting value of a semivariogram) in different

directions, i.e., lim
α→∞

γ(α κκκ
||κκκ||) varies for different

κκκ
||κκκ|| ,κκκ ∈Z

2, e.g., due to trends in the data

or measurement errors.

• Range anisotropy. It is the case when the sill is equal in all directions, but attained at

different distance for varying directions. There are two subgroups

– Geometric (range) anisotropy.

– Non-geometric range anisotropy. All range anisotropies that cannot be corrected by

a linear transformation are categorized by this subgroup.

• Nugget anisotropy. The semivariogram’s discontinuity at the origin (the so-called nugget

effect) varies with direction, i.e., lim
α→0

γ(α κκκ
||κκκ||) varies for different κκκ

||κκκ|| ,κκκ ∈ Z
2. This can

be caused by correlated measurement errors.

In the following a simulation study is created to see how the isotropy test from Paper II

performs on anisotropic random fields that follow a sill and nugget anisotropy. Let the random

field Zu,v be defined as Zu,v = Xu,v+Yv for independent, stationary, zero mean processes Xu,v and

Yv. Then the semivariogram of Zu,v is

γZ,κ1 ,κ2
= 1

2
var{Zu,v −Zu+κ1,v+κ2

}
= 1

2
E{(X(u,v)−X(u+κ1,v+κ2))

2}+ 1
2
E{(Y (v)−Y (v+κ2))

2}
+E{(X(u,v)−X(u+κ1,v+κ2))(Y (v)−Y (v+κ2))}

=

⎧⎪⎨
⎪⎩

γX ,κ1 ,κ2
+ γY,κ2

, κ2 
= 0

γX ,κ1 ,0
, κ2 = 0,

i.e., depending on Xu,v and Yv, the semivariogram for Zu,v may attain a different sill for (κ1,0),

the direction parallel to the first axis, than for all other directions, which corresponds to sill

anisotropy.
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Now let Xu,v be a spherical field, and Yv either an exponential random process Y (exp)
v or a

Gaussian white noise process Y ε
v , i.e.,

γX ,κ1 ,κ2
=

⎧⎪⎨
⎪⎩

λ
(

3
2m ||κκκ||− 1

2m3 ||κκκ||3
)

if 0≤ ||κκκ|| ≤ m

λ otherwise,

(6)

γ
Y (exp) ,κ2

= λ
(
1−φ |κ2|

)
, (7)

γ
Y ε ,κ2

=

⎧⎪⎨
⎪⎩

σ2
Y if |κ2|> 0

0 otherwise,

(8)

where λ and σ2
Y are scale parameters and m and φ smoothness parameters, with 0< φ < 1 and

m > 0. It follows from the reasoning above that Zu,v has a sill anisotropy for these processes. For

the case of Y ε
v there is also nugget anisotropy in Zu,v as the nugget effect differs with direction,

lim
α→ 0

γZ,ακ1 ,ακ2
= lim

α→ 0
γX ,ακ1 ,ακ2

+ lim
α→ 0

γY,ακ2
=

⎧⎪⎨
⎪⎩

σ2
Y if |κ2|> 0

0 otherwise.

For the simulation study, various parametrized fields Zu,v are generated, each with 1000

samples on N × N grids for N = {20,40,128}. The spherical process Xu,v from Eq. (6) is

parametrized with λ = 1 and m = {2,5,8}, the exponential process Y (exp)
v from Eq. (7) with

λ = 1 and φ = {0.125,0.500,0.875}, and the white noise process Y ε
v from Eq. (8) with σ2

Y =

{0.10,0.25,0.50,0.75,1.00}. Example realizations for Zu,v = Xu,v +Yv are illustrated in Fig. 3

for a spherical field with m = 5 and above mentioned parametrizations for the process Yv.

Like in the simulation studies performed in Paper II, the test is based on the D(4) wavelet and

single level ratio ν̂2
U,1,1/ν̂2

V,1,1. The results are displayed in Table 2. A high rejection rate of up to

100 % indicates a high power of the wavelet-based test in detecting anisotropy. Generally it can

be concluded that increasing grid size and smoothness in Xu,v yields better results. For N = 128

all fields were correctly rejected and for N = 40 with m = 5 and m = 8 between 97− 100%.

The lowest power of the test is achieved for anisotropy on the smallest grid in the construct of

weakly correlated spherical fields with m = 2 added with a strongly correlated one-dimensional

exponential process with φ = 0.875 or added white noise along one dimension with low variance

σ2
Y = 0.10. A grid of size N = 20 appears to be too small to capture the anisotropy here. However,

the improvement with increasing N confirms that the method works well if sufficient data are

available.

14



(a) isotropic (b) φ = 0.125 (c) φ = 0.500

(d) φ = 0.875 (e) σ2
Y = 0.1 (f) σ2

Y = 0.25

(g) σ2
Y = 0.50 (h) σ2

Y = 0.75 (i) σ2
Y = 1.00

Figure 3: Example realizations of random fields Zu,v = Xu,v + Yv with sill anisotropy, constructed

from isotropic spherical field Xu,v with m = 5 (a) and exponential process Y exp
v with φ =

{0.125,0.500,0.875} (b,c,d) or white noise process Y ε
v with σ2

Y = {0.10,0.25,0.50,0.75,1.00}
(e,f,g,h,i). For illustration purposes the underlying spherical field Xu,v is generated with equal

random seed.
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Table 2: Rejection rates in % for different sill anisotropic spherical fields of size N, each based on 1000

simulations.

Y(exp)
v , φ Y(ε)

v , σ2
Y

N m 0.125 0.500 0.875 0.10 0.25 0.50 0.75 1.00

X
(s
p
h
er
ic
al
)

u,
v

2 91.8 73.8 12.8 11.7 36.0 70.5 85.0 94.0

20 5 99.8 98.9 48.7 46.1 88.6 98.3 99.4 99.7

8 100 99.8 77.8 72.7 97.5 99.5 100 100

2 100 99.9 52.9 49.4 94.2 100 100 100

40 5 100 100 98.0 97.1 100 100 100 100

8 100 100 100 99.7 100 100 100 100

2 100 100 100 100 100 100 100 100

128 5 100 100 100 100 100 100 100 100

8 100 100 100 100 100 100 100 100

2.2.2 Future work

Even though the wavelet-based test is able to detect anisotropy on different scales, the test

in Paper II was used globally such that every test statistic indicates presence of isotropy or

anisotropy only for the entire image. As wavelet variances were already used successfully for

texture classification and segmentation by Unser (1995), a natural extension would be to use the

presented test locally on smaller regions of an image. The idea then is that different textures yield

different degrees of anisotropy, which may result in a new useful measure for texture analysis.

2.3 PAPER I I I - MODEL ING INFECT IOUS D I SEASE SPREAD

Based on microbiology laboratory data from the University Hospital of North Norway, in Paper

III the disease spread of influenza A in the 44 Norwegian municipalities of the Northernmost

counties Troms and Finnmark is described with observation-driven (OD) models. The model

framework of interest is the one introduced by Held et al. (2005) and extended by Paul et al.

(2008); Paul and Held (2011); Held and Paul (2012). It decomposes the disease incidence into

an endemic and epidemic component, the latter consisting of an autoregressive and a spatiotem-

poral component. Each component allows for fixed, random and seasonal effects, where in this

study a baseline model for influenza from Held and Paul (2012) is followed and extended with

covariates accounting for population in each municipality, immigration from outside the study

region or the proportion of positive laboratory tests as a way to capture reporting bias.
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The spatiotemporal component of the OD model relates the disease incidence over different

regions, specified for two municipalities i and j by weights wi, j. The focus of Paper III is to

investigate different weights that approximate human travel patterns with a power law approach,

both by regression of the travel data (based on air, road and sea traffic) and by the adjacency

structure of the considered municipalities.

The power law approach is motivated by Brockmann et al. (2006), who tracked dollar bills

in the United States and approximated human travel by a power law. Paper III suggests that

the presented approach is also a useful way to capture spatiotemporal disease spread. Based

on proper scoring rules (Czado et al., 2009) for model comparisons using one-step-ahead pre-

dictions for the considered spatiotemporal disease data, power law approximated weights yield

better or comparable results to actual traffic counts.

2.3.1 Parameter-driven model

In Paper III the disease incidence is modeled with an observation-driven approach. Another

possibility is to use a parameter-driven (PD) model. Here, the disease incidence is driven by an

unobserved autocorrelation (Zeger and Qaqish, 1988), where an hierarchical Bayesian approach

(Banerjee et al., 2003) for inference appears useful (Schrödle et al., 2012). Computationally

it is not feasible to adapt the baseline OD model into a PD model. A dynamic model as in

Schrödle et al. (2012) is the closest adaption of the OD approach, but with the restriction of a

fixed autoregressive parameter.

The general model setup is as follows. For weeks t = 1, ...,234 and municipalities i = 1, ...,44

the number yi,t of positive influenza A laboratory counts is modeled as

yi,t ∼ Poisson(Ei,t exp(ηi,t)),

with an offset Ei,t , like in the OD model in Paper III, accounting for the population sizes in each

municipality i in the year of week t and

ηi,t = α +ζi,t +νi + ct (9)

ζi,t = λζi,t−1+ εi,t , (10)

where ηi,t is the sum of an intercept α , vector autoregressive process ζi = (ζi,1, ...ζi,t)
T , spatial

component νi and seasonal component ct = γ sin(2πt/52)+ δ cos(2πt/52). Covariates zi,t can

be added in Eq. (9), but they are not considered here. The autoregressive process in Eq. (10) is

of order 1, where

ζi,1 ∼N

(
0,

1

τε(1−λ 2)

)
,
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with independent and identically distributed (iid) Gaussian errors εi,t ∼N(0,τ−1
ε ) and unknown

precision τε . The spatial component νi is formulated as an intrinsic Gaussian Markov Random

Field (Rue and Held, 2005) with weighted averages as in (Kneib, 2006, Eq. (4.26)),

(νi|ν−i,τν)∼N

(
∑

j: j∼i

wi, j

ni
ν j,

1

τνni

)
, ni = ∑

j: j∼i
wi, j, i 
= j,

with weights wi, j and unknown precision τν . Note that the weights are now used to describe

the spatial dependence between municipalities. This is in contrast to the OD model presented in

Paper III, where weights describe travel patterns in the spatiotemporal component. Incorporation

of weights in a multivariate latent Gaussian process of a parameter-driven model, as proposed

in Schrödle et al. (2012) for a much shorter time-series and a single one-step-ahead prediction,

turned out to be computationally infeasible.

To perform approximate Bayesian inference in this latent Gaussian model, integrated nested

Laplace approximations (INLA) developed by Rue et al. (2009) are used, which is implemented

in the R package INLA, available at http://www.r-inla.org/. The weights are incor-

porated with some adaptions to the different symmetric weight matrices W1, W2 and W3,d

presented in Paper III. Diagonal entries are the row sums of the former weight matrix and all

off-diagonal entries are negative such that rows and columns sum to zero.

As in Paper III, one-step-ahead predictions for the last 78 weeks of the influenza A data are

evaluated for the differently weighted models with proper scoring rules for count data (Czado

et al., 2009) in form of the logarithmic score (logS), ranked probability score (RPS) and squared

error score (SES). A lower score corresponds to a better model. The results are displayed in

Table 3. Weights of type W3 are only displayed for power law coefficient d = 1 as the result was

nearly identical for other coefficients d = {0,1/2,2,∞}. The scores for W1, W2 and W3,d=1 are

very similar with no substantial difference, but there is a weak evidence for a lower SES with

the power law regression weight W2. In general, it can be concluded that in this setting weights

do not have such a strong influence as for the OD models.

Table 3: Scores for the PD model with spatial weights W1, W2 and W3,d=1 based on one-step-ahead

predictions for influenza A counts. Monte Carlo p-values based on 9999 permutations from a

separate comparison using the PD model with W1 are given in parentheses.

Weight logS (p-value) RPS (p-value) SES (p-value)

W1 0.2188 0.1058 0.4652

W2 0.2187 (0.41) 0.1057 (0.22) 0.4591 (0.11)

W3,d=1 0.2188 (0.41) 0.1058 (0.58) 0.4648 (0.53)
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Comparing the scores of the here presented PDmodel with the baseline ODmodel from Paper

III, the observation-driven approach generally yields better results based on logS and RPS. Using

SES, the PD model appears superior. Fig. 4 shows the influenza A disease counts for the last

78 weeks of the time-series together with the weekly mean one-step-ahead predictions for both

the baseline OD and PD model using weights W1, over all municipalities and separately for the

three most populous ones, i.e., Tromsø, Harstad and Alta. As indicated by SES, the mean values

of the PD model are somewhat better predictors than those of the ODmodel. However, SES only

incorporates the mean and not the dispersion of the predictive distribution, while the other two

scores (logS and RPS) incorporate both sharpness and calibration (Gneiting and Raftery, 2007).

2.3.2 Future work

It would be interesting to perform a similar type of analysis for some other region, preferably

one that is not so sparsely populated. The potential lack of actual traffic data could be overcome

by adjacency-based power law formulations. A possible extension to the presented approach in

Paper III is to include the power law coefficient estimation in the regression of the OD model

instead of fixing it to a certain d. If actual traffic data are available, then the power law fit of

this data could be part of the OD model. In this way one would account for uncertainty in the

estimation of the weights.
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Figure 4: Mean of the one-step ahead influenza A disease count predictions summed over all munici-

palities (top left), for Tromsø (top right), Harstad (bottom left) and Alta (bottom right) using

the baseline OD (red dots) and PD model (blue crosses) with weights W1. The actual disease

counts are shown as black bars.
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