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Abstract

Information about tropical forest can be obtained by remote sensing, us-
ing either optical instruments or an active radar like synthetic aperture
radar(SAR). Polarimetric decomposition theorems break polarimetric SAR
measurements into components that describes the scattering behavior of the
target. This thesis deals with evaluating the suitability of the various de-
composition theorems to describe and classify areas of tropical forest. High
resolution images provided by an optical spaceborne instrument is used as
ground truth information. These images are used to determine classes for
segmenting the polarimetric image, and picking training and testing data
for the classification procedure. The thesis focuses on multivariate Gaus-
sian classifiers engaging the parameters associated with the components of
the polarimetric decomposition theorems. There are two main goals of the
project, the first is to provide a ranking to which polarimetric decomposition
theorem is the best fit to describe this kind of landscape and the second is
to find an optimal subset of the polarimetric features. It is shown that us-
ing compositions of polarimetric features from the decomposition theorems
increases accuracy significantly compared to a classification based on inten-
sities. Methods are first used on one test site to find an optimal composition
of features, then the same features are used on another test site to prove that
the composition will be effective on another site as well.
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Chapter 1

Introduction

1.1 Motivation
There is a big interest for radar in surveillance of areas of tropical forest.
In the Amazon forest, deforestation is caused by human settlement and de-
velopment of the land. The authorities wish to prevent and surveillance the
deforestation in order to protect biodiversity and prevent climate change. In
2008 Brazil created the Amazon fund. The Norwegian government has com-
mitted to contributing with 6 billion NOK in the period until 2015 [27], [28].
Forest inventory is neither cost effective or frequently available. Remote
sensing of these areas provide a more frequent source of information about
the deforestation. A radar transmits microwaves towards the target and
measures the reflected radiation. The polarimetric decomposition theorems
extract physical information from the radar measurements. As opposed to
optical instruments the radar is not dependant on daylight and it also has
the advantage that it can penetrate cloud cover. Hence it is more frequently
available than the measurements from the optical instruments. Because the
SAR data is available to a bigger extent than the optical instruments it is
desirable to be able to extract as much and precise information as possible
from the SAR measurements. In this study high resolution optical images
are used as groundtruth and are compared with SAR data from the same
region.

1.2 Aim of project
There are two main goals of this project. The first is to determine which
decomposition theorem is best fit to use on tropical forest. The other goal is
to find the most favourable subset of polarimetric features from the decom-
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CHAPTER 1. INTRODUCTION 2

position theorems. The features are evaluated on the basis of an accuracy
measure of a classification. The main contribution in this study is an eval-
uation of how well the polarimetric decomposition theorems perform in a
classification with the components of each theorem as features, and then to
recommend a composition of polarimetric features provided by the different
decomposition theorems to apply on tropical forest.

1.3 Structure of thesis
This thesis starts with a theoretical part. Chapter 2 discusses the SAR the-
ory, imaging, speckle and polarimetry. Chapter 3 explains and introduces the
polarimetric SAR decomposition theorems. Chapter 4 discusses the methods
used in the thesis, i.e. choice of ground truth areas and classes, probability
theory, classifiers, accuracy measures and feature selection methods. Chap-
ter 5 presents the data used in the thesis. Chapter 6 is the result chapter.
Chapter 7 concludes the thesis.

1.4 Earlier work
There has been done some work on land cover classification based on SAR
data for various purposes [31–42]. Some of that work has been done on areas
covered by tropical forest [33, 42].

In [33] it is performed classification of a site in the Amazon forest in or-
der to map deforestation. This study focused on distinguishing forest from
non-forested areas. The report concluded that when corrected for shadowing
caused by height differences and applying data obtained under representative
conditions, SAR measurements could be used for distinguishing forest and
non-forested areas in the Amazon. In [42] polarimetric decomposition theo-
rems are engaged in land cover classification in a site of tropical rain forest
in the Brazilian Amazon. The purpose of this study was to investigate the
potential for P-band for these applications. The study concluded that the
data had better separability for older forest than other classes.

Land cover classification has been performed on urban areas with some sur-
rounding land in [31] to evaluate the potential of data from an instrument.
There has been performed land cover classification on mixtures of cultivated
land, not cultivated land, water and urban areas in regions that are not trop-
ical forest in [32,35] for the same purpose.
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This study will engage more polarimetric features and more combinations
of the polarimetric features on another site of tropical forest. And as op-
posed to [33, 42] the aim is to study the performance of the polarimetric
features.



 



Chapter 2

SAR theory

A synthetic aperture radar is a radar that transmits microwaves towards a
target and measures the phase, polarization and intensity of the backscat-
tered waves. The SAR may transmit and receive waves with vertical and hori-
zontal linear polarization. A fully polarimetric SAR system has all 4 channels
HH, HV, VH and VV. Information about the transmitted and backscattered
wave can be used to retrieve information about the target. The main data
format for describing the backscatter is the scattering matrix given in equa-
tion 2.1, the covariance matrix given in equation 2.2 and the coherency matrix
given in equation 3.3. Si is the scattering matrix for pixel i reshaped as a
3 × 1 vector where it is assumed that Shv = Svh, Si = [Shh

√
2Shv Svv]

T .
This is called the reciprocity assumption. The elements given in equation 2.1
is the scatter where the polarization has gone from horizontal to horizontal,
horizontal to vertical, vertical to horizontal and vertical to vertical.

S2×2 =

(
Shh Shv
Svh Svv

)
(2.1)

C3×3,j in equation 2.2 is the single look covariance matrix. Note that *T
denotes the complex conjugate transpose. C3×3,j is preferably multilooked,
see equation 2.5.

C3×3,j = SiS
∗T
i =

 ShhS
∗
hh

√
2ShhS

∗
hv ShhS

∗
vv√

2ShvS
∗
hh 2ShvS

∗
hv

√
2ShvS

∗
vv

SvvS
∗
hh

√
2SvvS

∗
hv SvvS

∗
vv

 (2.2)
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CHAPTER 2. SAR THEORY 6

2.1 Imaging geometry
The geometry of the SAR system is given in figure 2.1. The flight direction
of the satellite is called azimuth and the direction perpendicular to the flight
direction when projected on to the ground is called range. The point directly
below the SAR is called the nadir. The SAR system looks in the range
direction. The radar travels in the azimuth direction and has objects inside
the beam for a time ∆T . By having objects inside the beam for a longer time
the system synthezises a larger antenna which gives a higher resolution in
the azimuth direction. The resolution of the system in the range direction is
given by equation 2.3 and in the azimuth direction is given by equation 2.4 [8].
In equation 2.3, c denotes the speed of light, τ is the pulse length and β is
the bandwidth. In equation 2.4, λ denotes the wavelength of the transmitted
wave, R is the slant range distance to the target and the Da is the length
of the antenna. And by advanced signal processing techniques the system
synthezise a larger dimension of the antenna in the azimuth direction [17].
The incidence angle is denoted as θi in figure 2.1.

∆R =
cτ

2
=

c

2β
(2.3)

∆A =
λR

Da

(2.4)

2.2 Speckle statistics
Inside each resolution cell there are many scatterers that each contribute
to the signal received by the sensor. The signal received at the sensor is a
sum of the contribution from all scatterers inside the resolution cell. Thus,
each scatterer is a vector in the real-imaginary plane. This is illustrated in
figure 2.2. Constructive and destructive interference between the scattering
mechanisms inside the resolution cell can give speckle in an image. Speckle
appears as bright and dark dots in an image. Reducing speckle can be done
by performing multilooking.

2.3 Multilooking
Multilooking is performed to reduce speckle in an image. It is done by
averaging over a number of pixels. The cost of reducing the speckle is loss of
resolution. In equation 2.5, L is the number of looks.
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Figure 2.1: SAR imaging geometry, figures from [6]
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Figure 2.2: Figure illustrating destructive interference.
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Figure 2.3: Figure describing the state of polarization of an electromagnetic
wave. Note that E0x = E0y in this plot.

C3×3 =
1

L

L∑
j=1

C3×3,j (2.5)

2.4 Polarimetry
There are three possible states of polarization that an electromagnetic wave
can have. Polarization can be either linear, circular or elliptical. The state of
polarization describes the oscillation in the plane orthogonal to the direction
the wave is propagating in. The propagation of an electromagnetic wave can
be fully described by equation 2.6. The z denotes the position, t denotes
time, E0x, E0y denotes the amplitudes of the wave in the x and y direction, k
is the wavenumber, δx, δy is the phase shift in the respective direction, x̂ and
ŷ is the unit vector in the x and y direction and ω is the angular frequency.
Figure 2.3 illustrates waves with the three different types of polarization.
The direction of propagation is the z-direction. The plots on the right side
is the waves motion in the plane orthogonal to the direction of propagation.

E(z, t) = <{E0xe
j(kz−ωt+δx)}x̂+ <{E0ye

j(kz−ωt+δy)}ŷ (2.6)

The SAR system transmits waves that have a linear state of polarization.
It can have one, two or four of the transmit-receive linear polarization com-
binations given in equation 2.1. The case discussed in this study has all four
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combinations. Thus all resolution elements in the image has a value for all
four elements in equation 2.1.



Chapter 3

Polarimetric decomposition
theorems

The polarimetric decomposition theorems project the matrices that describe
the backscattering, as given in equations 2.1,2.2 and 3.3 on to a set of basis
matrices and express the backscatter as a linear sum of the basis matrices
multiplied with corresponding coefficients. Thus, the scattering of each res-
olution cell is expressed as a linear sum of scattering mechanisms [5, 16]. In
order to understand the decompositions it is necessary to discuss the inter-
action between the transmitted waves and the targets.

3.1 Backscattered waves
A transmitted wave interacting with a medium can be absorbed, transmitted
or reflected [7]. The SAR system measures reflected radiation.
When a transmitted wave interacts with a bare surface the reflected wave will
depend on the the roughness of the surface in comparison to the wavelength.
Rayleigh and Fraunhofer criterions describe what is regarded as smooth or
rough surfaces [29]. A smooth surface will typically give specular reflection.
Specular reflection is strong reflection in one direction away from the surface.
Rough surfaces will tend to give diffuse backscatter. Diffuse backscatter is
scattering with uniform strength in all directions. Rough surfaces generally
give stronger backscatter than smooth surfaces [8]. For bare soil the signal
to the Shh and the Svv channels would be approximately equal [9]. The
strength can also be affected by a slope in the terrain and dielectric properties
of the surface. When a transmitted wave is reflected by the canopy of a
forest the scatter will be depolarized such that it gives contribution to the
Shv and Svh channels [9]. This means that scattering has bounced more

11
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Figure 3.1: A describes volume scattering from forest canopy. B describes
double bounce scattering from the ground and a tree trunk. C describes
specular reflection from a smooth surface. D describes diffuse scattering
from a rough surface. Figure based on [30].

than twice. Presence of dihedral corner reflectors will give a stronger double
bounce component. This could be man made buildings, tree trunks or any
other geometric formation that could cause the wave to reflect two times and
back towards the sensor. In a forested environment this type of scatter is
typically caused by tree trunks. Double bounce will give strong response in
the Shh and weaker response in the Svv [9]. Figure 3.1 illustrates possible
scattering mechanisms in a forest.

3.2 Coherent decomposition theorems
The coherent decomposition theorems aim to describe the scattering matrix
in equation 2.1 as a sum of scattering mechanisms inside a resolution cell [10].
These theorems are better fit to describe areas dominated by man made
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structures. The Pauli decomposition will be the only one of the coherent
decomposition theorems to be discussed in this study as the other theorems
are regarded to be less fit to describe the type of terrain described in the
data section.

3.2.1 Pauli’s decomposition theorem

Pauli’s decomposition theorem aim to describe the S2×2 matrix as a sum
of three scattering mechanisms. The decomposition is described by equa-
tion 3.1.

S2×2 = α

(
1 0
0 1

)
+ β

(
1 0
0 −1

)
+ γ

(
0 1
1 0

)
(3.1)

Note that each pixel in an image has a value for each of the coefficients.
The α parameter describes the odd or single bounce as discussed in sec-
tion 3.1. Bare soil gives approximately equal contribution to Shh and Svv.
Single or odd bounce typically origin from an open surface. The β parameter
describes double or even bounce. This type of scatter gives a stronger contri-
bution to the Shh channel. This kind of scatter could origin from for instance
interaction between the ground and walls on buildings or tree trunks. The γ
parameter in the Pauli decomposition would be interpreted as volume scat-
ter, i.e scatter from canopy. An RGB-composite image is made by putting
the squared values of the β parameter in the red channel, the γ parameter
in the green channel and the α parameter in the blue channel. As an ex-
ample there are RGB composite images of the 6990 and 7000 site shown in
figure 5.3. Coefficients α, β and γ are given in equation 3.2.

α =
Shh + Svv√

2
, β =

Shh − Svv√
2

, γ =
√

2Shv (3.2)

3.3 Incoherent decomposition theorems
The incoherent decomposition theorems aim to describe the scattering by
the C3×3 covariance matrix or the T3×3 coherency matrix [10], [16]. The
single look coherency matrix T3×3,j is defined by equation 3.3. T3×3,j is also
multilooked.

T3×3,j = kk∗T , k =
[
Shh + Svv Shh − Svv Shv + Svh

]T (3.3)

So the incoherent decomposition theorems can be expressed as a sum of
components of the C3×3 or the T3×3 matrices, see equation 3.4.
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C3×3 =
N∑
i=1

qiCi, T3×3 =
M∑
j=1

qjTj (3.4)

Ci, Tj are the basis matrices and qi, qj are the coefficients of the respective
basis matrices.

3.3.1 Model based decomposition theorems

A target decomposition theorem being model based means that the compo-
nents are justified by a physical interpretation. The drawback is that the
parameters may be harder to compute. The physical models for describing
backscatter can be complicated.

Freeman Durden’s 3 component decomposition theorem

Freeman Durden’s 3 component decomposition theorem expresses the C3×3

matrix as a sum of three components. The components are volume, double
bounce and surface scatter [11]. Volume scatter is the multiple bounce depo-
larized backscatter described in section 3.1. The volume scatter is modeled
as the backscatter from a cloud of very thin, randomly oriented, cylinder-like
dipoles. The scattering matrix for a dipole is given by equation 3.5.

S2×2,dipole =

(
α1 0
0 α2

)
, α1 >> α2 (3.5)

α1, α2 are complex scattering coefficients. If the dipole is under a rotation
of an angle θ around the radar line of sight the scattering matrix becomes as
in equation 3.6.

S2×2,cyl(θ) =

(
α1cos

2(θ) + α2sin
2(θ) (α2 − α1)cos(θ)sin(θ)

(α2 − α1)cos(θ)sin(θ) α1sin
2(θ) + α2cos

2(θ)

)
(3.6)

The assumption that the mechanism is a very thin horizontal scatterer
means that α2 → 0. Freeman-Durden assumed the probability distribution
for the orientation to be uniform, i.e. Θ ∼ U(−π, π). Given these assump-
tions the mean-angle average becomes the matrix given in equation 3.7 [11].

C3×3,V OL =
fV OL

8

 3 0 1
0 2 0
1 0 3

 (3.7)
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The double bounce component is modeled as the contribution from two
orthogonal surfaces that may have different dielectric properties, for instance
the ground and a tree trunk. In this study it is assumed that the surfaces are
in fact the ground and a tree trunk. The tree trunks horizontal and vertical
reflection coefficients are given the symbols RTH and RTV . The grounds
reflection coefficients are denoted as RGH and RGV . The factors e2jγh and
e2jγv are propagation attenuation factors. The scattering matrix for this
component will be given as in equation 3.8.

S2×2,DB =

(
e2jγhRTHRGH 0

0 e2jγvRTVRGV

)
(3.8)

This gives the basis matrix given in equations 3.9,3.10, with
α = e2j(γh−γv)RTHRGH

RTV RGV
and fDB = |RTVRGV |2.

C3×3,DB =

 |RTHRGH |2 0 e2j(γh−γv)RTHRGHR
∗
TVR

∗
GV

0 0 0
e2j(γv−γh)RTVRGVR

∗
THR

∗
GH 0 |RTVRGV |2


(3.9)

= fDB

 |α|2 0 α
0 0 0
α∗ 0 1

 (3.10)

The surface component is modeled as odd bounce scattering from bare
soil. The S2×2 matrix for this component is given by equation 3.11. RH , RV

are the dielectric constants for the ground.

S2×2,S =

(
|RH | 0

0 |RV |

)
(3.11)

The contribution to the C3×3 matrix becomes the expression in equa-
tion 3.12. β = RH

RV
, fS = |RV |2.

C3×3,S =

 |RH |2 0 RHR
∗
V

0 0 0
RVR

∗
H 0 |RV |2

 = fS

 |β|2 0 β
0 0 0
β∗ 0 1

 (3.12)

The C3×3 matrix is expressed as a sum over the three discussed compo-
nents, as in equation 3.13.

C3×3 =
fV OL

8

 3 0 1
0 2 0
1 0 3

+ fDB

 |α|2 0 α
0 0 0
α∗ 0 1

+ fS

 |β|2 0 β
0 0 0
β∗ 0 1


(3.13)
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An RGB composite image would be made by putting the double bounce
component in the red channel, the volume component in the green channel
and the surface component in the blue channel.

Yamaguchi’s 4 component decomposition theorem

Yamaguchi’s 4 component decomposition theorem expresses the C3×3 matrix
as a sum of volume scattering, helix scattering, double bounce scattering and
odd bounce scattering [12]. The surface and double bounce components are
modeled in the same way as in Freeman-Durdens theorem [11] [12].
Yamaguchi assumes a different probability distribution function than Freeman-
Durden for the orientation of the cylinders representing the volume scatter.
The probability distribution function proposed in Yamaguchi’s theorem is
given in equation 3.14. Yamaguchi argue that because the vertical struc-
ture is more dominant in a forest, equation 3.14 describes the forest case
better [12].

pθ(θ) =

{
1
2
cos(θ), |θ| < π

2

0, otherwise
(3.14)

Assuming this distribution and equation 3.5 it is necessary to discuss two
cases to which basis matrix should be used to describe the volume scatter [10].
The basis matrix representing the volume scatter could be either of the two
given in equation 3.15. C3×3,V OL1 assumes a very thin horizontal cylinder-like
scatterer, i.e. α2 → 0. C3×3,V OL2 assumes a very thin vertical cylinder-like
scatterer, i.e. α1 → 0.

C3×3,V OL1 =
fV OL

15

 3 0 2
0 4 0
2 0 8

 , or C3×3,V OL2 =
fV OL

15

 8 0 2
0 4 0
2 0 8


(3.15)

Yamaguchi recommends that if the ratio 10log(|Svv|2/|Shh|2) is close to zero
the volume component should be a weighted mean of the two components,
if the ratio is >0 Yamaguchi claims that C3×3,V OL1 should be applied and if
the ratio is <0 it should be C3×3,V OL2. The limit is ±2dB.
The helix component was first introduced by Krogager [18]. It is meant
to describe areas with sharp corners and edges, usually man made struc-
tures. The helix component is typically multiple scattering bouncing back
and forth between tall buildings that eventually escape towards the satellite.
The scattering will usually be specular, thus a relatively large proportion of
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the scattering power remains despite the multiple bounces. The scattering
matrices for a left sense and right sense helix are given in equation 3.16.

S2×2,LH =
1

2

(
1 j
j −1

)
, or S2×2,RH =

1

2

(
1 −j
−j −1

)
(3.16)

The helix component is modeled by the basis matrices given in equa-
tion 3.17 [12], [18].

C3×3,LH = fC
4

 1 −j
√

2 −1

j
√

2 2 −j
√

2

−1 j
√

2 1

 , C3×3,RH = fC
4

 1 j
√

2 −1

−j
√

2 2 j
√

2

−1 −j
√

2 1


(3.17)

The covariance matrix is given by the sum over all these components, as
in equation 3.18. Yamaguchi’s theorem has two of the same components as
the Freeman-Durden theorem, it has added the helix component to interpret
scattering in areas of tall buildings and sharp corners and it has a modified
probability density function for the orientation of the cylinders that represent
the volume scattering. So it is fair to say that Yamaguchi’s theorem is an
extension to the Freeman-Durden theorem.

C3×3 = C3×3,S + C3×3,DB + C3×3,V OL + C3×3,LH/RH (3.18)

Freeman’s 2 component decomposition theorem

Freeman’s 2 component decomposition theorem was introduced in 2007, pos-
terior to the three component model(1998). This theorem assumes that the
C3×3 matrix is a sum of a surface component and a volume component [13].
The basis matrices are given in equation 3.19.

C3×3,V OL = fV OL

 1 0 ρ
0 1− ρ 0
ρ∗ 0 1

 , C3×3,SURFACE = fSURFACE

 1 0 α
0 0 0
α∗ 0 |α|2


(3.19)

C3×3,V OL is the covariance matrix for the volume scattering from a re-
ciprocal medium. The reciprocity assumption is discussed in chapter 2. The
parameters fV OL and ρ describes the contribution from the volume scatter-
ing. C3×3,SURFACE is the covariance matrix describing either double bounce
scattering or scattering from bare soil. The parameters fSURFACE and α
describe the contribution from the surface component. In [13] Freeman ar-
gues that for C3×3,SURFACE to be considered as scattering from bare soil, the
model requires that |α| < 1 and that the argument of the complex coefficient



CHAPTER 3. POLARIMETRIC DECOMPOSITION THEOREMS 18

α is approximately equal to two times the phase difference(HH-VV) that
models the propagation delay effects for the waves to travel from the radar
to the scattering mechanism and back again. Freeman suggests that this
delay could be caused by for instance the wave travelling through a canopy
layer [13]. For C3×3,SURFACE to be considered as double bounce scattering
it requires that |α| > 1 and that arg(α) = ±π [5] [13]. The C3×3 matrix is
expressed as the sum of these components, see equation 3.20. Each of them
could be used to produce a grayscale image. Freeman argues that one of the
biggest advantages with this decomposition theorem is that it requires less
assumptions, as it only needs to solve four unknown parameters with four
equations.

C3×3,TOT = C3×3,V OL + C3×3,SURFACE =

 fSURFACE + fV OL 0 fSURFACEα + fV OLρ
0 fV OL(1− ρ) 0

fSURFACEα
∗ + fV OLρ

∗ 0 fSURFACE|α|2 + fV OL


(3.20)

The contribution provided from each of the mechanisms can be estimated
by equation 3.21.

PSURFACE = fSURFACE(1 + |α|2), PV OL = fV OL(3− ρ) (3.21)

Van Zyl’s Nonnegative eigenvalue decomposition theorem(NNED)

Van Zyl et.al. argues that the Freeman-Durden and Yamaguchi’s theorem
overestimate the volume component and produce negative eigenvalues for
the other components, which is a nonphysical result as it is not possible to
have a negative presence of scattering mechanisms [14] [15]. The nonnegative
eigenvalue decomposition guarantees that no eigenvalues are negative. The
reason why the volume component is overestimated in Freeman-Durdens 3
component decomposition theorem is the assumption that neither the double
bounce or the odd bounce components add to the cross polarized term |Shv|2,
and that therefore the cross polarized term can be used to find the value of
fV OL [14]. The cross polarized term can be significantly affected by terrain
slopes in the along track direction. The cross polarized power can also get
contributions from a rough surface. Furthermore Freeman-Durden’s theo-
rem subtracts the volume component from the measured covariance matrix,
and calculate the two remaining components. But the power in the remain-
ing matrix after having subtracted the volume scatter from the measured
covariance matrix, may be insufficient to guarantee that all eigenvalues are
nonnegative.
Yamaguchi’s procedure is to first subtract the helix component that has the
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copol-crosspol correlation terms and a crosspol term, see equation 3.17. Af-
terwards fV OL is calculated based on the remaining power in |Shv|2. Further-
more Yamaguchi follows the same procedure as Freeman-Durden calculating
the two remaining components. Since Yamaguchi’s theorem subtracts the
helix component before calculating fV OL it will not overestimate the volume
component to the same extent as the Freeman-Durden decomposition theo-
rem. However, it may still produce negative eigenvalues. In [14] and [15] the
authors present results where the volume scatter is overestimated by 10-20%
by Freeman-Durden’s decomposition theorem.
The matrix C3×3,V OL has a predicted form based on a physical model of vol-
ume scattering. The restriction put on the value a is that it has to allow
the eigenvalues of the C3×3,remainder matrix to be equal to or greater than
zero [14] [15].

C3×3,remainder = C3×3 − aC3×3,V OL (3.22)

The two remaining components are calculated from the matrix C3×3,remainder.
Hence the decomposition theorem can be written as a sum of four compo-
nents, see equation 3.23. The last component, CDIFF represents the remain-
ing part of the matrix after the volume scattering, odd bounce scattering and
double bounce scattering has been subtracted.

C3×3 = aC3×3,V OL + λODDC3×3,ODD + λDOUBLEC3×3,DOUBLE + λDIFFC3×3,DIFF

(3.23)
Note that a is not necessarily given the biggest value that results in all

eigenvectors being nonnegative. In [15] the authors propose that a should
be given the value that gives the least power in the difference matrix. In
both [14] and [15] the authors have pointed out errors and false assumptions
with the Freeman-Durden and Yamaguchi’s decomposition theorems, and
based on that argued how their model is stronger. So it is fair to say that
the nonnegative eigenvalue decomposition theorem is an extension to both
Freeman-Durden’s decomposition theorem and Yamaguchi’s decomposition
theorem.

3.3.2 Eigenvector based decomposition theorems

Some of the target decomposition theorems are based on eigenvector decom-
position of the C3×3 or the T3×3 matrix. This ensures that the basis matrices
are orthogonal. The T3×3 can be expressed with the diagonal matrix D3×3.
This matrix contains the eigenvalues on the diagonal and U3×3 contains the
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eigenvectors. The T3×3 can then be expressed as the product, as in equa-
tion 3.24 [10].

T3×3 = U3×3D3×3U−1
3×3 (3.24)

This means that the T3×3 can be expressed as a sum of the eigenvalues
multiplied with the corresponding eigenvectors as in equation 3.25.

T3×3 =
3∑
i=1

λiuiui∗T (3.25)

H/A/α decomposition theorem

The H/A/α theorem is based on eigenvalue decomposition of the T3×3 ma-
trix. The theorem was introduced in 1997 [23]. An entropy based clas-
sification scheme was first introduced in 1995 [24]. The parameters in the
theorem can be suitable for classification [19]. The U3×3 unitary matrix from
equation 3.24 is parametrized with 5 parameters in equation 3.26.

U3×3 =

 cos(α1)ejφ1 cos(α2)ejφ2 cos(α3)ejφ3

sin(α1)cos(β1)ej(δ1+φ1) sin(α2)cos(β2)ej(δ2+φ2) sin(α3)cos(β3)ej(δ3+φ3)

sin(α1)sin(β1)ej(γ1+φ1) sin(α2)sin(β2)ej(γ2+φ2) sin(α3)sin(β3)ej(γ3+φ3)


(3.26)

The theorem defines pseudo probabilities based on the eigenvalues of
T3×3. The pseudo probability for class i is given in equation 3.27.

Pi =
λi∑3
k=1 λk

(3.27)

The mean of the parameters in the unitary matrix are defined as in equa-
tion 3.28.

α =
3∑

k=1

Pkαk, β =
3∑

k=1

Pkβk, δ =
3∑

k=1

Pkδk, γ =
3∑

k=1

Pkγk (3.28)

The interpretation of the α parameter is that it is depending on the
average dominant scattering mechanism. Low values of α is interpreted as
single bounce scattering. For instance it takes the lowest values over oceans.
Values of α around 45o indicates that there is some depolarization, could be
for instance forested areas. When α values approach 90o it is interpreted as
double bounce.
β is interpreted as the correlation between |Shv|2 and |Svv|2, δ is the phase of
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(HH−V V )/(HH+V V ), γ is interpreted as the phase ofHV/(HH+V V ) [24]
and φ is physically equivalent to the absolute target phase [5].
The polarimetric scattering entropy is defined by equation 3.29.

H = −
3∑

k=1

Pklog3(Pk) (3.29)

The interpretation of the entropy is that it is a measure to what extent the
scattering is a random process. In the case when H = 1 it is a uniform
distribution and the scattering is completely random. Lower values for H
means that it is easier to extract information from the scattering. A higher
value for H indicates that there are more than one scattering mechanisms and
that they are equal in strength [5]. The last parameter in this decomposi-
tion theorem is the polarimetric scattering anisotropy given in equation 3.30.
The interpretation of the anisotropy parameter is that it is the relative im-
portance between the second and third eigenvector. When the anisotropy
takes the highest possible value A = 1, it means that the the third scattering
mechanism disappears completely. When it takes the other extreme A = 0, it
means that the second and third scattering mechanism has equal power. For
higher values of H the anisotropy becomes noisy as there are few scattering
mechanisms contributing to the signal. For lower values of H the anisotropy
could be a useful feature.

A =
λ2 − λ3

λ2 + λ3

(3.30)

To summarize, the entropy and anisotropy parameters are interpreted as
a level of dominance between the scattering mechanisms. The entropy is the
level of dominance of the first scattering mechanism versus the two others,
hence it is a useful parameter to determine whether there is one or more
scattering mechanisms present. The anisotropy is the level of dominance
between the second and third scattering mechanism, hence it is a useful
parameter to determine whether there is two or three scattering mechanisms
present.

3.3.3 Obtaining parameters of the decomposition theo-
rems

In this project the polarimetric features in the decomposition theorems were
computed from Polarimetric SAR Data Processing and Educational tool(PolSARpro).
This tool has built-in functions to calculate the parameters of the various de-
composition theorems [22].



 



Chapter 4

Methods

4.1 Choice of ground truth areas
The choice of ground truth data is based on visual inspection of the optical
images, and recognizing areas in the optical data by shape and size in a Pauli
image of the radar data. It was found that the radar data should be seg-
mented into 6 different classes. The classes are labeled dense forest, medium
dense forest, sparse forest, no forest, burned land and grassland.
The dense forest appears in the optical images with a more intense green
color than the surrounding forest. In optical images this type is very distin-
guishable from other classes. There are visible areas of dense forest in the
northwestern area of the 411 image, the northwestern area of the 511 image,
in the middle of the 610 image and in the southwestern quarter of the 710
image, see figure 5.4.
The medium dense forest is visible in the optical images as green areas, but
without the intense green color that stands out in the areas of dense forest.
Among the forest types, the medium dense forest would be the most fre-
quently occuring within the area covered by radar measurements. Most of
the green areas in image 411 and the green areas in the center of image 511
should be regarded as medium dense forest.
The sparse forest are areas with a less intense green than the medium dense
and dense forest. In image 411 the sparse forest is visible in bordering areas
with the medium dense forest. In general it appears as bright green openings
within or next to medium or dense forest.
The no forest areas appear in the optical images as areas with a desert sand
color. These areas are most common in image 611 and also to a lesser extent
in image 511.
The burned land appears in the optical images as blue or purple areas. In
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image 710 to the top right there is a fire taking place. In several of the images
it is possible to find areas of blue or purple with white smoke drifting away
from it. This indicates that fires occur frequently in the area. The 611 image
contains most of the burned land in these optical images.
The grassland class is distinguished with a bright green color and a different
texture than other classes. In optical images this class is easily disinguishable
from the other classes. In particular this class is seen in the top center of
image 511 and in the center bottom of image 611.

4.2 Probability theory
In order to segment images and attribute a pixel to a given land cover class,
like the ones describes in section 4.1, it is necessary to have some kind of
measurement of the probability that it belongs to that particular class. It is
common to assume that the data has a Gaussian distribution, or if there is
more than one variable, a multivariate Gaussian distribution. SAR measure-
ments does not necessarily produce data that follows the Gaussian distribu-
tion and in that case it is necessary to use some kind of transformation to
make it fit the Gaussian distribution better.

4.2.1 Multivariate Gaussian distribution

The probability density function(pdf) of a multivariate Gaussian distribution
with k features is given in equation 4.1.

p(x;µ,Σ) =
1

(2π)
k
2 |Σ| 12

e−
1
2

(x−µ)T Σ−1(x−µ) (4.1)

The vector x with k values, is the datapoint for which the pdf is evaluated.
µ is a k × 1 vector containing the mean values for each of the features. Σ is
a k × k matrix, and is the covariance matrix of the features. |Σ| 12 denotes
the square root of the determinant of the covariance matrix.

4.2.2 Classifiers

A Bayesian classifier will take into account the value of the pdf for the given
datapoint and the a priori probabilities. A higher value of a class’ probability
density function indicates a higher probability that the datapoint belongs to
that class. The a priori probabilities is the probability that a point belongs
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to a given class without any knowledge of the datapoint. Bayes’ formula is
given in equation 4.2.

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)
, with p(x) =

N∑
j=1

p(x|ωj)P (ωj) (4.2)

The symbol ωj denotes class j, N is the number of classes and and P (ωj)
is the a priori probability of class j. A Bayesian classification will classify
the pixel with the value x to the class j that maximize the value for P (ωj|x)
in equation 4.2. If the classifier is to make a choice between two classes m
and n, the classification rule can be given as below.

If P (ωm|x) > P (ωn|x) x is classified to class m (4.3)
If P (ωm|x) < P (ωn|x) x is classified to class n (4.4)

This only describes the case when there are two classes, but the principle is
the same when there are more than two classes. Values of p(x) in equation 4.2
is equal for all classes and can be ignored. Assuming that the data follows a
Gaussian distribution, the choice of class will be determined by the value in
equation 4.5. This is called a maximum likelihood classifier.

p(ωj|x) = P (ωj)
1

(2π)
k
2 |Σj|

1
2

e−
1
2

(x−µj)T Σ−1
j (x−µj) (4.5)

4.2.3 Accuracy assessment

Confusion matrix

The confusion matrix is a table that gives the agreement between the classifier
and the ground truth data. In this paper the columns will indicate the
reference class and the rows indicate the choice of the classifier. The matrix
has d × d elements where d is the number of classes, which in this study is
6. The elements on the diagonal are the amount of pixels that have been
classified to the reference class. The form of the confusion matrix is given
in table 4.1. From the confusion matrix it is possible to calculate various
accuracy measurements. Producer accuracy of a given class is defined as
the number of pixels correctly classified to that class class divided by the
total number of pixels belonging to that class. The complementary error
is called the omission error. User accuracy of a given class is defined as the
number of pixels correctly classified to that class divided by the total number
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Table 4.1: Confusion matrix
Classifier/Ref Dense Medium Sparse Grass Burned No forest Total

Dense c1,1 c1,2 c1,3 c1,4 c1,5 c1,6

∑6
k=1 c1,k

Medium c2,1 c2,2 c2,3 c2,4 c2,5 c2,6

∑6
k=1 c2,k

Sparse c3,1 c3,2 c3,3 c3,4 c3,5 c3,6

∑6
k=1 c3,k

Grass c4,1 c4,2 c4,3 c4,4 c4,5 c4,6

∑6
k=1 c4,k

Burned c5,1 c5,2 c5,3 c5,4 c5,5 c5,6

∑6
k=1 c5,k

No forest c6,1 c6,2 c6,3 c6,4 c6,5 c6,6

∑6
k=1 c6,k

Total
∑6

k=1 ck,1
∑6

k=1 ck,2
∑6

k=1 ck,3
∑6

k=1 ck,4
∑6

k=1 ck,5
∑6

k=1 ck,6

of pixels classified to the given class. The complementary error is called the
comission error. Global accuracy is defined as sum of pixels correctly defined
to their class divided by the total number of pixels in the testing data, see
equation 4.6. AP , AU and AG respectively denote producer accuracy, user
accuracy and global accuracy. The symbol q here denotes the class label.

AP =
cq,q∑d
n=1 cq,n

, AU =
cq,q∑d
n=1 cn,q

, AG =

∑d
i=1 ci,i∑d

i=1

∑d
j=1 ci,j

(4.6)

4.2.4 Transformation of data

The expressions in equations 4.1 and 4.5 assume a Gaussian distribution.
Radar backscattering in general does not follow a Gaussian distribution. For
instance a Gaussian distribution allows infinitely negative values, and the
backscatter can not take negative values. Figure 6.1 shows the histograms of
the intensities from the 6990 site and their log transform. To fit a multivariate
Gaussian pdf to the data it is necessary to perform a transformation to ensure
that the distribution of the features look more like a Gaussian distribution.
Log transformation of the data will make the histograms more symmetric
around the peak. Figure 6.1 shows that the histogram of |Shh|2, |Shv|2 and
|Svv|2 have a relatively steep slope for the low values and a long tail for
the higher values. The log transformed values looks more like a mixture of
Gaussian distribution, without the long tail and the steep slope. The log
transform may also be necessary for some polarimetric features produced by
the decomposition theorems.

4.3 Feature selection
In order to determine which features are the most useful for classification,
it is interesting to see how the features perform together in terms of classi-
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fication. One of the objectives of this study is to pick the most beneficial
combination of the features in terms of classification. The selection is based
on a seperability measure, i.e. a criterion to rank the performance of the var-
ious features. In this study it is the global accuracy defined in equation 4.6.
Backward and forward sequential feature selection will be performed to find
the optimal composition of features.

4.3.1 Backward sequential method

Given n features, the first step of the backward sequential method is to
perform classification with all the available features. The second step is to
perform classification with all subsets containing n-1 features, i.e. all pos-
sible subsets where one of the features has been left out. The classification
that achieves the best separability result of the subsets containing n-1 fea-
tures determines which combination of the features that is considered to be
the best. In the following steps the feature that was not considered to be
included in the best n-1 subset is disregarded. The next step is to test all
possible combinations of n-2 features, only considering the features included
the subset that was considered to be the best n-1 combination. For each
step, one feature is dropped and it is possible to obtain a combination of k
features, with k ≤ n. This is not an optimal method of finding the best com-
bination of k features as there is no guarantee that the first features being
dropped can not be included in the best k features. However it requires less
computational efforts than evaluating all possible permutations [25,26].

4.3.2 Forward sequential method

The forward sequential method starts with first evaluating classification with
all features individually. The feature with the best separability result is
considered to be the best feature. In the second step, classification with each
of the remaining features paired with the one regarded as the best in the first
step, is evaluated. The pair with the best separability measure is regarded
as the best pair. In the next step, classification with each of the remaining
features together with the two features that was regarded as the best in
step 2, are evaluated. Step by step one feature is added to the combination
regarded as the best, until it has reached a set of k features, with k ≤ n.
This is also a suboptimal selection of features as there is no guarantee that
the subset of k features considered as the best set by this feature selection
method is in fact the subset that gives the overall best separability result.
However this also requires less computational efforts than evaluating the full
set [25, 26].
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Choice of separability measure

In this study, the global accuracy defined in equation 4.6 is used as separa-
bility measure in the feature selection. The main weakness with the global
accuracy as separability measure is that it will favor the classes with many
pixels as ground truth. However it is certainly the most popular measure of
performance of classification, and because of that it is used in this study.



Chapter 5

Study area and data

5.1 Location
The polarimetric SAR data used in this study covers two sites that each
form a rectangular area that has length 63,5 km and width of 26 km in Lindi
county, Tanzania. The location of the sites is shown in figure 5.1. The sites
have an overlap of 7,5 km. Optical data consists of 8 adjacent images. The
area covered by radar measurements and the area covered by optical data
have an overlap as shown in figure 5.2. All 8 boxes are square and have a
side length of 25 km. The boxes have an overlap of 1 km.

5.2 Instruments
Polarimetric SAR data from both sites are obtained by the Advanced land ob-
serving satellites(ALOS) phased array type L-band synthetic aperture radar
(PALSAR). The satellite operates at L-band with center frequency 1270
MHz [2], [3]. The instrument applies incident angle from 8o to 30o. The
dataset consists of four polarimetric channels. The raw data of each site has
a size of 18432 pixels in the azimuth direction and 1248 in the range direc-
tion. Both images are obtained at 07.12.2010. Figure 5.3 shows Pauli images
of the test sites.
Optical images are captured by the RapidEye sensor. Image 410 is cap-
tured 20.06.2010, image 411 is captured 09.07.2010, image 510 is captured
20.06.2010, image 511 is captured 09.07.2010, image 610 is captured 10.07.2010,
image 611 is captured 09.07.2010, image 710 is captured 10.07.2010 and im-
age 711 is captured 20.06.2010. Each of the RapidEye’s satellites carries the
Jena Spaceborne Scanner JSS 56 which is a pushbroom sensor [4]. It does
measurements in the 5 bands given in table 5.1. The sensor provides images
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Figure 5.1: Geographical view of area covered by SAR data, Google earth [1]
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Figure 5.2: Area covered by optical data marked in red, area covered by SAR
data marked in blue and Lindi county is marked in yellow, Google earth [1].



CHAPTER 5. STUDY AREA AND DATA 32

Figure 5.3: Pauli images of the polarimetric data. 6990 is south and 7000 is
north.

Table 5.1: Wavelengths and bands of the Jena spaceborne scanner, [4]
Wavelength Band
440 - 510 nm Blue
520 - 590 nm Green
630 - 690 nm Red
690 - 730 nm Red edge
760 - 880 nm Near infrared

with pixel size 5 m [4]. RGB composite images of the optical data are shown
in figure 5.4. Black areas in the optical images are areas of no information.

5.3 Processing of data
The polarimetric data has been multilooked with 19 pixels in azimuth direc-
tion and 3 pixels in range direction in order to reduce speckle and to make
the axes of the image proportional to the actual length on the ground. This
makes images on the format 970 times 416 which makes each pixel equivalent
to a square box with side length 62,5 meters. Canopy of the vegetation in
the area varies from 10-20 meters in diameter, so this multilooking should be
sufficient. If a pixel would cover less area than what is covered by the canopy
of a single tree, it would be hard to distinguish different forest classes.
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Northwestern optical image, 
710

Northeastern optical 
image 711

Middle northwestern 
optical image, 610

Middle northeastern 
optical image, 611

Middle southwestern 
optical image,510

Middle southeastern 
optical image, 511

Southwestern optical 
image, 410

Southeastern optical 
image, 411

Figure 5.4: RGB composite images of the optical data.



 



Chapter 6

Results

6.1 Classification using theorems separately on
the 6990 site

6.1.1 Intensities

The following results were obtained by using the log transformed intensities
|Shh|2, |Shv|2 and |Svv|2 as features for classfication of the radar image. Classi-
fication based on intensities was performed because it was initially thought to
produce similar results to the parameters from the Pauli decomposition theo-
rem, see section 6.9. The histogram of the intensities and their log transform
is shown in figure 6.1. Based on the shape of the histograms the log trans-
formed intensities were considered to be the most appropriate data to use in
the classifier, as it looked more like a mixture of Gaussians than the original
data. For each of the ground truth classes, an algorithm was used to pick half
of the pixels as training data and the other half as testing data. Random
numbers determined which of the pixels were used as training and testing
data. In the case where the ground truth class has an odd number of pixels,
either the training or the testing data will have one pixel more. Classification
was performed as described in section 4.2.2. Since the selection of ground
truth pixels do not necessarily reflect the presence of the classes in the image,
a priori probabilities were assumed to be equal, i.e. P (ωk) = 1

6
, k = 1, . . . , 6

where k is the class label. Mean values and covariance matrices are calculated
from the training data. Throughout the thesis, the same sets of pixels that
constitute the training and testing data are applied. The classification map
is given in figure 6.2 and the classification result is shown in table 6.1. The
classfier achieved a global accuracy of 77.53%.

35
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Figure 6.1: Histogram intensities with and without the log transformation,
6990 site.

Table 6.1: Classification results using a multivariate Gaussian classifier with
the log transformed intensities |Shh|2, |Shv|2 and |Svv|2 as features.

Classifier/Ref Dense Medium Sparse Grass Burned No forest Total User’s accuracy Comission error
Dense 82 48 0 0 0 0 130 63.08% 36.92%
Medium 24 139 12 0 0 0 175 79.43% 20.57%
Sparse 0 20 51 0 0 6 77 66.23% 33.77%
Grass 0 0 0 146 18 0 164 89.02% 10.98%
Burned 0 0 0 23 53 7 83 63.86% 36.14%
No forest 0 0 2 0 4 95 101 94.06% 5.94%
Total 106 207 65 169 75 108

Producer’s accuracy 77.36% 67.15% 78.46% 86.39% 70.67% 87.96%
Omission error 22.64% 32.85% 21.54% 13.61% 29.33% 12.04%
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Figure 6.2: Classification map with log transformed intensities as features.
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Table 6.2: Classification result using a multivariate Gaussian classifier with
the log transformed parameters of Yamaguchi’s theorem as features.

Classifier/Ref Dense Medium Sparse Grass Burned No forest Total User’s accuracy Comission error
Dense 77 42 0 0 0 0 119 64.71% 35.29%
Medium 28 150 12 0 0 0 190 78.95% 21.05%
Sparse 0 15 50 0 0 5 70 71.43% 28.57%
Grass 0 0 0 150 16 0 166 90.36% 9.64%
Burned 0 0 0 19 55 4 78 70.51% 29.49%
No forest 1 0 3 0 4 99 107 92.52% 7.48%
Total 106 207 65 169 75 108

Producer’s accuracy 72.64% 72.46% 76.92% 88.76% 73.33% 91.67%
Omission error 27.36% 27.54% 23.08% 11.24% 26.67% 8.33%

6.1.2 Yamaguchi’s 4 component decomposition theorem

In this classification the log transformed values of the parameters of Yam-
aguchi’s decomposition theorem were used as features. The log transform
was applied because the histograms looked more like a mixture of Gaussians
than the original data. The classification gave the result presented in ta-
ble 6.2. This classfication achieved a global accuracy of 79.59% which is
slightly better than the result the classifier based on the intensities achieved.
Classification map is shown in figure 6.3.

6.1.3 Freeman’s 2 component decomposition theorem

The Polsarpro software does a histogram squeezing when it calculates the
parameters of the decomposition theorems in order to enhance the contrast
in images. Values that are significantly lower or higher than the marjority of
the pixels can cause images to become either very dark or very bright. The
lowest values are replaced by a mean value, such that it creates a spike in the
histograms. Unfortunately the replaced values appear in predictable regions
of the image. They almost exclusively appear in the regions covered by grass,
burned land or no forest. So the surface component is severely contaminated
by squeezed values. The volume component does not have the same problem.
So the following results were obtained by using only the log transformed
values of the volume component from Freeman’s 2 component decomposition
theorem. The log transform was applied because the histogram looked more
like a mixture of Gaussians after being transformed. The classification map
is shown in figure 6.4 and the result is shown in table 6.3. The classification
achieved a global accuracy of 50.96%.
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Figure 6.3: Classification map using the log transformed parameters from
Yamaguchi’s theorem as features.
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Figure 6.4: Classification map where the log transformed volume compo-
nent of Freeman’s 2 component decomposition theorem was used as the only
feature for classification.
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Table 6.3: Classification result using a Gaussian classifier with the log trans-
form of the volume component of Freeman’s 2 component decomposition
theorem as the only feature.

Classifier/Ref Dense Medium Sparse Grass Burned No forest Total User’s accuracy Comission error
Dense 73 56 3 0 0 0 132 55.30% 44.70%
Medium 33 123 13 0 0 0 169 72.78% 27.22%
Sparse 0 28 41 9 0 9 87 47.13% 52.87%
Grass 0 0 0 22 8 11 41 53.66% 46.34%
Burned 0 0 0 77 48 23 148 32.43% 67.57%
No forest 0 0 8 61 19 65 153 42.48% 57.52%
Total 106 207 65 169 75 108

Producer’s accuracy 68.87% 59.42% 63.08% 13.02% 64% 60.19%
Omission error 31.13% 40.58% 36.92% 86.98% 36% 39.81%

Table 6.4: Classification result using a multivariate Gaussian classifier with
the H/A/α parameters as features.

Classifier/Ref Dense Medium Sparse Grass Burned No forest Total User’s accuracy Comission error
Dense 59 37 3 0 0 28 127 46.46% 53.54%
Medium 19 102 20 0 0 22 163 62.58% 37.42%
Sparse 3 23 24 0 2 14 66 36.36% 63.64%
Grass 0 0 1 153 11 0 165 92.73% 7.27%
Burned 3 1 6 16 57 5 88 64.77% 35.23%
No forest 22 44 11 0 5 39 121 32.23% 67.77%
Total 106 207 65 169 75 108

Producer’s accuracy 55.66% 49.28% 36.92% 90.53% 76% 36.11%
Omission error 44.34% 50.72% 63.08% 9.47% 24% 63.89%

6.1.4 H/A/α decomposition theorem

The following results were obtained by using the H/A/α-parameters as fea-
tures in a multivariate Gaussian classifier. The classification map is given
in figure 6.5 and the classification results are given in table 6.4. The clas-
sification map seems to contain a lot of variation, so this classification may
benefit from extensive multilooking or use of a smoothing filter. But to avoid
giving this classifier an unfair advantage towards the others, no further mul-
tilooking or filtering is performed. This classifier achieved a global accuracy
of 59.45%. Although it achieves a modest result, these parameters can be
useful in fusion with the model based decomposition theorems.

6.1.5 Other decomposition theorems

The output from the Freeman-Durden and the nonnegative eigenvalue de-
composition theorem in Polsarpro also suffer from histogram squeezing that
pollute the burned land, grassland and no forest classes with replaced values.
As mentioned earlier the surface component of the Freeman 2 component de-
composition theorem has the same problem. It would have been preferable to
have the components from at least one of the two mentioned decomposition
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Figure 6.5: Classification map where H/A/α parameters were used as fea-
tures.



CHAPTER 6. RESULTS 43

Figure 6.6: Scatter plot for all classes with the entropy and α parameter.

theorems available. The most favourable would be the nonnegative eigen-
value decomposition theorem as it is an extension of the Freeman-Durden
theorem [14].

6.2 Classification with 10 polarimetric features
6990 site

The following results were obtained by classification with the 10 polarimetric
features given in table 6.5. The log transformed volume component of Free-
man’s 2 component decomposition theorem was omitted, as it was highly
correlated with other features for some of the classes. Highly correlated fea-
tures in the training data could generate a singular covariance matrix. It
is impossible to calculate the pdf value given in equation 4.1 when the co-
variance matrix is singular, because a singular matrix is not invertible and
the determinant is equal to zero. Even if it was possible to calculate the pdf
value with a singular matrix, a highly correlated feature would not add much
information because of the correlation. Yamaguchi’s log transformed volume
component is included in table 6.5, so the log transformed volume component
from Freeman’s 2 component decomposition theorem was considered to be
obsolete. The correlation coefficient is defined in equation 6.1 [26].

ρX,Y =
E{(X − µX)(Y − µY )}

σXσY
(6.1)



CHAPTER 6. RESULTS 44

Table 6.5: Individual accuracy and feature label of polarimetric features.
Feature label Feature Individual accuracy

1 log(|Shh|2) 52.21%
2 log(|Shv|2) 66.98%
3 log(|Svv|2) 49.73%
4 Entropy 52.47%
5 α 47.95%
6 Anisotropy 24.66%
7 log transformed double bounce component of Yamaguchi’s theorem 62.19%
8 log transformed odd bounce component of Yamaguchi’s theorem 43.69%
9 log transformed volume component of Yamaguchi’s theorem 56.99%
10 log transformed helix component of Yamaguchi’s theorem 25.89%

Table 6.6: Classification result using a multivariate Gaussian classifier with
10 polarimetric features.

Classifier/Ref Dense Medium Sparse Grass Burned No forest Total User’s accuracy Comission error
Dense 78 46 1 0 0 0 125 62.40% 37.60%
Medium 25 135 10 0 0 0 170 79.41% 20.59%
Sparse 0 25 52 0 0 10 87 59.77% 40.23%
Grass 0 0 0 159 14 0 173 91.91% 8.09%
Burned 0 0 1 10 59 5 75 78.67% 21.33%
No forest 3 1 1 0 2 93 100 93% 7%
Total 106 207 65 169 75 108

Producer’s accuracy 73.58% 65.22% 80% 94.08% 78.67% 86.11%
Omission error 26.41% 34.78% 20% 5.92% 21.33% 13.89%

X, Y are the correlated features, µX , µY are their mean values and σX , σY
are their variances. Among others, the log transformed volume compo-
nent of Freeman’s 2 component theorem was highly correlated with the log
transformed odd bounce component of Yamaguchi’s theorem in the grass
class(ρ = 0.896), log(|Shh|2) in the grass class(ρ = 0.9497), log(|Svv|2) in the
grass class(ρ = 0.8392) and log(|Svv|2) in the no forest class(ρ = 0.9231).
The component is modeled with a factor 1 multiplied with the intensities
|Shh|2 and |Svv|2, see equation 3.19. The component is correlated with these
intensities in the non-forested classes. Assuming smooth surfaces in these
areas, the contribution to the Shh and the Svv channels would be approxi-
mately equal. So given the physical properties of the land cover class and
the modeling of the component, it is reasonable that those features are corre-
lated. Figure 6.7 illustrates the correlation between the log transformed odd
bounce component of Yamaguchi’s theorem and the log transformed volume
component from Freeman’s 2 component decomposition theorem.

The classification map is given in figure 6.8 and the classification result is
given in table 6.6. The classifier achieved a global accuracy of 78.90%. The
classifier based on Yamaguchi’s parameters performed slightly better. This
indicates that some of the features are confusing the classifier. Data fusion
in remote sensing is expected to result in higher accuracy [9, 20,21].
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Figure 6.7: Scatter plot illustrating the correlation between components in
the training data for the grass class.
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Figure 6.8: Classification map using all 10 polarimetric features given in
table 6.5.
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Table 6.7: Classification results from combined datasets obtained by back-
ward sequential feature selection on the 6990 site.

Polarimetric features used in classifier Global accuracy Features left out
1 All 78.90% None
2 1,2,3,4,5,7,8,9 and 10 79.45% 6
3 1,2,3,4,5,7,9 and 10 79.86% 6 and 8
4 1,2,3,4,5,7 and 10 81.78% 6,8 and 9
5 1,2,3,4,7 and 10 82.60% 5,6,8 and 9
6 1,2,3,4 and 7 83.01% 5,6,8,9 and 10
7 1,2,3 and 4 82.60% 5,6,7,8,9 and 10
8 1,3 and 4 82.19% 2,5,6,7,8,9 and 10
9 1 and 4 80.27% 2,3,5,6,7,8,9 and 10
10 4 52.47% 1,2,3,5,6,7,8,9 and 10

6.3 Backward sequential feature selection method
6990 site

The results from the backwards sequential feature selection is shown in
table 6.7 and in figure 6.9. The backward feature selection achieved the
highest accuracy when using five of the polarimetric features in table 6.5.
The optimum found by backward feature selection consisted of the log tran-
formed intensities |Shh|2, |Shv|2 and |Svv|2, the polarimetric entropy from the
H/A/α theorem and the log transformed double bounce component from Ya-
maguchi’s theorem. With this composition of features the classifier achieved
a global accuracy of 83.01%. Notice that the global accuracy increases when
the first 5 features are removed, and decreases when removing additional
features. It seems the first 5 features rather confuse the classifier than add
information.

6.4 Forward sequential feature selection method
6990 site

The results from the forward sequential feature selection is shown in ta-
ble 6.8 and figure 6.9. The global accuracy optimum is found when using 5
polarimetric features. The optimal composition consisted of the log trans-
formed values of the intensities |Shh|2 and |Shv|2, the polarimetric entropy and
anisotropy from the H/A/α decomposition theorem and the log transformed
values of the helix component of Yamaguchi’s decomposition theorem. The
classification with this composition of features achieved a global accuracy of
82.19%. As with the backward feature selection, accuracy decreased for both
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Table 6.8: Classification results from combined datasets obtained by forward
sequential feature selection on the 6990 site.

Polarimetric features used in classifier Global accuracy Features left out
1 2 66.98% 1,3,4,5,6,7,8,9 and 10
2 2 and 6 76.71% 1,3,4,5,7,8,9 and 10
3 1,2, and 6 80.82% 3,4,5,7,8,9, and 10
4 1,2,4 and 6 81.78% 3,5,7,8,9 and 10
5 1,2,4,6 and 10 82.19% 3,5,7,8 and 9
6 1,2,3,4,6 and 10 81.64% 5,7,8 and 9
7 1,2,3,4,5,6 and 10 81.10% 7,8 and 9
8 1,2,3,4,5,6,9 and 10 80% 7 and 8
9 1,2,3,4,5,6,7,9 and 10 79.45% 8
10 All 78.90% None

more and less than five features.

6.5 Classification with an educated choice of 5
polarimetric features 6990 site

It is interesting to see the performance of a classifier using features that
are chosen based on their performance in both the backward and forward
sequential feature selection. Perhaps a composition that is a compromise
between the composition optima found by the two feature selection methods
give a higher accuracy. The accuracy peaked at 5 features for both the for-
ward and backward selection method, therefore it was decided that the ideal
composition should consist of 5 features. Selection of features is based on
the average finishing position in the backward and forward selection. The 5
features with the best average performance is the log transformed values of
the intensities |Shh|2, |Shv|2 and |Svv|2, the entropy from the H/A/α theorem
and the log transformed values of the helix component from Yamaguchi’s
decomposition theorem. This composition is the same as the optimum for
the backward selection except that the log transformed value of the double
bounce component of Yamaguchi’s decomposition theorem is replaced with
the log transformed helix component. The classification map is shown in fig-
ure 6.10 and the classification result is shown in table 6.9. This classification
achieves a global accuracy of 83.01% which is equal to what the composition
of accuracy optimum in the backward feature selection.
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Figure 6.9: Plot of accuracy versus the number of features used in classifier
using the feature compositions found by backward and forward sequential
feature selection on the 6990 site.

Table 6.9: Classification result using an educated choice of 5 polarimetric
features on the 6990 site.

Classifier/Ref Dense Medium Sparse Grass Burned No forest Total User’s accuracy Comission error
Dense 86 38 0 0 0 0 124 69.35% 30.65%
Medium 20 157 10 0 0 0 187 83.96% 16.04%
Sparse 0 12 50 0 0 4 66 75.76% 24.24%
Grass 0 0 0 150 10 0 160 93.75% 6.25%
Burned 0 0 0 19 62 3 84 73.81% 26.19%
No forest 0 0 5 0 3 101 109 92.66% 7.34%
Total 106 207 65 169 75 108

Producer’s accuracy 81.13% 75.85% 76.92% 88.76% 82.67% 93.52%
Omission error 18.87% 24.15% 23.08% 11.24% 17.33% 6.48%
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Figure 6.10: Classification map using an educated choice of 5 polarimetric
features, 6990 site.
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Table 6.10: Classification result using a composition of 5 polarimetric features
found by sequential backward feature selection on the 6990 site.

Classifier/Ref Dense Medium Sparse Grass Burned No forest Total User’s accuracy Comission error
Dense 91 15 14 0 0 0 120 75.83% 24.17%
Medium 28 93 8 0 0 0 129 72.09% 17.81%
Sparse 3 3 108 0 0 5 119 90.76% 9.24%
Grass 0 0 0 67 1 0 68 98.53% 1.47%
Burned 0 0 2 4 45 1 52 86.54% 13.46%
No forest 2 0 18 0 0 10 30 33.33% 66.67%
Total 124 111 150 71 46 16

Producer’s accuracy 73.39% 83.78% 72% 94.37% 97.83% 62.50%
Omission error 26.61% 16.22% 28% 5.63% 2.17% 37.50%

6.6 Classification with 5 polarimetric features
7000 site

In this section, classification with the optimum feature compositions found
by sequential backward and forward feature selection on the 6990 site are
applied to the 7000 site.

6.6.1 Classification with optimum feature composition
found by sequential backward selection on 6990
site

The following results were obtained by using the log transformed intensi-
ties |Shh|2, |Shv|2 and |Svv|2, the entropy from the H/A/α theorem and the
log transformed double bounce component from Yamaguchi’s decomposition
theorem as features. These features were the optimal combination found by
the sequential backward feature selection. The classification map is shown in
figure 6.11 and the classification result is shown in table 6.10. This classifica-
tion achieved a global accuracy of 79.92%, which is just below the optimum
found by sequential backward feature selection of the 6990 site.

6.6.2 Classification with optimum feature composition
found by sequential forward selection on 6990 site

The following results were obtained by using the log transformed intensities
|Shh|2, |Shv|2 and |Svv|2 and the entropy and anisotropy from the H/A/α
decomposition theorem. The choice of features is based on the result from
forward feature selection. The log transformed |Svv|2 has replaced the log
transformed helix component. Unfortunately the helix component of the
7000 site contained a large number of pixels that took the value 0. This
creates problems when applying the log transform. The log transformed
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Figure 6.11: Classification map 7000 site using a composition of 5 features
found by sequential backward feature selection on the 6990 site.
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Table 6.11: Classification result using a composition of 5 polarimetric features
found by sequential forward feature selection on the 6990 site.

Classifier/Ref Dense Medium Sparse Grass Burned No forest Total User’s accuracy Comission error
Dense 94 15 21 0 0 0 130 72.31% 27.69%
Medium 24 94 7 0 0 0 125 75.20% 24.80%
Sparse 4 2 103 0 0 5 114 90.35% 9.65%
Grass 0 0 0 66 2 0 68 97.06% 2.94%
Burned 0 0 1 5 42 0 48 87.50% 12.50%
No forest 2 0 18 0 2 11 33 33.33% 66.67%
Total 124 111 150 71 46 16

Producer’s accuracy 75.81% 84.68% 68.67% 92.96% 91.30% 68.75%
Omission error 24.19% 15.32% 31.33% 7.04% 8.70% 31.25%

|Svv|2 component was added to the composition of features the step after
the log transformed helix component was added. The classification map is
shown in figure 6.12 and the classification result is shown in table 6.11. The
classifier achieved a global accuracy of 79.15%, which is slightly lower than
what the classifier with the same composition of features achieved at the
6990 site.

6.6.3 Classification of 7000 site with training data from
6990 site

All previous experiments have been conducted by first picking training and
testing data from one site, and then performing classification on the same
site. It is interesting to see the performance of a classification based on using
the training data from one site to classify a different site. Information from
this kind of classification can be valuable to evaluate the performance of the
features, because in this case they are applied to an independent dataset.

Classification with optimum feature composition found by sequen-
tial backward selection

The following results were obtained by using the feature composition found
by sequential backward selection on the 6990 site in a multivariate Gaussian
classifier. This optimum composition consisted of the log transformed inten-
sities |Shh|2, |Shv|2 and |Svv|2, the entropy and the log transformed double
bounce component from Yamaguchi’s theorem. Mean values and covariance
matrices for the various classes were calculated from training data from the
6990 site, and classification was performed on the 7000 site. The classifi-
cation map is given in figure 6.13 and the classification result is given in
table 6.12. This classification achieved a global accuracy of 69.50%.
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Figure 6.12: Classification map 7000 site using a composition of 5 features
found by sequential forward feature selection on the 6990 site.
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Figure 6.13: Classification map having used training data from 6990 site
to classify 7000 site. The feature composition found by backward feature
selection is engaged in this classification.
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Table 6.12: Classification result having used training data from 6990 site
and testing data from 7000 site. The feature composition found by backward
feature selection is applied here.

Classifier/Ref Dense Medium Sparse Grass Burned No forest Total User’s accuracy Comission error
Dense 80 36 1 0 0 0 117 68.38% 31.62%
Medium 30 68 2 0 0 0 100 68% 32%
Sparse 8 7 95 0 0 1 111 85.59% 14.41%
Grass 0 0 2 68 11 0 81 83.85% 16.15%
Burned 2 0 2 3 34 0 41 82.93% 17.07%
No forest 4 0 48 0 1 15 68 22.06% 77.94%
Total 124 111 150 71 46 16

Producer’s accuracy 64.52% 61.26% 63.33% 95.77% 73.91% 93.75%
Omission error 35.48% 38.74% 36.67% 4.23% 26.09% 6.25%

Table 6.13: Classification result having used training data from 6990 site
and testing data from 7000 site. The feature composition found by forward
feature selection is applied here.

Classifier/Ref Dense Medium Sparse Grass Burned No forest Total User’s accuracy Comission error
Dense 74 30 0 0 0 0 104 71.15% 28.85%
Medium 27 66 2 0 0 0 95 69.47% 30.53%
Sparse 8 8 83 0 0 1 100 83% 17%
Grass 0 0 0 43 3 0 46 93.48% 6.52%
Burned 4 4 15 28 43 2 96 44.79% 55.21%
No forest 11 3 50 0 0 13 77 16.88% 83.12%
Total 124 111 150 71 46 16

Producer’s accuracy 59.68% 59.46% 55.33% 60.56% 93.48% 81.25%
Omission error 40.32% 40.54% 44.67% 39.44% 6.52% 18.75%

Classification with optimum feature composition found by sequen-
tial forward selection

The following results were obtained by using the feature composition found
by sequential forward feature selection on the 6990 site. Mean values and
covariance matrices were calculated based on training data from the 6990
site, and were applied to classification on the 7000 site. The feature compo-
sition consisted of the log transformed intensities |Shh|2 and |Shv|2, entropy
and anisotropy from the H/A/α theorem and the log transformed helix com-
ponent from Yamaguchi’s theorem. Classification map is given in figure 6.14
and classification results are given in table 6.13. This classification achieved
a global accuracy of 62.16%.
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Figure 6.14: Classification map having used training data from 6990 site to
classify 7000 site. The feature composition found by forward feature selection
is engaged in this classification.
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6.7 Discussion

6.7.1 Classification using theorems separately on the
6990 site

Classification using the log transformed intensities as features

The classifier that engaged the log transformed intensities as features achieved
the second highest global accuracy among the classifiers that only engaged
the components from each theorem separately. The classifier achieved higher
producer accuracy than user accuracy for the dense and sparse forest which
suggests that these classes are overestimated. The result is the opposite for
the medium dense forest. It seems that the mean values of the medium dense
forest is squeezed between the dense and sparse forest classes. For the other
three ground truth classes the producer accuracy and user accuracy are ap-
proximately equal. The burned land achieved lower accuracy than grassland
and no forest. The grass and no forest classes achieved significantly higher
accuracy than the other classes. The polarimetric signature of grass, burned
land and no forest should be easier to distinguish from each other than the
forest classes. Burned land have some of the testing data confused with both
grass and no forest. None of the testing data for any of the grass, burned
land or no forest classes are attributed to any of the forest classes.

Classification using the log transformed values of Yamaguchi’s pa-
rameters as features

The classifier that engaged the log transformed parameters of Yamaguchi’s
theorem achieved the highest global accuracy of the classifiers that only en-
gaged the parameters from each theorem separately. The classification map
from this classifier is almost identical to the classification map from the clas-
sification based on the intensities. Given the relatively complex model of the
volume component described in section 3.3.1, one could expect that this clas-
sifier to a greater extent would distinguish between the forest classes. But it
does not get significantly stronger results for these classes. The grass and no
forest classes achieve a higher accuracy than the other classes. The no forest
class class has the highest accuracy. This classifier also confuse some of the
burned land with grass and no forest.

Freeman’s 2 component decomposition theorem

Because of the histogram squeezing performed in Polsarpro, the surface com-
ponent of Freeman’s 2 component theorem could not be engaged as a feature.
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This is a severe disadvantage for the classifier, and makes it harder to eval-
uate and compare the results. The dense forest and sparse forest classes
seems to be overestimated based on the producer and user accuracy. The
medium dense forest is equivalently underestimated. Most of the grass class
is attributed to the burned land and no forest. Hence, the burned land and
no forest are overestimated. An accuracy of 50.96% using a single feature is
not a weak result. 64.02% of the accuracy achieved by the classification that
engaged Yamaguchi’s 4 parameters is retained by classification with the log
transformed volume component of Freeman’s 2 component theorem.

Classification using the H/A/α parameters

The classifier that engaged the H/A/α parameters as features achieved a
lower accuracy score than the other classifiers that only engaged the param-
eters from each theorem separately. The grassland and burned land classes
achieved higher accuracy scores than the other classes. Notice that this clas-
sifier attributes a relatively big proportion of the pixels in the center-right
region of the image to the dense forest class. This region is not covered
by any of the groundtruth pixels, but by inspecting images 411 and 511
one can tell that it is certainly not dense forest, see figure 5.4. The other
classifiers have classified most of these areas as no forest or burned land.
Figure 6.6 illustrates the separability of the classes in the H/α-plane, and
it shows that the separability between the no forest, dense forest, medium
dense forest and sparse forest classes is poor. Parameters used in this classifi-
cation does not contain any information about the intensity, it only contains
information abut the scattering mechanisms and the dominance relationship
between them. That could be the reason that it scored lower than the other
decomposition theorems. This classification also applied the mean entropy
and the mean angle(α). It is possible possible to calculate the angle and en-
tropy for each of the scattering mechanisms, see section 3.3.2. But it would
make it even harder to interpret, and is beyond the scope of this study.
In [23] the authors present a scheme for interpreting various regions in the
H/α plane. The scheme is divided into 9 zones. The grass class lies in zone
9 which is called low entropy surface scatter. This kind of scattering occur
over surfaces such as bare soil and open waters. The burned land lies in zone
6. This zone is called medium entropy surface scatter. This is interpreted as
surface scatter where the entropy has increased due to roughness of the sur-
face. The four remaining classes lies mainly in zone 5 which is called medium
entropy vegetation scattering. The author argues that the increase in entropy
from zone 6 is caused by increased variability due to canopy. The no forest
class has little separability with the forest classes. The reason for the high α
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angle values in the no forest class could be an increased contribution to the
Shv channel due to surface roughness or depolarizing effects from branches
and leaves on bushes.

6.7.2 Classfication with 10 polarimetric features 6990
site

The classifier that engaged 10 polarimetric features achieved a lower accuracy
than the classifier based on the parameters of Yamaguchi’s theorem and only
slightly higher than what the classifier based on the intensities achieved. This
indicates that some of the features are confusing the classifier, rather than
adding information. This classifier appears to underestimate the medium
dense forest, as the producer accuracy for this class is significantly lower than
the user accuracy. The dense forest and sparse forest classes are equivalently
overestimated. It seems that the medium dense forest is squeezed between the
two other forest classes, and thus medium dense forest pixels are attributed
to the other forest classes. The grass class has the highest accuracy with
94.08%. The class with the lowest accuracy in this classifier, is also the class
with the highest number of pixels in the testing data. This is a disadvantage
for the classifier.
The feature with the highest individual accuracy was the log transformed
intensities |Shv|2. In total there are 378 pixels of testing data in the forest
classes. Forest classes give contribution to the Shv channel due to multiple
bounce of the leaves and branches which leads to depolarization. So it is not
surprising that this feature achieved the highest individual accuracy.

6.7.3 Backward sequential feature selection on 6990 site

The optimum composition of features found by the sequential backward fea-
ture selection consisted of 5 features. The optimum composition was the
log transformed intensities |Shh|2, |Shv|2 and |Svv|2, the entropy from the
H/A/α theorem and the log transformed double bounce component from Ya-
maguchi’s theorem. This composition achieved a global accuracy of 83.01%.
When the first 5 features were removed, the accuracy increased. When the
number of features decreased below 5, the accuracy decreased as well. De-
spite the high accuracy achieved by the classifier based on the parameters
of Yamaguchi’s theorem, they were all left out early in the backward feature
selection. Surprisingly the helix component was left out as the last one of
the Yamaguchi parameters. The helix component is expected to almost dis-
appear in natural terrain, and was not expected to be a particularly valuable
component in this classification. In the individual classification it achieved
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the second lowest accuracy. The helix scattering is modeled as strong depo-
larized backscattering. This means that it has strong contribution in the Shv
channel which is expected to be correlated with the presence of canopy, so
perhaps the helix component can help distinguishing between forest classes.
When applying 3 of the 5 features in the optimum composition, 99.01% of
the accuracy achieved by the optimum composition is retained.

6.7.4 Forward sequential feature selection on 6990 site

The optimum composition of features found by the sequential forward fea-
ture selection consisted of 5 features. The optimum composition was the log
transformed intensitites |Shh|2 and |Shv|2, the entropy and anisotropy from
the H/A/α decomposition theorem and the log transformed helix component
from Yamaguchi’s decomposition theorem. It is surprising that the polari-
metric anisotropy from the H/A/α theorem is in the best pair of features, as
it gave the worst accuracy result of all the features individually. The accu-
racy of the classifier engaging the optimum composition of features found by
sequential forward feature selection was slightly lower than the one found by
sequential backward feature selection. When applying 3 of the 5 features in
the optimum composition, 98.33% of the accuracy achieved by the optimum
composition is retained.

6.7.5 Classification with an educated choice of 5 polari-
metric features 6990 site

The classifier that engaged 5 manually chosen polarimetric features on the
6990 site achieved the same accuracy as the optimum found in the backward
sequential feature selection. The only difference between this classifier and
the optimum composition of features found by the sequential forward fea-
ture selection, was that the log transformed double bounce component from
Yamaguchi’s theorem replaced the log transformed helix component. This
classifier achieved high accuracy results for the forest classes. Based on pro-
ducer and user accuracy, it seems as if the dense forest and burned land is
overestimated, and that the medium dense forest is underestimated.
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6.7.6 Classification with 5 polarimetric features 7000
site

Classification with optimum feature composition found by sequen-
tial backward selection on 6990 site

The classifier that used the 5 features found by backwards selection on the
6990 site in a classification on the 7000 site achieved a global accuracy of
79.92%. It seems like it underestimates the sparse forest, as it has signifi-
cantly higher user accuracy than producer accuracy. The grass and no forest
classes have higher accuracy than the other classes.

Classification with optimum feature composition found by sequen-
tial forward selection on 6990 site

The classifier that used the 5 features found by forward selection on the 6990
site in a classification on the 7000 site achieved a global accuracy of 79.15%.
This is also slightly lower than the accuracy achieved when using the same
feature composition on the 6990 site. This classifier also seems to underesti-
mate the sparse forest class.

Both of these two classifications achieved a lower global accuracy than classifi-
cation with the same feature compositions on the 6990 site achieved. Choices
made by feature selection methods when applied to the 6990 site could make
it biased towards that site, in the sense that the applied feature composi-
tion is specialized towards maximizing accuracy score on that particular site.
There is also a relatively bigger proportion of forest classes in the testing
data from the 7000 site than in the testing data from the 6990 site. In other
classifications these classes have lower accuracy scores than the non-forest
classes.

Classification of 7000 site with training data from 6990 site

Both of the two classifications that used training data from the 6990 site and
testing data from the 7000 achieved significantly lower accuracy scores than
when the same feature compositions were used in a classification with training
and testing data from the same dataset. This is mainly due to different scores
in the non-forest classes. A difference in accuracy score is expected. It will
be an advantage for a classifier to have training data obtained close to the
testing data. A decreased accuracy could be caused by local variations in
vegetation and land cover. Global accuracy for the classification that used
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the features found by forward feature selection achieved a lower accuracy than
the classification that used the features found by backward feature selection.

6.8 Summary
The parameters of Yamaguchi’s decomposition theorem achieved a higher
accuracy score than any of the other decomposition theorems when the theo-
rems were tested separately. The classifier that engaged the log transformed
intensities as features achieved a slightly lower global accuracy. The classifi-
cation based on the H/A/α parameters and the classification based on the log
transformed volume component from Freeman’s 2 component decomposition
theorem achieved lower accuracy scores. When applying the feature selection
methods, the log transformed intensities performed better than Yamaguchi’s
parameters. It is important to remember that the accuracy obtained by en-
gaging Yamaguchi’s parameters as features used 4 different features, and the
one based on the log transformed intensities only engaged 3 features. The
entropy was included in the feature composition optima found by both the
forward and backward feature selection and the anisotropy was included in
the optimum composition found by the forward feature selection.
When using the feature composition optima found by sequential backward
and forward feature selection on the 6990 site in a classifier on the 7000 site,
the classifiers achieved nearly the same accuracy as the same feature com-
position achieved on the 6990 site. Classification achieved a lower accuracy
score when applying training data from the 6990 site in a classifier on the
7000 site.

6.9 Comments
Initially it was assumed that classification based on the log transformed in-
tensities would be equivalent to classification based on the Pauli parameters,
since the α, β and γ parameters are linear combinations of the Shh, Shv and
Svv channels. But the classification of intensities involves squaring the val-
ues in these channels since they are complex, which would also be necessary
with the Pauli parameters. Squaring the Pauli parameters α and β results in
crossterms given in equation 6.2. So the assumption that classification based
on the intensities would be equivalent to classification based on the Pauli pa-
rameters requires that there is no significant contribution from crossterms,
which may not be true. Furthermore the data is log transformed which is
not a linear transformation. Unfortunately this was not noticed until a late
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stage in the project, and time did not allow rerunning all experiments.

α = Shh+Svv√
2
⇒ |α|2 =

|Shh|2+|Svv |2+ShhS
∗
vv+S∗

hhSvv

2

β = Shh−Svv√
2
⇒ |β|2 =

|Shh|2+|Svv |2−ShhS
∗
vv−S∗

hhSvv

2

(6.2)

The Polsarpro software performs a histogram squeezing when it calcu-
lates some of the components from the decomposition theorems. Low values
are replaced with a fixed mean value, probably to enhance the display. This
creates a spike in the histograms of the components. Unfortunately these
replaced values appear in ground truth regions of the image. The grass-
land, burned land and no forest classes are severely contaminated with these
replaced mean values. In order to get around this problem it would be nec-
essary to make a program that calculated components from the raw data,
which time did not allow.



Chapter 7

Conclusion

In this thesis, the performance of polarimetric decomposition theorems and
their individual components have been evaluated on an area of tropical forest
in Lindi county, Tanzania.

The first stage of the work was to determine which classes are present in
the images. This was done by visual inspection of high resolution optical
images that covered parts of the SAR measurements. A decision was made
that images should be segmented into 6 different classes.

In the preprocessing stage, the polarimetric data was multilooked. Ground
truth areas were picked and divided in to testing and training data.

All parameters of all theorems used in this thesis were calculated through the
educational tool Polsarpro. Features and theorems are tested and evaulated
through supervised classification. The theorems were evaluated separately
and an optimal composition of polarimetric features was found by feature
selection methods. When applying the theorems separately, Yamaguchi’s 4
component decomposition theorem gave the highest accuracy. When search-
ing with feature selection methods for an optimal composition of individual
polarimetric features, the intensities on the diagonal of the multilooked co-
variance matrix achieved higher average finishing position in the ranking
than the Yamaguchi parameters. Two different feature composition were
found by applying feature selection methods. One of the feature composi-
tions consisted of the log transformed intensities |Shh|2, |Shv|2 and |Svv|2, the
polarimetric entropy from the H/A/α theorem and the log transformed dou-
ble bounce component of Yamaguchi’s decomposition theorem. The other
feature composition consisted of the log transformed intensities |Shh|2 and
|Shv|2, the entropy and anisotropy from the H/A/α theorem and the log

65
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transformed helix component from Yamaguchi’s theorem. Note that param-
eters from the H/A/α decomposition theorem were included in the feature
composition optima. When applying the optimum combinations found by
the feature selection methods on another site, accuracies were close to equal.
Applying training data from one site on testing data from another site gave
lower accuracy scores. It is shown that when applying compositions of fea-
tures found by selection methods, accuracy scores increased compared to the
results obtained by an intensity based classification.

The features used in this thesis have shown potential for land cover clas-
sification of this type of landscape. This study has given recommendation to
combinations of features to use for these purposes based on accuracy scores.
Note that these scores depend on the size of each respective class in the test-
ing data. Which features should be used for classification of tropical forest
depends on the application. Some features are more useful for distinguishing
forest classes and some features can distinguish other types of land cover,
and this should be taken in to account when choosing features.
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