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Abstract

This thesis present a self-consistent derivation of reduced fluid models for geophysi-
cal dynamics confined to the midlatitude region. The reduced model will be derived
by use of a regular perturbation method, that gives the same result as the classical
models, such as the barotropic and baroclinic quasi-gestrophic potential vorticity
model. It will be shown that such a rigorous treatment self-consistently comprises
otherwise classic assumptions known as, the Boussinesq approximation, shallow-
water approximation, β-plane approximation (slab-approximation) and thin shell
approximation. We use the understanding of these reduced models to general-
ize the baroclinic quasi-gestrophic potential vorticity model to include interaction
with global scale. This will be done by using a multi-scale expansion, assosisert
with the separation of spatio-temporal scales.
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Chapter 1

Introduction and overview

For centuries, the ocean and the atmosphere has been a source of wonder and
curiosity. Phenomena such as buoyancy, transport of mass and heat, weather and
waves have given pleasure and rumination to the great philosophers, scientists and
artists. Take for instance Archimedes’s Eureka, Benjamin Franklin and Timothy
Folger’s first map of the Gulf stream or Jule Gregory Charney’s beautiful model
for quasi-geostrophic flow in the midlatitude. Archimedes motivation was to find
out if King Hieron II’s crown was made of pure gold, while Benjamin Franklin and
Timothy Folger would find the fastest path across the Atlantic by skip.

The common feature of the great thinkers were and are simplified models in order
to understand why the ocean and the atmosphere behaves as it do. One of the
first to do this in a structured and beautiful mathematical way was Jule Gregory
Charney, who introduced the use of scaling analysis to find reduced models for
large-scale midlatitude atmospheric circulation models [1]. This work has been
further developed by many other scientists, where perhaps the one that has con-
tributed most is Joseph Pedlosky who has written one of the most widely used
text books in geophysical fluid mechanics [2]. This book has been an inspiration
to many other books in the field, f.ex. Dynamical Oceanography by Henk A. Di-
jkstra and Atmospheric and Oceanic Fluid Dynamics by Geoffrey K. Vallis.
One problem with all these text books is that they treat the ocean and the at-
mosphere as a one-component system, so that the thermodynamic description of
the ocean is wrong, i.e., this means that they derive their models from the wrong
equations, since the ocean is a two-component system. This does not mean that
the models are wrong, but the models should be derived from the correct equa-
tions. Thus, in Appendix A of this thesis we derive the correct equations for a
two-component fluid.

This thesis present a self-consistent derivation of reduced fluid models for geophysi-
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12 CHAPTER 1. INTRODUCTION AND OVERVIEW

cal dynamics confined to the midlatitude region. The reduced model will be derived
by use of a regular perturbation method, that gives the same result as the classical
models, such as the barotropic and baroclinic quasi-gestrophic potential vorticity
model. It will be shown that such a rigorous treatment self-consistently comprises
otherwise classic assumptions known as, the Boussinesq approximation, shallow-
water approximation, β-plane approximation (slab-approximation) and thin shell
approximation. We use the understanding of these reduced models to general-
ize the baroclinic quasi-gestrophic potential vorticity model to include interaction
with global scale. This will be done by using a multi-scale expansion, assosisert
with the separation of spatio-temporal scales.

The structure of this thesis is as follows: In Appendix A we give a brief derivation
of the equations of motion, where the main focus is a detailed derivation of the
thermodynamic equations that applies to a two-component, one-phase fluid such
as the ocean which consists of fresh water and salt. These equations are the all
calculations presented in the thesis. In chapter 2 we introduce normalization of
these equations and introduce dimensionless number that will be the key to de-
rive reduced models. In addition, we average these equations to apply on a large
scale. This process leads to introduction of turbulent fluxes. Since these equations
contains all types of phenomena that are associated by the ocean, we present in
chapter 3 an understanding of the various spatio-temporal scales. One of the main
focuses of my thesis is to derive a reduced model that describes the interactions
between global and local scales in the midlatitude region. To have some models to
compare this model with, we will in chapters 4 and 5 derive two classical models
for barotropic and baroclinic quasi-geostrophic flow that includes boundary layer
theory. The interacting model will be described in detail in Chapter 6.



Chapter 2

The fluid model equations

The main goal of this chapter is to derive the dimensionless equations that de-
scribes the dynamics of the ocean on large scale, i.e. on a length scale where
rotation, stratification, curvature may be important. The chapter starts with a
presentation of the equations of motion, followed by an introduction of scaling
analysis and normalization of these equations. In section 2.3, we will perform a
Hesselberg averaging of the normalized equations. This averaging leads to that the
fast turbulent fluctuations will be filtered out of the system, and the remaining
part will describe the large-scale motions. At the end of the chapter we will discuss
the background state of the ocean, by then deriving the evolution equations for
the mass density, velocity, pressure, temperature and salinity deviations from the
background state.

2.1 The equations of motion

The description of the ocean is given by the equations of motion, that is closed by
prognostic and diagnostic equations for the thermodynamic variables. Since the
ocean consists mainly of salt water that is in the liquid phase, the thermodynamic
description of the ocean must be represented by three independent thermodynamic
variables which completely determines the thermodynamic properties of the sys-
tem. This follows directly from the Gibbs phase rule. There are many different
independent variables that can be used, but we will use the pressure p, temper-
ature T and salinity S. In Appendix A 8 we have derived all the equations, so
we will just give an presentation of them here. The closed set of equations in the
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14 CHAPTER 2. THE FLUID MODEL EQUATIONS

(p, T, S)-representation reads

dρ

dt
= −ρ∇ · u, (2.1)

ρ
du

dt
= −∇p+∇ · σ′ − 2ρΩ× u + ρg, (2.2)

ρ cp

(
dT

dt
− Γ

dp

dt

)
= σ′ : D−∇ · q− JS · ∇ (∆h) , (2.3)

ρ
dS

dt
= −∇ · JS, (2.4)

ρ = ρ (p, T, S) , (2.5)

where ρ is the mass density, u is the fluid velocity, p is the pressure, σ′ is the
viscous stress tensor, D is the deformation tensor, Ω is the angular velocity of
the earth, r is the position to a fluid element, g is the gravity of the earth, T
is the temperature, cp is the specific heat capacity at constant pressure, q is the
conductive heat flux, p is the pressure, Γ is the adiabatic temperature gradient,
S is the salinity, JS is the diffusive salinity flux and ∆h is the partial enthalpy
difference. It should be noted that

d

dt
=

∂

∂t
+ u · ∇, (2.6)

D =
1

2

[
∇u + (∇u)T

]
, (2.7)

is the material derivative and the deformation tensor, respectively. The molecular
fluxes in the equations are given by

q = −κ∇T + kT

(
∂∆µ

∂S

)
p,T

JS, (2.8)

JS = −ρD
(
kT
T
∇T +

kp
p
∇p+∇S

)
, (2.9)

σ′ = η

[
∇u + (∇u)T − 2

3
(∇ · u) I

]
+ ζ (∇ · u) I. (2.10)

where κ is the thermal conductivity that specifies heat transfer in the absence
of salt flux. D is the salt diffusion coefficient that specifies salinity transfer in
the absence of thermal and pressure gradients. kT is the thermo-salt diffusion
coefficient that specifies salinity transfer in the absence of salinity and pressure
gradients. kp is the baro-salt diffusion coefficient that specifies salinity transfer
in the absence of salinity and temperature gradients. η is the dynamical shear
viscosity and ζ is the bulk viscoisity due to compression and expansion, ∆µ is
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Coefficient Definition

Thermal expansion βT = −1
ρ

(
∂ρ
∂T

)
p,S

coefficient

Compresibility βp = 1
ρ

(
∂ρ
∂p

)
T,S

coefficient

Salinity βS = 1
ρ

(
∂ρ
∂S

)
p,T

= −ρ
(
∂∆µ
∂p

)
T,S

contraction coefficient

Adiabatic compressibility κ̃ = βp − ΓβT
coefficient

Adiabatic temperature Γ = βTT
cpρ

gradient

Speed of sound c =
√

1
ρκ̃

Table 2.1: Definition of transport coefficients in fluid model equations

the chemical potential difference between sea salt and freshwater and I is the unit
tensor. However, experiments show that a very good approximation for the heat,
salinity and viscosity fluxes in seawater are

q ≈ −κ∇T (2.11)

JS ≈ −ρD
(
∇S +

kp
p
∇p
)

= −κS∇S − κSp∇p (2.12)

σ′ ≈ η

(
∇u + (∇u)T − 2

3
(∇ · u) I

)
, (2.13)

where κS = ρD and κSp = ρD kp/p. See [9, p. 56] . All the thermodynamic
coefficients have to be specified as a function of (p, T, S). Other usefull relations
are given in table 2.1.
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2.2 Geophysical scaling

The full equations of a physical system consist of several terms of different orders
of magnitude, which describes the overall behavior of the system. Depending on
the magnitude of the terms, some are important and others will be less important
to describe the system. In this section we will go through scaling analysis and
show how we can simplify the full equations of a physical system by ignoring non-
important terms in a consistent manner without changing the basic physics, based
on the ratio between the magnitude of the terms. Let

n∑
i=1

fi = 0 (2.14)

be a hypothetical equation which describes a physical system, for example the
momentum equation. The magnitude of each term,

|fi|m , (2.15)

is defined in a manner such that the dimensionless term

f̂i =
fi
|fi|m

(2.16)

is of order unity, f̂i ∼ O(1). According to equation (2.16), the hypothetical equa-
tion (2.14) can be written as

n∑
i=1

|fi|mf̂i = 0. (2.17)

In order to compare the magnitude of the terms, we introduce dimensionless char-
acteristic numbers given by the ratio of the magnitude between term i and term j
by

Ni,j =
|fi|m
|fj|m

. (2.18)

If we are interested in significance of the term j in comparison to the other terms,
we can divide |fj|m on equation (2.17). This results in a dimensionless equation,

n∑
i=1

Ni,j f̂i = 0. (2.19)

where the characteristic numbers will determine the importance of term j. In
the limit where all the characteristic numbers Ni,j � 1, the term j will play a
dominant role. In contrast, if all the characteristic numbers Ni,j � 1, the term
j has no significant role and may be neglected. It should be noted that the the
numbers n of characteristic numbers is unique, but the choice of parameters is not
unique.
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2.2.1 Dimensionless variables and parameteres

Let us now apply the scaling analysis on equations (2.1)-(2.5). We introduce a typ-
ical magnitude of mass density ρm, pressure pm, horizontal velocity U⊥,m, vertical
velocity U‖,m, temperature Tm, salinity Sm, dynamical viscosity ηm, horizontal spa-
tial scale L⊥,m, vertical spatial scale L‖,m and temporal scale tm, and then define
the corresponding dimensionless quantities

ρ̂ =
ρ

ρm
, p̂ =

p

pm
, û =

u

Um
, T̂ =

T

Tm
, Ŝ =

S

Sm
,

x̂⊥ =
x⊥
L⊥,m

, Ŝ=
S

Sm
, x̂‖ =

x‖
L‖,m

, t̂ =
t

tm
, η̂ =

η

ηm

This implies that the dimensionless spatial and temporal differential operators
become

∇̂⊥ = δL⊥,m∇⊥, ∇̂‖ = δL‖,m∇‖,
∂

∂t̂
= δtm

∂

∂t

where the δ in front of Lm and tm represents respectively the characterisic length-
scale and temporal-scale for the change of some quantity. For example

|∇ρ|m

represents the typical magnitude of the change in the density δρm on length-scale
δLm. Throughout the discussion, we will assume that the typical magnitude of the
change in the velocity is equal to the typical magnitude of velocity, i.e. δU⊥,m =
U⊥,m and δU‖,m = U‖,m. This turns out to be a good assumption for scaling in
fluid mechanics. We will also assume that horizontal and vertival advection terms
are of the same order, i.e.

|u⊥ · ∇⊥|m =
∣∣u‖ · ∇‖∣∣m . (2.20)

This means that the relationship between the characteristic value of the horizontal
velocity and vertical velocity are

U‖,m =
δL‖,m
δL⊥,m

U⊥,m. (2.21)

Therefore, its natural to introduce the aspect ratio between the horizontal and
vertical motion

γ ≡
δL‖,m
δL⊥,m

. (2.22)

We will also define the aspect ratio between large-scale and small-scale motion as

Γ ≡ δL⊥,m
rm

. (2.23)
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This assumption is acceptable as long as we expect the fluid to be almost incom-
pressible. Either way it will come up later if the assumption is good or not. We
will later see that the advection with horizontal velocity is greater than the ad-
vection with vertical velocity. Furthermore, we will use the definition of the sound
velocity Cs to find the relation between the typical scale for the variation of the
mass density and det variation of pressure, given by

δρm =
δpm
C2
s

. (2.24)

Before we start on the discussion of the dimensionless form of the equations of
motion, we will present some characteristic dimensionless numbers to be used
extensively in the following.

the Strouhal number: St =

∣∣∂u
∂ t

∣∣
m

|u · ∇u|m
∼ δLm

δtmUm

the Euler number: Eu =
|∇ p|m
|ρu · ∇u|m

∼ δpm
ρmUmδUm

the Reynolds number: Re =
|ρu · ∇u|m
|∇ · σ′|m

∼ ρmUmδUm
δσm

the Rossby number: Ro =
|u · ∇u|m
|2Ω× u|m

∼ δUm
2ΩmδLm

the Centrifugal number: Ce =
|u · ∇u|m

|Ω× (Ω× r)|m
∼ UmδUm

Ω2
mrmδLm

the Froude number: Fr =
|u · ∇u|m
|g|m

∼ UmδUm
δLmgm

the Mach number: Ma =
|u|m∣∣∣∣(∂p∂ρ)1/2

∣∣∣∣
m

∼ Um
Cs

the heat Peclet number: PeT =
|ρ cpu · ∇T |m
|∇ · q|m

∼ρmcp,mUmδLm
κm

the salinity Peclet number I: PeS = ∼ρmUmδLm
κS,m

the salinity Peclet number II: PeSp= ∼ ρmUmδLm
κSp,mδ p/δ S

the Eckert number: Ec = ∼ U2
m

cp,mδT

We have not taken into account the anisotropy in the dimensionless numbers. This
will be clear in each case. Furthermore, for the viscosity tensor, the heat flux and
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the salinity flux, the magnitude of the fluxes will be estimated by the maximum
contribution. If it turns out that the magnitude is small compared to terms in
the equations, then the fluxes can be neglected. If not, then each term have to be
carefully normalized to find the contribution of each term.

The dimensionless continuity equation

Due to the anisotropy in the characteristic scale of the horizontal and vertical
direction, it would be advantageous to write the continuity equation for mass as

∂ρ

∂ t
+ u⊥ · ∇⊥ρ+ u‖ · ∇‖ρ+ ρ (∇ · u)⊥ + ρ (∇ · u)‖ = 0, (2.25)

where (∇ · u)⊥ and (∇ · u)‖ are respectively the horizontal and vertical parts of the
divergence given by equation (9.15). By using the definition of the dimensionless
quantities, the continuity equation for mass can be written as∣∣∣∣∂ρ∂ t

∣∣∣∣
m

∂ρ̂

∂t̂
+ |u⊥ · ∇⊥ρ|m û⊥ · ∇̂⊥ρ̂+

∣∣u‖ · ∇‖ρ∣∣m û‖ · ∇̂‖ρ̂

+ |ρ (∇ · u)⊥|m ρ̂
(
∇̂ · û

)
⊥

+
∣∣∣ρ (∇ · u)‖

∣∣∣
m
ρ̂
(
∇̂ · û

)
‖

= 0,

From equation (2.20) and the assumption that the typical magnitude of the change
in the velocity is equal to the typical magnitude of velocity, it follows that |u⊥ · ∇⊥ρ|m =∣∣u‖ · ∇‖ρ∣∣m and |ρ (∇ · u)⊥|m =

∣∣∣ρ (∇ · u)‖

∣∣∣
m

. Hence, the continuity equation takes

the form ∣∣∣∣∂ρ∂ t
∣∣∣∣
m

∂ρ̂

∂t̂
+ |u⊥ · ∇⊥ρ|m û · ∇̂ρ̂+ |ρ (∇ · u)⊥|m ρ̂∇̂ · û = 0 (2.26)

Since seawater is highly incompressible, it would be natural to compare all the
terms in the continuity equation with the compression term. In this case the
dimensionless continuity equation becomes∣∣∂ρ

∂t

∣∣
m

|ρ (∇ · u)⊥|m
∂ρ̂

∂t̂
+
|u⊥ · ∇⊥ρ|m
|ρ (∇ · u)⊥|m

û · ∇̂ρ̂+ ρ̂∇̂ · û = 0,

where the dimensionless numbers scales as∣∣∂ρ
∂t

∣∣
m

|ρ (∇ · u)⊥|m
∼ δρmδL⊥,m

ρmδU⊥,mδtm
=

δpm
ρmU⊥,mδU⊥,m

U2
⊥,m

C2
s

δL⊥,m
δtmU⊥,m

∼ EuMa2 Sr

|u⊥ · ∇⊥ρ|m
|ρ (∇ · u)⊥|m

∼ U⊥,mδρm
ρmδU⊥,m

=
δpm

ρmU⊥,mδU⊥,m

U2
⊥,m

C2
s

∼ EuMa2



20 CHAPTER 2. THE FLUID MODEL EQUATIONS

Therefore, the dimensionless continuity equation is

EuMa2

(
Sr

∂ρ̂

∂t̂
+ û · ∇̂ρ̂

)
+ ρ̂∇̂ · û = 0, (2.27)

We will later discuss the various limits of the dimensionless numbers and see how
this will lead to a reduced equation of continuity.

The dimensionless momentum equation

Due to the anisotropy of the horizontal and vertical length scales, the momentum
equation can be split up into one horizontal component and one vertical component
as

ρ

(
du

dt

)
⊥

= −∇⊥p+ (∇ · σ′)⊥ − 2ρ (Ω× u)⊥ , (2.28)

ρ

(
du

dt

)
‖

= −∇‖p+ (∇ · σ′)‖ − 2ρ (Ω× u)‖ + ρg, (2.29)

where the acceleration terms are given by(
du

dt

)
⊥

=

(
du⊥
dt

∣∣∣∣
ei

)
+
w

r
u⊥ +

u

r
tan θ r̂× u⊥, (2.30)

(
du

dt

)
‖

=

(
du‖
dt

∣∣∣∣
ei

)
− u⊥

r
r̂. (2.31)

Note that the vertical line symbolizes that the unit vectors remain constant during
the differentiation. The horizontal and vertical part of the Coriolis force are

(2Ω× u)⊥ = lθ̂ × u‖ + f r̂× u⊥, (2.32)

(2Ω× u)‖ = lθ̂ × u⊥, (2.33)

where, f = 2 |Ω| sin θ and l = 2 |Ω| cos θ. Let us first look at the scaling for the
horizontal part of the momentum equation. This part can be written as∣∣∣∣ρ∂u⊥

∂ t

∣∣∣∣
m

ρ̂
∂û⊥

∂t̂

∣∣∣∣
ei

+ |ρu⊥ · ∇⊥u⊥|m ρ̂ û · ∇̂û⊥

∣∣∣
ei

+
∣∣∣ρw
r

u⊥

∣∣∣
m
ρ̂
ŵ

r̂
û⊥ +

∣∣∣ρu
r
r̂× u⊥

∣∣∣
m
ρ̂
û

r̂
tan θ r̂× û⊥

= − |∇⊥p|m ∇̂⊥p̂+ |(∇ · σ′)⊥|m
(
∇̂ · σ̂′

)
⊥

−
∣∣∣ρθ̂ × u‖

∣∣∣
m
ρ̂lθ̂ × û‖ − |ρr̂× u⊥|m ρ̂f r̂× û⊥. (2.34)
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Since there are many currents in the ocean that are determined by the balance
between the Coriolis force and the pressure force, it would be natural to compare
all the terms in the momentum equation with the inertia force. According to this
the momentum equation can be written in dimensionless form as∣∣ρ∂u⊥

∂ t

∣∣
m

|ρu⊥ · ∇⊥u⊥|m
ρ̂
∂û⊥

∂t̂

∣∣∣∣
ei

+ ρ̂ û · ∇̂û⊥

∣∣∣
ei

+

∣∣ρw
r
u⊥
∣∣
m

|ρu⊥ · ∇⊥u⊥|m
ρ̂
ŵ

r̂
û⊥ +

∣∣ρu
r
r̂× u⊥

∣∣
m

|ρu⊥ · ∇⊥u⊥|m
ρ̂
û

r̂
tan θ r̂× û⊥

= − |∇⊥p|m
|ρu⊥ · ∇⊥u⊥|m

∇̂⊥p̂+
|(∇ · σ′)⊥|m
|ρu⊥ · ∇⊥u⊥|m

(
∇̂ · σ̂′

)
⊥

−

∣∣∣ρθ̂ × u‖

∣∣∣
m

|ρu⊥ · ∇⊥u⊥|m
ρ̂lθ̂ × û‖ −

|ρr̂× u⊥|m
|ρu⊥ · ∇⊥u⊥|m

ρ̂f r̂× û⊥. (2.35)

Hence, by using the definitions of the dimensionless numbers, the horizontal mo-
mentum equation can be written as

ρ̂

(
Sr

∂û⊥

∂t̂

∣∣∣∣
ei

+ û · ∇̂û⊥

∣∣∣
ei

+ γΓ
ŵ

r̂
û⊥ + Γ

û

r̂
tan θ r̂× û⊥

)
= −Eu ∇̂⊥p̂+

1

Re

(
∇̂ · σ̂′

)
⊥
− γ

Ro
cos θρ̂θ̂ × û‖ −

1

Ro
sin θρ̂r̂× û⊥. (2.36)

The vertical momentum equation can be written as∣∣∣∣ρ∂u‖
∂ t

∣∣∣∣
m

ρ̂
∂û‖

∂t̂

∣∣∣∣
ei

+
∣∣ρu⊥ · ∇⊥u‖

∣∣
m
ρ̂ û · ∇̂û‖

∣∣∣
ei
−
∣∣∣∣ρu2

⊥
r

∣∣∣∣
m

ρ̂
û2
⊥
r̂

r̂

= −
∣∣∇‖p∣∣m ∇̂‖p̂+

∣∣∣(∇ · σ′)‖∣∣∣
m

(
∇̂ · σ̂′

)
‖

−
∣∣∣ρθ̂ × u⊥

∣∣∣
m
ρ̂lθ̂ × û⊥ + |ρg|m ρ̂ĝ. (2.37)

The dimensionless vertical momentum equation reads∣∣∣ρ∂u‖∂ t ∣∣∣
m∣∣ρu⊥ · ∇⊥u‖
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∂û‖

∂t̂

∣∣∣∣
ei

+ ρ̂ û · ∇̂û‖
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m
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ρ̂ĝ. (2.38)



22 CHAPTER 2. THE FLUID MODEL EQUATIONS

By using the non-dimension numbers it becomes

ρ̂

(
Sr

∂û‖

∂t̂

∣∣∣∣
ei

+ û · ∇̂û‖

∣∣∣
ei
− Γ

γ

û2
⊥
r̂

r̂

)
= −Eu

γ2
∇̂‖p̂+

1
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(
∇̂ · σ̂′

)
‖
− 1

Ro
cos θθ̂ × û⊥ +

1

Fr
ρ̂ĝ, (2.39)

where the dimensionless numbers we have used are

Sr =
δLm,⊥
U⊥δtm

, Eu =
δpm

ρmU⊥,mδU⊥,m
, Re =

ρmU‖,mδL‖,m
ηm

,

Ro =
δU⊥,m

2ΩδL⊥,m
, F r =

U‖,mδU‖,m
gδL‖,m

.

In the limit where γ = 1 the momentum equation can be written as

ρ̂

(
St
∂û

∂ t̂
+ û · ∇̂û

)
= −Eu∇̂ p̂+

1

Re
∇̂ · σ̂′ − 1

Ro
ρ̂Ω̂× û +

1

Fr
ρ̂ĝ,

where the dimensionless stress tensor is given by

σ̂′ =
δLm
ηmδUm

σ′ = η̂

[
∇̂û +

(
∇̂û
)T
− 2

3

(
∇̂ · û

)
I

]
. (2.40)

We will later discuss the various limits of the dimensionless numbers and see how
this will lead to a reduced equation of momentum.

The dimensionless temperature equation

The temperature equation can be written as

∣∣∣∣ρ cp∂ T∂ t
∣∣∣∣
m

ρ̂ĉp
∂T̂

∂t̂
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+ |βTT u⊥ · ∇⊥ p|m β̂T T̂ û · ∇̂p̂

+ |σ′ : D|m σ̂′ : D̂− |∇ · q|m ∇̂ · q̂− |JS · ∇ (∆h)|m ĴS · ∇̂
(

∆ĥ
)
.

(2.41)



2.2. GEOPHYSICAL SCALING 23

It will be natural to compare the temperature equation with the advection term.
According to this, the temperature equation can be written as∣∣ρ cp ∂ T∂ t ∣∣m

|ρ cpu⊥ · ∇⊥ T |m
ρ̂ĉp

∂T̂

∂t̂
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β̂T T̂

∂p̂

∂t̂
+
|βTT u⊥ · ∇⊥ p|m
|ρ cpu⊥ · ∇⊥ T |m
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+
|σ′ : D|m

|ρ cpu⊥ · ∇⊥ T |m
σ̂′ : D̂− |∇ · q|m

|ρ cpu⊥ · ∇⊥ T |m
∇̂ · q̂

− |JS · ∇ (∆h)|m
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(

∆ĥ
)
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Hence, by using the definitions of the dimensionless numbers, the temperature
equation can be written as

ρ̂ĉp
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+ û · ∇̂T̂

)
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where the new dimensionless numbers are

Ec =
U2
⊥,m

cp,mδTm
, P eT =

ρmcp,mU‖,mδL‖,m
κm

In the limit where the horizontal and the vertical length scales are equal, we can
find explicit expressions for the dimensionless molecular fluxes. For example the
conductive heat flux can be written as

q = − |κ∇T |m κ̂∇̂T̂ ,
where the normalized thermal conductivity is defined by

κ̂ =
κ

κm
. (2.44)

Thus, the normalized heat flux is

q̂ =
δLm
κmδTm

q = −κ̂∇̂T̂ . (2.45)

The deformation tensor can be written as

D =
1

2

[
|∇u|m ∇̂û +

∣∣∣(∇u)T
∣∣∣
m

(
∇̂û
)T]

,

such that the normalized deformation tensor is

D̂ =
δLm
δUm

D =
1

2

[
û +

(
∇̂û
)T]

. (2.46)
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The dimensionless salinity equation

The salinity equation can be written as∣∣∣∣ρ∂ S∂ t
∣∣∣∣
m

ρ̂
∂ Ŝ

∂ t̂
+ |ρu⊥ · ∇⊥ S|m ρ̂û · ∇̂ Ŝ = − |∇ · JS|m ∇̂ · ĴS. (2.47)

It will be natural to compare all the terms by the advection term. According to
this, the salinity equation on dimensionless form is∣∣ρ∂ S

∂ t

∣∣
m

|ρu⊥ · ∇⊥ S|m
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∇̂ · ĴS. (2.48)

Hence, by using the definitions of the dimensionless numbers, the dimensionless
salinity equation reads

ρ̂
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∂ t̂
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)
= − 1

PeS
∇̂ · ĴS. (2.49)

where the new dimensionless number is

PeS =
ρmU‖,mδL‖,m

κS
. (2.50)

2.2.2 Asymptotic reductions of the equations

The dimensionless equations from the last section is
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)
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− 1

Ce
ρ̂Ω̂×

(
Ω̂× r̂

)
+

1

Fr
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)
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)
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These dimensionless equations show that the dynamical behavior of the fluid is
determined by the dimensionless numbers. When some of these numbers are very
small or large the equations can be reduced to a simplified model, without changing
the basic physics. In all the problems we will be discussing there is no external
forcing. Therefore, it is natural to assume that the temporal scale, scales as
δLm/Um which correspond to a Strouhal number of order unity, i.e. Sr = O(1).
There are basically two distinct limits that are interesting to study, one limit
where the compressible effects are important, i.e., EuMa2 = O(1) and one limit
where the fluid may be considered incompressible, i.e., EuMa2 � O(1). When
compressible effects are important the pressure must scale in such a way that the
pressure variations gives an Euler number that compensates for the size of the
Mach number. If the Mach number is small then the Euler number must be large.
This is the typical scaling of acoustical dynamics. When compressible effects are
not important the pressure must scale in such a way that the pressure act as a
reaction force, i.e., that the pressure gradient is mainly balanced by some other
forces, for example the Coriolus force or the viscous force.

Incompressible flow

In the case that the Mach number Ma tends to zero and EuMa2 � O(1) the
equations reduce to the equations for incompressible flows,

∇̂ · û = 0, (2.55)

ρ̂

(
∂û

∂ t̂
+ û · ∇̂û

)
= −Eu∇̂ p̂+

1

Re
∇̂ · σ̂′ − 1

Ro
ρ̂Ω̂× û

− 1

Ce
ρ̂Ω̂×

(
Ω̂× r̂

)
+

1

Fr
ρ̂ĝ. (2.56)

If the Reynolds number tends to zero and the Euler number Eu is of O(1/Re) the
momentum equation reduces to a balance equation between pressure and viscosity.
If the Reynolds number tends to infinity and the Euler number Eu is of O(1/Ro),
the momentum equation reduces to

0 = −Eu∇̂ p̂− 1

Ro
ρ̂Ω̂× û +

1

Fr
ρ̂ĝ, (2.57)

where we have used that the centrifugal force is small compared with the other
forces. Note that these equations decouple from the thermodynamical equations
if the mass density and the viscosity are independent of the thermodynamical
variables.
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Parameter Symbol Value
Thermal expansion βT,m 1.0× 10−4 K−1

coefficient
Compresibility βp,m 4.1× 10−10 Pa−1

coefficient
Salinity βS,m 7.6× 10−4 ppt−1

contraction coefficient

Refrence mass density ρm 1.0× 103 kg m−3

Refrence temperature Tm 279 K

Heat capacity cp,m 4.2× 103Jkg−1K−1

Speed of sound Cs,m 1.5× 103m s−1

Kinematic viscosity νm = ηm
ρm

1.3× 10−6m2s−1

Salt diffusion coefficient Dm 1.2× 10−9m2s−1

Angular velocity of the earth Ωm 7.3× 10−5rad s−1

Gravity of the earth gm 9.8× 100m s−2

Mean radius of the earth rm 6371× 103m
Molecular heat diffusion κT 1× 10−7m2/s
Molecular salt diffusion κS 1× 10−9m2/s

Table 2.2: Characteristic values for fluid parameters and transport coefficients for
large-scale circulation.

2.2.3 Typical values for the ocean circulation dynamics

In this section we will estimate the typical values of the dimensionless numbers for
large-scale flows discussed in section 2.2. We will see that the molecular transport
of momentum, heat and salt can be neglected compared to advection. We will
also see that the Reynolds number is much greater than the typical critical value
for the transition between laminar flow and turbulence. Therefore, geophysical
fluid motion is generally highly turbulent. For large-scale ocean circulation, the
typical velocity is U⊥,m = δU⊥,m = 5×10−2 m/s, the typical length-scale is L⊥,m =
δL⊥,m = 105 m and L‖,m = δL‖,m = 103 m and the typical temporal-scale is tm =
δtm = L⊥,m/U⊥,m = 2 × 106s. According to equation (2.21), the typical vertical
velocity U‖,m will be of O(γ U⊥,m). For these given values, the order of magnitude
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of the dimensionless numbers relative to the Rossby number are

Sr ∼ O(1), Ma ∼ O(Ro2),
1

Re
∼ O(Ro2), F r ∼ O(Ro3),

1

PeT
∼ O(Ro5),

1

PeS
∼ O(Ro4), γ ∼ O(Ro), Γ ∼ O(Ro),

Ec ∼ O(Ro3) (βT,mTm) ∼ O(Ro)

where the Rossby number is Ro ∼ 10−3. We will show later that the Euler number
will be of O(Ro−1), such that the horizontal pressure force will be of the same order
as the Coriolis force. The minimum value of the Reynolds number is Re = 107,
which is far above the critical value for the transition between laminar flow and
turbulent flow. Therefore, the ocean flow is generally highly turbulent and the
molecular viscous effects can be neglected in comparison with the other terms.
The same applies for the molecular transport of heat and salinity. In the next
section we will derive equations for large-scale motion.

2.3 Averaged equations for large-scale motions

In geophysical fluid dynamics we are particularly interested in the motion which
occurs on large spatial and slow temporal scales. The equations we presented
the in the previous section are valid for the motion at all scales. Thus, we must
performing an averaging of the equations of motion that remove the fast turbulent
fluctuations, but retains the variations in the mean large-scale variations.

2.3.1 Hesselberg averaging

Assume that any field variable G can be decomposed into one large-scale mean-
field part, denoted with angular brackets, 〈G〉, and one small-scale fluctuating

part, denoted with a tilde, G̃. Since the fluid is generally compressible it will be
appropriate to define the average as a mass-weighted average [9, p.70]

〈G〉 ≡ ρG

ρ
, (2.58)

where

G =
1

T

∫ t+T/2

t−T/2
G (x, t′) dt′, T1 � T � T2 (2.59)

is the time-average and T1 is the time scale for the turbulent fluctuations and T2 is
the time scale for the mean-field variations. It should be pointed out that (2.59), is
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not valid if there is not a distinct separation of time scales between the small-scale
fluctuations and the mean-field variations, i.e., T1 � T � T2. From (2.58) and
(2.59) it can be shown that the following rules are valid〈

ρG̃
〉
≡ 0, G = G, 〈G〉 = 〈G〉 ,

〈G〉 〈G〉 = 〈G〉 〈G〉 , 〈〈G〉〉 = 〈G〉 , 〈〈G〉F 〉 = 〈G〉 〈F 〉 ,〈
G
〉

= G,
〈
GF
〉

= G 〈F 〉 , 〈G+ F 〉 = 〈G〉+ 〈F 〉 ,

G+ F = G+ F , ∇G = ∇G, ∂G

∂t
=
∂G

∂ t
.

If we now apply the mass-weighted average (2.58), the field variabels (u, ρ, p, θ, S)
can be decomposed as

u = 〈u〉+ ũ, ρ = 〈ρ〉+ ρ̃, p = 〈p〉+ p̃, θ = 〈θ〉+ θ̃, , S = 〈S〉+ S̃, (2.60)

where the mean-field part is given by

〈u〉 =
ρu

ρ
, 〈ρ〉 = ρ, 〈p〉 =

ρ p

ρ
, 〈θ〉 =

ρθ

ρ
, 〈S〉 =

ρ S

ρ
. (2.61)

Note that the mass-weighted average of the mass density is equal to the time
average of the mass density. Therefore, it follows that the time average of the fluc-
tuating mass density is equal to zero, i.e. ρ̃ = 0. This is not the case for the other
fluctuating quantities. By substituting the decompositions into the definitions of
the mass-weighted average, (2.58), it follows that

〈G〉 =
(〈ρ〉+ ρ̃)

(
〈G〉+ G̃

)
ρ

=
ρ 〈G〉+ ρ̃ 〈G〉+ ρG̃+ ρ̃G̃

ρ

= 〈G〉+ G̃+
ρ̃G̃

ρ
,

which is equivalent to

G̃ = − ρ̃G̃
ρ
. (2.62)

Hence it follows that

ũ = − ρ̃ũ
ρ
, ρ̃ = 0, p̃ = − ρ̃p̃

ρ
, θ̃ = − ρ̃θ̃

ρ
, S̃ = − ρ̃S̃

ρ
. (2.63)
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It should be noted that in the limit where the fluid is incompressible the mass
density is approximately constant. Hence the mass-weighted average will reduce
to an time average, i.e., 〈G〉 = G, which is the same as the Reynolds average. By
using equation (2.62), it follows that the time average of the product of the mass
density and a dynamic variable G is

ρG = (〈ρ〉+ ρ̃)
(
〈G〉+ G̃

)
= 〈ρ〉 〈G〉+ 〈ρ〉 G̃+ ρ̃G̃

= 〈ρ〉 〈G〉 , (2.64)

and the product between the mass density and two dynamical variabels G and F
is

ρGF = (〈ρ〉+ ρ̃)
(
〈G〉+ G̃

)(
〈F 〉+ F̃

)
= 〈ρ〉 〈G〉 〈F 〉+ 〈ρ〉 G̃F̃ + ρ̃G̃F̃ , (2.65)

For our purposes, the triple correlation can be neglected since the fluctuations in
the mass density is always very small compared to the tubulent fluctuations.

2.3.2 Averaged equations

According to equation (2.58), it will be advantageous to write all of the equations
in conservative form as

∂ρ

∂t
+∇ · (ρu) = 0, (2.66)

∂ (ρ S)

∂t
+∇ · (ρ Su) = −∇ · JS, (2.67)

∂ (ρu)

∂t
+∇ · (ρuu) = −∇ p+∇ · σ′ − 2ρΩ× u + f , (2.68)

cp

[
∂ (ρ T )

∂ t
+∇ · (ρ Tu)

]
= cpΓ

[
∂ (ρ p)

∂ t
+∇ · (ρ pu)

]
+ σ′ : D−∇ · q− JS · ∇ (∆h) (2.69)
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By taking the time average of the equations above, and applying equations (2.64)
and (2.65), we obtain equations for the large-scale motion

∂ 〈ρ〉
∂t

+∇ · 〈ρ〉 〈u〉 = 0, (2.70)

〈ρ〉 ∂ 〈S〉
∂t

+ 〈ρ〉 〈u〉 · ∇ 〈S〉 = −∇ ·
(
JS + Jturb

S

)
, (2.71)

〈ρ〉 ∂ 〈u〉
∂t

+ 〈ρ〉 〈u〉 · ∇ 〈u〉 = −∇〈p〉+∇ ·
(
σ′ + σturb

)
− 2 〈ρ〉Ω× 〈u〉+ f

(2.72)

〈ρ〉 cp
(
∂ 〈T 〉
∂ t

+ 〈u〉 · ∇ 〈T 〉
)

= βT 〈T 〉
(
∂ 〈p〉
∂ t

+ 〈u〉 · ∇ 〈p〉
)

+ σ′ : D

−∇ ·
(
q + qturb

)
− JS · ∇ (∆h), (2.73)

where we have used that cp and Γ are slowly varying, such that they can be treated
as constant. The turbulent fluxes are given by

Jturb
S = 〈ρ〉 S̃ũ, (2.74)

σturb = −〈ρ〉 ũũ, (2.75)

qturb = cp 〈ρ〉 T̃ ũ, (2.76)

where the triple correlations and the turbulent heat flux due to turbulent pressure
fluctuations are neglected. The question now is: How to perform an averaging of
the equation of state? We will assume that the time-avarage of the fluctuating
terms in the equation of state is very small compared to the contributions from
the mean-field terms. Therefore, we will perform a Taylor series expansion around
the mean-field variabels (〈p〉 , 〈T 〉 , 〈S〉) and then perform an averaging. The result
is

〈ρ〉 = 〈ρ〉 (〈p〉 , 〈T 〉 , 〈S〉) +O(p̃, T̃ , S̃). (2.77)

A consequence of averaging the equations of motion is the introduction of new
transport term, which has the same structure as the molecular fluxes. These
transport terms represent the turbulent transport of small-scale fluxes into the
large-scale dynamics. Since we do not know the small-scale fluctuating variables,
we get a closure problem for the average equations. In the next section we will try
to close the system of the averaged equations by parameterize the turbulent fluxes
in respect of the mean-field variables.

2.3.3 The turbulent mixing of momentum, heat and salt

The turbulent flow is characterized by rapid fluctuations which redistribute mo-
mentum, heat and salt. The fluctuations are assumed to be distributed randomly
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Mixing coefficients Values from the deep ocean
to the upper ocean

A⊥ 10 − 105 m2s−1

A‖ 10−5 − 10−1 m2s−1

K⊥ 10 − 103 m2s−1

K‖ 10−5 − 10−5 m2s−1

Table 2.3: Typical values for the turbulent diffusivity.

and act as the molecular fluxes, but much more efficiently. Therefore, we assume
that the turbulent fluxes can be written as

Ψ = −Kturb∇ψ, (2.78)

where Ψ is the flux of the quantity ψ with turbulent diffusivity Kturb. Since
the characteristic length scale in the horizontal and vertical directions are very
different, we assume that the fluxes of momentum, heat and salt are of the form [6,
p.57]

σturb = ρmA⊥

[
∇⊥u + (∇⊥u)T

]
+ ρmA‖

[
∇‖u +

(
∇‖u

)T]
(2.79)

qturb = −ρmcp
(
K⊥∇⊥T +K‖∇‖T

)
(2.80)

Jturb
S = −ρm

(
K⊥∇⊥S +K‖∇‖S

)
(2.81)

where A⊥ and A‖ are the horizontal and vertical mixing coefficients of momentum,
and K⊥ and K‖ are the corresponding mixing coefficients of heat and salt.

If one treats the mixing coefficients as constant, the turbulent mixing of mo-
mentum in spherical coordinates reads(

∇ · σturb
)
⊥ = A⊥ ∇2

⊥u⊥
∣∣
ei

+ A‖ ∇2
‖u⊥

∣∣
ei

+ A⊥∇⊥ (∇ · u)

+
A‖ − A⊥

r
(r̂ · ∇) u⊥|ei +

2A⊥ tan θ

r
r̂×

(
φ̂ · ∇

)
u⊥|ei

+
2A⊥
r
∇⊥w −

A⊥
r2 cos2 θ

u⊥, (2.82)(
∇ · σturb

)
‖ = A⊥ ∇2

⊥u‖
∣∣
ei

+ A‖ ∇2
‖u‖
∣∣
ei

+ A⊥∇‖ (∇ · u)

+
A‖ − 3A⊥

r
(∇ · u) r̂ +

2A⊥
r2

u‖

−
A‖ − 3A⊥

r
(r̂ · ∇) u‖, (2.83)

and the turbulent mixing of heat and salt reads

−∇ · qturb = ρmcp
(
K⊥∇2

⊥T +K‖∇2
‖T
)
, (2.84)

−∇ · Jturb
S = ρm

(
K⊥∇2

⊥S +K‖∇2
‖S
)
. (2.85)
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2.3.4 The dimensionless equations

The dimensionless equations of motion are

EuMa2

(̂
d

dt

)
ρ̂ = −ρ̂∇̂ · û, (2.86)

ρ̂
̂(du
dt

)
⊥

= −Eu ∇̂⊥p̂+
1

Re

(
∇̂ · σ̂′

)
⊥

+ F̂turb
⊥

− γ

Ro
cos θρ̂θ̂ × û‖ −

1

Ro
sin θρ̂r̂× û⊥ (2.87)

ρ̂
̂(du
dt

)
‖

= −Eu
γ2
∇̂‖p̂+

1

Re

(
∇̂ · σ̂′

)
‖

+ F̂turb
‖

− 1

Ro
cos θθ̂ × û⊥ +

1

Fr
ρ̂ĝ. (2.88)

ρ̂ĉp

(̂
d

dt

)
T̂ = (βT,mTm)EuEc β̂T T̂

(̂
d

dt

)
p̂+

Ec

Re
σ̂′ : D̂

− 1

Pe
∇̂ · q̂− |JS · ∇ (∆h)|m

|ρ cpu⊥ · ∇⊥ T |m
ĴS · ∇̂

(
∆ĥ
)

+ Q̂turb
T , (2.89)

ρ̂

(̂
d

dt

)
Ŝ = − 1

PeS
∇̂ · ĴS + Q̂turb

S . (2.90)

wherê(du
dt

)
⊥

=

(
Sr

∂û⊥

∂t̂

∣∣∣∣
ei

+ û · ∇̂û⊥

∣∣∣
ei

+ γΓ
ŵ

r̂
û⊥ + Γ

û

r̂
tan θ r̂× û⊥

)
(2.91)

̂(du
dt

)
‖

=

(
Sr

∂û‖

∂t̂

∣∣∣∣
ei

+ û · ∇̂û‖

∣∣∣
ei
− Γ

γ

û2
⊥
r̂

r̂

)
, (2.92)

(̂
d

dt

)
=

(
Sr

∂

∂ t̂
+ û · ∇̂

)
, (2.93)

and

F̂turb
⊥ =

1

Ret
⊥
Â⊥ ∇̂2

⊥û⊥

∣∣∣
ei

+
1

Ret
‖
Â‖ ∇̂2

‖û⊥

∣∣∣
ei

+
1

Ret
⊥
Â⊥∇̂⊥

(
∇̂ · û

)
+

γΓ

Ret
‖

Â‖
r̂

(
r̂ · ∇̂

)
û⊥|ei −

Γ

γ Ret
‖

Â⊥
r̂

(
r̂ · ∇̂

)
û⊥|ei

+
2Γ

Ret
⊥

Â⊥ tan θ

r̂
r̂×

(
φ̂ · ∇̂

)
û⊥|ei +

2γΓ

Ret
⊥

Â⊥
r̂
∇̂⊥ŵ −

Γ2

Ret
⊥

Â⊥
r̂2 cos2 θ

û⊥,

(2.94)
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F̂turb
‖ =

1

Ret
⊥
Â⊥ ∇̂2

⊥û‖

∣∣∣
ei

+
1

Ret
‖
Â‖ ∇̂2

‖û‖

∣∣∣
ei

+
1

Ret
‖
Â⊥∇̂‖

(
∇̂ · û

)
+

γΓ

Ret
‖

Â‖
r̂

(
∇̂ · û

)
r̂− 3Γ

γ Ret
⊥

Â⊥
r̂

(
∇̂ · û

)
r̂ +

2Γ2

Ret
⊥

Â⊥
r̂2

û‖

− γΓ

Ret
‖

Â‖
r̂

(
r̂ · ∇̂

)
û‖ +

3Γ

γ Ret
⊥

Â⊥
r̂

(
r̂ · ∇̂

)
û‖, (2.95)

Q̂turb
T =

1

Pet
⊥
∇̂2
⊥T̂ +

1

Pet
‖
∇̂2
‖T̂ (2.96)

Q̂turb
S =

1

Pet
⊥
∇̂2
⊥Ŝ +

1

Pet
‖
∇̂2
‖Ŝ (2.97)

where the dimensionless numbers that describing turbulent transport are

Ret
⊥ =

U⊥,mδL⊥,m
A⊥,m

Ret
‖ =

U‖,mδL‖,m
A‖,m

Pet
⊥ =

U⊥,mδL⊥,m
K⊥,m

Pet
‖ =

U‖,mδL‖,m
K‖,m

.

These equations form the basis of all phenomena at large-scale. Together with
the thermodynamic equation of state these equations form a closed system of
equations. In order to have a well-defined problem, the system of equations need
complemented boundary value conditions. This will be discussed detailed in next
section.

2.4 Boundary conditions

The atmosphere and ocean is bounded by continents, topography and the inter-
face between the atmosphere and ocean. Through the boundary, there will be a
transport of mass, momentum and energy. Therefore it is necessary to specify
the boundary value conditions, in order to solve the equations of motion. In this
section, we derive the boundary value conditions to the equations described in the
previous section.

Let the surface and bottom of the fluid be described by the functions h (φ, θ, t)
and hb (φ, θ, t), and let the average height of the fluid be H0, so that the deviation
from the average height is ζ (φ, θ, t), such that

h (φ, θ, t) + hb (φ, θ, t) = H0 + ζ (φ, θ, t) . (2.98)

The bottom topography is measured relative to the average radius r0 of the Earth,
and specified by the function

r − r0 = hb (φ, θ, t) . (2.99)
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Thus, the interface between the bottom and the fluid will be described by the
surface function

Fb (φ, θ, r, t) = hb (φ, θ, t)− (r − r0) (2.100)

and similarly will the interface between the fluid and the upper surface be described
by the surface function

Fu (φ, θ, r, t) = (r − r0)− (hb (φ, θ, t) + h (φ, θ, t)) . (2.101)

The unit vector normal to the bottom is

n̂b =
∇Fb
|∇Fb|

=
1

|∇Fb|
(∇⊥hb − r̂) (2.102)

and the unit vector normal to the surface is

n̂u =
∇Fu
|∇Fu|

=
1

|∇Fu|
(r̂−∇⊥ζ) . (2.103)

We will assume that the local curvature of interface between the ocean and the
atmosphere is very small, i.e.,

(I− n̂un̂u)∇ · n̂u ≈ 0, (2.104)

such that the upper unit vector is approximately equal to the unit vector along
the radial direction, n̂u ≈ r̂.

2.4.1 The kinematic boundary conditions

The boundary conditions of the bottom

At the bottom, r− r0 = hb, we assume that the tangential component of the fluid
velocity is equal to the tangential component of the rigid surface velocity. This is
the non-slip condition and can be expressed as

u · t̂ = ub · t̂, (2.105)

where t̂ is the unit tangent vector to the bottom surface and ub is the velocity of
the bottom surface. We will only consider the case where the topography is only
a function of the space, therefore, the bottom does not have any velocity and the
non-slip boundary condition reduces to

u · t̂ = 0. (2.106)

In order to have no mass transfer across the boundary, the normal component
of the fluid velocity must be equal to the normal component of the rigid surface
velocity, i.e.

u · n̂b = ub · n̂b, (2.107)
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but since the bottom surface is static, the condition reduces to

u · n̂b = 0. (2.108)

By using equation (2.102) and splitting the velocity field into a horizontal and a
vertical component, u = u⊥ + u‖, equation (2.108) can be written as a boundary
condition for the vertical velocity,

u‖ · r̂ = u⊥ · ∇⊥hb. (2.109)

Equation (2.105) and (2.107) implies that the fluid velocity must match the rigid
surface velocity. Since the bottom surface is static, the fluid velocity must be equal
to zero at the bottom.

The boundary condition of the upper surface

Simular to the lower boundary value condition, we will assume that there is no
mass transfer between the interface r − r0 = ζ + H0, i.e. any fluid particle which
lies on the interface stays there for all time. Therefore, the normal component of
the fluid velocity must be equal to the normal velocity of the interface itself. This
is the upper kinematic boundary condition and can be expressed as

(u− uu) · n̂u = 0 (2.110)

or
dFu
dt

= 0. (2.111)

By using that the vertical velocity is defined as the material derivative of the
radial coordinate, and that the fluid hight is independent of the vertical coordinate,
equation (2.111) can be written as

u‖ · r̂ =

(
∂

∂t
+ u⊥ · ∇⊥

)
(hb + h) . (2.112)

Analogous to the no-slip boundary condition, there must be a continuity in the
tangential component of the fluid velocity and the tangential interface velocity,

(u− uu) · t̂ = 0. (2.113)

Since the boundary value conditions (2.106), (2.109), (2.112) and (2.113) gives the
relationship between the kinematics of the bottom, upper surface and the fluid are
these boundary value conditions called the kinematic boundary value conditions.
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2.4.2 The dynamic boundary conditions

The normal and shear stress conditions for the molecular fluxes

In general the stress tensor σ will be discontinuous at the boundary between two
fluids, and/or at a surface that is characterized by a surface tension. In this case
the fluids are the ocean and the atmosphere. First, we derive general boundary
value conditions between two fluids. Then, we make simplifications by assuming
that the atmosphere is dynamic neglectable on the boundary, and that the local
surface curvature is very small.

Applying the momentum equation to a Gaussian pillbox extending just slightly
into the fluids on either side of the boundary, where the pillbox is cylindrical with
height 2ε and radius ε, we obtain the force balance∫

V

ρ
du

dt
dV = −

∫
S

(σo − σa) · n̂u dS +

∮
C

T s dl +

∫
V

ρg dV . (2.114)

Where S is the surface bounded by the closed curve C, where C goes around the
periphery of the cutting line of the box between the fluids. The subindices o and a
refers to the ocean and atmosphere, respectively. Surface tension T is intended to
flatten the surface. Therefore, we have assumed that the force T s associated with
surface tension is directed normal to the curve C and tangential to the surface
S. This direction is given by the unit tangent vector s. By using that the unit
tangetial vector along the curve C is t̂ and the Stoke’s therem, the force balance
can be written as∫

V

ρ
du

dt
dV = −

∫
S

(σo − σa) · n̂u dS

+

∮
S

(P · ∇T − T n̂u ((P · ∇) · n̂u)) dS +

∫
V

ρg dV , (2.115)

where P is the surface projection operator defined as

P = I− n̂un̂u. (2.116)

In the limit where the thickess of the pillbox goes to zero, i.e. ε → 0, the surface
forces have to balance, since the body force will be of O(ε3) and the surface force
will be of order O(ε2). The balance is

− (σo − σa) · nu + P · ∇T − Tnu [(P · ∇) · nu] = 0 (2.117)

If we use the assumption that the local curvature is very small, the surface tension
can be neglectet and if we assume that the mass density of the air is much smaller
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than the mass density of the ocean, the change in the pressure in the air due to the
ocean motion is negligible, hence the air is dynamically negligible. This implies
zero viscous stress at the surface. In this limit we say that the surface is free.
Applying this assumtion on equation (2.117), we find that the pressures must be
equal at the surface, i.e.,

pon̂u = pan̂u, (2.118)

where the unit vector normal to the surface is approximately the unit vector in
the vertical direction, n̂u ≈ r̂.

The normal and shear stress conditions for the turbulent fluxes

Using the same analysis as above on the turbulent flux boundary value conditions,
we get (

σturb
o − σturb

a

)
· nu = 0 (2.119)

If we assume that the local curvature is small, the unit vector normal to the surface
is approximately the unit vector in the vertical direction. This leads to the balance

(σφ r − τφ r) φ̂+ (σθ r − τθ r) θ̂ + (σr r − τr r) r̂ = 0, (2.120)

where σij and τij are the turbulent stresses in the ith direction acting on an element
of surface oriented in the jth direction. {σ}ij is the turbulent stress in the ocean
and {τ}ij is the turbulent stress in the atmosphere. The turbulent stress acting on
the interface between the ocean and the atmosphere is due to the fluctuations in the
wind. Therefore, we call {τ}ij the wind stress. The wind that blows over the ocean
is approximately horizontal. Hence, we neglect the stress in the vertical direction
acting on the surface. Consequently, the boundary value condition reduces to

(σφ r − τφ r) φ̂+ (σθ r − τθ r) θ̂ = 0. (2.121)

By using the expression for the turbulent stress tensor, we can write

τφ r = ρmA⊥

(
1

r cos θ

∂w

∂φ
− u

r

)
+ ρmA‖

∂u

∂r

= ρmA⊥

(
φ̂ · ∇w − u

r

)
+ ρmA‖ (r̂ · ∇)u (2.122)

τθ r = ρmA⊥

(
1

r

∂w

∂θ
− v

r

)
+ ρmA‖

∂v

∂r

= ρmA⊥

(
θ̂ · ∇w − v

r

)
+ ρmA‖ (r̂ · ∇) v (2.123)

Since the wind stress only contains a meriodinal component and a zonal compo-
nent, it is natural to define the vector

τ = τφ rφ̂+ τθ rθ̂. (2.124)

We will use this later when we discuss the boundary layer theory.
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The boundary conditions for the temperature and the salinity

Since the normal and the tangetial compontents of the velocity is continuous at
the bottom, the fluid velocity is zero. Therefore, there can not be any transport
of heat and salt on either small-scala and large-scale,

q · n̂b = 0, (2.125)

qturb · n̂b = 0, (2.126)

JS · n̂b = 0, (2.127)

Jturb
S · n̂b = 0, (2.128)

or equivalently

q · n̂b = 0, (2.129)

K⊥∇⊥T · ∇⊥hb = K‖∇‖T · r̂, (2.130)

JS · n̂b = 0, (2.131)

K⊥∇⊥S · ∇⊥hb = K‖∇‖S · r̂. (2.132)

At the free surface we have applied the heat and salinity equation to a Gaussian
pillbox. The analysis is simular to the analysis of the boundary condition for the
stress. The result is

(qo − qa) · n̂u = 0, (2.133)(
qturb
o − qturb

a

)
· n̂u = 0, (2.134)

(JS,o − JS,a) · n̂u = 0, (2.135)(
Jturb
S,o − Jturb

S,a

)
· n̂u = 0. (2.136)

Since the atmosphere is dynamically negligible and the local surface curvature is
small the boundary conditions reduces to

qo · r̂ = 0, (2.137)(
qturb
o − qturb

a

)
· r̂ = 0, (2.138)

JS,o · r̂ = 0, (2.139)(
Jturb
S,o − Jturb

S,a

)
· r̂ = 0, (2.140)

or equivalently

qo · r̂ = 0, (2.141)

ρmcpK‖∇‖T · r̂ = qturb
a · r̂, (2.142)

JS,o · r̂ = 0, (2.143)

ρmK‖∇‖S · r̂ = Jturb
S,a · r̂. (2.144)
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Dimensionless boundary conditions

By introducing dimensionless numbers, the boundary value condition at the bot-
tom ẑ = hb,m ĥb/L‖,m is given by

ŵ =
hb,m
δL‖,m

û⊥ · ∇̂ĥb, (2.145)

where hb,m is the typical magnitude in the bottom topograpy. The boundary value

conditions at the free surface ẑ = 1 + ζm ζ̂/δL‖,m are

ŵ =
ζm
δL‖,m

(
Sr

∂

∂t̂
+ û⊥ · ∇̂

)
ζ̂ , (2.146)

ατ̂φ r =
A⊥,m
A‖,m

γÂ⊥

(
γφ̂ · ∇̂ŵ − Γ

û

r̂

)
+ Â‖

(
r̂ · ∇̂

)
û, (2.147)

ατ̂θ r =
A⊥,m
A‖,m

γÂ⊥

(
γθ̂ · ∇̂ŵ − Γ

v̂

r̂

)
+ Â‖

(
r̂ · ∇̂

)
v̂, (2.148)

p̂ = p̂a, (2.149)

where τm is the typical magnitude in the wind stress, ζm is the typical magnitude
of the interface amplitude, p̂a is the dimensionless pressure at the interface and
the new dimensionless number is

α =
τmδL‖,m

ρmA‖,mU⊥,m
. (2.150)

Note that we have defined the vertical coordinate as z = r− r0 and used that the
typical magnitude in the average depth H0 is δL‖,m.

2.5 Slab coordinates

If one wants to describe phenomena on small scales in relation to the earth radius, it
will be advantageous to introduce a local rectangular coordinate system (X, Y, Z)
fixed on the Earth’s surface. Let the origin to this local coordinate system be
given by the position φ0φ̂0 + θ0θ̂0 + r0r̂0, where the unit vectors which span the
coordinate system are defined by

X̂ ≡ φ̂0 = − sinφ0x̂ + cosφ0ŷ, (2.151)

Ŷ ≡ θ̂0 = − sin θ0 cosφ0x̂− sin θ0 sinφ0ŷ + cos θ0ẑ, (2.152)

Ẑ ≡ r̂0 = cos θ0 cosφ0x̂ + cos θ0 sinφ0ŷ + sin θ0ẑ. (2.153)
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For small excursions on the plane, the geometry gives that the slab coordinates
are related to spherical coordinates by

X = X X̂ + Y Ŷ + Z Ẑ,

= (φ− φ0) r0 cos θ0 X̂ + (θ − θ0) r0 Ŷ + (r − r0) Ẑ. (2.154)

By using the chain rule it follows that the relation between the derivatives in the
local coordinate system and the spherical coordinate system is

∂

∂φ
= r0 cos θ0

∂

∂ X
,

∂

∂θ
= r0

∂

∂ Y
,

∂

∂ r
=

∂

∂ Z
(2.155)

and
dφ

dt
=

1

r0 cos θ0

dX

dt
,

dθ

dt
=

1

r0

dY

dt
,

dr

dt
=
dZ

dt
. (2.156)

The first order gradient operator in this coordinate system is

∇ = X̂
r0 cos θ0

r cos θ

∂

∂ X
+ Ŷ

r0

r

∂

∂ Y
+ Ẑ

∂

∂ Z
, (2.157)

and the second order spatial derivative is

∇2 =
r2

0 cos2 θ0

r2 cos2 θ

∂2

∂ X2
+
r2

0

r2

(
∂2

∂ Y 2
− tan θ

r0

∂

∂ Y

)
+

(
∂2

∂ Z2
+

2

r

∂

∂ Z

)
. (2.158)

The velocity is given by

u =
r cos θ

r0 cos θ0

dX

dt
X̂ +

r

r0

dY

dt
Ŷ +

dZ

dt
Ẑ. (2.159)

By introducing non-dimensional variabels, the spatial differential operators in hor-
izontal and vertival directions become

∇̂⊥ = X̂
1

r̂

cos θ0

cos θ

∂

∂ X̂
+ Ŷ

1

r̂

∂

∂ Ŷ
, (2.160)

∇̂‖ = Ẑ
∂

∂ Ẑ
, (2.161)

and the Laplacian become

∇̂2
⊥ =

1

r̂2

cos2 θ0

cos2 θ

∂2

∂ X̂2
+

1

r̂2

(
∂2

∂ Ŷ 2
− Γ tan θ

∂

∂ Ŷ

)
, (2.162)

∇̂2
⊥ =

(
∂2

∂ Ẑ2
+ γΓ

2

r̂

∂

∂ Ẑ

)
. (2.163)
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It should be noted that the introduction of slab coordinates has not resulted in
any loss of information in the equations, i.e., this is not some kind of approxima-
tion. The trigonometric functions can be expanded around the origin of the local
rectangular system,

sin θ =
∞∑
n=0

1

n!

(
dn

dθn
(sin θ)|θ=θ0

)
(θ − θ0)n, (2.164)

cos θ =
∞∑
n=0

1

n!

(
dn

dθn
(cos θ)|θ=θ0

)
(θ − θ0)n, (2.165)

tan θ =
∞∑
n=0

1

n!

(
dn

dθn
(tan θ)|θ=θ0

)
(θ − θ0)n. (2.166)

Since the dimensionless meridional coordinate Ŷ is

Ŷ =
r0

L⊥
(θ − θ0) =

1

Γ
(θ − θ0) , (2.167)

the expansions can be written as

sin θ =
∞∑
n=0

1

n!

(
dn

dθn
(sin θ)|θ=θ0

)(
ΓŶ
)n
, (2.168)

cos θ =
∞∑
n=0

1

n!

(
dn

dθn
(cos θ)|θ=θ0

)(
ΓŶ
)n
, (2.169)

tan θ =
∞∑
n=0

1

n!

(
dn

dθn
(tan θ)|θ=θ0

)(
ΓŶ
)n
. (2.170)

From equation (2.154) it follows that the dimensionless radial coordinate is given
by

r̂ = 1 + γΓẐ. (2.171)

Therefore, it follow that 1/r̂ can be expanded as

1

r̂
=
(

1 + γΓẐ
)−1

∼ 1− γΓẐ + (γΓ)2 Ẑ2 +O((γΓ)3). (2.172)

In the next three chapters, we will discuss models that are limited to a horizon-
tal length scale which is of the order much less than Earth’s radius. In this case
the introduction of slab-coordinates cause that the meridional and zonal coordi-
nates will be mapped into a rectangular coordinate system. The expansions of the
trigonometric functions will show in a consistent manner which part of the equa-
tions of motion where curvature is important. It will turn out that the curvature
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will be important in the Coriolis force, even where a local rectangular coordinate
system will be a good approximasjon. It should also be noted that the radius
(2.171) to O(γΓ) will be approximated constant, even without the introduction of
slab-coordinates. Therefore, we can in a consistent manner using equation (2.172)
to determine to which order the variation of the radius is important. Equation
(2.172) is indeed the relation that gives the widely used thin shell approximation
for dynamics described in spherical coordinates, in the limit where the fluid is
shallow.

2.6 The background state of the ocean

In the absence of motion, u = 0, dT/dt = 0, dp/dt = 0 and dS/dt = 0, the fluid
will be in state of mechanical equilbrium, where the pressure is hydrostatically
distributed along the vertical direction and there will be no mixing of momentum,
heat and salt. The equations for this state is

∇⊥ph = 0 (2.173)

∇‖ph = ρhg (2.174)

∇ · qh = 0 (2.175)

∇ · JS,h = 0 (2.176)

ρh = ρ (Th, Sh, ph) (2.177)

where the h sub-script indicate the hydrostatic state. Since the acceleration of
gravity is constant and is pointing in the negative vertical direction and the hor-
izontal pressure gradient is zero, it follows that the pressure is only a function of
vertical coordinate, ph = ph (r). The rotation of the hydrostatic equation is zero,
which implies that

∇ph ×∇ρh = 0, (2.178)

hence the density gradient is parallel with the pressure gradient, so that the mass
density associated with this mechanical equilibrium is only a function of the vertical
coordinate, i.e. ρh = ρh (r), or it is constant, ρh = ρ0. If the mass density is
constant, the thermodynamic equations become decoupled from the continuity
and momentum equations. If not, consideration of the thermodynamic equations
are necessary. In the case where the density is a function of the vertical coordinate,
the equation of state implies that the temperature and the salinity also must be
a function of vertical coordinate only. Such a fluid is said to be stratified. It
should be be noted that stratified fluids can never be in a state of thermodynamic
equilibrium, since the temperature is not constant. When the mass density is
constant, ρh = ρ0, the solution for the hydrostatic equation is

ph (z) = pa − ρ0g [z − (H0 + ζ)] , (2.179)
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where pa is the atmospheric pressure at the interface between the ocean and the
atmosphere.

2.6.1 Stratification

Let a fluid particle move adiabatically by a small amount ζ from its initial position
r. Assume that at each instant of time the thermodynamic state of the particle
may be assumed to be an equilibrium state. In this case the entropy s and the
salinity S are constant and hence the density of the fluid particle at position r+ ζ
is

(ρh (r + ζ))sh,Sh = ρh (r) +

(
dρh
dr

)
sh,Sh

ζ. (2.180)

The density of the surrounding fluid is

ρh (r + ζ) = ρh (r) +
dρh
dr

ζ. (2.181)

The fluid particle will thus experience a buoyancy force density

fb = g
(
ρh (r + ζ)− (ρh (r + ζ))sh,Sh

)
= g

(
dρh
dr
−
(

dρh
dr

)
sh,Sh

)
ζ. (2.182)

If fb < 0, the buoyant force will tend to return the fluid particle to it’s initial
position and the stability of the equilibrium is stable (stably stratified). Otherwice,
if fb > 0, the bouyanct force will accelerate the fluid particle away from it’s initial
position and the stability of the equilbrium is unstable. The change of the mass
density with height when the salinity and the entropy are constant can be written
as (

dρh
dr

)
sh,Sh

=

(
∂ρh
∂ph

)
sh,Sh

dph
dr

, (2.183)

and the change of the mass density of the surrounding fluid is given by the equation
of state

dρh
dr

=

(
∂ρh
∂Th

)
ph,Sh

dTh
dr

+

(
∂ρh
∂ph

)
Th,Sh

dph
dr

+

(
∂ρh
∂Sh

)
Th,ph

dSh
dr

. (2.184)

The adiabatic compressibility coefficient to the hydrostatic state is

κ̃h =
1

ρh

(
∂ρh
∂ph

)
sh,Sh

=
1

ρh

(
∂ρh
∂ph

)
Th,Sh

+
Γh
ρh

(
∂ρh
∂Th

)
ph,Sh

, (2.185)
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and the relation between the adiabatic compressibility coefficient and the sound
velocity is given by

c2
h =

1

ρhκ̃h
. (2.186)

By using (2.185) and (2.186), equation (2.183) and (2.184) can be written as(
dρh
dr

)
s,S

=
1

c2
h

dph
dr

, (2.187)

dρh
dr

= −ρhβTh
dTh
dr

+

(
1

c2
h

+ ρhβThΓh

)
dph
dr

+ ρhβSh
dSh
dr

. (2.188)

By using these relations and that the pressure is hydrostatically distributed, it
follows that the buoyancy force density can be written as

fb = g

[
−ρhβTh

(
dTh
dr

+ ρhgΓh

)
+ ρhβSh

dSh
dr

]
ζ. (2.189)

Therefore, the force balance for the fluid particle is given by

ρh
d2ζ

dt2
= g

[
−ρhβTh

(
dTh
dr

+ ρhgΓh

)
+ ρhβSh

dSh
dr

]
ζ. (2.190)

This equation has the same structure as for a harmonic oscillator, where the fre-
quency of the oscillator N is given by

N2 = g

[
βTh

(
dTh
dr

+ ρhgΓh

)
− βSh

dSh
dr

]
. (2.191)

This frequency is called the buoyancy frequency. The buoyancy frequency can be
used as a measure for the stability of the stratification. It follows directly that
the stratification is stable if N2 > 0, unstable if N2 < 0 and neutrally stable
if N2 = 0. It should be noted that another equivalent form for the buoyancy
frequency is given by

N2 = − g

ρh

dρh
dr
− g2

c2
h

. (2.192)

This formulation is better to use to estimate the magnitude of the frequency.
There are several dimensionless numbers that are associated with the buoyancy
frequency. The most common are the stratification Froude number Fs and Burger
number Bu, define as

Fs =

√
U2
⊥,m

N2
mδL

2
‖,m

, (2.193)

Bu =

(
NmδL‖,m
2ΩδL⊥,m

)2

=

(
Ro

Fs

)2

, (2.194)
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where the stratification Froud number is associated with the importance of strat-
ification versus inertia and Burgers number is associated with the importance of
rotation versus stratification. Note that Nm is the typical magnitude in the buoy-
ancy frequency. For small values of Fs, stratification is important compared to
inertia, and for large values of Fs, stratification is unimportant compared to in-
ertia. When rotation is as important as stratification, then the Burger number is
of order one. By introducing dimensionless numbers, the dimensionless buoyancy
frequency becomes

N̂2 =
N2
Tp,m

N2
m

N̂2
Tp +

N2
S,m

N2
m

N̂2
S, (2.195)

where N̂Tp is the dimensionless buoyancy frequency due to change in the mass

density because of the change of temperature and pressure, and N̂S is the dimen-
sionless buoyancy frequency due to change in the mass density because of the
change of salinity. The dimensionless buoyancy frequencies are define as

N̂2
Tp = β̂Th

(
δTh,m
δTm

dT̂h
dr̂

+ (βT,mTm)
Ec

Fr
γ2ρ̂hΓ̂h

)
, (2.196)

N̂2
S = −β̂Sh

(
δSh,m
δSm

dŜh
dr̂

)
, (2.197)

(2.198)

and their typical magnitude is

N2
Tp,m =

gβTh,mδTm
δL‖,m

, (2.199)

N2
S,m =

gβSh,mδSm
δL‖,m

, (2.200)

where δTm and δSm are the typical magnitude of the characteristic change in the
full temperature and salinity, respectively.

2.6.2 The equations for the deviation from the background
state

We denote respectively the mass density, pressure, temperature and salinity devi-
ations from the background state by ρ̃, p̃, T̃ and S̃, defined as

ρ̃ = ρ− ρh, p̃ = p− ph, T̃ = T − Th, S̃ = S − Sh, (2.201)

such that the equation of state for the deviation is

ρ̃ = ρ (T, p, S)− ρh (Th, ph, Sh) . (2.202)
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The thermodynamic evolution equation for the mass density is

dρ̃

dt
=

dρ

dt
− dρh

dt
, (2.203)

where

dρ

dt
= −ρβT

(
dT

dt
− Γ

dp

dt

)
+ ρβS

dS

dt
+

1

c2
s

dp

dt
, (2.204)

dρh
dt

= −wρh
g
N2 − w

c2
h

ρhg. (2.205)

Hence, the thermodynamic mass density equation can be written as

dρ̃

dt
= −ρβT

(
dT

dt
− Γ

dp

dt

)
+ ρβS

dS

dt
+ w

ρh
g
N2 +

1

c2
s

(
dp

dt
+
c2
s

c2
h

wρhg

)
. (2.206)

By introducing dimensionless numbers, the equation can be written in dimension-
less form as

δρ̃m
ρm

(̂
d

dt

)
ˆ̃ρ = − β̂T

ĉp

(
ρ̂ĉp

(̂
d

dt

)
T̂ − (βT,mTm)EuEcβ̂T T̂

(̂
d

dt

)
p̂

)

+ (βS,mδSm) ρ̂β̂S

(̂
d

dt

)
Ŝ + EuMa2 1

ĉ2
s

(̂
d

dt

)
p̂

+
δρh,m
ρm

(
BuF ρ̂hN̂

2 + γ2 Ma2
h

Fr

ρ̂h
ĉ2
h

)
ŵ (2.207)

where the new dimensionless numbers are

F =
(2Ω)2 δL2

⊥,m

gδL‖,m
, Euh =

δph,m
ρmU⊥,mδU⊥,m

, Mah =
U⊥,m
ch,m

. (2.208)

respectively, the rotational Froud number, the hydrostatic Euler number and the
hydrostatic Mach number. We will later find the typical magnitude for the de-
viations in the pressure and the mass density. By using the dimensionless heat
equation and the dimensionless salinity equation, the evolution equation above can
be written as

δρ̃m
ρm

(̂
d

dt

)
ˆ̃ρ =

δρh,m
ρm

(
BuF ρ̂hN̂

2 + γ2 Ma2
h

Fr

ρ̂h
ĉ2
h

)
ŵ

+EuMa2 1

ĉ2
s

(̂
d

dt

)
p̂+H, (2.209)
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where H is the heat source function define as

H = − β̂T
ĉp

[
Ec

Re
σ̂′ : D̂− 1

Pe
∇̂ · q̂− |JS · ∇ (∆h)|m

|ρ cpu⊥ · ∇⊥ T |m
ĴS · ∇̂

(
∆ĥ
)

+ Q̂turb
T

]
+ (βS,mδSm) β̂S

(
− 1

PeS
∇̂ · ĴS + Q̂turb

S

)
. (2.210)

In dimensionless form, the vertical pressure force can be written as

Eu

γ2
∇̂‖p̂ =

1

γ2

(
Euh ∇̂‖p̂h + Ẽu ∇̂‖ˆ̃p

)
, (2.211)

where we have introduced a new dimensionless number, the Euler number of the
pressure deviation,

Ẽu =
δp̃m

ρmU⊥,mδU⊥,m
. (2.212)

The body force in dimensionless form is

1

Fr
ρ̂ĝ =

ρh,m
ρm

1

Fr
ρ̂hĝ +

ρ̃m
ρm

1

Fr
ˆ̃ρĝ, (2.213)

such that the mass density in dimensionless form is

ρ̂ =
ρh,m
ρm

ρ̂h +
ρ̃m
ρm

ˆ̃ρ. (2.214)

The background state of the ocean satisfies the dimensionless hydrostatic balance,

0 = −Euh
γ2
∇̂‖p̂h +

ρh,m
ρm

1

Fr
ρ̂hĝ, (2.215)

and the background pressure is independent of horizontal coordinates,

0 = Euh ∇̂⊥p̂h. (2.216)

From equation (2.215) it follows that

Euh
γ2

ρm
ρh,m

Fr = O(1), (2.217)

which is equivalent to say that the characteristic magnitude of change in the hy-
drostatic pressure is

δph,m = O(ρh,mgδL‖). (2.218)
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If (2.201), (2.211), (2.213), (2.215) and (2.214) are substituded into the horizontal
and vertical momentum equations, (2.87) and (2.88), the momentum equations for
the deviations from the background state becomes

ρ̂
̂(du
dt

)
⊥

= −Ẽu ∇̂⊥ˆ̃p+
1

Re

(
∇̂ · σ̂′

)
⊥

+ F̂turb
⊥

− γ

Ro
cos θρ̂θ̂ × û‖ −

1

Ro
sin θρ̂r̂× û⊥, (2.219)

ρ̂
̂(du
dt

)
‖

= −Ẽu
γ2
∇̂‖ˆ̃p+

1

Re

(
∇̂ · σ̂′

)
‖

+ F̂turb
‖

− 1

Ro
cos θθ̂ × û⊥ +

ρ̃m
ρm

1

Fr
ˆ̃ρĝ. (2.220)

If (2.201) and (2.215) are substituted into the heat equation, (2.89), the heat
equation becomes

δT̃m
Tm

ρ̂ĉp

(̂
d

dt

)
ˆ̃
T = −ρ̂ĉpw

(
δTh,m
δTm

dT̂h
dr̂

+ (βT,mTm)
Ec

Fr
γ2ρ̂hΓ̂h

)

+ (βT,mTm) ẼuEc β̂T T̂

(̂
d

dt

)
ˆ̃p+

Ec

Re
σ̂′ : D̂

− 1

Pe
∇̂ · q̂− |JS · ∇ (∆h)|m

|ρ cpu⊥ · ∇⊥ T |m
ĴS · ∇̂

(
∆ĥ
)

+ Q̂turb
T ,

where δT̃m is the typical magnitude for the change in the deviation of the tempera-
ture from hydrostatic equilibrium. By using the dimensionless buoyancy frequency
associated with the temperature and pressure, equation (2.196), the deviation heat
equation can be written as

ρ̂ĉp

[
δT̃m
Tm

(̂
d

dt

)
ˆ̃
T +

N̂2
Tp

β̂Th
w

]
−+ (βT,mTm) ẼuEc β̂T T̂

(̂
d

dt

)
ˆ̃p

=
Ec

Re
σ̂′ : D̂− 1

Pe
∇̂ · q̂− |JS · ∇ (∆h)|m

|ρ cpu⊥ · ∇⊥ T |m
ĴS · ∇̂

(
∆ĥ
)

+ Q̂turb
T , (2.221)

If (2.201) and (2.197) are substituded into the salinity equation, (2.90), the heat
equation becomes

ρ̂

[
δS̃m
Sm

(̂
d

dt

)
Ŝ − N̂2

S

β̂Sh
ŵ

]
= − 1

PeS
∇̂ · ĴS + Q̂turb

S , (2.222)
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where δS̃m is the typical magnitude for the change in the deviation salinity. If
(2.201), (2.215) and (2.195) are substituded into the mass continuity equation,
(2.86), the mass continuity equation for the deviation mass density becomes

EuMa2

[
δρ̃m
ρm

(̂
d

dt

)
ˆ̃ρ− δρh,m

ρm

(
BuF ρ̂hN̂

2 + γ2 Ma2
h

Fr

ρ̂h
ĉ2
h

)
ŵ

]
= −ρ̂∇̂·û. (2.223)

Using the continuity equation, (2.223), and the evolution equation for the equation
of state, (2.209), one can find an evolution equation for the pressure;

(
EuMa2

)2 1

ĉ2
s

(̂
d

dt

)
p̂ = −ρ̂∇̂ · û− EuMa2H. (2.224)

The equations derived in this section will be the basis for the remaining chapters in
the thesis. Note that all equations are driven by buoyancy. Except the horizontal
momentum equation.

2.7 Summary

In this chapter we have derived the general dimensionless equations of motion for a
two component, one phase fluid system. The continuity equation for the deviation
of the mass density around the background state is

EuMa2

[
δρ̃m
ρm

(̂
d

dt

)
ˆ̃ρ− δρh,m

ρm

(
BuF ρ̂hN̂

2 + γ2 Ma2
h

Fr

ρ̂h
ĉ2
h

)
ŵ

]
= −ρ̂∇̂·û, (2.225)

the corresponding momentum equations are

ρ̂
̂(du
dt

)
⊥

= −Ẽu ∇̂⊥ˆ̃p+
1

Re

(
∇̂ · σ̂′

)
⊥

+ F̂turb
⊥

− γ

Ro
cos θρ̂θ̂ × û‖ −

1

Ro
sin θρ̂r̂× û⊥, (2.226)

ρ̂
̂(du
dt

)
‖

= −Ẽu
γ2
∇̂‖ˆ̃p+

1

Re

(
∇̂ · σ̂′

)
‖

+ F̂turb
‖

− 1

Ro
cos θθ̂ × û⊥ +

ρ̃m
ρm

1

Fr
ˆ̃ρĝ, (2.227)
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and the corresponding heat and salinity equations are

ρ̂ĉp

(
δT̃m
Tm

(̂
d

dt

)
ˆ̃
T +

N̂2
Tp

β̂Th
ŵ

)
= βT,mTmẼuEc β̂T T̂

(̂
d

dt

)
ˆ̃p

+
Ec

Re
σ̂′ : D̂− 1

Pe
∇̂ · q̂− |JS · ∇ (∆h)|m

|ρ cpu⊥ · ∇⊥ T |m
ĴS · ∇̂

(
∆ĥ
)

+ Q̂turb
T , (2.228)

ρ̂

(
δS̃m
Sm

(̂
d

dt

)
Ŝ − N̂2

S

β̂Sh
ŵ

)
= − 1

PeS
∇̂ · ĴS + Q̂turb

S , (2.229)

where the thermodynamic evolution equation for the mass density is

δρ̃m
ρm

(̂
d

dt

)
ˆ̃ρ =

δρh,m
ρm

(
BuF ρ̂hN̂

2 + γ2 Ma2
h

Fr

ρ̂h
ĉ2
h

)
ŵ

+EuMa2 1

ĉ2
s

(̂
d

dt

)
p̂+H. (2.230)

Note that the mass density is given by equation (2.214). The total system of
equations consists of seven equations with seven unknowns. In the next chapter
we will consider the value of the dimensionless numbers for flow in the midlatitude.
Based on these values, we will use perturbation theory to derive reduced model
confined to the midlatitude.



Chapter 3

The dominant balance in the
ocean

In this section we want to find the different time scales in the equation of motion.
The method we will use is to look at the linearized motion equations, by then
finding their eigen modes in the Fourier space associated with the different time
scales. By writing the dimensionless numbers as the ratio between the different
time and length scales, we can detect the different regimes in time and space that
determines the dynamics. At the end of the chapter, we estimate the magnitude
of the various dimensionless numbers for the mid-latitude at ocean.

3.1 The local equations of motion

By introducing a local slab coordinate system around the latitude θ0, (2.154), and
expand the trigonometric functions,(2.168), (2.169) and (2.170), and the radius,
(2.172), to O(Γ), the momentum equations read

ρ̂
d̂u⊥
dt

= −Ẽu ∇̂⊥ˆ̃p+
1

Re

(
∇̂ · σ̂′

)
⊥

+ F̂turb
⊥

− γ

RoL

(
RoL

β

Γ
− ΓŶ

)
ρ̂Ŷ × û‖ −

1

RoL

(
1 +RoLβŶ

)
ρ̂Ẑ× û⊥(3.1)

ρ̂
d̂u‖
dt

= −Ẽu
γ2
∇̂‖ˆ̃p+

1

Re

(
∇̂ · σ̂′

)
‖

+ F̂turb
‖

− 1

RoL

(
RoL

β

Γ
− ΓŶ

)
Ŷ × û⊥ +

ρ̃m
ρm

1

Fr
ˆ̃ρĝ, (3.2)
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where we have defined the new dimensionless numbers,

RoL =
Ro

sin θ0

=
U⊥,m

f0δL⊥,m
, (3.3)

β =
cos θ0Γ

Ro
= β0

δL2
⊥,m

U⊥,m
, (3.4)

respectively the local Rossby and the β-number, where the β-number is associated
with importance in the meridional variation of Coriolis acceleration in relation
to inertia. In dimensional values, the Coriolis parameter takes the form f =
2Ω sin θ. For the slab-approximation to first order, the Coriolis parameter can be
approximated as f = f0 + β0y, where f0 = 2Ω sin θ0 is the Coriolis parameter
evaluated at latitude θ0 and β0 is the the meriodional variation of the Coriolis
force. The slab-approximation has reduced the inertia terms to

d̂u⊥
dt

=

(
Sr

∂û⊥

∂t̂
+ û · ∇̂û⊥ + γΓŵû⊥ + Γû tan θ0 Ẑ× û⊥

)
, (3.5)

d̂u‖
dt

=

(
Sr

∂û‖

∂t̂
+ û · ∇̂û‖ −

Γ

γ
û2
⊥Ẑ

)
, (3.6)

and the turbulent viscosity terms to

F̂turb
⊥ =

1

Ret
⊥
ρ̂Â⊥∇̂2

⊥û⊥ +
1

Ret
‖
ρ̂Â‖∇̂2

‖û⊥, (3.7)

F̂turb
‖ =

1

Ret
⊥
ρ̂Â⊥∇̂2

⊥û‖ +
1

Ret
‖
ρ̂Â⊥∇̂2

‖û‖, (3.8)

where the horizontal and the vertical gradient-operators to O(Γ) are given by

∇̂⊥ = X̂
∂

∂ X̂
+ Ŷ

∂

∂ Ŷ
, (3.9)

∇̂‖ = Ẑ
∂

∂ Ẑ
. (3.10)

Note that the unit vectors in the slab geometry are constant, hence we have re-
moved the vertical line. By introducing the slab-approximation to the boundary
conditions (2.145), (2.146), (2.147), (2.148) and (2.149), the lower boundary con-
dition at Ẑ = hb,m ĥb/δL‖,m reads

ŵ =
hb,m
δL‖,m

û⊥ · ∇̂⊥ĥb. (3.11)
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The boundary value conditions at the free surface Ẑ = 1 + ζm ζ̂/L‖,m reads

ŵ =
ζm
δL‖,m

(
Sr

∂

∂t̂
+ û⊥ · ∇̂⊥

)
ζ̂ , (3.12)

ατ̂XZ =
A⊥,m
A‖,m

γÂ⊥

(
γX̂ · ∇̂⊥ŵ − Γû

)
+ Â‖

(
Ẑ · ∇̂‖

)
û, (3.13)

ατ̂Y Z =
A⊥,m
A‖,m

γÂ⊥

(
γŶ · ∇̂⊥ŵ − Γv̂

)
+ Â‖

(
Ẑ · ∇̂‖

)
v̂, (3.14)

p̂ = p̂a, (3.15)

Note that the wind stress has changed subindex from spherical description to a
local slab description.

3.2 Typical values for the midlatitude ocean

In this section we will calculate the typical values of the dimensionless numbers
for large-scale flows. We will see that the molecular transport of momentum,
heat and salt can be neglected compared to advection. We will also see that the
Reynolds number is orders of magnitude greater than the typical critical value
for the transition between laminar flow and turbulence. Therefore, the motion
is turbulent. In table 3.1 and table 3.2 we have calculate the magnitude of the
dimensionless numbers given by some typical values for the flow in the midlatitude.
Where the differences in the tables are the characteristic scales in the horizontal
length and velocity. This means that in table 3.1, the effect of stratification is
much less important than rotation, and in table 3.2, the effect of stratification is
equally important as rotation. In chapter 4 we will derive a reduced model for the
midlatitude based on table3.1 and in chapter 5 we derive a reduced model for the
midlatitude based on table 3.2.

For both tables, the Rossby numbers are small, so we can assume that the
dominant balance in in the horizontal direction is between the horizontal pressure
gradient and Coriolis force, i.e.,

ẼuRoL = O(1), (3.16)

where RoL = U⊥,m/f0δL⊥,m is the local Rossby number given at the latitude
θ0, and f0 = 2Ω sin θ0 is the corresponding Coriolis parameter at this latitude.
Equation (3.16) is equivalent to say that the typical magnitude of the change in
the deviation pressure is

δp̃ = O(ρmU⊥,mf0δL⊥,m). (3.17)
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Parameter δL⊥,m δL‖,m U⊥,m A⊥,m A‖,m
Value 106 m 103 m 10−2 m/s 102 − 104 m2/s 10−4 − 10−2 m2/s
Parameter ρm τm Nm K⊥,m K‖,m
Value 103 kg/m3 10−1 Pa 10−2 s−1 10− 103 m2/s 10−5 − 10−4 m2/s

D. number Γ γ Ro RoL Ma
Value 10−1 10−3 10−4 10−4 10−5

D. number Fr Ec PeT PeS F
Value 10−14 10−8 1011 1010 100

D. number β Re Ret
⊥ Ret

‖ Bu

Value 102 104 102 − 100 102 − 100 103

D. number Pet
⊥ Pet

‖ α

Value 103 − 101 103 − 102 105 − 103

Table 3.1: Typical values for large-scale flows at latitue θ0 = 45o, which cor-
respond to a Coriolis parameter f0 = 10−4 s−1 and a meriodional variation to
β0 = 10−11 (ms)−1. Note that D. is an abbreviation for dimensionless

Parameter δL⊥,m δL‖,m U⊥,m A⊥,m A‖,m
Value 105 m 103 m 10−1 m/s 102 − 104 m2/s 10−4 − 10−2 m2/s
Parameter ρm τm Nm K⊥,m K‖,m
Value 103 kg/m3 10−1 Pa 10−2 s−1 10− 103 m2/s 10−5 − 10−4 m2/s

D.number Γ γ Ro RoL Ma
Value 10−2 10−2 10−2 10−2 10−4

D. number Fr Ec PeT PeS F
Value 10−10 10−6 1013 1012 10−2

D. β Re Ret
⊥ Ret

‖ Bu

Value 100 105 102 − 100 105 − 102 100

D. Pet
⊥ Pet

‖ α

Value 103 − 101 105 − 104 104 − 102

Table 3.2: Typical values for large-scale flows given at latitue θ0 = 45o, which
correspond to a Coriolis parameter f0 = 10−4 s−1 and a meriodional variation to
β0 = 10−11 (ms)−1. Note that D. is an abbreviation for dimensionless
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The main balance in the vertical direction must be between the vertical pressure
force and the gravitational force, this impies that

Ẽu

γ2

ρm
ρ̃m

Fr = O(1). (3.18)

This expression gives that the typical magnitude of the change in the deviation
pressure is

δp̃ = O(ρ̃mgδL‖,m). (3.19)

Since (3.17) and (3.19) must be equal, it follows that the typical magnitude in the
deviation mass density is

ρ̃m = ρm
Fr

γ2RoL
= ρmRoLFL, (3.20)

where FL = f 2
0 δL

2
⊥,m/gδL‖,m is the local rotational Froud number, which corre-

sponds to the rotational Froud number F = (2Ω)2 δL2
⊥,m/gδL‖,m. The typical

magnitude in the mass denisty is the typical magnitude in the hydrostatic mass
density, hence the dimensionless mass density can be written as

ρ̂ = ρ̂h +RoLFLˆ̃ρ. (3.21)

The only dimensionless number that we have not calculated, is the Mach number
associated with the sound speed ch of the background state of the ocean. Mea-
surements show that [9, p.120]

cs − ch
cs

≈ 0.05,

so that the speed of sound to the background state is approximated given by
ch ≈ 0.95cs. Therefore, the Mach numbers are related by

Mah =
1

0.95
Ma. (3.22)

According to the scaling in the pressure deviation and density deviation, the slab-
approximated momentum equations becomes

RoLρ̂
d̂u⊥
dt

= −∇̂⊥ˆ̃p+
RoL
Re

(
∇̂ · σ̂′

)
⊥

+
Ek⊥

2
ρ̂Â⊥∇̂2

⊥û⊥ +
Ek‖

2
ρ̂Â‖∇̂2

‖û⊥

−γ
(
RoL

β

Γ
− ΓŶ

)
ρ̂θ̂ × û‖ −

(
1 +RoLβŶ

)
ρ̂r̂× û⊥, (3.23)

RoLγ
2ρ̂
d̂u‖
dt

= −∇̂‖ˆ̃p+ γ2RoL
Re

(
∇̂ · σ̂′

)
‖

+ γ2Ek⊥
2

ρ̂Â⊥∇̂2
⊥û‖

+γ2Ek‖
2
ρ̂Â⊥∇̂2

‖û‖ − γ2

(
RoL

β

Γ
− ΓŶ

)
θ̂ × û⊥ + ˆ̃ρĝ, (3.24)
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where we have used equation (3.17) and equation (3.19) and defined two new di-
mensionless numbers, respectively the horizontal and the vertical Ekman numbers

Ek⊥ = 2
RoL
Ret
⊥
, (3.25)

Ek‖ = 2
RoL
Ret
‖
. (3.26)

The Ekman number is the ratio of viscous forces to Coriolis forces. One conse-
quence of equation (3.17) and (3.19) is that we can calculate the typical magnitude
for the interface amplitude ζ. By using the dynamical boundary condition at the
interface, (2.118), and use that the background pressure is hydrostatically dis-
tributed, (2.179), it follows from the scaling in the pressure deviation (3.17) that
the dynamical boundary condition is

pa − ρmg [Z − (H0 + ζ)]− ρmU⊥,mf0δL⊥,mˆ̃p = pa.

Since the mean depth H0, and the vertical coordinate Z is of O(δL‖,m) and the
typical magnitude of the interface amplitude ζ is ζm it follows that the boundary
condition can be written as

−
[
Ẑ −

(
1 +

ζm
δL‖,m

ζ̂

)]
=
U⊥,mf0δL⊥,m

gδL‖,m
ˆ̃p.

We will assume that the interface amplitude ζ is much less then the mean depth
H0, hence it follows to lowest order that Z ≈ H0, or in dimensionless form that
Ẑ ≈ 1, which gives that

ζm
δL‖,m

ζ̂ = RoLFLˆ̃p, (3.27)

and since ζ̂ and ˆ̃p are normalized such that they are of order unity it follows that

ζm
δL‖,m

= RoLFL, (3.28)

ζ̂ = ˆ̃p, (3.29)

at the interface. For midlatitude flows RoLFL has a maximum value of O(RoL).
Thus, this is a good approximation. Equation (3.28) implies that the kinematic
boundary value condition of the vertical velocity at the surface is

ŵ = RoLFL

(
Sr

∂

∂t̂
+ û⊥ · ∇̂⊥

)
ζ̂ . (3.30)

The Strouhal number Sr will be assumed to of order O(1) such that the typical
magnitude for the time is T = δL⊥,m/U⊥,m.



Chapter 4

The midlatitude barotropic ocean
circulation model

In this chapter we want to describe an ocean circulation model that includes wind
stress and topology, where the model is limited to midlatitudes. The idea is to re-
duce the geometry to a plane tangential to the Earth, where the origin of the plane
is centered in the middle latitude. It will be seen that this follows directly from the
scaling analysis. This shows the power of dimensional analysis, namely that the
equations reduce to a simplified model, without losing the essential physics. The
reduction of the geometry implies that the curvature disappears from the model,
except in the Coriolis term. In this model, we also use that the mass density is
constant, ρ̂ = 1 and ˆ̃ρ = 0, so that the fluid is not stratified and that the equations
of motion disconnect from the thermodynamic equations. This means that the
total mass density is only a function of pressure and vice versa. Such fluids are
called barotropic. The consequence is that the flow is incompressible to all orders
and that the buoyancy force in the vertical momentum equation vanishes. This is
equivalent to letting the stratification Froude number Fs go to infinity such that
rotation is the important effect. Accordingly, we will use the values in table 3.1 to
derive a reduced model describing the barotropic dynamics. Since the local Rossby
number is small, the phenomena described at this scales will be contained in the
equations of motion to order Ro. Therefore, we will truncate the equations of mo-
tion of order O(RoL). According to table 3.1, the truncate momentum equations,
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(3.23) and (3.24), and the continuity equation, (2.225), reads

RoL
d̂u⊥
dt

= −∇̂⊥ˆ̃p+
Ek⊥

2
∇̂2
⊥û⊥ +

Ek‖
2
∇̂2
‖û⊥

+γΓŶ Ŷ × û‖ −
(

1 +RoLβŶ
)

Ẑ× û⊥ (4.1)

0 = ∇̂‖ˆ̃p, (4.2)

0 = ∇̂⊥ · û⊥ + ∇̂‖ · û‖, (4.3)

where we have assumed that the normalized turbulent mixing coefficients are con-
stant and where we have splitted the divergence of the velocity field into a hor-
izontal and vertical divergence. This is done since the unit vectors in the slab-
approximation are constant. The truncated horizontal inertia term is

d̂u⊥
dt

=

(
∂û⊥

∂t̂
+ û · ∇̂û⊥

)
. (4.4)

Throughout the chapter we will assume that the topography hb is of order RoL
relative to the average depth H0, i.e., hb,m/δL‖,m ∼ O(RoL), hence the truncated

boundary conditions, (3.11), at the lower boundary, Ẑ = RoLĥb reads

ŵ = RoLû⊥ · ∇̂⊥ĥb, (4.5)

and the truncated boundary conditions, (3.30), (3.13), (3.14) and (3.29) at the
free surface Ẑ = 1 +RoLFLζ̂ reads

ŵ = RoLFL

(
∂

∂t̂
+ û⊥ · ∇̂⊥

)
ζ̂ , (4.6)

ατ̂XZ =
∂û

∂Ẑ
, (4.7)

ατ̂Y Z =
∂v̂

∂Ẑ
, (4.8)

ˆ̃p = ζ̂ . (4.9)

Just to clarify, the nabla-operator in the slab-approximation is given by

∇̂⊥ = X̂
∂

∂ X̂
+ Ŷ

∂

∂ Ŷ
, (4.10)

∇̂‖ = Ẑ
∂

∂ Ẑ
. (4.11)

In the next sections we will describe the motion of the ocean for small Rossby
numbers using a regular pertubation method. This provides a systematic and
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physically transparent description of the motion to the desired order in the Rossby
number. The method is based on an asymptotic solution in a small parameter,
in this case the Rossby number. Therefore, we have to determine the order of
magnitude of the other dimensionless numbers with respect to the local Rossby
number RoL. According to table 3.1, the dimensionless numbers are related to the
Rossby number by, FL ∼ O(1), β ∼ O(1), Ek⊥ ∼ O(RoL), Ek‖ ∼ O(RoL) and
α ∼ O(1/RoL), where we have chosen the maximum probable value of the Ekman
numbers.

4.1 The asymptotic reduction

The dynamics described by equations (4.1), (4.2) and (4.3) are characterized and
determined by the small local Rossby number, RoL � 1, such that the solution
of the equations depend on this small dimensionless number, i.e.

û⊥ = û⊥

(
X̂, t̂;RoL

)
, û‖ = û‖

(
X̂, t̂;RoL

)
, ˆ̃p = ˆ̃p

(
X̂, t̂;RoL

)
. (4.12)

But exact solutions to the equations cannot be found, but since RoL � 1 one seeks
to find approximated solution. We will assume that the solution can be expanded
in a regular power series in RoL,

û⊥

(
X̂, t̂;RoL

)
=

∞∑
i=0

RoiLûi,⊥

(
X̂, t̂

)
, (4.13)

û‖

(
X̂, t̂;RoL

)
=

∞∑
i=0

RoiLûi,‖

(
X̂, t̂

)
, (4.14)

ˆ̃p
(
X̂, t̂;RoL

)
=

∞∑
i=0

RoiL
ˆ̃pi

(
X̂, t̂

)
, (4.15)

such that
(
û0,⊥, û0,‖, ˆ̃p0

)
are equal asymptotically to

(
û⊥, û‖, ˆ̃p

)
when RoL → 0

and where
(
ûi,⊥, ûi,‖, ˆ̃pi

)
are independent of RoL for each order i. By substituting

the expansions (4.13), (4.14) and (4.15) into the equations (4.1), (4.2) and (4.3)
and collecting part of the same order, we obtain equations for determining the
dynamics to the desired order. Note that (4.1), (4.2) and (4.3) are truncated
equations which are only valid up to O(RoL). If we want to find the equations of
O(Ro2

L) or higher, we must include higher order correction terms to (4.1), (4.2)
and (4.3).
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4.1.1 The geostrophic flow

To zeroth order in RoL, the horozintal momentum equation reduces to a balance
between the zeroth order Coriolis force and the zeroth order pressure gradient,

0 = −∇̂⊥ˆ̃p0 − Ẑ× û0,⊥, (4.16)

which is known as the geostrophic balance. By taking the cross product of Ẑ with
the zeroth order balance, (4.16), we obtain a diagnostic equation for the zeroth
order horizontal velocity field û0,⊥ given by the zeroth order pressure gradient,

û0,⊥ = Ẑ× ∇̂⊥ˆ̃p0. (4.17)

Note that the horozontal divergence of the zeroth order horizontal velocity is di-
vergence free, i.e.

∇̂⊥ · û0,⊥ = 0. (4.18)

Helmholtz’s theorem for vector fields in two dimensions, (??), says then that the
zeroth order pressure deviation acts as a streamfunction in the horizontal plane.
The vertical momentum equation (4.2) to zeroth order gives that the zeroth order
pressure deviation is independent of the vertical coordinate Z,

0 = ∇̂‖ˆ̃p0. (4.19)

This implies that the zeroth order velocity field, (4.17), is also independent of the
vertical coordinate. Equation (4.16) and equation (4.19) show that the zeroth
order pressure deviation is undetermined to this order. The continuity equation,
(4.3), to lowest order in RoL reads

0 = ∇̂⊥ · û0,⊥ + ∇̂‖ · û0,‖, (4.20)

and since the first term on the right side is constrained to be zero according to
equation (4.18), it follows that the vertical divergence of the vertical velocity is
zero,

∇̂‖ · û0,‖ = 0. (4.21)

The lowest order boundary condition, (4.5), at the bottom Ẑ0 = 0 is

ŵ0 = RoLû0,⊥ · ∇̂⊥ĥb, (4.22)

and the lowest order boundary conditions, (4.6), (4.7), ,(4.8) and (4.9), at the free
surface Ẑ0 = 1 are

ŵ0 = 0, (4.23)

ατ̂XZ =
∂û0

∂Ẑ
, (4.24)

ατ̂Y Z =
∂v̂0

∂Ẑ
, (4.25)

ˆ̃p0 = ζ̂0. (4.26)
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From equation (4.21) and (4.23) it follows that the zeroth order vertical velocity is
equal to zero, ŵ0 = 0 everywhere in space and time. However, there is a dilemma
in the boundary value conditions (4.22), (4.24) and (4.25). This is because ĥb,
τ̂XZ and τ̂Y Z are prescribed functions of O(1), which are given as an input to the
model, and since α is of O(1/RoL) and in addition, the horizontal velocity field is
independent of the vertical coordinate, the order of magnitude on the right hand
side is of a different order than the left side. This means that the lowest-order
equations, (4.16), (4.19), and (4.20), and expansions, (4.13), (4.14) and (4.15) are
not valid to describe the dynamics of the entire interval 0 ≤ Z0 ≤ 1. So there
must exist a boundary layer at Ẑ0 = 0 and Ẑ0 = 1 where the normalization of the
vertical coordinate Z is different than initially assumed such that the boundary
value conditions are correct. We will discuss this in detail in section 4.2. The
fact that there exists boundary layers does not mean that equations (4.1), (4.2)
and (4.3) are not valid, it just means that they are valid outside the region where
there is a boundary layer. Therefore, the expansions (4.13), (4.14) and (4.15) are
called an outer expansion and the solution of equations (4.1), (4.2) and (4.3) are
an outer solution which describes the dynamics of the interior. Therefore, the
boundary value conditions are connected to the interior via the boundary layers.

4.1.2 The ageostrophic flow

We have seen that to lowest order, the pressure deviation is undetermined. This
means that we need to look at the first order equations to see if we can find an
evolution equation for ˆ̃p0. To first order in RoL, the horizontal momentum equation
is(

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)
û0,⊥ = −∇̂⊥ˆ̃p1 +

1

Ret
⊥
∇̂2
⊥û0⊥− βŶ Ẑ× û0,⊥− Ẑ× û1,⊥. (4.27)

This equation describes the dynamical deviation from geostrophic flow, often called
ageostrofisk flow. It should be noted that, since û0,⊥ has no vertical dependency,
the advection term has been reduced to a pure advection of the horizontal velocity
by itself, and similar the turbulent mixing due to shear in the horizontal velocity
disappears. The vertical momentum equation to first order in RoL implies that
also ˆ̃p1 is independent of the vertical coordinate, such as the zeroth order pressure
deviation,

0 = ∇̂‖ˆ̃p1. (4.28)

Hence the ocean in this model is hydrostatically distributed up to at least first
order in RoL. The continuity equation to first order in RoL is as expected

0 = ∇̂⊥ · û1,⊥ + ∇̂‖ · û1,‖. (4.29)
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After we have treated the boundary layer problem, we will show how we can go to
the vorticity formalism to find the equation for ˆ̃p0 from (4.27). This equation will
still contain the first order velocity field in the horizontal direction, but by using
the continuity equation (4.29), and the fact that the zeroth order velocity field in
the horizontal direction has no vertical dependency, we can integrate the equation
to eliminate the first order corrections.

4.2 The boundary layers

As discussed there must exist boundary layers at Ẑ0 = 0 and Ẑ0 = 1, so that
the scaling is consistent. According to the boundary value conditions, (4.24) and
(4.25), the vertical length scale must be rescaled in order to have balance on
both sides of the equations, i.e., that the characteristic length scale in the vertical
direction for the boundary layers are of a different order than the interior domain.
The characteristic vertical length scale in the interior is of O(δL‖,m), hence we
will assume that the characteristic vertical length scale in the boundary layer is of
O(λ δL‖,m), where λ is a scaling parameter that specifies the relationship between
the vertical length scale in the boundary layer and the interior. This section will
consist of two subsections, the first will cover the lower boundary layer, called the
bottom Ekman layer, and the second sub section will cover the upper boundary
layer, called the upper Ekman layer.

4.2.1 The bottom Ekman layer

The dimensionless vertical variable in the lower boundary layer is

Ẑ∗ =
Z

λ δL‖,m
, (4.30)

while the scaling in the horizontal direction will remain unchanged. Here and in the
following we use a single asterisk to denote scaled variables in the bottom Ekman
layer. Similar the scaling of the horizontal velocity will also ramain unchanged,
but according to (2.21), the new scaling for the vertical velocity is

U∗‖,m = λ
δL‖,m
δL⊥,m

U⊥,m, (4.31)

such that the dimensionless vertical velocity in the lower boundary layer is

û∗‖ =
1

U∗‖,m
u‖. (4.32)
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Note that the index ∗ symbolizes that the variables are only valid in the boundary
layer. In order to rescale (4.1), (4.2) and (4.3) to boundary layer scale, we must
find a relationship between Ẑ∗ and Ẑ and between û∗‖ and û‖. The relations are

Ẑ∗ =
1

λ
Ẑ, (4.33)

û∗‖ =
1

λ
û‖, (4.34)

where the corresponding scaled vertical nabla-operator is

∇̂∗‖ = λ∇̂‖ or
∂

∂Ẑ∗
= λ

∂

∂Ẑ
. (4.35)

This leads to the rescaled equations of motion in the boundary layers,

RoL

(
∂

∂t̂
+ û∗⊥ · ∇̂⊥ + û∗‖ · ∇̂∗‖

)
û∗⊥ = −∇̂⊥ˆ̃p

∗
+
Ek⊥

2
∇̂2
⊥û∗⊥ +

Ek‖
2λ2
∇̂∗2‖ û∗⊥

+ γΓŶ Ŷ × û∗‖ −
(

1 +RoLβŶ
)

Ẑ× û∗⊥

(4.36)

0 = ∇̂∗‖ˆ̃p
∗
, (4.37)

0 = ∇̂⊥ · û∗⊥ + ∇̂∗‖ · û∗‖, (4.38)

and the rescaled lower boundary condition at Ẑ∗ = RoL/λĥb,

ŵ =
RoL
λ

û∗⊥ · ∇̂⊥ĥb. (4.39)

The question now is: What should λ be in the boundary layer in order to satisfy the
boundary condition? To get the boundary condition, (4.39), to be consistent, the
horizontal turbulent mixing of momentum due to shear in the horisontal velocity
û∗⊥ must be of O(1). This implies that Ek‖/2λ

2 ∼ O(1) or equivalently

λ =
√
Ek‖, (4.40)

such that the characteristic length scale in vertical direction of the boundary layer
is
√
Ek‖ δL‖,m. The scaling (4.40) states that even for small values of Ek‖ the

friction will be of a significant importance and the boundary layers will be charac-
terized as a friction layers. Similar to the outer solution, (4.12), and the outer ex-
pansions, (4.13), (4.14) and (4.15), the boundary solution (more commonly known
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as the inner solution) must be a function of the new boundary layer coordinate,
(4.33), and the Rossby number RoL;

û∗⊥ = û∗⊥

(
X̂⊥, Ẑ

∗, t̂;RoL

)
, û∗‖ = û∗‖

(
X̂⊥, Ẑ

∗, t̂;RoL

)
, ˆ̃p

∗
= ˆ̃p

∗ (
X̂⊥, Ẑ

∗, t̂;RoL

)
.

(4.41)
Just as for the outer solution there exists no general exact solution to the equations,
but since RoL � 1 one seeks to find an approximated solution. We will assume
that the solution can be expanded in a regular power series in RoL,

û∗⊥

(
X̂⊥, Ẑ

∗, t̂;RoL

)
=

∞∑
i=0

RoiLû∗i,⊥

(
X̂⊥, Ẑ

∗, t̂
)
, (4.42)

û∗‖

(
X̂⊥, Ẑ

∗, t̂;RoL

)
=

∞∑
i=0

RoiLû∗i,‖

(
X̂⊥, Ẑ

∗, t̂
)
, (4.43)

ˆ̃p
∗ (

X̂⊥, Ẑ
∗, t̂;RoL

)
=

∞∑
i=0

RoiL
ˆ̃p
∗
i

(
X̂⊥, Ẑ

∗, t̂
)
, (4.44)

such that (û∗0,⊥, û
∗
0,‖,

ˆ̃p
∗
0) are equal asymptotically to (û∗⊥, û

∗
‖,

ˆ̃p
∗
) when RoL → 0,

and where (û∗n,⊥, û
∗
n,‖,

ˆ̃p
∗
n) are independent of RoL. The asymptotical requirement

consequently has the effect of stretching the region near Ẑ0 = 0 when RoL →
0 (
√
Ek‖ → 0). This stretching ensures that Ẑ∗ is of O(1), even though the

characteristic vertical length scale of the boundary layer approaches zero. By a
simple discussion of the stretched boundary layer coordinate, (4.33), it follows that
when Ẑ is fixed and

√
Ek‖ → 0, then Ẑ∗ →∞. On the other hand, it follows that

when Ẑ∗ is fixed and
√
Ek‖ → 0, then Ẑ → 0. By substituting the expansions

(4.42), (4.43) and (4.44) into the equations (4.36), (4.37) and (4.38) and collecting
terms of the same order, we obtain equations determining the dynamics in the
boundary layer. To zeroth order in RoL, the horizontal momentum equation in
the boundary layer reduces to a balance between the zeroth order Coriolis force,
the zeroth order friction force and the zeroth order pressure gradient,

0 = −∇̂⊥ˆ̃p
∗
0 +

1

2
∇̂∗2‖ û∗0,⊥ − Ẑ× û∗0,⊥. (4.45)

The corresponding vertical momentum equation is

0 = ∇̂∗‖ˆ̃p
∗
0, (4.46)

and the corresponding continuity equation is

0 = ∇̂⊥ · û∗0,⊥ + ∇̂∗‖ · û∗0,‖. (4.47)
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Just as in the interior domain, the zeroth order pressure is independent of the
vertical coordinate Ẑ∗. There is no obvious link between the equations of motion
in the interior and the lower boundary layer, but there must exist a connection.
The key to finding this connection lies in the understanding that the inner and
outer expansions represent an approximation of the same physical quantities. This
means that the physical quantities must be continuous in the transition region
between the interior and the boundary layer and in this region the Ekman number
Ek‖ → 0. Hence, if we write the boundary layer solution in terms of of the interior

coordinate Ẑ, and the interior solution in terms of the boundary layer coordinate
Ẑ∗, the continuity in the transition region requires

lim
fixedẐ
Ek‖→0

ˆ̃p
(
Ẑ/
√
Ek‖

)
= lim

fixedẐ∗
Ek‖→0

ˆ̃p
∗ (√

Ek‖Ẑ
∗
)
, (4.48)

lim
fixedẐ
Ek‖→0

û⊥

(
Ẑ/
√
Ek‖

)
= lim

fixedẐ∗
Ek‖→0

û∗⊥

(√
Ek‖Ẑ

∗
)
, (4.49)

lim
fixedẐ
Ek‖→0

û‖

(
Ẑ/
√
Ek‖

)
= lim

fixedẐ∗
Ek‖→0

√
Ek‖ û

∗
‖

(√
Ek‖Ẑ

∗
)
. (4.50)

To zeroth order, this requires that the pressure ˆ̃p
∗
0 and the horizontal velocity û∗0,⊥

when leaving the boundary layer, Ẑ∗0 → ∞, is equal to the pressure ˆ̃p0 and the
horizontal velocity û0,⊥ when leaving the interior, Ẑ0 → 0,

lim
Ẑ∗→∞

ˆ̃p
∗
0 = lim

Ẑ→0

ˆ̃p0, (4.51)

lim
Ẑ∗→∞

û∗0,⊥ = lim
Ẑ→0

û0,⊥. (4.52)

Therefore, the connections between the interior and the boundary layer in the
transition region is

∇̂⊥ˆ̃p
∗
0 = ∇̂⊥ˆ̃p0, (4.53)

but since the pressure to lowest order is independent of the vertical coordinate
in both the boundary layer and the interior, equation (4.53) is valid for all Ẑ∗ in
the boundary layar. By using equation (4.45) and (4.16) together with equation
(4.53), we find that the equation which connects the horizontal velocity fields is

1

2
∇̂∗2‖ û∗0,⊥ − Ẑ× û∗0,⊥ = −Ẑ× û0,⊥. (4.54)

This is a system of two second-order ordinary differential equations. By using the
vertical Laplace operator ∇̂∗2‖ on equation (4.54), the system transfors into two
linear fourth-order differential equations

∇̂∗4‖ û∗0,⊥ + 4û∗0,⊥ = 4û0,⊥. (4.55)
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Assuming that the homogeneous solution is of the form ver Ẑ
∗

gives that the eigen-
values are determined by the characteristic polynomial r4 + 4 = 0. The solutions
are

r1 = 1 + i, r2 = 1− i, r3 = − (1 + i) , r4 = − (1− i) . (4.56)

Therefore, the general solution to (4.55) is

û∗0,⊥ = û0,⊥ + eẐ
∗
(
v1e

Ẑ∗i + v2e
−Ẑ∗i

)
+ e−Ẑ

∗
(
v3e

−Ẑ∗i + v4e
Ẑ∗i
)
, (4.57)

where vn is the corresponding eigenvector to the eigenvalue rn which is determined
by the boundary value conditions. Using Euler’s formula, the solution, (4.57) can
be written more compactly as

û∗0,⊥ = û0,⊥+eẐ
∗
(
A1 cos Ẑ∗ + A2 sin Ẑ∗

)
+e−Ẑ

∗
(
A3 cos Ẑ∗ + A4 sin Ẑ∗

)
, (4.58)

where A1, A2, A3, and A4 are redefined eigenvectors. It can be shown from
equation (4.58) and equation (4.54) that the eigenvectors have the structure

A1 = [A,−B]T , A2 = [B,A]T , A3 = [C,D]T , A4 = [D,−C]T , (4.59)

so the task now is to determine A, B, C and D from the boundary conditions. Ac-
cording to equation (4.52), the boundary layer velocity û∗0,⊥ must merge smoothly

with the geostrophic velocity û0,⊥ in the transition region Ẑ∗ → ∞. This im-
plies that A = B = 0, since these represent growing solutions. At the bottom,
Ẑ∗ = RoL/

√
E‖ĥb, the boundary layer velocity must be zero, in order to satisfy the

boundary conditions (2.105) and (2.107). This gives that C and D are determined
by

0 = û0,⊥ + e
− RoL√

Ek‖
ĥb
[
A3 cos

(
RoL√
Ek‖

ĥb

)
+ A4 sin

(
RoL√
Ek‖

ĥb

)]
, (4.60)

which gives

C =

[
v̂0 sin

(
RoL√
Ek‖

ĥb

)
− û0 cos

(
RoL√
Ek‖

ĥb

)]
e

RoL√
Ek‖

ĥb

(4.61)

D = −

[
v̂0 cos

(
RoL√
Ek‖

ĥb

)
+ û0 sin

(
RoL√
Ek‖

ĥb

)]
e

RoL√
Ek‖

ĥb

. (4.62)
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Thus, by substituting the constants into the general solution, we obtain the specific
solution that satisfies the boundary value conditions,

û∗0,⊥ = û0,⊥

1− cos

(
Ẑ∗ − RoL√

Ek‖
ĥb

)
e
−
(
Ẑ∗− RoL√

Ek‖
ĥb

)
+Ẑ× û0,⊥ sin

(
Ẑ∗ − RoL√

Ek‖
ĥb

)
e
−
(
Ẑ∗− RoL√

Ek‖
ĥb

)
, (4.63)

This solution we can used together with (4.47) to determine the vertical velocity
field in the boundary layer. By substituting (4.63) into (4.47), we get

∇̂∗‖ · û∗0,‖ = −∇̂⊥ · û∗0,⊥

=
RoL√
Ek‖

(
û0,⊥ · ∇̂⊥ĥb

)
e
−
(
Ẑ∗− RoL√

Ek‖
ĥb

) [
sin

(
Ẑ∗ − RoL√

E‖
ĥb

)
+ cos

(
Ẑ∗ − RoL√

Ek‖
ĥb

)]

+
RoL√
Ek‖

(
Ẑ× û0,⊥

)
· ∇̂⊥ĥbe

−
(
Ẑ∗− RoL√

Ek‖
ĥb

) [
cos

(
Ẑ∗ − RoL√

Ek‖
ĥb

)
− sin

(
Ẑ∗ − RoL√

Ek‖
ĥb

)]

+ Ẑ ·
(
∇̂⊥ × û0,⊥

)
e
−
(
Ẑ∗− RoL√

Ek‖
ĥb

)
sin

(
Ẑ∗ − RoL√

Ek‖
ĥb

)
, (4.64)

where we have used (4.18) and ∇̂⊥ · (Ẑ× û0,⊥) = −Ẑ · (∇̂⊥× û0,⊥). From equation
(4.64) we can find the vertical velocity field in the transition region. By integrating
equation (4.64) from the bottom Ẑ∗ = RoL/

√
E‖ĥb to the transition region Ẑ∗ →

∞, we get

lim
Ẑ∗→∞

ŵ∗0 =
RoL√
E‖

û0,⊥ · ∇̂⊥ĥb +
1

2
Ẑ ·
(
∇̂⊥ × û0,⊥

)
. (4.65)

Here we have used that the velocity field is zero at the bottom. Since the vertical
velocity field must be continuous in the transition region, it follows from equation
(4.34), that to O(RoL) the interior velocity at Ẑ0 = 0 is

lim
Ẑ→0

(ŵ0 +RoLŵ1) =
√
Ek‖ lim

Ẑ∗→∞
ŵ∗0 (4.66)

which implies that

ŵ1

(
X̂⊥, 0, t̂

)
= û0,⊥ · ∇̂⊥ĥb +

1

2

√
E‖

RoL
Ẑ ·
(
∇̂⊥ × û0,⊥

)
. (4.67)
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4.2.2 The upper Ekman layer

Similarly to the bottom boundary layer, there must exist an upper boundary layer
at Ẑ0 = 1 due to the wind-stess. The analysis of the upper boundary layer will
be very similar to the analysis of the lower boundary layer, only with some minor
adjustments. In the lower boundary layer, we saw that the boundary layer coordi-
nate, (4.33), had the property to stretch out the region around Ẑ0 = 0. Therefore,
we need to introduce a boundary layer coordinate which has the property to stretch
out the region around Ẑ0 = 1. Let Ẑ∗∗ denote this coordinate, where ∗∗ indicates
that the variables are only valid in the upper boundary layer. Then it follows that
the upper boundary layer coordinate, Ẑ∗∗, must have the following properties;
when Ẑ is fixed and λ→ 0, then Ẑ∗∗ →∞. On the other hand, when Ẑ∗∗ is fixed
and λ → 0, then Ẑ → 1. This implies that the upper boundary layer coordinate
is given by

Ẑ∗∗ =
1− Ẑ
λ

, (4.68)

and the corresponding vertical nabla-operator is

∇̂∗∗‖ = −λ∇̂‖ or
∂

∂Ẑ∗∗
= −λ ∂

∂Ẑ
. (4.69)

This leads to the rescaled equations of motion in the boundary layer,

RoL

(
∂

∂t̂
+ û∗∗⊥ · ∇̂⊥ − û∗∗‖ · ∇̂∗∗‖

)
û∗∗⊥

= −∇̂⊥ˆ̃p
∗∗

+
Ek⊥

2
∇̂2
⊥û∗∗⊥ +

Ek‖
2λ2
∇̂∗∗2‖ û∗∗⊥

+ γΓŶ Ŷ × û∗∗‖ −
(

1 +RoLβŶ
)

Ẑ× û∗∗⊥ , (4.70)

0 = ∇̂∗‖ˆ̃p
∗∗
, (4.71)

0 = ∇̂⊥ · û∗∗⊥ − ∇̂∗∗‖ · û∗∗‖ , (4.72)

and the rescaled boundary conditions for the free surface atẐ∗∗ = −RoLFL/λζ̂∗∗,

ŵ∗∗ =
RoLFL
λ

(
∂

∂t̂
+ û⊥ · ∇̂⊥

)
ζ̂∗∗, (4.73)

α∗∗τ̂XZ = − ∂û
∗∗

∂Ẑ∗∗
, (4.74)

α∗∗τ̂Y Z = − ∂v̂
∗∗

∂Ẑ∗∗
, (4.75)

ˆ̃p
∗∗

= ζ̂∗∗, (4.76)
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where the new rescaled dimensionless number is α∗∗ = αλ. Similar to the bottom
boundary layer, the scaling parameter is λ =

√
Ek‖, since the horizontal turbulent

mixing of momentum due to shear in the horisontal velocity û∗∗⊥ must be of O(1) in
order to satisfy the boundary value conditions. If we now apply the same analysis
as for the lower boundary layer, and assume that the solution can be expanded
in a regular power series in RoL, it follows to zeroth order that the dynamics are
described by

0 = −∇̂⊥ˆ̃p
∗∗
0 +

1

2
∇̂∗∗2‖ û∗∗0,⊥ − Ẑ× û∗∗0,⊥, (4.77)

0 = ∇̂∗∗‖ ˆ̃p
∗∗
0 , (4.78)

0 = ∇̂⊥ · û∗∗0,⊥ − ∇̂∗∗‖ · û∗∗0,‖. (4.79)

As expected, the equations (4.77), (4.78) and (4.79) are exactly the same as the
equations in the lower boundary layer, except the minus sign in the equation of
continuity. Thus it follows that the equation that links the velocity fields in the
upper boundary layer and the interior is, (4.54), where the solution is given by

û∗∗0,⊥ = û0,⊥ + eẐ
∗∗
(
A1 cos Ẑ∗∗ + A2 sin Ẑ∗∗

)
+ e−Ẑ

∗∗
(
A3 cos Ẑ∗∗ + A4 sin Ẑ∗∗

)
,

(4.80)
where A1, A2, A3, and A4 are given by the scalar constants

A1 = [A,−B]T , A2 = [B,A]T , A3 = [C,D]T , A4 = [D,−C]T , (4.81)

which must be determined from the boundary value conditions. According to
equation (4.52), the boundary layer velocity û∗∗0,⊥ must merge smoothly with the

geostrophic velocity û0,⊥ in the transition region Ẑ∗∗ → ∞. This implies that

A = B = 0, since these represent growing solutions. At the free surface Ẑ∗∗ =
−RoLFL/λζ̂∗∗, the horizontal boundary layer velocity must satisfy the lowest order
boundary conditions,

α∗∗τ̂XZ = − ∂û
∗∗
0

∂Ẑ∗∗
, (4.82)

α∗∗τ̂Y Z = − ∂v̂
∗∗
0

∂Ẑ∗∗
, (4.83)

which provides that C and D are given by

C =
α∗∗

2
(τ̂XZ + τ̂Y Z) (4.84)

D =
α∗∗

2
(τ̂Y Z − τ̂XZ) . (4.85)
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Thus, by substituting the constants into the general solution, we obtaine the spe-
cific solution that satisfies the boundary value conditions,

û∗∗0,⊥ = û0,⊥ +
α∗∗

2

[
T̂
(

cos Ẑ∗∗ − sin Ẑ∗∗
)
− Ẑ× T̂

(
cos Ẑ∗∗ + sin Ẑ∗∗

)]
e−Ẑ

∗∗
,

(4.86)

where T̂ = τ̂XZX̂ + τ̂Y ZŶ is the dimensionless wind-stress vector. The vertical
divergence of the vertical velocity, (4.79), is given by

∇̂∗∗‖ · û∗∗0,‖ = ∇̂⊥ · û∗∗0,⊥

=
α∗∗

2

[
∇̂⊥ · T̂

(
cos Ẑ∗∗ − sin Ẑ∗∗

)
+ Ẑ ·

(
∇̂⊥ × T̂

)(
cos Ẑ∗∗ + sin Ẑ∗∗

)]
e−Ẑ

∗∗
,

(4.87)

where we have used (4.18) and ∇̂⊥ · (Ẑ × T̂) = −Ẑ · (∇̂⊥ × T̂). From equation
(4.87) we can find what the vertical velocity field in the transition region is. By
integrating equation (4.87) from the free surface to the transition region Ẑ∗∗ →∞,
we get

lim
Ẑ∗∗→∞

ŵ∗∗0 =
RoLFL√
Ek‖

(
∂

∂t̂
+ û⊥ · ∇̂⊥

)
ˆ̃p
∗∗
0 +

α∗∗

2
Ẑ ·
(
∇̂⊥ × T̂

)
, (4.88)

where we have used the velocity field at the free surfaces is given by (4.73). Since
the vertical velocity field must be continuous in the transition region, it follows
from equation (4.34), that to O(RoL) the interior velocity at Ẑ0 = 1 is

lim
Ẑ→1

(ŵ0 +RoLŵ1) =
√
Ek‖ lim

Ẑ∗∗→∞
ŵ∗∗0 , (4.89)

from which follows that

ŵ1

(
X̂⊥, 1, t̂

)
= FL

(
∂

∂t̂
+ û⊥ · ∇̂⊥

)
ˆ̃p0 +

√
Ek‖

RoL

α∗∗

2
Ẑ ·
(
∇̂⊥ × T̂

)
. (4.90)

4.3 The barotropic quasi-geostrophic vorticity equa-

tion

According to the discussion of the geostrophic and the ageostrophic flow, the
zeroth order pressure ˆ̃p0 is determined by the first-order dynamics, (4.27), (4.28)
and (4.29). The only problem is that the horizontal momentum equation to order

O(RoL), (4.27), depends on the first-order pressure ˆ̃p1. This means that we must

eliminate the pressure ˆ̃p1 in order to find an equation to determine ˆ̃p0. The way
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this will be done is to use the vorticity formalism. In general the vorticity Θ of a
flow field is given by the local rotation of its velocity field u, expressed by

Θ = ∇× u. (4.91)

This implies that the zeroth order nondimensional vorticity Θ̂0 associated with
the geostrophic flow û0 is given by

Θ̂0 = ∇̂ × û0, (4.92)

but since the zero-order velocity field û0 only contains a horizontal component,
û0,⊥, and is independent of the vertical coordinate Ẑ, the vorticity reduces to

Θ̂0 = ∇̂⊥ × û0,⊥. (4.93)

A consequence of this is that vorticity Θ̂0 has only a vertical component along
Ẑ, which is independent of the vertical coordinate Ẑ. By using the geostrophic
relation (4.17), one can show that the vorticity can be written as the laplacian of
the zeroth order pressure,

Θ̂0 = ∇̂2
⊥

ˆ̃p0 Ẑ. (4.94)

Note that the advection term in the horizontal momentum equation (4.27) can be
rewritten as (

û0,⊥ · ∇̂⊥
)

û0,⊥ = Θ̂0 × û0,⊥ + ∇̂⊥
(

û0,⊥ · û0,⊥

2

)
, (4.95)

with help of the vector identity

A× (∇×B) = ∇ (A ·B)− (A · ∇) B− (B · ∇) A−B× (∇×A) . (4.96)

This leads to an equivalent form of the horizontal momentum equation,

∂û0,⊥

∂t̂
+ Θ̂0 × û0,⊥ =− ∇̂⊥

(
ˆ̃p1 +

û0,⊥ · û0,⊥

2

)
+

1

Ret
⊥
∇̂2
⊥û0⊥

− βŶ Ẑ× û0,⊥ − Ẑ× û1,⊥, (4.97)

where all gradient fields appear explicitly. By taking the horizontal curl of (4.97)
the gradient fields vanish and the remaining part is the vorticity equation,

∂Θ̂0

∂t̂
+ ∇̂⊥ ×

(
Θ̂0 × û0,⊥

)
=

1

Ret⊥
∇̂⊥ ×

(
∇̂2
⊥û0⊥

)
− ∇̂⊥ ×

(
βŶ Ẑ× û0,⊥

)
− ∇̂⊥ ×

(
Ẑ× û1,⊥

)
, (4.98)
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The second term on the left-hand side of the vorticity equation (4.98) can be
written as

∇̂⊥ ×
(
Θ̂0 × û0,⊥

)
= Θ̂0

(
∇̂⊥ · û0,⊥

)
+
(
û0,⊥ · ∇̂⊥

)
Θ̂0

− û0,⊥

(
∇̂⊥ · Θ̂0

)
−
(
Θ̂0 · ∇̂⊥

)
û0,⊥, (4.99)

where the first term represents the stretching due to compressibility, which of
course vanishes since the horizontal velocity is divergence free according to equa-
tion (4.18). The second term represents the advection of the vorticity with the
horizontal velocity, and the third term is always zero since the vorticity is the curl
of the velocity field. The fourth term represent the stretching due to the velocity
gradient, but since the fluid flow to lowest order is confined to the horizontal plane,
and independent of the vertical coordinate, there can be no stretching due to the
velocity gradient, so this term also vanishes. Therefore, (4.99) reduces to a pure
advection term,

∇̂⊥ ×
(
Θ̂0 × û0,⊥

)
=
(
û0,⊥ · ∇̂⊥

)
Θ̂0. (4.100)

The first term of the right-hand side of the vorticity equation (4.98) is a sink term
which is associated with damping of vorticity. This is best seen by writing the
term as a diffusion of vorticity,

1

Ret
⊥
∇̂⊥ ×

(
∇̂2
⊥û0⊥

)
=

1

Ret
⊥
∇̂2
⊥Θ̂0. (4.101)

The last two terms of the vorticity equation (4.98) represent the production of
vorticity due to the Earth’s rotation. These contributions can be written more
compact as

∇̂⊥ ×
(
βŶ Ẑ× û0,⊥

)
= Ẑ

[
û0,⊥ · ∇̂⊥

(
βŶ
)]
, (4.102)

∇̂⊥ ×
(
Ẑ× û1,⊥

)
= Ẑ

[
∇̂⊥ · û1,⊥

]
. (4.103)

If we now substitute the relations (4.100), (4.101), (4.102) and (4.103) into the vor-
ticity equation (4.98) and use the continuity equation (4.29), the vorticity equation
may be written as(

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)
Θ̂0 =

1

Ret⊥
∇̂2
⊥Θ̂0 − Ẑ

[
û0,⊥ · ∇̂⊥

(
βŶ
)]

+ Ẑ
(
∇̂‖ · û1,‖

)
. (4.104)

This shows that the vorticity equation associated with the zeroth order geostrophic
velocity û0,⊥, still depends on a first-order quantity, namely the first-order vertical
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velocity û1,‖. Fortunately, the zeroth order variables are independent of Ẑ. Thus

by integrating the equation over the interval 0 < Ẑ < 1, everything will remain
unchanged, except the integral over the vertical divergence of the vertical velocity
field that is∫ 1

0

∇̂‖ · û1,‖ dẐ = ŵ1

(
X̂⊥, 1, t̂

)
− ŵ1

(
X̂⊥, 0, t̂

)
= FL

(
∂

∂t̂
+ û⊥ · ∇̂⊥

)
ˆ̃p0 +

√
Ek‖

RoL

α∗∗

2
Ẑ ·
(
∇̂⊥ × T̂

)
− û0,⊥ · ∇̂⊥ĥb −

1

2

√
Ek‖

RoL
Ẑ ·
(
∇̂⊥ × û0,⊥

)
, (4.105)

where we have used the boundary values conditions (4.67) and (4.90). Therefore,
the integrated vorticity equation (4.104) is(

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)(
Ẑ · Θ̂0

)
=

1

Ret
⊥
∇̂2
⊥

(
Ẑ · Θ̂0

)
− β ∂

ˆ̃p0

∂X̂
+ FL

(
∂

∂t̂
+ û⊥ · ∇̂⊥

)
ˆ̃p0

+

√
Ek‖

RoL

α∗∗

2
Ẑ ·
(
∇̂⊥ × T̂

)
− û0,⊥ · ∇̂⊥ĥb −

1

2

√
Ek‖

RoL
Ẑ ·
(
∇̂⊥ × û0,⊥

)
,

(4.106)

where we have taken the dot product with Ẑ and used that the vorticity due

to the meridional variation in the Coriolis force is given by û0,⊥ · ∇̂⊥
(
βŶ
)

=

β v̂0 = β ∂ˆ̃p0/∂X̂, together with the definition of the meridional velocity v̂0 =(
∂/∂t̂+ û⊥ · ∇̂0,⊥

)
Ŷ . This is done without loss of generality, since all the terms

only have a component along Ẑ. To show that equation (4.106) is an evolution

equation for the lowest order pressure ˆ̃p0, we use that the lowest order vorticity is
given by equation (4.94) and the lowest order velocity is given by equation (4.17).
The resulting equation for the pressure is(

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)(
∇̂2
⊥

ˆ̃p0 − FLˆ̃p0 + ĥb + βŶ
)

=
1

Ret
⊥
∇̂4
⊥

ˆ̃p0 −
1

2

√
Ek‖

RoL
∇̂2
⊥

ˆ̃p0 +

√
Ek‖

RoL

α∗∗

2
Ẑ ·
(
∇̂⊥ × T̂

)
. (4.107)

Since equation (4.107) is a scalar equation and contains more terms than just the
vorticity on the left side, this equation is known as the barotropic quasi-geostrophic
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potential vorticity equation, where the quasi-geostrophic potential vorticity q̂ is
defined as

q̂ = ∇̂2
⊥

ˆ̃p0 − FLˆ̃p0 + ĥb + βŶ . (4.108)

According to the definition of the Poisson bracket (9.48), the advection term can
be written as

û0,⊥ · ∇̂⊥ =
(
Ẑ× ∇̂⊥ˆ̃p0

)
· ∇̂⊥ =

{
ˆ̃p0, ·

}
, (4.109)

where the Poisson bracket is given by{
ˆ̃p0, ·

}
=
∂ˆ̃p0

∂X̂

∂

∂Ŷ
− ∂ˆ̃p0

∂Ŷ

∂

∂X̂
. (4.110)

Hence, the quasi-geostrophic potential vorticity equation, (4.107) can be written
in terms of the quasi-geostrophic potential vorticity and the Poisson bracket as

∂q̂

∂t̂
+
{

ˆ̃p0, q̂
}

=
1

Ret⊥
∇̂4
⊥

ˆ̃p0 −
1

2

√
E‖

RoL
∇̂2
⊥

ˆ̃p0 +

√
Ek‖

RoL

α∗∗

2
Ẑ ·
(
∇̂⊥ × T̂

)
. (4.111)

4.4 Physical interpretation

In the limit where the fluid is inviscid, the bottom is flat, the meridional variation
of the Coriolis force is zero (β = 0) and the rotational Froud number approaches
zero, such that the charachteristic length scale in the horizontal direction is

δL⊥,m �
√
gδL⊥,m

4Ω2
, (4.112)

it follows that the dynamics occurs on a length scale where rotational effects be-
comes unimportant and the interface amplitude become very small. In this limit
the potential vorticity equation, (4.111) reduces to the two dimensional Euler
equation (

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)
∇̂2
⊥

ˆ̃p0 = 0, (4.113)

which describes two-dimensional turbulence in incompressible fluids. Thus, it
would be natural to assume that equation (4.111) has many of the same prop-
erties as equation (4.113).

Let us consider the case when equation (4.112) is fulfilled and the fluid is inviscid.
In this case, the quasi-geostrophic potential vorticity equation, equation (4.111)
reduces to (

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)(
∇̂2
⊥

ˆ̃p0 + βŶ
)

= 0, (4.114)
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such that the potential vorticity ∇̂2
⊥

ˆ̃p0 + βŶ is a conserved quantity. Thus we
can study how the meridional variation of the Coriolis force will influence the
vorticity. Suppose there occurs an initial disturbance in the pressure ˆ̃p0 at a given
time along a line of constant latitude in the northern hemisphere. This will give rise
to a production of vorticity, since the potential vorticity is conserved. Therefore,
all displacements directed in the positive meridional direction (northward) results
in a production of negative vorticity (clockwise), in order to compensate for the
increase in the vorticity that is associated with the increase in the Coriolis force.
On the other hand, all displacements directed in the negative meridional direction
(southward) result in a production of positive vorticity (counterclockwise), in order
to compensate for the decrease in the vorticity that is associated with the decrease
in the Coriolis force. The vorticity produced will thus cause the disturbance to
drift westward since the induced velocity field which is associated by the produced
vorticity will try to “push”the disturbances against the constant line of latitude.
These waves are called Rossby waves.

Let us investigate the wave propagation in more detail when the fluid is unbounded.
Just to simplify the notation we set ψ̂ = ˆ̃p0, and write equation (4.114) as

∂

∂t̂
∇̂2
⊥ψ̂ +

{
ψ̂, ∇̂2

⊥ψ̂
}

+ β
∂ψ̂

∂X̂
= 0. (4.115)

In order to have the disturbance/perturbation described above, there must be a
background. For simplicity, we will let this background be given by a constant
flow

Û = Ẑ× ∇̂⊥Ψ̂, (4.116)

such that the total velocity field is given by

û0,⊥ = Û + û′, (4.117)

where Ψ̂ is the background pressure and û′ is the perturbed velocity that corre-
spond to the perturbed pressure ψ̂′. This means that the total pressure and the
perturbed velocity are given respectively as

ψ̂ = Ψ̂ + ε ψ̂′ (4.118)

and
û = εẐ× ∇̂⊥ψ̂′ (4.119)

where ε is a formal ordering parameter which representing that the perturbation
is small compared with the background. The background pressure Ψ̂ must be a
linear function in X̂ and Ŷ to satisfy the condition that the background velocity is



76 CHAPTER 4. BAROTROPIC CIRCULATION MODEL

constant. Thus, we choose that background pressure is Ψ̂ = −V Ŷ , such that the
the background flow is zonal and constant. If we now substitute equation (4.118)
into equation (4.115) and linearize to first order in ε, we get the evolution equation
for the perturbation

∂

∂t̂
∇̂2
⊥ψ̂
′ + V

∂

∂X̂
∇̂2
⊥ψ̂
′ + β

∂ψ̂′

∂X̂
= 0. (4.120)

By assuming a plane wave solution of the form

ψ̂′ = Â ei(k̂⊥·X̂⊥−ω̂ t̂), (4.121)

where k̂⊥ = k̂XX̂ + k̂Y Ŷ is the horizontal wave vector and ω̂ is the angular fre-
quency, equation (4.120) reduces to an algebraic equation[(

−ω̂ + V k̂X

) ∣∣∣k̂⊥∣∣∣2 − βk̂X]A = 0. (4.122)

A non-trivial solution implies that the expression inside the square brackets is zero,
hence the dispersion relation for the Rossby waves is

ω̂ = V k̂X − β
k̂X∣∣∣k̂⊥∣∣∣2 , (4.123)

and the zonal phase velocity is

ĉp =
ω̂

k̂X
X̂ =

V − β 1∣∣∣k̂⊥∣∣∣2
 X̂. (4.124)

Note that the presence of the zonal flow have introduced a Doppler shift in the
frequency and a Galilean transformation in the phase velocity. The Rossby waves

will propagates westward as long as β/
∣∣∣k̂⊥∣∣∣2 > V . Of course, in the absence of

the zonal flow, all Rossby waves will propagates westward as discussed previously.

An interesting case is Rossby waves with wave numbers
∣∣∣k̂⊥∣∣∣2 = β/V , these waves

will be stationary Rossby waves.

Let us now consider the case when the interface amplitude contributes to the
potential vorticity, then the potential vorticity equation becomes(

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)(
∇̂2
⊥ψ̂ − FLψ̂ + βŶ

)
= 0, (4.125)
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or in terms of Possion bracket notaion

∂

∂t̂

(
∇̂2
⊥ψ̂ − FLψ̂

)
+
{
ψ̂, ∇̂2

⊥ψ̂
}

+ β
∂ψ̂

∂X̂
= 0. (4.126)

If we assume the same disturbance that without the contribution of the surface
amplitude ζ = ψ̂, it follows that the same mechanism will produce vorticity, but in
addition the local increase (or decrease) in the surface hight ζ will give rise to a local

increase (or decrease) in the pressure ˆ̃p0. Therefore, all displacements directed in
the positive meridional direction (northward) will have larger value of pressure than
the local surroundings, which will set up a clockwise geostrophic flow. On the other
hand, all displacements directed in the negative meridional direction (southward)

will have less value in the pressure ˆ̃p0 than the the local surroundings, which
will set up a counterclockwise geostrophic flow. These two effects provide that
∇̂2
⊥ψ̂ − FLψ̂ < 0, where ∇̂2

⊥ψ̂ < 0 and ψ̂ > 0 in the positive meridional direction
and vice versa in the negative meridional direction. Once again the produced
vorticity in addition to the surface amplitude will thus cause the disturbance to
drift westward since the induced velocity field will try to “push”the disturbances
against the constant line of latitude. Similar as above, we will take a closer look
at the wave propagation properties.

If we use the same background as above and perturb the system around this basis
state, the linearized version of equation (4.126) to first order in ε becomes

∂

∂t̂

(
∇̂2
⊥ψ̂
′ − FLψ̂′

)
+ V

∂

∂X̂
∇̂2
⊥ψ̂
′ + β

∂ψ̂′

∂X̂
= 0. (4.127)

This equation corresponds to the dispersion relation

ω̂ = V k̂X − k̂X
V FL + β

FL +
∣∣∣k̂⊥∣∣∣2 , (4.128)

and the zonal phase velocity

ĉp =

V − V FL + β

FL +
∣∣∣k̂⊥∣∣∣2

 X̂, (4.129)

In the absence of the zonal background velocity, equation (4.128) is very similar
to the dispersion relation (4.123) except that the denominator has an additional
term because of the free surface. The main difference is that the phase shift due to
the zonal flow is not longer uniform, which implies that the phase velocity of the
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Rossby waves actually depends on the magnitude of the zonal background flow.
But the value of the zonal flow V required to provide a stationary wave is the
same.

Finally, we look at the effect of bottom topography. In this case the potential
vorticity equation becomes(

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)(
∇̂2
⊥ψ̂ − FLψ̂ + ĥb + βŶ

)
= 0, (4.130)

or equivalent in terms of Possion bracket notation

∂

∂t̂

(
∇̂2
⊥ψ̂ − FLψ̂

)
+
{
ψ̂, ∇̂2

⊥ψ̂ + ĥb

}
+ β

∂ψ̂

∂X̂
= 0. (4.131)

Let us for simplicity assume that the bottom only varies in the meridional direction,
such that the variation is almost constant over one wavelength, i.e. ∂ĥb/∂Ŷ will
be treated as constant and ∂ĥb/∂X̂ = 0. For this case, the linearized version of
equation (4.131) to first order in ε becomes

∂

∂t̂

(
∇̂2
⊥ψ̂
′ − FLψ̂′

)
+ V

∂

∂X̂
∇̂2
⊥ψ̂
′ +

(
β +

∂ĥb

∂Ŷ

)
∂ψ̂′

∂X̂
= 0. (4.132)

This equation is almost the same equation as equation (4.127). The only difference
is that the last term on the right side of equation (4.132) has a correction due to
the variation in the bottom. Thus, the meridional variation of the bottom has the
same properties as the meridional variation of the Coriolis force, such that ĥb will
actually give rise to an artificial β-plane effect.



Chapter 5

The midlatitude baroclinic ocean
circulation model

In this chapter we want to modify the dynamics described in previous chapter by
including the effect of stratification. When we derive this model we will use the
length scale that is described in Table 3.2. At this length scale the Burger number
Bu is of O(1). This means that the effect of stratification is equally important as
rotation. Similar to the barotropic model, this model will describe dynamics at the
midlatitude where the local Rossby number RoL is small. Therefore, the dynamics
of interest may be of O(RoL) and we will only consider of terms of order O(RoL) in
the equations. Since the dynamics are at a length scale that is much smaller than
Earth’s mean radius, i.e., Γ ∼ O(RoL), we introduce slab-coordinates where the
origin is located in the midlatitude. This implies that to first order, the curvature
of the earth will disappear from the model except from the Coriolis force. Where
there will be a contribution from the meridional variation of Coriolis force (the β
number). The truncated equations of motion to O(RoL) are

RoL
d̂

dt
û⊥ = − 1

ρ̂h +RoLFLˆ̃ρ
∇̂⊥ˆ̃p+

Ek⊥
2
∇̂2
⊥û⊥ +

Ek‖
2
∇̂2
‖û⊥

−γ
Γ
RoLŶ Ŷ × û‖ −

(
1 +RoLβŶ

)
Ẑ× û⊥ (5.1)

0 = −∇̂‖ˆ̃p+ ˆ̃ρĝ, (5.2)

0 = ∇̂⊥ · û⊥ + ∇̂‖ · û‖, (5.3)
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and the truncated thermodynamic equations are

RoLFL

(̂
d

dt

)
ˆ̃ρ = BuL FLρ̂hN̂

2ŵ

+EuMa2 1

ĉ2
s

(̂
d

dt

)
ˆ̃p+H (5.4)

ρ̂ĉp

(
δT̃m
Tm

(̂
d

dt

)
ˆ̃
T +

N̂2
Tp

β̂Th
ŵ

)
=

1

Pet
⊥
∇̂2
⊥

ˆ̃
T +

1

Pet
‖
∇̂2
‖
ˆ̃
T , (5.5)

ρ̂

(
δS̃m
Sm

(̂
d

dt

)
ˆ̃
S − N̂2

S

β̂Sh
ŵ

)
=

1

Pet
⊥
∇̂2
⊥

ˆ̃
S +

1

Pet
‖
∇̂2
‖
ˆ̃
S

turb

, (5.6)

where the truncate heat source function to the mass density deviation is

H = − β̂T
ĉp

(
1

Pet
⊥
∇̂2
⊥

ˆ̃
T +

1

Pet
‖
∇̂2
‖
ˆ̃
T

)
(5.7)

Note that we have used BuF = BuL FL where BuL is the local Burger number
given by

BuL =

(
NmδL‖,m
f0δL⊥,m

)2

. (5.8)

The truncated inertia term is

d̂

dt
=

(
∂

∂t̂
+ û · ∇̂

)
. (5.9)

Throughout this chapter we will assume that the topography hb is of order RoL
relative to the average depth H0, i.e. hb,m/δL‖,m ∼ O(RoL), hence the truncated

boundary conditions, (3.11), at the lower boundary, Ẑ = RoLĥb reads

ŵ = RoLû⊥ · ∇̂⊥ĥb, (5.10)

and the truncated boundary conditions, (3.30), (3.13), (3.14) and (3.29) at the
free surface Ẑ = 1 +RoLFLζ̂ reads

ŵ = RoLFL

(
∂

∂t̂
+ û⊥ · ∇̂⊥

)
ζ̂ , (5.11)

ατ̂XZ =
∂û

∂Ẑ
, (5.12)

ατ̂Y Z =
∂v̂

∂Ẑ
, (5.13)

ˆ̃p = ˆ̃pa. (5.14)
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where ˆ̃pa is the pressure deviation of the atmospheric pressure at the interface.
Just to clarify, the nabla-operator in the slab-approximation is given by

∇̂⊥ = X̂
∂

∂ X̂
+ Ŷ

∂

∂ Ŷ
, (5.15)

∇̂‖ = Ẑ
∂

∂ Ẑ
. (5.16)

Similar as in the previous chapter we will use a regular pertubation method to
determine the dynamics of the zeroth- and first-order variables based on the small
parameter RoL. Therefore, we have to determine the order of magnitude of the
other dimensionless numbers with respect to the local Rossby number RoL. Ac-
cording to Table 3.2, the dimensionless numbers are related to the Rossby number
by; FL ∼ O(RoL), β ∼ O(1), Ek⊥ ∼ O(RoL), Ek‖ ∼ O(Ro2

L), BuL ∼ O(1),
Ma ∼ O(Ro2

L), Eu ∼ O(1/Ro3
L), Pet

⊥ ∼ O(1/Ro2
L), Pet

‖ ∼ O(1/Ro2
L) and

α ∼ O(1/RoL), but the magnitude of δT̃m/Tm and δS̃m/Sm are not known. Since
the salinity deviation is not included in the thermodynamic equation for the mass
density, this equation is disconnected from the description. For the mass density,
we have that δρ̃m/ρm = RoLFL, so we will assume that this also applies for the

temperature, i.e., δT̃m/Tm = RoLFL. We have a dilemma in the equations, since
the fluid is incompressible to O(Ro2

L), should this imply that sound waves are not
included in the description. However, The thermodynamic equation for the mass
density, (5.4), contains a pressure term that is associated with compression. This
term has to be neglected in order to obtain a consistent model. The beauty of
neglecting the pressure term is that the density varies only as a consequence of
changes in the temperature and advection with the background density. Since the
fluid in addition is shallow, i.e. γ ∼ O(RoL), we will assume that the background
density is constant, ρ̂h = 1, together with the thermodynamic coefficients , e.g.
ĉp = β̂T = 1. Hence, the reduced continuity and the momentum equations are
given by

RoL
d̂

dt
û⊥ = − 1

1 +RoLFLˆ̃ρ
∇̂⊥ˆ̃p+

Ek⊥
2
∇̂2
⊥û⊥ +

Ek‖
2
∇̂2
‖û⊥

−γ
Γ
RoLŶ Ŷ × û‖ −

(
1 +RoLβŶ

)
Ẑ× û⊥ (5.17)

0 = −∇̂‖ˆ̃p+ ˆ̃ρĝ, (5.18)

0 = ∇̂⊥ · û⊥ + ∇̂‖ · û‖, (5.19)
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and the reduced thermodynamical equations are

RoLFL

(̂
d

dt

)
ˆ̃ρ = BuL FLN̂

2ŵ − 1

Pet
⊥
∇̂2
⊥

ˆ̃
T − 1

Pet
‖
∇̂2
‖
ˆ̃
T (5.20)

RoLFL

(̂
d

dt

)
ˆ̃
T + N̂2

Tpŵ =
1

1 +RoLFLˆ̃ρ

(
1

Pet
⊥
∇̂2
⊥

ˆ̃
T +

1

Pet
‖
∇̂2
‖
ˆ̃
T

)
. (5.21)

Note that the truncated equations indeed satisfy the Boussinesq approximation
because the density deviation is so small that it can be neglected to first order,
except in the buoyancy term (gravity term). This means that although the Boussi-
nesq approximation has the property that it filters out sound waves, it still exist
a compressibility term in the equation of state. Therefore one should have in-
troduced additional requirements that the Boussinesq approximation is only valid
when the sound speed is infinitely large.

5.1 The asymptotic reduction

Similar to the previous chapter, we will assume that the solutions of equation
(5.17), (5.18), (5.19), (5.20) and (5.21) can be expanded in a regular power series
in RoL,

û⊥

(
X̂, t̂;RoL

)
=

∞∑
i=0

RoiLûi,⊥

(
X̂, t̂

)
, (5.22)

û‖

(
X̂, t̂;RoL

)
=

∞∑
i=0

RoiLûi,‖

(
X̂, t̂

)
, (5.23)

ˆ̃p
(
X̂, t̂;RoL

)
=

∞∑
i=0

RoiL
ˆ̃pi

(
X̂, t̂

)
, (5.24)

ˆ̃ρ
(
X̂, t̂;RoL

)
=

∞∑
i=0

RoiL
ˆ̃ρi

(
X̂, t̂

)
, (5.25)

ˆ̃
T
(
X̂, t̂;RoL

)
=

∞∑
i=0

RoiL
ˆ̃
T i

(
X̂, t̂

)
, (5.26)

such that
(
û0,⊥, û0,‖, ˆ̃p0,

ˆ̃ρ0,
ˆ̃
T 0

)
are equal asymptotically to

(
û⊥, û‖, ˆ̃p, ˆ̃ρ,

ˆ̃
T
)

when

RoL → 0 and where
(
ûn,⊥, ûn,‖, ˆ̃pn,

ˆ̃ρn, ,
ˆ̃
T n

)
are independent of RoL. By substi-

tuting the expansions (5.22), (5.23), (5.24), (5.25) and (5.26) into the equations
(5.17), (5.18), (5.19), (5.20) and (5.21), and collecting parts of the same order, we
obtain equations determining the dynamics to the desired order.
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5.1.1 The geostrophic flow

To zeroth order in RoL, the horozontal momentum equation reduces to a balance
between the zeroth order Coriolis force and the zeroth order pressure gradient,

0 = −∇̂⊥ˆ̃p0 − Ẑ× û0,⊥, (5.27)

which is the geostrophic balance. By taking the cross product of Ẑ with the
zeroth order balance, (5.27), we obtain a diagnostic equation for the zeroth order
horizontal velocity field û0,⊥ given by the zeroth order pressure gradient,

û0,⊥ = Ẑ× ∇̂⊥ˆ̃p0. (5.28)

Note that the horozontal divergence of the zeroth order horizontal velocity is di-
vergence free, i.e.,

∇̂⊥ · û0,⊥ = 0. (5.29)

Helmholtz’s theorem for vector fields in two dimensions, (??), says then that the
zeroth order pressure deviation acts as a streamfunction for the horizontal velocity.
The vertical momentum equation (5.18) to zeroth order gives that the zeroth order
pressure gradient is balanced with the zeroth order buoyancy force,

0 = −∇̂‖ˆ̃p0 − ˆ̃ρ0 Ẑ, (5.30)

where we have used that the unit vector along the gravity is in the negative vertical
direction, ĝ = −Ẑ. Equations (5.27) and (5.30) show that the zeroth order pressure
deviation is undetermined to this order. The continuity equation (5.19), to lowest
order in RoL reads

0 = ∇̂⊥ · û0,⊥ + ∇̂‖ · û0,‖, (5.31)

and since the first term on the right hand side is constrained to be zero according
to equation (5.29), it follows that the vertical divergence of the vertical velocity is
zero,

∇̂‖ · û0,‖ = 0. (5.32)

So far we have seen that the dynamics of the baroclinic model to lowest order
is equal to the dynamics of the barotropic model to lowest order, except that the
pressure now depends on the vertical coordinate. Thus the horizontal velocity field
û0,⊥ also depends on the vertical coordinate. This means that there exists a vertical
shear in the the horizontal velocity field û0,⊥. By differentiating equation (5.28)

with respect to the vertical coordinate Ẑ and use the lowest order momentum
balance in the vertical direction (5.30), it follows that the vertical shear in the
geostrophic flow is related to the horizontal gradient of the mass density deviations
by

∂û0,⊥

∂Ẑ
= −Ẑ× ∇̂⊥ˆ̃ρ0. (5.33)
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This equation is often referred as the thermal wind balance. The lowest order
boundary condition, (5.10), at the bottom Ẑ0 = 0 is

ŵ0 = RoLû0,⊥ · ∇̂⊥ĥb, (5.34)

and the lowest order boundary conditions, (5.11), (5.12), (5.13) and (5.14), at the
free surface Ẑ0 = 1 are

ŵ0 = 0, (5.35)

ατ̂XZ =
∂û0

∂Ẑ
, (5.36)

ατ̂Y Z =
∂v̂0

∂Ẑ
, (5.37)

ˆ̃p0 = 0. (5.38)

From equation (5.32) and (5.35) it follows that the zeroth order vertical velocity
is equal to zero, ŵ0 = 0 everywhere in space and time. Thus it follows that the
thermodynamic equations do not give any contribution to orderRoL. Similar to the
barotropic model there is a contradiction in the boundary value conditions (5.34),
(5.36) and (5.37). According to the discussion in section 4.1.1, the consequence of
the dilemma is that there must exist boundary layers at Ẑ0 = 0 and Ẑ0 = 1.

5.1.2 The ageostrophic flow

To first order in RoL, the horizontal momentum equation is(
∂

∂t̂
+ û0,⊥ · ∇̂⊥

)
û0,⊥ = −∇̂⊥ˆ̃p1 +

1

Ret
⊥
∇̂2
⊥û0⊥−βŶ Ẑ× û0,⊥− Ẑ× û1,⊥, . (5.39)

which is the same as for the first order horizontal equation in the barotropic model
(5.39). This is very useful since we can use some results from the vorticity formal-
ism of the previous chapter later. Note that the advection term is a pure advection
of the horizontal velocity by itself since the vertical velocity to lowest order is zero.
The vertical momentum equation to first order in RoL provides that the vertical
gradient of ˆ̃p1 is balanced by the first order buoyancy force,

0 = −∇̂‖ˆ̃p1 − ˆ̃ρ Ẑ. (5.40)

The continuity equation to first order in RoL is as expected

0 = ∇̂⊥ · û1,⊥ + ∇̂‖ · û1,‖. (5.41)
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The thermodynamic equation for the mass density to first order in RoL is(
∂

∂t̂
+ û0,⊥ · ∇̂⊥

)
ˆ̃ρ0 = BuL N̂

2ŵ1 −
1

RoLFL

(
1

Pet
⊥
∇̂2
⊥ +

1

Pet
‖
∇̂2
‖

)
ˆ̃
T 0 (5.42)

and the heat equation (5.21) to first order is(
∂

∂t̂
+ û0,⊥ · ∇̂⊥

)
ˆ̃
T 0 = − 1

FL
N̂2
Tpŵ1 +

1

RoLFL

(
1

Pet
⊥
∇̂2
⊥ +

1

Pet
‖
∇̂2
‖

)
ˆ̃
T 0. (5.43)

5.2 The boundary layers

The boundary layers of the baroclinic model is quite similar to the boundary layers
in the barotropic model, except that we have a stratified fluid. Thus, we will refer
to some previous discussions that are valid for both cases, and instead concentrate
the discussion about, what is the effect of stratification on the boundary layers.
The method will be to introduce a stretched boundary layer coordinate, linking
together the variables in the boundary layer with the variables in the interior and
use this to determine the boundary value conditions of the interior. From the
beginning, we will use that the characteristic length scale of the boundary layers
must be of O(

√
Ek‖δL‖,m), in order to have that the horizontal turbulent mixing

of momentum due to shear in the horisontal velocity û∗⊥ is of O(1).

5.2.1 The bottom Ekman layer

As for the barotropic model, the stretched boundary layer coordinate at the lower
boundary Ẑ0 = 0 is

Ẑ∗ =
1√
Ek‖

Ẑ, (5.44)

where the corresponding scaled vertical nabla-operator is

∇̂∗‖ =
√
Ek‖∇̂‖ ⇔ ∂

∂Ẑ∗
=
√
Ek‖

∂

∂Ẑ
. (5.45)

All other variables have the same scaling in the boundary layer as for the interior,
except for the vertical velocity, which is given by

û∗‖ =
1√
Ek‖

û‖. (5.46)
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Hence it follows that the rescaled equations of motion in the lower boundary layer
is

RoL

(
∂

∂t̂
+ û∗⊥ · ∇̂⊥ + û∗‖ · ∇̂∗‖

)
û∗⊥ =− 1

1 +RoLFLˆ̃ρ
∗ ∇̂⊥ˆ̃p

∗
+
Ek⊥

2
∇̂2
⊥û∗⊥

+
1

2
∇̂∗2‖ û∗⊥ −

γ

Γ
RoL

√
Ek‖Ŷ Ŷ × û∗‖

−
(

1 +RoLβŶ
)

Ẑ× û∗⊥ (5.47)

0 =− ∇̂∗‖ˆ̃p
∗
−
√
Ek‖ˆ̃ρ

∗
Ẑ, (5.48)

0 =∇̂⊥ · û∗⊥ + ∇̂∗‖ · û∗‖, (5.49)

and the rescaled lower boundary condition at Ẑ∗ = RoL√
Ek‖

ĥb,

ŵ =
RoL√
Ek‖

û∗⊥ · ∇̂⊥ĥb. (5.50)

If we now use that the solution of (û∗⊥, û
∗
‖,

ˆ̃p
∗
) can be expanded similar to (4.42),

(4.43) and (4.44), and that the solution to the mass density can be expanded as

ˆ̃ρ
∗ (

X̂⊥, Ẑ
∗, t̂;RoL

)
=
∞∑
i=0

RoiL
ˆ̃ρ
∗
i

(
X̂⊥, Ẑ

∗, t̂
)
, , (5.51)

it follows to zeroth order in RoL that the the lowest order dynamics in the lower
boundary layer is dominated of a horizontal balance between the zeroth order
Coriolis force, the zeroth order friction force and the zeroth order pressure gradient,

0 = −∇̂⊥ˆ̃p
∗
0 +

1

2
∇̂∗2‖ û∗0,⊥ − Ẑ× û∗0,⊥. (5.52)

The corresponding vertical momentum equation gives that the lowest order pres-
sure is independent of the vertical coordinate in the boundary layer

0 = ∇̂∗‖ˆ̃p
∗
0, (5.53)

such that the lowest order density is undetermined to this order. This implise that
the lowest order pressure is constant over the boundary layer. The lowest order
continuity equation is

0 = ∇̂⊥ · û∗0,⊥ + ∇̂∗‖ · û∗0,‖. (5.54)

The lowest order dynamics in the boundary layer in the baroclinic model is actu-
ally completely similar to the lowest order dynamics in the boundary layer in the
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barotropic model. Thus, we expect that the solution of the boundary value condi-
tions will be exactly the same. The only difference so far is that the lowest-order
pressure in the interior depends on the vertical coordinate in the baroclinic model,
in contrast to the barotropic model. This means that we can not connect the vari-
ables in the interior with the variables in the boundary layer in the same way as
for the barotropic model. By using the vertical Laplace operator ∇̂∗2‖ on equation

(5.52), the system transforms into two linear fourth-order differential equations

∇̂∗4‖ û∗0,⊥ + 4û∗0,⊥ = 4Ẑ× ∇̂⊥ˆ̃p
∗
0. (5.55)

The general solution to equation (5.55) is given by

û∗0,⊥ = Ẑ× ∇̂⊥ˆ̃p
∗
0 + eẐ

∗
(
A1 cos Ẑ∗ + A2 sin Ẑ∗

)
+ e−Ẑ

∗
(
A3 cos Ẑ∗ + A4 sin Ẑ∗

)
,

(5.56)
where the coefficients are given by

A1 = [A,−B]T , A2 = [B,A]T , A3 = [C,D]T , A4 = [D,−C]T . (5.57)

By using that the boundary layer variables must merge smoothly to the interior
variables in the transistion region Ẑ∗ →∞, and that the boundary layer velocity
is zero at the bottom Ẑ∗ = RoL/

√
Ek‖ĥb it can be shown (by the same way as

previously) by using the continuity equation (5.54) that the first order boundary
condition to the vertical velocity in the interior at Ẑ0 = 0 is

ŵ1

(
X̂⊥, 0, t̂

)
= û0,⊥ · ∇̂⊥ĥb +

1

2

√
Ek‖

RoL
Ẑ ·
(
∇̂⊥ × û0,⊥

)
. (5.58)

This is the same result as for the barotropic model, just as we expected.

5.2.2 The upper Ekman layer

As for the barotropic model, the stretched boundary layer coordinate at the upper
boundary Ẑ0 = 1 is

Ẑ∗∗ =
1− Ẑ√
Ek‖

, (5.59)

and the corresponding vertical nabla-operator is

∇̂∗∗‖ = −
√
Ek‖∇̂‖ ⇔ ∂

∂Ẑ∗∗
= −

√
Ek‖

∂

∂Ẑ
. (5.60)

All other variables have the same scaling in the boundary layer as for the interior
domain, except for the vertical velocity, which is given by (5.46). Hence it follows
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that the rescaled equations of motion in the upper boundary layer is

RoL

(
∂

∂t̂
+ û∗∗⊥ · ∇̂⊥ − û∗∗‖ · ∇̂∗∗‖

)
û∗∗⊥ =− 1

1 +RoLFLˆ̃ρ
∗∗ ∇̂⊥ˆ̃p

∗∗
+
Ek⊥

2
∇̂2
⊥û∗∗⊥

+
1

2
∇̂∗∗2‖ û∗∗⊥ −

γ

Γ
RoL

√
E‖Ŷ Ŷ × û∗∗‖

−
(

1 +RoLβŶ
)

Ẑ× û∗∗⊥ (5.61)

0 =∇̂∗∗‖ ˆ̃p
∗∗
−
√
E‖ ˆ̃ρ

∗∗
Ẑ, (5.62)

0 =∇̂⊥ · û∗∗⊥ − ∇̂∗∗‖ · û∗∗‖ , (5.63)

and the rescaled boundary conditions at the free surface Ẑ∗∗ = −RoLFL/
√
E‖ζ̂

∗∗

ŵ∗∗ =
RoLFL√

E‖

(
∂

∂t̂
+ û⊥ · ∇̂⊥

)
ζ̂∗∗, (5.64)

α∗∗τ̂XZ = − ∂û
∗∗

∂Ẑ∗∗
, (5.65)

α∗∗τ̂Y Z = − ∂v̂
∗∗

∂Ẑ∗∗
, (5.66)

where the new rescaled dimensionless number is α∗∗ = α
√
Ek‖. By applying that

the solution can be expanded in a regular power serie in RoL, equations (4.42),
(4.43), (4.44) and (5.51), we find that the lowest order dynamics in the upper
boundery layer is described by

0 = −∇̂⊥ˆ̃p
∗∗
0 +

1

2
∇̂∗∗2‖ û∗∗0,⊥ − Ẑ× û∗∗0,⊥, (5.67)

0 = ∇̂∗∗‖ ˆ̃p
∗∗
0 , (5.68)

0 = ∇̂⊥ · û∗∗0,⊥ − ∇̂∗∗‖ · û∗∗0,‖, (5.69)

with the corresponding boundary value conditions at Ẑ∗∗ = 0

ŵ∗∗0 = 0, (5.70)

α∗∗τ̂XZ = − ∂û
∗∗
0

∂Ẑ∗∗
, (5.71)

α∗∗τ̂Y Z = − ∂v̂
∗∗
0

∂Ẑ∗∗
. (5.72)

The lowest order dynamics in the upper boundary layer for the barotropic model
is very similar to the lowest order dynamics in the upper boundary layer in the
baroclinic model, the only difference is the boundary value condition (5.70). What
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this mean is that the deformation of the interface, ζ makes no contribution to the
lowest order dynamics since the local rotational Froud number is of O(RoL) and
the local Burger number is of O(1). Similar to the lower boundary layer, the zeroth

order mass density ˆ̃ρ
∗∗
0 in the upper boundary layer is undetermined to this order.

This means that the stratification will have no effect on the upper boundary layer
to the lowest order. Thus, we expect that the solution of equation (5.67) will
give the same solution as in the barotropic model, apart from the contribution of
vorticity due to the deformation of the interface. By using that the boundary layer
variables must merge smoothly to the interior variables in the transistion region
Ẑ∗∗ → ∞, and that the boundary layer velocity is zero at the free surface (5.70)
Ẑ∗∗ = 0 in addition to the dynamical boundary conditions (5.71) and (5.72), it can
be shown (by the same way as previously) by using the continuity equation (5.69)
that the first order boundary condition to the vertical velocity in the interior at
Ẑ0 = 1 is

ŵ1

(
X̂⊥, 1, t̂

)
=

√
Ek‖

RoL

α∗∗

2
Ẑ ·
(
∇̂⊥ × T̂

)
. (5.73)

where T̂ is the dimensionless wind-stress vector given by T̂ = τ̂XZX̂ + τ̂Y ZŶ.

5.3 The baroclinic quasi-geostrophic potential vor-

ticity

Since the horizontal momentum equation to zero- and first order in RoL is the
same for both the barotropic model and the baroclinic model, the corresponding
vorticity equation associated with the geostrophic velocity û0,⊥ is equal. The
zeroth order vorticity Θ0 is given by equation (4.94), which is described by the
vorticity equation (4.104). Taking the dot product of the unit vector in the vertical

direction Ẑ with equation (4.104), the vorticity equation may be written as(
∂

∂t̂
+ û0,⊥ · ∇̂⊥

)
∇̂2
⊥

ˆ̃p0 =
1

Ret⊥
∇̂4
⊥

ˆ̃p0 − û0,⊥ · ∇̂⊥
(
βŶ
)

+ ∇̂‖ · û1,‖. (5.74)

Similar to in the barotropic model, the vorticity equation depends on the first
order vertical velocity. In the barotropic vorticity equation we had that all terms
was independent of the vertical coordinate, so that we could eliminate ŵ1 by
integrating the equation over the vertical coordinate. In this case the baroclinic
vorticity equation depends on the vertical coordinate, thus we must eliminate ŵ1 in
a different way. The best way to do this is to use the thermodynamic equation for
the mass density (5.42), since we know the relationship between the zeroth order

mass density ˆ̃ρ0 and pressure ˆ̃p0. By substituting equation (5.30) into equation
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(5.42), we find an expression for the vertical velocity to first order,

ŵ1 = −
(
∂

∂t̂
+ û0,⊥ · ∇̂⊥

)(
1

BuL

1

N̂2

∂ˆ̃p0

∂Ẑ

)

+
1

RoLFLBuL

1

N̂2

(
1

Pet
⊥
∇̂2
⊥ +

1

Pet
‖
∇̂2
‖

)
ˆ̃
T 0, (5.75)

where we have used that the buoyancy frequency N̂ only depends on the verti-
cal coordinate. Thus, by differentiating equation (5.75) with respect of Ẑ and
substituting the result into equation (5.74), the vorticity equation becomes(

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)(
∇̂2
⊥

ˆ̃p0 +
1

BuL

∂

∂Ẑ

(
1

N̂2

∂ˆ̃p0

∂Ẑ

)
+ βŶ

)

=
1

Ret⊥
∇̂4
⊥

ˆ̃p0 +
1

RoLFLBuL

∂

∂Ẑ

(
1

N̂2

(
1

Pet
⊥
∇̂2
⊥ +

1

Pet
‖
∇̂2
‖

)
ˆ̃
T 0

)
, (5.76)

where we have used that the vorticity due to the variation in the Coriolis parameter

can be written as û0,⊥ · ∇̂⊥
(
βŶ
)

= β v̂0 = β ∂ˆ̃p0/∂X̂ together with the defini-

tion of the meridional velocity v̂0 =
(
∂/∂t̂+ û0,⊥ · ∇̂⊥

)
Ŷ . The lower boundary

condtion to the quasi-geostrophic potential vorticity equation at Ẑ0 = 0 can be for
formulated as(

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)(
1

BuL

1

N̂2

∂ˆ̃p0

∂Ẑ
+ ĥb

)

=
1

RoLFLBuL

1

N̂2

(
1

Pet
⊥
∇̂2
⊥ +

1

Pet
‖
∇̂2
‖

)
ˆ̃
T 0 −

1

2

√
E‖

RoL
∇̂2
⊥

ˆ̃p0, (5.77)

where we have used the lower boundary conditions for the first order verical velocity
(5.58) together with (5.75), and the upper boundary condition at Z0 = 1 can be
formulated as(

∂

∂t̂
+ û0,⊥ · ∇̂⊥

)(
1

BuL

1

N̂2

∂ˆ̃p0

∂Ẑ

)

=
1

RoLFLBuL

1

N̂2

(
1

Pet
⊥
∇̂2
⊥ +

1

Pet
‖
∇̂2
‖

)
ˆ̃
T 0 −

√
Ek‖

RoL

α∗∗

2
Ẑ ·
(
∇̂⊥ × T̂

)
.

(5.78)

where we have used (5.73) together with (5.75).



Chapter 6

An interacting baroclinic ocean
circulation model

In this chapter we will extend the model from the previous chapter by taking into
account the interaction between the global and local scales. The method we will use
is a multi-scale expansion which is based on spatial and temporal scale separation.
Since the model will depend on the global scale, we can not use slab-coordinates,
such that we have to keep the equations in a spherical coordinate system. To
illustrate the method in a best possible way, we neglect all dissipation terms, so
that the heat equation and salinity equation disconnect from the system. If we
use that the dimensionless numbers have the same magnitude as in the previous
chapter and filters out sound waves as in the previous chapter, it follows that the
truncated continuity equation is

0 = ∇̂ · û, (6.1)

the truncated momentum equations are

Ro
̂(du
dt

)
⊥

= − 1

1 +RoF ˆ̃ρ
∇̂⊥ˆ̃p− γ cos θ θ̂ × û‖ − sin θ r̂× û⊥, (6.2)

0 = −∇̂‖ˆ̃p− ˆ̃ρr̂, (6.3)

and the truncated thermodynamic mass density equation is

Ro

(̂
d

dt

)
ˆ̃ρ = Bu N̂2ŵ, (6.4)

where the horizontal acceleration term iŝ(du
dt

)
⊥

=

(
∂û⊥

∂t̂

∣∣∣∣
ei

+ û · ∇̂û⊥

∣∣∣
ei

+ γΓ
ŵ

r̂
û⊥ + Γ

û

r̂
tan θ r̂× û⊥

)
, (6.5)
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and the total time derivative is(̂
d

dt

)
=

(
∂

∂ t̂
+ û · ∇̂

)
. (6.6)

Since the equations are in a spherical coordinate system the nabla-operators are

∇⊥ = φ̂
1

rmr̂ cos θ

∂

∂φ
+ θ̂

1

rmr̂

∂

∂θ
, ∇‖ = r̂

∂

∂ Z
, (6.7)

where the normalized operators are ∇̂⊥ = δL⊥,m∇⊥ and ∇̂‖ = δL‖,m∇‖ and the

normalized radius r̂ is given by equation (2.171), i.e. r̂ = 1 + γΓẐ. Where we
have redefine the vertical coordinate Z = r − rm. It should be noted that the
model will be limited to the midlatitude, such that sin θ, cos θ will be of O(1).
This means that the local Rossby number RoL is replaced by the Rossby number
Ro. Therefore, we have used that Ro Ẽu ∼ O(1) and that the dimensionless mass

density is ρ̂ = ρ̂h + RoF ˆ̃ρ. Similar to the previous chapter we have used that
the fluid is shallow, such that the background mass denisity and the gravity is
approximated constant, i.e., ρ̂h ≈ 1 and ĝ = −r̂.

6.1 The local and global equations

For the dynamics in the midlatitudes, there exist two distinct scales. One large-
scale assosiated with the planetary scale, which means phenomena comparable to
the earth’s radius rm, and then also one scale that is comperable to the deforma-
tion radius LD. From now we will call this small-scale. The deformation radius is
given by that length scale where rotational effects becomes equally important as
other phenomena, e.g., buoyancy. As previously discussed, we have that the di-
mensionless number that indicates the importance of stratification versus rotation
is Burgers number Bu. From the definition of Bu, equation (2.194), it follows that
the length-scale where stratification and rotation are equally important is

LD =
NmδL‖,m

2Ω
, (6.8)

such that the Burgers number can be written as

Bu =

(
LD
δL⊥,m

)2

. (6.9)

Since the local dynamics in our case is characterized such that Bu is of O(1), it
follows that the characteristic length scale δL⊥,m of the local dynamics is of O(LD).
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Therefore, we anticipate the existence of small and large spatial scales associated
with the local and global motions, respectively. These are formally defined by

ξ⊥ = φ̂φ+ θ̂ θ, X⊥ = Γ
(
φ̂φ+ θ̂ θ

)
, (6.10)

where ξ⊥ = φ̂φl + θ̂ θl are the local independent horizontal coordinates and

X⊥ = φ̂φg + θ̂ θg are the global independent horizontal coordiantes. In the fol-
lowing, these spatial scales will be treated as distinct independent variables. The
separation of scale implies that the horizontal nabla operator transforms as

∇⊥ = ∇l,⊥ + Γ∇g,⊥ (6.11)

where

∇l,⊥ = φ̂
1

rmr̂ cos θg

∂

∂φl
+ θ̂

1

rmr̂

∂

∂θl
, (6.12)

∇g,⊥ = φ̂
1

rmr̂ cos θg

∂

∂φg
+ θ̂

1

rmr̂

∂

∂θg
, (6.13)

In dimensionless form the new nabla operator is

∇̂⊥ = ∇̂l,⊥ + Γ∇̂g,⊥. (6.14)

Similary, there exists fast and slow temporal scales associated with the local and
global motions, given by

t̂l = t̂, t̂g = Γt̂, (6.15)

such that the partial time derivative transforms as

∂

∂t̂
=

∂

∂t̂l
+ Γ

∂

∂t̂g
(6.16)

This means that the local motion occurs on a time scale that is O(1) and the global
motion takes place on a time scales that is O(1/Γ). In the following, these two
temporal scales will be treated as distinct independent variables. By introducing
the seperation of fast and slow spatio-temporal scales into the equations of motion,
(6.1), (6.2), (6.3) and (6.4), we obtain the continuity equation,

0 =
(
∇̂l,⊥ + Γ∇̂g,⊥ + ∇̂‖

)
· û, (6.17)

the horizontal momentum equation

Ro

[(
∂û⊥

∂t̂l

∣∣∣∣
ei

+ û ·
(
∇̂l,⊥ + ∇̂‖

)
û⊥

∣∣∣
ei

)
+ Γ

(
∂û⊥

∂t̂g

∣∣∣∣
ei

+ û · ∇̂g,⊥û⊥

∣∣∣
ei

)

+γΓ
ŵ

r̂
û⊥ + Γ

û

r̂
tan θ r̂× û⊥

]
= − 1

1 +RoF ˆ̃ρ

(
∇̂l,⊥ + Γ∇̂g,⊥

)
ˆ̃p

− γ cos θ θ̂ × û‖ − sin θ r̂× û⊥, (6.18)



94CHAPTER 6. AN INTERACTING BAROCLINIC OCEAN CIRCULATIONMODEL

the vertical momentum equation

0 = −∇̂‖ˆ̃p− ˆ̃ρr̂, (6.19)

and the thermodynamic mass density equation

Ro

[(
∂ˆ̃ρ

∂t̂l
+ û ·

(
∇̂l,⊥ + ∇̂‖

)
ˆ̃ρ

)
+ Γ

(
∂ˆ̃ρ

∂t̂g
+ û · ∇̂g,⊥ˆ̃ρ

)]
= Bu N̂2ŵ. (6.20)

Similar to the previous chapters, we will assume that the solutions of equations
(6.17), (6.18), (6.19) and (6.20) can be expanded in a regular power series in the
Rossby number Ro, but since we have introduced multiple scales in the equations,
there must be some small adjustments. From equation (6.20) it follows that the

advection of ˆ̃ρ by the vertical velocity û‖ must be of O(1/Ro), in order to satisfy
the right hand side of the equation. This implies that the regular expansion of the
mass density must be

ˆ̃ρ
(
x̂, t̂;Ro

)
=

1

Ro

∞∑
i=0

Roi ˆ̃ρi

(
ξ̂⊥, X̂⊥, Ẑ, t̂l, t̂g

)
, (6.21)

which in turn implies that the pressure must be scaled similarly in order to to
satisfy equation (6.19),

ˆ̃p
(
x̂, t̂;Ro

)
=

1

Ro

∞∑
i=0

Roi ˆ̃pi

(
ξ̂⊥, X̂⊥, Ẑ, t̂l, t̂g

)
. (6.22)

The horizontal momentum equation (6.18) gives that the velocity must be of O(1)
to prevent the velocity field to achieves unnaturally large values. If the velocity
field was of O(1/Ro), this would imply that the Rossby number was of O(1), which
is wrong. Therefore, the expansions in the velocity fields are

û⊥
(
x̂, t̂;Ro

)
=
∞∑
i=0

Roi ûi,⊥

(
ξ̂⊥, X̂⊥, Ẑ, t̂l, t̂g

)
, (6.23)

û‖
(
x̂, t̂;Ro

)
=
∞∑
i=0

Roi ûi,‖

(
ξ̂⊥, X̂⊥, Ẑ, t̂l, t̂g

)
. (6.24)

Due to introduction of multiple scales in the equations, we can not guarantee a
well defined asymptotic expansion of the solution. Therefore, we must impose
a solvability condition to guarantee that the expansion of the solution is well

defined. To guarantee that the asymptotic expansion of
(

ˆ̃ρ, ˆ̃p, û⊥, û‖

)
is well

defined,
(

ˆ̃ρi,
ˆ̃pi, ûi,⊥, ûi,‖

)
must have the property that it grows slower than linearly
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in any of the local coordinates
(
ξ̂⊥, t̂l

)
. This solvability conditions is known as the

sublinear growth condition. Mathematically it can be formulated as follow: Let Ĉl

denotes one of the local spatio-temporal coordinates
(
ξ̂⊥, t̂l

)
, and let Ĉg denotes

one of the global spatio-temporal coordinates
(
X̂⊥, t̂g

)
. Then the sublinear growth

condition for Ĉl implies that each variable V̂ =
(

ˆ̃ρi,
ˆ̃pi, ûi,⊥, ûi,‖

)
must satisfy the

limit

lim
Ro→0

V̂

Ĉl + 1
= lim

Ro→0

V̂
Ĉg
Ro

+ 1
= 0, (6.25)

when all coordinates are held fixed with respect to Ro, exept Ĉl. Equation (6.25) is
not particularly useful, but has the significant consequence that the local average
of the derivative of V with respect of Cl must disappear, e.g.〈

∂ V

∂ Cl

〉
= lim

Ro→0

Ro

2δCl,m

∫ Cp
Ro

+
δCl,m
Ro

Cp
Ro
−
δCl,m
Ro

∂ V

∂ Cl
dCl = 0, (6.26)

where δCl,m is the characteristic length scale of Cl. Therefore, it is natural to
split all variables into a local average part and the deviation from this average.
Where the average is a spatio-temporal avarege over the local scale. This means
for example that the velocity field can be splitted as

û
(
ξ̂⊥, X̂⊥, Ẑ, t̂l, t̂g

)
= ûg

(
X̂⊥, Ẑ, t̂g

)
+ ûl

(
ξ̂⊥, X̂⊥, Ẑ, t̂l, t̂g

)
, (6.27)

where ûg is the spatio-temporal average of û and ûl is the deviation. We will just
use the notation 〈〉l for the spatio-temporal average operator later. Note

〈û〉l = ûg,〈
ûl
〉
l
= 0.

6.2 The reduced equation

In this section we will substitute the expansions (6.21), (6.22), (6.23) and (6.24)
into the equations of motion (6.17), (6.18), (6.19) and (6.20), and collect terms of
the same order to obtain the dynamics to desired order.

6.2.1 The lowest order dynamics

To lowest order in Ro the continuity equation reduces to

0 =
(
∇̂l,⊥ + ∇̂‖

)
·
(
û0,⊥ + û0,‖

)
= ∇̂l,⊥ · û0,⊥ + ∇̂‖ · û0,‖, (6.28)
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where we have used that the vertical divergence of the horizontal velocity is zero,
i.e., ∇̂‖ · û0,⊥ = 0, since the horizontal unit vectors in the spherical coordinate

system does not change with radius. In addition, it should be noted that ∇̂l,⊥ ·
û0,‖ = 2Γ ŵ0

r̂
does not give any contribution to lowest order, since this term is

of O(Γ). The lowest order horizontal momentum equation states that the lowest
order pressure is independent of local spatio-temporal coordinates,

0 = −∇̂l,⊥ˆ̃p0, (6.29)

which means that the deviation from the spatio-temporal avarege of ˆ̃p0 over the

local scale is zero, i.e. ˆ̃p
g

0 = ˆ̃p0 and ˆ̃p
l

0 = 0. Thus, the zeroth order pressure ˆ̃p0

may be associated with the large-scale dynamics. Later we will see that it is this
pressure that gives rise to the lowest-order horizontal velocity on a global scale.
The vertical momentum equation gives that the zeroth order pressure gradient is
balanced with the zeroth order buoyancy force,

0 = −∇̂‖ˆ̃p0 − ˆ̃ρ0r̂, (6.30)

which implies that the zeroth order mass density ˆ̃ρ0 is also independent of local
spatio-temporal coordinates. We will not write down the thermodynamic equation
for the mass density to lowest order, since it later will appear that this does not
make any contribution because the vertical velocity to lowest order will turn out
to be zero.

6.2.2 The geostrophic flow

To first order in Ro the continuity equation reduces to

0 = ∇̂l,⊥ · û1,⊥ + ∇̂‖ · û1,‖ +
Γ

Ro
∇̂g,⊥ · û0,⊥, (6.31)

where ∇̂l,⊥ · û1,‖ and ∇̂g,⊥ · û0,‖ are not included since these terms are one order
of magnitude higher than the other terms. The first order horizontal momentum
equation gives that the Coriolis force is balanced by the local pressure gradient to
first order and the global pressure gradient to zeroth order

0 = −∇̂l,⊥ˆ̃p1 −
Γ

Ro
∇̂g,⊥ˆ̃p0 − sin θg r̂× û0,⊥, (6.32)

since Γ
Ro

is of O(1). Note that the only contribution to the first term on the right

hand side of the horizontal momentum equation is ˆ̃p
l

1, since ˆ̃p
g

1 only depend on the
global coordiantes. By taking the spatio-temporal average of equation (6.32) over
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the local scales, it follows that the Coriolis force that is associated with the large-
scale part of the horizontal velocity field is balanced by the horizontal pressure
gradient which corresponds to the large-scale dynamics,

0 = − Γ

Ro
∇̂g,⊥ˆ̃p0 − sin θg r̂× ûg

0,⊥. (6.33)

Similar, by subtracting the average equation (6.33), from equation (6.32), it follows
that the Coriolis force that is associated with the small-scale part of the horizontal
velocity field is balanced by the horizontal pressure gradient which correspond to
the small-scale dynamics,

0 = −∇̂l,⊥ˆ̃p1 − sin θg r̂× ûl
0,⊥. (6.34)

If we take the cross product with r̂ of equations (6.33) and (6.34), it follows that the
horizontal velocity field associated with the large and small scales are respectively
given by

ûg
0,⊥ =

Γ

Ro

1

sin θg
r̂× ∇̂g,⊥ˆ̃p0, (6.35)

ûl
0,⊥ =

1

sin θg
r̂× ∇̂l,⊥ˆ̃p1, (6.36)

such that the total horizontal velocity field is given by

û0,⊥ = ûg
0,⊥ + ûl

0,⊥, (6.37)

=
Γ

Ro

1

sin θg
r̂× ∇̂g,⊥ˆ̃p0 +

1

sin θg
r̂× ∇̂l,⊥ˆ̃p1. (6.38)

Note that the large-scale horizontal velocity ûg
0,⊥ will be independent of the local

spatio-temporal coordinates and that the horizontal divergence of the zeroth order
horizontal velocity, (6.37), is divergence free;

∇̂l,⊥ · û0,⊥ = 0. (6.39)

Therefore, it follows from the lowest order continuity equation, (6.28), that the
vertical divergence of the zeroth order vertical velocity vanishes,

0 = ∇̂‖ · û0,‖, (6.40)

which implies that the zeroth order vertical velocity vanishes if it is zero at the
boundary. According to the boundary value conditions from chapter 5, it will be
zero to lowest order at the free surface, i.e.,

ŵ0 = 0, (6.41)
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everywhere in space and time. Because of equation (6.39), it also follows that the
horizontal velocity field which is associated with the small-scale dynamics also is
divergence free,

∇̂l,⊥ · ûl
0,⊥ = 0, (6.42)

hence, it follows from Helmholtz theorem and equation (6.36) that
ˆ̃p1

sin θg
acts as a

streamfunction for the lowest order local horizontal velocity field ûl
0,⊥.

The vertical momentum equation to first order in Ro gives the same balance as
the zero order vertical momentum equation, namely that the first order pressure
gradient is balanced with the first order buoyancy force

0 = −∇̂‖ˆ̃p1 − ˆ̃ρ1r̂, (6.43)

but since ˆ̃p0 and ˆ̃ρ0 are independent of the local spatio-temporal coordinates, equa-
tion (6.30) only describes a balance on a large scale, and hence there is a slight
difference between the equations. Because equation (6.43) describes a balance on
both small and large scale spatio-temporal scales. If we take the spatio-temproal
average of equation (6.43) over the local spatio-temporal scale, it follows to first
order that there exist a balance on the large scale,

0 = −∇̂‖ˆ̃p
g

1 − ˆ̃ρ
g

1r̂. (6.44)

Similar by subtracting equation (6.44) from equation (6.43) it follows that there
exist a balance on the small scale,

0 = −∇̂‖ˆ̃p
l

1 − ˆ̃ρ
l

1r̂. (6.45)

We see that (6.36), (6.42) and (6.45) are completely similar to the equations in
section 5.1.1. The only difference in this section is that we in addition determine
the dynamics that occurs on a large scales, and not surprisingly, the dynamics
associated with large scale are described by geostrophic balance and hydrostatic
equilibrium of the same order as the dynamics of small-scale when Γ

Ro
is of O(1).

In section 5.1.1 we saw that the horizontal velocity field to lowest order depend
on the vertical coordinate because the mass density was dependent on the vertical
coordinate. Therefore there is a vertical shear in the horizontal velocity which
was given by the horizontal density gradients, equation (5.33). Hence we expect
that the local horizontal velocity ûl

0,⊥ also has a vertical shear that depend on the

local gradient of ˆ̃ρ1. By differentiating equation (6.36) with respect of the vertical
coordinate Ẑ and use the first order momentum balance in the vertical direction
(6.43), it follows that the vertical shear in the local geostrophic velocity is related
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to the horizontal gradient of the first order mass density deviations by

∂ûl
0,⊥

∂Ẑ
= − 1

sin θg
r̂× ∇̂l,⊥ˆ̃ρ1. (6.46)

Similarly, differentiating equation (6.35) with respect of the vertical coordinate Ẑ
and useing the zeroth order momentum balance in the vertical direction (6.30), it
follows that the global geostrophic velocity also has a vertical shear that depend
on the horizontal gradient of the zeroth order mass density deviations by

∂ûg
0,⊥

∂Ẑ
= − 1

sin θg

Γ

Ro
r̂× ∇̂g,⊥ˆ̃ρ0. (6.47)

The thermodynamic equation for the mass density to first order in Ro is given by(
∂

∂t̂l
+ û0,⊥ · ∇̂l,⊥

)
ˆ̃ρ1 + û1,‖ · ∇̂‖ˆ̃ρ0 +

Γ

Ro

(
∂

∂t̂g
+ û0,⊥ · ∇̂g,⊥

)
ˆ̃ρ0 = Bu N̂2ŵ1,

(6.48)
where we have used that the zeroth order vertical velocity is zero, i.e., not included
in the advection terms. Already now we see how the separation of spatio-temporal
scales have led to interactions between scales. We see that the first order mass
density ˆ̃ρ1 is locally advected by the zeroth order total horizontal velocity (6.37),

and similarly the zeroth order mass density ˆ̃ρ0 is globally advected by the same
velocity (6.37). According to section 5.3 we know that the vorticity due to buoy-
ancy come from the thermodynamic equation for the mass density via the first
order vertical velocity. Thus, we expect that the term û1,‖ · ∇̂‖ˆ̃ρ0 plays the same

role as the stratification term Bu N̂2ŵ1 at least at the local scale. This means that
û1,‖ · ∇̂‖ˆ̃ρ0 will give rise to stratification on local scales in the sense that ˆ̃ρ0 will be

a background density compared to ˆ̃ρ1. Therefore, inspired by the definition of the
buoyancy frequency (2.192), we define a buoyancy frequency N0 associated with
the zero-order mass density by

N2
0 = − g

ρh

∂ρ̃0

∂ Z
. (6.49)

Using dimensionless numbers, it follows that equation (6.49) can be written as

Bug N̂
2
0 = −∂

ˆ̃ρ0

∂ Ẑ
, (6.50)

where we have used that ρ̂h ≈ 1 and defined the new Burger number Bug as

Bug =

(
N0,mδL‖,m
2ΩδL⊥,m

)2

. (6.51)
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Therefore, by substituting equation (6.50) into the thermodynamic mass density
equation (6.48) we get(

∂

∂t̂l
+ û0,⊥ · ∇̂l,⊥

)
ˆ̃ρ1 +

Γ

Ro

(
∂

∂t̂g
+ û0,⊥ · ∇̂g,⊥

)
ˆ̃ρ0 =

(
Bu N̂2 +Bug N̂

2
0

)
ŵ1.

(6.52)
By taking the spatio-temporal average of equation (6.52) over the local scales,
we can split the equation into an equation that describes the mass density at
the local scale and at the global scale. Before we do that, we will try to rewrite
the equation in a more friendly form, i.e., so it follows directly which part of
the equation which disappears under the averaging process. Since the buoyancy
frequency is independent of the local coordinates we can write equation (6.52) as

ŵ1 = −
(
∂

∂t̂l
+ û0,⊥ · ∇̂l,⊥

)[
sin θ

Bu N̂2 +Bug N̂2
0

∂

∂Ẑ

(
ˆ̃p1

sin θ

)]

+
1

Bu N̂2 +Bug N̂2
0

Γ

Ro

(
∂

∂t̂g
+ û0,⊥ · ∇̂g,⊥

)
ˆ̃ρ0. (6.53)

If we now use that the horizontal velocity field û0,⊥ can be split into two parts,
where the global part ûg

0,⊥ is independent of the local spatio-temporal coordinates
it follows that we can write equation (6.53) in such a way that we can isolate
all parts that are only dependent on global spatio-temporal coordinates from the
other terms, which depend on both global and local spatio-temporal coordinates.
The result is

ŵ1 = − ∂

∂t̂l

[
sin θ

Bu N̂2 +Bug N̂2
0

∂

∂Ẑ

(
ˆ̃p1

sin θ

)]

− ∇̂l,⊥ ·

(
û0,⊥

sin θ

Bu N̂2 +Bug N̂2
0

∂

∂Ẑ

(
ˆ̃p1

sin θ

))

+ ∇̂l,⊥ ·

[
1

Bu N̂2 +Bug N̂2
0

ˆ̃p1

∂ûg
0,⊥

∂Ẑ

]

+
1

Bu N̂2 +Bug N̂2
0

Γ

Ro

(
∂

∂t̂g
+ ûg

0,⊥ · ∇̂g,⊥

)
ˆ̃ρ0, (6.54)

where the last term on the right side depends only on global spatio-temporal co-
ordinates and the vertical coordinate, the remaining terms depend on both the
global- and local spatio-temporal coordinates. Note that in the second term on
the right hand side we have used that the zeroth order horizontal velocity is in-
compressible at the local scale. In the third term on the right hand side we have



6.2. THE REDUCED EQUATION 101

used the scalar triple product as follows

ûl
0,⊥ · ∇̂g,⊥ˆ̃ρ0 =

1

sin θ

(
r̂× ∇̂l,⊥ˆ̃p1

)
· ∇̂g,⊥ˆ̃ρ0

= − 1

sin θ
r̂ ·
(
∇̂g,⊥ˆ̃ρ0 × ∇̂l,⊥ˆ̃p1

)
= − 1

sin θ

(
r̂× ∇̂g,⊥ˆ̃ρ0

)
· ∇̂l,⊥ˆ̃p1

=
Ro

Γ

∂ûg
0,⊥

∂Ẑ
· ∇̂l,⊥ˆ̃p1

=
Ro

Γ
∇̂l,⊥ ·

(
∂ûg

0,⊥

∂Ẑ
ˆ̃p1

)
(6.55)

with help of equation (6.47) and equation (6.36), in addition to using that the
global velocity ûg

0,⊥ is independent of local coordinates. If we take the spatio-
temporal average of equation (6.54) over the local scale, it follows from the sublin-
ear growth conditions that the only surviving terms are the last term on the right
hand side of (6.54) and the global contribution of the vertical velocity ŵg1 to first
order on the left hand side of (6.54), i.e.,

ŵg1 =
1

Bu N̂2 +Bug N̂2
0

Γ

Ro

(
∂

∂t̂g
+ ûg

0,⊥ · ∇̂g,⊥

)
ˆ̃ρ0. (6.56)

Since equation (6.56) is an evolution equation for the lowest order mass density ˆ̃ρ0

confined to the global scale, it would be better to write (6.56) as

Γ

Ro

(
∂

∂t̂g
+ ûg

0,⊥ · ∇̂g,⊥ + ŵg1
∂

∂Ẑ

)
ˆ̃ρ0 = Bu N̂2ŵg1. (6.57)

where we have used equation (6.50). By subtracting equation (6.56) from (6.54)
it follows that the thermodynamic equation on the local scale is given by

ŵl
1 = −

(
∂

∂t̂l
+ û0,⊥ · ∇̂l,⊥

)[
sin θ

Bu N̂2 +Bug N̂2
0

∂

∂Ẑ

(
ˆ̃p1

sin θ

)]

+
sin θ

Bu N̂2 +Bug N̂2
0

∂ûg
0,⊥

∂Ẑ
· ∇̂l,⊥

(
ˆ̃p1

sin θ

)
. (6.58)

If we compare equation (6.58) and (6.57), we see that these equations can be used
to solve for the zeroth- and first order pressure and mass density, which can then be
used to find the velocity field to lowest order. But to do this we need to know the
first order vertical velocity, which is undetermined to this order. However, the main
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difference between the equations is that the global thermodynamic equation (6.57)
does not contain any interaction terms from local scales. This is not surprising
since we have the sublinear growth condition which says that the spatio-temporal
average of a local divergence of a variable is zero and in addition we know that the
zeroth order mass density have to be independent of local coordinates. The local
thermodynamic equation (6.58) contains two interaction terms with the global
scale on the right hand side. The first term describes local advection of the first
order mass density (since the vertical gradient of the first order pressure is equal
to the first order mass density) with the zeroth order horizontal global velocity,
and the second term describe local advection of the first order pressure with the
vertical shear of the zeroth order horizontal global velocity.

6.2.3 The ageostrophic flow

The only equation we have to find to second order in Ro is the horizontal mo-
mentum equation, because this equation will close the thermodynamic equations
(6.57) and (6.58). This means that we can find a complete equation for the verti-
cal velocity to first order that depends on lower order quantities. The horizontal
momentum equation to this order reads

∂ûl
0,⊥

∂t̂l

∣∣∣∣∣
ei

+ û0,⊥ · ∇̂l,⊥ûl
0,⊥

∣∣∣
ei

= −∇̂l,⊥ˆ̃p2 −
Γ

Ro
∇̂g,⊥ˆ̃p1 − sin θg r̂× û1,⊥. (6.59)

where we have used that the global horizontal velocity to zeroth order is indepen-
dent of global coordinates. Note that the advection term can be written as

û0,⊥ · ∇̂l,⊥ûl
0,⊥

∣∣∣
ei

=

(
∇̂l,⊥ × ûl

0,⊥

∣∣∣
ei

)
× û0,⊥ + ∇̂l,⊥

[
ûl

0,⊥ ·
(

1

2
ûl

0,⊥ + ûg
0,⊥

)]
.

(6.60)
Since equation (6.59) is a nonlinear evolution equation for the local geostrophic
velocity, it is difficult to use the sublinear growth condition to separate the equation
into a global equation and a local equation. Thus, we will in the following section
apply the vorticity formalism, which has a simpler structure according to the
application of the sublinear growth condition. In addition the introduction of
vorticity will also remove the second order pressure ˆ̃p2, which is undetermined to
this order.

6.3 The quasi-geostrophic potential vorticity

In the following we will derive the corresponding vorticity equation of the horizon-
tal momentum equation (6.59). Since the unit vectors of the local velocity field
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ûl
0,⊥ is kept constant during the material derivative in the horizontal momentum

equation, it will be natural to define the vorticity that is associated with the local
velocity field ûl

0,⊥ as

Θ̂0 = ∇̂l,⊥ × ûl
0,⊥

∣∣∣
ei

= r̂ ∇̂2
l,⊥

(
ˆ̃p1

sin θg

)
. (6.61)

Anyway, the unit vectors are independent of local coordinates, this means that the
unit vectors are constant on the local scales. Therefore, we do not need to require
that the unit vectors must be held constant during differentiation with respect
of local spatio-temporal coordinates. If we take the horizontal curl ∇̂l,⊥× of the
ageostrophic momentum equation (6.59), we get the vorticity equation(

∂

∂t̂l
+ û0,⊥ · ∇̂l,⊥

)
Θ̂0 = − Γ

Ro
∇̂l,⊥ × ∇̂g,⊥ˆ̃p1

∣∣∣
ei
− sin θg ∇̂l,⊥ × (r̂× û1,⊥)|ei .

(6.62)
Just to point out that the unit vectors remain constant during the local differenti-
ation, we use the vertical line to symbolizes that the unit vectors are constant at
the local scale. Recognizing that the second term on the right-hand side can be
written as

∇̂l,⊥ × (r̂× û1,⊥)|ei = r̂
(
∇̂l,⊥ · û1,⊥

)∣∣∣
ei
, (6.63)

it follows that all terms have only a vertical component. Thus we can take the dot
product of the unit vector along the vertical direction r̂ with equation (6.62) to
obtain a scalar equation(
∂

∂t̂l
+ û0,⊥ · ∇̂l,⊥

)
∇̂2
l,⊥

ˆ̃p1

sin θ
= − Γ

Ro
r̂·
(
∇̂l,⊥ × ∇̂g,⊥ˆ̃p1

∣∣∣
ei

)
−sin θg

(
∇̂l,⊥ · û1,⊥

)∣∣∣
ei
.

(6.64)
The first term on the right hand side of equation (6.64) represents the production
of vorticity due to local rotation of the global pressure gradient to first order. This
term is caused by the global horizontal compression of the fluid to lowest order
and the meridional variation of the Coriolis force. This can easily be shown by
taking the global horizontal divergence of equation (6.38) when the unit vectors
are held constant during the differentiation,

r̂ ·
(
∇̂l,⊥ × ∇̂g,⊥ˆ̃p1

∣∣∣
ei

)
= sin θg ∇̂g,⊥ · û0,⊥

∣∣∣
ei

+ cos θ v̂0. (6.65)

The second term on the right hand side of (6.64) represents the production of
vorticity due to local horizontal compression of the first order horizontal velocity
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field. This term can be rewritten with help of the first order continuity equation
(6.31),

∇̂l,⊥ · û1,⊥

∣∣∣
ei

= − ∇̂‖ · û1,‖

∣∣∣
ei
− Γ

Ro
∇̂g,⊥ · û0,⊥

∣∣∣
ei
. (6.66)

With the help of (6.65) and (6.66), the vorticity equation (6.64) can be written as(
∂

∂t̂l
+ û0,⊥ · ∇̂l,⊥

)
∇̂2
l,⊥

(
ˆ̃p1

sin θ

)
= − Γ

Ro
cos θg v̂0 + sin θg

∂ŵ1

∂Ẑ
. (6.67)

Already now we can see that the vorticity equation (6.67) is quite similar to the
barotropic vorticity equation (5.74). The only difference is that equation (5.74)
only contains variables that are valid at the local scale, while equation (6.67)
contains variables that apply on both global and local scales. The second term
on the right hand side of equation (5.74) represents the planetary vorticity, which
we have shown in section 5.3 can be written as β v̂0

1, where the dimensionless
meridional variation/gradient of the Coriolis force β is given by equation (3.4).
The planetary vorticity in equation (6.67) is describe by the first term on the right
side. The factor in front of the meridional velocity is the same as β, except that
Γ
Ro

cos θg is not constant. However Γ
Ro

cos θg will be constant on the local scale,
since it only depends on the global coordinate of latitude. Thus, we will later use
that

β =
Γ

Ro
cos θg. (6.68)

Similar to the thermodynamic equation for the mass density we want to write
the vorticity equation (6.67) in such a way that we can isolate all parts that
are only dependent on global spatio-temporal coordinates from the other terms,
which depend on both global and local spatio-temporal coordinates. This is done
by splitting the velocity fields into a local part and a global part. This results in(

∂

∂t̂l
+ û0,⊥ · ∇̂l,⊥

)
∇̂2
l,⊥

(
ˆ̃p1

sin θ

)
+

Γ

Ro
cos θg v̂

l
0 − sin θg

∂ŵl
1

∂Ẑ

= − Γ

Ro
cos θg v̂

g
0 + sin θg

∂ŵg
1

∂Ẑ
, (6.69)

where the right hand side only depends on global spatio-temporal coordinates and
vertical coordinates, while the left hand side depend on both global and local
spatio-temporal coordinates. By substituting the equation for the local vertical

1Note that equation (5.74) is only valid on local scales, and therefore v̂0 is the local meridional
velocity which corresponds to v̂l0 in this chapter.
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velocity to first order, equation (6.58), the vorticity equation (6.69) can be written
in a very similar way to the potential vorticity equation (5.76),(

∂

∂t̂l
+ û0,⊥ · ∇̂l,⊥

)
q̂ − ∇̂l,⊥ ·

[
∂

∂Ẑ

(
sin2 θ

Bu N̂2 +Bug N̂2
0

ˆ̃p1

sin θg

∂ûg
0,⊥

∂Ẑ

)]

= − Γ

Ro
cos θg v̂

g
0 + sin θg

∂ŵg
1

∂Ẑ
, (6.70)

where we have defined the quasi-geostrophic potential vorticity

q̂ = ∇̂2
l,⊥

(
ˆ̃p1

sin θg

)
+

∂

∂Ẑ

(
sin2 θg

Bu N̂2 +Bug N̂2
0

∂

∂Ẑ

(
ˆ̃p1

sin θg

))
+

Γ

Ro
cos θg θl. (6.71)

Since the local horizontal divergence of the zeroth order horizontal velocity û0,⊥ is
zero, equation (6.70) may be written in conservative form as

∂ q̂

∂t̂l
+ ∇̂l,⊥ · (û0,⊥q̂)− ∇̂l,⊥ ·

(
∂

∂Ẑ

(
sin2 θ

Bu N̂2 +Bug N̂2
0

ˆ̃p1

sin θ

∂ûg
0,⊥

∂Ẑ

))

= − Γ

Ro
cos θg v̂

g
0 + sin θg

∂ŵg
1

∂Ẑ
. (6.72)

The beauty of writing the vorticity equation (6.72) in conservative form is that it
is very easy to apply the sublinear growth condition in order to find the vorticity
equation on the local scale and the vorticity equation on the global scale.

6.3.1 The global vorticity equation

If we take the spatio-temporal average of equation (6.72) over the local scales, it
follows from the sublinear growth condition that all terms on the left hand side
vanish and the only surviving terms are those on the right hand side where the
variables are independent of local coordinates,

0 = − Γ

Ro
cos θg v̂

g
0 + sin θg

∂ŵg
1

∂Ẑ
. (6.73)

Equation (6.73) is known as the global vorticity equation. To interpret this equa-
tion, we take the spatio-temporal average of the first-order continuity equation,
equation (6.31) which provides

0 =
∂ŵg

1

∂Ẑ
+

Γ

Ro
∇̂g,⊥ · ûg

0,⊥. (6.74)
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Thos equation states that the global horizontal divergence of the global horizontal
velocity field gives rise to vortex-tube stretching. According to equation (6.73),
the vorticity production that is associated with vortex-tube stretching is balanced
by the planetary vorticity. Just to summarize a bit, the equations that form
a model on the global scale are given by the global vorticity equation (6.73), the
thermodynamic mass density equation (6.57) and the global horizontal geostrophic
velocity (6.35). Some people like to introduce a potential vorticity equation instead
of the thermodynamic equation. So if we differentiate equation (6.57) in respect
to Ẑ, we get

Γ

Ro

(
∂

∂t̂g
+ ûg

0,⊥ · ∇̂g,⊥ +
Ro

Γ
ŵg1

∂

∂Ẑ

)(
∂ˆ̃ρ0

∂Ẑ

)
= −∂ŵ

g
1

∂Ẑ

∂ˆ̃ρ0

∂Ẑ
+

∂

∂Ẑ

(
Bu N̂2ŵg1

)
,

(6.75)
or equivalently(

∂

∂t̂g
+ ûg

0,⊥ · ∇̂g,⊥ +
Ro

Γ
ŵg1

∂

∂Ẑ

)(
sin θg

∂ˆ̃ρ0

∂Ẑ

)
=

∂

∂Ẑ

(
RoBu

Γ
sin θgN̂

2ŵg1

)
,

(6.76)
where we have used equation (6.73). Equation (6.76) is the global potential vortic-
ity equation and according to the buoyancy frequency (6.50), this is an evolution
equation for the stratification that is associated with the zeroth order global mass
density ˆ̃ρ0. Note that none of the equations for the global dynamics not contain
interactions terms with local variables.

6.3.2 The local vorticity equation

The equations that determines the dynamics on the local scale is given by the
deviation equations from global scale. If we subtract the global vorticity equation
(6.73) from the total vorticity equation (6.70), we get the local vorticity equation
that determines the vorticity on the local scale, The local vorticity equation reads(

∂

∂t̂l
+ ûl

0,⊥ · ∇̂l,⊥

)
q̂ + ûg

0,⊥ · ∇̂l,⊥ q

− ∂

∂Ẑ

[
sin2 θg

Bu N̂2 +Bug N̂2
0

∂ûg
0,⊥

∂Ẑ
· ∇̂l,⊥

(
ˆ̃ρ1

sing θ

)]
= 0, (6.77)

where the first term on the left hand side describes the evolution of the quasi-
geostrophic potential vorticity q̂ with the local scale. This part of the vorticity
equation is completely similar to the baroclinic quasi-geostrophic potential vortic-
ity equation (5.76) in the previous chapter in the limit where the fluid is inviscid.
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The additional terms describes interactions with global scale, where the second
term represent advection of the quasi-geostrophic potential vorticity q̂ with the
global velocity, and the third term describes interaction between the first order
mass density ρ̃1 and the shear in the global velocity. The global flow will aslo
contribute to buoyancy dynamics on the local scale. This is because the global
flow will be associated with a mass density that will produce the same effect as
the real background state of the ocean, i.e., will give rise to stratiffcation on the
local scale. Therefore, the quasi-geostrophic potential vorticity q̂ depend on N̂0.
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Chapter 7

Conclusion

In this thesis we have used a regular perturbation theory and scaling anaylse to
derive reduced models confined to the midlatitude region. The main result is
the quasi-geostrophic potential vorticity model in chapter 6, which describes lo-
cal dynamics in the midlatitude region under influence of global scales. This is a
modified version of the classical baroclinic quasi-geostrophic vorticity in chapter
5. The modified model included interaction between the local quasi-geostrophic
potential vorticity and the global geostrophic velocity. In addition the global flow
contribution to buoyancy dynamics on the local scale. This is because the global
flow will be associated with a mass density that will produce the same effect as
the real background state of the ocean, namely will give rise to stratification on
the local scale.
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Chapter 8

Appendix A

The equations of motion can be obtained in many differet ways; kinetic theory,
Raynholds transport theorem or with a control volum method. The equations
describes the evolution of mass density, momentum density, and energy denity.
These equations has more unknowns than the number of equations, thus we need
thermodynamic equations of state to close the system of equations. In this section
we will only present the equations, and it will always be understood that it only
applies during an initial system.

8.1 The equations of motion

8.1.1 The equation of continuity

The equation for the mass density ρ without any source and sink, reads in flux
form

∂ρ

∂t
+∇ · ρu = 0, (8.1)

where u is the fluid velocity. By introducing the substantial time derivative

d

dt
=

∂

∂t
+ u · ∇, (8.2)

the continuity equation can be written in parcel form as

dρ

dt
+ ρ∇ · u = 0. (8.3)

111



112 CHAPTER 8. APPENDIX A

The salinity equation

The ocean consists of salt water, where both components, salt and freshwater must
satisfy the continuity equation for mass, i.e.

∂ρs
∂t

+∇ · ρsus = 0, (8.4)

∂ρw
∂t

+∇ · ρwuw = 0. (8.5)

The mass density of the salt ρs and the mass density of the freshwater compose
the total mass density ρ, i.e. ρ = ρs + ρw. By adding (8.4) and (8.5) together,
yields the conervation of the salt water,

∂ρ

∂t
+∇ · ρu = 0, (8.6)

where we have used the mass-weighted mean velocity u = ρsus+ρwuw
ρ

. The fraction
of the salt and freshwater are respectively given by

S =
ρs
ρ
, W =

ρw
ρ
. (8.7)

Therefor, the (8.4) can be written as an equation for the fraction of salt,

ρ
dS

dt
= −∇ · JS, (8.8)

where JS = ρS (us − u) is the diffusive salinity flux. The equation for the fraction
of freshwater is

ρ
dW

dt
= −∇ · JW , (8.9)

where JW = ρW (uw − u) is the diffusive freshwater flux.

8.1.2 The equation of momentum

The equation for the momentum density ρu with external density body forces f ,
reads in flux form

∂ (ρu)

∂t
= −∇ · (ρuu + σ) + f , (8.10)

where σ is the stresstensor. By using the chain rule and the continuity equation,
(8.1), the equation of the momentum can be written in parcel form as

ρ
du

dt
= −∇ · σ + f . (8.11)
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8.1.3 The equation of energy

The equation for the energy density 1
2
ρu2 + ρε, reads in flux form

∂

∂t

(
1

2
ρu2 + ρε

)
+∇ ·

[(ρ
2
u2 + ρε

)
u + u · σ + Q

]
= f · u, (8.12)

where 1
2
ρu2 is the kinetic energy density, ρε is the internal energy density, ε is the

internal energy per unit mass and Q is the total heat flux density1. By taking the
dot product between the momentum equation, (8.11) and the fluid velocity u, we
obtain an equation for the kinetic energy in parcel form

ρ
d

dt

(
1

2
u2

)
= −u · (∇ · σ) + f · u, (8.13)

or equivalent in flux form

∂

∂t

(
1

2
ρu2

)
+∇ ·

(
1

2
ρu2u

)
+ u · (∇ · σ) = f · u. (8.14)

An equation for the internal energy is obtained by subtracting (8.14) from (8.12),
by then using the tensor identity

u · (∇ · σ) = ∇ · (u · σ)− (σ · ∇) · u

= ∇ · (u · σ)− σ :
1

2

(
∇u + (∇u)T

)
. (8.15)

In flux form the equation read

∂

∂t
(ρε) +∇ · (ρεu) +∇ ·Q = −σ : D, (8.16)

and in parcel form the equation read

ρ
dε

dt
= −σ : D−∇ ·Q, (8.17)

where

D =
1

2

(
∇u + (∇u)T

)
(8.18)

is the deformation tensor.

1The total heat flux density consist of energy transfers to the system that are not mechanical,
e.g. thermal conductivity, heat do to chemical reaction and so on.
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8.2 Thermodynamic and closure of the equations

8.2.1 The law of thermodynamics

The first law of thermodynamics (T1) states that if a small amount of heat per
unit mass ∆q is applied to a system, the internal energy per unit mass ε is changed
simultaneously with the system performing a certain amount of physical work per
unit mass ∆w on the environment and chemical work −

∑
i µi∆Ni. Since energy

can not be created or destroyed, this means that the energy must be conserved,
i.e.

∆q = ∆ε+ ∆w −
∑
i

µi∆Ni, (8.19)

where µi is the chemical potential of particle type i and Ni is the fraction of particle
type i. By using (8.7) and S +W = 1, the chemical work can be written as∑

i

µi∆Ni = ∆µdS, (8.20)

where ∆µ = µs − µw is the chemical potential difference between the sea salt and
water.
The second law of thermodynamics (T2) states that the entropy per unit mass s
of an isolated system which is not in thermodynamic equilibrium increases with
time, and will instantant attempt to achieve thermodynamic equilibrium, so that
the energy has a minimum and entropy has a maximum. Thus, the inequality

∆s ≥ ∆q

T
, (8.21)

must be fulfilled. Where T is the temperature in the system and ∆q are supplied
amount of heat per unit mass. For processes which are reversible, the inequality
sign go over to an equality sign. In the limit where the supplied amount of heat
per unit mass is infinitesimal, i.e. ∆q → dq, all processes will be reversible. In
this limit the first and the second law, (T1) and (T2) becomes

dε = Tds− dw + ∆µdS. (8.22)

This equation is the fundamental equation of thermodynamics. It can be shown
that the work per unit mass dw of a fluid particle on its environment is

dw = pd

(
1

ρ

)
= − p

ρ2
dρ, (8.23)

where p is the kinematic pressure. If the volume of the fluid particle increases, dw
will be negative so the fluid particle has done work on its environment, and if the
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volume decreases, the environment have done work on fluid particle. By dividing
on the infinitesimal time dt, the fundamental equation of the thermodynamics
becomes

dε

dt
= T

ds

dt
+

p

ρ2

dρ

dt
+ ∆µ

dS

dt
, (8.24)

or equivalent
dε

dt
= T

ds

dt
− p

ρ
∇ · u− ∆µ

ρ
∇ · JS, (8.25)

where we have used the continuity equation dρ
dt

= −ρ∇·u and the salinity equation
ρdS
dt

= −∇ · JS.

The entropy equation

By substituting (8.25) into (8.17), the equation for the internal energy becomes a
general equation of heat transfer

ρT
ds

dt
= p∇ · u− σ : D−∇ ·Q + ∆µ∇ · JS. (8.26)

In the absence of heat exchange and energy dissipation due to internal friction.
The fluid motion is adiabatic, i.e. that the entropy of any fluid particle remains
constant. In this case the fluid is ideal, and it follows from (8.26) that the stress
tensor must be equal to the pressure times the unit tensor,

σ = pI. (8.27)

8.2.2 Thermodynamic state relation

Gibbs’ phase rule and thermodynamic potentials

Gibbs’ phase rule state the the degree of freedom F , i.e. the number of independent
intensive variable that completely determines the thermodynamic properties of the
system (such as pressure, temperatur and salinity), is equal to

F = C − P + 2, (8.28)

where C is the number of components of the system and P is the number of
phases in thermodynamic equilibrium with each other. The ocean consist of two
components, salt and freshwater, and consist of one phase, liquid. Therefor, the
number of independent variables are three. There are many different independent
variables that can be used. These form the basis for the representation of the
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thermodynamic relations describing the physical nature of the fluid. The four
most common choices of the intensive variables are(

ρ−1, s, S
)
, (p, s, S) ,

(
ρ−1, T, S

)
, (p, T, S) . (8.29)

To represent the thermodynamic state of the fluid, there exist a thermodynamic
function that determines the thermodynamic properties of the fluid. This function
is often called the thermodynamic potential. It follows from (8.22) and (8.23) that
the internal energy per unit mass ε is the thermodynamic potential when (ρ−1, s, S)
are chosen as the independent intensive variables. Therefor, it also follows that
the equations of state to this potential are given by

T =

(
∂ε

∂s

)
S,ρ

, p = −
(

∂ε

∂ρ−1

)
S,s

, ∆µ =

(
∂ε

∂S

)
s,ρ

. (8.30)

From Euler’s homogeneous function theorem it follows that the internal energy
per unit mass can be written as

ε = Ts− pρ−1 + µSS + µW (1− S) . (8.31)

This equation is often called the Euler’s identity. By subtracting the first law
of thermodynamics, (8.22), from the total differential of Euler’s identity, (8.31),
result in the Gibbs-Durham relation

ρ−1dp− sdT = SdµS + (1− S) dµW . (8.32)

Instead of using (ρ−1, s, S) as independent variables to describe the thermodynamic
properties of the fluid, we will choose (p, T, S) as independent variables. The
question is now: Which thermodynamic potential is a function of these variables,
and what is the equation of state? By adding the differential d (−Ts+ pρ−1) on
both side of (8.22), and define the free enthalpy per unit mass

g = ε− Ts+ pρ−1, (8.33)

(8.22) becomes
dg = −sdT + ρ−1dp+ ∆µdS, (8.34)

which states that the free enthalpy per unit mass is the thermodynamic potetial
with (p, T, S) as independent variables. From the chain rule it follows that the
equations of state is

s = −
(
∂g

∂T

)
S,p

, ρ−1 =

(
∂g

∂p

)
S,T

, ∆µ =

(
∂g

∂S

)
T,p

. (8.35)
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Since the equations of state will be a function of (p, T, S), these equations can
be used to transform the entropy equation, (8.26) to prognostic equations for
temperature and mass density. The Euler’s identety for the free enthalpy per unit
mass is given by substitute the Euler’s identety for the internal energy per unit
mass, (8.31) in to the expression for the free enthalpy, (8.33),

g = µSS + µW (1− S) . (8.36)

The temperature equation

From the chain rule it follows that the evolution equation for the entropy s (p, T, S)
is

T
ds

dt
= T

(
∂s

∂T

)
p,S

dT

dt
+ T

(
∂s

∂p

)
T,S

dp

dt
+ T

(
∂s

∂S

)
p,T

dS

dt
, (8.37)

where T
(
∂s
∂T

)
p,S

= cp is the spesific heat capasity. By using the Maxwell relation(
∂s

∂p

)
T,S

=
1

ρ2

(
∂ρ

∂T

)
p,S

= −1

ρ
βT , (8.38)

here βT is the thermal expansion coefficient, (8.26) and (8.8) the entropy equation,
(8.37) becomes an evolution equation for the temperature,

ρ cp
dT

dt
= TβT

dp

dt
+ p∇ · u− σ : D−∇ ·Q +

(
∆µ+ T

(
∂s

∂S

)
p,T

)
∇ · JS (8.39)

Under adiabitic conditions, the stress tensor reduces to (8.27) and the temperature
equation reduces to

ρ cp

(
dT

dt
− TβT
ρ cp

dp

dt

)
= 0. (8.40)

This means that the temperature and pressure are related by dT = TβT
ρ cp

dp. Hence,

the temperature is not a conserved quantity under adiabatic conditions, since
change in pressure leads to change in temperature. Later we will introduce a
potential temperature, which are a conserved quantity under adiabatic conditions.
It will be more practical to deal with potential temperature instead of temperature.

The thermodynamic mass density equation

From the chain rule it follows that the evolution equation for the entropy ρ−1 (p, T, S)
is

dρ−1

dt
=

(
∂ρ−1

∂T

)
p,S

dT

dt
+

(
∂ρ−1

∂p

)
T,S

dp

dt
+

(
∂ρ−1

∂S

)
p,T

dS

dt
,

dρ

dt
= ρ

(
−βT

dT

dt
+ βp

dp

dt
+ βS

dS

dt

)
, (8.41)
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where βT , βp and βS are the thermal expansion coefficient, the compresibility
coeffisient and the salinity contraction coefficient respectively. By using (8.39)
and (8.8), (8.41) becomes an evolution equation for the mass density,

dρ

dt
= ρκ̃

dp

dt
−βT
cp

(p∇ · u− σ : D−∇ ·Q)−

(
βT
cp

(
∆µ+ T

(
∂s

∂S

)
p,T

)
+ βS

)
∇·JS,

(8.42)
where κ̃ = βp−βTΓ is the adiabatic compressibility coefficient and Γ = βTT/cpρ is
the adiabatic temperature gradient. The adiabatic compressibility coefficient can
also be written as

κ̃ =
1

ρ

(
∂ρ

∂p

)
s,S

=
1

ρ

(
∂ρ

∂p

)
T,S

+
Γ

ρ

(
∂ρ

∂T

)
p,S

. (8.43)

The relation between the adiabatic compressibility coefficient and the sound ve-
locity is given by

c2 =
1

ρκ̃
(8.44)

It should be notet that (8.42) is not an equation for mass conservation, but an
equation for the energy conservation in the fluid.

Heat flux

The total heat flux Q given in all the energy equations is often decomposed into one
heat flux due to conductivity qcond, and one chemical heat flux qchem due to change
in salt and freshwater consentration. It is well known from thermodynamics that
the change in enthalpy h is equal to the amount of heat added to the system due
to chemical prosesses, when the pressure is constant. By adding the differential
d (pρ−1) on both side of (8.22), and define the enthalpy per unit mass as

h = ε+ pρ−1, (8.45)

(8.22) becomes
dh = Tds+ ρ−1dp+ ∆µdS. (8.46)

The enthalpy can be spitt into two parts, one part hS due to the salt, and one
part hW due to the fresh water. The total enthalpy is given by the mass-weighted
mean

h = hSS + hW (1− S) . (8.47)

The chemical heat transport through a surface element dA is therefor given by

qchem · dA = (hsJS + hwJW ) · dA. (8.48)



8.2. THERMODYNAMIC AND CLOSURE OF THE EQUATIONS 119

Since the diffusive fluxes satisfies

JS + JW = 0, (8.49)

it follows that the chemical heat flux is

qchem = ∆hJS, (8.50)

where ∆h = hS − hW is the partial enthalpy difference. From equation (8.47) it
follows that the partial enthalpy difference is given by the thermodynamic state

∆h =

(
∂h

∂S

)
p,T

. (8.51)

In order to describe the chemical heat flux with (p, T, S) as independent variables,
we need to find the relation between the free enthalpy and enthalpy. By combi-
nating (8.33) and (8.45), the relation between the free enthalpy and the enthalpy
becomes

g = h− Ts, (8.52)

therefor, it follows that (8.51) can be written in terms of free enthalpy and entropy
as (

∂h

∂S

)
p,T

=

(
∂g

∂S

)
p,T

+

(
∂s

∂S

)
p,T

= ∆µ+ T

(
∂s

∂S

)
p,T

. (8.53)

The chemical heat flux can then be written as

qchem =

(
∆µ+ T

(
∂s

∂S

)
p,T

)
JS. (8.54)

8.2.3 Closure of the equations

In thermodynamic equilibrium2, each thermodynamic flux related to irreversible
effects must be zero, i.e. q = 0, JS = 0 and the part of the stress tensor σ which
correspond to irreversible effects must be the zero tensor. From (8.27) it is natural
to decompose the stress tensor into two contribution,

σ = pI− σ′, (8.55)

2Thermodynamic equilibrium is achieved when T = constant, ∆µ = constant and D = 0
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where p is the thermodynamic pressure, I is the unit tensor and σ′ is the viscous
stress tensor which gives the irreversible viscous transfer of momentum in the fluid.
Therefor, the fluxes we have to determined is the heat flux q, the salt flux JS and
the viscouse stress tensor σ′. The methods we will use is based on the second law
of thermodynamics, linearization, symmetries and Onsager’s law. The equation
for the entropy, (8.26) can be rewritten in the form

ρ
ds

dt
+∇ · S = Σ (8.56)

where

S =
1

T

(
q + T

(
∂s

∂S

)
p,T

JS

)
, (8.57)

is the entropy flux and

Σ = q · ∇
(

1

T

)
− JS ·

(
1

T
∇ (∆µ)T

)
+ σ′ :

(
1

T
D

)
(8.58)

is the entropy production rate. According to the second law of thermodynamic
the entropy production rate must satisfy Σ ≥ 0. Just to simplify the notation,
introduce the flux as

J1 = q, J2 = JS, J3 = σ′, (8.59)

and the thermodynamic force as

F1 = ∇
(

1

T

)
, F2 = − 1

T
∇ (∆µ)T , F3 =

1

T
D. (8.60)

By using these notation, the entropy production can be written as

Σ =
3∑
i=1

Ji • Fi, (8.61)

where • is the dot product · when the fluxes and forces are of rank one, and the
double dot product : when fluxes and forces are of rank two. Assuming that the
gradients of the pressure p, temperature T , salinity S and velocity u to be not
large, and that the fluxes Ji are linear functions of the thermodynamic force, i.e.

Ji =
3∑
j=1

Lij · Fj +O(|Fj|2), (8.62)

where Lij is the phenomenological coefficients tensor which correspond to flux i
and force j. It should be noted that the sub indices is just the ”name” of the tensor



8.2. THERMODYNAMIC AND CLOSURE OF THE EQUATIONS 121

and have nothing with the tensor indices. The phenomenological coefficients tensor
must must fulfill

Rank (Lij · Fj) = Rank (Ji) . (8.63)

According to (8.62), the fluxes are

q = L11 · ∇
(

1

T

)
+ L12 ·

(
− 1

T
∇ (∆µ)T

)
+ L13 ·

(
1

T
D

)
(8.64)

JS = L21 · ∇
(

1

T

)
+ L22 ·

(
− 1

T
∇ (∆µ)T

)
+ L23 ·

(
1

T
D

)
(8.65)

σ′ = L31 · ∇
(

1

T

)
+ L32 ·

(
− 1

T
∇ (∆µ)T

)
+ L33 ·

(
1

T
D

)
, (8.66)

where L11, L12, L21 and L22 are tensors of rank two, L13, L23, L31 and L32 are tensors
of rank three and L33 is a tensor of rank four. We will assume that the sea water
is isotrophic and therefor, the tensors Lij also have to be isotrophic. Isotrophic
tensors of rank two depend only on one scalar l and has the form

{LRank2}ij = lδij. (8.67)

Isotrophic tensors of rank three is equal to the zero tensor,

LRank3 = 0, (8.68)

and therefor, the heat and salt fluxes due not depend on the deformation tensor
D and the viscouse stress tensor σ′ due not depend on the

∇
(

1

T

)
, − 1

T
∇ (∆µ)T (8.69)

Furthermore, an isotrophic tensors of rank four depend on three scalars l1, l2 and
l3 and has the form

{LRank4}ijkl = l1δijδkl + l2δikδjl + l3δilδjk. (8.70)

Since the deformation tensor D and the viscouse stress tensor σ′ are symmetric,
LRank4 must be symmetric in the indices (i, j) and (k, l). Therefor, (8.70) reduces
to

{LRank4}ijkl = l1δijδkl + l2 (δikδjl + δilδjk) . (8.71)

Using the rules for isotropic tensors, the thermodynamical fluxes becomes

q = a∇
(

1

T

)
+ b

(
− 1

T
∇ (∆µ)T

)
(8.72)

JS = c∇
(

1

T

)
+ d

(
− 1

T
∇ (∆µ)T

)
(8.73)

σ′ = e (∇ · u) I + 2fD, (8.74)
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where a, b, c, d, e and f are molecular diffusion coefficients which depend on
temperature T , pressure p and salinty S. It follows from Onsagers principle that
the matrix of coefficients must be symmetric, this implies that b = c. By using
that the gradient to the chemical potential difference is given by

∇ (∆µ)T =

(
∂∆µ

∂p

)
T,S

∇p+

(
∂∆µ

∂S

)
T,p

∇S (8.75)

and rewrite the gradient in the equation of the thermodynamic fluxes. The ther-
modynamic fluxes can be written as

q = −
(
ad− b2

dT 2

)
∇T +

b

d
JS (8.76)

JS = − b

T 2
∇T − d

T

((
∂∆µ

∂p

)
T,S

∇p+

(
∂∆µ

∂S

)
T,p

∇S

)
(8.77)

σ′ = e (∇ · u) I + 2fD, (8.78)

To make the physical picture more clear, we introduce new coefficient

κ =
ad− b2

dT 2
, (8.79)

D =
d

ρT

(
∂∆µ

∂S

)
p,T

, (8.80)

kT =
b

d
(
∂∆µ
∂S

)
p,T

, (8.81)

kp = p

(
∂∆µ
∂p

)
S,T(

∂∆µ
∂S

)
p,T

, (8.82)

η = f, (8.83)

ζ =
3e+ 2f

3
, (8.84)

and new tensors

S = D− V, (8.85)

V =
1

3
(∇ · u) I, (8.86)

where κ is the thermal conductivity that specifies heat transfer in the absence of
salt flux. D is the salt diffusion coefficient that specifies salinity transfer in the
absence of thermal and pressure gradient. kT is the thermo-salt diffusion coefficient



8.2. THERMODYNAMIC AND CLOSURE OF THE EQUATIONS 123

that specifies salinity transfer in the absence of salinity and pressure gradient. kp
is the baro-salt diffusion coefficient that specifies salinity transfer in the absence
of salinity and temperature. η is the dynamical shear viscoisity and ζ is the bulk
viscoisity due to compression and expansion. By using the new coefficients and
decompositions, the fluxes becomes

q = −κ∇T + kT

(
∂∆µ

∂S

)
p,T

JS (8.87)

JS = −ρD
(
kT
T
∇T +

kp
p
∇p+∇S

)
(8.88)

σ′ = η

(
∇u + (∇u)T − 2

3
(∇ · u) I

)
+ ζ (∇ · u) I, (8.89)

It is not clear that the heat flux q depends on gradients of pressure and tem-
perature. This is because the salt flux JS carrying a flow of entropy, due to the
deviation from the thermodynamic equilibrium state ∇S = −kp

p
∇p. The ques-

tion now is: Which constraints due to the second law of thermodynamics due we
have on the coefficients. To answer this, we have to substitute the expressions for
the fluxes into the expression for the entropy production rate, (8.58). The result
becomes

Σ = − 1

T 2
q · ∇T − 1

T

(
∂∆µ

∂S

)
p,T

JS ·
(
kp
p
∇p+∇S

)
+

1

T
σ′ : (S + 3V)

= − 1

T 2

(
−κ∇T + kT

(
∂∆µ

∂S

)
p,T

JS

)
· ∇T − 1

T

(
∂∆µ

∂S

)
p,T

JS ·
(
− JS
ρD
− kT

T
∇T
)

+
1

T
(2ηS + 2ζV) : (S + 3V)

=
κ

T 2
∇T · ∇T +

1

TρD

(
∂∆µ

∂S

)
p,T

JS · JS +
1

T
(2ηS : S + 3ζV : V) , (8.90)

By using the thermodynamic inequalities T > 0 and
(
∂∆µ
∂S

)
p,T

> 0 and the second

law of thermodynamics, it follows that the thermal conductivity κ, the salt diffu-
sion coefficient D, the shear viscoisity η and the bulk viscoisity ζ are positiv. In
contrast, the coefficients kT and kp have no constraints on the sign. It should be
noted that the mechanical pressure pmech is equal to

pmech =
1

3
Tr (σ) . (8.91)

This implies that the mechanical pressure is not equal to the thermodynamical
pressure. By taking the trace of the stress tensor, it follows that the difference
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between the pressures are

p− pmech = ζ∇ · u = −ζ
ρ

dρ

dt
. (8.92)

In thermodynamic equilibrium the pressure difference must be zero, hence the bulk
viscosity must be zero.

8.2.4 The complete set of equation

(p, T, S)-representation

To get more overview of the equations describing single-phase, two component
fluids, we here present an list over the equations of motion by using the pressure,
temperature and salinity as independent thermodynamic variables. By using the
equation for the chemical heat flux, (8.54), and the equation for the stress tensor,
(8.55), the prognostic equations of motion are given by

ρ
du

dt
= −∇p+∇ · σ′ + f (8.93)

ρκ̃
dp

dt
= −ρ∇ · u +

βT
cp

(σ′ : D−∇ · q− JS · ∇ (∆h)) + βS∇ · JS(8.94)

ρ cp

(
dT

dt
− Γ

dp

dt

)
= σ′ : D−∇ · q− JS · ∇ (∆h) (8.95)

ρ
dS

dt
= −∇ · JS (8.96)

where we have substitute the the continuity equation, (8.1), into the thermody-
namic mass density equation, (8.42), to get an prognostic equation for the pressure.
The thermodynamic flux parameterization is given by

q = −κ∇T + kT

(
∂∆µ

∂S

)
p,T

JS (8.97)

JS = −ρD
(
kT
T
∇T +

kp
p
∇p+∇S

)
(8.98)

σ′ = η

(
∇u + (∇u)T − 2

3
(∇ · u) I

)
+ ζ (∇ · u) I. (8.99)
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where

κ = κ (p, T, S) (8.100)

kT = kT (p, T, S) (8.101)

kp = kp (p, T, S) (8.102)

η = η (p, T, S) (8.103)

ζ = ζ (p, T, S) . (8.104)

To close the system we have to specify the equations of state as a function on the
pressure, temperature and salinity

ρ = ρ (p, T, S) (8.105)

cp = cp (p, T, S) (8.106)

∆h = ∆h (p, T, S) (8.107)(
∂∆µ

∂S

)
p,T

=

(
∂∆µ

∂S

)
p,T

(p, T, S) , (8.108)

where the other thermodynamical coefficients are given by the equations of state as

Name Definitions

Thermal expansion βT = −1
ρ

(
∂ρ
∂T

)
p,S

coefficient

Compresibility βp = 1
ρ

(
∂ρ
∂p

)
T,S

coefficient

Salinity βS = 1
ρ

(
∂ρ
∂S

)
p,T

= −ρ
(
∂∆µ
∂p

)
T,S

contraction coefficient
Adiabatic compressibility κ̃ = βp − ΓβT

coefficient

Adiabatic temperature Γ = βTT
cpρ

gradient

Speed of sound c =
√

1
ρκ̃

(p, θ, S)-representation

As discussed earlier, it will be more convenient to introduce a potential tempera-
ture which is a conserved quantity under adiabatic conditions. Let us define the
potential temperature θ as the temperature a fluid particle of temperature T and
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pressure p will assume when it is brought adiabatically to a location with pressure
p0. On mathematical form is given by

θ (p, T, S) = T −
∫ p

p0

dp′Γ (p, T (s, S, p′) , S), (8.109)

where
s (S, T, p) = s (S, θ, p0) = s0 (S, θ) (8.110)

is the entropy. From the chain rule it follows that the evolution equation for the
potential equation is

dθ

dt
=

(
∂θ

∂S

)
T,p

dS

dt
+

(
∂θ

∂T

)
S,p

dT

dt
+

(
∂θ

∂p

)
T,S

dp

dt
. (8.111)

By differentiating (8.110), it can be shown that(
∂θ

∂S

)
T,p

=
θ

c0
p

((
∂s

∂S

)
p,T

−
(
∂s0

∂S

)
p,T

)
,

(
∂θ

∂T

)
S,p

=
cp
c0
p

θ

T
,

(
∂θ

∂p

)
T,S

=
θ

c0
p

(
∂s

∂p

)
T,S

(8.112)
where the specific heat capasity evaluated at the refrence pressure is

c0
p = θ

(
∂s0

∂θ

)
p0,S

. (8.113)

The Maxwell relation also gives(
∂s

∂p

)
T,S

= −βT
ρ
,

(
∂S

∂T

)
p,T

= −
(
∂∆µ

∂T

)
p,S

, (8.114)

which implise that (
∂θ
∂p

)
T,S(

∂θ
∂T

)
S,p

= −Γ (8.115)

Therefor, equation (8.111) can be written as

dθ

dt
=

1

c0
pρ

θ

T

[(
∆µ−∆h− T

(
∂∆µ0

∂T

)
S,p

)
∇ · JS + cpρ

(
dT

dt
− Γ

dp

dt

)]
(8.116)

where we have used (8.53) and (8.8). By using (8.95) it follows that the equation
for the potential temperature is

ρ
dθ

dt
= Fθ (8.117)

Fθ =
θ

c0
pT

[(
∆µ− T

(
∂∆µ0

∂T

)
S,p

)
∇ · JS + (σ′ : D−∇ · q−∇ · (∆hJS))

]
.(8.118)
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Under adiabatic conditions, the potential temperature is conserved. When (p, θ, S)
are the independent variables. The equations of motion reads

dρ

dt
= −ρ∇ · u (8.119)

ρ
du

dt
= −∇p+∇ · σ′ + f (8.120)

ρ
dθ

dt
= Fθ (8.121)

ρ
dS

dt
= −∇ · JS (8.122)

ρ = ρ (p, θ, S) (8.123)
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Chapter 9

Appendix B

9.1 Spherical coordinates

Spherical coordinates consist of the radial distance r, the polar angle ϑ, and the
azimuthal angle φ. Choose the z-axis as the polar axis and x-axis as the origin for
azimuthal angle, then the transformation from spherical to Cartesian coordinates
becomes

x = r sinϑ cosφ, y = r sinϑ sinφ, z = r cosϑ, (9.1)

with domains 0 ≤ r < ∞, 0 ≤ ϑ ≤ π and 0 ≤ φ < 2π. Therfor, it follows that
the lokal unit vectors in spherical coordinates are given by

r̂ = sinϑ cosφx̂ + sinϑ sinφŷ + cosϑẑ, (9.2)

ϑ̂ = cosϑ cosφx̂ + cosϑ sinφŷ − sinϑẑ, (9.3)

φ̂ = − sinφx̂ + cosφŷ, (9.4)

where x̂, ŷ and ẑ are the unit vectors in the Cartesian coordinate system. The
unit vectors in spherical coordinates are such that r̂, ϑ̂ and φ̂ form a right handed
basis, which is orthogonal. Therefor, an arbitrary vector field can be written out
as

A = Ar r̂ + Aϑ ϑ̂+ Aφ φ̂, (9.5)

where Ar, Aϑ and Aφ are projections of A on the spherical basis. Since the
unit vectors are a locally basis, which depends on the position, the derivatives are
non-vanishing. This non-vanishing derivatives reads

∂r̂
∂ r

= 0, ∂r̂
∂ϑ

= ϑ̂, ∂r̂
∂φ

= sinϑφ̂,
∂ϑ̂
∂ r

= 0, ∂ϑ̂
∂ϑ

= −r̂, ∂ϑ̂
∂φ

= cosϑφ̂,
∂φ̂
∂ r

= 0, ∂φ̂
∂ϑ

= 0, ∂φ̂
∂φ

= − sinϑr̂− cosϑϑ̂,

(9.6)

129
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The position may also depend on time, which implise that the unit vectors do it
also. So, the totale time derivate of the unit vectors are

dr̂

dt
=

dφ

dt
sinϑ φ̂+

dϑ

dt
ϑ̂, (9.7)

dϑ̂

dt
=

dφ

dt
cosϑ φ̂− dϑ

dt
r̂, (9.8)

dφ̂

dt
= −dφ

dt

(
sinϑ r̂ + cosϑ ϑ̂

)
. (9.9)

Now we have all relations to transform from a Cartesian coordinate system to a
spherical coordinat system. It is straigt forward to show that the del-operator in
spherical coordinat system is given by

∇ = r̂
∂

∂ r
+ ϑ̂

1

r

∂

∂ϑ
+ φ̂

1

r sinϑ

∂

∂φ
. (9.10)

In geophysical fluid dynamics is more common to use φ̂, θ̂ and r̂ as a right
handed orthogonal basis. Where θ = π

2
− ϑ is the latitude angle, which varies

from −π
2

to π
2

in direction of the unit vector θ̂ = −ϑ̂. Therefor, an arbitrary
vector field can be written out as

A = Aφ φ̂+ Aθ θ̂ + Ar r̂, (9.11)

where Aφ, Aθ and Ar are projections of A on the new spherical basis. In the

following, we will use φ̂, θ̂ and r̂ as a right handed basis. It is just to use that
sinϑ = cos θ, cosϑ = sin θ and ∂

∂ϑ
= − ∂

∂θ
. The del-operator is given by

∇ = φ̂
1

r cos θ

∂

∂φ
+ θ̂

1

r

∂

∂θ
+ r̂

∂

∂ r
, (9.12)

and the Laplacian operator is

∇2 =
1

r2 cos2 θ

∂2

∂φ2
+

1

r2 cos θ

∂

∂θ

(
cos θ

∂

∂θ

)
+

1

r2

∂

∂ r

(
r2 ∂

∂ r

)
(9.13)

=
1

r2 cos2 θ

∂2

∂φ2
+

1

r2

(
∂2

∂θ2
− tan θ

∂

∂θ

)
+

(
∂2

∂ r2
+

2

r

∂

∂ r

)
(9.14)

Below there is listed some well-known results from vector calculus based on these
operators:

∇ ·A =
1

r cos θ

∂Aφ
∂φ

+
1

r cos θ

∂

∂θ
(cos θAθ) +

1

r2

∂

∂ r

(
r2Ar

)
(9.15)

=
1

r cos θ

∂Aφ
∂φ

+
1

r

(
∂

∂θ
− tan θ

)
Aθ +

(
∂

∂ r
+

2

r

)
Ar (9.16)
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9.1.1 Material derivativ of the velocity field

The velocity field in spherical coordinates is given by

u =
dr

dt

= r
dr̂

dt
+
dr

dt
r̂

= r cos θ
dφ

dt
φ̂+ r

dθ

dt
θ̂ +

dr

dt
r̂, (9.17)

(9.18)

where r cos θ dφ
dt

= u is the zonal velocity, r dθ
dt

= v is the meridional velocity and
dr
dt

= w is the radial velocity. By using these relations, the total derivative of the
unit vectors becomes

dφ̂

dt
=

u tan θ

r
θ̂ − u

r
r̂, (9.19)

dθ̂

dt
= −u tan θ

r
φ̂− v

r
r̂, (9.20)

dr̂

dt
=

u

r
φ̂+

v

r
θ̂. (9.21)

Therefor, the total derivative of the velocity field, which we need in the Navier-
Stokes equations, is given by

du

dt
=

d

dt

(
u φ̂+ v θ̂ + w r̂

)
= φ̂

du

dt
+ θ̂

dv

dt
+ r̂

dw

dt
+ u

dφ̂

dt
+ v

dθ̂

dt
+ w

dr̂

dt

= φ̂

(
du

dt
+
uw

r
− uv tan θ

r

)
+ θ̂

(
dv

dt
+
vw

r
+
u2 tan θ

r

)
+r̂

(
dw

dt
− u2 + v2

r

)
, (9.22)

where the operator for the total derivative is the material derivative given by

d

dt
=

∂

∂ t
+ u · ∇

=
∂

∂ t
+

u

r cos θ

∂

∂φ
+
v

r

∂

∂θ
+ w

∂

∂ r
. (9.23)

In geophysical fluid dynamics, the dynamics in horizontal and vertical directions
are very different. Therefore it will be advantageous to split everything into a
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horizontal component and a vertical component. Hence, equation (9.22) can be
splitted as (

du

dt

)
⊥

=

(
du⊥
dt

∣∣∣∣
ei

)
+
w

r
u⊥ +

u

r
tan θ r̂× u⊥ (9.24)

(
du

dt

)
‖

=

(
du‖
dt

∣∣∣∣
ei

)
− u⊥

r
r̂, (9.25)

where the vertical line symbolizes that the unit vectors remain constant during
the differentiation.

9.1.2 Local Cartesian system

If one wants to describe phenomena on small scale in relation to the earth radius,
it will be advantageous to introduce a local Cartesian system (X, Y, Z) fixed on
the Earth’s surface. Let the origin to this local coordinate system be given by the
position vector φ0φ̂0 + θ0θ̂0 + r0r̂0, where the unit vectors which spand out the
coordinate system is defined by

X̂ ≡ φ̂0 = − sinφ0x̂ + cosφ0ŷ, (9.26)

Ŷ ≡ θ̂0 = − sin θ0 cosφ0x̂− sin θ0 sinφ0ŷ + cos θ0ẑ, (9.27)

Ẑ ≡ r̂0 = cos θ0 cosφ0x̂ + cos θ0 sinφ0ŷ + sin θ0ẑ. (9.28)

For small excursions on the plane, the geometry gives that the coordinate is related
to spherical coordinates by

X = X X̂ + Y Ŷ + Z Ẑ,

= (φ− φ0) r0 cos θ0 X̂ + (θ − θ0) r0 Ŷ + (r − r0) Ẑ. (9.29)

By using the chain rule it follows that the relation between the derivatives in the
lokal coordinate system and the spherical coordinate system is

∂

∂φ
= r0 cos θ0

∂

∂ X
,

∂

∂θ
= r0

∂

∂ Y
,

∂

∂ r
=

∂

∂ Z
(9.30)

and
dφ

dt
=

1

r0 cos θ0

dX

dt
,

dθ

dt
=

1

r0

dY

dt
,

dr

dt
=
dZ

dt
. (9.31)

The del-operator in this coordinate system is

∇ = X̂
r0 cos θ0

r cos θ

∂

∂ X
+ Ŷ

r0

r

∂

∂ Y
+ Ẑ

∂

∂ Z
, (9.32)

and the velocity is

u =
r cos θ

r0 cos θ0

dX

dt
X̂ +

r

r0

dY

dt
Ŷ +

dZ

dt
Ẑ (9.33)
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9.2 From inertial systems to non-intertial sys-

tems

Let the Cartesian coordinate system in section 9.1 rotate with an angular velocity
Ω along the polar axis ẑ. Then, an arbitary vector field A represented in these
Cartesian coordinate system

A = Axx̂ + Ayŷ + Azẑ, (9.34)

will change with time in relation to an observer fixed in the rotating frame with

(
dA

dt

)
Ω

=
dAx
dt

x̂ +
dAy
dt

ŷ +
dAz
dt

ẑ. (9.35)

Note that the unit vectors in this frame are fixed in length and direction. For an
observer fixed in an non-rotating frame of reference, both the components of the
vector field A and the unit vectors will change with time according to

(
dA

dt

)
I

=
dAx
dt

x̂ +
dAy
dt

ŷ +
dAz
dt

ẑ + Ax
dx̂

dt
+ Ay

dŷ

dt
+ Az

dẑ

dt
. (9.36)

Since both x̂ and ŷ will move in the azimuthal direction φ̂ with angular velocity
Ω. It follows that dx̂

dt
= Ωẑ× x̂ and dŷ

dt
= Ωẑ× ŷ. The unit vector ẑ along the polar

axis will not move, but of course dẑ
dt

= Ωẑ× ẑ = 0. Therefor, the change with time
in the non-rotating frame is given by

(
dA

dt

)
I

=

(
dA

dt

)
Ω

+ Ω×A, (9.37)

where we have used (9.35) and Ω = Ωẑ.

Let for instance the vector field A be the positon vector r to an arbitary fluid
element. According to (9.37) the velocity field observed in the non-rotating frame
is given by

uI = uΩ + Ω× r, (9.38)
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where uI =
(
dr
dt

)
I

and uΩ =
(
dr
dt

)
Ω

. The rate of change of (9.38) observed in the
non-rotating frame is(

duI
dt

)
I

=

(
duI
dt

)
Ω

+ Ω× uI

=

(
d (uΩ + Ω× r)

dt

)
Ω

+ Ω× (uΩ + Ω× r)

=

(
duΩ

dt

)
Ω

+

(
dΩ

dt

)
Ω

× r + Ω×
(
dr

dt

)
Ω

+ Ω× (uΩ + Ω× r)

=

(
duΩ

dt

)
Ω

+ 2Ω× uΩ + Ω× (Ω× r) +

(
dΩ

dt

)
Ω

× r. (9.39)

The second term is known as the Coriolis acceleration, the third term is known as
the centrifugal acceleration and the last term is the acceleration due to the change
of rate of the angular velocity vector. For our case, the angular velocity is constant
along the polar axis. Therefor, the last term will vanish.

9.2.1 Pseudo acceleration in spherical coordinates

The angular velocity vector Ω = Ωẑ of the earth, point along the polar axis. In
spherical coordinat it is given by

Ω = Ω
(

cos θ θ̂ + sin θ r̂
)
. (9.40)

An observer who is standing in a rotating frame of reference, will observe moving
objects to deflect according to this rotation. In this frame of reference, there exist
two pseudo-forces who will act on the object according to (9.39). In spherical
coordinates the Coriolis acceleration reads

2Ω× u = 2 (wΩ cos θ − vΩ sin θ) φ̂+ 2uΩ sin θ θ̂ − 2uΩ cos θ r̂, (9.41)

and the centrifugal acceleration reads

Ω× (Ω× r) = Ω2r cos θ
(

sin θ θ̂ + cos θ r̂
)
. (9.42)

The Coriolis acceleration can be written as

2Ω× u = (2Ω× u)⊥ + (2Ω× u)‖ , (9.43)

where horizontal and vertical components reads

(2Ω× u)⊥ = lθ̂ × u‖ + f r̂× u⊥ (9.44)

(2Ω× u)‖ = lθ̂ × u⊥, (9.45)

here, f = 2 |Ω| sin θ and l = 2 |Ω| cos θ.
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9.3 Poisson brackets

In a Cartesian coordinat system the Poisson bracket of two dynamical variabels
A and B is defined as

{A,B} ≡
(
∂ A

∂ x

∂ B

∂ y
− ∂ A

∂ y

∂ B

∂ x

)
. (9.46)

The Poisson bracket can also be written as

{A,B} = ẑ · (∇A×∇B) , (9.47)

or equivalent as

{A,B} = (ẑ×∇A) · ∇B. (9.48)

In two-dimensional nearly incompressible flow the advective operator u · ∇ have
the structure {ψ, ·}, where ψ is a stream function. Therefor, introducing Poisson
bracket will simplify the notation. From the definition of the Poisson bracket,
(9.46), it follows that the Poisson brackets have the following properties:

{A,A} = 0 (9.49)

{A,B} = −{B,A} (9.50)

{A+B,C} = {A,C}+ {B,C} (9.51)

{AB,C} = B {A,C}+ A {B,C} (9.52)

It should be pointet out that it is often more convenient to write out the Poisson
bracket in flux form as

{A,B} =
∂

∂ x

(
A
∂ B

∂ y

)
− ∂

∂ y

(
A
∂ B

∂ x

)
, (9.53)

or as

{A,B} =
∂

∂ y

(
B
∂ A

∂ x

)
− ∂

∂ x

(
B
∂ A

∂ y

)
, (9.54)

9.4 Reynholds stress tensor in spherical coordi-

nates

The momentum exchange between turbulent small-scale flow and large-scale flow
is given by the divergence of the Reynholds stress tensor

Π ≡ −ρ0 〈ũũ〉 , (9.55)
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where ũ is the velocity field assosiated with the small-scale motion. Since the
equation which describe this small-scale field is very complex, it is natural to
parameterize the stress tensor in terms of the large-scale velocity u. In many text
books they do it in a Cartisian coordinate system. We will try in this section to
do it in the spherical coordinate system. From the definition of the stress tensor,
it follows that the tensor is a rank two tensor, which is symmetric. According
to [6, p.58] the stress tensor is parameterized as follows

Π = ρ
[
A⊥

(
∇⊥ ⊗ u + (∇⊥ ⊗ u)T

)
+ A‖

(
∇‖ ⊗ u +

(
∇‖ ⊗ u

)T)]
(9.56)

where the coefficients A⊥ and A‖ are the horizontal and vertical turbulent viscosity
coefficients respectively, and where ∇⊥ is the horizontal gradient operator, ∇‖
is the vertical gradient operator and where ⊗ is the dyadic product. In spherical
coordinates, the products in the tensor reads

∇⊥ ⊗ u =

(
φ̂

1

r cos θ

∂

∂φ
+ θ̂

1

r

∂

∂θ

)
⊗
(
u φ̂+ v θ̂ + w r̂

)
= φ̂⊗ φ̂ 1

r cos θ

∂u

∂φ
+ φ̂⊗

(
− cos θr̂ + sin θθ̂

) u

r cos θ

+ φ̂⊗ θ̂ 1

r cos θ

∂v

∂φ
− φ̂⊗ φ̂tan θ

r
v

+ φ̂⊗ r̂
1

r cos θ

∂w

∂φ
+ φ̂⊗ φ̂w

r

+ θ̂ ⊗ φ̂1

r

∂u

∂θ

+ θ̂ ⊗ θ̂1

r

∂v

∂θ
− θ̂ ⊗ r̂

v

r

+ θ̂ ⊗ r̂
1

r

∂w

∂θ
+ θ̂ ⊗ θ̂w

r

=

 1
r cos θ

∂u
∂φ
− v tan θ

r
+ w

r
1

r cos θ
∂v
∂φ

+ u tan θ
r

1
r cos θ

∂w
∂φ
− u

r
1
r
∂u
∂θ

1
r
∂v
∂θ

+ w
r

1
r
∂w
∂θ
− v

r

0 0 0

 (9.57)
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∇‖ ⊗ u =

(
r̂
∂

∂ r

)
⊗
(
u φ̂+ v θ̂ + w r̂

)
= r̂⊗ φ̂∂u

∂ r
+ r̂⊗ θ̂ ∂v

∂ r
+ r̂⊗ r̂

∂w

∂ r

=

 0 0 0
0 0 0
∂u
∂ r

∂v
∂ r

∂w
∂ r

 (9.58)

Therefor, it follows that the components of the stress tensor is given by

Πφφ = 2A⊥

(
1

r cos θ

∂u

∂φ
+
w

r
− v tan θ

r

)
(9.59)

Πφθ = A⊥

(
1

r

∂u

∂θ
+

1

r cos θ

∂v

∂φ
+
u tan θ

r

)
(9.60)

Πφr = A⊥

(
1

r cos θ

∂w

∂φ
− u

r

)
+ A‖

∂u

∂r
(9.61)

Πθθ = 2A⊥

(
1

r

∂v

∂θ
+
w

r

)
(9.62)

Πθr = A⊥

(
1

r

∂w

∂θ
− v

r

)
+ A‖

∂v

∂r
(9.63)

Πrr = 2A‖
∂w

∂r
(9.64)

Since the momentum transfer is given by the divergence to the tensor, we need
to calculate these components. According to [4, p.260] is given by

∇ ·Π = φ̂

(
1

r cos θ

∂Πφφ

∂φ
+

1

r

∂Πφθ

∂θ
+
∂Πφr

∂ r
+

2Πφr

r
+

Πrφ

r
− tan θ

r
Πθφ −

tan θ

r
Πφθ

)
+ θ̂

(
1

r cos θ

∂Πθφ

∂φ
+

1

r

∂Πθθ

∂θ
+
∂Πθ r

∂r
+

2Πθr

r
+

Πrθ

r
− tan θ

r
Πθθ +

tan θ

r
Πφφ

)
+ r̂

(
1

r cos θ

∂Πrφ

∂φ
+

1

r

∂Πrθ

∂θ
+
∂Πrr

∂ r
+

2Πrr

r
− tan θ

r
Πrθ −

Πθθ

r
− Πφφ

r

)
(9.65)
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By substituting the components of the stress tensor, we get

∇ ·Π = φ̂

(
A⊥∇2

⊥u+ A‖∇2
‖u+

A⊥
r cos θ

∂

∂φ
∇ · u +

A‖ − A⊥
r

∂u

∂r

+
2A⊥
r2 cos θ

(
− tan θ

∂v

∂φ
+
∂w

∂φ

)
− A⊥u

r2 cos2 θ

)
+ θ̂

(
A⊥∇2

⊥v + A‖∇2
‖v +

A⊥
r

∂

∂θ
∇ · u +

A‖ − A⊥
r

∂v

∂r

+
2A⊥
r2 cos θ

(
tan θ

∂u

∂φ
+ cos θ

∂w

∂θ

)
− A⊥v

r2 cos2 θ

)
+ r̂

(
A⊥∇2

⊥w + A‖∇2
‖w + A⊥

∂

∂r
∇ · u +

2
(
A‖ − 2A⊥

)
r2

w

+
A‖ − 3A⊥
r2 cos θ

∂u

∂φ
+
A‖ − 3A⊥
r2 cos θ

∂

∂θ
(v cos θ)

)
, (9.66)

where the horizontal and vertical Laplacian operators are define as

∇2
⊥ =

1

r2 cos2 θ

∂2

∂φ2
+

1

r2

(
∂2

∂θ2
− tan θ

∂

∂θ

)
(9.67)

∇2
‖ = ∇2 −∇2

⊥. (9.68)

In the limit where the turbulent mixing is isotrophic, i.e. A⊥ = A‖ = A, and the
fluid is incompressible, (9.66) reduced to

∇ ·Π = φ̂A

(
∇2u+

2

r2 cos θ

(
− tan θ

∂v

∂φ
+
∂w

∂φ

)
− u

r2 cos2 θ

)
+ θ̂A

(
∇2v +

2

r2 cos θ

(
tan θ

∂u

∂φ
+ cos θ

∂w

∂θ

)
− v

r2 cos2 θ

)
+ r̂A

(
∇2w − 2

r2
w − 2

r2 cos θ

∂u

∂φ
− 2

r2 cos θ

∂

∂θ
(v cos θ)

)
= A∇2u, (9.69)

which is the same result given by Batchelor [7, p.617]. Note that Batchelor use the
polar angle ϑ instead instead of the latitude angle θ. By introducing a horizontal
velocity u⊥ = uφ̂ + vθ̂ and a vertical velocity u‖ = wr̂, the following identities
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can be shown

∇2
⊥u⊥ = φ̂

(
∇2
⊥u−

u

r2 cos θ
− 2 tan θ

r2 cos θ

∂v

∂φ

)
+ θ̂

(
∇2
⊥v −

v

r2 cos θ
+

2 tan θ

r2 cos θ

∂u

∂φ

)
− r̂

(
2

r
∇⊥ · u⊥

)
(9.70)

∇2
‖u⊥ = φ̂∇2

‖u+ θ̂∇2
‖v (9.71)

∇2
⊥u‖ = r̂

(
∇2
⊥w −

2w

r2

)
+ φ̂

2

r2 cos θ

∂w

∂φ
+ θ̂

2

r2

∂w

∂θ
(9.72)

∇2
‖u‖ = r̂∇2

‖w, (9.73)

which provides the stress tensor,(9.66) in a more compact form the stress tensor:

∇ ·Π = A⊥∇2
⊥u⊥ + A‖∇2

‖u⊥ + A⊥∇2
⊥u‖ + A‖∇2

‖u‖ + A⊥∇⊥ (∇ · u) + A⊥∇‖ (∇ · u)

+
A‖ − A⊥

r

(
∂

∂r

(
u⊥ − u‖

)
+∇ · u

)
. (9.74)

9.5 Viscous Stress Tensor

The part of the momentum flux that is not due to the direct transfer of momentum
with the mass of moving fluid is given by the minus of the divergence of the stress
tensor

σ = pI− σ′, (9.75)

where p is the pressure, I is the unit tensor and σ′ is the viscous stress tensor
which gives the irreversible viscous transfer of momentum in the fluid. According
to Chapman-Enskog method1 the viscous stress tensor is given by

σ′ = η

(
∇⊗ u + (∇⊗ u)T − 2

3
(∇ · u) I

)
+ ζ (∇ · u) I, (9.76)

where η and ζ are the coefficients of viscosity which both are independent of
velocity and positive quantities. In the case where the coefficients of viscosity are
constant, the divergence of the stress tensor reads

∇ · σ = ∇p− η∇2u−
(
ζ +

1

3
η

)
∇ (∇ · u) , (9.77)

1See [8] for how to derive the viscous stress tensor from the Chapman-Enskog method , or
see [5].
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where we have used that the diadic product can be written as ∇⊗ u = ∇u and

the identety ∇·
(
∇u + (∇u)T

)
= ∇2u+∇ (∇ · u). In spherical coordinates φ, θ, r

the components of the stress tensor are equal to the components of the Reynholds
stress tensor with ρA⊥ = ρA‖ = η, when the fluid is incompressible.

9.6 Helmholtz’s theorem

Helmholtz’s theorem states that a vector field u can be decomposed into one
irrotational vector field udiv and one divergence free vector field urot as

u = udiv + urot. (9.78)

Where the decomposition must satisfy

∇ · urot = 0, ∇× udiv = 0, (9.79)

which implies that
urot = ∇×A, udiv = ∇λ, (9.80)

where A and λ are respectively the vector potential and the scalar potential. As
a consequence of, (9.78), it follows for a two-dimensional vector field u⊥ that

u⊥ = u⊥,div + u⊥,rot (9.81)

where
∇⊥ · u⊥,rot = 0, ∇⊥ × u⊥,div = 0. (9.82)

This implies that
u⊥,rot = ∇⊥ ×A, u⊥,div = −∇⊥λ, (9.83)

however, since u⊥,rot should only have horizontal components, it follows that A
must be given by,

A = ψn̂, (9.84)

where n̂ is the unit vector in the vertical direction.
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