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Abstract

Experimental data from Alcator C-Mod have been used to analyze large
density events occurring at the edge of fusion reactors. The data acquisition
methods used are gas puff imaging and Langmuir probes. The data con-
sist of long time series sampled at high frequency, excellent for statistical
analysis. Large density events have been analyzed where blobs are found
to be consistent with high skewness and kurtosis. The skewness and kur-
tosis are found to increase with both radius and decreasing line-averaged
density. For small kurtosis and skewness the distributions are well fitted
by a gamma distribution, while for higher values a distribution suggested
by Sattin is the better fit [81]. The conditionally averaged waveforms in
the scrape-off layer have a sharp exponential rise with slower exponential
decay. The waveform is independent of line-averaged density, major radius
and amplitude. In addition the waiting times between events are found to be
exponentially distributed, consistent with independent events in a Poisson
process. Self-similarity and long range correlations have been analyzed by
using the Hurst exponent. The Hurst exponents have been estimated by four
methods, power specter, rescaled range, structure functions and wavelets.
The Hurst exponents are found to decrease with major radius, where only
weak long range correlations are found in the blob dominated area. The
average blob velocities are found to be 1-3km/s both in radial and vertical
direction, consistent with a mixture of kink and ballooning magnetohydro-
dynamic instabilities. The blobs have a poloidal size of 1-2cm, independent
of radial position and line averaged density. The stochastic model proposed
by Garcia is found to be a good fit for signals close to the separatrix, where
the blobs are created [28]. The model can not be used to explain long range
correlations.
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Chapter 1

Introduction

The need for energy has never been greater than today, at the same time the
world may face a global warming crisis. Several different renewable energy
resources as wind, solar and tidal power exist for generating clean electrical
power. These renewble energy resources might not produce enough energy
to cover the amount received from coal, oil and gas today. Nuclear power
like fission and fusion on the other hand is capable of covering the energy
demand. Nuclear power by fission has large safety issues and is therefore
not an option in many countries. The motivation for this thesis is nuclear
power by fusion. Fusion power is not a new science, it is the method used
by stars for generating power and has been used by nature since the start
of the universe. Here on earth fusion physicist have been trying to generate
fusion power since the 1950s [70]. The future of fusion power lies on the
building of the International Thermonuclear Experimental Reactor (ITER).
ITER is an international fusion reactor project where the countries involved
covers half of the worlds population. Experiments on ITER will hopefully
be a first step towards a commercial fusion reactor.

Fusion power provides sustainable energy with no direct release of green-
house gases. In the ideal case 0.14 tonne deuterium can generate the same
amount of electrical energy as 106 tonne oil [25]. Deuterium can be extracted
from seawater, so in practice there are unlimited resources on earth. So why
do we not have unlimited power? Fusion reactions as we know it can only
occur at extreme temperaturesf in a confined space. The particles are con-
fined magnetically by the use of strong currents. The magnetic confinement
is one of the biggest challenges in fusion research because perpendicular ve-
locity components carry the particles between magnetic field lines and out
of the plasma. Experiments in fusion research have shown that the bound-
ary regions are largely dominated by high amplitude bursts transporting
particles and heat away from the core where the fusion reactions take place.
Several analytical solutions to the burst formation and propagations have

1



2 Chapter 1. Introduction

been done in earlier studies [17, 19, 30–32, 47, 48], and will be repeated in a
later section. The classical plasma physics describe the transport of particles
across the magnetic field by diffusion, this is done in many textbooks such
as Chen [15]. Close to the wall this is not the case. Here the transport is
dominated by propagating convective structures known as blobs [18,65].

Statistical analysis will be done on time series collected close to the outer
walls in a fusion device. The analysis will focus on the propagating struc-
tures to see how they behave statistically. This will be analyzed by dis-
tributions and persistence. One of the key properties of this thesis is the
persistence, since a persistent signal can be described by self-organized criti-
cality [5]. This is a theory where the fluctuations builds up towards a critical
state where large events may occur. The signals will be assumed to be de-
scribed as fractional Gaussian noises as explained by Mandelbrot and Van
Ness 1968 [58]. From this assumption it is possible to calculate the long
range correlations with the rescaled range analysis as first done by Hurst in
1951 [2]. In 1969 Mandelbrot and Wallis published a series of three papers
where they did computer simulations with the rescaled range analysis on
fractional data [59]. Later much work have been done with the rescaled
range analysis both theoretically and experimentally. A more thorough in-
vestigation of the rescaled range analysis was done by Anis and Lloyd in
1976 [2]. The rescaled range analysis has been used in a wide range of sci-
ences spanning from stock exchange to climate [69, 77]. Now a variety of
methods are used to find long range correlations, one of the most versatile
methods is the wavelet method [23], other methods can be found in Rea [72].

In the late 90’s long range correlation analysis were introduced in plasma
fusion on the large amplitude events close to the wall to see if these may be
described by self-organized criticality. One of the first pioneers in long range
correlation calculations in fusion tokamaks was Carreras [12–14]. He found
evidence of long range correlations on short time series. This work will do an
extensive investigation of long range correlations on long time series acquired
from the Alcator C-Mod tokamak located at the plasma science and fusion
center, Massachusetts Institute of Technology (MIT). The data consist of
measurements taken both with Langmuir probes [34,52] and gas puff imag-
ing [16, 34, 60]. In addition a stochastic model explaining blob dominated
signal will be analyzed and compared with experimental measurements [28].

1.1 Motivation

A large part of the particle and heat transport across the magnetic field lines
are caused by large density plasma blobs. These blobs cause increased inter-
action between material walls and plasma leading to loss of heat, erosion of
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material walls and decreased plasma confinement [17]. For further devices,
such as ITER, it is important to understand these blobs since they control
the particle and heat flux out of the plasma. In this work the statistical and
physical mechanisms of high density blobs will be studied. In recent years
much research have been done on describing these blobs, but the experimen-
tal measurements have been short and the results inconclusive. To verify
statistical properties such as distributions and long range correlations very
long time series are needed.

Recently a stochastic model has been proposed as a possibly explanation
for the blob dominated density signals [28]. This model has started a new
era for understanding the statistical mechanisms behind the blobs. Thus it
is important to match this model with experimental measurements.

The goal of this thesis is to analyze experimental measurements from Alca-
tor C-mod both with Langmuir probes and GPI measurements. The results
will elucidate how the statistical properties of the measurements change as a
function of spatial position, line-averaged density and blob properties. The
statistical analysis can be used to clarify the underlying mechanisms of tur-
bulence and instabilities causing the blobs. This can help set the parameters
for future experiments and devices.

1.2 Structure of thesis

This thesis is divided into two parts. The first part will describe the theoret-
ical background. The mathematical description for blobs will be reviewed
together with an introduction to fusion power and reactor design. In ad-
dition all the statistical methods will be explained and tested on computer
generated signals.

In the second part of the thesis the results will be described and discussed.
There are three main topics here, gas puff imaging measurements, probe
measurements and results of the Stochastic model. The gas puff imaging
data will be analyzed with focus on long range correlations. The probe
measurements and stochastic model will mostly be used for verification of
the results found for the gas puff imaging. At the end of the thesis an ap-
pendix is found containing commonly used abbreviations, derivations and
matlab code.
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Chapter 2

Plasma fusion

This chapter will elaborate some general knowledge about fusion and the
main problems involved. The main properties of confinement will be re-
viewed and important terms will be introduced for later references. In the
last part of the chapter the setup of the Alcator C-Mod tokamak will be
presented together with two data acquisition methods, gas puff imaging and
Langmuir probe. The first part of this chapter will follow the book of Frei-
dberg closely [25].

2.1 Nuclear power

There are two main branches of nuclear power, fission and fusion. Fission
is a physical reaction where one heavy atom is divided into two lighter
atoms. Fusion is the opposite reaction where two light atoms is fused into
one heavier atom. In a fusion reaction the resulting particle has a smaller
mass than the mass of the sum of the reactants. Following Newtons famous
energy equation E = mc2 energy must be released in a fusion reaction
[70]. The amount of energy released has to do with the average binding
energy, more information can be found in Freidberg [25]. In a fission reaction
the opposite result is seen where the resulting particle is heavier than the
reactants, therefore the heavy particle must be split up into smaller particles
to generate energy. The breakpoint is due to the average binding energy
which has a maximum at iron. Particles lighter than iron can be used in
fusion and particles heavier than iron can be used in fission [25].

2.2 Thermonuclear fusion

In order for fusion to occur the particles need to overcome the long range
coulomb force keeping the particles apart. The coulomb force acts as to
repel particles of equal charge. To breach the coulomb barrier the particles
need high kinetic energy achieved by extreme temperatures, a topic of much

7



8 Chapter 2. Plasma fusion

research [25]. In figure 2.1 the reaction rates for three fusion reactions are
plotted as a function of temperature. See that the figure shows a reaction
rate with a sharp increase up to about a billion kelvin. Which is the order
of temperature needed to keep the plasma burning [25].

2.2.1 Lawson criterium

In an ideal situation the temperature/pressure needed to keep a plasma
burning is defined by the Lawson criterium. The Lawson criterium can be
derived from a 0-D power balance containing the heat gain and loss in the
reactor. In a fusion reactor the heat gain is that of the reactions. Note
that not all energetic particles can be used to heat the plasma. Neutral
particles are not confined by the magnetic field, thus they will travel out of
the plasma. In a fusion reactor heat is in the ideal case lost by radiation, the
most significant is the Bremsstrahlung radiation. Bremsstrahlung radiation
is caused by acceleration of particles gained from Coulomb collisions. A last
term governing the 0-D heat balance in a fusion reactor is the heat flux due
to plasma effects, such as turbulence and collisions [25].

2.3 Fusion reactions

In this section the three main fusion research reactions are presented. Present
research focus on the reaction which occurs at the lowest temperatures, while
in the future it might be possible to use a more sustainable and non radioac-
tive reaction. The temperature dependence of the reaction rate was given in
figure 2.1. The following and more information about fusion reactions can
be found in Freidberg [25].

Deuterium-Helium reaction

This reaction consists of fusion between a deuterium (H2) and a helium-3
(He3) nucleus. The powers represent the number of nucleons in the core.
The reaction is given by,

H2 + He3 → He4 + H1 + 18.3 MeV. (2.1)

This reaction has a high energy output 3.66 MeV per nucleon, and all the
resulting particles are charged particles, thus easily controlled. Present fu-
sion research does not use this kind of reaction because He3 is not natural
on earth and high temperatures is required, see figure 2.1.
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Figure 2.1 – This figure describes the reaction rate as a function of temper-
ature for three fusion reactions. Can see that the D-T reaction rate is larger
for lower temperatures than the other reactions which makes it favorable. The
figure is made by Dstrozzi [20], similar figures can be found in most fusion
textbooks i.e. Freidberg [25]. In the figure D stands for deuterium, T tritium
and He is helium.

Deuterium - Deuterium reaction

The deuterium - deuterium (D-D) reaction can result in two processes with
approximately equal probability of occurring,

H2 + H2 →He3 + n+ 3.27 MeV

H2 + H2 →H3 +H1 + 4.03 MeV
(2.2)

These reactions create less energy than the last reaction with only 0.82 and
1.01 MeV per nucleon. It is believed that this method are the far future
of fusion due to the great availability of deuterium, 33 milligrams per liter
seawater. Today the high temperatures needed to initiate the D-D reaction
makes it unfavorable for energy generation. The Alcator C-Mod which is a
pure research device use D-D reactions.

Deuterium - Tritium reaction

The deuterium - tritium (H3) reaction (D-T) is the reaction where most
research is done. The reaction is favorable due to high reaction rate at lower
temperatures, see figure 2.1. ITER will be using this type of reaction. The
reaction can be written as,

H2 + H3 → He4 + n + 17.6 MeV. (2.3)

The reaction results in an He4 particle which is a charged particle and will
stay in the plasma, the energy from this particle (3.5 MeV) will be used to
heat the plasma. The neutron will not be trapped and will travel out of
the plasma, the energy (14.1 MeV) can be extracted and used for generating
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electrical energy.

The main problem with D-T reaction is tritium. Firstly tritium is radioac-
tive with a half life of 12.26 years, in addition, tritium is not found naturally
on earth. Lithium can be used to breed tritium in the fusion device. This
is done by a lithium blanket around plasma, the reactions are,

Li6 + n→ He4 + H3 + 4.8 MeV,

Li7 + n→ He4 + H3 + n− 2.5 MeV.
(2.4)

In a fusion device it is the first reaction which dominates, this is fortunate
because this reaction also release energy. Both reactions use neutrons which
is produced by the fusion reaction in the first place. Note that not all
neutrons generated by the fusion reaction can be used to generate tritium,
some are lost and some moves too fast or too slow. Thus much research is
being done on accelerating/deaccelerating neutrons in addition to external
neutron sources [25].

2.4 Magnetic confinement

The problem with confining plasma is the material walls. A solid surface in-
teracting with a plasma is always an escape route for the particles. Charged
particles will interact with the solid walls and stick to them. After a while
the particles will recombine at the walls and be released into the plasma
again as neutrals, this is called plasma recycling. When the fast and hot
particles collide with the material walls erosion occur introducing impurities
in the plasma [86].

The particle-wall interaction can be minimized by magnetic confinement.
The principle behind magnetic confinement can be visualized in the single
particle picture. On a single particle the effective force is the Lorentz force,
the equation of motion can be written as [15],

m
du

dt
= q (E + u×B) . (2.5)

Where m is the particle mass, q is the elementary charge, u is velocity, E
is the electric field and B is the magnetic field. For simplicity stationary
electric and magnetic fields are assumed, the electric field is located in the
x-z direction and the magnetic field along z. The acceleration of the particles
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is written as,
dux
dt

=
q

m
(Ex + uyB) ,

duy
dt

=
q

m
uxB,

u′′x = −
(
qB

m

)2

ux,

u′′y = −
(
qB

m

)2(Ex
B

+ uy

)
.

(2.6)

In the equation above the subscripts mean along x and y. If E = 0 the
equation describes a simple harmonic oscillator with cyclotron frequency,

ωc =
|q|B
m

. (2.7)

Equation 2.6 has the following solutions,

ux = u⊥ exp iωct,

uy = ±iu⊥ exp iωct−
Ex
B
,

x− x0 = −iu⊥
ωc

exp iωct,

y − y0 = ±u⊥
ωc

exp iωct−
Ex
B
t.

(2.8)

Where u⊥ is an integration constant, and ⊥ means perpendicular to the
magnetic field. From the equations above a particle with finite and station-
ary E and B will gyrate around the magnetic field lines with frequency ωc
and radius,

rL =
u⊥
ωc
, (2.9)

where rL is called the Larmour radius. The particle’s gyro center will drift
in the E×B direction,

uE =
E×B

B2
. (2.10)

This is called the electric drift. Thus an increased magnetic field leads to
decreased Larmor radius and decreased electric drift. A picture of the phys-
ical situation is given in figure 2.2. In the upper figure there is no magnetic
field and the particles move freely. In the lower figure a magnetic field has
been inserted and the particles stick to the magnetic field.

A cylinder geometry as in figure 2.2 create a large plasma sink at the end-
ings. A common way to solve this is by bending the cylinder into a torus
(donut shape). When electric current coils are wrapped around the torus
to create a toroidal (long way around) magnetic field the device is called a
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Figure 2.2 – The figure shows the effect of a magnetic field . When a magnetic
field is added the particles gyrate around the field lines and stick to them. The
figure is found in [44].

tokamak, see figure 2.3. The curved magnetic field will be nonuniform as
a function of the radius R from the center, this results in two additional
velocities,

u∇B = ±1

2
u⊥rLb×∇lnB,

uR = ±
u2
⊥
ωc
∇× b. (2.11)

In the equation above b is the unit vector along the magnetic field b = B/B.
The drift u∇B is called the gradient B drift, caused by variations in gyro
radius due to variations in the magnetic field. The drift uR is called the
curvature drift, caused by a curved magnetic field. An important thing to
notice about the drifts above is that both is charge dependent. The ions
and electrons move in opposite directions, resulting in charge separation.
A charge separation leads to electric field generation which again leads to
an electric drift. To counter the effect of charge separation a rotational
transform can be used. This is done by introducing a current inside the
plasma which generates a magnetic field in the poloidal (short way around)
direction. The total magnetic field will spiral around the torus, see figure
2.3. Due to the spiraling shape of the magnetic field the drifts due to the
curvature and gradient drifts will be canceled out over one poloidal circuit.
The last drift which is important for the single particle picture is the drift
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Figure 2.3 – In this figure an overview of a tokamak is given. The figure shows
how the particles gyrate around the magnetic field lines in a tokamak with a
spiraling magnetic field. The figure also shows how the magnetic field lines are
extended out of the main plasma and onto divertor targets. The figure can be
found in Pitts [70].

due to a time varying electric field,

up = ± 1

ωcB

dE

dt
. (2.12)

The drift up is called the polarization drift.

2.5 Mechanical confinement

In addition to magnetic confinement mechanical devices can be used to keep
the plasma away from the walls, see Stangeby [86]. One method is by the
use of limiters. A limiter is a thin mechanical structure used to limit the
plasma area. It can be inserted either in the toroidal or poloidal direction to
short circuit the magnetic field lines outside the main plasma. This creates
an area of open magnetic field lines, where the field lines hit the limiter.
The limiter is very thin, for a limiter in the poloidal direction particle inter-
action in toroidal direction is neglectable. When particles hit the limiter the
particles are immediately removed from the main plasma, thus the limiter
acts as a localizer for the plasma/solid interaction [86].

Another mechanical reduction method is the use of divertor targets [86].
The open magnetic field lines can be extended out of the main plasma by
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introducing a new current as done in figure 2.3. This current leads to a
magnetic field shaped like an eight number where the particles can follow
the field lines onto divertor targets located outside the main plasma. This
makes it easier to control the excess particles and contamination [86]. Ex-
periments by Umansky, La Bombard and Lipschultz on Alcator C-Mod have
shown that a large part of the particles entering the area of open field lines
do not reach the divertor targets [52, 55, 91]. Instead they are transported
radially outwards. This radial particle transport will be analyzed later.

2.6 Scrape-off layer

The scrape-off layer (SOL) is a term used for the area just outside the closed
magnetic field lines. The area in between closed and open field lines are
called the separatrix. This thesis will be concerned with high density events
seen in the SOL [17]. The reason this area is called the scrape-off layer is
that when a particle reach this area, the particle is outside the closed field
lines and will be scraped away from the main plasma, either by a divertor
target or a limiter. Since the particles are not confined in the SOL the
plasma parameters change drastically [64].

2.7 Plasma blobs

Discoveries have shown that even with magnetic and mechanical confine-
ment the plasma loss to the walls is still very large. This high loss is be-
lieved to be related to fast moving high density plasma blobs [52, 55, 91].
The plasma blobs are defined as plasma structures much denser than the
background plasma aligned with the magnetic field, see figure 2.4. The top
figure shows how the plasma blobs are located perpendicular to the mag-
netic field. Perpendicular to the magnetic field the blobs are circular dots
traveling in the radial direction. The bottom figure shows how the blobs are
aligned with the magnetic field. The blobs are extended along the magnetic
field and is sometimes called filaments. In tokamaks blobs are believed to
be generated by a mixture of kink and ballooning magnetohydrodynamics
(MHD) instabilities at the separatrix [17, 93]. The MHD model is a single
fluid model used to describe macroscopic equilibrium of fusion plasmas [25].
Ballooning is pressure driven instability (perpendicular current driven) and
kink is parallel current driven instability. The blobs are transported by an
electric drift due to a local charge separation caused by the instability. The
instabilities and blob drifts will be discussed more thoroughly in the next
chapter. Plasma blobs are not just a phenomena in tokamaks, blobs appear
in all toroidal plasma confinement experiments. Blobs carry particles, heat
and momentum from the edge region into the SOL, this leads to increased
interaction with the SOL, impacting the core plasma confinement [17]. On
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Parameter Value

Major Radius 0.67m

Minor Radius 0.21m

Toroidal Field 2.6 - 8.1 T

Plasma Current 0.4 - 2 MA

Ion Cyclotron Heating 6 MW

Electron density 1019 − 1021m−3

Core Electron Temp ≤ 9keV

Pulse Length 1-3s

Table 2.1 – In this table the specifics of the Alcator C-Mod tokamak is given.
The table is found in Czigler [16].

the positive side blobs can be used to transport the fusion reaction products
away from the main plasma [70].

2.8 Alcator C-Mod

The experimental data which will be used is taken from the Alcator C-Mod
tokamak located at the Plasma Science and Fusion Center, Massachusetts
Institute of Technology (MIT). The Alcator C-Mod has a high magnetic
field which makes it possible to reach high levels of plasma temperature
and particle density. The specifics of the Alcator C-Mod is given in table
2.1, for more information see Czigler [16]. Alcator C-Mod uses deuterium
fuel, thereby avoiding radioactive tritium. The heating in Alcator C-Mod
is mostly ohmically, but also ion cyclotron resonance frequency waves and
lower-hybrid microwave heating is used [16]. A poloidal cross section of the
Alcator C-Mod is given in figure 2.5. In this figure the circular lines in the
middle is the closed field lines. The thicker line is the separatrix and on the
other side of the separatrix the open field lines can be seen.

2.9 Data acquisition

The data acquisition techniques which will be used are gas puff imaging
(GPI) at the outboard mid-plane and Langmuir probe at the upper outboard
mid-plane, see figure 2.5. GPI diagnostic consists of injecting neutral Helium
gas into the plasma from a nozzle. When the ionized particles collide with
the neutral particles they are excited, emitting light. The measurements
can then be taken by an optical device measuring the HeI line (587.6 nm)
[16,34,60]. The measured quantity by the GPI is emissivity ε,

ε ∝ n0neΓ(ne, Te). (2.13)
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Figure 2.4 – The two figures above show how the plasma blobs are located in
space. The top figure shows a plasma blob transported radially outwards, the
pictures are taken 8µs apart. The image is taken from the national spherical
torus experiment (NSTX) device at Princeton Plasma Physics Laboratory [61].
The bottom figure shows the extension of the plasma blobs along the magnetic
field lines. The image is taken from the Alcator C-Mod. The picture is given
in Grulke [42].
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Side

View

nozzle

limiter
scanning
probe

Figure 2.5 – The figure shows a poloidal cross section of the Alcator C-
Mod tokamak, [16]. From the figure one can see that the Alcator C-Mod
has both limiter and divertor target configurations for reducing plasma/wall
interactions. The data acquisition is done on the low field side with both
Langmuir probe and a 9x10 grid of GPI data. The GPI nozzle is located
at the outboard midplane while the probe is located at the upper outboard
midplane. The figure can be found in Garcia [34].
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Where n0 is the neutral atoms, ne is the electron density, Te is the electron
temperature and Γ is the excitation rate coefficient. The fluctuations of the
GPI signals are assumed to be able to approximate the density fluctuations
[34]. The GPI data are from the FY2010 run campaign on Alcator C-Mod, a
more thorough documentation of the data is given in LaBombard [54]. The
data consist of a 9×10 array of data points covering an area Z = −4.51 –
−1.08 cm, R = 88.00 – 91.08cm , sampled with frequency 2 MHz. The radial
direction covers four measurements in the SOL, R = 91.08 – 89.925 cm,
one measurement at the separatrix, R = 89.54 cm and four measurements
in the edge region, R = 89.155 – 88 cm. Each GPI measured signal has
a length of 0.25s. The data acquired is collected at four different line-
averaged densities ne/nG = 0.15 – 0.30, measured by a Langmuir probe in
the horizontal direction [34]. The fraction ne/nG is the Greenwald fraction
where ne is the electron density. The Greenwald density nG is defined as,

nG =
Ip
πa2

, (2.14)

where Ip is the plasma current [MA] and a is the plasma minor radius [m],
nG has units of 1020m−3 [40]. For the GPI data nG = 5.26 × 1020m−3. One
disadvantage with GPI measurements is that it is highly dependent on the
temperature. Close to the wall the plasma is relatively cold resulting in low
emissivity measures. Far into the plasma the neutral gas becomes ionized,
resulting in lower emissions.

Data sampled by Langmuir probes will also be used. The probe collects
data in four channels, see figure 2.6. The channels measure ion saturation
current (Isat ∝ nT 1/2) and floating potential, with a sampling frequency of
5 MHz. The ion saturation current is measured by using a probe head with
a negative potential. The negative potential repels electrons and attracts
ions, creating a sheath region, sheath region will be explained in the next
section. Thus the current measured by the probe is the ion current, or ion
saturation current because it is saturated by ions. The floating potential is
the potential needed for equal ion and electron flux towards the probe, Itot =
0. The probe data is mostly taken in the far SOL because the probe can not
withstand the high temperatures close to the separatrix. Measurements ac-
quired by probes are usually much longer than GPI measurements, because
GPI is limited by the duration of the gas puff. The probe data duration
varies from 0.3 – 0.8 s. More information about the Langmuir probe can
be found in [34, 52]. The measurements sessions used here are 1120210 and
1111208. The session series 1120210 is a measure of only ion saturation cur-
rent at different line averaged densities ranging from ne/nG = 0.45 – 1.43.
The other physical parameters for that session are B = 5.4 T, Ip = 0.8 MA,
R = 0.893m and ρ = 0.0832 cm, ρ is distance from separatrix mapped to
midplane. The session 1111208 has used all probe channels, but for half of
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Figure 2.6 – The figure shows the probe head. The probe has four chan-
nels measuring ion saturation current and floating potential in the direction
perpendicular to the magnetic field. The figure is found in Smick et al. [85]

the data two of the probe heads are damaged. The data is taken for several
radii, line averaged densities and plasma currents. Ip = 0.55 MA, 0.8 MA,
B = 5.4 T, R = 0.860 – 0.870 m, ρ = 0.109 – 0.116 cm and ne/nG = 0.59 –
1.57. Due to different location for the probe and the nozzle R can not be
compared between the measurements.
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Chapter 3

Physical mechanisms

In this chapter the physical mechanisms behind high density plasma blobs
will be analyzed. The chapter will start out with describing the equations
governing a plasma in local thermodynamic equilibrium. From these equa-
tions a current continuity equation will be derived. By assuming sheath
connection and zero vorticity a two dimensional analytical solution will be
found as a solution for the blob propagation mechanism.

3.1 Local thermodynamic equilibrium

To simplify the equations of motion a local thermodynamic equilibrium
(LTE) is assumed where the heat flux and viscosity are zero [37]. LTE
represents a set of closed equations governing the plasma dynamics. In the
LTE approximation the velocities follow a Maxwellian distribution function
defined as [33],

fu(u‖) =
1√

2πCs
exp

(
−1

2

u‖

C2
s

)
,

fu(u⊥) =
1

(
√

2πCs)2
exp

(
−1

2

u⊥
C2
s

)
.

(3.1)

In the equation the subscripts mean parallel and perpendicular to the mag-
netic field, u is the velocity, and Cs is the isothermal sound speed,

Cs =

(
T

m

)1/2

.
(3.2)

In the equation above T [J] is the temperature andm is the mass. By neglect-
ing the collisional effects the particle continuity and momentum equation in
the LTE approximation can be written as,

∂n

∂t
+∇ · (nu) = 0, (3.3)

21
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mn
d

dt
u = −∇p+ qn(E + u×B), (3.4)

In the equation above n is the particle density, p is the pressure, q is the
elementary charge, E is the electric field and B is the magnetic field. The
derivative d/dt is the convective derivative, representing a coordinate system
traveling with the particle,

d

dt
=

(
∂

∂t
+ u · ∇

)
. (3.5)

The first equation above (3.3) is the continuity equation and the second
(3.4) is the momentum equation. The relevant forces acting on the fluid are
the Lorentz force and a pressure gradient force.

3.2 Fluid drifts perpendicular to the magnetic field

The drifts perpendicular to the magnetic field can be found by a cross prod-
uct between the equation of motion and the magnetic field [15]. For simplic-
ity the velocity will be split up into one component parallel to the magnetic
field u‖ and one perpendicular component u⊥,

B× (mn
d

dt
u⊥) =qn(B×E) + qnB× (u×B)−B×∇p,

Bmn

(
b× d

dt
u⊥

)
=Bqn(b×E) + qnB2u⊥ +B∇p× b,

(3.6)

where b = B/B is the unit vector along B. The perpendicular velocity can
be written as a sum of three velocities,

u⊥ =
1

B
(E× b)︸ ︷︷ ︸

1

+
1

qnB
(b×∇p)︸ ︷︷ ︸

2

+
m

qB
(b× d

dt
us⊥)︸ ︷︷ ︸

3

. (3.7)

1. The first drift in equation (3.7) is the E ×B drift also called electric
drift. The drift is independent of mass and charge of the particles.

2. The second term is the diamagnetic drift. The diamagnetic drift is
called a ”fictions drift” because it does not appear for guiding center
motions [15]. This drift will be analyzed further in the next section.

3. For a magnetized plasma the velocity can to the lowest order be ap-
proximated by the electric drift [37]. Thus the third drift can to the
lowest order be written as,

m

qB

(
b× d

dt
u⊥

)
=

m

qB

[
b× d

dt

(
1

B
(E× b)

)]
=

m

qB2

d

dt
E. (3.8)

The magnetic field is assumed to have only small variations. Hence
the third velocity is just the polarization drift introduced previously.
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3.2.1 Relation between particle and fluid drifts

In the fluid picture there is an extra drift not seen in the single particle
picture, the diamagnetic drift. In addition the drift due to curvature and
gradient of the magnetic field is not seen in the fluid description. This is only
on the surface, in the following it will be shown that the diamagnetic drift
contains both the grad B and curvature drifts. The grad B and curvature
drift was introduced in the previous section, see equation (2.11),

uB =
mu2
⊥

2qB
b×∇lnB +

mu2
‖

qB
∇× b. (3.9)

Equations for temperature can be derived from the Maxwellian distribution
functions (3.1),

T =

〈
1

2
mu2
⊥

〉
=
〈
mu2
‖

〉
. (3.10)

The half in front of the perpendicular component comes from the fact that
the perpendicular component covers two dimensions. With these equations
the average of the velocity can be written as,

〈uB〉 =
T

qB
b×∇lnB +

T

qB
∇× b. (3.11)

The current due to the curvature and grad B drift can be found by [87],

JB =
∑
s=i,e

qsns 〈uB〉s =
P

B
(b×∇lnB +∇× b) , (3.12)

where P = pe+pi = niTi+neTe is the total pressure. In the equation above
simple SOL is assumed where there is only one singly charged ion species.
When matter is inserted in a magnetic field the matter becomes magnetized.
This will create a bound current called the magnetization current [33],

JM = ∇×M

=
∑
∇× (n 〈µ〉)

= ∇×
∑(

−n m
2B

〈
u2
⊥
〉
b
)

= ∇×
(
−P
B
b

)
= −P

B
(∇× b) +

1

B
b×∇P − P

B
b× lnB.

(3.13)

In the equation above µ is the magnetic moment defined as,

µ = −
mu2
⊥

2B
b. (3.14)
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It can now be seen that,

JB + JM =
1

B
b×∇P = Jd. (3.15)

In a uniform magnetic field the diamagnetic current describes diamagnetism,
while for non-uniform magnetized plasma it additonally describe the grad-B
and curvature drifts. The divergence of the diamagnetic current can now be
found from straight forward calculation,

∇ · Jd = ∇ · (JB) +∇ · (JM )

= ∇ · (JB) +∇ · (∇×M)

= ∇ · (JB)

=

(
1

B
∇× b +

1

B
b×∇lnB

)
· ∇P.

(3.16)

Where in the last step the plasma is assumed to be weakly magnetized. This
relation will be used in the next section.

3.3 Simplified blob model

The physical mechanism for radial motion of the blob-like structures is il-
lustrated in figure 3.1 [30]. Consider a blob with particle density larger than
the background density. A radial force F will cause a charge separation in
the vertical direction, caused by the F × B drift. The charge separation will
lead to an electric field from positive to negative charge. A radial electric
drift will be generated by the charge separation. For a tokamak the forces
leading to charge separation are the curvature and grad B force. The blob
itself is believed to be created by the MHD instabilities kink and ballooning
mode [93]. The instability mechanism is given in figure 3.2. In the figure
the sinusoidal curve is a constant density perturbation ñ on the background
density n0. The gradient and curvature drift leads to a force transporting
ions downwards in the figure and electrons upwards. Since the background
density is increasing to the left there are more ions coming down to point A
than electrons from below. Thus a positive charge will build up at point A.
At point C the roles are changed, here a negative charge will build up. Elec-
tric drifts will be produced, increasing the perturbation [15]. Propagating
blobs will be generated to achieve equilibrium.

3.3.1 Mathematical model

Derivations of mathematic blob models have been done in previous studies
[17,19,30–32,47,48], the derivations done in this section follow those papers
closely. A simple model for describing blob propagation can be derived from
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Figure 3.1 – The figure describes the mechanisms for radial blob transport. A
charge dependent force perpendicular to the magnetic field generates a charge
separation in the blob. From the charge separation an electric field is created
which results in a drift in the E×B direction.

Figure 3.2 – In this figure a density perturbation cause charge separation
from the curvature and grad B drifts. The charge separation leads to an E ×
B drift which will increase the perturbation and generate plasma blobs.
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the current continuity equation for a quasi neutral plasma (ni ≈ ne = n) [30],

∇ · J = ∇ · j⊥ +∇ · j‖ = 0. (3.17)

The perpendicular current can be found by using the perpendicular drift
equation in the previous section. For cold ions (Ti = 0) and massless elec-
trons (me = 0) the perpendicular ion and electron velocity is,

ui⊥ = uE + upi

ue⊥ = uE + ude
(3.18)

Where uE is the electric drift, upi is the polarization drift and ude is the
diamagnetic drift. The perpendicular current can then be written as,

J⊥ = ne (ui − ue)

= ne (uE + upi − uE − ude)

=
nM

B

(
b× d

dt
uE

)
+
nm

B
(b×∇p) .

(3.19)

The divergence of the polarization drift can be found by considering a quasi
static state, weak variations in the magnetic field and thin layer approxima-
tion [26],

∇ · Jp = ∇ ·
(
nM

B
b×

(
∂

∂t
+ uE · ∇

)
uE

)
≈ −nM

B2

(
∂

∂t
+ uE · ∇

)
∇2
⊥φ.

(3.20)

Where φ is the electrostatic potential E = −∇φ. The toroidal magnetic
field in a tokamak can be found by Ampere’s law,∮

C
dl ·B = µ0I,

Bφ2πR = µ0I,

Bφ(R) =
µ0I

2πR
=
B0R0

R
.

(3.21)

In the equation above B0 is the magnetic field at the major radius R0 and I
is the total current. In the next step a slab will be considered where a local
Cartesian coordinate system is used. The z-axis along B, the radial direction
along the x-axis and y is the vertical direction. The toroidal magnetic field
is assumed to be much larger than the poloidal. The divergence of the
diamagnetic current was given in the previous section, see equation (3.16).
The electrostatic limit will be assumed [30], the magnitude of the curvature
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and grad B drifts are equal,

∇ · Jd =
1

B
(∇× b + b×∇lnB) · ∇p

=
2

B
b×∇lnB · ∇p

= − 2

BR

∂p

∂y
.

(3.22)

The full current continuity equation (3.17) can now be written as,

∇ · J = −nM
B2

(
∂

∂t
+ uE · ∇

)
∇2
⊥φ−

2

BR

∂p

∂y
+∇ · J‖ = 0. (3.23)

In order to solve this equation the parallel currents must be determined.
Two such limits will be discussed. The first limit is the inertial limit where
the plasma is so resistive that the parallel currents can be neglected. Thus
the blob is solely driven by the perpendicular current, this is called the
ballooning mode. The other limit assumes weak resistive plasma where the
parallel currents can be represented by its boundary values. The last case
gives an exact analytical two dimensional blob model.

Inertial limit

In the inertial limit the divergence of the parallel current is neglected, the
plasma is very resistive [47]. This means high momentum loss from colli-
sions. Collisions lead to large radial particle transport, the particles does
not reach the divertor targets. In this limit the blobs are driven by the
pressure gradient, consistent with the ballooning instability. A tokamak
configurations is favorable where the curvature is concave, high field side,
and unfavorable where the curvature is convex, low field side, see figure 3.3.
Consider now an instability mechanism as in figure 3.2. At the favorable
side the curvature will be negative such that the resulting electric drift will
reduce the instability. At the unfavorable side, the instability will be as in
figure 3.2. This is consistent with experiments on Alcator C-mod where it
has been seen that fluctuations on low field side is ten times larger than
fluctuations at high field side [53,90].

In the inertial limit the current continuity equation can be written as,(
∂

∂t
+ uE · ∇

)
∇2
⊥φ+

2

MnR

∂p

∂y
= 0. (3.24)

The particle density can be split up into a constant background density N
plus a fluctuating density η of order 1 with amplitude ∆n,

n = N + ∆nη(y, t). (3.25)
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Figure 3.3 – This figure shows a tokamak configuration as seen from above.
In the figure is is shown where the torus is favorable (high field side) and
unfavorable (low field side.

With the use of the equation above and isothermal temperature the last
term on the right hand side of equation (3.24) can be written as,

2

ρR

∂p

∂y
=

2T

MR

∆n

n

∂η

∂y
(3.26)

If the fluctuating part are assumed to be much smaller than the background
∆ n/N � 1 equation (3.24) can be written as,(

∂

∂t
+ uE · ∇

)
∇2
⊥φ+

2T

MR

∆n

N

∂η

∂y
= 0. (3.27)

The dimensionless form of the current continuity equation can be found by
using t′ = t/τ , y′ = y/l, x′ = x/l, u′E = τuE/l and φ′ = τφ/(Bl2), this gives
the following equation,(

1

τ

∂

∂t′
+

l

lτ
u′E · ∇′

)
1

τ
∇′2
⊥
φ′

B
+

2T

MRl

∆n

N

∂η

∂y′
= 0. (3.28)

To reduce the model equations to a form with no parameters the non-
dimensional time scale can be chosen as,

τ =

(
MRl

2T

N

∆n

)1/2

. (3.29)
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The non dimensional equation (3.28) then reduce to,(
∂

∂t′
+ u′E · ∇′

)
∇′2
⊥
φ′

B
+
∂η

∂y′
= 0. (3.30)

The ideal velocity scale is found by dividing the length scale by the time
scale,

V =
l(

MRl
2T

N
∆n

)1/2 =

(
2T l

MR

∆n

N

)1/2

= Cs

(
2
l

R

∆n

N

)1/2

. (3.31)

From the equation above the blob velocity in the inertial regime increases
with the square root of the blob size, decreases with increasing major ra-
dius and increases with (∆n/N)1/2. The last relation has been investigated
more thoroughly in Kube and Garcia [50], in experiments this value is not
necessarily small.

The transit times can be estimated by assuming, ∆SOL = 25mm, l = 1.5cm,
R = 0.9m, L‖ = 12m and ∆n/N ≈ 1,

τ⊥ =
∆SOL

V
=

1

Cs
0.0137m,

τ‖ =
L‖

Cs
=

1

Cs
12m.

(3.32)

In the equation above L‖ is the half length between divertors and the parallel
velocity is Cs [86]. Thus in this limit the plasma loss rate along the magnetic
field is negligible compared to the perpendicular loss, as was assumed when
neglecting the perpendicular current.

Sheath connected limit

In the sheath connected limit the plasma is weakly resistive. Particles flow
freely along the magnetic field without collisions. Slow radial velocities gen-
erate connection between the divertor targets. The resulting parallel current
can be represented by the boundary conditions at the sheath edge. The
sheath region is the region close to the divertor targets where quasi neutral-
ity is no longer fulfilled, ni > ne. The reason for this charge imbalance is
that immediately after ionization the fast moving electrons are transported
towards the solid surfaces. Thus a negative potential builds up on the solid
surface. This will generate an ambipolar electric field which will accelerate
the ions and slow down the electrons, creating ambipolar outflow ue = ui.
Within a short distance called the Debye length, the ions will shield out the
potential from the electrons. The shielding is not perfect, a small electric
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Figure 3.4 – In the figure above it is shown how the ambipolar electric field
works. The electrons with too small kinetic energy is repelled resulting in equal
loss of electrons and ions. The figure is found in Stangeby [86].

field will penetrate generating a pre-sheath electric field. This pre-sheath
electric field will also be ambipolar acting as a repulsive force for the elec-
trons and an attractive force for the ions, see figure 3.4. In order for the
electrons to reach the solid walls they have to have a velocity large enough to
overcome the potential energy barrier, see appendix. For simplicity the ions
is as before assumed cold and the electrons are assumed to be Boltzmann
distributed [86]. The Boltzmann distribution rise due to force balance be-
tween the pressure gradient pushing the electrons towards the solid surface
and the repulsive force due to the potential barrier,

ne = n0 exp (−e(φ− φ0)/Te) . (3.33)

Where n0 and φ0 is the value of the density and potential at the sheath
edge. The velocity the particles must have to overcome the sheath potential
barrier is defined by the Bohm criterium, derived in the appendix,

u0 ≥ Cs. (3.34)

In the equation above u0 is the sheath velocity and Cs is the isothermal sound
speed. In an isothermal plasma the velocity can not exceed the isothermal
sound speed [86], thus,

u0 = Cs. (3.35)
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The parallel current at the sheath edge can then be written as,

J‖0 =
∑
s=i,e

qsnsus

= en0Cs [1− exp (e (φ− φ0) /T )]

= e2n0Cs (φ− φ0) /T + ϑ (φ− φ0)2

(3.36)

A 2-dimensional model for the blob propagation can be found by integrat-
ing the current continuity equation (3.17) along the magnetic field. The
perpendicular current is assumed to be constant along the magnetic field,∫ L‖

−L‖

∇ · Jdl = 2L‖∇ · J⊥ + 2J‖0 = 0. (3.37)

Thus the full current continuity equation can be written as,

nM

B2

(
∂

∂t
+ uE · ∇

)
∇2
⊥φ+

2

BR

∂n

∂y
=
e2n0Cs
L‖

(φ− φ0) /T. (3.38)

An analytical solution is found when the vorticity is zero,

∇2
⊥φ = 0. (3.39)

By neglecting collisions the equation of particle continuity can to the lowest
order be written as,

dn

dt
=
∂n

∂t
+ uE · ∇n =

∂n

∂t
+

1

B
b×∇φ · ∇n = 0. (3.40)

The potential can be found from equation (3.38) and inserted into equation
(3.40) to find an equation for the density. The potential can be written as,

φ = φ0 +
2CsML‖T

RBne2

∂n

∂y
= φ0 +

2BL‖T

Rn
Csρs

∂n

∂y
(3.41)

Where ρs = Cs/ωci is the hybrid thermal gyro radius. Now assuming that
B is along the z-axis the electric drift can be rewritten as,

uE =
1

B
b×∇φ = 2Csρ

2
s

L‖

R

(
− ∂

∂y

(
1

n

∂n

∂y

)
x̂ +

∂

∂x

(
1

n

∂n

∂y

)
ŷ

)
. (3.42)

This equation can be inserted into the particle continuity equation to yield,

∂n

∂t
+ 2Csρ

2
s

L‖

R

{
∂

∂y

[
n
∂

∂x

(
1

n

∂n

∂y

)]
− ∂

∂x

[
n
∂

∂y

(
1

n

∂n

∂y

)]}
= 0. (3.43)

The equation above can be solved by separation of variables assuming that
the density can be written as,

n(x, y, t) = A(x, t)B(y). (3.44)
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Inserting this into equation (3.43) gives,

∂n

∂t
= B(y)

∂

∂t
A(x, t), (3.45)

∂

∂y

[
n
∂

∂x

(
1

n

∂n

∂y

)]
= A(x, t)

∂

∂x

∂2

∂y2
b(y) = 0,

∂

∂x

[
n
∂

∂y

(
1

n

∂n

∂y

)]
= B(y)

∂

∂x
A(x, t)

∂2

∂y2
ln(A(x, t)).

(3.46)

From the equations above the continuity equation (3.43) can be simplified,

dn

dt
=

∂

∂t
A(x, t)− 2Csρ

2
s

L‖

R

∂

∂x
A(x, t)

∂2

∂2y
ln[B(y)] = 0. (3.47)

This gives,
R

2L‖Csρ2
s

At
Ax

= (lnB)yy = − 1

`2
, (3.48)

where the subscripts At, Ax, (lnB)yy means derivative with respect to t, x
and double derivative in y. Since each side is dependent on different variables
both sides equals a constant -1/`2 [21]. The reason for choosing the constant
equal to 1/`2 will become clear later. The y dependent part of (3.48) can
be written as,

∂2ln(B)

∂2y
= − 1

`2
, (3.49)

which has an exponential solution of the form,

B ∝ exp[−1

2
(y/`)2]. (3.50)

l can now be interpreted as the poloidal scale length, since y is in the poloidal
direction for the slab geometry used here. The second equation can be
written as,

R

2L‖Csρ2
s

At = − 1

`2
Ax. (3.51)

The solution of this equation can be written as,

A(x, t) = f(x− Vbt). (3.52)

In the equation above f is an arbitrary function and Vb is the velocity of
blob propagation given by,

Vb
Cs

= 2
(ρs
`

)2 L‖

R
. (3.53)
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Equation (3.52) has the the form of an object traveling along x with speed
Vb. The equation for Vb shows that the speed is dependent on 1/`2, so the
speed decreases with increasing blob size squared. The total equation for
the density can be written as,

n(x, y, t) = f(x− Vbt) exp[−1/2(y/`)2], (3.54)

with potential,

φ = φ0 − y
2BL‖TCsρs

R`2
. (3.55)

The equations (3.53, 3.54, 3.55) is an exact analytical solution to equation
(3.38) for a plasma without vorticity located in vacuum (y � 1 → n = 0).
The main problem with this simple solution is that the plasma is assumed
collisionless thus the blobs are localized throughout the whole poloidal di-
rection, not consistent with ballooning [30]. When the driving mechanism is
dominated by parallel current as is done here it is called the kink mode, more
information about the kink mode can be found in Freidberg [25]. The transit
times can be calculated by assuming, Te = 30 eV, B = 4 T, ∆SOL = 25 mm,
l = 1.5 cm and R = 0.9 m,

τ⊥ =
∆SOL

Vb
=

1

Cs
1.1m,

τ‖ =
1

Cs
12m.

(3.56)

Thus it takes 10 times longer time to reach the divertor target than it takes
to reach the wall. A more thorough investigation of the blob velocity is done
on numerical simulation by Kube and Garcia [49–51].
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Chapter 4

Statistical methods

In this chapter the statistical methods will be introduced and explained.
The chapter will mostly focus on long range correlation and how they can
be estimated. At the end of the chapter the methods will be tested on
computer generated data.

4.1 Probability density function (PDF)

A probability density function fX(x) is a continuous function used to de-
scribe the probability of a random variable, X, to lie within a certain re-
gion [75],

P [x < X ≤ x+ dx] = fX(x)dx. (4.1)

In the equation above P is the probability. Thus the probability for a random
variable to lie between a and b can be found by integrating equation 4.1 from
a to b. Another variant is the cumulative probability distribution function
which describe the probability of a random variable to be less than or equal
a given value x,

P (X ≤ x) =

∫ x

−∞
fX(x)dx. (4.2)

Later the complementary version of the equation above will be used, that
is the probability for X to be greater than x. From the probability density
function the moments can be found by [87],

E[x] = µ =

∫ ∞
−∞

xf(x)dx,

E[(x− µ)2] = σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx,

E[(x− µ)3] = Sσ3/2 =

∫ ∞
−∞

(x− µ)3f(x)dx,

E[(x− µ)4] = Kσ2 =

∫ ∞
−∞

(x− µ)4f(x)dx.

(4.3)

35
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The number of moments in the equation above could go on to infinity, but it
is the first four which are most important. The first moment in the equation
above is the mean value, which says something about where in space/time
the density function is centered. The three consecutive equations are sub-
tracted by the mean value and are therefore called central moments. The
second central moment is the variance, it measures the spread of the density
function. The third central moment is the unnormalized skewness. Skewness
(S) is a measure of asymmetry in the PDF related to the mean value. For a
symmetric distribution such as a Gaussian S = 0, S > 0 represents a shift
to the right, S < 0 to the left. The fourth order central moments is called
kurtosis, a Gaussian distribution has a kurtosis of 3. Kurtosis describes the
sharpness of the peak [75].

For experimental data the PDF is estimated with the use of histograms. A
histogram is created by sorting the measurements into bins of equal width.
Dividing the histogram by the sum of all collected measurements gives the
probability for a random measurement to be in any given bin. Thus this
is not a true PDF where the distribution integrates to 1, but a probability
mass function, which is the discreet case. The probability in the discrete
case can be written as,

P (X = x) = fX(x). (4.4)

For a probability mass function the sum over the probabilities is equal to 1.

4.1.1 Estimation of moments

The moments introduced above can be estimated by [45,87],

µ̂x =
1

N

N∑
i=1

x(i),

σ̂2
x =

1

N − 1

N∑
i=1

(x(i)− µ̂x)2,

Ŝ =
1

σ̂3
xN

N∑
i=1

[x(i)− µ̂x]3,

K̂ =
1

σ̂4
xN

N∑
i=1

[x(i)− µ̂x]4.

(4.5)

In the equation above Ŝ and K̂ are the biased sample skewness and kurtosis
respectively. In this thesis the time series are so long that the bias becomes
insignificant, see Joanes and Gill for more information [45].
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Another useful method for analyzing events in a signal is the time derivative
skewness estimated by [79],

Â =
1

σ̂3(xt)N

N∑
i=1

[xt(i)− µ̂(xt)]
3. (4.6)

This is just the skewness of the time derivative of the signal where,

xt =
dx

dt
. (4.7)

The method describes the time asymmetry in a signal. When A is larger
than zero the signal spends more time raising than decaying and vice versa.

4.2 Hurst Exponent

As stated earlier the Hurst exponent is a measure of the long range temporal
correlations. The Hurst exponent was first introduced by the British scien-
tist Harold Edwin Hurst while demonstrating long term memory of water
discharge times in the Nile river [2]. For a stationary signal the exponent
take values between 0 and 1, where a value larger than 1/2 suggests per-
sistence in the data, less than 1/2 indicate anti-persistence and H = 1/2
is uncorrelated random data [57]. As mentioned a wide variety of methods
can be used to estimate the Hurst exponent. A handful will be used and
compared here.

The concept of long range correlations can be visualized with the use of
a one step persistent one dimensional random walk. This means a random
walk where the next step is dependent on the previous step and the step
is either up or down. Persistency means that if the last step was up the
probability of going up again will be larger than the probability for going
down. When the probability for going up is equal to that of going down the
motion is a regular random walk. An increase of persistence is expected to
lead to larger motions and therefore also greater dispersion. Therefore the
dispersion can be seen as a measure of the long range correlations, where a
higher dispersion results in stronger long range correlations. In figure 4.1 a
hundred realizations of persistent random walks with ∆x = ∆t = 1 is plot-
ted for five different persistence probabilities, p. In the figure ε represents
a normalized standard deviation. When increasing the probability one can
see that the spread increases.

In this thesis the Hurst exponent will be estimated from measurements
done on the plasma fusion tokamak Alcator C-Mod. In the last decade
a lot of research has been done on Hurst exponent estimation in plasma
fusion [14,38,79,92].
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Figure 4.1 – In these figures a hundred realizations of persistent random walks
with five different probabilities P is plotted. See that the dispersion increases
for increasing probability.
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Figure 4.2 – The Koch curve at four different iterations. See that the shape
is similar for all iterations. The code used is made by Salman Durrani [22].

4.3 Self-similar process

The definition of a self similar process X(t) is that the distribution is inde-
pendent of time series length [78]. In other words, the signal has the same
statistical properties for every subset of the signal. A useful way to write
the self-similar condition, for reasons that will become obvious later, is the
H-self similar process given by,

� H-self similar: X(at)
d
= aHX(t), ∀a > 0.

In the statement above
d
= means equal in distribution, H and a are constants.

The concept of self similarity can be visualized by a Koch curve. The Koch
curve is made by adding a smaller triangular shape in the middle of each
straight line for each iteration. Thus a zoom in the figure represents one
less iteration. The Koch curve has the same shape at different scales, the
curve is plotted for four subsequent iterations in figure 4.2. The curve is
an infinite fractal which is continuous everywhere, but not differentiable.
Another example of a self similar process from the real world are coastlines.
A coastline is also a fractal with infinite length depending on the resolution
of the measurements [69].

4.4 Fractional Brownian motion

A fractional Brownian motion (fBm), X(t), is a H-self similar, non-stationary
motion with stationary increments [38,58]. The fBms are also called biased
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random walks because their behavior is that of a random walk but with a
persistent probability.

� Stationary increments: X(t0 + t)−X(t0)
d
= X(t)−X(0), ∀t0.

Stationary increments means that the joint distribution function of the in-
crements is only dependent of the time between increments. The statistics
for a fBm is a Gaussian self similar process where H, the self similarity
parameter, is the Hurst exponent. The mean value of a fBm is zero [71],

E[X(t)] = 0, ∀t. (4.8)

The covariance for a zero mean signal can be written as,

E [{X(t)− E[X(t)]}{X(s)− E[X(s)]}] = E[X(t)X(s)]. (4.9)

By using the stationary increments condition above and assuming, X(0) = 0,
the product above can be written as,

X(t)X(s) =
1

2

[
X(t)2 +X(s)2 − {X(t)−X(s)}2

]
d
= −1

2

[
X(t)2 +X(s)2 −X(t− s)2

]
.

(4.10)

The mean value of the equation above is found by the self similarity condition
with a = 1/t [71],

X(at)
d
= aHX(t),

X(1)
d
=

(
1

t

)H
X(t),

tHX(1)
d
= X(t),

tnHX(1)n
d
= X(t)n.

(4.11)

Since X(1) has the same value for the fBm as for the increment process, σ2

= E[X(1)2] is the variance of the increments. The increment process will
be explained further in the next section. The correlation can be written as,

E[X(t)X(s)] =
1

2
σ2
(
t2H + s2H − |t− s|2H

)
. (4.12)

The autocorrelation above follows a power law with exponent 2H, where
H = 0.5 is a special case called Brownian motion. Brownian motions is
defined as a random walk with white Gaussian noise as increments [57].
The persistence of a fBm becomes clear when looking at fBms for different
Hurst exponents as given in figure 4.3. An increased Hurst exponent leads
to a smooth signal with slow variations and high global maximas. It is this
property the rescaled range analysis, introduced later, attempts to quantify.
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Figure 4.3 – Examples of realizations of fBms at different Hurst exponent.
The signals has ∆t = ∆x = 1. For low Hurst exponent the fBm varies fast with
small dispersion. When the Hurst exponent increases the dispersion increases
and the variations gets longer and slower.

4.5 Fractional Gaussian noise

Long range temporal correlations have been found in many real world pro-
cesses. These processes spans a wide variety of sciences from water levels
in hydrology to the stock exchange market in economics [69]. Recently it
has been put a lot of effort in finding the long range correlations for fluctua-
tion measurements in fusion devices. Especially in relation to turbulence in
the edge region of plasmas [10, 12–14, 38, 73, 80, 84, 95]. The theory behind
long range correlations comes from analysis based on fractional Gaussian
noise (fGn) data. fGns are stationary processes where the cumulative joint
distribution function is independent of a time shift t0 [78],

� Stationary process: Y (t0 + t)
d
= Y (t), ∀t0.

A fGn, Y, is defined as the increments of a fBm, X, defined in the previous
section,

X(k) =
k∑
i=1

Y (i). (4.13)

Assuming continuous signals a fGn can be written as the derivative of a
fBm,

Y (t) =
dX(t)

dt
. (4.14)
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With the use of this relationship the correlation function for a fGn can be
found by the double derivative of the correlation for a fBm [71],

ρ(t, s) = E[Y (t)Y (s)]

=
d2

dtds
E[X(t)X(s)]

=
d2

dtds

1

2
σ2
(
t2H + s2H − |t− s|2H

)
= −1

2

d2

dtds
σ2
(
|t− s|2H

)
= H(2H − 1)σ2|t− s|2H−2, t 6= s

(4.15)

Since a fGn is stationary the equation above can further be reduced to,

ρ(t, s) = ρ(τ) = E[Y (0)Y (τ)] = H(2H − 1)σ2|τ |2H−2, τ 6= 0. (4.16)

For s = t it was found in the last section that,

ρ(0) = σ2. (4.17)

It can be seen that when H is larger than 0.5 the integral of the autocorre-
lation function diverges, which proves the long range correlation ability. For
H = 0.5 the integral is σ2, thus no long range correlations. The last case
where H < 0.5 exhibit long range correlations [71]. In figure 4.4 realizations
of fGns are plotted for different Hurst exponents. Can see that as the Hurst
exponent increases the signal tend to fluctuate less randomly.

4.6 Correlation

Correlation function is a statistical method used widely in signal processing
for describing the difference and similarities in signals. Correlation can be
done on one signal between time steps or between two signals [87].

4.6.1 Cross-Correlation

The cross correlation function is defined as [87],

C(s, t) =
E[(X(t)− µX)(Y (s)− µY )]

σXσY
. (4.18)

where E represents the expectation, σ and µ are respectively the standard
deviation and mean value. Dividing by the standard deviation normalizes
the function resulting in a maximum value of one. If X and Y are assumed
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Figure 4.4 – Example of realizations for fGns at different values of the Hurst
exponent. In the figure the persistence increases as the Hurst exponent in-
creases.

to be jointly second order stationary, the cross correlation can be written as
a function of τ = s− t [87],

C(τ) =
E[(X(t)− µX)(Y (t+ τ)− µY )]

σXσY
. (4.19)

Thus the cross correlation is a measure of the similarities between two signals
at different time lags. The equation above can be estimated by,

Ĉ(τ) =
1

Nσ̂X σ̂Y

N−τ∑
t=1

[X(t)− µ̂X ][Y (t+ τ)− µ̂Y ] (4.20)

Where N is the sample size and µ̂, σ̂ are respectively the sample mean and
sample standard deviation, defined in equation (4.5). Estimated correlation
time used later is defined as the time lag of maximum correlation between
the two signals. Note that the equation above is a biased estimator for the
correlation. The reason for using this version is that for unknown σ and
µ the unbiased estimator, where 1/N is substituted by 1/(N − τ), is also
biased. It has been shown that for many stationary processes the estimator
used here has a smaller mean squared error [68].

4.6.2 Autocorrelation Function

The autocorrelation function is defined as the cross-correlation of a signal
with itself. By assuming second order stationary signal the autocorrelation
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can be written as [87],

R(τ) =
E[(X(t)− µ)(X(t+ τ)− µ)]

σ2
. (4.21)

The autocorrelation describe the similarities in a signal at different time
steps. In equation 4.16 it was found that the autocorrelation for a fGn
follows an exponential law [77],

ρ(τ) = E[X(t)X(t+ τ)] ∝ τ−γ , τ > 0

γ = 2− 2H.
(4.22)

The Hurst exponent calculated from the autocorrelation is usually not as ac-
curate as the other methods, but a heavy tail in the autocorrelation function
usually indicate long range correlations. Estimation of the autocorrelation
is similar to the method used for the cross correlation in equation (4.20),

R̂(τ) =
1

Nσ̂2
X

N−τ∑
t=1

[X(t)− µ̂][X(t+ τ)− µ̂], (4.23)

where µ̂ and σ̂ are given by equation (4.5).

4.6.3 Pearson correlation coefficient

To get the degree of correlation between two signals it is common to use the
Pearson correlation coefficient given by ,

rp =
E[(X − µX)(Y − µY )]

σXσY
. (4.24)

A value of r = 1 represents fully linear correlation, -1 is fully linear anti-
correlation, 0 is no correlation. For a sample the Pearson correlation coeffi-
cient can be estimated by [74],

r̂p =
1

N

∑N
t=1 (X(t)− µ̂X)(Y (t)− µ̂Y )

σ̂X σ̂Y
. (4.25)

The equation above is just the cross correlation for τ = 0. A limitation
when using the Pearson correlation coefficient is that it only detects linear
correlations. If the data has a clear non-linear geometric trend the Pearson
formula will not recognize it.

4.7 Power Spectral Density

The power spectral density describes average power as a function of fre-
quency. It can be calculated by taking the Fourier transform of the autocor-
relation from a second order stationary signal [87]. The Fourier transform
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can be written in a discrete and a continuous form respectively,

SXX(ω) =
+∞∑

m=−∞
RXX(m)exp(−jωm)

SXX(f) =

∫ +∞

−∞
RXX(τ)exp(−jfτ)dt.

(4.26)

In the equation above ω and f is the frequency, RXX is the autocorrelation
and SXX is the power spectral density. In this thesis the power spectral
density will be estimated by Barlett’s procedure, which is a special case
of the periodogram [87]. The periodogram is the Fourier transform of the
estimated autocorrelation given by,

ŜXX(ω) =

+∞∑
m=−∞

R̂XX(m) exp(−jωm). (4.27)

It can be shown that the variance properties of the periodogram equation
(4.27) is as large as the power specter itself [87]. Barlett invented a method
where the signal is split up into K windows, without overlap between win-
dows. The periodogram is calculated for each window and averaged. Thus
the variance of the final power specter will decrease as one over K.

The relationship between power specter and Hurst exponent for a fGn can
be found by the continuous Fourier transform of the autocorrelation function
in equation (4.16) [71],

S(f) =

∫ ∞
−∞

ρ(t) exp(−2πift)dt

= 2H(2H − 1)E[X(1)2]

∫ ∞
−∞

t2H−2 exp(−2πift)dt

= 2H(2H − 1)E[X(1)2]

∫ ∞
−∞

(
ε

f

)2H−2

exp(−2πiε)
dε

f

= 2H(2H − 1)E[X(1)2]

∫ ∞
−∞

ε2H−2 exp(−2πiε)dεf1−2H

= 2H(2H − 1)E[X(1)2]Cf1−2H

∝ f1−2H

(4.28)

Where a variable change ε = ft has been used and C is the integral,

C =

∫ ∞
−∞

ε2H−2 exp(−2πiε)dε. (4.29)
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Thus the power spectral density follows a power law for a fGn. A more
common way of expressing the power specter is [57],

S(f) ∝ f−β. (4.30)

Where β = 2H − 1 for a fGn and β = 2H + 1 for a fBm. Since the Hurst
exponent varies between 0 < H < 1 a value of −1 < β < 1 represents a
fGn while a fBm has β values 1 < β < 3. Therefore the slope of the power
specter can be used to verify whether the signal is a fBm or fGn.

4.8 Rescaled Range

The long range correlations in a signal can be found by looking at the vari-
ability in a signal, or more formally the range. This concept becomes clear
when looking at realizations of fBms for different Hurst exponents as pre-
sented in figure 4.3. The method of rescaled range consists of finding the
range R between maximum and minimum in a subset of a cumulated noise.
Dividing the subsets by their standard deviation removes the influence of
heavy tails if the process does not have Gaussian amplitude distribution.
The idea behind rescaled range is that a persistent cumulated signal will
have large peaks and low valleys, since a positive value has a larger probabil-
ity for following a positive value and vice versa. The method for calculating
the rescaled range is given below [57],

Y (n) = X(n)− 〈X〉 , n = 1, 2, ..., N

Z(n) =

n∑
i=1

Y (i), n = 1, 2, ..., N

R(n) = max(Z(1), Z(2), ..., Z(n))−min(Z(1), Z(2), ..., Z(n)), n = 1, 2, ..., N

RR(n) =
R(n)

S(n)
.

(4.31)
In the equation above S(n) is the standard deviation for the series of n
points, and 〈X〉 is the mean value of the fGn X. In addition to using
the method above it is common to take the average over all the subsets
with length n in the signal. In 1951 Harold E. Hurst gave an empirical
relation where the total rescaled range could be written as a power law.
The relation has since then been proven both mathematically [2] and found
experimentally [59]. The exponent was named the Hurst exponent. For a
fGn the power law relation can be written as,

RR(n) = CnH . (4.32)

According to the equation above the Hurst exponent can be found by straight
line regression in a logarithmic plot of RR versus the subset size n.
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4.9 Structure functions

The q-th order structure function Sq of a signal, X, can be defined as [95],

Sq(t, s) = 〈|X(t)−X(s)|q〉 . (4.33)

For a fBm the equation above can be reduced to,

Sq(t, s) = 〈|X(t)−X(s)|q〉 ,
= 〈|X(t− s)|q〉 ,
= 〈|X(τ)|q〉 ,
=
〈
|τ qH ||X(1)|q

〉
,

= 〈|X(1)|q〉 |τ |qH ,
= 〈|X(1)|q〉 |τ |ζ(q),
= Sq(τ),

∝ |τ |ζ(q).

(4.34)

From the equation above the structure functions follow a power law for all
q’s. The power law exponent can be calculated for different values of q and
the Hurst exponent can be found from a linear fit of ζ(q) versus q. The
sample structure functions can be estimated by [78],

Ŝq(k) =
1

N − k

N−k∑
i=1

|X(i+ k)−X(i)|q. (4.35)

For a stationary signal such as a fGn, the equation above will return a
constant value for all k’s. Therefore the structure function analysis must
be used on a non stationary signal such as an fBm or cumulated fGn, β
values between 1 and 3. For a more thorough investigation of the structure
function analysis used on plasma turbulence data see Yu [95].

4.10 Wavelet analysis

A widely used method for analyzing time series is the wavelet analysis in-
troduced by Grossman and Morlet [41]. The wavelet method can be used on
both non-periodic and non-stationary signals. The method describes how
the frequencies vary with timescale. A thorough introduction to the wavelet
analysis can be found in Farge [23]. The wavelet analysis is a convolution
between a mother wavelet with a specific width and the signal itself. This
can be seen as a filter,

W (t, a) =
1

a1/2

∫ ∞
−∞

g

(
t′ − t
a

)
f(t′)dt′, (4.36)
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Figure 4.5 – The figure above describes the waveform of the Mexican hat
wavelet.

The equation above returns a new transformed waveform W at time scale a.
In the equation above g is the mother wavelet with a width proportional to
the scaling constant a, f is the signal. The variance of the wavelet coefficients
follow a power law similar to that of the power specter (4.30), [57, 88],

fBm: σ2
W ∝ a2H+1

fGn: σ2
W ∝ a2H−1

(4.37)

The wavelet analysis can also be used to calculate at which timescales the
signal is self-similar. Wavelet coefficients scales similar to the signal at
different temporal scales. Thus self similarity can be verified by similar
PDF of wavelet coefficients at different time scales [4, 10].

4.10.1 Mexican hat

The mother wavelet which will be used here is the Mexican hat. The Mexican
hat is the negative of the second derivative of the Gaussian distribution
function [57],

g(t) =

(
1

2π

)1/2

(1− t2)e−(1/2)t2 , (4.38)

The Mexican hat waveform is pictured in figure 4.5.
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4.11 Conditional window averaging

Conditional window averaging (CWA) is based on local maxima sampling.
The method makes it possible to separate events in a signal and analyze
them separately. Every time a threshold condition is met in the signal the
local waveform is sampled, all such waveforms in a signal is averaged to give
a conditionally averaged waveform [96,97],

ΦC(τ) = 〈Φ(t)|C〉 . (4.39)

In the equation above ΦC is the conditionally averaged waveform, Φ is the
signal and C is the condition. In this thesis the condition will be an am-
plitude value as a function of the standard deviation. By doing the CWA
information about the amplitude of events, duration of events and time be-
tween events can be sampled simultaneously. This new information can then
be used to characterize the statistics of the events. Two different methods
will be used to calculate the CWA. The first method does not allow over-
lap by removing every waveform after it has been collected, this is the one
which will be used in statistically independent events. The other method
collects all events, even overlapping ones, thus the result may include depen-
dencies. It should be mentioned that even though the last method allows
overlap every event is not sampled. Overlapping events overlapping above
the threshold will still be one event. Thus the two methods will in most cases
return very similar results for waiting time and amplitude distributions.

4.11.1 Conditional variance

A way to analyze the reproducibility of a waveform is the conditional vari-
ance method used in Øynes et al [96,97]. Conditional variance is calculated
by,

Vcon(t) =

〈
(Φ(t)− ΦC(τ))2|C

〉
〈(Φ(t)|C)2〉

, (4.40)

The conditional variance Vcon takes on values between 0 and 1, where 1
represents no reproducibility and 0 represents high degree of reproducibility.
It is common to present the reproducibility as r = 1− Vcon. A high degree
of reproducibility means that similar waveforms are found throughout the
signal.

4.11.2 Duration, waiting time and quiet time

When sampling the conditional waveforms, information about waiting time,
burst duration and quiet times are sampled simultaneously. The waiting
time is defined as the time between two subsequent bursts, while quiet time
is the time under the threshold between to subsequent burst. The burst
duration is defined as the time of a single burst above the threshold. The
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Figure 4.6 – The figure shows a signal with two high amplitude events. The
horizontal line is the threshold. The time an event is over the threshold is
called the burst duration. The time between events under the thresholds is
called quiet time. The time between to local maximas over the threshold is
called waiting time.

times are visualized in figure 4.6. For the data analyzed in this thesis the
burst duration are usually much smaller than the waiting time, thus quiet
times and waiting times are approximately equal. The duration by this
method is highly dependent on the amplitude. Therefore the average burst
duration will be found by the conditionally averaged waveform instead.

4.12 Self-organized criticality

Self-organized criticality (SOC) is a method first explained by the danish
scientist Bak [5]. In this theory Bak tries to explain the theory behind the
random motions of a sand pile with the use of SOC. The theory begins with
considering a sand pile where you add grains of sand, if a column of grains
reach a critical amount, a dispersion will occur where one grain is given to
each neighbor. Such a dispersion could lead to other dispersions and also
larger avalanches. The way this system sets it self up in a critical state is
why it is called self-organized. So why is this important in plasma fusion?
Researchers has come up with theories which show that the turbulent eddies
in the edge region of a fusion device can be seen as a SOC system [73, 80].
The system builds itself up towards a critical state where high density blob
are the sandpile avalanches. To see if a system can be classified as a SOC
process the system must exhibit long range correlations. Note that not all
long range correlated systems are SOC processes.
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Theory PSD RS SF Wav

0.50 0.50 0.53 0.50 0.50

0.60 0.61 0.62 0.60 0.61

0.70 0.72 0.71 0.68 0.70

0.80 0.82 0.81 0.80 0.81

0.90 0.91 0.91 0.88 0.94

Table 4.1 – In this table the Hurst exponent calculated with the different
methods is compared to a theoretical value given in the left column.

PSD RS SF Wav

µ 0.72 0.71 0.69 0.70

σ 0.003 0.01 0.02 0.004

Table 4.2 – In this table the mean Hurst exponent and the standard deviation
is calculated by the various methods for 50 runs with H = 0.7.

4.13 Comparison of statistical methods

In this section the statistical methods introduced in the previous sections
will be compared on computer generated fGns. In addition the robustness of
the methods regarding trends and amplitude magnification will be analyzed.
The fGns are generated by the matlab code made by Stilian Stoev [89].

4.13.1 Analysis of fGn

In this first section the methods will be used on a signal without modi-
fications with a given Hurst exponent, examples of fGn signals was given
previously, see figure 4.4. The overall results for different Hurst exponents
is given in table 4.1. Note that all methods estimate a Hurst exponent close
to the theoretical value. The individual methods for a theoretical H = 0.7
is given in figure 4.7. In the figure the fit range for each method seems to be
consistent. The bias and error of each method has been tested by 50 com-
puter generated fGns with H = 0.7. The mean value and standard deviation
of H is given in table 4.2. From the table it is clear that the best estimator
is the wavelet analysis, the other methods might have a slight bias. In ad-
dition the error is a lot larger for the rescaled range and structure function
analysis.

4.13.2 Trends

The data from Alcator C-Mod used later have some trends which needs to
be removed before the signal can be analyzed. In this section a fGn with H =
0.7 will be added to a sinusoid and a linear function to see the effect of trends
in the signal. In figure 4.8 a fGn with a linear trend is plotted, the trend
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Figure 4.7 – In these figures the different methods for calculating the long
range correlations is used and visualized. The data used has a theoretical H =
0.7. Upper left: The power specter. Upper right: The rescaled range. Lower
left: The structure functions for q=1:5. Lower right: Variance of wavelet
coefficient.
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Figure 4.8 – Realization of a fGn with linear trend, H = 0.7. Both signals
have the same standard deviation.

and the fGn has equal standard deviation. In table 4.3 the Hurst exponents
calculated with various methods for a fGn with linear trend and theoretical
value H = 0.7 is given. See that only the structure function method fails for
a linear trend. The other methods only change shape for the highest time
scales which are not used for fitting. The next step to analyze is a sinusoidal
trend as pictured in figure 4.9, the trend and the fGn has equal standard
deviation. From the table 4.4 it is seen that trends only effects structure
function analysis. The period used for this trend is the length of the signal,
thus the other methods slightly change shape for the largest time scales. It
has been shown that a period within the fitting range changes the Hurst
exponent for all methods. In addition an increased standard deviation of
the trend effects the Hurst exponent. Thus one should remove large fast
moving trends. In figure 4.10 the Hurst exponent estimated by structure
function analysis is plotted as a function of the standard deviation of the
trend σt divided by the standard deviation of the signal σs. In the figure it
is clear that the structure function analysis is very sensitive when it comes
to trends, a trend with σt/σs = 0.1 makes it impossible to recover the true
Hurst exponent. Interesting to see that the evolution of H is the same for
both linear and sinusoidal trends.

4.13.3 Amplitude variations

The experimental data collected from Alcator C-Mod shows some amplified
parts compared to the overall signal. In this section a generated fGn with an
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Figure 4.9 – Realization of a fGn with Hurst exponent 0.7 and a sinusoidal
trend. The two signals have equal standard deviation, and the sinusoidal trend
has a period equal to the length of the fGn
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Figure 4.10 – In the figure the Hurst exponent for a signal with trend linear
and sinusoidal trend is plotted as a function of the standard deviation of the
trend divided by the standard deviation of the signal.
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Theory PSD RS SF Wav

0.70 0.72 0.72 0.98 0.71

Table 4.3 – In this table the Hurst exponent calculated for a fGn with a linear
trend is listed. Both signals have the same standard deviation.

Theory PSD RS SF Wav

0.70 0.72 0.71 0.96 0.71

Table 4.4 – In this table the Hurst exponent calculated for a fGn with a
sinusoidal trend is listed. The fGn has a theoretical value 0.70 and both signals
have the same standard deviation. The period of the sinusoidal trend is equal
to the signal length of the fGn.

increased amplitude part is used, see figure 4.11. Fortunately it is seen from
table 4.5 that having a magnified part does not effect the results. This is
fortunate because to decide which part is magnified is usually more difficult
than removing a trend in the signal. This is also as expected since the RR
analysis is averaged over all subsets in the signal.

Theory PSD RS SF Wav

0.70 0.72 0.72 0.70 0.71

Table 4.5 – In this table the Hurst exponent calculated for a fGn with mag-
nified part is listed. See that the amplification does not have any noteworthy
effect.
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Figure 4.11 – Realization of a fGn with Hurst exponent 0.7 and a part with
increased amplitude.



Chapter 5

Stochastic Model

In this chapter a stochastic model describing the high density events in the
SOL will be proposed. The model follows Garcia [28] closely, but with a
slightly modified waveform. The model is based on experimental measure-
ments which will be verified later.

5.1 Plasma Fluctuations Model

Recent experiments have shown that particle density measured in the SOL of
tokamak plasmas can be seen as a random sequence of burst events [29]. It is
then reasonable to assume that the signal can be written as a superposition
of the individual burst events,

Φ(t) =
∑
k

Akψ(t− tk). (5.1)

Where Ak is the amplitude of the k-th burst, ψ is the burst waveform and
tk is time of event k. The waveform consist of a exponential rise and an
exponential decay. This particular waveform is common in blob dominated
plasma regions [8, 29]. In this thesis Alcator C-Mod measurements in the
SOL will prove to exhibit the same type of waveform, see figure 6.24. The
waveform can be written as,

ψ(t) =

{
exp

(
t
τr

)
t < 0

exp
(
− t
τd

)
t > 0

(5.2)

The number of events K during time t is assumed to be a Poisson process
with distribution [75],

P (K) = exp

(
− t

τw

)(
t

τw

)K 1

K!
. (5.3)

57
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In the equation above τw is the average waiting time. The waiting times
in a Poisson process are exponentially distributed with mean value τw, the
relation is derived in the appendix, see also Ross [75],

fτ (x) =
1

τw
exp

(
− x

τw

)
, τ > 0. (5.4)

In the equation above the waiting times are defined by τ = tn+1 − tn.
The amplitudes A are assumed to be exponentially distributed,

fA(x) =
1

〈A〉
exp

(
− x

〈A〉

)
, x > 0. (5.5)

In the equation above 〈A〉 is the mean value of A. The signal in equation
(5.1) is then a sum over exponential distributed random variables times
a constant waveform. The sum over n independent exponential random
variables follow a gamma distribution, a proof is given in the appendix [75],

fΦ(x) =
1

θk
1

Γ(k)
xk−1 exp(−x/θ). (5.6)

Where Γ is the gamma function,

Γ(α) =

∫ ∞
0

tα−1e−tdt. (5.7)

The parameters k and θ are respectively called the shape and scale parameter
defined as,

θ =

〈
(Φ− 〈Φ〉)2

〉
〈Φ〉

, k =
〈Φ〉2〈

(Φ− 〈Φ〉)2
〉 . (5.8)

The moments of the shot noise model is calculated in the appendix and
follows Pecseli [66],〈

Φ1(t)
〉

= 〈A〉1 γ,〈
Φ2(t)

〉
= 〈A〉2

(
γ + γ2

)
,〈

Φ3(t)
〉

= 〈A〉3
(
2γ + 3γ2 + γ3

)
,〈

Φ4(t)
〉

= 〈A〉4
(
6γ + 11γ2 + 6γ3 + γ4

)
.

(5.9)

Where γ is given by,

γ =
τr + τd
τw

. (5.10)

In the equation above τr + τd is the time before the waveform has decreased
by e−1, this can be seen as the duration. The shape and scale parameter
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governing the gamma distributed shot noise process can be written as,

θ =

〈
(Φ− 〈Φ〉)2

〉
〈Φ〉

=
〈A〉2 γ
〈A〉 γ

= 〈A〉 ,

k =
〈Φ〉2〈

(Φ− 〈Φ〉)2
〉 =

〈A〉2 γ2

〈A〉2 γ
= γ.

(5.11)

From the moments above the normalized standard deviation, skewness and
kurtosis of the shot noise model can be found by,

C =

〈
(Φ− 〈Φ〉)2

〉1/2

〈Φ〉
=
〈A〉 γ1/2

〈A〉 γ
= γ−1/2,

S =

〈
(Φ− 〈Φ〉)3

〉
〈(Φ− 〈Φ〉)2〉3/2

=
2 〈A〉3 γ
〈A〉3 γ3/2

= 2γ−1/2,

K =

〈
(Φ− 〈Φ〉)4

〉
〈(Φ− 〈Φ〉)2〉2

=
〈A〉4 (3γ2 + 6γ)

〈4〉4 γ2
= 3 + 6γ−1.

(5.12)

The equations above can be used to find relations between the different
moments,

K = 3 +
3

2
S2,

K = 3 + 6C2,

S = 2C.

(5.13)

Between skewness and kurtosis there exists a parabolic relation as seen be-
fore in [6,83]. The model also predicts a parabolic relation between kurtosis
and variance, and a linear relation between skewness and variance. These
relations can be used on experimental data to verify the model.
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Chapter 6

GPI measurements

In this chapter the results of the GPI measurements will be presented. The
chapter will start out with a presentation of the signals and their statistical
properties. At the end of the chapter the long range correlations will be
analyzed together with blob properties such as speed and size. In the first
part the analysis will focus on changes with major radius, changes with
vertical position will be done towards the end of the chapter. The signals
consist of 90 pixels collected at four different line-averaged densities, see
table 6.1. The data analyzed is collected at Ip = 0.8 MA, B = 4.0 T and if
not stated otherwise Z = −2.99 cm, where Z = 0 represents the midplane.
For more information about the data and the data acquisition see the theory
part. To increase the length of the data time series, signals with equal line-
averaged densities will be combined, providing a signal length of 0.5 s. All
signals have been detrended to remove non-stationarity in the measurements.
In addition most of the analysis will be done on standardized signals,

Xstand =
X − µX
σX

(6.1)

A standardized signal has mean zero and standard deviation one.

Shot no. ne/nG
1100803005 0.15

1100803006 0.15

1100803008 0.20

1100803009 0.20

1100803011 0.25

1100803012 0.25

1100803020 0.30

Table 6.1 – In this table the line-averaged density for each shot used is listed.
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Figure 6.1 – In this figure 1 ms of a signal located in the SOL with R =
90.70 cm, Z = −2.99 cm and ne/nG = 0.25 is plotted as a function of time.

6.1 GPI measurements, Raw time series

In this section the measured signals will be presented. In the radial direc-
tion the GPI data have 9 measurements, 4 in the scrape-off layer (SOL),
R = 89.93 – 91.08 cm, one at the separatrix, R = 89.54 cm, and 4 mea-
surements in the edge region, R = 89.16 – 88 cm. In figures 6.1, 6.2 and
6.3 1 ms of the measured signals are plotted for three different radial posi-
tions. The signals used are standardized with ne/nG = 0.25 and located at
Z = -2.99 cm. In order to emphasize the difference between the signals, the
same range is used for the axis. The first figure, figure 6.1, shows a mea-
surement from the SOL, R = 90.70 cm. The signal seems to be composed of
bursts with a characteristic waveform. The waveform has a sharp rise and
a trailing wake as usually measured in the SOL of magnetically confined
plasmas [28, 39, 76]. The second figure 6.2 is from a signal measured at the
separatrix, R = 89.54 cm. The relative fluctuations at the separatrix seems
to be smaller than in the SOL. No clear universal waveform can be seen from
the figure. The last figure 6.3 is from a signal measured in the edge region,
R = 88.77 cm. In the edge region the relative fluctuations are of the same
order as at the separatrix and no clear waveform can be seen here either.

In figure 6.4 the full standardized signals have been plotted. In the fig-
ure the separatrix (blue) and edge (black) measurements have been shifted
by respectively 10 and 20 [V]. In the SOL the signal has a burst-like shape
with only positive amplitude peaks. In the edge region and at the separa-
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Figure 6.2 – In this figure 1 ms of a signal located at the separatrix with
R = 89.54 cm, Z = −2.99 cm and ne/nG = 0.25 is plotted as a function of
time.
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Figure 6.3 – In this figure 1 ms of a signal located in the edge region with
R = 88.385 cm, Z = −2.99 cm and ne/nG = 0.25 is plotted as a function of
time.
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Figure 6.4 – In this figure three signals located at three different radial posi-
tions in the fusion reactor is plotted. The red signal is R = 90.70 cm, the blue
signal is R = 89.54 cm and the black signal is R = 88.385 cm. All three signals
are located at Z = −2.99 cm with ne/nG = 0.25.

trix the signals seem to have as many positive amplitude peaks as negative
ones. Thus due to symmetry a normal distribution could be possible in the
edge region and at the separatrix, this will be investigated later. For the
SOL region the distribution is expected to have heavy tails towards positive
values due to the bursts.

6.2 Statistical properties

In this section the basic statistical properties of the signals will be analyzed
for all radial positions and line-averaged densities. In particular the mean
and the second, third and fourth order central moments will be estimated.
In figure 6.5 the mean value of the signal is plotted for several different line-
averaged densities. From the figure it appears that the mean value increase
out of the SOL and into the edge region where it drops off. A reason for
this shape of the mean value is the diagnostics. In the SOL the plasma is
relatively cold which gives low mean intensities. The intensity drop in the
edge region is because the amount of neutral gas decreases as the temper-
ature increase since more of the gas becomes ionized [34]. The mean value
increase with line-averaged density in the SOL, while the opposite result is
seen in the edge region.

In figure 6.6 the standard deviation divided by the mean value is plotted,
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Figure 6.5 – In this figure the mean value of the signals are plotted as a
function of major radius and line-averaged density at Z = −2.99 cm.

this relation can be interpreted as relative fluctuations. The relative fluctu-
ations are small and constant in the edge region. In the SOL there is a sharp
increase both with major radius and decreasing line-averaged density. This
is an indication of blob existence in the SOL and not in the edge region.
By assuming signals described as the stochastic model this figure shows the
inverse square root of the shape parameter for the gamma distribution,

k = γ =
µ2

σ2
. (6.2)

Thus the γ parameter decrease with increasing major radius and decreasing
line-averaged density. By assuming constant waveforms in the SOL, an in-
crease of γ means decreasing waiting time between events. Thus the waiting
time increases with radius and decreasing line-averaged density. More blobs
when there are more particles. It should be mentioned that the result found
here is highly dependent on the mean value estimated in figure 6.5.

In figure 6.7 the variance divided by mean value is plotted as a function
of major radius and line-averaged density at Z = −2.99 cm. The figure
shows small constant values in the edge region and larger values increasing
with line-averaged density in the SOL. For a signal defined by the stochastic
model this relation can be viewed as the mean peak value of the individual
events. The figure shows that the large amplitude events are located in the
SOL. Again the result is highly dependent on the mean value in figure 6.5.
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Figure 6.6 – The figure shows standard deviation divided by mean value for
all radial positions and line-averaged densities at Z = −2.99 cm.
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Figure 6.7 – In this figure the variance is divided by the mean value for all
line-averaged densities and radii at Z = −2.99 cm. For a signal defined by the
stochastic model this figure shows the mean amplitude of the events.
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Figure 6.8 – The figure shows the skewness as a function of line-averaged
density and major radius at Z = −2.99 cm.

The skewness of the signals are plotted as a function of major radius and
line-averaged density in figure 6.8. In the SOL the skewness increase with
major radius and decreasing line-averaged density. In the edge region the
skewness is close to zero, which is the value for a Gaussian distribution.
The positive skewness in the SOL is as expected from previous figures in
this chapter. The signals in the SOL have much larger positive amplitudes
than negative ones, thus positive skewness. A positive value of the skew-
ness is a common indication of bursts in the signal. Negative values of the
skewness indicate holes, which are negative bursts traveling in the opposite
direction, see [8, 94]. For the data analyzed here evidence of holes are not
found by skewness estimation.

In figure 6.9 the kurtosis is plotted as a function of line-averaged density
and major radius at Z = −2.99 cm. For comparison a black line represent-
ing K = 3, which is the Gaussian value, has been inserted in the figure. Note
that for the edge region most of the data are quite close to the Gaussian line.
Since the skewness was close to zero, a Gaussian distribution seems like a
good description for the distribution in the edge region. In the SOL the kur-
tosis increase with major radius and decreasing line-averaged density. The
decrease of S and K with line-averaged density might indicate that blobs
are less significant to the overall particle flux when the line-averaged density
increases [3].

In Sanchez et al. [79] a method for measuring the magnitude of time asym-
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Figure 6.9 – The figure shows estimated kurtosis as a function major ra-
dius and line-averaged density at Z = −2.99 cm. The black line in the figure
represent the Gaussian value K = 3.

metry in a signal is proposed. The method calculates the skewness of the
time derivative of the signal. For a signal consisting of bursts with a sharp
rise and a slow decay positive values is expected. A figure for the estimate
of time derivate skewness is given in figure 6.10. From the figure it is seen
that especially for the SOL the decay is slower than the rise, represented by
a positive value. Going towards the edge region the skewness of the deriva-
tive decreases slowly towards zero, where rise and fall takes equal amounts
of time. From the figure of time derivative skewness it is clear that even
though the kurtosis and skewness seems to be more or less the same through-
out the edge the signal does change. The result suggests that if there is a
characteristic waveform, the waveform becomes more symmetric as the ma-
jor radius decreases. The averaged waveform as a function of major radius
will be analyzed in a later section.

6.2.1 Comparison with stochastic model

The stochastic model presented in the theory part is a way to describe the
burst-like signal seen in the SOL with clearly defined statistical properties.
The stochastic model will be tested by plotting the central moments versus
each other. The relations provided by the stochastic model were derived in
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Figure 6.10 – The figure shows the estimated skewness of the time derivative
of the signal. In the figure the colors represent different line-averaged densities
and the x-axis is the major radius. All signals are measured at Z = −2.99 cm.

the theory, the results are repeated here for convenience,

K = 3 +
3

2
S2,

K = 3 + 6C2,

S = 2C.

(6.3)

In the equation above C, S and K represents the normalized variance, skew-
ness and kurtosis respectively. Between kurtosis and variance, skewness
there is a parabolic relation and between skewness and variance there is a
linear relation. In figure 6.11 the kurtosis is plotted as a function of skew-
ness for SOL measurements. A parabolic line given by the stochastic model
and two fitted lines with and without linear term have been inserted in the
figure. The fit is found by the least squares method,

ε =
N∑
i=1

(
yi − ax2 − bx− c

)2
. (6.4)

Where a, b, c are constants found recursively by the values which gives the
smallest possible ε. In the figure the relation between S and K seems to be
a bit steeper than the relation provided by the stochastic model and has an
offset value half of the stochastic model. It is obvious that the S/K rela-
tionship follows a parabolic relation, this has also been seen in other plasma
devices [6, 39,83].
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Figure 6.11 – In the figure skewness has been plotted versus kurtosis for
signals with ne/nG = 0.15 – 0.30, R = 91.08 – 89.93 cm and Z = −4.51 –
−1.08 cm. Three lines have been fitted to the data, Stochastic model (black),
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term (yellow).
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Figure 6.12 – In the figure the kurtosis has been plotted as a function of the
normalized variance for signals with ne/nG = 0.15 – 0.30, R = 91.08 – 89.93 cm
and Z = −4.51 – −1.08 cm. Three lines have been fitted to the data, Stochastic
model (black), parabolic relation with linear term (red) and parabolic relation
without linear term (yellow).
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Figure 6.13 – In the figure the skewness has been plotted as a function of
the normalized variance for signals with ne/nG = 0.15 – 0.30, R = 91.08 –
89.93 cm and Z = −4.51 – −1.08 cm. Three lines have been fitted to the data,
Stochastic model (black), parabolic relation (red) and linear relation (yellow).

The kurtosis as a function of variance is plotted in figure 6.12. In this
figure the data does not follow a curved relationship as in the previous fig-
ure. The black line represents the stochastic model and is a good fit for
small values of C. For the larger values a fit has been used which is almost
ten times steeper than the value provided by the stochastic model.

In figure 6.13 the skewness is plotted as a function of variance. As in the pre-
vious case the data shows an increasing spread with increasing C. The least
squares fitted lines gives a better fit than the stochastic model, where the
steepness is almost three times that of the stochastic model. The stochastic
model seems to provide too moderate curves compared to the experimental
results. The extreme values are possibly caused by the temperature depen-
dence of the diagnostics described previously. For low values the stochastic
model seems to provide a good fit.

6.3 Correlation

In this section the correlation of the standardized signals are analyzed. In
figure 6.14 the autocorrelation for all radial positions with ne/nG = 0.25
and Z = −2.99 cm is plotted as a function of time. From the figure it is
clear that in the edge region the signals are more strongly correlated than
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Figure 6.14 – In this figure the autocorrelation coefficients for all values of the
major radius (R = 91.08 – 88 cm) are plotted for ne/nG = 0.25, Z = −2.99 cm.

in the SOL. In order to put a number on this result the autocorrelation is
zoomed in for the first 50µs in figure 6.15. In the figure the black star lines
are data from the edge region, the yellow star line is the point in the edge
region closest to the separatrix. The red lines are SOL measurements and
the square blue line is the separatrix. From the figure it is clear that in the
edge region the autocorrelation has heavy tails compared to the separatrix
and SOL autocorrelations. At the separatrix a clear difference is found
from the edge region and SOL. This could have something to do with blob
generation. Heavy tails could indicate long range correlations. Thus this
result might indicate strong long range correlations in the edge region and
medium/weak long range correlations in the SOL. The e-folding time scale
τe is the scale at which the curves in figure 6.15 has decreased by one over
e,

y = A exp(−t/τe). (6.5)

A figure showing the e-folding times as a function major of radius and line-
averaged density is given in figure 6.16. In the figure the e-folding time scale
is found by an exponential fit to the exponential part of each curve in figure
6.15. It was previously shown that the autocorrelation should follow a power
law, so the fit used here is quite poor. The fit range used is the first part
of each curve except the first three points, thus the fit range increase with
major radius. The calculations is merely for illustrative purposes to give an
indication of how fast each curve falls off. The e-folding time scale increases
slightly in the SOL with a slight decrease at the separatrix and first point in
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Figure 6.15 – This figure shows the autocorrelation for the first 50µs for
all values of the major radius (R = 91.08 – 88 cm) with ne/nG = 0.25 and
Z = −2.99 cm.
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Figure 6.16 – This figure shows the e-folding time scale as a function of major
radius for signals with ne/nG = 0.25 and Z = −2.99 cm. The e-folding time is
calculated by an exponential fit to the exponential part of figure 6.15.
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the edge region. In the edge region far away from the separatrix the e-folding
time scale has a sharp increase. The position where the rise starts seems
to depend on the line-averaged density, a larger line-averaged density gives
a higher e-folding time in more of the edge region. These results suggest
strong long range correlations in the innermost part of the edge region and
possibly more of the edge region when the line-averaged density increases.

6.4 Distribution of signal amplitudes

Up to this point the signal has been analyzed by its moments and correla-
tions, in this section the full amplitude distributions will be analyzed. From
the previous plots of skewness and kurtosis it is clear that in the edge region
the signals are close to Gaussian distributed with S ≈ 0 and K ≈ 3. In
addition Gaussian distributed densities was found by Naulin et al. on drift
wave turbulence simulations in the edge region [64]. In figure 6.17 the PDF
of a signal in the edge region is plotted together with fitted lines representing
the normal, Sattin and gamma distribution functions. The gamma distribu-
tion was introduced together with the stochastic model, equation 5.6. The
Gaussian probability density function is defined as,

fN (x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
, (6.6)

where the constants are,

µ = 〈x〉 ,
σ2 =

〈
(x− 〈x〉)2

〉
.

(6.7)

Sattin et al. has proposed a distribution which has provided a very good
fit for several devices [81, 82]. The distribution is derived from the current
continuity equation, see appendix equation (F.5),

F (n) =
1√

2πσ2
exp

−1

2

[
ln
(

1− (n/n0)
K

)
− µ

]2

σ2

 1

1− ln(n/n0)
K

1

n/n0
, (6.8)

where n0,K, µ, and σ are free parameters. The signal used is located at
R = 88.350 cm, Z = −2.99 cm with line-averaged density ne/nG = 0.25.
From the figure it is clear than even while the skewness and kurtosis are
close to a normal distribution the normal distribution is not a particularly
good fit. The gamma distribution seems to be a good fit as does the Sattin
distribution. Slight deviation on the left side tail for the Sattin distribution
is observed.

In figure 6.18 the PDF of a signal located in the SOL, R = 90.70 cm, is
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Figure 6.17 – The figure shows the estimated probability distribution function
for a signal located in the edge region. The signal used has R = 88.350 cm,
Z = −2.99 cm and line-averaged density ne/nG = 0.25. In the figure three
distribution functions have been fitted to the data, gamma distribution (black),
normal distribution (blue) and Sattin distribution (red).
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Figure 6.18 – The figure shows PDF of a signal located in the SOL, R =
90.70 cm, Z = −2.99 cm and ne/nG = 0.25. The estimated values have been
fitted by lines representing, gamma distribution (black) and Sattin distribution
(red).
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Figure 6.19 – The figure shows PDF of a signal located in the SOL, R =
91.08 cm, Z = −2.99 cm and ne/nG = 0.25. The estimated values have been
fitted by lines representing, gamma distribution (black) and Sattin distribution
(red).

plotted with fitted distributions. The signal is located at Z = −2.99 cm
with ne/nG = 0.25. The distribution has long heavy tails which is a signa-
ture of a signal dominated by large amplitude bursts. Similar probability
density functions have been found on many tokamak devices [1, 35]. For
these measurements the Sattin distribution fail to fit the left side tails, but
is a good fit for the peak and right side tail. The Gamma distribution shows
a good fit for both the left and right side, but fails to fit the peak. The
scaling and shape parameter can be calculated from the mean value and
standard deviation as shown in the appendix. Thus θ = 0.21 and k = 3.41.
Now assuming that the signal is defined by the stochastic model γ = 3.41
and 〈A〉 = 0.21.

From the figure of skewness and kurtosis given previously it is clear that
the distribution function in the SOL varies with both position and line-
averaged density. The distribution for a signal at the same vertical position
and same line-averaged density at R = 91.08 cm is given in figure 6.19. For
these data the Sattin distribution is the best fit. The same calculations has
been done on all radial positions for all line-averaged densities in the SOL,
it was found that when the skewness is above approximately 3 none of the
distributions fit the experimental values. Skewness between 2 and 3 gives a
good fit for the Sattin distribution, while skewness between 1 – 2 gives ap-
proximately equally good fit for the Gamma and Sattin distribution. When
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the skewness decreases even further ≈ 1 the Gamma distribution is the best
fit. Thus in general a Sattin distribution is best for positions in the far SOL
and small ne/nG, while a gamma distribution is best near the separatrix and
large ne/nG. This is consistent with the previous results where the moments
was plotted against each other and compared to the stochastic model. It
should also be mentioned that a large error in the fit close to the walls are
caused by the GPI diagnostics. Due to cold plasma near the wall there is
reduced emission, as seen from the plot of mean value. High emission values
can only be seen when there are high density blobs. This leads to increased
skewness and kurtosis, higher than the values expected from the stochastic
model.

6.5 Measure of intermittency/self-similarity

In this section the cumulated signal will be tested for self-similarity. Self-
similarity was explained in the theory part and can be verified by similar
distributions at different temporal scales. A simple way to do this is by
using the wavelet coefficients. Since the wavelet coefficients have the same
scaling properties as the signal, the PDF of the wavelet coefficients at differ-
ent temporal scales can be used [1,4,10,23,56,81]. The analysis will be done
on one signal in the SOL (R = 90.70 cm) and one signal in the edge region
(R = 88.350 cm), the line-averaged density of both signals are ne/nG = 0.25
and Z = −2.99 cm. In figure 6.20 the PDF of wavelet coefficients in the
SOL is plotted for different temporal scales. For the short time scales the
distribution has a triangular shape gradually evolving to a bell shape when
the time scale increases. For large time scales the PDF flattens out towards
a straight line. Thus in general the signal is intermittent and not self-similar.
In figure 6.21 the PDF of several time scales are plotted on top of each other.
The figure shows PDFs for time scales from 128 to 8192µs. The overlapping
PDFs suggests a close to self-similar signal in this range.

Similar calculations has been done on a signal in the edge region, R =
88.35 cm, Z = −2.99 cm and ne/nG = 0.25. The PDF for four different time
scales is given in figure 6.22. In the edge region the PDF seems to have
a more curved shape at smaller scales than for the SOL, could result in a
self-similar signal at smaller scales. For the same time scales as for the signal
in the SOL the edge region signal has a more spread PDF than for the SOL,
see figure 6.23. This could indicate a slight deviation from self-similarity at
larger scales in the edge region. The self-similar parts of the signals covers
approximately two decades. Two decades means that the longest time scale
divided by the shortest time scale is 102.
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Figure 6.20 – In this figure the PDF of wavelet coefficients in the SOL is
plotted for four different time scales. The signals analyzed is located in the
SOL, R = 90.70 cm, Z = −2.99 cm and ne/nG = 0.25.
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Figure 6.21 – The figure shows the PDF of wavelet coefficients in the SOL
for time scales from 128µs to 8192µs plotted on top of each other. The signals
analyzed is located in the SOL, R = 90.70 cm, Z = −2.99 cm and ne/nG =
0.25.

6.6 Conditional window averaging

Here the large amplitude events will be analyzed by conditional averaging.
The conditional averaging is done with a threshold of 2.5σ, where σ is the
standard deviation of the signal. The signal considered, if not stated other-
wise, is standardized and located in the SOL at R = 90.70 cm, Z = −2.99 cm
with line-averaged density ne/nG = 0.25. The conditionally averaged wave-
form is plotted in figure 6.24. The waveform has a fast rise and a slower
decay. In the figure it is also given how many events the waveform is av-
eraged over, 957. The waveform has been fitted by two exponentials, one
with rise time τr and on with decay time τd, see the stochastic model. This
waveform is consistent with blob formation found by previous experiments
and simulations in the far SOL [8,30,36,76]. The average blob duration can
be defined as the time it takes before the waveform has decreased by e−1,
τd + τr = 21.5µs.

In figure 6.25 the conditionally averaged waveform at a position in the edge
region (R = 88.39 cm) is plotted. The waveform looks like an inverted ver-
sion of the waveform in the SOL, with a slow rise and a sharper decay.
Exponential fits have been attempted on the curve, but not as successful
as for the SOL data. Notice also that the number of events in the edge is
halved compared to the SOL as should be expected from the signals pre-
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Figure 6.22 – In this figure the PDF of the wavelet coefficients at four different
time scales is plotted for a signal at R = 88.35 cm, Z = −2.99 cm with ne/nG
= 0.25.
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Figure 6.23 – In this figure the PDF of the wavelet coefficients with time
scales in the interval 128 – 8192µs is plotted for a signal at R = 88.35 cm,
Z = −2.99 cm with ne/nG = 0.25.
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Figure 6.24 – In this figure the conditional averaged waveform in the SOL
is plotted. The signal used is located at R = 90.70 cm, Z = −2.99 cm with
line-averaged density ne/nG = 0.25, the threshold used is 2.5σ. The rise and
decay has been fitted by exponentials.

sented at the start of this chapter. From the time derivative skewness it
was found that the fluctuation should be more symmetric in the edge region
with only slightly larger decay than rise. Here it is found that the rise time
is longer than the decay. This result could be effected by the fact that the
background fluctuations are approximately on the same order as the high
amplitude events. In addition events are both positive and negative in the
edge region, while only the positive ones are sampled here.

To characterize the events it is important to see how frequent the events
occur and and at what amplitudes. When talking about events, the prop-
agating blobs are meant, therefore the analysis is only done in the SOL
where the blobs are seen. The analysis is done by calculating the com-
plementary cumulative distribution function for waiting times and burst
amplitudes given in figures 6.26 and 6.27. The events are collected by the
two different conditional window methods proposed in the theory part, one
allowing overlap and one which do not. The events are collected with a
threshold 2.5σ on standardized signals. Both figures 6.26 and 6.27 show
straight line regions in a plot with logarithmic y-axis, indicating exponen-
tial distributions. Thus the events can be seen as independent events in a
Poisson process, see appendix. From the figures it is clear that the distri-
bution does not change with the method used, even though the number of
events are doubled. The mean values of the exponential distributions are
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Figure 6.25 – In this figure the conditional averaged waveform in the edge
region is plotted. The signal used is located at R = 88.39 cm, Z = −2.99 cm
with line-averaged density ne/nG = 0.25, the threshold condition used is 2.5σ.
Exponential fits have been done unsuccessfully.

almost equal. The number before the exponential is due to the fact that this
is a discrete signal so the distribution is not a true density function it is a dis-
crete mass function, the integral of the PDF is not equal to 1, but the sum is.

For the amplitude distribution the probability has a curved shape for small
amplitudes with the no overlap method, this is likely because the method
favors high amplitude peaks. The overlap method suggests another expo-
nential region for small peaks, different than the one for large peaks. The
correct mean amplitude is the one for large peaks, since large peaks are not
as easily effected by overlapping events. The true mean amplitude is found
from the non standardized signal, i.e.,

〈X〉 = 〈Xstand〉 · σX + µX . (6.9)

Thus 〈A〉 = 1.05, five times larger than the value found by the PDF. The
two methods will be compared later with computer generated data. The
waiting time and amplitude distribution has been calculated also for the
edge region, no exponential distributions was found.

In figure 6.28 λw, the mean waiting time, is plotted as a function of line-
averaged density and radius in the SOL. The method used for conditional
average is the one which allows overlap and the threshold condition used is
2.5σ. From the figure it is clear that events appear more frequently close
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Figure 6.26 – In this figure the complementary cumulative distribution func-
tion (CCDF) for waiting times is plotted. Two different methods has been
used to collect events, blue no overlap and red overlap. Both methods result
in exponential distributed waiting time. The signal used is standardized and
located at R = 90.70 cm, Z = −2.99 cm with ne/nG = 0.25.

3 4 5 6 7 8

10
−2

10
−1

10
0

Complementrary cumulative distribution function

1 
−

 C
D

F

Peak amplitude

 

 

No overlap
Overlap
y = 28.9459exp(−x/0.82879)
y = 40.3686exp(−x/0.85691)

Events overlap =
1701
Events no overlap =
957

Figure 6.27 – In this figure the CCDF for peak amplitudes is plotted. Two
different methods has been used to collect events, blue no overlap and red
overlap. Both methods result in exponential distributed peak amplitudes. The
signal used is standardized and located at R = 90.70 cm, Z = −2.99 cm with
ne/nG = 0.25.
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Figure 6.28 – The figure describes the mean waiting time as a function of
line-averaged density and radius in the scrape off layer. The signal used is
standardized and located at Z = −2.99 cm.

to separatrix than further away. In addition higher line-averaged density
results in more frequent events. These results are consist with the result
found from the moments, figure 6.6, by assuming that the signals could be
described by the stochastic model. It should be mentioned that the waiting
times are highly dependent on the threshold, thus the change of moments
with major radius and line-averaged density could effect the result. In fig-
ure 6.29 the mean peak amplitude is plotted as a function of major radius
and line-averaged density. From the figure one can see that the magnitude
of the bursts decreases as the line-averaged density increases. The signals
used are standardized signals so the results found are possibly due to the
variations of µ and σ/µ in the SOL, see figures 6.5 and 6.6. The true mean
values gives the opposite result, decrease with major radius and increase
with line-averaged density. The effect of γ on the amplitude distribution
will be analyzed by the stochastic model. Another possible error to this
result is that the length of the exponential fit varies with major radius and
line-averaged density. Especially the highest line-averaged densities show
slightly curved exponentials.

It was seen at the beginning of this chapter that a burst-like shape as shown
in figure 6.24 was only seen for signals located in the SOL, not in the edge
region or at the separatrix. In figure 6.30 the conditionally averaged wave-
form is plotted for all radial positions. In the figure the waveforms has been
subtracted by their minimum value and divided by their maximum. The red
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Figure 6.29 – The figure describes the mean amplitude as a function of line-
averaged density and radius in the scrape off layer. The signal used is stan-
dardized and located at Z = −2.99 cm.
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Figure 6.30 – In the figure the average waveform is plotted for all radial
positions for ne/nG = 0.25 and Z = −2.99 cm. The red lines are points in the
SOL, The black dotted line is the separatrix and the blue lines edge region
measurements. The upper left corner shows number of events as a function of
major radius when the threshold condition is 2.5σ.
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lines in the figure are SOL points, black is separatrix and the blue lines are
from signals located in the edge region. In the SOL the averaged waveforms
are all equal with the same waveform seen in figure 6.24. At the separatrix
the waveform has the same rise time as the SOL points, but a faster decay,
resulting in a symmetric waveform. In the edge region the conditional wave-
form suggests a waveform with a slow rise and a faster decay. In the edge
region none of the waveforms overlap, there does not seem to be a charac-
teristic waveform. In addition time derivative skewness shown previously,
figure 6.10, suggest that the signal on average spends as much time going
up as down, thus events seems unlikely to occur.

6.6.1 Plasma holes

In this section the conditional averaged waveform will be estimated for neg-
ative amplitudes. Some numerical simulations and experiments have shown
that when a burst is created a negative depletion is also created traveling in
opposite direction with opposite sign, [8,18,94]. From the signal plotted for
the SOL in the start of this chapter it is clear that no such thing takes place
in the SOL. The SOL does not have significant negative amplitude bursts.
In addition a positive skewness in the edge region makes holes unlikely, see
Boedo et al. [8]. The negative conditional amplitude waveform for all radii
in the edge region is plotted in figure 6.31. In the figure the waveforms
have been inverted, the signal has line-averaged density ne/nG = 0.25 and
Z = −2.99 cm. The amplitude threshold used is −2σ. A lower threshold
value is used than for positive events because there are less negative events,
can be seen by the positive skewness. For the figure it is clear that negative
holes does not take place in the edge region. All waveforms are more or less
symmetric and none of them look similar to another.

6.6.2 Waveform consistency

In this section the conditionally averaged waveform will be analyzed at dif-
ferent amplitudes. This is done by setting the condition to an amplitude
interval instead of a threshold. The amplitude intervals used are 2 – 4σ, 4
– 6σ and 6 – 8σ. The results for one single signal located at R = 90.70 cm,
Z = −2.99 cm with ne/nG = 0.25 is given in figure 6.32. From the figure
it is clear that the waveform of the event is independent of the amplitude.
Even when the number of events get less than 50 the waveform is main-
tained. Thus the average blob duration for any amplitude of the blob is
approximately 20–25µs. It can also be shown that this is the case for all
radial positions in the SOL (R = 91.08 – 90.70 cm) and for all line-averaged
densities (ne/nG = 0.15 – 0.30), the result is given in figure 6.33. In the
figure the waveforms for all the amplitude intervals is plotted for all SOL
positions and line-averaged densities. Thus the duration of a blob is inde-
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Figure 6.31 – In this figure the inverse of the negative average conditional
waveform for negative amplitude peaks are plotted. The signal has ne/nG =
0.25 located at Z = −2.99 cm.
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Figure 6.32 – Conditional waveform for four different threshold intervals. The
signal is located at R = 90.70 cm and Z = −2.99 cm with line-averaged density
ne/nG0.25.
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Figure 6.33 – Conditional waveform for all line-averaged densities and am-
plitude intervals 2 − 4σ, 4 − 6σ and 6 − 8σ at Z = −2.99 cm, R = 89.925 –
91.08 cm with ne/nG = 0.15 – 0.30.

pendent of amplitude, line-averaged density and radius. For the edge region
this is not the case, in figure 6.34 the conditionally averaged waveform is
given for threshold intervals in the edge region (R = 88.39 cm). From the
figure it is clear that the shape of the waveform is similar for all thresh-
olds with a slow rise and a sharp decay, but the parameters varies more
than in the SOL. Thus as before the edge region does not seem to have a
characteristic waveform.

6.7 Conditional variance

As mentioned in the theory part of this thesis the conditional variance is
a measure of the reproducibility of a given waveform in the signal. The
reproducibility r is defined as,

r = 1− Vcon, (6.10)

where Vcon is the conditional variance. In this section the data used is lo-
cated at Z = −2.99 cm with line-averaged density is ne/nG = 0.25. In
figure 6.35 r is given as a function of time for a measurement in the SOL
(R = 90.70 cm). The figure shows high reproducibility of waveform after
peak amplitude and weak before. The result has to do with overlap where
the sharp rise is much more sensitive to overlap than the decay.
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Figure 6.34 – Conditional waveform for four different threshold intervals in
the edge region R = 88.39 cm, Z = −2.99 cm and ne/nG = 0.25.
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Figure 6.35 – In this figure the reproducibility is plotted as a function of
time in the SOL, R = 90.70 cm, Z = −2.99 cm and ne/nG = 0.25. The figure
verifies that there is a returning burst-like shape occurring in the SOL.
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Figure 6.36 – In this figure the reproducibility is plotted as a function of time
in the edge region (R = 88.39 cm). The figure verifies that there is a returning
waveform in the edge region data.

In figure 6.36 r is plotted as a function time for a signal in the edge re-
gion, R = 88.39 cm, Z = −2.99 cm and ne/nG = 0.25. In the edge region
there is a high reproducibility before the peak and large variability after
maximum. This is quite surprising since previous results have suggested
that there are no characteristic waveform in the edge region. This effect
could be due to the nature of the measurements. Every event is collected by
a waveform around maximum so every waveform will decrease on both sides.
Thus the reproducibility will always be large around maximum. But still a
larger part of the edge region waveform has higher reproducibility than the
SOL waveform. Could be something related to drift wave turbulence. Drift
wave turbulence will not be covered by this thesis, but have been discussed
elsewhere [63–65,67].

6.8 Self-organized criticality

The concept of self-organized criticality was introduced previously where a
system builds itself up to a critical state. It was shown previously that the
waiting times are exponentially distributed, thus the individual bursts are
independent of each other. Therefore the blobs can not be described by self-
organized criticality. Another way to analyze the self-organized criticality
is by analyzing the waiting times versus the peak amplitudes. For a self-
organized system it is expected that longer waiting times should result in
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Figure 6.37 – In this figure the peak amplitude is plotted as a function of
the waiting time before the peak. The signal used has ne/nG = 0.25 and is
located in the SOL with R = 90.70 cm and Z = −2.99 cm.

larger amplitudes. In figure 6.37 the peak amplitude is plotted as a function
of the waiting time leading to that peak. From the data the linear Pearson
correlation coefficients has been estimated to −0.0389. Thus the peak am-
plitude and waiting time is not linearly correlated, a geometric relation also
seems unlikely. This further verifies the fact that the blobs in the SOL can
not be explained by self-organized criticality.

6.9 Hurst exponent

In this section the Hurst exponent will be estimated by the different methods
described in the theory part. The focus of this section will be on one spatial
location to introduce the methods on experimental data. The signal used
is standardized and located in the SOL, R = 90.70 cm, Z = −2.99 cm with
line-averaged density ne/nG = 0.25.

6.9.1 Autocorrelation

The autocorrelation is calculated in matlab by using the matlab function
”xcorr” for a signal with zero mean. The autocorrelation coefficients for
the signal used in this section is plotted in figure 6.38. The result shows
long decay time, suggesting long range correlations in the signal, as shown
in Sanchez et al. [80]. The Hurst exponent can be calculated from the
autocorrelation coefficients by a power law fit. For these data no power law
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Figure 6.38 – In this figure the autocorrelation coefficients are plotted as
a function of time. The signal is located in the SOL with R = 90.70 cm,
Z = −2.99 cm and ne/nG = 0.25 is plotted.

region was found for the autocorrelation coefficients. It was also seen on
computer generated data that the method was inconclusive.

6.9.2 Power specter

The power specter is here estimated by Blackman-Turkey spectral estima-
tion [46]. The windows are sampled by a Hamming window with a width of
10000 (length of signal dived by 100). The matlab function used is ”pwelch”.
The power specter is plotted with logarithmic axis in figure 6.39. Three ver-
tical lines have been inserted in the figure representing the mean waiting
time (red), e-folding time autocorrelation (magenta) and mean burst dura-
tion (black). Two possible power law regions have been fitted to the data
resulting in β = 0.26 for large time scales (2.5 ∗ 102 − 4 ∗ 103 µs), the power
law region is slightly over one decade. This region is also consistent with
the self-similar region found previously by the wavelet method. It was pre-
viously found that the Hurst exponent can be calculated from the power
specter by [57],

S(f) ∝ f−β,
fGn: β = 2H − 1,

fBm: β = 2H + 1.
(6.11)
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Figure 6.39 – In this figure the power specter has been estimated and plotted
with logarithmic axis. In the figure three vertical lines are inserted representing
mean waiting time, e-folding time autocorrelation and burst duration. In the
figure two lines have been fitted marking possible power law regions. The signal
used is located in the SOL with R = 90.70 cm, Z = −2.99 cm and ne/nG =
0.25.

Thus for large time scales the signal is an fGn, −1 < β < 1, which gives
H = 0.63. For short time scales (2.5 – 16.67µs) β is above the fBm value,
in addition the power law fit is less than one decade. Thus Hurst exponent
calculation for short time scales does not make sense.

6.9.3 Rescaled range

The method for calculating the rescaled range was introduced previously
and will be used in this subsection to calculate the Hurst exponent. A
logarithmic plot of the rescaled range as a function of the time scale is given
in figure 6.40. In the figure vertical lines have been inserted representing
the mean waiting time, e-folding time scale for the autocorrelation and the
mean burst duration. In the figure the estimated points have been fitted by
three lines for three different time scale regions. The short time scales less
than 102µs has H = 1, this is due to a non stationary signal as was shown
by the power specter. For time scales larger than 104µs, H ≈ 0.5 resulting
in no long range correlations, could also be an effect of limited time series
length. For the intermediate time scales H = 0.68. The fit covers almost
two decades, approximately in the same range as the power law fit to the
power specter and the self-similar region calculated previously.
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Figure 6.40 – In this figure the estimated averaged rescaled range is plotted
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signal used is located in the SOL with R = 90.70 cm, Z = −2.99 cm and
ne/nG = 0.25.
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Figure 6.41 – In this figure the structure functions for q = 1, 2, 3, 4, 5 is
plotted. In the figure three vertical lines are inserted representing mean wait-
ing time (red), e-folding time autocorrelation (magenta) and burst duration
(black). The yellow marked areas with a black lines represent the stationary
part of the fGn where the fit has been estimated.

6.9.4 Structure Functions

In this section the structure functions for q = 1, 2, 3, 4, 5 is calculated and
used to evaluate the Hurst exponent. The structure functions are plotted
in figure 6.41 with a fitting range from 102 − 104µs. The fitting range
is found by plotting the structure functions for the non cumulated signal,
where a straight line represents the stationary part. Notice that the fitting
range is similar to that used by previous methods and the self-similar region
found by the wavelet method. Three vertical lines has been inserted in the
figure representing mean waiting time (red), mean burst duration (black)
and e-folding time scale for the autocorrelation (magenta). The method
for estimating the Hurst exponent from the structure functions was found
previously, see Yu [95],

Sq ∝ |τ |ζ(q)= |τ |qH . (6.12)

Thus the Hurst exponent can be found from linear regression of ζ vs q given
in figure 6.42. From the figure the Hurst exponent is estimated to 0.64.

6.9.5 Wavelet analysis

In this subsection wavelet coefficients are estimated and used to calculate
the Hurst exponent. The variance of wavelet coefficients are plotted with
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Figure 6.42 – In this figure ζ found in figure 6.41 is plotted as a function
of q. A linear function have been fitted to the data and used to estimate the
Hurst exponent. The signal used is located in the SOL with R = 90.70 cm,
Z = −2.99 cm and ne/nG = 0.25.

logarithmic axis as a function of time scale in figure 6.43. The vertical lines
is as before mean waiting time, e-folding time scale for autocorrelation and
mean burst duration. The Hurst exponent is estimated from the variance of
wavelet coefficients by [57,88],

σ2
W ∝ τ−β,

fGn: β = 2H − 1,

fBm: β = 2H + 1.
(6.13)

A fitted line has been inserted for short time scales less than 10µs resulting
in a β value slightly larger than the fBm limit. Thus H = 1 due to short
scale effects. For intermediate time scales 102 − 104 µs the fitted line has
β = 0.16, H = 0.58. The fit covers approximately two decades and the fit
range is similar to previous results.

6.9.6 Summary of Hurst exponents

For the signal located in the SOL, R = 90.70 cm, Z = −2.99 cm and ne/nG =
0.25 the Hurst exponent has been estimated by four different methods. The
estimation results are summarized in table 6.2. The results show that four
methods give similar results. On average the SOL region seems to have weak
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Figure 6.43 – In this figure the variance of wavelet coefficients is plotted
as a function of time for a signal with R = 90.70 cm, Z = −2.99 cm and
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waiting time (red), e-folding time autocorrelation (magenta) and burst dura-
tion (black). The estimate has been fitted by two lines, a star line for short
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Power Specter 0.63

Rescaled Range 0.68

Structure Functions 0.64

Wavelet analysis 0.58

Table 6.2 – The table shows result of Hurst exponent estimation by four
different methods. The signal used is located in the SOL with R = 90.70 cm,
Z = −2.99 cm and ne/nG = 0.25.
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long range correlations, this will be analyzed further for more positions and
line-averaged densities in the next section. All methods have a fitting range
approximately 2 decades within the self-similar region found previously, the
power specter has a slightly shorter fitting range than the other methods.

6.10 Radial variations of the Hurst exponent

In this section the radial variation of the Hurst exponent will be analyzed.
The signals used are standardized and located at Z = −2.99 cm, R = 91.08
– 88.00 cm with ne/nG = 0.25. In figure 6.44 the Hurst exponent are esti-
mated by structure functions, power spectra, rescaled range and wavelets as
a function of major radius. The figure shows Hurst exponent approximately
constant in the SOL varying between 0.57 and 0.68. This confirms weak
long range correlations in the SOL. The independent large amplitude events
indicates that the signal here could consist of a superposition between a shot
noise process as defined by the stochastic model and a fGn. At the separa-
trix a high H is estimated by the wavelet method while a low value is found
by the power specter method. This could be due to bad measurements, the
power law fit is only slightly longer than one decade for the wavelet method
at this position. For the edge region the fit region is more or less the same
as the fit region in the SOL, see the previous section. In the edge region
the Hurst exponent increase from 0.5/0.6 to 0.8/1.0. Thus in the edge re-
gion there are strong long range correlations. This result confirms the long
range correlation suggested by the high e-folding times for the autocorre-
lation found earlier in this chapter. Similar Hurst exponents as a function
of majors radius has been found by Yu [95]. Carreras found an increasing
Hurst exponents away from the separatrix in the SOL as in the edge re-
gion [14], but here it is approximately constant. The high Hurst exponents
found in the edge region could be explained by a non-stationary signal. In
Yu [95] it is shown that a non stationary signal will have Hurst exponents
close to 1. The stationary test by the use of structure functions reveal that
as the major radius decreases in the SOL the signal deviates slightly from
stationarity. In addition the self-similar wavelet test showed that the sig-
nal is not perfectly self-similar in the edge region. A contradiction to these
results are the wavelet and power specter methods which are able to verify
whether the signals are stationary or non-stationary, these methods confirm
that the signal is a fGn.

6.11 Hurst exponent for different line-averaged den-
sities

In this section the Hurst exponent will be analyzed as a function of the
line-averaged density. The signals used in this section are located at Z =
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Figure 6.44 – The figure shows estimated Hurst exponent with structure
function, power specter, rescaled range and wavelets as a function major radius.
The signal used is located at Z = −2.99 cm and has ne/nG = 0.25.

−2.99 cm. In figure 6.45 the Hurst exponents estimated by the wavelet
method is given as a function of major radius for all line-averaged densities.
From the figure it seems that when the line-averaged density increases the
Hurst exponent in the SOL seems to increase. It should be mentioned that
for the highest line-averaged density there is only one data set and the
wavelet variance is curved resulting large uncertainty. Similar calculations
have been done with the other methods and the Hurst exponent tends to
increase with line-averaged density in the SOL, but not as drastically as for
the wavelet method. For comparison the Hurst exponent calculated by the
structure functions as a function of major radius and line-averaged density is
given in figure 6.46. For the edge region all methods show a similar increase
with approximately equal H values for all line-averaged densities.

6.12 Vertical variations of the Hurst exponent

In this section the vertical variations of the Hurst exponent will be analyzed.
A contour plot of the Hurst exponents calculated by the rescaled range
analysis for signals with ne/nG = 0.25 is plotted in figure 6.47. In the SOL
(R > 89.925 cm) the Hurst exponents are approximately constant in space.
In the edge region (R < 89.155 cm) the figure shows primarily vertical lines
representing a Hurst exponent constant in the vertical direction. The white
spots are missing data samples from the measurements.
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Figure 6.45 – The figure shows Hurst exponents estimated by the wavelet
method as a function of line-averaged density and major radius at Z =
−2.99 cm.
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Figure 6.46 – The figure shows Hurst exponents estimated by the struc-
ture functions as a function of line-averaged density and major radius at
Z = −2.99 cm.



Data block randomization 103

0.598

0.622
0.622

0.647

0.672
0.647

0.696

0.721

0.745

0.77

0.795

0.819

0.672

0.672

0.844

0.672

0.844

0.696

Major radius [cm]

Z
 [c

m
]

88 88.5 89 89.5 90 90.5 91
−4.5

−4

−3.5

−3

−2.5

−2

−1.5
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rescaled range method as a function of space for ne/nG = 0.25.

6.13 Data block randomization

In this section the Rescaled Range method will be verified by data block
randomization. It has been argued that the Hurst exponent found on long
time scales might be an effect of the large Hurst exponent at small time
scales, [38,84,92]. To prove this they have done a data block randomization
of the signal. If the Hurst exponent increases or stays the same after ran-
domization the time scales considered does not have long range correlations,
see Peters [69]. Data block randomization consist of splitting the signal up
into equal sized boxes. Then a new signal is made by inserting each box
at a random position in the signal. In figure 6.48 a comparison between
autocorrelation of the signal and autocorrelation of the randomized signal
is given. The long heavy tails related to long range correlations are gone
for the scrambled signal. In figure 6.49 the rescaled range analysis is plot-
ted for the signal, before (red) and after (blue) randomization. The signal
used is located in the SOL R = 90.70 cm, Z = −2.99 cm and ne/nG = 0.25.
The Hurst exponent has significantly decreased after randomization, thus
the Hurst exponent is not an effect of the smaller scales. The window size
used has width 10 µs (δn = 20). Larger windows, less than the power law
region, has been used and the Hurst exponent is found to decrease even for
larger window sizes. For a windows size 100µs the randomized signal has H
= 0.63, while for 1000µs H has increased to 0.70. In figure 6.50 the same
calculations are done for a signal located in the edge region R = 88.39 cm,
Z = −2.99 cm and ne/nG = 0.25, where a larger Hurst exponent was found.
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Figure 6.48 – In this figure the autocorrelation of a signal at R = 90.70 cm,
Z = −2.99 cm with ne/nG = 0.25 is plotted on the left. On the right the data
randomized version of the signal is plotted.
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Figure 6.50 – In this figure the rescaled range method has been used to
estimate the Hurst exponent for a signal at R = 88.39 cm, Z = −2.99 cm with
ne/nG = 0.25, red dots. Blue dots are the estimated rescaled range for the
data randomized signal.

In this figure the result is the same as before a Hurst exponent slightly above
0.5 is found.

In figure 6.51 the same calculations are done for a computer generated fGn
with H = 0.7. The Hurst exponent after data block randomization is sim-
ilar to the value found in both the SOL and in the edge. Thus there is no
evidence of high Hurst exponent being influenced by smaller scales.

6.14 Blob size and velocity

Two important properties regarding the high density blobs are their size
and velocity. The size in this case is the vertical size, which in a practical
sense can be interpreted as the poloidal blob size. The poloidal blob size
is found by doing a conditional average with Z = −2.99 cm as a reference
point. Every time a local peak is sampled at Z = −2.99 cm the value at all
other vertical positions is saved. Thus the average value can be plotted as
a function of Z to see how far from the reference the measurements have
a high density measure at the same time as the reference. The conditional
size is given in figure 6.52. All the data in the figure is divided by the refer-
ence value. The signals used are standardized and located at R = 90.70 cm.
In the figure the size has been plotted for different line-averaged densities
and the size is found to be independent of line-averaged density. Thus more
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Figure 6.53 – The figure shows an example of cross correlation between two
radial positions in the SOL. The signals used are located at R = 90.70 cm,
90.31 cm, Z = −2.99 cm and ne/nG = 0.25.

particles does not give poloidally larger blob structures. In addition the size
has been found to be equal for all radial positions. From the figure the size
can be estimated to 1 – 2 cm. This is in good agreement with what was
reported in a review article by Boedo [9].

The average time it takes for a blob to travel from one position to an-
other can be found by cross-correlation. An example of the cross correlation
between two radial positions is given in figure 6.53. The figure shows cross
correlation between R = 90.70 cm and R = 90.31 cm, both signals are lo-
cated at Z = −2.99 cm with ne/nG = 0.25. The correlation time is defined
as the time shift of the peak compared to zero. The cross correlation peak
has a coefficient value of around 0.7. A similar value has been found between
all positions for different line-averaged densities. The relatively small values
are likely caused by poloidal motion, and background density fluctuations.
The blob speed can be found by dividing the distance by the correlation
time between two points. Four contour plots showing the radial velocity as
a function of space and line-averaged density is given in figure 6.54. The
estimated radial velocity decreases with major radius and slightly with ver-
tical position. Thus the radial velocity is largest near the separatrix where
the blobs are believed to be created, possibly slowed by non-linear dispersion
in the SOL [30]. As a function of line-averaged density the radial velocity
seems constant except for the largest line-averaged density where it has a
slight increase. The average radial velocity is approximately 1000m/s.
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Figure 6.54 – These figures describe the estimated radial velocity as a function
of space for different line-averaged densities.

The vertical (poloidal) blob velocities are given in figure 6.55. In the vertical
direction the speeds are slightly larger than in the radial direction with a
slight increase for increasing line-averaged density. The average velocity is
directed downwards, away from the midplane. Similar results are reported in
the review article by Boedo [9]. The result is consistent with blobs created
at the midplane propagating towards the divertor targets. For the high-
est line-averaged density the maximum velocity is found far away from the
midplane, inconsistent with the other line-averaged densities. It should be
mentioned that some of the sensors are damaged, in these cases the velocity
value is taken from the nearest neighbor.

In the theory part two velocity scalings were found from the current con-
tinuity equation with two different closure schemes, sheath dissipation and
ideal interchange. The velocity scalings where given by,

Vb
Cs

= 2
(ρs
l

)2 l‖

R
. (6.14)

Vb
Cs

=

(
2
l

R

∆n

N

)1/2

, (6.15)

The physical quantities for this experiment was B = 4T, Mi = 3.32*10−27,
Te = 30eV, ∆n/N ≈ 1, l ≈ 1.5 cm, L‖ = 12 m and R = 0.9 m. From the
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Figure 6.55 – These figures describes the estimated vertical blob velocity as
a function of position and line-averaged density.

sheath closure this gives a velocity of 180 m/s. This is 4 – 5 times less than
estimated from the data. For the ideal interchange a velocity of around
7000 m/s is found, much larger than the experimental value. The velocities
seen for both closure schemes are expected since they represent ideal cases.
When all terms are kept in the current continuity equation we expect a
velocity which lies in between the two [50], as does the measurements.
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Chapter 7

Probe measurements

In this chapter data measured by Langmuir probes on Alcator C-Mod will
be analyzed. The measurements consist of two shot sessions 1120210 (ISP)
and 1111208 (ASP). The ASP measures floating potential in two channels
and ion saturation current (Isat ∝ nT 1/2) in two channels. The ISP data
has one channel measuring ion saturation current. Both measurements are
taken at the upper outboard midplane. The data consists of long time series
of around 0.5 – 1.5 s, with 3 – 5 million data points. The useful parts where
the physical quantities are constant is approximately 0.3 – 0.8 s.

7.1 ASP measurements

In this section ASP data in the far SOL, primarily shot 1111208010, will
be analyzed. Due to varying data quality, only three other shots will be
used from the ASP session, the varying physical quantities are listed in ta-
ble 7.1. The constant physical quantities are, Bφ = 5.4 T, R = 0.865 m and
ρ = 0.111 cm. As for the GPI data the measurements have been detrended
and standardized.

In figure 7.1 the standardized (a) ion saturation current and (b) floating
potential is plotted as a function of time. The ion saturation current has a
burst-like shape with individual burst amplitudes much larger than the stan-
dard deviation, as seen for the GPI data in the SOL. The floating potential
(b) seems to have a signal dominated by negative bursts, but compared to

Shot 008 010 011 016

ne/nG 1.0 1.15 1.12 0.86

Ip [MA] 0.55 0.55 0.55 0.80

Table 7.1 – This table shows the varying physical quantities for the shots
which will be used in this section.
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Figure 7.1 – In this figure the raw time series of standardized (a) ion sat-
uration current and (b) floating potential is plotted. The shot used is ASP
010.

the standard deviation the peaks are relatively small. A closer look at the
signal reveals no clear waveform, but seemingly random fluctuations. Since
the probe consist of four heads, it is possible to estimate the electric drift
and particle flux by,

uE =
∆Vf
∆rB

,

Γ = IsatuE .
(7.1)

In the equation above uE is the electric drift, ∆Vf is the difference between
the measured floating potentials of the two channels, ∆r is the distance be-
tween probe heads, B is the magnetic field strength, Γ is the particle flux
and Isat is the ion saturation current.

In figure 7.2 the probability density functions (PDF) of Isat, Vf , uE and
Γ is plotted. The non standardized PDF for ion saturation current (a) has
a heavy tail towards large positive values indicating frequent appearance of
bursts. In the figure fitted lines for gamma and Sattin distributions have
been inserted. The Sattin distribution provides an almost perfect fit while
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the gamma distribution fails to fit the right side tail. The scale and shape
parameters for the gamma distribution are k = 0.27 and θ = 0.012. As-
suming that the signal can be described by the stochastic model 〈A〉 = 0.12
and γ = 0.27. This implies relatively long waiting times as seen for the far
SOL by the GPI measurements. The floating potential (b) has a slightly
skewed PDF, possibly caused by temperature fluctuations. Similar devia-
tion from Gaussian statistics is found for all shots analyzed. The electric
drift (c) follows a normal distribution, with an average radial velocity of
120m/s. The distribution has a shift towards large positive values caused
by the fast moving blobs. The low velocity value could be explained by
the distance between probe heads of only 2.2mm, which is smaller than the
radial blob size found for the GPI data. In addition the velocity is the drift
for the whole plasma not just the blobs, it has both positive and negative
values, a small average value should be expected. The flux distribution has
heavy tails towards large values, caused by the large density blobs, as seen
by Carreras [11].

The conditionally averaged waveforms for the signals are found by using
the ion saturation current as reference. This means that every time the
threshold condition is met for the ion saturation current a waveform is sam-
pled for all signals. Thus the waveforms related to large density events are
found for each signal. The threshold condition used is 2.5σ. The resulting
conditionally averaged waveforms are plotted in figure 7.3. The conditionally
averaged waveform for (a) the ion saturation current has a burst-like shape
with a fast rise and a slower decay similar to the GPI data. The waveform is
too peaked and flats out too fast for exponential raise and decay to fit well.
The duration is found to be 15 – 25µs, similar to the value found by the GPI
data. For the ISP data the conditionally averaged waveform has been found
for 15 different shots and found to have approximately the same form, see
figure 7.4. Except for the sharp peaks the waveforms seems to fit exponen-
tial rise and decay times well. In the figure a typical conditionally averaged
waveform measured by the GPI in the SOL, R = 90.70 cm, Z = −2.99 cm,
ne/nG = 0.25, is also plotted. It can be seen that the probe data has a
sharper, symmetric peak than the GPI data. The same result is found for
the ASP measurements. This could be due to a smoothing effect caused
by the 3.7 mm in spot size of the GPI diagnostics [34]. In figure 7.3 both
the velocity (c) and standardized flux (d) are positive, thus the blobs are
on average transported radially outwards. The average radial peak velocity
of the blobs is around 1200 m/s which is on the same order as the velocity
calculated by the GPI data. The floating potential (b) has a negative burst
for one head and a positive burst for the other head, similar results has been
found for shot 011. If the other ion saturation had been used as reference
both conditionally averaged floating potential waveforms would be negative.
For the shots 008 and 016 the floating potential is found to have a dipole
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Figure 7.2 – In this figure the distributions for (a) ion saturation current,
(b) standardized floating potential, (c) electric drift and (d) standardized flux
are plotted. The moments are plotted on the figures, µ is the mean, σ the
standard deviation, S skewness and K kurtosis. For the ion saturation current
two lines has been inserted representing the gamma and Sattin distributions.
For the electric drift a normal distributed fitted line has been inserted.
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shape as expected from numerical simulations and theory [30]. The dipole
shaped floating potential can be seen in figure 7.5, where the same calcula-
tions as figure 7.3 has been done on shot 008. A dipolar potential has also
been seen previously on Alcator C-Mod, see Grulke [42]. For shot 008 the
burst duration, radial velocity and flux is smaller than for shot 010. Thus
less particles are transported radially. In general it has been see that that a
dipolar potential is consistent with slower and shorter blobs. Thus it could
be that for shot 010 and 011 the blobs are too big or radially too fast for a
dipolar potential to be measured.

The amount of blobs propagating in the positive radial direction varies be-
tween the shots. For shot 010 and 011 over 90 percent of the blobs are
propagating radially outwards with velocities of 1.4km/s. For shot 008 88%
of the blobs propagte in the positive direction with mean velocity 1km/s,
while for shot 016 only 79% propagets along the major radius with average
velocity 900m/s. When more blobs propagte radially also their velocity is
increased. From these calculations it could be that the blob speed and size
increase with line-averaged density, consisten with the inertial velocity limit.

When collecting events for conditional averaging the events can be used
to calculate waiting time and peak amplitude distributions. The distribu-
tions are calculated with a threshold 2.5σ with Isat,Stand as a reference in
100 bins. In figure 7.6 the complementary cumulative distribution function
for (a) waiting times between events in Isat (b) standardized peak values
Isat (c) peak value electric drift and (d) standardized peak values for the
flux is plotted. From figure (a) and (b) one can see that the waiting times
and peak amplitudes are exponential distributed as for the GPI data. The
events seems to follow a Poisson process where each event is independent
of other events. The true mean amplitude value for the non standardized
signal is 0.1269 [A], approximately the same as the value found from the
PDF. The electric drift amplitudes related to blob movement follow a nor-
mal distribution. From the figure one can see that the blobs propagate both
inwards and outwards, as seen previously. For shot 008 and 016 where the
floating potential was shown to have a dipolar shape the waiting times and
peak amplitudes in (a) and (b) are not exponentially distributed. From the
15 ISP measurements, 13 is found to have exponentially distributed waiting
times, where the last two is only slightly curved, all have exponential peak
amplitudes. Thus the lower line-averaged density value of shot 008 and 016
is not the reason for different results.

In figure 7.7 the conditionally averaged waveforms in figure 7.3 are plot-
ted for different threshold intervals to see how the blob statistics vary with
blob density. The figure shows that the waveforms does not change with
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Figure 7.3 – In this figure the conditionally averaged waveforms (CAW) for
shot ASP 010 are plotted for (a) standardized ion saturation current, (b) stan-
dardized floating potential, (c) electric drift and (d) standardized flux. The
conditional average is calculated with the ion saturation current as reference
and a threshold condition 2.5σ.
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Figure 7.4 – In this figure the conditionally averaged waveforms (CAW) for
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taken from the SOL with line-averaged densities ranging from 0.4-1.5. The red
star line is the conditionally averaged waveform found for GPI data, ne/nG =
0.25, Z = −2.99 cm and R = 90.70 cm.

threshold, only the amplitude changes. Thus the duration of events is in-
dependent of the blob size, as was found for the GPI measurements. The
waiting time and peak amplitude distributions have also been found to be
exponentially distributed independent of the amplitude threshold. From the
figure it is clear that the radial velocity (c) increases with amplitude (blob
size). This is consistent with the inertial regime discussed previously where
the gradient of the parallel currents are assumed to be zero.

The poloidal blob velocity can be found by dividing the distance between
probes by the correlation time as done in the previous chapter. The corre-
lation time is calculated to be 0.5µs and the distance between probe heads
are 2.2 mm resulting in a poloidal velocity of 3.7 km/s for shot 010. This is
almost four times greater than what was found from the GPI measurements.
This high value might be an effect of the distance between probe heads being
much smaller than the poloidal blob size.

As for the GPI data the ion saturation current is proportional to the den-
sity, in addition previous results in this section confirms similar properties.
It is therefore natural to expect that the ion saturation current should ex-
hibit long range correlations, as found in previous studies with Langmuir
probes [14, 62, 92]. The autocorrelation for shot 010 is given in figure 7.8.
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Figure 7.5 – In this figure the conditionally averaged waveforms (CAW) for
shot ASP 008 are plotted for (a) standardized ion saturation current, (b) stan-
dardized floating potential, (c) electric drift and (d) standardized flux. The
conditional averaged is calculated with the ion saturation current as reference
and a threshold condition 2.5σ.
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Figure 7.6 – In this figure the conditionally averaged distribution is found
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standardized maximum amplitudes ion saturation current, (c) maximum am-
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exponential fit has been done for the waiting time and amplitude distribution.
For the velocity and flux distributions a normal fit has been inserted. The
signal analyzed is the ASP shot 010.
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Figure 7.7 – In this figure the conditionally averaged waveform in figure 7.3
has been plotted for several amplitude intervals. The signal analyzed is ASP
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Figure 7.8 – The autocorrelation of the ion saturation current, ASP shot 010.

From the figure it is seen that the autocorrelation has small heavy tails
which suggests weak long range correlations. This is expected since the
measurements are from the far SOL where weak long range correlations was
seen for the GPI data. The power specter for shot 010 is given in figure 7.9.
From the figure the signal has H ≈ 0.5 for long time scales, but the fitting
range is less than one decade. At shorter time scales it is a fractional Brow-
nian motion with H = 0.34. The vertical lines represent mean waiting time
(red), burst duration (black) and e-folding time scale for the autocorrelation
(magenta). To further verify this result the rescaled range analysis has been
used in figure 7.10. From the figure the Hurst exponent is calculated to be
0.69, which is on the same order as what was found for the GPI data, in
addition a data randomization has been done for verification. The fitting
range covers approximately two decades. For the structure function anal-
ysis a Hurst exponent of 0.72 is found, consistent with the rescaled range
analysis, but not the power specter. For shot 008 and 016 the rescaled range
analysis, structure function and wavelet analysis does not have a power law
region. Shot 011 looks approximately as shot 010 with HRR = 0.68 and HSF

= 0.63. The power specter gives a Hurst exponent close to 0.5 for all shots,
but only one decade is fitted. The wavelet method does not have a power
law region for any of the shots. Four different methods for calculating the
Hurst exponent gives four different answers. Similar results are found from
the ISP data, the estimates are slightly curved and the different methods
give different results. The rescaled range and structure functions give simi-
lar results, but the result is highly fluctuating as a function of line-averaged
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density. It could be that the data acquisition method effects both the long
range correlations and the conditionally averaged waveform. Another reason
could be the high line-averaged density for the probe data compared to the
GPI data. For the highest line-averaged density in the GPI measurements
it was found that the variance of wavelet coefficients was slightly curved in
the SOL. Thus it could be that since the probe data have even higher line-
averaged density the wavelet estimation method does not work. Stationarity
have been tested with the structure functions and found to be valid for all
measurements.
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Chapter 8

Results Stochastic Model

In this chapter statistical analysis will be done on realizations of the stochas-
tic model introduced in the theory. The importance of this chapter is to
analyze the methods when bursts overlap.

8.1 Signal

The signal is made using the stochastic model explained in the theory, the
matlab code can be found in the appendix. All signals have l = τr/τd = 0.18,
approximately the value found for the GPI measurements. The signal length
is N = 4000000 with dt = 10−2. In figure 8.1 realizations are plotted
for different values of the intermittency parameter γ. The intermittency
parameter is as before defined as,

γ =
τr + τd
τw

. (8.1)

For the realizations used here τd and τr are kept constant, thus an increase
of the intermittency parameter is a decrease of the average waiting time τw.
From the figure it is seen that as γ increases the individual bursts are harder
to separate because of overlap. The signals is as before standardized.

8.2 Autocorrelation and power specter

The autocorrelation of four realizations is given in figure 8.2. From the
figure one can see that the autocorrelation does not have heavy tails, which
is expected for a memoryless process such as a Poisson process. This does
not change as a function of γ. The power specter of the stochastic model
is given in figure 8.3. For low frequencies the power specter is flat with a β
value close to zero, consistent with uncorrelated white noise. For short time
scales the β values are well above the fBm limit, as seen for the GPI data.
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Figure 8.1 – The figure shows signals plotted for four realizations with differ-
ent values of the intermittency parameter γ.
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Figure 8.2 – Autocorrelation for stochastic model realizations with different
values of γ.
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Figure 8.4 – Distribution of the stochastic model fitted by a gamma distri-
bution for realizations with different values of γ.

8.3 Distribution of signal amplitudes

The stochastic model predicts a gamma distribution for the generated signal,
see figure 8.4. The distribution can only be plotted for γ ≥ 1 since lower
values has too many points close to zero. When γ increases the distribution
goes towards a Gaussian distribution, S and K goes towards 0 and 3 for
large γ. In the figures the scale θ and shape k parameters are also given.
The realizations was made with 〈A〉 = 1, thus the exact values of the model
is returned independent of γ.

8.4 Conditionally averaged waveform

The conditionally averaged waveform is calculated using the method which
favors high tops and no overlap. The threshold condition used is 2.5σ. In
figure 8.5 the conditionally averaged waveform is plotted for γ values from
0.1 to 10. When γ increases the rise time increases while the decay time
stays approximately the same. Thus an increase of γ gives a more symmetric
waveform. In the numerical simulation of the model the rise and decay times
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Figure 8.5 – Conditional windows for stochastic model realizations with dif-
ferent values of γ

are defined by the normalized function l = τr/τd. For γ = 0.1 the values
is calculated to 0.26 while the theoretical value was 0.18. Since the raise
time increases for increasing γ, the true l can not be found. The increased
rise time for increased γ is seen because the rise time is more sensitive to
overlapping bursts than the decay time. A small blob on the right side will
effect the value very little while a small blob on the left side will have a large
impact. It should be mentioned that in the way the conditionally averaged
waveform is calculated all overlapping events are smaller.

Since the waveform becomes more symmetric with increasing γ, the in-
creased waiting time in the SOL from the GPI measurements is most likely
due to the acquisition method. For the GPI measurements γ decreases in
the SOL, but the average waveform does not change. Therefore the wait-
ing time in the SOL is the same for all radial positions and line-averaged
densities.

8.5 Waiting time statistics

The complementary cumulative distribution for waiting times has been cal-
culated both for the method with overlap as well as the method without
overlap. A comparison of the two methods for one single gamma value is
given in figure 8.6. In the figure the distribution for waiting times of a signal
with γ = 2 and 80000 bursts is plotted. The conditional average has been
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Figure 8.6 – The figure compares waiting time distribution for two conditional
averaging methods. The threshold condition used is 2.5σ and the signal has γ
= 2 with 4000000 data points, dt = 10−2.

sampled by a threshold condition of 2.5σ. From the lower left corner in the
figure one can see that only a tiny fraction of the 80000 theoretical bursts
are sampled. This low value is partly due to overlapping bursts above the
threshold and also because many of the events are under the threshold. In
the figure it is seen that the distribution is exponential and an exponential
fit has been given in figure. The fit suggests an average waiting time of 17,
which is quite far from the theoretical value τw = 0.5. The difference reflects
the amount of bursts sampled compared to the theoretical number of bursts.
The expected number of events above the threshold can be calculated by,

E[N(X > 2.5)] = N · p(X > x) = N · exp(−2.5/〈A〉). (8.2)

Where 〈A〉 = 1 has been used. Thus for γ = 2 the expected number of
events sampled when there are no overlap is 6567 events. So when γ = 2
about two thirds of the events are lost due to overlap.

8.6 Amplitude statistics

The conditional amplitude distribution for both averaging methods is given
in figure 8.7. In the figure the signal has γ = 2 and the threshold used is
2.5σ. From the figure it is seen that the amplitudes follow an exponential
distribution and a fit has been inserted to verify this. The fit suggest an
average amplitude of one which is the exact value of the generated data. But
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Figure 8.7 – The figure displays conditional amplitude distributions calcu-
lated with both methods. The conditional data has been sampled by a thresh-
old condition 2.5σ and the realization has γ = 2.

since the signal used is the standardized, the true mean amplitude has to
be changed by multiplying by the standard deviation and adding the mean
value. For γ = 2 this gives a mean amplitude value of 3.4, much larger
than the theoretical value of 1. In general the standardized mean amplitude
decreases for increasing γ and the unstandardized amplitude increases for
increasing γ. This result is expected since overlap leads to increased am-
plitudes. This explains the result seen for the GPI data where the mean
standardized amplitude decreased with increasing γ. The mean conditional
amplitude of the GPI data can not be used to say anything about the blob
size, it is just caused by a change of γ, which seems to be caused by the
diagnostics. For large waiting times, small γ, an amplitude value close to
the theoretical value can be found, γ = 0.5 gives 〈A〉 = 1.7. Thus for large
γ the mean amplitude of the model, 〈A〉, is best found from the PDF of the
signal.

8.7 Long range correlations

The shot noise process is by definition a Poisson process, which is memory-
less with an expected Hurst exponent 0.5. In figure 8.8 the rescaled range
analysis is done on a signal with four different γ values. The rescaled range
analysis gives a Hurst exponent slightly above 0.5.
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Figure 8.8 – Hurst exponent calculated by rescaled range analysis for four
realizations of the stochastic model with different γ values.



134 Chapter 8. Results Stochastic Model

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

−6

−4

−2

0

2

4

6

8

10

12

Figure 8.9 – Superposition of a fGn and a shot noise process. Both signals
has mean zero and standard deviation 1. The Hurst exponent of the fGn is
0.85. The shot noise has γ = 1.

8.8 In relation to SOL measurements

The GPI results suggest that even while the blobs are independent of each
other a significant Hurst exponent is found in the SOL. A possible explana-
tion for the high Hurst exponents could be that the signal is a superposition
between a shot noise process defined by the stochastic model and a fGn.
Where the fGn process is related to mechanisms in the edge region trans-
ported into the SOL by the blobs. In figure 8.9 a superposition between
a shot noise and a fGn is plotted. In this figure the two signals has equal
standard deviation one and zero mean. The fGn has a Hurst exponent of
0.85, which is close to the value seen in the edge region. The shot noise has
γ = 1. In figure 8.10 the Hurst exponents are estimated by rescaled range
and structure function analysis for superposition processes with different γ
values. Each Hurst exponent has been calculated ten times for each γ value
and averaged, the error bars represent the standard deviation. From the
figure it is clear that the non persistent bursts acts as to lower the overall
Hurst exponent. The Hurst exponents have quite high standard deviation
and covers the values seen in the SOL. It should be mention that the GPI
measurements suggest a fluctuating part smaller than the shot noise process.

In figure 8.11 the Hurst exponent estimated by the rescaled range analysis
of a combined signal is plotted as function σfGn/σSN . Where σfGn and σSN
are respectively the standard deviation of the fGn and shot noise process.
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Figure 8.10 – Hurst exponents calculated by rescaled range and structure
functions for a signal consisting of a superposition between a fGn and a shot
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has γ = 1.

The fGn has a theoretical Hurst exponent of 0.85 and the shot noise gener-
ated has γ = 1. In the figure it is shown that up to about σfGn/σSN = 0.5
the fGn does not effect the Hurst exponent. For σfGn/σSN > 10 the sig-
nal is dominated by the fGn. In order for a a signal which consist of a
superposition between a fGn and shot noise to have long range correlation,
they have to have at least equal magnitude, while for the experimental data
σfGn/σSN ≈ 10−2.

Another way to test the superposition is by looking at the distribution of
the signal. When calculating the distribution for the GPI data previously it
was found that for the lowest line averaged densities the gamma distribution
was in most cases not a good fit. The reason for the poor fit was that it
failed to fit the tails. In figure 8.12 the PDF of a superposition between
a fGn and a shot noise process is plotted together with the PDF of a GPI
signal at R = 90.31 cm, Z = −2.99 cm with ne/nG = 0.20. The shot noise
process has γ = 2, σ = 0.35 and µ = 0.5. The fGn has H = 0.85, σ = 0.0493
and µ = 0.27. From the figure it is clear that the combined signal is almost
a perfect fit to the signal while the gamma distribution is quite poor. Thus
this could indicate that a superposition might be possible in some form. In
relation to the Hurst exponent this does not explain the high values seen in
the SOL because σfGn/σSN = 0.14 which from figure 8.11 should not give
any significant change of Hurst exponent.
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Figure 8.11 – In this figure the Hurst exponent of a signal consisting of a
shot noise and a fGn is plotted for different values of σfGn/σSN . The Hurst
exponent is calculated by the rescaled range method. The fGn has H = 0.85,
and the shot noise has γ = 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Amplitude

P
D

F

PDF comparison

 

 

S.n. + fGn
GPI
Gamma dist.

Figure 8.12 – In this figure the PDF of a signal measured by the GPI diag-
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Chapter 9

Summary and conclusion

The large amplitude events in plasma fluctuations close to the walls in Alca-
tor C-Mod have been studied. In this chapter all results from GPI, Langmuir
probes and stochastic model will be summarized and compared.

9.1 Signal

GPI measurements have been analyzed as a function of line-averaged density
and major radius. It was found that the signals are dominated by burst-like
shapes in the SOL. The waveforms have a fast rise and a slower decay. The
bursts have much larger amplitudes than the standard deviation and they
are only positive. For the edge region a first look on the signals reveals
seemingly random fluctuations around the mean value. Thus the blobs are
generated near the separatrix.

For the probe data the ion saturation current show a similar shape as the
GPI data in the SOL. The signals have characteristic shapes with ampli-
tudes much larger than the standard deviation. The floating potential looks
like random fluctuations around the mean value.

9.2 Probability density functions

For the GPI data it was found that the PDF vary with radial position and
line-averaged density. In the edge region the PDF was found to be well
fitted by a slightly skewed and peaked gamma distribution. In the SOL the
skewness and kurtosis was found to increase with major radius and decreas-
ing line-averaged density. The high skewness and kurtosis was caused by
large density fluctuations, blobs. For small values close to the separatrix
the gamma distribution was found to be the best fit as proposed by the
stochastic model. For larger values of skewness and kurtosis it was found
that the Sattin distribution derived from SOL equations was the best fit.
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For the highest values of skewness and kurtosis none of the distributions
provided a good fit. The result is most likely effected by the temperature
dependence of the diagnostics. The change of PDF from edge to SOL is
another confirmation of blob generation near the separatrix.

Between skewness and kurtosis a parabolic relations was found, close to
the value expected by the stochastic model. Between the other moments no
particular relation was found.

For the probe data the ion saturation current shows a similar fit with gamma
and Sattin distribution as the GPI data. All probe data is located at the
same radial position, therefore the radial dependence of the GPI measure-
ments can not be verified. The floating potential were found to be slightly
skewed, with S ≈ 1 and K ≈ 3. The radial velocity was found to be Gaus-
sian distributed, while the particle flux has a very sharp tail towards positive
values caused by large blob transport.

9.3 Conditionally averaged waveform

The conditionally averaged waveform for GPI measurements in the edge re-
gion was found to have a high reproducibility. The waveform is dependent
on amplitude, line-averaged density and radius. Thus there is no character-
istic waveform related to the mechanisms in the edge region. In the SOL,
the GPI measurements shows a characteristic waveform equal for all am-
plitudes, line-averaged densities and radial positions. The waveform has a
sharp exponential rise and a slower exponential decay. The average blob
duration is 20 – 25µs. The similar waveform for all radii and line-averaged
densities indicate that the blob frequency does not change. Therefore the in-
creased background turbulence makes the blobs less significant for increased
line-averaged density [3]. This confirms the decreasing skewness and kurto-
sis with increased line-averaged density.

For the ASP (1111208) probe data the conditionally averaged waveform
has a sharp rise and a trailing wake, but exponential rise and decay is not
suitable. The duration was found to vary between 10 – 20µs. For the
ISP (1120210) data the waveform is almost universal as a function of line-
averaged density. All probe conditionally averaged waveforms have a sharper
peak and a more symmetric conditionally averaged waveforms than the GPI
equivalents, which can be due to the diagnostics. The floating potential
shows a dipolar shape for small slow blobs, while for larger faster blobs the
floating potential has a burst-like shape.
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9.4 Waiting time distribution

The waiting times between bursts were found to be exponentially distributed
both for the GPI and Langmuir probe measurements. This suggests that
blobs are independent events described by a Poisson process. It was found
that even while the overlapping conditional averaging method returns twice
as many bursts the average waiting times were the same for both methods.
With the use of the stochastic model it was found that only a tiny fraction
of the actual number of bursts are collected due to threshold and overlap.
The true mean waiting time can not be retrieved from the data. For the
ASP (1111208) measurements only the measurements with large fast blobs
have exponential waiting times. For the ISP (1120210) all measurements
were found to have more or less exponential distributed waiting times. The
line-averaged density does not effect the exponentially distributed waiting
time. For the GPI data it was found that there are more blobs close to the
separatrix, the stochastic model showed that this might be caused by the
GPI diagnostics.

9.5 Peak amplitude distribution

The peak amplitudes were found to be exponentially distributed for both
the GPI data and the probe data. From the GPI data it was found that
the mean standardized peak amplitude increased with major radius and
decreasing line-averaged density. This was found to be a result of decreased
mean value towards the wall.

9.6 Long range correlations

The Hurst exponent was estimated on computer generated fGns. It was
found that the power specter, structure function and rescaled range have a
slight bias, while the wavelet method measured H perfectly. The rescaled
range and the structure functions analysis have much larger error in the
estimate than the power specter and wavelet methods. The autocorrelation
was found to verify long range correlations by heavy tails. It was found
that an amplified part in the signal does not alter the Hurst exponent. The
structure function analysis was found to be very sensitive to trends, where
only a slight trend alter the result completely. The other methods were
found to change only when the trend had a period less than, or equal to the
fitting region and a magnitude larger than the signal itself.

For the GPI measurements the Hurst exponents increase with line-averaged
density in the SOL. The Hurst exponent in the SOL varies from 0.6 – 0.7.
Since the blobs were found to be independent the large Hurst exponent in



140 Chapter 9. Summary and conclusion

the SOL is not likely caused by the blobs. The increase of the Hurst ex-
ponent with increasing line-averaged density in the SOL could be due to
increased blob size in the SOL. A large blob is able to carry more of the
long range correlated processes in the edge region into the SOL [3]. In the
edge region the Hurst exponents was found to increases away from the sep-
aratrix. The Hurst exponent in the edge region varies from approximately
0.6 at the separatrix to 0.8 – 0.9 at the innermost measurement.

The probe data gives different values of the Hurst exponent with the dif-
ferent methods. The rescaled range and structure function analysis returns
values close to those found for the GPI measurements, the power specter
results thus not coincide with the other methods and cover only one decade.
The wavelet method seems to curve with increasing line-averaged density for
the GPI measurements, making it useless for the high line-averaged density
probe measurements.

9.7 Velocity

The radial velocity was calculated for both probe data and GPI data and
found to be approximately 1000m/s. The magnitude suggests a solution
where the blob is driven by both perpendicular and parallel currents with
non zero vorticity, as analyzed in Kube and Garcia [50]. For the GPI mea-
surements the radial velocity increases towards the separatrix and slightly
with line-averaged density. The result suggests a deacceleration of the blobs
in the SOL, most likely caused by non linear dispersion. The poloidal ve-
locity increase with line-averaged density with magnitude 1 – 3 km/s.

For the probe data the radial velocity was found to increase with the blob
size as for the inertial scaling closure. For the probe it was found that for
high line-averaged density, over 90% of the blobs have positive velocites. For
decreasing line-averaged density it was found that both the mean velocity of
positiv propagating blobs and the percentage of positive propagating blobs
decrease. The poloidal velocity found by probe data also shows increased
magnitude compared to the radial velocity.

9.8 Blob size

For the GPI data the poloidal blob size was found for all line-averaged
densities, and major radius in the SOL by conditional averaging. An average
poloidal blob size ` = 1 – 2 cm was found independent of line-averaged
density and major radius. For the probe data it was found that for increasing
line-averaged density both the velocity and duration increased, thus the
blobs must be larger. It should be mentioned that the small duration found
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for the lowest line-averaged density of the ASP (1111208) measurements
are not consistent with the ISP measurements. Therefore the ASP session
should be analyzed further to check if the session is valid.

9.9 Stochastic model

For the stochastic model the distributions were found to be gamma dis-
tributed with the exact parameters provided by the model independent of
γ. The conditionally averaged waveform becomes more symmetric when γ
increases, caused by rise time more sensitive to overlap than the decay time.
The result shows that the increase of γ for the GPI measurements in the
SOL is most likely caused by the diagnostics. The waiting times and peak
amplitudes were found to be exponentially distributed, but the returned
values are not those of the model. The result explains the increased wait-
ing times and amplitudes found for the GPI measurements as a function of γ.

Since the blobs were found to be independent of each other an underly-
ing process must be the source of the Hurst exponent. A superposition of
a fGn and a shot noise process has been found to fit the distribution where
the gamma distribution could not. For the same signal it was found that
the contribution by the fGn was to small to significantly influence the Hurst
exponent estimate. It was found that in order for the fGn to influence the
Hurst exponent the fGn must be of the same order or greater than the shot
noise. In addition it was found that the influence by the shot noise does
not depend on the value of γ. The stochastic model seems to recreate the
GPI measurements close to the separatrix. Far away from the separatrix
the diagnostics seems to destroy the fit with the stochastic model.

9.10 Conclusion

For the GPI data the SOL consist of signals dominated by burst events. The
results shows that the blobs are likely generated at or near the separatrix.
These events have exponentially distributed waiting times and peak ampli-
tudes, consistent with a Poisson process. The blob dominated signals have
a characteristic waveform independent of line-averaged density, amplitude
and major radius. Therefore the stochastic model should be a perfect fit for
the measurements. The long range correlations in the SOL were found to be
unrelated to blob structures. Thus the blobs can not be explained by SOC.

It was found that the Hurst exponents increase in the SOL with line-averaged
density. This is assumed to be due to more long range correlated process
being transported into the SOL when there are more particles. The Hurst
exponent in the SOL reveals the possibility of another process in addition to
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the Poisson process. For the probe data the long range correlation analysis
is inconclusive. The rescaled range analysis and structure function analy-
sis gives similar results as found for the GPI data for most of the probe
measurements. The wavelet analysis does not have a power law region and
the power specter gives varying results. These result might be an effect of
the acquisition method or the high line-averaged density. For ASP probe
measurements the blob velocities were found to increase with size and line-
averaged density, consistent with an inertial velocity scaling. The velocity
magnitudes were consistent with a mixture of MHD instabilities, i.e. kink
and ballooning. For GPI measurements the poloidal size of blobs were found
to be independent of line-averaged density and major radius.

In summary the GPI results show that the blob duration, waiting time and
poloidal size is independent of line averaged density, while the radial veloc-
ity and Hurst exponents increase with line-averaged density. In addition the
importance of blobs compared to the background were found to decrease as
the line-averaged density increased.

9.11 Further work

In order to extend the results found in this thesis the following projects
should be investigated further:

� Redefine the stochastic model so it can include a background process
able to reproduce the Hurst exponent seen in the SOL.

� The ASP (1111208) measurements should be analyzed further to see if
a new session must be taken due to varying results, not in agreement
with the GPI and ISP (1120210) measurements.

� More thorough investigation of dominant blob velocity closures, ana-
lyze the magnitude of each term in the current continuity equation for
the velocities found.

� GPI data with line-averaged density on the same order as the probe
data should be analyzed.

� More thorough denoising of the data, try to separate the shot noise
process from the long range temporal correlated processes.

� Test robustness of the stochastic model to see if other amplitude and
waiting time distributions can return exponential distributions when
γ varies.

� ISP (1120210) measurements should be analyzed further to see the
effects of line-averaged density.



Appendix A

List of abbreviations

� AC - Autocorrelation

� CDF - Cumulative distribution function

� fBm - fractional Brownian motion

� fGn - fractional Gaussian noise

� GPI - Gas puff imaging

� H - Hurst exponent

� ITER - International Thermonuclear Experimental Reactor

� K - Kurtosis

� MHD - Magnetohydrodynamics

� MIT - Massachusetts Institute of Technology

� PDF - probability density function

� PS - Power specter

� r - Reproducibility

� R - Major radius

� RR - Rescaled range

� r.v. - Random variable

� S - Skewness

� SF - Structure functions

� SN - Shot noise
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� SOC - Self-organized criticality

� SOL - Scrape-off layer

� Z - Vertical position

� µ - mean value

� σ - standard deviation



Appendix B

Bohm criterium

In this appendix the Bohm criterium is derived. The Bohm criterium gives
a minimum value the velocity must have to overcome the sheath potential
barrier. The derivation done here follows Stangeby [86] closely. At the
sheath edge the electrons are in force balance between a pressure gradient
force, Fp = Te∇ne, pushing the electrons towards the surface and a repelling
potential force, Fφ = ene∇φ . Integrating gives the Boltzmann relation for
the electrons,

ne = n0 exp [e (φ− φ0) /Te] . (B.1)

Where n0 is the electron density at the sheath, φ0 is the electrostatic sheath
potential, e is the elementary charge and Te is the electron temperature. For
simplicity cold, collisionless ions will be assumed, the equation of motion
along B can then be written as,

M
du

dz
= −edφ

dz
. (B.2)

Where M is the ion mass and u is the velocity. Integrating this equation
gives,

1

2
Mu2 = −eφ. (B.3)

Ion density is assumed to be kept constant in time by a delta function source
and the generated ions have zero velocity. The ion continuity equation then
reduces to,

niu = constant. (B.4)

An equation for the ion density as a function of the potential can now be
written as,

ni = n0

(
φ0

φ

)1/2

. (B.5)
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This equation together with the electron density equation can now be put
into the one dimensional Poisson’s equation,

d2φ

dx2
= − e

ε0
(ni − ne)

= −en0

ε0

[(
φ0

φ

)1/2

− exp e(φ− φ0)/Te

]

≈ −en0

ε0

[(
φ+ ∆

φ

)1/2

−
(

1− e∆

Te

)]
+ ϑ(φ2)

≈ −en0

ε0

[
1− 1

2

∆

|φ0|
−
(

1− e∆

Te

)]
+ ϑ(φ2)

= −en0

ε0

[
−1

2

∆

|φ0|
+
e∆

Te

]
+ ϑ(φ2)

= −en0∆

ε0

[
e

Te
− 1

2

1

|φ0|

]
+ ϑ(φ2),

d2∆

dx2
≈ en0∆

ε0

[
e

Te
− 1

2

1

|φ0|

]
+ ϑ(φ2),

(B.6)

In the equation above ∆ is defined as,

∆ = φ0 − φ. (B.7)

The region considered is just inside the sheath, ∆� 1, ∆ > 0. If the term in
the parenthesis of equation (B.6) is less than zero the solution is oscillatory
which have never been seen in experiments [86], thus,

e

Te
≥ 1

2|φ0|
u0 ≥ Cs

(B.8)

This is called the Bohm criterium, where the isothermal sound speed is given
by (Ti = 0, m = 0),

Cs = (Te/M)1/2 . (B.9)



Appendix C

Exponential distribution

In this appendix the exponential distribution will be introduced. The ap-
pendix follows Ross closely [75]. The exponential probability density func-
tion is defined as,

f(x) =
1

λ
exp

(
−x
λ

)
, x ≥ 0. (C.1)

Where λ is the mean value of x. In this thesis the complementary cumulative
distribution function (CCDF) will be used because it looks smoother on
experimental data,

CCDF = FX(X > x) = 1− FX(X ≤ x) = 1−
∫ x

−∞
f(x)dx

= 1−
(

1− exp
[
−x
λ

])
= exp

(
−x
λ

)
.

(C.2)

The moment generating function of an exponential distribution can be writ-
ten as,

φx(t) = E[etx]

=

∫ ∞
0

1

λ
exp[−(

1

λ
− t)x]

= (1− λt)−1 , t <
1

λ
.

(C.3)

From the equation above the moments can be calculated by,

E(xn) =
dn

dt
φx(0). (C.4)
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Thus the first four moments in an exponential distribution is,

E(x) =
d

dt
φx(0) = λ(1− λt)−2|0= λ,

E(x2) =
d2

dt2
φx(0) = 2λ2(1− λt)−3|0= 2λ2,

E(x3) =
d3

dt3
φx(0) = 6λ3(1− λt)−4|0= 6λ3,

E(x4) =
d4

dt4
φx(0) = 24λ4(1− λt)−5|0= 24λ4,

(C.5)

Thus the moments in an exponential distribution can be written as,

E(xn) = λnn! . (C.6)

Now assuming that Z is a sum of n independent exponential variables,

Z =

n∑
i=1

xi. (C.7)

Since the variables are independent, the moment generating function of Z
can be written as the product of the moment generating functions,

φZ(t) =
n∏
i=1

φxi(t) = (1− λt)−n , 1

λ
> t. (C.8)

Now it will be shown that this is just the moment generating function of a
gamma distributed variable with λ = θ and n = k. The gamma probability
density function is given by,

f(x) =
1

θk
1

Γ(k)
xk−1 exp

(
−x
θ

)
, x, k, θ > 0. (C.9)

In a similar way as for the exponential distribution the moment generating
function for a gamma distributed variable can be written as,

φx(t) = E
(
etx
)

=
1

θk
1

Γ(k)

∫ ∞
0

xk−1 exp[−
(

1

θ
− t
)
x]

=
1

θk
1

Γ(k)

∫ ∞
0

xk−1 exp(−ax), a =
1

θ
− t > 0

=
1

θk
1

ak

∫ ∞
0

ak

Γ(k)
xk−1 exp(−ax)︸ ︷︷ ︸

1

=
1

θk
1

ak

= (1− θt)−k, 1

θ
> t.

(C.10)
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The equation above is the same as the moment generating function for the
sum, (C.8), with θ = λ and n = k. Thus the sum of n independent exponen-
tial random variables with mean value λ follow a gamma distribution with
parameters λ, n.
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Appendix D

Poisson process

In this appendix the Poisson process will be introduced. The appendix
follows Ross closely [75]. A Poisson process is a counting process with inde-
pendent and stationary increments where the number of events in an interval
T is Poisson distributed,

P (K(T + s)−K(s) = k) =
1

k!

(
T

λ

)k
e−

T
λ , k, λ, T > 0. (D.1)

The moment generating function can be found by,

φk(t) = E[etk] =

∞∑
k=0

etk
1

k!
(
T

λ
)ke−

T
λ

= e−
T
λ

∞∑
k=0

(
et Tλ
)k

k!

= e−
T
λ eet

T
λ = e

T
λ (et−1).

(D.2)

The first four moments are then given by,

(D.3a)

E(k) =
d

dt
φk(0)

=

(
T

λ
exp

[
T

λ

(
et − 1

)]
et
)

0

=
T

λ
,

(D.3b)

E(k2) =
d2

dt2
φk(0)

=

((
T

λ

)2

exp

[
T

λ
(et − 1)

]
e2t +

T

λ
exp

[
T

λ

(
et − 1

)]
et

)
0

=

(
T

λ

)2

+
T

λ
,
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(D.3c)

E(k3) =
d3

dt3
φk(0)

=

((
T

λ

)3

exp

[
T

λ
(et − 1)

]
e3t + 3

(
T

λ

)2

exp

[
T

λ
(et − 1)

]
e2t

+
T

λ
exp

[
T

λ

(
et − 1

)]
et

)
0

=

(
T

λ

)3

+ 3

(
T

λ

)2

+
T

λ

(D.3d)

E
(
k4
)

=
d3

dt3
φk(0)

=

((
T

λ

)4

exp

[
T

λ

(
et − 1

)]
e4t + 6

(
T

λ

)3

exp

[
T

λ

(
et − 1

)]
e3t

+ 7

(
T

λ

)2

exp

[
T

λ

(
et − 1

)]
e2t +

T

λ
exp

[
λ
(
et − 1

)]
et

)
0

=

(
T

λ

)4

+ 6

(
T

λ

)3

+ 7

(
T

λ

)2

+
T

λ
.

The time between to events in a Poisson process can be written as,

P (Tk+1 > t|Tk = tk) = P (0 event in (tk, tk + t)|Tk = tk)

= P (0 events in (tk, tk + t))

= P (0 events in t)

= P (K = 0).

= exp(− t
λ

).

(D.4)

In the derivation above it has been used that a Poisson process has inde-
pendent and stationary increments. In equation D.4 the complementary
cumulative distribution function for waiting times is given. By comparing
this to the complementary cumulative exponential function in equation C.2
one can see that the waiting times in a Poisson process are exponentially
distributed.



Appendix E

Moments for a shot noise
process

In this appendix the moments of the shot noise process given in equation
(5.1) will be calculated. The waveform, and distributions for amplitude and
number of events was defined in equations (5.2, 5.3, 5.5). The calculations
done here is similar to Campbell’s theorem [66]. The waveform consisting
of exactly K events is given by,

ΦK(t) =
K∑
k=1

Akψ(t− tk). (E.1)

The average of this function can be written as,

E[ΦK(t)] =
K∑
k=1

K∏
i=1

∫ T

0
E[Ak]ψ(t− tk)

dti
T

= E[A]
K

T

∫ ∞
−∞

ψ(t)dt

= E[A]
K

T
(τr + τd).

(E.2)

To get the mean value for any K the solution has to be averaged over all
realizations of K,

E[Φ(t)] =
∞∑
K=0

P (K)E[ΦK(t)] = E[A]γ. (E.3)

Where γ is as before,

γ =
τr + τd

τw
. (E.4)
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The calculations for the other moments are derived in a similar way,

(E.5a)

E[Φ2
K(t)] =

K∑
m=1

K∑
k=1

K∏
i=1

∫ T

0
E[AkAm]ψ(t− tk)ψ(t− tm)

dti
T

= E[A2]
K

T

∫ ∞
−∞

ψ2(t)dt+ E[A]2
K2 −K
T 2

(∫ ∞
−∞

ψ(t)dt

)
= E[A]2

(
2
K

T

τr + τd
2

− K2 −K
T 2

(τr + τd)
2

)
.

(E.5b)
E[Φ2(t)] =

∞∑
K=0

P (K)E[Φ2
K(t)]

= E[A]
(
γ + γ2

)
.

E[Φ3
K(t)] =

K∑
k=1

K∑
m=1

K∑
l=1

E[AkAmAl]
K∏
i=1

∫ T

0
ψ(t− tk)ψ(t− tm)ψ(t− tl)

dt

T

= E[A3]
K

T

∫ ∞
−∞

ψ3(t)dt

+ E[A2]E[A]
3K(K − 1)

T 2

∫ ∞
−∞

ψ2(t)dt

∫ ∞
−∞

ψ2(t′)dt′

+ E[A]3
K3 − 3K2 + 2K

T 3

∫ ∞
−∞

ψ2(t)dt

= E[A]3
(

6
K

T

τr + τd
3

+
3K(K − 1)

T
(τr + τd)

2

+
K3 − 3K2 + 2K

T 2
(τr + τd)

2

)
.

(E.5c)

(E.5d)
E[Φ3(t)] =

∞∑
K=0

P (K)E[Φ3
K(t)]

= E[A]3
(

2γ + 3γ@ + γ3
)
.

E[Φ4
K(t)]

=

K∑
k,l,m,n

E[AkAlAmAn]

K∏
i=1

∫ T

0
ψ(t− tk)ψ(t− tm)ψ(t− tl)ψ(t− tn)

=E[A]4
(
K

T

τr + τd
4

+
3(K2 −K)

T 2
(τr−τd)2 +

6(K3 − 3K2 + 2K)

T 3
(τr+τd)

3

+
4(K2 −K)

T 2
(τr + τd)

2 +
K4 − 6K3 + 11K2 − 6K

T 4
(τr + τd)

4

)
.

(E.5e)
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(E.5f)
E[Φ4(t)] =

∞∑
K=0

P (K)E[Φ4
K(t)]

= E[A]4
(
6γ + 11γ2 + 6γ3 + γ4

)
.
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Appendix F

Sattin PDF for blob
dominated signal

In this appendix the PDF of blob dominated signals are derived from the
current continuity equation, the method is described in detail by Sattin et
al [81]. The current continuity equation for plasma in the sheath resistive
regime was given in the theory part, equation (3.38),

d

dt
∇2
⊥φ+

2

BR

∂n

∂y
= e2n0Cs [exp (φ− φ0) /T ] . (F.1)

Assuming zero vorticity the potential can be written as,

e

T
φ(n) = ln

1−
ln
(
n
n0

)
K

 . (F.2)

In the equation above K and n0 is defined as,

K =
exp

(
e
T φ0

)
2

eCsBR,

n0 = exp

{
eCsBR

[
exp

(
−φ0

e
T

)
− 1
]

2

}
.

(F.3)

The PDF of n can be written as a function of the potential φ,

F (φ)dφ = F [φ(n)]
dφ(n)

dn
dn. (F.4)
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By assuming that the potential is normal distributed with µ, σ the particle
density distribution can be written as,

F (n) = F [φ(n)]
dφ(n)

dn
=

1√
2πσ2

exp


−1

2

[
ln

(
1−

(
n
n0

)
K

)
− µ

]2

σ2


1

1−
ln
(
n
n0

)
K

1
n
n0

.

(F.5)
Thus a probability distribution for a blob dominated signal can be fitted
with the equation above above where the four free parameters n0,K, µ, and
σ can be found by iteration.
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Matlab code

In this appendix the most important matlab function used is displayed.

function [tops,wtime,peak,pos] = conditional win avg(sign,tresh,ndist,maxs)
% This function calculates the conditional average window of a signal. The
% function takes in the signal, sign, the threshold for which bursts are
% defined, tresh, the half length of conditional window, ndist, and the maximum burst
% amplitude allowed, maxs. The function returns all conditional window
% tops, the waiting time, wtime, the amplitude of the peaks, peak, and the
% position of the peaks, pos. The method goes through the signal by finding the
% maximum and putting the area 2*ndist around the peak value and then find
% the next maximum until there are no more maximums above the threshold.
ntops = 0;
stmp = sign;
nntops = 0;
tops = zeros(2.*ndist + 1,1);
pos = zeros(2.*ndist + 1,1);
wtime = 0;
peak = 0;
stmp(1:ndist) = 0;
stmp(end ndist:end) = 0;
while max(stmp) > tresh

[topp,i] = max(stmp);
if topp < maxs

if min(abs(nntops i(1))) > 2*ndist
ntops = ntops + 1;
peak(ntops) = topp(1);
nntops(ntops) = i(1);
tops(:,ntops) = sign(i(1) ndist:i(1) + ndist);
pos(:,ntops) = i(1) ndist:i(1) + ndist;

end
end
stmp(i(1) ndist:i(1) + ndist) = 0;

end

% calculate waiting times
snn = sort(nntops);
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for k = 1:length(snn) 1;
wtime(k) = snn(k +1) snn(k);

end

function [start,slutt,Top,Topt] = cond avg overlap(sign,thresh)
% This function calculates the amplitude of the local maxima above a
% certain threshold, thresh, of the signal, sign. The method returns the
% peak value, Top, and position, Topt. Start and slutt represents the
% starting times of events above the threshold and slutt the endings.

rsign = (sign mean(sign))./std(sign);

over = 0;
k = 0;
start = zeros(length(rsign),1);
slutt = zeros(length(rsign),1);
Top = zeros(length(rsign),1);
Topt = zeros(length(rsign),1);
for i = 1:length(rsign)

if over == 0 && rsign(i) > thresh
k = k + 1;
start(k) = i;
over = 1;

elseif over == 1 && rsign(i) < thresh
slutt(k) = i;
[Top(k), ttemp] = max(rsign(start(k):slutt(k)));
temp = start(k):slutt(k);
Topt(k) = temp(ttemp);
over = 0;

end
end
start(start == 0) = [];
slutt(slutt == 0) = [];
Top(Top == 0) = [];
Topt(Topt == 0) = [];

function [Vc, Vnorm] = CondVar(tops)
% The function takes in conditional waveforms above threshold and retrunrs
% conditional variance calculated by two methods. Vc is the regular
% conditional variance, while the Vnorm normalizes each conditional
% waveform before calculating the conditional variance.

[m,n] = size(tops);
ny = zeros(m,n);
ny2 = zeros(m,n);
Vc = zeros(m,1);
Vnorm = zeros(m,1);
for j = 1:n
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ny(:,j) = tops(:,j) mean(tops,2);
ny2(:,j) = tops(:,j)./max(tops(:,j)) mean(tops,2)./max(mean(tops,2));

end
A = mean(ny.ˆ2,2);
B = mean(tops.ˆ2,2);
A2 = mean(ny2.ˆ2,2);
B2 = mean(tops.ˆ2,2)./max(mean(tops.ˆ2,2));
Vc = A./B;
Vnorm = A2./B2;

function [RS,n] = rescaled range(sgnl)

% This function calculates the rescaled range of a signal, sgnl. The
% function calculations the rescaled range for intervals on a power of two
% scale. Each interval length is averaged over all possible intervals of
% the same length in the signal, without overlap. The function returns the
% rescaled range and the length of the intervall ranges.

N = floor(log2(length(sgnl)));
n = 2.ˆ(1:1:N)';
RS = zeros(N,1);

for nn=1:N
M = 2ˆN/n(nn);
RSm = zeros(M,1);
for mm=1:M

m1 = (mm 1)*n(nn)+1;
m2 = mm*n(nn);
temp = sgnl(m1:m2);
temp = temp mean(temp);
cuml = zeros(n(nn),1);
cuml(1) = temp(1);
for kk=2:n(nn)

cuml(kk) = cuml(kk 1) + temp(kk);
end
R = max(cuml) min(cuml);
S = std(temp);
RSm(mm) = R/S;

end
Rsm(RSm == Inf) = [];
RS(nn) = nanmean(RSm);

end

function [S,n] = Structure functions(sgnl,q)

% This function calculates the q dimensional structure functions of a
% signal sgnl. The function returns the q dimensional structure function S
% and the time scales of caluclation, n.

K1 = length(sgnl);
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temp = sgnl;
cuml = zeros(K1,1);
cuml(1) = temp(1);
for nn=2:N

cuml(nn) = cuml(nn 1) + temp(nn);
end
N = floor(log2(K1));
n = ceil(2.ˆ(1:0.5:N))';
K = length(n);
S = zeros(K,q);

for qq=1:q
for kk=1:K

for nn=1:(N n(kk))
S(kk,qq) = S(kk,qq) + (abs(cuml(nn+n(kk)) cuml(nn)))ˆqq;

end
S(kk,qq) = S(kk,qq)/(N n(kk));

end
S(:,qq) = S(:,qq)/S(1,qq);

end

function [sgnl,time] = Shot noise gen(g,l,N)
% This function returns a shot noise signal with intermittency parameter g,
% l is the relation between rise and decay time, and N is the number of
% bursts. The function returns the signal and its time steps.

t = 1:N;
dt = 1e 2;
K = N./(g.*dt);
tend = N/g;
time = dt:dt:tend;
Am = 1;
A = exprnd(Am,N,1);
tevent = rand(N,1)*tend;
tevent = sort(tevent);
kevent = round(tevent./dt);
trevent = kevent.*dt;
twait = zeros(N1,1);
for nn=1:N 1

twait(nn) = trevent(nn+1) trevent(nn);
end

sgnl = zeros(K,1);
S = zeros(K,1);
for i = 1:N

S(1:kevent(i)) = A(i).*exp(( trevent(i) + dt:dt:0)./l);
a = dt:dt:round((tend trevent(i))./dt).*dt;
S(kevent(i) + 1:end) = A(i).*exp( (a)./(1 l));
sgnl = sgnl + S;

end
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function [W,a]=Wavelet(sgnl)
% This function calculates the wavelet coefficients with the use of the
% matlab function cwtft. The function returns the wavelet coefficients at
% time scales, a.

N=length(sgnl);
sig = struct('val',sgnl,'period',1);
cwtstruct=cwtft(sig,'wavelet','mexh');
a=cwtstruct.scales.*10.ˆ6;
Wcfs=cwtstruct.cfs;
W=Wcfs';

function [Rand sign] = Data randomization(sgnl,dn)
% This function randomize the signal sgnl by dividing the signal into boxes
% of length dn, and then put the boxes in a random order, Rand sign.
K = length(sgnl);
num = K./dn;
pos = dn.*randperm(num) dn + 1;
temp = ones(K,1);

k = 0;
for i = 1:dn:K dn + 1

k = k +1;
temp(i:i + dn 1) = sgnl(pos(k):pos(k) + dn 1);

end
Rand sign = temp;

function [pmf,ccdf,x] = Dist maker(sign,Nbin)
% This function calculates the PMF and the CCDF of a signal by collecting
% the data in a histogram in Nbin number of bins with values, x.

[pmf,x] = hist(sign,Nbin);

pmf = pmf./sum(pmf);

cdf = zeros(1,Nbin);
cdf(1) = pmf(1);
for i=2:Nbin

cdf(i) = cdf(i 1) + pmf(i);
end
ccdf = 1.0 cdf;
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[79] Sànchez, E., et al., Statistical characterization of fluctuation wave
forms in the boundary region of fusion and nonfusion plasma Physics
of Plasmas, 7, 1408-1416, 2000.
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