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Abstract

PI-�lm, also known as Kapton, is a widely used polymer in the production of electronic equipment.

Its use in printed circuit boards and sensors is increasing. It is therefore important to have knowledge

about ultrasonic attenuation in the polymer.

The main goal of this thesis was to investigate the attenuation of ultrasound through di�erent poly-

mers with di�erent thicknesses. The presentation is divided into two parts based on the polymer

thickness with respect to the applied wavelength. The attenuation was examined through both

experimental methods and numerical studies were this was possible. Basic theory of waves, elas-

tic materials and attenuation in polymers are presented, and theoretical models were applied to

compare the attenuation found through experiments and simulation.

Experimental investigation of thick polymer samples were done with two transducers operating best

at 10- and 20 MHz, respectively. Corresponding total transmission coe�cients and damping factors

were obtained. Comparisons with theory suggests highest reliability for the results obtained with

the 10 MHz transducers.

10 MHz transducers were applied in the experiments with thin Kapton-based samples. Based on the

experiment, COMSOL Multiphysics was used to implement realistic models for numerical simula-

tion. The amplitude spectra obtained through both experiments and simulations were compared to

a corresponding theoretical spectrum. The model di�erences taken into consideration, the resulting

amplitude spectra from the three methods were found to coincide. An experimental investigation

at 10 MHz of the e�ects of surface treatment between layers in two PVDF-coated Kapton �lms

were performed. At this frequency, no di�erences in transmission properties between the treated

and untreated samples were detected.

iii



Trude Ediassen Grimstad

iv



Contents

1 Introduction 1

1.1 History of the transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Own contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Project structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory 7

2.1 Elastic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Tensor notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Elastic constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Hooke's law for elastic materials . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Wave theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Wave equation for �uids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Wave equation in elastic materials . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Attenuation in thick polymer samples . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Direct signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Transmission through a thick polymer sample . . . . . . . . . . . . . . . . . . 22

v



Trude Ediassen Grimstad CONTENTS

2.3.3 Amplitude Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Neper to Decibel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.5 Wave model with no dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Attenuation in thin polymer samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 System �delity factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Method 31

3.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 General setup and procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Samples and material properties . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Numerical Simulations in COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . 38

3.2.1 COMSOL models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Signal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Data analysis of thick samples . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Data analysis of thin samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Results 45

4.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Thick samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2 Thin samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Theoretical and numerical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Thick samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Thin samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Comparison between experimental, numerical and theoretical results . . . . . . . . . 58

vi



Trude Ediassen Grimstad CONTENTS

4.3.1 Thick samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Thin samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Discussion 65

5.1 Thick samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Thin samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Coating on treated and untreated PI-surfaces . . . . . . . . . . . . . . . . . . 67

5.2.2 Amplitude spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusion and further work 73

List of Figures 77

List of Tables 81

vii



Trude Ediassen Grimstad CONTENTS

viii



Chapter 1

Introduction

1.1 History of the transducer

This history introduction is taken from the Project paper �Ultrasonic di�raction �elds in �uids and

elastic materials� [11], and has been written based on information found in the books �Principles

of Sonar Performance Modelling� [1] by Michael Ainslie, �Diagnostic Ultrasound Imaging: Inside

out� [30] by Thomas L. Szabo, and �Fundamentals and Applications of ultrasonic waves� [7] by J.

David N. Cheeke.

Several discoveries lead up to the invention of sonar. In 1816, François Beudant measured the

speed of sound in seawater by using an underwater bell and a swimmer waving a �ag. For the same

measurement setup, Colladon and Sturm build an improved light-sound synchronization system in

1826.

A very important contribution to the commence of transducers and ultrasound technology was made

by the two brothers Pierre and Jacques Curie in 1880, when they discovered that the mechanical

deformation of some crystals would create electrical charge (piezoelectricity). In 1881, they also

con�rmed the reversed piezoelectric e�ect, when they showed that some crystals would deform by

applying voltage to them. This discovery, together with the invention of the triode ampli�er tube

by Lee De Forest in 1907, lead to further advances in pulse-echo range measurements.

The historical event that is considered most important for the coming of sonar and ultrasound, was

the tragic sinking of RMS Titanic after having smashed into an undetected underwater iceberg in

1912. Scientists began to search for ways of detecting, and warn ships about underwater obstacles.
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Figure 1.1: Robert Boyle. Image found on November 29, 2012 on the University of Alberta web-
page: http://www.100years.ualberta.ca/ [23]

Already in 1913, Reginald Fessenden �led patents on an electromagnetic transducer. The year after

he demonstrated its use by detecting an iceberg nearly two miles away. The device later became

known as the Fessenden oscillator.

The extensive use of submarines during World War I lead French and British scientists into research

to �nd methods of detecting underwater vessels in 1915. The French primarily worked on echoloca-

tion, or �active sonars� - while the British mostly worked with listening devices called hydrophones

or �passive sonars�. The active sonars consist of a sound transmitter and a receiver detecting echoes

from the transmitted sound. The passive sonars use only a receiver, which was listening for sound

that the target was emitting.

The same year a group of scientists formed The Board of Invention and Research (BIR) in Scotland,

and by the year 1917 the group consisted of more than 80 people. Amongst them were the British

physicist Albert Beaumond Wood and the Canadian physicist Robert Boyle, working on passive

listening and echolocation. The �rst breakthrough came in 1917 when Boyle detected submarines

at a distance of 910 meters with the Fessenden oscillator. However, the 1 kHz frequency of the

Fessenden transmitter was too low to give the necessary resolution, and the work with this oscillator

was abandoned. Also in 1917, Paul Langevin was working on the piezoelectric material quartz in

France. Together with the invention of the valve ampli�er by Brillouin and Beauvais, the quartz

system �gave a signaling distance of up to six kilometers� by the end of 1917 (Hackmann, 1984, p.81

[12]). When French and British scientists started to work together in 1917, Boyle visited Langevin,

and shortly after he too began to work on quartz transducers. In 1918, the same month as World

War I ended, Boyle had built the �rst functional active sonar. At the time, the technology was

known as �asdics�, the term �sonar� was not used before in 1942. Figure 1.1 shows a portrait of

2
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Boyle.

In 1915, portable omnidirectional hydrophones were available on the marked. In 1917, directional

hydrophones also became available.

World War I set the stage for both passive and active sonars. While passive sonars underwent a

gradual development that took centuries, active sonars were developed in a rush between 1915 and

1917. However, active sonars did not become available in time to be used in this war. Passive

sonars on the other hand were used in this periode. In the peacetime following World War I, work

began in order to determine safe conditions for the use of ultrasound in medicine. Sonar was used

to measure water depth, and to locate �sh. In 1922, a recording echo sounder was built by Marti

and Langevin. The invention gave the possibility of preserving the output of the sounder in paper

format.

In 1921, the Applied Research Laboratory (ARL) was founded. In 1928 they developed the magne-

tostrictive transducer. A magnetostrictive material converts magnetic energy to mechanical energy,

and the other way around.

Another boost in the research of transducer technology was the result of investments of scienti�c

resources for military purposes after the Japanese attack of Pearl Harbor during World War II,

which caused USA to enter the war. USA obtained, during the war, an understanding of the

propagation and scattering of sound in water. Also, a radar was created by applying pulse-echo

ranging to electromagnetic waves.

In 1940, F. Firestone invented the Supersonic re�ectoscope, which used the echo-range principle to

locate defects in metal. This type of echo-ranging system uses a transmitter to excite a transducer.

The transducer sends out series of repetitive ultrasonic pulses into a test object. Echoes from

boundaries and di�erent targets inside the test object were ampli�ed and displayed as amplitude

versus time on an oscilloscope. The display was known as �A-mode�, �A-line� or �A-scope�, where

the �A� stands for amplitude. A-mode was the precursor to diagnostic ultrasound.

An important achievement for the use of ultrasound in medicine was the �rst through-transmission

ultrasound attenuation image of the brain, witch marked the beginning of Echoencephalography.

The image, created by the Dussik brothers in 1942, was made by storing the intensity output of a

light bulb connected to the output of the receiving transducer.

Imaging methods were a topic of great interest in the 1950s. During this time, one of the �rst hand

held contact scanners was build by Reid and Wild. To detect the transducer position in space, this

imaging system used a position sensor that was triggered by periodically timed transmit pulses.

To indicate depth, the echo output was shown on a display consisting of time traces that run from

3
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the top to the bottom on the screen. The brightness of each time trace were proportional to the

echo amplitude. This display became known as a �B-mode� or a �B-scan�, where the �B� stands for

brightness. The di�erences between the A-mode and B-mode display made it di�cult to achieve

consistent results.

The invention of digital computers and transistors in the late 1940 caused profound alterations

in ultrasound imaging. Additional speed was added to the imaging development when Jack Kilby

invented the integrating circuit in 1958, which consisted of multiple transistors and circuit elements.

In 1971, one chip could carry 2300 transistors. Advancements in electronics caused the imaging

quality to improve rapidly throughout the 1980's. In 1985, Robert Ballard and Jean Louis Michel

discovered the wreck of RMS Titanic at a depth of 3800 meters by use of a submersible with side-

scan sonar attached to it. Phased array design also evolved as a consequence of the developments

in complementary technologies, and in the 1990's the bandwidth got wider and transducers could

take matrix array con�gurations.

The advances in transducer technology and the �eld of ultrasonics has evolved rapidly the last 30

years.

1.2 Own contribution

In this thesis, ultrasonic transducers were used to investigate attenuation parameters in di�erent

polymers. A transducer was applied to transmit a broad banded signal through a polymer sample

emerged into water. Another transducer was used to listen for the transmitted pulse on the opposite

side of the polymer. The detected signals were displayed as voltage amplitude versus time, or A-

mode, on an oscilloscope.
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1.3 Project structure

Chapter 2 presents relevant theory for this thesis. Section 2.1 gives an introduction to elastic

materials. 1-D wave theory is introduced in section 2.2. Theory for attenuation in thick and thin

polymers is described in section 2.3 and 2.4.

The method applied to produce experimental and numerical results are given in chapter 3. The

setup of the experiments are presented in section 3.1, next in section 3.2 the numerical models made

in COMSOL Multiphysics are described. Finally, section 3.3 gives a short description of the signal

analysis.

Chapter 4 displays the results. The results obtained through experiments are given in section 4.1.

Next the results obtained by theoretical means and through simulations are presented in section

4.2. The �nal section in chapter 4 compares the results achieved through theory, simulations and

experiments.

The results are discussed systematically in chapter 5, and a conclusion is given in chapter 6 together

with suggestions for further work.
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Chapter 2

Theory

2.1 Elastic materials

An elastic material can be deformed if exposed to some force F , and will return to its initial form

when the force is removed. The following theory was written based on notes from Frank Melandsø

[20], and the book �Elastic Waves in Solids I� [27], and is an extension of the same theory given in

the Project paper �Ultrasonic di�raction �elds in �uids and elastic materials' '[11].

2.1.1 Tensor notation

We start by de�ning the notation with general linear relations for tensors [20]:

1. Scalar; tensor of order 0. u = av

2. Vector; tensor of order 1 ui =
∑3
u=1 ai,kvk; i = 1, 2, 3

3. Matrix; tensor of order 2 ui,j =
∑3
k=1

∑3
l=1 ai,j,k,lvk,l; i = 1, 2, 3, j = 1, 2, 3

Tensors of higher order will be denoted in the same manner with its order represented by the

number of elements.

7
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2.1.2 Deformation

Figure 2.1 shows an elastic object in 1-D before and after it is being exposed to an external force

F. Before the force is added, p1 and p2 are two points in the elastic medium positioned at x and

x+ ∆x on a reference line, respectively. After applying the force to both sides of the medium, the

two points change positions to x′ and x′ + ∆x′. The displacement u, of p1 and p2 is given by [27]:

u(x) = x′ − x (2.1)

u(x+ ∆x) = x′ + ∆x′ − x−∆x = u(x) + ∆x′ −∆x = u(x) + ∆u(x) (2.2)

Figure 2.1: Deformation of a elastic material [27].

In 3-D, the positions of the two points p1 and p2 are described by the vectors r and r + ∆r,

respectively, as showed in Figure 2.2. The displacement u in this case is calculated by [20]:

u(r) = r′ − r (2.3)

u(r + ∆r) = r′ + ∆r′ − r −∆r = u(r) + ∆r′ −∆r = u(r) + ∆u(r) (2.4)

which in component form becomes:

ui(r + ∆r) = ui(r) + ∆ui(r) = ui(r) +
δui
δr

∆r (2.5)

= ui(r) +
δui
δx

∆x+
δui
δy

∆y +
δui
δz

∆z, i = 1, 2, 3 (2.6)

8
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Figure 2.2: Deformation of an elastic material in three dimensions, [27] [20].

In vector notation, the displacement described above becomes:uxuy
uz


r+∆r

=

uxuy
uz

+


δux

δx
δux

δy
δux

δz
δuy

δx
δuy

δy
δuy

δz
δuz

δx
δuz

δy
δuz

δz


∆x

∆y

∆z

 = u(r) + J ij∆r (2.7)

where J ij is the Jacobian matrix [8].

Strain

In 1-D the strain S is de�ned as the deformation per unit length. From equations (2.1) and (2.2)

above we get that:

S = lim
∆x→0

∆u

∆x
= lim

∆x→0

∆x′ −∆x

∆x
=
δu

δx
(2.8)

In 3-D, the deformation assumed invariant to both translation and rotation, is de�ned as the

symmetric part Sij , of the Jacobian matrix J ij given in equation (2.7). The elements of the

Jacobian matrix are:

δui
δxj

=
1

2
(
δui
δxj

+
δuj
δxi

) +
1

2
(
δui
δxj
− δuj
δxi

) = Sij + Ωij (2.9)

The strain is therefore de�ned as the second order tensor [27]:

Sij =
1

2
(
δui
δxj

+
δuj
δxi

) (2.10)

9
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Stress

Consider a small cubic volume V, with surfaces ∆ςk. On surface ∆ς3 a small force ∆F is acting,

as shown in Figure 2.3. The force is given by:

∆F = ∆F1e1 + ∆F2e2 + ∆F3e3 (2.11)

where e1, e2 and e3 are the orthogonal basis vectors [15].

Figure 2.3: A cubic volume [20].

The force ∆F produces the stress tensor T i3 on surface ∆ς3, which can be described by:

T i3 = lim
∆ς3→0

∆Fi
∆ς3

(2.12)

The general expression for the second order stress tensor produced on the surfaces is [27]:

T ik = lim
∆ςk→0

∆Fi
∆ςk

(2.13)

10
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2.1.3 Elastic constants

Young's modulus and Poisson's ratio

Young's modulus E and Poisson's ratio γ are quantities that can be determined experimentally.

Figure 2.4: An elastic cylinder with radius t and length l [20].

Imagine an elastic cylinder with radius t and length l, as shown in Figure 2.4 . When imposing the

stress T1 to the top of the cylinder, the length shrinks into l' and the radius increases into t'. If

these values are measured, the deformations (strains) S1 and S2 can be calculated by:

S1 =
l′ − l
l

(2.14)

S2 =
t′ − t
t

(2.15)

Then, from the calculated deformations and the value of imposed stress, Young's modulus can be

determined by [20]:

E =
T1

S1
(2.16)

And Poisson's ratio by:

γ = −S2

S1
(2.17)

11
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Lamè coe�cients

The Lamè constants λ and µ are related to Young's modulus E and Poisson's ratio γ by [27]:

λ =
Eγ

(1 + γ)(1− 2γ)
(2.18)

and

µ =
E

2(1 + γ)
(2.19)

2.1.4 Hooke's law for elastic materials

Hooke's law in a elastic material can be described as a linear relation between the second order

stress tensor T i,j and the second order strain tensor Sk,l as [27]:

T i,j =
∑
k

∑
l

ci,j,k,lSk,l (2.20)

where ci,j,k,l is a tensor of order 4.

Symmetry relations in a tensor

There are a maximum of 34 = 81 elements in a 4-D tensor ci,j,k,l. Because of symmetries in the

second order stress tensor T i,j and in the second order strain tensor Sk,l, only 36 of the elements

are independent [20]. Thus,

T i,j = T j,i ⇒ ci,j,k,l = cj,i,k,l (2.21)

Sk,l = Sl,k ⇒ ci,j,k,l = ci,j,l,k (2.22)

Isotropic medium

An isotropic medium is a material that has uniform density along all directions. The tensor ci,j,k,l
of an isotropic material can be expressed by [27]:

ci,j,k,l = λ δi,jδk,l + µ(δi,kδj,l − δi,lδj,k) (2.23)

where λ and µ are the Lamè coe�cients de�ned by the equations (2.18) and (2.19), respectively.

12
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Dimension reduction

The 4-D tensor ci,j,k,l can be transformed into a 2-D tensor with 6 × 6 elements. Sk,l and T i,j

must then be transformed into 6 × 1 vectors. These transformations are obtained by giving the

index-couples (i, j), and equivalently (k, l), new names [20]:

(1, 1)→ 1 (2.24)

(2, 2)→ 2 (2.25)

(3, 3)→ 3 (2.26)

(2, 3) = (3, 2)→ 4 (2.27)

(3, 1) = (1, 3)→ 5 (2.28)

(1, 2) = (2, 1)→ 6 (2.29)

Using this notation, Hooke's law from equation (2.20) can be written as T i = cijSi, that is:



T1

T2

T3

T4

T5

T6


=



c1,1 c1,2 c1,3 c1,4 c1,5 c1,6

c2,1 c2,2 c2,3 c2,4 c2,5 c2,6

c3,1 c3,2 c3,3 c3,4 c3,5 c3,6

c4,1 c4,2 c4,3 c4,4 c4,5 c4,6

c5,1 c5,2 c5,3 c5,4 c5,5 c5,6

c6,1 c6,2 c6,3 c6,4 c6,5 c6,6





S1

S2

S3

S4

S5

S6


(2.30)

For isotropic materials the matrix cij becomes [20]:

cij =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(2.31)

where λ and µ are the Lamè coe�cients given in equation (2.18) and (2.19).
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2.2 Wave theory

All theory presented in this section is based on information found in the books �Fundamentals of

physical acoustics� [3], �The science and applications of acoustics� [25], �Fundamentals and Applica-

tions of ultrasonic waves� [7] and the Master thesis �Ultrasound sensor for biomedical applications�

[2].

A wave can be described as the movement of a disturbance through a material or vacuum. The

wave travels with a �nite speed c0, with respect to the medium in which it propagates. Although

waves are often thought of as continuous sinusoidal oscillations, a waveform can take the form

of spikes such as the delta function, rectangular pulses like the discontinuous unit step function,

complex exponential- and logarithmic functions, and noise. Actually, all functions on the form

u = f(x− ct) + g(x+ ct) satis�es the wave equation [3].

Sound waves are longitudinal pressure waves, which means that the particles in the medium oscillate

back and forth in the direction of the wave, creating alternating compressions and rarefactions in

the material. Sound waves therefore needs a medium to propagate. Electromagnetic waves however,

such as light and radio waves, can travel through vacuum.

Mathematically the three dimensional wave equation is given by [3]:

c20∇2u(x, y, z, t)− δ2u

δt2
= 0 (2.32)

where u is the waveform and nabla ∇ is the Laplace operator given by:

∇2() =
δ2

δx
() +

δ2

δy
() +

δ2

δz
() (2.33)

Figure 2.5: The acoustic frequency spectrum [7] [2].
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Sound waves with frequencies between 20 KHz and 1 GHz are called ultrasonic waves. That is,

frequencies right above the human hearing and up to the hypersonic regime [7] [2]. Figure 2.5 shows

a drawing of the acoustic frequency spectrum.

2.2.1 Wave equation for �uids

Since this thesis evolves around acoustical ultrasonic waves, it will su�ce to derive the wave equation

in 1-D. We limit the problem by applying a lossless plane wave, which leads us to only need the 1-D

conservation equations for non-dissipative �uids. We also neglect all body forces, such as gravity

[3].

To derive the wave equation, we �rst consider the conservation of mass. Then we take a look at the

conservation of momentum and the equation of state, before �nally arriving at the wave equation.

Conservation of mass

We start by considering a compressible �uid that �ows through a duct with some arbitrary, but

uniform cross section area S. Such a duct is shown in Figure 2.6, where x and ∆x marks the

boundaries of a in�nitesimal control volume. The �uid runs through the control volume with the

particle velocity u, and we want to �nd out at which rate the mass inside changes. To begin with,

we make two assumptions [3]:

1. The position of the control volume is �xed in space

2. The �uid has 1-D �ow

Figure 2.6: Mass �ow through a control volume [3].
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Since we assume 1-D �ow, it follows that all the �ow properties, such as the particle velocity u and

the �uid density ρ, are the same throughout any cross section of the control volume. Because of

the conservation of mass, we know that the total �uid mass in�ow must equal the total �uid mass

out�ow. In mathematical notation this is the same as [3]:

δ

δt
(Sρ∆x) = ρuS|x − ρuS|x+∆x (2.34)

where ρ on the left side represents the average �uid density inside the control volume. Because

neither the area S nor ∆x is dependent on time, we can rewrite equation (2.34) to:

δ

δt
=
ρu|x − ρu|x+∆x

∆x
(2.35)

Letting ∆x → 0, we see that the right side of equation (2.35) becomes − δρuδx , where the density ρ
is a true point function. The equation of continuity for conservation of mass follows directly [3]:

δ

δt
+ ρ

δu

δx
(2.36)

Conservation of momentum

Figure 2.7 shows the same control volume as applied for the derivation of the equation of continuity.

ρu is the momentum per unit volume, and ρu2S is the momentum �ux (units; momentum per unit

area per unit time).

Figure 2.7: Momentum �ow through- and forces on a control volume [3].

To �nd a momentum balance relation, we start by expanding the list of assumptions used above by

another two points [3]:
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1. The position of the control volume is �xed in space

2. The �uid has 1-D �ow

3. Neglect all body forces, as they are not signi�cant at in�nitesimal distances

4. Assume inviscid �uid; the pressure P gives the only signi�cant surface force

Assuming that these four points are true, the forces PS|x and PS|x+∆x are the only ones acting

on the control volume. The pressure P is the sum of the acoustic and ambient pressure on the

boundary area S. If we now write Newton's second law in terms of momentum conservation we get:

δ

δt
(ρuS∆x) = (ρu2S|x − ρu2S|x+∆x) + (PS|x − PS|x+∆x) (2.37)

which with words means that the time rate momentum increase inside the control volume equals

the total momentum in�ow over the boundaries plus the sum of all the forces acting on the control

volume [3]. By dividing equation (2.37) with S∆x, and rearranging we get:

δ

δt
(ρu) +

ρu2S|x+∆x − ρu2|x
∆x

+
P |x+∆x − P |x

∆x
= 0 (2.38)

Finally, if we let ∆x→ 0, equation (2.38) becomes

δ

δt
(ρu) +

δρu2

δx
+
δP

δx
= 0 (2.39)

which is known as the momentum equation [3].

Equation of state

Still considering the control volume from the previous sections, we begin the derivation of the

isentropic equation of state by adding another necessary point to our list of assumptions:

1. The position of the control volume is �xed in space

2. The �uid has 1-D �ow

3. Neglect all body forces, as they are not signi�cant at in�nitesimal distances

4. Assume inviscid �uid; the pressure P gives the only signi�cant surface force

5. Lossless �ow
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Because we assume that the �ow is lossless, there is no need for any separate equation for conserva-

tion of energy. It therefore su�ces to consider the thermodynamic equation of state, which mainly is

a relation between thermodynamic variables. Generally, the equation of state P = P (ρ, s) is useful

in acoustics - relating pressure to density and the entropy s per unit mass. However, because of our

assumption of the �ow being lossless, the entropy becomes constant and the pressure P becomes

only a function of density:

P = P (ρ) (2.40)

which is a general form of the isentropic equation of state.

This can be expressed by a Taylor series in the condensation of ρ−ρ0ρ0
for any �uid, be it liquid or

gas [3]:

P = p0 +A

(
ρ− ρ0

ρ0

)
+
B

2!

(
ρ− ρ0

ρ0

)2

+
C

3!

(
ρ− ρ0

ρ0

)3

+ (...) (2.41)

where p0 and ρ0 are the static values of P and ρ, respectively. The coe�cients A, B and C are

estimated through experiments or by other types of analysis. The �rst coe�cient is the most

important because the condensation generally is very small. The speed of sound c is de�ned by [3]:

c2 =
δP

δρ
|const.s =

dP

dρ
(2.42)

for an isentropic process. By taking the limit ρ→ ρ0, and di�erentiating equation (2.41), c2 becomes

c20 =
A

ρ0
(2.43)

which is known as the "small-signal sound speed", or more traditionally only "Sound speed".

Eliminating the condensation terms from the pressure, P in equation (2.41) simpli�es the to the

"acoustic" or "excess pressure" p as given by equation (2.44). Equation (2.45) gives the excess

density [3].

p ≡ P − p0 (2.44)

δρ ≡ ρ− ρ0 (2.45)

The isentropic equation of state can then be written as [3]:

p = c20δρ

[
1 +

B

2!A

δρ

ρ0
+

C

3!A

(
δρ

ρ0

)2

+ (...)

]
(2.46)
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Resulting wave equation

The previous sections give us all the tools we need to derive the 1-D wave equation for a lossless

homogenous �uid. We will use the equation of continuity (2.36), the momentum equation (2.39)

and the isentropic equation of state (2.46) to derive the wave equation. These three equations are

all non-linear, but by using "small signal approximation" they can be linearized.

We start by assuming that the �uid is silent in the absence of sound waves, which gives us that

the pressure P = p0, the density ρ = ρ0 and the particle velocity u = 0. Assuming that the sound

waves only disturb the equilibrium of the �uid marginally, gives us that the excess pressure p, the

excess density δρ and the particle velocity u are all small quantities of �rst order. This means that

we can assume that these variables are all small compared to the static quantities p0, ρ0 and c0 as:

|δρ| << ρ0 (2.47)

|p| << ρ0c
2
0 (2.48)

|u| << c0 (2.49)

The two equations (2.48) and (2.49) follow directly from equation (2.47). Applying a "small signal

approximation" simply means to use these assumptions [3].

To get to the wave equation, we use the small signal approximations to linearize the conservation

equations in (2.36), (2.39) and (2.46). Next we can combine them to obtain the linear wave equation

[3]:

c20
δ2u

δx2
− δ2u

δt2
= 0 (2.50)

A general solution to the wave equation can be expressed by

p(x, t) = Λej(ωt−kx) (2.51)

where Λ represents the amplitude, ω the angular frequency and k the wave number.

2.2.2 Wave equation in elastic materials

Another approach to derive the 1-D wave equation, is to use an elastic material as the propagation

medium instead of the homogeneous �uid used in the section above. We will still limit ourselves

to the 1-D case. To derive the wave equation, we use Newton's second law as given by equation

19



Trude Ediassen Grimstad CHAPTER 2. THEORY

(2.52), and a 1-D version of Hooke's law which is given in its general form by equation (2.20) in

section 2.1.4.

Newton's second law is given by [20] [17]:

F = ma1 = ρ0
δv1

δt
− δT1

δx
(2.52)

where m is the mass and ρ0 is the density of the material, a1 and v1 is the displacement velocity

-and acceleration of the wave, respectively, and T1 is the stress given by [20]:

T1 = cES1 = cE
δu1

δx
(2.53)

This is Hooke's law in 1-D, where cE is the elastic modulus, u1 is the displacement and S1 is the

strain de�ned in equation 2.8 in section 2.1.2.

We recall that v1 = δu1

δt , and start by taking the time derivative of Hooke's law from equation

(2.53):

δT1

δt
= cE

δ

δt

(
δu1

δx

)
= cE

δ

δx

(
δu1

δt

)
= cE

δv1

δx
(2.54)

Next, we take the time derivative of Newton's second law from equation (2.52) and use our result

from equation (2.54), which leads us to:

δF

δt
=

δ

δt

(
ρ0
δv1

δt
− δT1

δx

)
= ρ0

δ2v1

δt2
− δ

δx

(
δT1

δt

)
= ρ0

δ2v1

δt2
− δ

δx

(
cE
δv1

δx

)
δF

δt
= ρ0

δ2v1

δt2
− cE

δ2

δx2
(2.55)

Finally, by rearranging equation (2.55) we �nd the wave equation [20]:

δ2v1

δt2
=
cE
ρ0

δ2v1

δx2
= c20

δ2v1

δx2
(2.56)

where c0 is the phase velocity.
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2.3 Attenuation in thick polymer samples

2.3.1 Direct signal

When there is only water between the transducers, the frequency spectrum of the received signal

can be described by equation (2.57) [14]. A sketch of the setup is shown in Figure 2.8.

Figure 2.8: System without polymer sample inserted.

R0(ω) = e−ikwL U(ω) (2.57)

where U(ω) is the frequency spectrum of the original signal that was sent from the transducer Tx,

and L is the distance between the transducers as shown in Figure 2.8. kw(ω) is the wave number

for water, given by [31]:

kw(ω) = αw(ω)− iβw(ω) (2.58)

where αw and βw are the propagation constant and the attenuation coe�cient for water, respec-

tively. Inserting into equation (2.57) gives a complex propagation constant, which is canceled by

taking the absolute value of the spectrum:

R0(ω) = e−i(αw−iβw)L U(ω) = e−βwL e−iαwL U(ω) (2.59)

|R0(ω)| = e−βwL |U(ω)| (2.60)
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2.3.2 Transmission through a thick polymer sample

A drawing of the system when a polymer sample is inserted between the transducers is given in

Figure 2.9. The Fourier transform R1(ω) of the received signal with this setup is given by [14]:

Figure 2.9: System with a polymer sample inserted.

R1(ω) = e−ikwL2 Tpw e−ikpd Twp e
−ikwL1 U(ω) = T e−ikw(L−d) e−ikpd U(ω) (2.61)

kp(ω) = αp(ω)− iβp(ω) (2.62)

where L1 is the distance between the sending transducer and the sample, L2 is the distance between

the sample and the receiving transducer and d is the thickness of the polymer sample as indicated

by Figure 2.9, such that L1 + L2 + d = L. The distances L1 and L2 are equal, and are chosen

according to the focus length of the transducers, such that the sample is in the center of focus.

kp(ω) is the wave number with αp and βp as the propagation constant and the attenuation coe�cient

for the inserted polymer sample, respectively. Twp and Tpw are the transmission coe�cients for the

two interfaces involved, as indicated by Figure 2.9. When the material that the signal is transmitted

into is assumed to have an in�nite thickness, the equations for the transmission coe�cients are given

by [3]:

Twp =
2zp

zw + zp
, Tpw =

2zw
zw + zp

(2.63)

where zw and zp are the impedances of water and the polymer, respectively. The impedance of a
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material m is de�ned as [6]:

zm = ρmcm (2.64)

where ρm the density and cm is the sound velocity of the material.

T is the total transmission coe�cient for a material; it is de�ned as the product between Twp and

Tpw. Still assuming that the second medium has in�nite thickness, T is given by:

T = Twp · Tpw =
4zwzp

(zw + zp)2
(2.65)

When the thickness of the inserted sample is large compared to the wavelength, equation (2.65)

can be used as an approximation of the total transmission coe�cient.

By taking the absolute value of the frequency spectrum in equation (2.61), the complex propagation

constants for water and the polymer specimen is eliminated:

|R1(ω)| = |T | e−βw(L−d) e−βpd |U(ω)|

= |T | e−Lβw e−d(βp−βw) |U(ω)| (2.66)

2.3.3 Amplitude Spectrum

To �nd the total transmission coe�cient T and the attenuation βp through the polymer sample, we

�rst select a frequency interval ∆ω that covers the information bandwidth of the �rst peak in the

frequency spectrum. The interval must be chosen above the noise �oor. The radian frequencies in

this interval will be denoted by ω′.

The next step is to take the ratio A1(ω′) between the absolute values of the frequency spectra at

the interval ∆ω of the received signal, with and without the polymer sheath inserted [18] [28]:

A1(ω′) =
|R1(ω′)|
|R0(ω′)|

=
|T | e−Lβw e−d(βp−βw) |U(ω′)|

e−Lβw |U(ω′)|
= |T | e−d(βp−βw) (2.67)

Furthermore, the phase spectrum is obtained by taking the logarithm of the amplitude spectrum

A1(ω′), and by using the logarithmic rule [26]:

ln(A1(ω′)) = ln
(
|T | e−d(βp−βw)

)
= ln (|T |)− d(βp − βw) (2.68)
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From this we �nd the logarithm of the total transmission coe�cient T, through the polymer sample.

Further, the total transmission coe�cient can be given for that speci�c polymer by taking the

exponential of ln[|T |]. From equation (2.68), the attenuation coe�cient βp through the polymer

can easily be solved for:

βp − βw =
1

d
[ ln(|T |)− ln(A1(ω′)) ] (2.69)

βp = βw +
1

d
[ ln(|T |)− ln(A1(ω′)) ] (2.70)

Since the attenuation through water is much smaller than the attenuation through the sample

(βw << βp), the attenuation βw of water can be ignored. Therefore, the attenuation through the

sample can be calculated as given by [14]:

βp ≈ βp − βw =
1

d
[ ln(|T |)− ln(A1(ω′)) ] (2.71)

2.3.4 Neper to Decibel

Decibels is a common unit to use in acoustics. To convert the amplitude spectrum from Neper to

Decibels we use the that [5]:

A1(ω′) [dB] = 20 log(ln[A1(ω′)]) [Np] (2.72)

Applying this relation on equation (2.68) yields:

20 log(ln[A1(ω′)]) = 20 log(T )− d(βp − βw)20 log(e1) (2.73)

From this it is clear that to convert the damping factor β into units of dB/cm MHz, we simply

multiply by the factor

20 log(e1) = 8.68 (2.74)
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2.3.5 Wave model with no dispersion

The phase velocities aw in water and ap in the polymer sample are given by [20]:

aw =
ω

kw
, ap =

ω

kp
(2.75)

where ω is the angular frequency, and kw and kp are the wave numbers of water and the sample

respectively.

By assuming that the phase velocity is related to the speed of sound through the materials, we

obtain the expressions for the loss factors δw through water, and δp through the polymer sample:

aw = cw(1 + iδw), ap = cp(1 + iδp) (2.76)

|δw| << 1, |δp| << 1 (2.77)

where cw is the speed of sound in water and cp is the speed of sound through the polymer sample

[20].

We can then use these assumptions and solve equation (2.75) for the wave numbers, to relate them

to the loss factor and the attenuation coe�cient as shown for kw as:

kw =
ω

aw
=

ω

cw(1 + iδw)
≈ ω

cw
(1− iδw) (2.78)

Thus, since kw = αw − iβw, we get that αw − iβw ≈ ω
cw

(1 − iδw). The equivalent relation yields

for the wave number kp. This results in the propagation constants and the attenuation coe�cients

given by [20]:

αw =
ω

cw
, αp =

ω

cp
(2.79)

βw =
ω

cw
δw, βp =

ω

cp
δp (2.80)

If the speed of sound is not dependent on frequency, then the spectrum ratio A1(ω′) is given by

[20]:

A1(ω′) ≈ |T | e−dβp = |T | e−d
ω
cp
δp (2.81)

To obtain the loss factor δp of the polymer, the �rst step is to take the logarithm of A1(ω′) in
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equation (2.81):

ln

(
A1(ω′)

|T |

)
= −d ω

cp
δp (2.82)

Then we use that the angular frequency ω is related to the frequency f by ω = 2πf to get:

ln

(
A1(ω′)

|T |

)
= −d 2πf

cp
δp (2.83)

Next, if we use the logarithmic rule of that ln
(
A1(ω′)
|T |

)
= ln(A1(ω′))− ln(|T |), and solve equation

(2.83) for δpf we obtain

− cp
2πd

[ ln(A1(ω′))− ln(|T |) ] = δ1f

⇒ f0 [ ln(|T |)− ln(A1(ω′)) ] = δpf (2.84)

Finally, by using y = −f0 ln(A1(ω′)) and y0 = −f0 ln(|T |) in equation (2.84) we get:

y − y0 = δpf (2.85)

Thus, the loss factor through the polymer sample can be expressed by [20]:

δp =
y − y0

f
=
y

f
− y0

f
(2.86)

2.4 Attenuation in thin polymer samples

When the thickness of the sample is very thin compared to the wavelength, the theory of total

transmission given in subsection 2.3.2 no longer applies. This is because the �rst echo to reach the

receiving transducer no longer can be separated from the ringing inside the sample. The following

theory is based on the book �Fundamentals of physical acoustics� [3].

We start by assuming that material 2 in Figure 2.10 has a �nite thickness d. The pressure �elds
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Figure 2.10: Two interface system with incident wave, re�ected waves and transmitted waves [3].

P1, P2 and P3 in the three materials in the system are given by [3]:

P1 = A1e
−ik1x +B1e

ik1x (2.87)

P2 = A2e
−ik2x +B2e

ik2x (2.88)

P3 = A′3e
−ik3x = A3e

−ik3(x−d) (2.89)

where k1, k2 and k3 are the wave numbers of the three materials, respectively, and A′3 is the

amplitude with respect to the origin at x = 0. By using the continuity of pressure and particle

velocity on the �rst interface , we can see that [3]:

A1 +B1 = A2 +B2 (2.90)

A1 −B1 =
z1

z2
(A2 −B2) (2.91)

where z1 and z2 are the impedances of the �rst and second materials involved as indicated in Figure

2.10. Continuity of pressure and particle velocity on the second interface give [3]:

A2e
−ik2d +B2e

ik2d = A3 (2.92)

A2e
−ik2d −B2e

ik2d =
z2

z3
A3 (2.93)

where z3 is the impedance of the third material. To eliminate B1, we add equation (2.91) to equation

(2.90) and get:

2A1 =

(
1 +

z1

z2

)
A2 +

(
1− z1

z2

)
B2 (2.94)

To eliminate A2 and B2, we start by subtracting equation (2.93) from equation (2.92) to get:

2B2e
ik2d =

(
1− z2

z3

)
A3 (2.95)
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and then adding equation (2.93) to equation (2.92) to obtain:

2A2e
−ik2d =

(
1 +

z2

z3

)
A3 (2.96)

The three equations (2.94), (2.95) and (2.96) can be combined to �nd that:

A1 =

A3

((
1 + z1

z2

)2

eik2d +
(

1− z1
z2

)2

e−ik2d
)

4
(2.97)

Finally, we can �nd an expression for the total transmission coe�cient T , which is de�ned as the

ratio between A3 and A1:

T =
A3

A1
=

4(
1 + z2

z3
+ z1

z2
+ z1

z3

)
eik2d +

(
1− z2

z3
− z1

z2
+ z1

z3

)
e−ik2d

(2.98)

Using Euler's formulas, the total transmission coe�cient is simpli�ed to [3]:

T =
2(

1 + z1
z3

)
cos(k2d) + i

(
z2
z3

+ z1
z2

)
sin(k2d)

(2.99)

Figure 2.11: Re�ections and transmission in a thin layer. The arrows do not show the actual wave
paths.

When z1 = z3 as in Figure 2.11 where a thin polymer sample is enclosed by water, equation (2.99)
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above reduces to:

T =
2

2 cos(kpd) + i
(
zp
zw

+ zw
zp

)
sin(kpd)

(2.100)

where kp is the wave number and d is the thickness of the polymer sample. zp and zw are the

impedances of the polymer and the water, respectively.

2.4.1 System �delity factor

The system �delity factor (SFF) is a normalized measure of the similarity between the shapes of two

signals Ra(t) and Rb(t). We expect one of the signals, here Rb(t), to be much lower in amplitude

than the other. Because of this, a comparison that includes their magnitude is not necessary. We

therefore normalize the signals as shown in equations (2.101) and (2.102), before cross-correlating

them. This will give a comparison of their shape only [24].

The SFF is de�ned as the maximum value of the cross-correlation between the two normalized

signals, as given by:

R̂a(t) =
Ra(t)

‖Ra(t)‖
=

Ra(t)[∫ −∞
−∞ |Ra(t)|2 dt

] 1
2

(2.101)

R̂b(t) =
Rb(t)

‖Rb(t)‖
=

Rb(t)[∫ −∞
−∞ |Rb(t)|

2
dt
] 1

2

(2.102)

SFF = max
n

∫ −∞
−∞

R̂a(t)R̂b(t+ τ)dt (2.103)

As a result of the normalization, the value of the system �delity factor will be between 0 and 1.

A SFF of 0 means that the shape of the two signals have no similarity, whereas a SFF of 1 means

that the two signals have identical shapes [24].
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Chapter 3

Method

3.1 Experimental

3.1.1 General setup and procedure

A sketch of the general setup for the experiment is presented in Figure 3.1. The original setup used

in the laboratory is shown in Figure 3.2. An overview listing all the instruments used is given in

Table 3.1.

Two sets of focused transducers were used; one set designed to operate best around 10 MHz, and

the other designed to work best at around 20 MHz. From now on they are referred to as the �10

MHz transducers� and the �20 MHz transducers�, respectively.

Instruments

Instrument Producer Series

Oscilloscope Agilent Technologies In�niiVision DSO-X 3024A

Signal Generator Tektronix AFG3102

Ampli�er Precition Acoustic LTD Hydrophone Booster Ampli�er

Table 3.1: List of applied instruments.
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Figure 3.1: The setup used for the experiment.

To generate an appropriate waveform, the computer software �ArbExpress Application� was used.

The waveform data �le generated with this software was transmitted over to the signal generator

only once. For all the experiments done in this thesis, a broadbanded modulated signal with 5

oscillations was de�ned and used. The equation of the waveform Ue(t), as programmed on the

computer, is given below with amplitude V0 = 5 V and the number of oscillations γ = 5. Figure

3.3 shows the editor of the software as it was used.

Ue(t) = V0 · e−(t−π)2 · sin(γt) (3.1)

For all the measurements, the voltage amplitude was ampli�ed in the signal generator by a factor

of 10 V peak to peak, the highest amplitude available. Since the amplitude of the waveform from
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Figure 3.2: Image of the setup in the laboratory.

�ArbExpress Application� was 5 V, the overall voltage amplitude of the signal sent to the transducer

was 50 V. The frequency of the signal was selected on the signal generator depending on which set

of transducers that was applied.

Because Ue(t) was sent to the signal generator, and then again passed on to the transmitting

transducer Tx, the shape of the signal that was transmitted was unknown. The transmitted signal

will therefore be referred to by U(t).

Figure 3.3: ArbExpress Application editor

Measurements were done both with and without a sample inserted between the transducers. The

signal that only went through water will be referred to as the �direct signal� throughout this thesis.

The inserted samples are discussed further in subsection 3.1.2 below.
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The signal received by Rx was ampli�ed and then shown on the oscilloscope as indicated in Figure

3.1. An appropriate time interval ∆T including the �rst echo was chosen manually on the oscillo-

scope, and then downloaded as a .csv �le on a memory stick. Since all the time intervals were chosen

manually to �t the �rst echo for each measurement, and because all the data-vectors taken from

the oscilloscope had the same length, the sampling time ∆t of each signal was varying depending

on how the time intervals were selected.

3.1.2 Samples and material properties

Throughout the experiments, a total of six di�erent obstacles were used. The polymers applied for

the samples are listed in Table 3.2 with names and acronyms, together with some relevant material

properties.

The impedances of the materials are de�ned as the product between the density ρ and sound velocity

c of the material as given by equation (2.64) in section 2.3.2.

Polymer properties

Polymer Acronym Density Sound velocity Impedance

Polyetherimide (Ultem 1000) PEI 1280 kg
m3 2430 m/s 3.11 MRayls

Polymethyl-methacrylate PMMA 1190 kg
m3 2750 m/s 3.26 MRayls

Polycarbonate PC 1180 kg
m3 2270 m/s 2.69 MRayls

Polyimide (Kapton) PI 1420 kg
m3 2246 m/s 3.19 MRayls

Polyvinylidene-di�uoride PVDF 1780 kg
m3 2140 m/s 3.81 MRayls

Table 3.2: Properties of di�erent polymers used in the experiment.

The polymers will in general be referred to by their acronyms later in this thesis.

The properties for PMMA and PC were found in Appendix B of the book �Fundamentals and

Applications of Ultrasonic waves� by Cheeke [7]. The same values were also found on the webpage

NDTnet [21]. The type of PEI used in this experiment was Ultem 1000. The mass density of this

polymer is given on the webpage K-mac Plastics [19]. The values for PVDF is found in the article

�Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic

transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) �lms� [4]. The speed

of sound and density for PI were found through simulations in COMSOL with Young's modulus E

= 5.32 GPa and Poisson's ratio γ=0.3. These values were found in the article �Determination of
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Young's modulus of thin �lms used in embedded passive devices� [10].

Table 3.3 lists some relevant properties for water at 20 ◦C. These properties were found in Appendix

B in the book �Diagnostic Ultrasound Imaging� [30].

Water properties

Density Sound velocity Impedance Attenuation β

1000 kg
m3 1482 m/s 1.48 MRayls 0.002 dB/cm MHz

Table 3.3: Properties of water at 20 ◦C.

The six samples had di�erent thicknesses as listed by Table 3.4. Obstacles 1-4 were samples con-

sisting only of one polymer. Obstacle 5 and 6 were PI-�lms from the same shipment as obstacle

4, with a PVDF-coating spun manually on top. Because of the uncertainties originating from that

the coating were spun on manually, the thickness of them were unknown in both cases. However,

from the measurements presented below, we might assume that obstacle 2 (Sample 1) had an ap-

proximate coating thickness of 20 µm, and that the thickness of the coating of obstacle 6 (Sample

2) were approximately 10 µm.

Polymer thicknesses

Obstacle Material Thickness Uncertainty

1 PEI 7.37 mm ±40 µm

2 PMMA 8.06 mm ±20 µm

3 PC 5.83 mm ±20 µm

4 PI 130 µm ±3 µm

5 Sample 1: PI, PVDF 150 µm ±2 µm

6 Sample 2: PI, PVDF 137 µm ±2 µm

Table 3.4: Thicknesses of the di�erent polymer samples, with uncertainties; measured with a mi-
crometer.

Because obstacles 1-3 in Table 3.4 were signi�cantly thicker than obstacles 4-6, they will be referred

to as the �thick samples�, whereas obstacles 4-6 will be called the �thin samples� throughout this

thesis. Since in addition the theory and setup applied for these two groups of samples had some

di�erences, they are presented separately below.
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Thick samples

For the three thick samples, PEI, PMMA and PC, measurements were done with both the 10

MHz- and the 20 MHz transducers. The temperature of the water in the tank while doing the

experiments for the thick samples, varied from being 25.5 ◦C for the �rst measurements and falling

towards 21.3 ◦C in the end.

These three samples were su�ciently thick to be attached directly to the slider on the framework.

Figure 3.4 shows the three thick samples applied.

Figure 3.4: The thick samples. The closest sample is PMMA, the middle one is PC and the last is
PEI.

Because the samples were several millimeters thick, we can assume that the transmission through

the second interface is independent of the transmission through the �rst interface. The theory given

by section 2.3 is therefore adequate for these samples.

Thin samples

For the three thin samples (PI-�lm and the two PVDF-coated PI-�lms), measurements were done

only with the pair of 10 MHz transducers. The temperature of the water in the tank was regulated

to keep around 20.5 ◦C throughout the experiment.

Unlike the thick samples described above, these samples could not be attached directly to the
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framework without bending. Therefore, a frame made from polycarbonate was used to attach the

�lms as straight as possible. During the measurements, the coating always faced the transmitting

transducer, Tx. The thin samples are shown together with the frame in Figure 3.5.

Figure 3.5: The thin samples and the frame. Sample 1 is to the left, the PI-�lm is in the middle,
and Sample 2 is to the right.

Each of the coated samples were divided into two sides, as illustrated by Figure 3.6. On one side

of the sample the surface of the PI was treated before the coating was spun on, while the surface

on the other side of the sample was left untreated. The reason why the the samples were divided

like this, was to make sure that the thickness of the coating became the same for the treated and

untreated surfaces.

Figure 3.6: Illustration of a two-layer sample, where one side of the middle surface is treated and
the other side is not.

Measurements were done through both of the sides separately to see if the surface treatment could
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be detected, and whether or not it was useful. The method described above to spin the coating on

would make comparison between the treated and untreated surfaces easier.

Throughout this thesis, the two sides of the coated samples will be referred to as the �left side� and

the �right side� of the sample. Which side that was treated is unknown.

3.2 Numerical Simulations in COMSOL Multiphysics

COMSOL Multiphysics, hereafter referred to as COMSOL, is a computer software for simulating

real-world scenarios through di�erent kinds of physical models. It is a tool where you can easily

build your own models by specifying a geometry, and selecting the required physics and meshing.

The physics can be speci�ed manually by the user, or chosen from a list of prede�ned materials and

boundary conditions. The model is then ready to be solved for, to �nd the simulated scenario that

the user needs. There are many options to choose from to display the solutions [9].

3.2.1 COMSOL models

Three models were made in COMSOL to simulate the environment in experiments: One model

with only water between the transducers, one model with a PI-sample between the transducers

and �nally one model with a PVDF-coated PI-sample inserted. Figure 3.7 shows the right side of

the 2-D axisymmetric model with PVDF-coated PI-�lm inserted. The two other models are not

visualized here. This is because their only di�erence from Figure 3.7 was a removed coating for the

measure through PI, and a completely removed obstacle for the simulation only through water.

The three models were all speci�ed as listed beneath:

• Space dimension: 2-D Axisymmetric.

• Physics: Acoustic-Piezoelectric Interaction, Transient (acpztd).

• Preset studies: Time dependent.
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Figure 3.7: 2-D Model with PVDF-coated PI-�lm inserted.

The black lines in Figure 3.7 shows where the model was grounded. The horizontal red line shows

where the potential was applied. The potential were implemented to have the same shape as the

waveform programmed for the experiments, which is given in equation (3.1). To get a proper length

of the waveform, the simulated pulse is given by:

Un(t) = V0 · e−(ht−π)2 · sin(kγt) (3.2)

where V0 is the amplitude of the waveform, γ is the number of oscillations and h is a constant

that scales the wavelength of the signal. h is calculated from the relation h = 2πf
γ , which comes

from the sine-term where one can see that hγ = 2πf . In these models the constants are de�ned

corresponding to the experiments to be:

• V0 =50 V

• γ =5

• f = 10 MHz

• h = 2π·f
5
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We recall that in the experiments the waveform had to travel through both the signal generator

and a physical transducer before being sent towards the receiving transducer. Therefore, the pulse

U(t) from the the experiments and the pulse Un(t) from the simulations, might not have exactly

the same shape.

Figure 3.8 shows an image of the model in 3-D with a coated polymer �lm inserted when a pulse is

being transmitted through.

Figure 3.8: 3-D Model with PVDF-coated PI-�lm inserted.

Table 3.5 below lists the material properties applied in the COMSOL models, these properties were

also used to make theoretical models. A short summary of the dimensions and materials with

speci�cations that were used in the three models, are found in Table 3.6.
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Material parameters for simulations.

Material Sound velocity c Density Impedance

PI 2246 m/s 1420 kg
m3 3.19 MRayls

PVDF 2400 m/s 1680 kg
m3 4.03 MRayls

Water 1600 m/s 1000 kg
m3 1.60 MRayls

Table 3.5: Material parameters applied in the simulations for transmission, these values were also
used in the theoretical models.

COMSOL model

Part Height Width Material Speci�cation

Backing layer 0.5 mm 2 mm PVDF Linear elastic material
with Rayleigh damping

Transducer 52 µm 2 mm PVDF Piezoelectric material

Active transducer 1-D line 1 mm PVDF Electric potential/Ground

Sample 127 µm 2 mm PI Linear elastic material

Coating 10- or 20 µm 2 mm PVDF Linear elastic material

Water 1.896 mm 2 mm Water Model with only water

1.769 mm 2 mm Water Model with sample

1.859- or 1.849 mm 2 mm Water Model with coated sample

Table 3.6: Model speci�cations in COMSOL.

Backing layers with Rayleigh damping

As illustrated by Figure 3.7, a PVDF backing layer was applied on both the top and the bottom

of the models. The purpose of the backing layers was to reduce re�ections from the edges of the

model. To do this, Rayleigh damping were de�ned in the material.

The Rayleigh damping factor C is de�ned in terms of the mass m and the sti�ness k of the material

as given by [13]:

C = αm+ βk (3.3)

where α is the mass-proportional coe�cient, and β is the sti�ness-proportional damping coe�cient.
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To get a good value for the damping, a proper relative damping factor δE had to be chosen. δE is

de�ned as the ratio between the actual and the critical damping. Next, two resonant frequencies ω1

and ω2 with the same relative damping factor δE had to be selected. The relative damping factor

could then be related to the Rayleigh damping parameters α and β by the set of equations [13]:

δE =
1

2

(
α

ω1
+ βω1

)
(3.4)

δE =
1

2

(
α

ω2
+ βω2

)
(3.5)

From this we can derive expressions for the Rayleigh damping parameters as given by:

α =
ω2

1ω2 − ω1ω
2
2

ω2
1 − ω2

2

δE (3.6)

β =
ω1 − ω2

ω2
1 − ω2

2

δE (3.7)

For the this model the resonant frequencies f1 and f2 were chosen to be:

f1 = 5 MHz (3.8)

f2 = 15 MHz (3.9)

so that ω1 = 2πf1 and ω2 = 2πf2. The relative damping factor was selected to be:

δE = 0.32 (3.10)

3.3 Signal analysis

The analysis of the signals obtained experimentally and through simulations in COMSOL were

done in MATLAB. Independent on whether the signal was produced through experiments or by

simulations, they were analyzed by the same algorithm.

As previously explained in section 3.1.1, the the sampling time ∆t of each experimentally received

signal was varying depending on how the echoes were selected on the oscilloscope.

The speed of sound through each of the polymers is higher than the sound velocity in water. As a

result, the �rst echo received by Rx for each of the measurements through a sample, did not overlap
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in time with the direct signal. That is, when the waveform went through a polymer it reached

Rx earlier than the waveform that only went through water. Therefore, the echoes had to be zero

padded to overlap each other in time, before they could be interpolated to get the same sampling

frequency. Consistently, the signal that went through a sample was the one being interpolated to

match the direct signal.

The DC values of all the signals were also removed. This was done by calculating and subtracting

the true mean of each of the signals. The same mean value was later used when zero padding the

signals.

The Fourier transforms of the raw signals became quite coarse because the length of the original

data vectors were too small. To smooth the spectra, the time dependent data was zero padded with

20 000 points [16].

3.3.1 Data analysis of thick samples

Equation (2.68) in section 2.3.3 suggests that the natural logarithm of the amplitude spectrum

A1(ω′) should be a straight line. The linear relation between the ratio and the frequency is expected

to exist only within an appropriate frequency interval ∆f , of the frequency spectrum. At the edges

of the spectrum, the relation is expected to loose its linearity due to lack of information in the

signal and distortion from the noise �oor.

As seen in equation (2.68) in section 2.3.3, the value of the amplitude spectra at DC is the logarithm

of the total transmission coe�cient T. Since the amplitude spectrum was only linear in ∆f , the �rst

order least squares method (LSM) was applied to the data in that interval to create a straight line

that could cross DC. From this LS-line the total transmission coe�cients and the damping factors

of the thick materials could be estimated. The total transmission coe�cient for the thick samples

was found by taking the exponential of the value where the LS-line crossed DC. The damping factor

β in units Np/cm MHz was found by calculating the slope of the LS-line, and converted into dB/cm

MHz as described in section 2.3.4.

Since the estimation of total transmission coe�cients and the damping factors were based on the

LS-line that was �tted to the data in ∆f , the de�nition of this interval had a direct in�uence on

the results. The highest and lowest frequency de�ned for ∆f were chosen manually by investigating

the plots for where the data was linear.

In the results, the amplitude spectra data inside the frequency intervals ∆f are plotted as black

dots on top of their respective LS-lines. To get an impression of the real data, only every twentieth
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data point was used to create the dots in the plot.

3.3.2 Data analysis of thin samples

The amplitude spectrum A1(ω) for the received signal through the thin samples was obtained by

taking the ratio between the frequency spectra as given by equation 2.67 in section 2.3.3.

In the case where a thin sample is inserted into water, as shown in Figure 2.11 in section 2.4, the

amplitude spectrum given by equation (2.100) is expected to follow a periodic pattern with respect

to frequency. Due to the distortions from the noise �oor, the data are only expected to behave

periodically in a frequency interval around the applied center frequency.

The transmission at resonant frequencies were found manually by investigating the spectrum.

The wave length of a signal is related to the sound velocity c, and the frequency f by [25]:

λ =
c

f
(3.11)

The maxima of the amplitude spectra are found at the resonant frequencies. That is, when the

length λ of the wave is related to the thickness d of the sample by [3]:

λ =
2d

n
, n = 1, 2, 3... (3.12)

By using the resonant frequencies f' at the maximums of the amplitude spectrum, the thickness of

the sample can be estimated by:

d̂ =
nλ

2
=

nc

2f ′
(3.13)

If the speed of sound through the material is unknown, we can �nd it by assuming that the �rst

maximum is at λ/2 (where n=1), and apply the equations above to get that:

c = f ′2d (3.14)

where f' is the �rst resonant frequency.
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Results

4.1 Experimental

4.1.1 Thick samples

Figure 4.1 shows the Fast Fourier transform of the received signals through the three thick polymer

samples PEI, PMMA and PC, measured with two sets of transducers. Figure 4.2 shows the �rst

order least-squares lines that �t the amplitude spectrum data from the three polymer samples,

together with an illustration of the data as black dots.

Table 4.1 gives the total transmission coe�cients T and the damping factors β of the three thick

polymers obtained from the measurements done with the pair of 10 MHz transducers. The total

transmission coe�cients and damping factors for the thick polymers given in Table 4.2, are obtained

through measurements with the set of transducers that function best around 20 MHz.
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(a) 10 MHz transducers. (b) 20 MHz transducers.

Figure 4.1: Frequency spectrum from the directly received signal together, with the spectra for PEI,
PMMA and PC. The signals were both sent with the optimal frequency for the applied transducers.

(a) 10 MHz transducers. (b) 20 MHz transducers.

Figure 4.2: Amplitude spectra for PEI, PMMA and PC obtained with two di�erent sets of trans-
ducers. The black dots represents the data that the LSM was based on.
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Total transmission coe�cients and damping factors

Sample material f1 f2 T β (dB/cm MHz)

PEI 5 15 0.81 0.49

PMMA 5 15 0.77 0.71

PC 5 14 0.89 4.38

Table 4.1: Total transmission coe�cients and damping factors found with the 10 MHz transducers.
The lowest and highest frequency in the interval is called f1 and f2, respectively.

Total transmission coe�cients and damping factors

Sample material f1 f2 T β (dB/cm MHz)

PEI 9 25 0.78 0.41

PMMA 9 25 0.76 0.64

PC 9 25 0.77 4.14

Table 4.2: Total transmission coe�cients and damping factors found with the 20 MHz transducers.
f1 is the lowest frequency in the interval, and f2 is the highest.

4.1.2 Thin samples

The results for Sample 1 and Sample 2 are presented separately. The waveforms, frequency spectrum

and amplitude spectrum of the PI-�lm are plotted together with Sample 1 and Sample 2 in the

following subsections.

Table 4.3 lists the values of the amplitude spectrum A1(f') at the frequencies f' for the PI-�lm, and

estimates the thickness, d̂, of the �lm based on the theoretical speed of sound listed in Table 3.5 in

section 3.2.1. An estimation for the speed of sound ĉPI in the PI-�lm is also presented.
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Amplitude spectrum for PI-�lm through experiments

First maximum Minimum Second maximum

A1(f ') 0.98 0.74 0.92

f ' [MHz] 8.67 13.20 16.65

λ [µm] 259 170 135

d̂ [µm] λ/2 = 129 3λ/4 = 127 λ = 135

ĉPI [m/s] 2254

Table 4.3: Transmission at resonance frequencies for the PI-�lm in Figure 4.4 and 4.6. Wavelength
λ estimated by equation (3.11), sample thickness d̂ estimated by equation (3.13) with the speed of
sound in PI from Table 3.5 in section 3.2.1. Estimated speed of sound ĉPI by equation (3.14)

.

Sample 1

Figure 4.3 shows the waveforms and frequency spectra of the received signals measured through

both the left and right sides of Sample 1, together with those through the PI-sample and the

directly received signal through water. Table 4.4 lists a number of shape-similarity comparisons of

the waveforms in Figure 4.3a, in the form of several estimated System Fidelity Factors.

Figure 4.4 shows the amplitude spectra for the received signals through the left and right sides of

Sample 1, together with the amplitude spectrum of the received signal through the PI-�lm.

Table 4.5 lists the values of the amplitude spectrum A1(f') at the frequencies f' obtained through

the left side of Sample 1, the corresponding values for the right side of Sample 1 are given by Table

4.6.
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(a) Received waveform. (b) Frequency spectra.

Figure 4.3: Waveforms and Fourier spectra for the received signals through water, PI and the left
and right side of Sample 1.

System Fidelity Factors involving Sample 1

Signal a Signal b System Fidelity factor

PI-�lm Direct signal 0.99

PI-�lm Right, PVDF-coating 0.98

PI-�lm Left, PVDF-coating 0.98

Right, PVDF-coating Direct signal 0.99

Left, PVDF-coating Direct signal 0.99

Left side coating Right side coating 1.00

Table 4.4: System Fidelity Factors for waveforms received through Sample 1. �Signal a� is compared
to �Signal b�.
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Figure 4.4: Experimentally obtained transmission through PI-�lm, and the left and right side of
Sample 1.

Amplitude spectrum for the left side of sample 1 through experiments

First maximum Minimum Second maximum

A1(f ') 0.97 0.69 0.93

f ' [MHz] 7.05 10.91 14.46

Table 4.5: Transmission at resonance frequencies f' for the left side of Sample 1 in Figure 4.4.

Amplitude spectrum for the right side of sample 1 through experiments

First maximum Minimum Second maximum

A1(f ') 0.97 0.69 0.93

f ' [MHz] 7.10 10.97 14.56

Table 4.6: Transmission at resonance frequencies for the right side of Sample 1 in Figure 4.4.
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Sample 2

The waveform and frequency spectra of both the left and right sides of Sample 2 are shown in Figure

4.5 together with waveforms and frequency spectra of the direct signal and the PI-�lm. Table 4.7

lists several estimated System Fidelity Factors for the waveforms shown in Figure 4.5a.

The amplitude spectra of the received signals through both the left and right side of Sample 2

are shown in Figure 4.6, together with the amplitude spectrum of the received signal through the

PI-�lm.

Table 4.8 and 4.9 lists the values of the amplitude spectra at the frequencies f', for the received

signals through the left and right side of Sample 2, respectively.

(a) Received waveform. (b) Frequency spectra.

Figure 4.5: Waveforms and Fourier spectra for the received signals through water, PI and the left
and right side of sample 2.
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System Fidelity Factors involving Sample 2

Signal a Signal b System Fidelity Factor

PI-�lm Direct signal 0.99

PI-�lm Right, PVDF-coating 0.99

PI-�lm Left, PVDF-coating 0.99

Right, PVDF-coating Direct signal 0.99

Left, PVDF-coating Direct signal 0.99

Left side coating Right side coating 1.00

Table 4.7: System Fidelity Factors for waveforms obtained through Sample 2. �Signal a� is com-
pared to �Signal b�.

Figure 4.6: Experimentally obtained transmission through PI-�lm, and the left and right side of
Sample 2.
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Amplitude spectrum for the left side of Sample 2 through experiments

First maximum Minimum Second maximum

A1(f ') 0.98 0.72 0.94

f ' [MHz] 7.81 12.01 15.61

Table 4.8: Transmission at resonance frequencies for the left side of Sample 2 in Figure 4.6.

Amplitude spectrum for the right side of Sample 2 through experiments

First maximum Minimum Second maximum

A1(f ') 0.97 0.72 0.94

f ' [MHz] 7.81 12.02 15.61

Table 4.9: Transmission at resonance frequencies for the right side of Sample 2 in Figure 4.6.

4.2 Theoretical and numerical

4.2.1 Thick samples

Theoretical transmission

Table 4.10 gives theoretical values of the total transmission coe�cients T for PEI, PMMA and

PC. The estimations are based on the impedances of the polymers as listed in Table 3.2 and the

impedance of water as given by Table 3.3 in section 3.1.1. The total transmission is estimated by

equation (2.65) in section 2.3.2.

Calculated total transmission coe�cients

Sample material Total transmission T

PEI 0.87

PMMA 0.86

PC 0.91

Table 4.10: Calculated total transmission coe�cients based on impedance.

53



Trude Ediassen Grimstad CHAPTER 4. RESULTS

4.2.2 Thin samples

The material properties listed in Table 3.5, and the sample thicknesses given by Table 3.6 in section

3.2.1, were applied to obtain both the theoretical and simulated results.

Theoretical transmission

The calculations of the theoretical total transmission coe�cients are done by equation (2.99) in

section 2.4.

Figure 4.7 shows the theoretically achieved total transmission through PI and the PI-samples coated

with both 10 µm and 20 µm thick PVDF-layers. Table 4.11 lists the values of the theoretically

obtained amplitude spectrum A1(f') at frequencies f' of the PI-sample, together with an estima-

tion of the wavelength λ and the sample thickness d̂. Table 4.12 and 4.13 lists the theoretically

obtained values of the total transmission A1(f') at the frequencies f', for the PI-sample coated with

respectively 10 µm and 20 µm PVDF.

Figure 4.7: Theoretical transmission through PI and PI-samples coated with both 10 µm and 20
µm PVDF-layers.
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Amplitude spectrum of PI-sample from theory

First maximum Minimum Second maximum

A1(f ') 1.00 0.80 1.00

f ' [MHz] 8.88 13.25 17.72

λ [µm] 253 169 127

d̂ [µm] λ/2 = 126 3λ/4 = 127 λ = 127

Table 4.11: Transmission at resonance frequencies f' for the PI-sample in Figure 4.7. Wave length
λ estimated by equation (3.11), and sample thickness d̂ estimated by equation (3.13).

Amplitude spectrum for PI-sample with 10 µm thick PVDF-coating from theory

First maximum Minimum Second maximum

A1(f ') 1.00 0.79 1.00

f ' [MHz] 8.03 12.12 16.10

Table 4.12: Transmission at resonance frequencies for the PI-sample with 10 µm thick PVDF-
coating in Figure 4.7.

Amplitude spectrum from theory for PI-sample with 20 µm thick PVDF-coating.

First maximum Minimum Second maximum

A1(f ') 1.00 0.76 0.99

f ' [MHz] 7.36 11.26 15.06

Table 4.13: Transmission at resonance frequencies for the PI-sample with 20 µm thick PVDF-
coating in Figure 4.7.

Simulated transmission

This section shows the results from the simulations done through the COMSOL-models described

in section 3.2.1. The waveforms and frequency spectra from the simulations in the models with PI

and PI coated with 10- and 20 µm thick PVDF are shown in Figure 4.8, together with the waveform

and frequency spectrum obtained from the received signal simulated by the model with only water

between the transducers. Table 4.14 lists the System Fidelity Factors for the waveforms in Figure

4.8a.

55



Trude Ediassen Grimstad CHAPTER 4. RESULTS

The amplitude spectra for the simulated signals through PI and PI with PVDF-coating thickness of

both 10- and 20 µm are shown in Figure 4.9. Table 4.15 lists the values of the amplitude spectrum at

frequencies f', of the obtained signal from the simulation through PI. The values of the amplitude

spectra at frequencies f' of the obtained signals from the simulations through the PVDF-coated

PI-samples are given by Table 4.16 and 4.17, respectively, for the 10- and 20 µm thick coating.

(a) Received waveform. (b) Frequency spectra.

Figure 4.8: COMSOL-simulated received waveforms and their frequency spectra, through PI-�lm
and PI-samples with 10- and 20 µm thick PVDF-coating.

System Fidelity Factor

Signal a Signal b SFF with 10 µm coating SFF with 20 µm coating

PI-�lm Direct signal 0.99 0.99

PI-�lm PVDF-coating 0.996 0.99

PVDF-coating Direct signal 0.99 0.99

10 µm coating 20 µm coating 0.996

Table 4.14: System Fidelity Factor for simulated waveforms. �Signal a� is compared to �Signal b�.
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Figure 4.9: Amplitude spectra from simulation.

Simulated amplitude spectrum of PI-�lm

First maximum Minimum Second maximum

A1(f) 0.99 0.76 0.97

f ' [MHz] 7.60 13.82 17.28

λ [µm] 295 162 130

d̂ [µm] λ/2 = 147 3λ/4 = 121 λ = 130

Table 4.15: Transmission at resonance frequencies f' for the PI-�lm in Figure 4.9. Wave length λ
estimated by equation (3.11), and sample thickness d̂ estimated by equation (3.13).

Simulated amplitude spectrum of PI-�lm with 10 µm thick PVDF-coating.

First maximum Minimum Second maximum

A1(f ') 1.00 0.75 1.00

f ' [MHz] 6.95 12.57 16.28

Table 4.16: Transmission at resonance frequencies for the PI-�lm with 10 µm thick PVDF-coating
in Figure 4.9.
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Simulated amplitude spectrum of PI-�lm with 20 µm thick PVDF-coating.

First maximum Minimum Second maximum

A1(f ') 1.02 0.72 0.98

f ' [MHz] 6.43 11.60 15.31

Table 4.17: Transmission at resonance frequencies for the PI-�lm with 20 µm thick PVDF-coating
in Figure 4.9.

4.3 Comparison between experimental, numerical and theo-

retical results

This section gives a systematic comparison between the experimental, numerical and theoretically

obtained results where this is possible.

As listed by Table 3.4 in section 3.1.2, Sample 1 was measured to be approximately 150 µm thick

and Sample 2 was 137 µm. Therefore the amplitude spectrum of Sample 1 are plotted together

with, and compared with the simulated 20 µm thick PVDF-coated PI-sample. For the same reason,

the amplitude spectrum obtained through Sample 2 are compared with and plotted together with

the simulated 10 µm thick PVDF-coated PI-sample.

4.3.1 Thick samples

Table 4.18 compares the damping factors β obtained for PEI, PMMA and PC through the experi-

mental measurements with the 10 MHz- and 20 MHz transducer pairs. A comparison between the

total transmission coe�cients for these three polymers obtained experimentally with the two sets

of transducers are given in Table 4.19.

Table 4.20 compares the theoretically obtained total transmission coe�cients for PEI, PMMA

and PC with those experimentally obtained with the 10 MHz transducers. The theoretical and

experimentally obtained total transmission coe�cients with the 20 MHz transducers are compared

in Table 4.21.
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Comparison between experimentally obtained damping factors β

Polymer Experiments at 10 MHz Experiments at 20 MHz Deviation

PEI 0.49 0.41 16.3 %

PMMA 0.71 0.64 9.8 %

PC 4.38 4.14 5.5 %

Table 4.18: Comparison of damping factors of PEI, PMMA and PC found experimentally with the
10 MHz and the 20 MHz transducers.

Comparison between experimentally obtained total transmission coe�cients

Polymer Experiments at 10 MHz Experiments at 20 MHz Deviation

PEI 0.81 0.78 3.7 %

PMMA 0.77 0.76 1.3 %

PC 0.89 0.77 13.5 %

Table 4.19: Comparison of the total transmission coe�cients of PEI, PMMA and PC found exper-
imentally with the 10 MHz and the 20 MHz transducers.

Comparison between total transmission coe�cients obtained

theoretically and experimentally with the 10 MHz transducers

Polymer Theoretical Experiments at 10 MHz Deviation

PEI 0.87 0.81 6.9 %

PMMA 0.86 0.77 10.5 %

PC 0.91 0.89 2.2 %

Table 4.20: Comparison of the total transmission coe�cients of PEI, PMMA and PC found the-
oretically based on the impedances given in Table 3.2 and Table 3.3, and experimentally with the
10 MHz transducers.
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Comparison between total transmission coe�cients obtained

theoretically and experimentally with the 20 MHz transducers

Polymer Theoretical Experiments at 20 MHz Deviation

PEI 0.87 0.78 10.3 %

PMMA 0.86 0.76 11.6 %

PC 0.91 0.77 15.4 %

Table 4.21: Comparison of the total transmission coe�cients of PEI, PMMA and PC found the-
oretically based on the impedances given in Table 3.2 and Table 3.3, and experimentally with the
20 MHz transducers.

4.3.2 Thin samples

Figure 4.10 shows the theoretically achieved amplitude spectrum of a PI-sample together with the

spectra obtained experimentally and through simulation. The values of the amplitude spectra at

frequencies f' for the PI-sample are compared in Table 4.22.

Since the left and right sides of Sample 1 and Sample 2 are very similar as seen in Figure 4.4 and

4.6, respectively, only the right sides of the samples are used in the comparison with the theoretical

and numerical results.

Figure 4.11 shows the experimentally obtained amplitude spectrum of Sample 2 together with the

theoretical and simulated amplitude spectra of the 10µm thick PVDF-coated PI-�lm. Table 4.23

compares the experimentally obtained values of the amplitude spectrum at frequencies f' for Sample

2, with values achieved theoretically and by simulation for a 10µm thick PVDF-coated PI-�lm.

Figure 4.12 shows the theoretical and simulated amplitude spectra of the 20µm thick PVDF-coated

PI-sample together with the experimentally obtained amplitude spectrum of Sample 1. The theo-

retical and numerically obtained amplitude spectra at frequencies f' for a 20µm thick PVDF-coated

PI-sample, are compared in Table 4.24 with the experimentally obtained values for Sample 1.
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Figure 4.10: Theoretical, simulated and experimentally achieved amplitude spectra of a PI sample
plotted together.

Amplitude spectra comparison of PI

First maximum | Minimum | Second maximum

A1(f ') f ' [MHz] A1(f ') f ' [MHz] A1(f ') f ' [MHz]

Theoretical 1.00 8.88 0.80 13.25 1.00 17.72

Numerical 0.99 7.60 0.76 13.82 0.97 17.28

Experimental 0.98 8.67 0.74 13.20 0.92 16.65

Maximum

deviation 2.0 % 14.4 % 7.5 % 4.5 % 8.0 % 6.0 %

Table 4.22: Comparison between the amplitude spectra obtained theoretically, numerically and
experimentally for PI.
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Figure 4.11: Calculated and simulated amplitude spectra of a 10 µm thick PVDF-coated PI sample
plotted together with the experimentally obtained amplitude spectrum of the right side of Sample
2.

Amplitude spectra comparison of PI-samples with 10 µm thick PVDF-coating

First maximum | Minimum | Second maximum

A1(f ') f ' [MHz] A1(f ') f ' [MHz] A1(f ') f ' [MHz]

Theoretical 1.00 8.03 0.79 12.12 1.00 16.10

Numerical 1.00 6.95 0.75 12.57 1.00 16.28

Experimental 0.97 7.81 0.72 12.02 0.94 15.61

Maximum

deviation 3.0 % 13.4 % 8.9 % 4.4 % 6.0 % 4.1 %

Table 4.23: Comparison between the amplitude spectra obtained theoretically, numerically and
experimentally between PI-samples with 10 µm thick PVDF-coating and the right side of sample
2.
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Figure 4.12: Calculated and simulated amplitude spectra of a 20 µm thick PVDF-coated PI sample
plotted together with the experimentally achieved amplitude spectrum of the right side of Sample
1.

Amplitude spectra comparison of PI-samples with 20 µm thick PVDF-coating

First maximum | Minimum | Second maximum

A1(f ') f ' [MHz] A1(f ') f ' [MHz] A1(f ') f ' [MHz]

Theoretical 1.00 7.36 0.76 11.26 0.99 15.06

Numerical 1.02 6.43 0.72 11.60 0.98 15.31

Experimental 0.97 7.10 0.69 10.97 0.93 14.56

Maximum

deviation 4.9 % 12.6 % 9.2 % 5.4 % 6.1 % 4.9 %

Table 4.24: Comparison between the amplitude spectra obtained theoretically, numerically and
experimentally between PI-samples with 20 µm thick PVDF-coating and the right side of Sample
1.
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Chapter 5

Discussion

5.1 Thick samples

Measurements were done with both 10 MHz- and 20 MHz transducers through the thick material

samples PEI, PMMA and PC. As expected for the measurements done with both sets of transducers,

the amplitude spectra decreased linearly as the frequency increased, inside a frequency interval ∆f

around the applied center frequency.

For the 10 MHz transducers, this interval was chosen between 5- and 15 MHz for the PEI and

PMMA samples, and between 5- and 14 MHz for the polycarbonate. For the 20 MHz transducers,

all frequency intervals were between 9- and 25 MHz. Outside of these intervals the information in

the signals was low, and the e�ects from the noise �oor got visible. The linearity of the dataset was

therefore lost.

The deviation of the damping factors found with both pairs of transducers are given in Table 4.18

in percents. PEI had the highest deviation in damping factors of 16.3 %.

The article �Experimental study of the acoustical properties of polymers utilized to construct PVDF

ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) �lms� [4]

presents a damping factor β for PMMA of 1.4 dB/cm MHz. In this thesis, the damping factor

for PMMA found with the 10 MHz transducers was 0.71 dB/cm MHz, that is around 51% of the

damping factor from the article. The damping factor found with the 20 MHz transducers were 0.64

dB/cm MHz, which is approximately 46% of that given for PMMA by the article.
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The deviation in percents for the total transmission coe�cients found with the two pairs of trans-

ducers are given in Table 4.19. The measured total transmission coe�cients of PEI and PMMA

have a respective di�erence of 3.7 % and 1.3 %. The deviation in the results of PC were 13.5 %.

The obtained total transmission coe�cients of both PEI and PMMA are therefore considered to

coincidence well. The result for PC however does not correspond to the same degree. This could

be a result of the LS-line being very steep compared to the two other as seen in Figure 4.2, which

made it harder to de�ne an appropriate frequency interval.

The theoretical transmission coe�cients in Table 4.10 in section 4.2, was obtained by applying the

the impedances given for the polymers and water by Table 3.2 and 3.3 in section 3.1.2, to equation

(2.65) in section 2.3.2. During the production of a polymer there are many factors that could create

variations in the acoustic properties. Some polymers, like PMMA, also have numerous subtypes

with di�erent properties [7] [4]. Therefore, since the impedances applied in the calculation are based

on material properties found from di�erent books and articles, the theoretical values for the total

transmission were expected to di�er from the experimentally obtained values.

From Table 4.20, we can see that the theoretical total transmission coe�cient for PC agrees with

the experimentally obtained value around 10 MHz, with a deviation of only 2.2 %. Table 4.21 shows

that the theoretical total transmission coe�cient for PC deviates from the experimentally obtained

value at 20 MHz by 15.4 %. Because of this, we can assume that the value for PC obtained by

the 10 MHz transducers are the most reliable. Overall, the results from the 10 MHz transducers

deviates less from the theoretical values than those from the 20 MHz transducers.

5.2 Thin samples

Measurements were done only with the pair of 10 MHz transducers for the PI-�lm, for Sample 1

and Sample 2. Theoretic and numerical investigation of these samples were also performed.

As described earlier, Sample 1 and Sample 2 were PI-�lms coated with PVDF of two di�erent

thicknesses. The uncoated PI-�lm and the �lms used underneath the coating in Sample 1 and 2

were assumed to have the same thickness since they came from the same shipment. From production

speci�cation the thickness of the PI was claimed to be 127 µm. However, measurements of the �lm

used as a sample suggested that the thickness was varying around 130 µm by ± 2 µm. Taking the

uncertainties into account, we might from the thickness measurements of Sample 1 and 2 given by

Table 3.4 assume that the coating of Sample 1 was approximately 20 µm thick and that the coating

of Sample 2 was about 10 µm.
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5.2.1 Coating on treated and untreated PI-surfaces

Two equally created PVDF-coated PI-�lms were used to investigate the transmission e�ects of

surface treatment between layers. Half the surface of both samples were treated before the coating

was spun on, while the other half was left untreated. This ensured less uncertainties regarding the

divination in coating thickness between the treated and untreated sides of the sample.

In Figure 4.3 the waveforms and frequency spectra of the received signals through both the left

and right side of Sample 1 are plotted together. The same is done in Figure 4.5 for Sample 2. In

both cases, there are no visible di�erences between neither the waveforms nor the frequency spectra

obtained through the left and right sides of the samples. Table 4.4 shows that the estimated System

Fidelity Factor between the left and right sides of Sample 1 is equal to 1. The same results yields for

the estimated System Fidelity Factor between the treated and untreated side for Sample 2, as given

in Table 4.7. This means that the received waveforms through both the treated and the untreated

side of the samples had the exact same shape.

Thus, treating the surface of the PI-�lm before spinning the coating on it, did not have any e�ects

on the transmission properties that could be detected with the applied frequency.

5.2.2 Amplitude spectrum

As expected from the theory, inside a frequency interval around the applied center frequency, the

amplitude spectrum of the received signals from both the experiments and the simulations had a

periodic dependence on the frequency. In the results, the amplitude spectra were presented in the

interval where this behavior was found.

The same material parameters for water and the polymers were used for both the theoretical and

simulated methods. To match the claimed thickness of the physical PI-�lm from the experiments,

the thickness of the PI were for both methods de�ned as exactly 127 µm.

The theoretical amplitude spectrum was based on a 1-D model without damping in the material(s),

and perfect transmission at the resonant frequencies was expected. The simulations in COMSOL

were done in 2-D models, because of di�raction the transmission at the resonant frequencies were

not anticipated to be perfect. The same yields for the experiments where there in addition were

sources of errors as discussed in section 5.3. The maximum transmission was therefore expected to

be highest for the theoretical amplitude spectra, lower for the 2-D simulation and even lower for

the results from the experiments.
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The highest deviation between the experimental, numerical and theoretical resonant frequencies are

for all three samples and models the ones found at the �rst amplitude maxima. In all three cases

the model causing the high deviation was the numerical. This could be an e�ect originating from

the backing layer, where the signal may not have been damped enough. At the second maxima

however, the resonant frequencies for the theoretical and numerical models are closer than that of

the experimental.

The frequencies f' at the maximums and minimum of the amplitude spectra are highest for the

measurements through only PI-�lm. The frequencies f' decreases when the PVDF-coating of 10 µm

is added, and becomes even lower for the PI coated with 20 µm of PVDF. This trend is re�ected

in all three methods, and can be observed in Figure 4.7 for the theoretical case and in Figure 4.9

for the simulated method.

Since there were no di�erences between the left and right sides of Sample 1 and Sample 2 found

with the frequency used in this thesis, only the right sides of the samples were chosen to represent

Sample 1 and Sample 2 when comparing their amplitude spectra with the theoretical and numerical

solutions.

PI-sample

In Figure 4.10 the theoretical, simulated and experimentally obtained amplitude spectra for PI are

plotted together. The total transmission at the two maximums and at the minimum are listed

in Table 4.22 for all three methods, and compared by stating the maximum deviation between

them. The table also compares the maximum deviation of the frequency f' at the maximums and

minimums between the methods. From this we see that the amplitude spectra obtained through

experiments, simulations and from theory do correspond to some degree.

To estimate the thickness of the PI-sample from the amplitude spectra obtained by all three meth-

ods, equation (3.13) in section 3.3.2 and the theoretical sound velocity of 2256 m/s listed by Table

3.5 in section 3.2.1, were applied on the resonant frequencies. The estimated thicknesses d̂ for

the PI-�lm used in the experiments are given in Table 4.3, and seems to agree very well with the

thickness measured with a micrometer.

The speed of sound in the physical PI-�lm was unknown. The estimation ĉPI = 2254 m/s is

presented in Table 4.3, which is found by using the measured thickness d, and the �rst resonant

frequency f' from the experiment in equation (3.14) in section 3.3.2. This estimation is very good

compared the theoretical sound velocity of 2256 m/s, used in the estimation of wavelength and

thickness d̂ as mentioned above.
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PI with PVDF-coating

The amplitude spectra of the PI coated with 10µm PVDF obtained from theory and through

simulation are plotted together with the experimentally obtained amplitude spectra of Sample 2 in

Figure 4.11. As for the case with PI discussed above, the values of the transmission at resonant

frequencies for the three methods are listed in Table 4.23, and compared by showing the maximum

deviation in percents.

The amplitude spectra for PI with 20 µm PVDF-coating found through theory and simulations, are

shown together with the experimentally obtained amplitude spectrum of Sample 1 in Figure 4.12.

Table 4.24 presents a comparison between the theoretical, numerical and experimentally obtained

transmission at the resonant frequencies.

Because of the di�erences between the three models, the deviations between them are considered

to be low in both cases.

Estimations of thickness were not made for Sample 1 and Sample 2. This was because the sound

velocity through the samples were unknown, since they consisted of two di�erent polymers.

5.3 Uncertainty analysis

There are several sources of error to take into account when analyzing the data from the experiments.

Comparing experimental results to numerical results produces points of uncertainties regarding their

di�erences.

The following uncertainties are listed from the assumed worst to the mildest.

Experimental versus numerical: Although the COMSOL models were implemented to match

the experimental setup, some di�erences must be expected. The pulse Un(t) applied in the numerical

model were programmed to have the same shape as Ue(t) from the experiments. However, Ue(t)

was sent through several wires, a signal generator and �nally a physical transducer before it was

transmitted. The shape of the experimentally transmitted pulse U(t) is therefore assumed to have

changed somewhat. This means that Un(t) and U(t) is likely to have di�erent shapes.

Frequency interval: The de�nition of the frequency interval ∆f in which the �rst order least

squares method was based to calculate the amplitude spectra of the thick samples, was seen to

in�uence the total transmission coe�cients as described in section 3.3.1. A ± 1 MHz change in the

interval was seen to result in around ± 1.5 % di�erence in the total transmission coe�cient.
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Thickness variation: The PI-�lm used in the experiments had a thickness variation of ±3 µm.

The PVDF-coating on the PI was manually spun on top, thus small variations in the thickness of

the coating are expected.

Sample 1 and Sample 2 were compared to the numerical and theoretical models with 20- and 10

µm coating thicknesses, respectively. The di�erences in both the thickness of the PI and in the

coating, between the experimental and numerical models must be considered in the comparison.

Clouded water: Tap water was used in the experiments. When newly tapped water was used

in the tank, many small air bubbles would appear on the surfaces of all the equipment. Such air

bubbles are a result of how the properties of water changes with temperature and pressure. Cold

water can hold more air than hot water, and water under pressure in the tab has the ability to hold

more air than water under less pressure such as in a tank [29].

Tiny air bubbles would appear on the sensors, which could distort and damp the signal. To remove

the bubbles from the sensors, a �nger was used. This could leave a �ngerprint which again could

cause distortion of the signal. Systematic attempts to remove of such bubbles were made throughout

the experiments.

Positioning of the sample: For each new measurement with the thin samples, the samples were

attached to the frame manually. Since they were only 130- 150 µm thick, their shapes after being

fastened to the frame could vary. The frame had to be detached from the framework for each new

sample. The coated samples had to be attached twice, in order to do the measurements through

both the left and right sides.

The frame itself was attached manually to the slider on the framework. The position of the frame

on the slider was initially chosen by moving them close to a transducer and then position the frame

by eye on the slider, such that the transducer pointed to the center of the frame hole. Then a little

mark was made on the slider to later be able to position the frame on the same spot.

Shear waves:[22] [7] If a thick sample, or the frame with one of the thin samples attached to it

was not perpendicular to the signal coming from the transducer, shear waves could form in the

polymer. There was variations in the smoothness of the surfaces of the thick samples; as seen in

Figure 3.4 of the samples applied, the surface of PEI was quite coarse. Shear waves could also be

formed as a result of the thin samples not sitting straight in the frame.

Measurements: The measurements for the PI-�lm and Sample 1 were done the same day in a

clean tank with fresh water. Measurements for Sample 2 were done earlier, and in two days old

temperature regulated water. Both the uncertainties of dirty and clouded water might have an

e�ect on the di�erences this produces, as the fresh water was clean but cloudy and the old water
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was not clouded but might have been a little dirty.

Focus: The 10 MHz transducers had a target focus in water at about 5.3 cm. The focus length of

the 20 MHz transducers through water was at around 5.1 cm. The distance between the sending

and receiving transducer was chosen manually with a ruler to be 10 cm, and kept at the same

positions throughout the experiments. The placement of each of the samples with respect to the

transducers, was decided by viewing the �rst re�ection received with both transducers on the

oscilloscope. The sample could then be moved such that the echoes were positioned at the same

place. With this method the middle of the inserted sample would be in the center of the transducer

system. Therefore, the samples might be slightly outside of focus.

Dirty water: Since the tank were open, and since some of the equipment had to be taken out

of the water to change samples, di�erent types of �lth such as hair would gather up in the tank.

When water is left still in a tank for a long time, bacterias and algae will form on the walls of the

tank. When fresh water is pored in to adjust temperature, or when equipment is submerged, some

of this will be knocked o� the walls and start to �oat around. Any type of such objects in the water

could cause distortions of the signal.

Water temperature: The transducers applied in these experiments were manufactured to operate

best at a temperature around 20 ◦C. The room in which all the experiments were made, had an

average temperature of 15 ◦C, so the water temperature was always decreasing. For theoretical

calculations the temperature was always assumed to be around 20 ◦C.

The temperature of the water while doing the measurements for the thick samples was 25.5 ◦C in

the beginning and fell towards 21.3 ◦C in the end. Changes of this size in the temperature has an

impact on the impedance in water [7].

For the experiments done with the thin samples, the temperature of the water bath was chosen and

regulated to stay around 20.5 ◦C.

Attenuation in water: Since the samples had di�erent thicknesses, there was a variation in

distance that the signal would travel through water. The attenuation in the water would therefore

change slightly from sample to sample. Table 3.3 gives an attenuation factor β in water at 20 ◦C

of 0.002 dB/cm MHz.
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Conclusion and further work

The experimental results for total transmission coe�cients through the thick samples coincided

to some degree with the values found by using common impedances in equation (2.65) in section

2.3.2 in the theory of single interface transmission. Comparison between the total transmission

coe�cients obtained by theory and through the experiments for both sets of transducers, indicates

that the results obtained with the 10 MHz transducers given in Table 4.1, were the most reliable.

The amplitude spectra found through experiments for the thin samples did to some extent coincide

with both the theory and the numerical results. Based on the resonant frequencies f' from the

amplitude spectrum obtained through experiments, good estimations of the thickness of- and the

sound speed through the PI-�lm was found. As expected, the maximum transmission at resonant

frequencies were perfect for the theoretical model. For the 10 µm coated PI-�lm the numerically

obtained maximum transmission was also perfect. For the two other numerical models the maximum

transmission were almost perfect. Finally, also as expected, the experimentally obtained amplitude

spectra gave the lowest maximum transmission.

Their di�erences taken to account, the theoretical, numerical and experimental results were found to

correspond. This means that the equation for total transmission given by equation (2.99) in section

2.4 is a good estimation for the samples applied. The numerical models that were implemented in

COMSOL speci�cally to match the experiments, also provided quite good estimations.

In the future it could be interesting to see how changing the damping factor in the backing layer

would e�ect the reliability of the COMSOL models.

Experimental investigation of two PI-�lms coated with PVDF in two di�erent thicknesses were
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performed with a center frequency of 10 MHz. Half of the PI-surfaces were in both cases treated

before the coating was spun on. No e�ects on transmission properties were found when comparing

the treated surfaces of the two samples with the untreated surfaces.

Further work regarding how the transmission properties of a two-layer sample are a�ected by

treating the surface between the layers, may involve doing this experiment at higher frequencies

such that the wavelength becomes small compared to the coating.
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