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Abstract

In this thesis, natural oil seeps in Synthetic Aperture Radar (SAR) images are studied. The intension is to

compare seeps to known oil slicks as emulsion-oil, crude-oil and plant-oil. TerraSAR-X and Radarsat-2 data

with these di�erent slicks are analyzed. Polarimetric features are extracted for all the scenes, histograms and

scatterplots of values from the slicks are evaluated. Finally a classi�cation is performed on images with slicks

that are suspected to be seeps. Natural oil seeps are hydrocarbons seeping out of �ssures at the bottom of

the ocean. If they reach the surface, they form oil-slicks with di�erent shapes. Seeps are one of the biggest

sources of oil-pollution and make a big threat to the marine environment. SAR is one of the most used tools

for detecting oil at the ocean surface. Oil in SAR-images appear as dark slicks because the oil is dampening

the Bragg waves, makes the surface less rough which reduce the radar backscatter. A main task in oil detection

is to distinguish between real oil slicks and other phenomena that can cause dark patches in a SAR-image.

One way to do this is to look at multi-polarization features and see how the patches behave. The features

extracted in this thesis seems to separate oil from the sea really good. It looks like the entropy and the mean

radar backscatter are the best features. Visually, the seeps have quite similar values as the emulsion and crude

oil. Inspection of the scatterplots and histograms from the features show that the seeps have slightly di�erent

values from the crude-oil. An attempt to classify the potentail seeps from the dataset as either crude-oil or

plant-oil is performed by the use of a maximum likelihood classi�cation based on the polarimetric features. The

classi�cation states that the dark patches from the Gulf are most probably crude-oil rather than plant-oil.
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Chapter 1

Introduction

1.1 Motivation

Oil spills are a major threat to the marine environment and may have huge consequences for the wildlife, �sheries

and human health. They are caused by spills from oilrigs, leaking pipelines, deliberate discharges from boats

and seepages by natural causes. Synthetic Aperture Radar (SAR) has in past studies proven to be the most

useful tool in monitoring these spills due to it's all-day and all-weather capabilities. Oil on the ocean reduces

the roughness of the surface due to the dampening of capillary waves and lower dielectric constant than water,

which results in less radar backscattering than the sea surrounding the oil [1]. Therefore oil spills appear as

dark spots in SAR-images. Nevertheless, other natural phenomena can also create dark spots in SAR images,

they are termed oil slick look-alikes and may include natural �lms, low wind, heavy rain, grease ice etc. [2]. A

main task in oil spill monitoring is to distinguish real oil spills from these look-alikes.

Natural oil seeps are oil drops and bubbles �owing up from �ssures at the bottom of the ocean. Some parts

of these oil and gas bubbles reach the surface and form a thin layer at the top [3]. In 2003 a global-estimate

of all the oil that entered the marine environment stated that 47% was from natural seeps and 53% from leaks

and human accidents [4]. With such a big part of all the oil, natural seeps may be the most important single

source of oil pollution that enters the ocean. Known seeps are located in the Gulf of Mexico, the Caspian Sea,

the Barents sea, the ocean outside California and Brazil, West Africa, and Indonesia [5]. Most of the already

known seeps are located in the Gulf of Mexico (GoM) [6]. There are over 600 natural oil seeps that seep out

around 500 000 to one million barrels of oil each year, that is approximately 4000 to 200 000 tons [4]. Remote

sensing by the use of SAR to detect and localize these seeps has been of relevance due to the threat of pollution,

but also a possible localization for oil-companies to drill.

A lot of studies of oil-pollution have been executed by the use of SAR-data. In 1987, Bartsch et al. [7]

used an L-band (1-2 GHz) and an X-band (8-12 GHz) SAR to study the ability of SAR to detect, localize and

discriminate oil pollutions with di�erent characteristics. Several controlled and di�erent slicks were released by

ships. The sensors managed to both detect and localize the slicks, but failed to discriminate between them.

In the early 90's, ERS-1 SAR images were used by a lot of researchers. Bjerde et al. [8] in 1993 used ERS-1

data to test an algorithm for segmentation of oil-slicks and look-alikes. The algorithm showed good results and

was improved by more training data. Radarsat-1 was launched in 1995 and operated by the Canadian Space

Agency and has provided good SAR-data for a lot of di�erent purposes. Marghany [9] used Radarsat-1 data to

monitor the movement and transportation of oil spills. Most of the satellites with a SAR-sensor in the 1980s

and 1990s operated with a single-polarized system. As the years have passed, more satellites have been launched

with di�erent SAR polarization systems which have brought new and much more opportunities for researchers.

European Space Agency's (ESA) Envisat Satellite ASAR data was used to characterize slicks from the Prestige

tanker accident [10]. The quad-polarimetric system of Radarsat-2 have been used to distinguish oil spills from

biogenic slicks [11].

9
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To detect oil-spills and distinguish them from other look-alikes, di�erent types of algorithms are used. Zhang

et al. [12] used the co-occurence matrix of SAR-images to extract textural features and identify oil spills from

these. In 2007, Solberg et al. [13] used an algorithm that �rst detected dark spots, extracted features from

these spots and classi�ed them as either oil spills or look-alikes. Later, more advanced algorithms have been

developed for detecting and classifying oil spills [14], [15], [16] and [17].

Lately, multi-polarization features have been used to distinguish oil-spills from look-alikes. The H/A/α-

decomposition have been performed on SAR-images and showed possibilities to separate oil-spills and biogenic

slicks [11], [18], and [19]. In Skrunes et al. [20], eight di�erent polarimetric features were used to discriminate

between crude-oil, emulsion and plant-oil (look-alike). The result showed that the features managed to distin-

guish between the plant-oil and the crude-oil. This thesis explores the power of these multi-polarization SAR

features in characterizing natural seeps, i.e. discriminate seeps from other marine slick types.

1.2 Main objectives of this thesis

In the summer of 2012, a dataset of seven di�erent images from the GoM were obtained for a Multimission

Oil Spill Detection (MOISD) project, lead by Kongsberg Satellite Services (KSAT). The dataset includes three

�ne quad-polarimetric Radarsat-2 images, two single polarization wide swath Radarsat-2 images and two dual-

polarimetric images from TerraSAR-X and COSMO-SkyMed. Due to the lack of groundtruth from these scenes,

there is no concrete information about what the images contains, but they are suspected to be seeps. Also during

the writing of this thesis, two Radarsat-2 images were acquired, one containing a seep and sargassum con�rmed

by the environmental organisation On Wings Of Care. Sargassum is a sort of seagrass and can be considered

as a look-alike. The main aim with this thesis is to study SAR's capability to study natural oil seeps and also

explore the ability to discriminate between crude-oil, biogenic slicks and natural seeps with multipolarization

features.

1.3 Main contribution to the �eld

During the oil-on-water (OPV) exercise by the Norwegian Clean Seas Association for Operating Companies

(NOFO) in June 2011, three di�erent types of oil were released in the North Sea, i.e. crude-oil, plant-oil and

oil-emulsion. Two di�erent data sets were obtained during this exercise, a quad-polarimetric Radarsat 2 image

(OPV-scene) and a dual-polarimetric TerraSAR-X image, both containing all three slicks. Previous work on the

dataset have recently been done by Skrunes et al. [20], [21] and [22] which included an investigation of the ability

of Radarsat 2 and TerraSAR-X to detect oil spills. Also, characterization of the oil spills and discrimination

between the slicks were done for both sensors. In this thesis the OPV-image have been used as a reference and

the information found have been used to quantify what the images from the GoM contain. The polarimetric

features from Skrunes et al. [21] have been extracted from all the GoM-scenes. Histograms and scattering plots

of the features were inspected to see which features that gave best separability between oil, water and slick

types. Values from the OPV scene in these features were used to see if they match values of the slicks from the

GoM-scenes. Also, data from the OPV-scene have been used in a trained classi�cation to classify the rest of the

GoM-scenes. Visual observations from the polarimetric features showed that the seeps behave similar as the

crude oil and also have similar properties. Further investigation from the scatterplots and histograms showed

that the values from the seeps actually are slightly di�erent. The classi�cation performed based on the features

states that the dark patches from the GoM-scenes are most similar to emulsion and crude-oil.
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1.4 Structure of the thesis

The thesis consists of one theoretical part and one experimental part. The theoretical part will be covered in

chapter 2, 3 and 4, the experimental part is covered in chapter 5, 6 and 7 .

In Chapter 2 a brief introduction to the SAR-sensor is given. The �rst section will cover the sensor and the

imaging geometry, the second section explains the polarization of SAR and the third section gives an overview

over di�erent satellites that are loaded with a SAR-sensor.

Chapter 3 gives an introduction to oil-spill measuring. First part of the chapter explains how oil-slicks

appear in a SAR image and how they look. Second part will give an overview of di�erent look-alikes and the

third part an overview of processes that a�ect the oil-slick appearance in a SAR image.

Chapter 4 covers the basics of natural oil seeps. In the �rst part, the physics behind seeps will be explained.

In the second part a summary of previous study and research of seeps is given.

In Chapter 5 the dataset of this thesis is presented. First of all the study areas are covered, secondly some

information is given about the scenes. Information includes ground truth and two tables of useful facts about

the di�erent scenes.

Polarimetric feature extraction and selection is covered in chapter 6. In the �rst part, an overview of all

the results that will be produced are given. Second part includes a theoretical part about all the polarimetric

features and a discussion. Also the results are presented in this chapter.

The last chapter, number eight, concludes the whole work.



 



Chapter 2

Remote sensing with Synthetic Aperture

Radar

Radar is an active sensor that measures distances to other objects by transmitting electromagnetic waves to

the targets, and then receive echoes re�ected by the targets. A radar system operates in the microwave region

(300 GHz to 300 MHz, 1 mm to 1 m, X-, C, L, P-band) and penetrates clouds, smoke, rain etc. Also, SAR

has it's own illumination and is therefore independent of illumination from the Sun, so the SAR-sensor is both

day-time and weather independent. One of the most important aspects with Synthetic Aperture Radar (SAR)

is its high spatial resolution. The technique to achieve this is based on the fact that the target stays in the

beam for an extended period of time, and it will be observed from a range of positions along the �ight path. In

the past years, several books have been written about the theory of SAR-imaging. This chapter will use [23]

and [24] as references to explain SAR geometry and polarization (section 1 and 2) at a �need to know� level.

2.1 SAR techniques and imaging geometry

An imaging SAR system consists of three di�erent parts: a transmitter to transmit the signal, a receiver for the

backscattered signal and an antenna which is used for both the transmission and the reception. The system is

mounted on an airborne/spaceborne platform. As seen from �gure 2.1, SAR operates in a sidelooking geometry

from the platform at an altitude H. The beam from the SAR is aimed perpendicular to the �ight direction or

the azimuth direction (y-direction in �gure 2.1), with a look angle θ0. There are two other directions that have

to be de�ned. The �rst one is the ground range which is the x-direction in �gure 2.2, the second is the slant

range r, which is the radar-line-of-sight. Pulses of electromagnetic waves are transmitted from the sensor and

hit the surface of the Earth. The covered area by the beam is called the footprint of the antenna. The pulses

are then backscattered from the surface and the receiver on the platform picks them up. All the signals are

then synthesized to a 2-D high spatial resolution image [23].

The size of the antenna footprint (θX , θY ) is de�ned from the length and width of the antenna:

θX ≈
λ

LX
and θY ≈

λ

LY
(2.1)

where LX and LY are the length of the antenna in the ground and azimuth direction respectively. λ is the

wavelength of the carrier frequency transmitted from the antenna. θX and θY are illustrated in �gure 2.2 and

2.3 [23]. The range swath and azimuth swath can be derived as:

4X ≈ R0θX
cosθ0

and 4 Y ≈ R0θY (2.2)

where R0 is the distance from the antenna to the illuminated area.

13
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Figure 2.1: The geometry of SAR imaging from [23]

Spatial resolution: Spatial resolution describes the ability of the SAR to discriminate between two close

targets. The spatial resolution of a SAR-image is really high taken to account the big altitude, up to 800 km.

To achieve this, short pulses are needed. Also a good signal-to-noise ratio is preferred so high energy is also

necessary. High energy and short pulses are usually very di�cult to achieve and also expensive. For SAR this

is solved by transmitting longer pulses where the energy is distributed over the time the pulses use. To keep

the range resolution high by the use of short pulses, modulated pulses are transmitted by the use of �pulse-

compression�. This includes varying the frequency of the signal while the pulse is transmitted. Such a signal is

called chirp and the frequency has a bandwidth B at the carrier frequency f0. At the end, a matched �lter is

used to compress the received pulse to achieve a good duration equal to 1/B [23].

In ground range the pulses are separated by the time delay between the received pulses. As seen from �gure

2.2, the pulses have shorter pathway closer to the satellite in near range than far range. The resolution in

ground range is given as:

δx =
c

2Bsinθ
(2.3)

where θ is the incidence angle illustrated in �gure 2.2 and c is the speed of light.

In azimuth direction another technique has to be used to separate the pulses because, as seen from �gure 2.3,

the pulse will hit the surface at the same time and then received at the same time. A real aperture radar can

only discriminate targets in azimuth direction if the distance between the targets is longer than the beamwidth

[24]. The resolution for a real aperture radar is:

δy = 4Y = R0θy =
R0λ

Ly
(2.4)

So, to get a good resolution in azimuth direction with real aperture radar, a really long antenna is needed.

To achieve high resolution, the concept �synthetic aperture� is used. This is making a long e�ective antenna

by moving the the sensor in the azimuth direction. The length of the synthetic aperture is the �ight path from
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where a target comes into the footprint until the target is out of the footprint [24]. Azimuth resolution is given

by:

δy =
Ly
2

(2.5)

so the length of the antenna decides the resolution. Note that, the azimuth resolution is only dependent on

the antenna length and hence independent of the distance to the ground.

Figure 2.2: The geometry of SAR imaging in the altitude ground range domain from [23]

Figure 2.3: The geometry of SAR imaging in the slant range azimuth domain from [23]

2.2 Polarization of SAR

Electromagnetic waves consist of an electric and magnetic �eld, both perpendicular to each other in free space

and transverse to the propagation direction. The polarization lies in the direction of the amplitude A from the

electric �eld [24] which is a two dimensional complex vector de�ned as:
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A = ahe
iδhĥ+ ave

iδv v̂ (2.6)

where ĥ is the basis vector for horizontal polarization and v̂ for the vertical, ah and av the amplitudes and

δh and δv the phases [24]. Polarization can be described as a shape on the background in space, from the tip

of the electric �eld during the propagation. The points of this shape in the ĥ − v̂ plane is Eh = ahcosδh and

Ev = avcosδv. They also satisfy the expression of an ellipse:

(
Eh
ah

)2 + (
Ev
av

)2 − 2
Eh
ah

Ev
av
cos(δh − δv) = sin2(δh − δv) (2.7)

so electromagnetic waves are usually elliptically polarized. There are two cases where this changes. The �rst

case is when δh − δv = nπ, where n is an integer, there will be linear polarization. Secondly if δh − δv = ±π/2
and the two amplitudes are equal, there will be a circular polarization. The electromagnetic waves transmitted

from the SAR-system that acquired images for this thesis were linearly polarized.

When the electromagnetic waves are backscattered, the waves can be described by a new two dimensional

complex vector. So scattering can be seen as an operator that makes a complex vector to another complex

vector. This can be described by the complex scattering matrix S:

Esc =

[
Shh Shv
Svh Svv

]
Etr = SEtr = ejφvv

[
|Shh|ejφco |Shv|ejφhv

|Svh|ejφvh |Svv|

]
(2.8)

Here Etr is the electric �eld transmitted from the satellite and Esc the received electrical �eld [24]. The

elements in the S-matrix are the complex scattering coe�cients where the subindices denotes the transmitted

and received polarization respectively. φco = φhh − φvv is the co-polarized phase di�erence (CPD).

The voltage that the radar measures is given by:

V = prec[S]ptr (2.9)

where ptr is the normalized polarization vector which describes the transmitting radar antenna, prec describes

the receiving. With the voltage, we can also derive the power received by the radar which is simply magnitude

of the voltage squared:

P = V V ∗ = |prec[S]ptr|2 = (Al)(lA)∗ = Al l∗A∗ = A[C]A∗ (2.10)

Here A = (prech ptrh prech ptrv precv ptrh precv ptrv ) is transpose of the polarization vector elements, l the

Lexicographic scattering vector and C is the covariance matrix [24].

2.3 Di�erent polarization channel systems

The simplest channel system of SAR is the single-polarization (single-pol) SAR system. It uses a single linear

polarization by transmitting and receiving horizontal or vertical polarized pulses. The �rst SAR systems that

were made were usually operating with a single channel system. Dual polarization (dual-pol) SAR systems

provide data from two channels, (HH, VV), (HH, HV) or (VH, VV). Most of the SAR data that are collected

are from these kind of system and many satellites, like TerraSAR-X and COSMO-SkyMED, use dual-pol. Full

polarimetric or quad-pol systems transmit and receive the signal in both direction (HH, HV, VH, VV). Only

this system achieves the full scattering matrix S and gives the opportunity of polarimetric feature extraction
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that includes the cross-pol channels. One disadvantage with quad-pol is the smaller antenna footprint than the

other systems [25].

Studies have been made to compare the performance in di�erent areas between the systems. Lee et al. [26]

compared the classi�cation of crop and trees capability between the systems, and the quad-pol system proved

to give the best results. Preferred polarization depends on the frequency of the radar and the wind speed of

the scene. Studies state that there is no di�erence in using the HH or VV channel in oil spill detection, except

for C-band where the VV channel seems to be the best, when strong wind is present [27].

2.4 Multi-polarization features

In section 2.2, the Lexiographic scattering vector was introduced. With the assumption of reciprocity, Svh = Shv,

the Lexiographic vector and the Pauli vector k are extracted from the S-matrix as follow [23]:

l = [Shh
√
2Shv Svv]

T (2.11)

k =
1√
2
[Shh + Svv Shh − Svv 2Shv]T (2.12)

where T denotes the transposed. The covariance matrix C and the coherency matrix T are respectively

derived from the Lexiographic vector and the Pauli vector as:

[C] =
1

L

L∑
i=1

lil
∗T
i (2.13)

[T ] =
1

L

L∑
i=1

kik
∗T
i (2.14)

where L is the number of pixels of the average window (in this thesis 9 × 9 = 81) and *T is the complex

conjugate and transpose. In Skrunes et al. [21] a signal to noise comparison was made and they concluded that

the cross-polarization channels contained too much noise and therefore they are excluded from this thesis. So,

the Lexicographic scattering vector is reduced to l = [Shh Svv]
T and the covariance matrix becomes:

[C] =

[
< |Shh|2 > < ShhS

∗
vv >

< SvvS
∗
hh > < |Svv|2 >

]
(2.15)

where <> denotes the average [20]. The Pauli vector for dual-polarizations k = 1√
2
[Shh + Svv Shh − Svv],

and the coherency matrix [T] are given as:

[T] =

[
< |Shh + Svv|2 > < (Shh + Svv)(Shh − Svv)∗ >

< (Shh − Svv)(Shh + Svv)
∗ > < |Shh − Svv|2 >

]
(2.16)

2.5 SAR image properties

The images that are processed in this thesis are generated from the S-matrix. As mentioned in section 2.2.1,

the coe�cients of the S-matrix are complex and they represent a look. The SAR can split the full aperture into

smaller subapertures by splitting the bandwidth to sub-bands. Each of these subbands represent a single look of

the scene and also one coe�cient of the S-matrix. So data that includes the S-matrix is therefore called single-

look-complex (SLC) data [28]. With a �rst look at a SAR-image, one of the �rst things to notice is a pattern of

dots with di�erent brightnesses. This phenomenon is called speckle noise and is caused by random interference

of many coherent wave components backscattered from many di�erent targets in the illuminated area [29].

Speckle is unwanted in the image because it can cover di�erent targets and also make the interpretation of the
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image more di�cult. A lot of studies have been made in the past to develop algorithms that can reduce the

speckle noise or even remove it [30],[31] and [32]. The most common solution is to use a certain amount of the

single looks, sum them together and take the average to get a multilook image. This is an averaging method

called multilooking and is done by deriving the mean value of a group of neighbor pixels. Multilook reduce the

speckle noise, but will also smooth the image so some information will be lost. In this thesis, all the images are

multilooked with a 9× 9 window.

2.6 Polarimetric SAR Systems

2.6.1 Environmental satellite (Envisat)

Envisat was launched into orbit 1 March 2002 to an altitude of 790 km. This Earth-observation satellite was

operated by the European Space Agency (ESA) until April 2012 when they lost contact with it, but it is

still orbiting the Earth [33]. Envisat carried a lot of di�erent remote-sensing instruments, including Advanced

Synthetic Aperture Radar (ASAR). Operated at C-band (5.33 GHz), the Envisat provided images either with

dual-pol or single pol. Envisat made measures of the atmosphere, ocean, forests and sea ice. A lot of research

have been done from Envisat-data like [13], [17], [34] and [35].

2.6.2 TerraSAR-X

TerraSAR-X is a German satellite launched into space June 2007. It provides high resolution radar images,

operating with an X-band (9.6 GHz) at an altitude of 514 km in a polar orbit [36]. TerraSAR-X have di�erent

operation modes which provides di�erent resolution:

� Spotlight mode, gives a 10× 10 km scene with a resolution of 1-2 m

� Stripmap mode, gives strips up to 30 km with a resolution of 3-6 m

� ScanSAR mode, gives strips up to 100 km with a resolution of 16 m

The SAR system gives single-pol or dual-pol data for scienti�c research [23]. X-band is more sensitive to

damping of Bragg waves than C-band, but usually X-band has a higher noise �oor which can cause the signal

to be more corrupted with noise and limit the abilities to detect for example oil.

2.6.3 COSMO-SkyMED

COSMO-SkyMED (Constellation of small Satellites for the Mediterranean basin Observation) is an Italian sys-

tem of four satellites operated by the Italian Space Agency. The �rst one was launched 8 June 2007, while the

last one was launched 5 November 2010. They have a so called Ping-Pong mode and operate with an X-band.

The Ping-Pong mode has a time lag between the H- and V-channel transmission which can make images over sea

surfaces more fuzzy [37]. However, a new generation of COSMO-SkyMED satellites are planned to be launched

which will cooperate with the �rst ones and strengthen their current capability. They will also have operational

quad-polarimetric mode.

2.6.4 Radarsat-2

Radarsat-2 was launched 14 December 2007 and is controlled by the Canadian Space Agency (CSA). The satellite

has a C-band SAR and operates with a quad-pol system at an altitude of 798 km. The antenna is 15 meter

long and 1.5 meter wide and provides images with resolution up to 3 meters, depending on which mode that

is used. See �gure 2.4 for an illustration of the di�erent beam modes. Radarsat-2's fully polarimetric datasets

have improved the ability to characterize physical properties of objects and retrieve biological or geophysical

properties from surface of the Earth [38]. Five of the images processed in this thesis are from this sensor.
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Figure 2.4: All the beam modes of Radarsat-2 from [38]



 



Chapter 3

SAR measurements of dark slicks

One of the more essential applications for SAR is to detect and monitor oil spills and locate di�erent sources

of oil pollution in the sea. Sources to oil spills can be oilrigs, leaking pipes, oil from ship accidents and illegal

discharges. When a potential spill in a SAR image is detected, manual inspection of the slick is performed and

also planes or helicopter can be sent to con�rm if it is a spill or not. If the slick is pollution, aid is sent to

prevent the pollution from growing and reduce the damages. An introduction to how oil-slicks are detected is

given in this chapter. A list of di�erent types of slicks and look-alikes are given and a brief introduction to

di�erent weathering processes that can a�ect oil-slicks.

3.1 Oil-slicks characteristcs

Radar frequency bands have wavelengths from approximately 2.3 cm (X-band) up to 1 meter (P-band). Some

of the roughness on the ocean surface is capillary and small gravity waves (5-10 cm) created by wind. The

electromagnetic waves transmitted from the SAR sensor are, based on the Bragg model, in resonance with the

waves [39]. The SAR-sensor is therefore sensitive to ocean surface short-waves also known as �Bragg-waves�.

These waves are dampened by the presence of oil and oil-slicks, which will cause a smoother surface than the sur-

roundings and reduce the radar backscatter. Oil will therefore appear as dark spots in a SAR-image [40]. This

is well described with both theory and experiments in [41], [42], [43] and [44]. The shape of an oil-slick depends

on many factors like the oil type, the source of the pollution (moving or nonmoving) and how much oil the slick

consists of [45]. Also weather conditions like wind speed and wind direction will a�ect the appearance of an oil

slick since the slick will move with the waves which are strongly dependent on the wind. Knowledge about the

wind speed is important because if the wind is too high, the waves will be too long and the surface will be too

rough to be dampened by the oil. If the wind speed is too low, the ocean will be too smooth and appear dark in

the SAR-image as well. A normal threshold for the wind speed for oil detection is around 3 m/s up to 10 m/s [46].

Minchew et al. [1] state that another source that reduce the radar backscatter is the change in dielectric

constant or complex permittivity εc. The dielectric constant is an indicator of how a medium reacts to an

electric �eld. The complex permittivity is given as:

εc = ε′ − jε′′ (3.1)

where ε′ is the real part which is the dielectric constant and describes a mediums ability to store electromag-

netic energy. ε′′ is the imaginary part and called the loss factor and describes how much energy the medium will

lose and j =
√
−1. The SAR beam penetrates the medium it hit's on the ocean surface with a few millimeters.

How much the beam penetrates a medium is decided by the dielectric constant of the certain medium. Whether

the medium is a good conductor or a bad conductor is described by the loss tangent, tanδ = ε′′/ε′. If the

tangent is much higher than 1 it's a good conductor, if the tangent is much lower than 1 the medium is a bad

conductor. A good conductor will give lower radar backscatter than a bad conductor because of the penetration
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that occurs for a low loss medium most of the times leads to an increased volume scattering [47]. Oil has a

dielectric constant with real part between 2.2 and 2.3, an imaginary part less than 0.02 while water has a real

part greater than 60 and an imaginary part higher than 40 [1]. So water is a better conductor than oil thereby

the de�nition of the loss tangent.

The re�ection of a SAR-wave is a function of the incidence angle θ. There are two di�erent ocean backscat-

tering mechanisms, depending on θ. The �rst one is the Kircho�'s scattering when θ ∈ [0o , 15o] and the second

one is the Bragg re�ection when θ ∈ [20o , 70o] [27]. Bragg re�ection allows the observation of Bragg waves

which is dampened by oil slicks. When the incidence angle is increased the radar backscatter is decreased [48]

and may limit the detection of oil slicks. The ideal incidence angle for oil slick monitoring is θ ∈ [20o , 45o] [27].

3.2 Mineral slicks, biogenic slicks and other slick look-alikes

Mineral slicks are usually made by discharges from boats and accidents. Brekke et al. [49] describes some

di�erent mineral slicks:

� Oil-spills caused by accidents or illegal disposal of oil products. Technical problems and mistakes can

cause oil-spills from vessels and rigs.

� Polluted water from rigs is cleansed before it's released into the ocean, but always contains some oil and

chemical byproducts that can damp the Bragg waves.

� Liqiud drilling �uid which is used when a rig is drilling for oil. After a couple of uses, the �uid is then

remade back to what it was, but the water from this process is released into the ocean which can form

dark spots in the SAR-image.

Natural phenomena can also appear as dark patches in SAR-images due to di�erent reasons. They are called

oil-spill look-alikes and in the following are some of them presented:

� Biogenic slicks or natural �lms which are plankton, plants and materials from �sh released into the ocean.

These substances accumulate at the ocean surface due to their chemical properties. At the surface they

are quckly dispersed and disappear depending on the wind conditions. The higher wind speed, the less

probability to observe biogenic slicks because higher waves remove the �lms from the surface by wave

breaking [47], [49].

� Low wind areas, as mentioned in section 3.1, appear dark in the SAR-image. This is because the wind is

generating Bragg waves and when the wind is too low (wind<3m/s), there will be no Bragg waves and

the area will appear as a dark spot.

� Rain cells can cause low backscatter in a SAR-image in two ways. First of all attenuation in the atmosphere

from volume scattering will decrease the backscattering where it's raining. Secondly, rain drops can also

dampen the Bragg waves on the ocean surface, this depends on the wave height, wind speed and rain rate

[47], [49].

� Internal gravity waves can in�uence the speed of the ocean waves and therefore cause change in the Bragg

waves. They appear as parallell dark and light bands in the SAR-image and usually occur where the ocean

is not so deep [49].

All these phenomenons are dependent of either wind, location or what kind of weather it is. Information

about these factors can help to understand what a SAR-image contains.
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3.3 Weathering processes

This section will present some weathering processes and how they a�ect oil in the sea. As soon as the oil

has entered the marine environment, weathering processes will immediately start to change the physical and

chemical properties of the oil-slick. All these changes determine how detectable and measurable the oil-spill is

in a SAR-image [45].

3.3.1 Evaporation

At the ocean surface, evaporation is one of the most crucial processes causing the reduction in mass. After a few

days at the surface, the oil has lost some of its original mass depending on the density of the oil. Light crude

oil can lose up to 75%, medium crude oil lose up to 40% while heavy crude oil only lose up to 10% [50]. Even

though evaporation is an important process, the knowledge of it is poor due to the complexity of the physics

and chemistry behind this process. Most work has been to establish equations that quote how much mass the

oil spill have lost. Fingas [51] stated that there are only two important factors in oil-evaporation, time t and

temperature T and the evaporation percentage P can be expressed as:

P = C(T )ln(t) (3.2)

where C is a constant depending on temperature and can be derived from distillation data [50]. So more and

more oil will evaporate while the time is passing, and the oil-slick will be more di�cult to detect in a SAR-image.

3.3.2 Emulsi�cation

Emulsi�cation is the process when the water is mixed with the oil, it is called a water-in-oil emulsion. This can

either happen at the ocean surface, but also for a natural seep that is moving up towards the surface. Emulsion

changes the physical properties of the original oil in many ways. The density of the oil can be increased also

the viscosity can be increased which will again cause slower evaporation [45].

3.3.3 Dispersion

Dispersion is the process when the hydrocarbons are spreading over a larger area. As soon as the oil is added

to the surface, the oil will start to disperse and will continue until the whole slick is gone either by evaporation

or sinking [50]. The dispersion is decided by the amount of oil in the slick and the wind because the dispersion

is increased by larger ocean waves [52].



 



Chapter 4

General concepts of natural oil seeps

Seepages of natural causes are one of many the dark-slicks that can be observed in a SAR-image. Seeps start

at the bottom of the ocean and have to go through a lot of processes that can change some properties and

locations of the seep. This chapter gives an introduction to what natural seeps are and di�erent processes that

a�ect seeps. Also a brief overview of previous work on seeps by the use of SAR is given.

4.1 Characteristics of natural seeps

Natural seeps are hydrocarbons seeping out of faults at the bottom of the sea. They are transported in mi-

gration pathways up to the surface where they form a slick [53], see �gure 4.1 which shows a seep from the

Gulf of Mexico. A natural seep occurs when the sea�oor that con�nes the oil is breached. This happens due

to overpressure and buoyancy force becomes larger than the capillary resistance that kept the oil con�ned.

Depending on the level of overpressure, there can be two types of seep. If the overpressure is moderate and

breaches the seal, the seep will be widespread but will have a low intensity and stops when the openings are

locked. If the overpressure is growing large enough to break the rock's minimum stress, the rock will fracture,

form a �ssure and there will be a high intensity seep [54]. Natural seepages form di�erent shapes at the top

of the surface like small spots, loops, hooks and circles, all a�ected by wind and currents. Usually natural

seeps are thinner than mineral oil which can make them harder to detect [55]. At the surface, all the weath-

ering processes introduced in section 3.3 will start to a�ect and decide the shape and the time the slick will exist.

4.2 Displacement of a seep

When the seep has reached the surface, it is usually located a couple of hundred meters away from the seep

source. The location is a function of the rise speed, estimated by previous study to approximatly 20 cm/s [5],

currents beneath the sea and distance from the source to the surface [5]. The longer path the seep has to reach

the surface, the further away it ends up from the source. Higher rise speed will reduce the distance to the

location. In many cases, several di�erent seeps can be observed in the same area. This does not necessarily

mean that there are as many seep sources because some of them may be from the same one. A seep source can

create several slicks by either various activity and separation during the rise process [5].

4.3 Weathering of seeps from the sea�oor

A study by Leifer and Macdonald [56] suggest that the oil from seeps are mainly transported to the surface by

gas bubbles. The oil lies as a thin layer outside the bubbles when they are rising upwards from the sea�oor.

Before a seep reaches the surface, there are di�erent processes that can a�ect the seep. These processes reduce

the amount of bubbles of the seep and a�ect the size, thickness and chemical properties of the seep at the

surface. Here are some of the di�erent processes:
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Figure 4.1: A photo of a natural seep in the Gulf of Mexico in image #4. Copyright OnWingsOfCare.org

� Dissolution is the process when the oil makes a solution with the water. This happens mostly from the

sea�oor up to the surface, but can also occur at the top of the surface. The loss of oil in this process is

not so big, but the loss of gas bubbles is big because gas has higher solubility than oil. Over 90% of the

gas bubbles are dissolved beneath the sea surface which limits the chances of gas bubbles covered with oil

to reach the surface [57], [58].

� Oxidation is the process when the hydrocarbons are oxidized to other chemical compositions like alcohols.

How much the hydrocarbons are oxidized depends on the size of the hydrocarbon molecules, amount of

oxygen available, temperature and energy from the Sun [50].

� Emulsi�cation, as mentioned in section 3. 3. 2, occur at the top of the surface for oil spills, but for a seep

it starts beneath the surface. This can slow and also eventually stop the seep from reaching the surface.

4.4 Previous studies on SAR and natural oil seeps

During the past years, several studies of seeps by SAR have been executed. Most of the studies have been in

the Gulf of Mexico due to the high hydrocarbon seep activity.

Garcia-Pineda et al. [3] processed a dataset of more than 700 Radarsat-1 images from the Gulf. A texture-

classifying neural network algorithm was used for classi�cation between seeps and look-alikes which showed an

accuracy of 98.22% and 97.74% for two test sets [59] .

A lot of focus has been directed to the southern part of the Gulf to monitor the Cantarell seep. Rodriguez

et al. [60] made an impact model of the Cantarell natural seep with SAR-data and wind information. Other

studies from the Cantarell complex can be found in [61], [62], [63].

Thankappan et al. [64] reported a study using single-polarised TerraSAR-X data to investigate it's capability

to detect oil seeps. To use multi-polarization in seep studies have been suggested [62] and [64] , but few have
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been conducted [5]. This thesis take it to the level of using both dual-pol X-band and quad-pol C-band with

TerraSAR-X and Radarsat-2 respectively, to study seeps.



 



Chapter 5

Data set and study areas

The dataset used in this thesis consists of six SAR-images. Five of them are quad-pol images from Radarsat-2

and the last one is a dual-pol image from TerraSAR-X. All these images contain di�erent dark-slicks of interest.

Ground truth information, weather data and study areas are presented in this chapter.

5.1 Study sites

This thesis has two di�erent study areas. The �rst place is the Gulf of Mexico where all the seeps studied in

this thesis are localized. The second place is the North Sea where the slicks that will be used as a basis are

located.

5.1.1 Gulf of Mexico

The main part of the study areas for this thesis is three di�erent locations in the Gulf of Mexico. The �rst place

is the Cantarell Complex which is an oil �eld �rst discovered by a �sherman named Cantarell in 1976. The

second one is to the south-west of Mississippi river in the northern part of the Gulf while the third is to the south

east of the same river. See �gure 5.1 and 5.2 for map and location of the SAR-images. For image #4 in �gure 5.3

two points in the area are marked as sargassum and natural seep, both were observed and photographed by the

wildlife and ecosystem protecting organization On Wings Of Care 02/04-2013. This happened in cooperation

between JPL and University of Tromso to gather SAR-data and airplane photos simultaneously.

5.1.2 The North sea

The Norwegian Clean Seas Association for operating Companies (NOFO) made their oil-on-water exercise in the

North Sea in June 2011. Controlled oil slicks were released into the ocean which gave an excellent opportunity

for satellites to acquire images of the place with di�erent slicks and ground truth information about them [21].

The oil slicks were crude oil, emulsion and plant oil which were all caught on the same scene by both TerraSAR-

X and Radarsat-2, see �gure 5.3 for the location. Previous work from these scenes can be found in Skrunes et

al. [21] and [22].

5.1.3 Ground truth and auxiliary data

Kongsberg Satellite Service (KSAT) has provided all the images for this thesis. Some of the images are too big

to be run in Matlab, so smaller parts of them are taken out. See �gure 5.4 for the selected sub-regions that

will be processed and what they contain. See Table 5.1 for more information about the images and Table 5.2

for another overview of what the images contain. The modes in Table 5.1 are FQ which denotes Fine Quad-

polarimetric and SM that denotes Stripmap.
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Image OPV #1 #2 #3 #4 #5
Day 8/6-11 14/8-11 14/8-11 27/8-11 4/4-13 17/7-12
Time 17.27 11:57 11:57 12:19 00:06 00:12
Sensor RS2 RS2 RS2 RS2 RS2 TSX
Mode FQ FQ FQ FQ FQ SM
Polarization Quad Quad Quad Quad Quad HH VV
Wind Speed
(m/s)

1-3 3.7 3.7 1.7 7.72 4.4

Incidence
angle (deg)

34.49:36.1 46.8:48.02 46.8:48.02 22.24:24.16 46.8:47.99 37.08:38.42

Table 5.1: Information for all the scenes.

Image OPV #1 #2 #3 #4 #5
Oil-slick
type

Crude-oil,
emulsion and
plant oil

Potential
seep

Potential
seep

Potential
seep

Seep and sar-
gassum

Cantarell
seep

Table 5.2: Overview of what the scenes contains.

As weather data, the wind speed was needed as explained in section 3.1. The only problem here was the

Meteorological Institute did not have access to weather data from the Gulf of Mexico, so the wind speed in

Table 5.1 are downloaded from weather stations [65] close to the locations of the images in �gure 5.1-5.3. As

seen from the values, almost all the wind speeds are within the threshold of 3-10 m/s except the wind speed

in image #3. For this image the wind speed is 1.7 m/s which can bring dark spots from low wind e�ect which

have to be taken into account during the data analysis. As seen from �gure 5.4 (f) there are some dark places

which can be low wind areas. Another thing to point out is the grayscale image of image #4 in �gure 5.4 (e).

The seep and sargassum are brighter than the ocean, which indicate that ocean is smoother than the slicks.

This creates some doubt about the information of the image received is correct.
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Figure 5.1: The two �rst sites of the Gulf of Mexico study area. The locations where the images were acquired.

Figure 5.2: Third and last part from the Gulf of Mexico study area. Sargassum the point to the left and the
seep the point to the right.
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Figure 5.3: The OPV-scene in the North Sea between Norway and Scotland.
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(a) Gray scale image from the vv-channel of the OPV scene (b) Gray scale image from the vv-channel of image #1

(c) Gray scale image from the vv-channel of image #2 (d) Gray scale image from the vv-channel of image #3

(e) Gray scale image from the vv-channel of image #4 (f) Gray scale image from the vv-channel of image #5

Figure 5.4: The SAR-subscenes that is processed in this thesis. Indication of what the images contains.



 



Chapter 6

Methodology

The methods used in this thesis are eigenvector-eigenvalue decomposition, polarimetric feature extraction,

derivation of scatterplots and histograms, segmentations of dark spots and classi�cation with a supervised

maximum likelihood classi�er. How these methods are performed and applied to the images is described in this

chapter.

6.1 Eigenvector-eigenvalue decomposition

The coherency matrix and the covariance matrix de�ned in section 2.4 are used in this thesis for target decom-

position and calculation of polarimetric features in Matlab. First we will look at the H/A/α-decomposition,

which is an eigenvector-eigenvalue based decomposition [66] from the coherency matrix. The coherency matrix

can be written as:

[T] = [U][
∑

][U] (6.1)

where [
∑

] is a d × d matrix, d = 2 in this case because the crosspol-channels are excluded, containing the

eigenvalues of the coherency matrix:

[
∑

] =

[
λ1 0
0 λ2

]
(6.2)

where λ1 > λ2, and [U] is a 2× 2 matrix containing the eigenvectors:

[U] = [u1 u2] (6.3)

The eigenvectors are given as:

ui = [cosαi sinαicosβie
jδi ] (6.4)

for i = 1, 2. If we put equations 6.2-6.4 into equation 6.1 the expression for the coherency matrix [66]

becomes:

[T] =

2∑
i=1

λiuiu
∗T
i (6.5)

All the features de�ned below can be found in Skrunes et al. [21].
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6.1.1 Entropy H

The entropy H is a measure of how random the scattering is [66] and is de�ned for d = 2 as:

H = −
2∑
i=1

pilog2(pi) pi =
λi

λ1 + λ2
(6.6)

where pi is the probability of the eigenvalues. The entropy takes values between 0 and 1. If H = 0 there is no

randomness of the scattering, λ1 = SPAN and λ2 = 0 (λ1 > λ2), where SPAN =
∑2
i=1 λi is the total scattered

power, and we are looking at a target. When H = 1 there is a mixture of di�erent scattering mechanisms, but

also indication of noise and λ1 = SPAN/2 and λ2 = SPAN/2. 0 < H < 1 depends on which target is the

most dominating. Smooth ocean surfaces have small entropy due to the one dominating scattering mechanism.

Sea surface areas covered with oil usually have greater values [20], however, Minchew et al. [1] state that the

entropy only is increased when the signal is close to the noise �oor.

6.1.2 Mean scattering angle α

The mean scattering angle α is de�ned as:

α =

2∑
i=1

piαi (6.7)

where α is the angle from the eigenvector in 6.4. α indicates which scattering mechanism is the dominating

one. For small values of α there is a surface scattering, for large values there is double bounce and medium

(α = 45) indicates a volume scattering [67].

6.1.3 Anisotropy A

Anisotropy measures the relative importance of the eigenvalues and is given as:

A =
λ1 − λ2
λ1 + λ2

(6.8)

Slick free areas at the ocean surface usually have anisotropy values close to 1 (λ1 >> λ2), which indicates

that there is only one scattering process dominating [20]. Areas covered with oil have less anisotropy values,

which means more contribution from the second eigenvalue and indicates there are several scattering mecha-

nisms in this area.

6.2 Polarimetric features from the covariance matrix

The �rs set of features were derived from the decomposition of the coherence matrix. The next set of features

is derived from the components of the covariance matrix.

6.2.1 Mean radar backscatter µ

Mean radar backscatter measures the brightness in the image [20] and is derived from the covariance matrix as:

µ = |det([C])|1/d (6.9)

Since µ values are brightness measures, areas covered with oil should have low values due to the dampening

of capillary waves, while oil-free areas should have higher values due to rougher surface.
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6.2.2 Co-polarization ratio γco

The co-polarization ratio is also derived from the covariance matrix by using the �rst and fourth element of the

matrix:

γco =
< |Shh|2 >
< |Svv|2 >

(6.10)

It's the magnitude of the hh-channel divided by the magnitude of the vv-channel. γco is independent of the

roughness of the surface and only depends on the dielectric constant, the incidence angle and the root mean

square error of the target [20].

6.2.3 Standard deviation (std) of the co-polarized phase di�erence (CPD)

The std. of the CPD is given as:

σφco
=
√

(< (φhh − φvv)2 > −(< φhh − φvv >)2) (6.11)

where φhh and φvv are the phases of the HH- and VV-channel. The CPD's distribution is determined by two

parameters. First of all the correlation between the HH- and VV-channel of the scattering matrix and secondly

the value of φco which corresponds to the maximum value of the distribution [20]. Oil free areas have high

correlation between the HH- and VV-channel and therefore a narrow CPD-pdf and a low σφco value. Surfaces

covered with oil however, have low correlation between the co-polarized channels and a more wider CPD-pdf

and a high σφco value [68], [69] and [70].

6.2.4 Correlation magnitude ρco

The correlation magnitude is given as:

ρco = |
< ShhS

∗
vv >√

< |Shh|2 >< |Svv|2 >
| (6.12)

and gives an indication of how related the signals of the co-polarized channels are. If ρco has a value of 1 it

means the backscattered signal of the co-polarized channels are linearly related. If ρco<1, the channels are not

so related and usually contain noise [67].

6.2.5 Real part of the co-polarization correlation rco

This correlation is de�ned as:

rco = |R(< ShhS
∗
vv >)| (6.13)

where the real part is denoted by R. rco usually have higher sea values than oil values because of the

decreased correlation with more than one scattering mechanism [20].

6.3 Statistical methods and preprocessing

Scatter plots of the polarimetric features that gave best separibility between oil and water are made. Pixel

values from small regions, a box of 2500 pixels, are taken from the features at interesting positions indicated

in �gure 6.1 in all the images. For image #4 smaller boxes are used, 50− 100 pixels. To make these plots, the

points are plotted for one feature on the x-axis and for another on the y-axis. The same points are used to

create histograms.
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6.4 Classi�cation

The classi�cation done based on the polarimetric features in this thesis will be performed in two steps. First of

all a segmentation of the potential slicks in the images will be done. Secondly a supervised classi�cation will be

used with the OPV-scene as a training set. The test set is the oil-segmented areas of the GoM-scenes to make

an attempt to assign the dark patches in the scenes as either oil-slicks or look-alikes.

6.4.1 Segmentation of the dark spots

The �rst step in the classi�cation is to segment out the dark regions that are potential oil-slicks. This is done

for the Gulf-scenes (except image #4 and #5) with the conformity coe�cient and by a threshold in the features

for the OPV-scene and image #5. For the OPV-scene, a pixel is set to water if µ > −6.2 dB and rco > −5.3dB.
In image #5 it is water if rco > −5 dB.

The conformity coe�cient has been used in previous studies for estimation of soil moisture. In 2011, Zhang

et al. [19] developed a method to use the conformity coe�cient to discriminate oil-slicks from water. The

coe�cient is de�ned as:

µcc =
2(R(ShhS∗vv)− |Shv|2)
|Shh|2 + 2|Shv|2 + |Svv|2

(6.14)

In oil free areas the co-polarized channels are strongly correlated while the signal in the cross-polarized

channels is more close to zero. This indicates that (R(ShhS∗vv)) > |Shv|2 which should give a positive µcc value.

For slick-covered areas the correlation between the co-polarized channels is much lower due to a more random

scattering, therefore |Shv|2 > (R(ShhS∗vv)) and the value of µcc should be negative. This is the method Zhang

et al. [19] used to discriminate oil-slicks from water. For the dataset in this study, the coe�ccient manage to

segment out the dark patches from the Gulf, but failed with the OPV-scene because all the pixel values were

above zero. This may have to do with di�erent weather conditions, incidence angle and the image contains

boats. The segmented areas are given in �gure 6.2.

6.4.2 Supervised maximum likelihood classi�cation

In this thesis a trained maximum likelihood classi�cator is used. As training data, all the pixels from the boxes

in �gure 6.1 (a) are used. Baye's Decision rule is de�ned as:

Decide ωi if p(x|ωi)P (ωi) > p(x|ωj)P (ωj) (6.15)

where P (ωj) are the prior probabilities and p(x|ωj) is the likelihood of wj with respect to the feature vector

x. The priors are assumed to be equal so the classes are equally probable and the decision is based entirely on

the likelihood. The approach from here is to generate a set of discriminant functions, gc(x), c = 0, 1, 2, where c

are the classes 0=water, 1=emulsion and crude-oil, and 2=plant-oil. The classi�er is then supposed to assign

the feature vector x to class i if:

gi(x) > gj(x) j 6= i (6.16)

The data are assumed to be normal distributed based on observations from the histograms which will be

presented in section 7.3. The multivariate normal density is de�ned as:
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(a) Gray scale image from the anisotropy of the OPV scene (b) Gray scale image from the anisotropy of image #1

(c) Gray scale image from the anisotropy of image #2 (d) Gray scale image from the anisotropy of image #3

(e) Gray scale image from the anisotropy of image #4 (f) Gray scale image from the anisotropy of image #5

Figure 6.1: SAR-subscenes with indication where the pixel values for the scatter plots are taken, each box
consist of 2500 pixels, exept for iamge #4 which varies from 50-150
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(a) The OPV-segmented by thresholding (b) #1 image segmented by the conformity coe�cient

(c) #2 image segmented by the conformity coe�cient (d) #3 image segmented by the conformity coe�cient

(e) #4 image segmented by the conformity coe�cient (f) #5 image segmented by thresholding

Figure 6.2: Segmentation of slick regions
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p(x) =
1

(2π)d/2|
∑
|1/2

exp[−1

2
(x− µ)

∑−1
(x− µ)] (6.17)

where d is the dimension, µ the mean vector with d-components,
∑

is the covariance matrix of the used

features (not the same as de�ned in section 2.4) of size d× d, |
∑
| its determinant,

∑−1 the invers and x is the

feature vector. The discriminant function for the normal density varies depending on the covariance matrix,

whether it is equal for all classes, if it is diagonal (the features are statistically independent and have the same

variance) or the covariance matrices for every class are arbitratry. For the OPV- and GoM-scenes, the covariance

matrices are arbitrary or di�erent and the discriminant function for the classi�cator is de�ned as:

gc(x) = −
1

2
(x− µc)

t
∑
c

−1
(x− µc)−

d

2
ln2π − 1

2
ln|
∑
c

|lnP (ωc) (6.18)

∑
c and µc are derived from the OPV-scene for the di�erent classes, then the discriminant functions derive

the probability that a pixel is in one of the di�erent classes and the classi�er assign it to the most probable.

This is done for all not-water pixels in the images [71].

6.5 Signal to noise analysis

Due to all the low backscattering areas in the images, a signal to noise system analysis has been performed.

The radar backscatter for the dark regions is compared to the noise �oor to see if it lies higher. If not, there is

a risk that the signal is corrupted by noise. The same areas used for scattering plots and histograms marked in

�gure 6.1 are used here. The mean and standard deviation of the di�erent regions are derived. Then they are

plotted with the mean as sentrum with a bar of one deviation down and one deviation up. The noise analysis

is not performed for image #5 because of trouble in the Matlab-codes.



 



Chapter 7

Results and discussion

The aim with this thesis was to investigate seep with multi-polarized SAR-images and compare values from

seeps with values from biogenic and mineral slicks. The six images presented in chapter 5 have been processed

and investigated with polarimetric features and statistic from these. The images with potential seeps have

also been classi�ed. All the results from the methods described in chapter 6 are presented here. Section 7.1

presents all the polarimetric features extracted from the scenes. Section 7.2 and 7.3 includes the scatterplots

and histograms from some of the features. In section 7.4 the signal-to-noise is presented and section 7.5 shows

the classi�cation. Section 7.6 is a discussion of the scenes.

7.1 Presentation of the values from the polarimetric features

All the polarimetric features from Skrunes et al. [20] are presented in this section. A visual inspection has

been made and also some discussion of what the results tell. The µ, γco and rco are log-transformed so they

give better contrast and therefore the values are given as dB. Table 7.1 gives an overview of all the di�erent oil

values in all the polarimetric features.

Entropy H

The entropy can be seen in �gure 7.1 (a) - 7.6 (a). The crude-oil from the OPV-scene have values around 0.6

to 0.9, while the GoM-scenes, except image #4, have values from 0.7 to 1. The water lies for the OPV-scene

around 0.1 to 0.3, in image #1 from 0.2 to 0.7 (light and dark water), in #2 from 0.4 to 0.8, in image #3 from

0.1 to 0.2, in image #4 from 0.2 to 0.7 and in #5 from 0.6 up to 0.9. In all the images, the sea has a low

entropy, which can indicate a single scattering mechanism. The crude and emulsion oil in �gure 7.1 (a) and

the dark slicks in �gure 7.2 (a)-7.6 (a) have higher entropy values, so a more complex scattering is present but

also high entropy values means the signal could be corrupted by noise. The plant-oil in �gure 7.1 (a) has values

between the crude-oil and the sea. The entropy gives a very good contrast between oil and water in all the �gures.

Mean scattering angle α

α is given in �gure 7.1 (b) - 7.6 (b). In the OPV-scene and image #3 the sea has values around 10◦ to 20◦,

in image #1 and #2 from 20◦ to 30◦, in image #5 from 25◦ to 35◦ and in image #5 from 60◦ to 70◦. The

emulsion and crude-oil for the OPV-scene lie around 40◦ to 45◦, for image #1,#2,#3 and #5 from 45◦ to 50◦

and in image #4 from 42◦ to 45◦. For the mean scattering angle results, the sea surface have low values for

the OPV-scene and image #1 −#4 which means there is a surface scattering. The slick covered areas in the

OPV-scene and image #1−#4 have greater values, most of them around 45◦, which is at the limit of a Bragg-

scattering mechanism according to the H/α plane [20]. But this is when the T-matrix is three dimensional, in

this thesis it is only two dimensional which can change the limit. A really interesting thing here is the plant oil

in the OPV image, �gure 7.1 (b), which is almost gone. The plant-oil can be spotted to a certain limit so the
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α looks promising to discriminate between oil-slicks and look-alikes.

Anisotropy A

The anisotropy feature can be seen in �gure 7.1 (c) - 7.6 (c). The emulsion and crude-oill in the OPV-scene

take values from 0.2 to 0.8, in image #1 the oil lies from close to 0 up to 0.7, in image #2 from around 0 to 0.6,

in image #3 from close to 0 up to 0.5 and in image #5 from 0 to 0.6. The water values are for the OPV-scene

from 0.9 to 1, in image #1 from 0.6 to 0.9, in image #2 from 0.5 to 0.8, in image #3 from 0.9 to 1 and in image

#5 from 0.2 up to 0.8. For the derived anisotropy images, �gure 7.1 (c) - 7.6 (c), the sea has high values which

means λ1 >> λ2 and, as mentioned about the entropy, there is only one scattering mechanism. For the slick

covered areas the values are lower. This indicates more contribution from λ2. The anisotropy also gives a good

oil to water contrast.

Mean radar backscatter µ

The mean radar backscatter is given in �gure 7.1 (d) - 7.6 (d). The oil lies for the OPV-scene from -6 to -7,

in image #1 from -6.7 dB to -7.7 dB, in #2 from -6.5 dB to -7.5 dB, in image #3 from -3 dB to -3.6 dB and

in image #5 from -3.7 dB down to -5 dB. The water values are for the OPV-scene from -4.4 dB to -5.4 dB, in

image #1 from -5.4 dB to -6.9 dB, in image #2 from -6.2 dB to -6.6 dB, in image #3 from -1.9 dB to -2.2 dB

and in image #5 from -3.5 dB to -4.5 dB. For image #4 the seep actually have higher values than sea. The

sea has values around -6 dB while the seep lies around -3.5 dB and the sargassum have values up to -1 dB.

So, it looks like the sea has a smoother surface than the seep and the sargassum which is really unusual. This

makes it more questionable if the information about this scene is correct. In all the other images the oil covered

areas take the lowest values indicating a smoother surface than the surroundings. The contrast between oil

and water is good for all the �gures. The oilrigs and boats in image #5 in �gure 7.6 (d) can be seen as strong

point targets. µ gives a good slick to sea contrast for the Radarsat-2 images, but a moderate contrast for the

TerraSAR-X-scene, image #5.

Co-polarization ratio γco

γco can be found in �gure 7.1 (e) - 7.6 (e). In this feature the oil have values around -0.3 dB for all the images.

The water in the OPV-scene have values around -0.5 dB, in image #1 and #2 around -1.2 dB to -0.5 dB, in

image #3 around -0.5 dB up to -0.3 dB, in image #4 from -1.5 dB to -0.7 dB and in image #5 from -0.5 dB

up to -0.3 dB. In other words, the oil slicks have higher values than the sea around. This may have to do with

change in dielectric constant between oil and water [20]. The contrast in the �gures is quite moderate and even

low in �gure 7.4 (e) where the slicks almost can't be seen. This may have to do with the incidence angle of

image #3. As mentioned in section 6.2.2, γco is dependent of the incidence angle and as seen from Table 5.1,

image #3 have lower incidence angle than all the other images.

Standard deviation of the CPD σφco

The derived σφco
can be found in �gure 7.1 (f) - 7.6 (f). In the OPV-scene, image #1,#2,#3 the oil have

values around 1.2 to 1.5, in image #4 the oil is from 1.7 to 2.2 and in image #5 around 2. The water for all the

images lies from 0.5 to 1.2. The results show that the sea has lower values than the slick covered areas. So, in

all the images, the co-polarized channels are more correlated in the sea areas than the oil areas. The contrast

between oil and water is moderate.



CHAPTER 7. RESULTS AND DISCUSSION 45

Image OPV #1 #2 #3 #4 #5
H c: 0.6-0.9, e: 0.6-

0.9, p: 0.2-0.6
ps: 0.7-1 ps: 0.7-1 ps: 0.7-1 s: 0.4-0.75, sa: 0.4-

0.7
s: 0.7-1

α c: 40◦ − 45◦, e:
40◦ − 45◦, p: 20◦ −
25◦

ps: 45◦− 50◦ ps: 45◦− 50◦ ps: 45◦− 50◦ ps: 42◦ − 45◦, sa:
42◦ − 45◦

s: 45◦ − 50◦

A c: 0.2-0.8, e: 0.2-
0.8, p: 0.7-0.9

ps: 0-0.7 ps: 0-0.6 ps: 0-0.5 s: 0.55-0.85, sa:
0.6-0.8

s: 0-0.6

µ c: -6dB to - 7dB, e:
-6dB to - 7dB, p: -
5.5dB to -6 dB

ps: -6.7dB to
- 7.7dB

ps: -6.5dB to
- 7.5dB

ps: -3dB to -
3.6dB

s: -5.6dB to -
6.5dB, sa: -5.6dB
to - 6.5dB

s:-4dB to -
5dB

γco c: -0.8dB to 0.5dB,
e: -1dB to 0.5 dB,
p: -1dB to 0.1 dB

ps: -1dB to
0.5 dB

ps: -1dB to
0.5 dB

ps: -1dB to
0.5 dB

s: -1dB to -0.5 dB,
sa: -1dB to -0.5 dB

s: -1dB to
0.5 dB

σco c: 1.2-1.5, e: 1.2-
1.5, p: 1-1.2

ps: 1.2-1.5 ps: 1.2-1.5 ps: 1.2-1.5 s: : 1.7-2.2, sa: 1.7-
2.2

s: 2

ρco c: 0.2-0.8, e: 0.2-
0.8, p: 0.7-0.9

ps: 0-0.6 ps:0-0.6 ps: 0-0.8 s: 0.6-0.8 , sa: 0.6-
0.8

s: 0-0.5

rco c:-6dB to -8.2dB,
e:-5.5dB to -8dB, p:
-6dB to -4dB

ps: -14dB to
-8dB

ps: -14dB to
-8dB

ps: -14dB to
-8dB

s: -6.5db to -
5.5dB,sa -6.5db to -
5.5dB

s: -10dB to -
5dB

Table 7.1: Overview of all the oil-slick values. c=crude-oil, e=emulsion, p=plant-oil, ps=potential seep, s=seep,
sa=sargassum

Correlation magnitude ρco

ρco is given in �gure 7.1 (g) - 7.6 (g). The emulsion and crude-oil lie here around 0.6 while the plant-oil around

0.7 and for the rest of the images the oil lies around 0.1 to 0.4. So, the sea has greater values than the slick

covered areas. The reason for this is probably the present of more than one scattering mechanism in the slick

areas. Kasilingam et al. [72] meant that the decrease in ρco is not from roughness but change in dielectric

constant. ρco gives a good contrast between oil and water for all the images.

Real part of the co-polarization correlation rco

As seen from the plots in �gure 7.1 (h) - 7.6 (h), the oil areas from the GoM-scenes lies from -8 dB to -14 dB

on the rco while the crude- and emulsion-oil lies between -6 dB and -8 dB. The water for the OPV-scene lies

from -3 dB to -4.5 dB, for image #1 it lies from -4 dB to -8 dB, for image #2 from -6 dB to -8 dB, for image

#3 between -2 dB and -4 dB and for image #5 from -5 dB to -13 dB. In �gure 7.1 (h) - 7.6 (h) we can see that

the correlation is less for the slick-covered areas than the ocean surface. This could be due to the present of

more than one scattering mechanism in the slick-covered areas [20]. rco gives a good contrast between oil and

water for all the images.

7.2 Results of the scatterplots

The polarimetric features used in the scatterplots are chosen based on observation from last section. H,µ,A

and rco are chosen because of the good contrast between oil and water. γco however have been chosen because

it is also interesting to investigate the dielectric properties of the di�erent slicks.
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7.2.1 Entropy vs. mean radar backscatter

In �gure 7.7 the scatter plots of entropy vs. the mean radar backscatter are given for all six scenes. For the

OPV-scene in �gure 7.7 (a) we can see that the water and plant-oil points form two separate clusters in both the

H- and µ-axis. The emulsion and crude-oill are mostly overlapping and create one separate cluster, although

the crude-oil has mostly the highest values on the H-axis and the emulsion has higher variation. For image #1

in �gure 7.7 (b) the light water area and the two oil patches make their own clusters. The dark water area makes

a third cluster between and sligthly overlapped by some of the oil points. For image #2 and #3 in �gure 7.7 (c)

and (d) the water and the oil patches clearly stand out as two di�erent clusters in both plots. For image #4 in

�gure 7.7 (e), the pixels are spread randomly around and the sargassum, the water and the seep are overlapping

with each other. The scatterplot for image #5 in �gure 7.7 (f) have two slightly overlapping clusters for the

water and the Cantarell seep. The water values are similar between the OPV-scene and image #3 and between

#1 and #2 in the H-axis. For the µ-axis, the values are similar for the OPV-scene, image #1 and #2, but

not for image #3 or #5. In the scatterplot for image #4 all the values are spread from -5.6 to -6.5 on the

µ-axis and from 0.35 up to 0.75 on the H-axis. As we can see from the values mentioned, the slick-covered

areas lie a little bit higher on the H-axis for the Gulf of Mexico scenes than the OPV-scene. On the µ-axis

the oil have similar values for the OPV-scene, image#1 and#2, but for the#3 and#5 the oil have higher values.

7.2.2 Anisotropy vs. mean radar backscatter

The scatter plots of anisotropy vs. mean radar backscatter can be seen in �gure 7.8. The plant-oil and the

water in the OPV-scene make two clusters in �gure 7.8(a) in both the A and µ-axis, the plant oil a little bit

overlapped by the emulsion-oil. Last cluster is formed by the emulsion and crude-oill. For image #1 in �gure

7.8 (b) the water areas make their own clusters and the oil areas make one cluster. In �gure 7.8 (c) and (d), the

water and oil also stand out as two di�erent clusters. For image #5 in �gure 7.8 (f) the water and seep make

two clusters, but they are a little bit overlapped. If the results in �gure 7.8 are compared with the results in

7.7, it can be seen that the clusters are almost the same, the only di�erence is that the values at the A-axis for

water and oil is opposite from the H-axis. As seen from �gure 7.8, the slick-covered areas from the Gulf have

lower values than the oil in the OPV-scene on the A-axis. Also the water values from the GoM-scenes are lower

than the water in the OPV-scene.

7.2.3 Real part of the co-polarization correlation vs. mean radar backscatter

The scatterplots can be seen in �gure 7.9. For the OPV-scene in �gure 7.9(a) the same clusters mentioned in

section 7.2.1 and 7.2.2 occur. The dark water in image #1 is a little bit overlapping with the oil. In image

#2 and #3 the oil and water make their own clusters. For the TerraSAR-X image, the clusters are much less

overlapped in the rco-axis compared to the feature axis in section 7.2.1 and 7.2.2.

7.2.4 Real part of the co-polarization correlation vs. correlation magnitude

The plots are given in �gure 7.10. Here we also have the clusters mentioned in H vs µ and A vs µ, but there

are more overlap in the ρco-axis than in the other plots exept for image #3. The crude- and emulsion-oil for

the OPV scene takes values from 0.2 to 0.8 on the ρco-axis, the oil areas in image #1 are between 0 and 0.6,

for image #2 they are between 0 and 0.5, in image #3 they are between 0 and 0.4 and for image #5 they are

from 0 to 0.6. The water in the OPV-scene are form 0.8 to 1, in image #1 and #2 they lie from 0.3 to 1, for

image #3 they lie from 0.9 to 1 and in image #5 from 0 to 0.8.
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7.3 Results of Histograms

The features used to create the histograms in this section are chosen based on the same reasons mentioned in

section 7.2. When the histograms were created, the amount of one pixel value was divided by the total amount

of pixel values. So the values on the y-axis in the histograms represent the probabilities of the pixel values on

the x-axis.

7.3.1 Histograms of H

In �gure 7.11 histograms of H from all the images can be seen. From the OPV-scene in �gure 7.11 (a) the water

make its own pdf separated from the oil, same as for the plant-oil in the middle while emulsion and crude-oill

overlap each other. In the rest, the slick-covered areas make one pdf and water another. So, H looks like a good

feature to distinguish between oil and water. One thing to notice is that the oil from the OPV-scene has more

variation than the slick-covered areas from the Gulf. All the histograms reminds of Gaussian distributions, but

they are not ideal. The skewness observed in �gure 7.11 (b)-(d) can be explained by the fact that there are

some water pixels in the selected areas. This also explains the points that connect the clusters in �gure 7.7-7.10

(b)-(d). The histograms for image #4 are really badly overlapped, most likely because there are very few pixel

points from the seep and sargassum to work with.

7.3.2 Histograms of µ

The µ histograms are given in �gure 7.12 and the pdfs are separated as in the H-histograms. Some di�erences

though can be noticed. In �gure 7.12 (a) the crude- and the emulsion-oil are more overlapping and the distribu-

tion from the di�erent areas are more equal. Also for the µ histograms it looks like the slick-covered areas from

the Gulf have more the same distribution as the oil in the OPV-scene, but not the same values. The histograms

are narrower for the µ feature vector than for the H.

7.3.3 Histograms of rco

These histograms are given in �gure 7.13. The same pdfs appear in these histograms too and the biggest thing

to notice is that the slick-covered areas from the Gulf have larger variance than the water for image #1-#3.

7.3.4 Histograms of ρco

Histograms from the ρco feature vector are given in �gure 7.14. All the mentioned pdfs stand out in the

histograms of all the images except #4. One thing to notice from these histograms is that the oil from the Gulf

(#1,#2,#3,#5) looks more Rayleigh distributed than Gaussian due to the skew towards the right side.

7.3.5 Histograms of γco

These histograms can be found in �gure 7.15. To the di�erence from the other histograms mentioned, in γco
the pdfs are more overlapped with each other. In the OPV-scene, �gure 7.15 (a), the plant oil is overlapping

with the emulsion and crude oil. Also a big part of the water is overlapping with the oil. For image #1 and #2

in �gure 7.15 (b) and (c) the oil and water make two clusters, but there is some overlap here too. In image #3

and #5 the oil is completely overlapped by the water, which makes sense since the slicks almost can't be seen in

�gure 7.4 (e) and �gure 7.6 (e). The co-polarization ratio seems to be a bad feature for distinguishing between

oil and water. However, the co-polarization ratio seems to be the only feature where the oil have almost the

same values (-0.3 dB) in all the scenes, except image #4.

7.4 Results of signal-to-noise analysis

The signal-to-noise analysis can be found in �gure 7.16. The plots reveal that all the oil bars are crossing the

noise �oor. In image #1 the mean of the oil patches are actually beneath the noise �oor and the dark water
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patches are slightly crossing the noise �oor. The mean values of the oil patches from image #2 are also beneath

the noise �oor and the water is crossing it, but the mean values are above. For image #3 the oil patches only

touching the noise �oor, the mean values are above and the water values are far above. Image #4 have all the

mean values above the noise �oor, but all the bars are crossing the noise �oor. Another thing to observe is

that in every case, the VV-channel contains less noise than the vv-channel. According to Minchew et al. [1], all

data that has backscatter less than 6 dB above the noise �oor is noise corrupted. So, all the Radarsat-2 images

contains a certain amount of noise, especially image #1 and #2.

7.5 Classi�cation results

Observed from the previous results including scatter plots, histograms and the features, decision was made to

classify based on the mean radar backscatter and entropy separately. The main reason is the small overlap

in the histograms and the good slick to sea contrast from the feature images. Image #4 is excluded from the

classi�cation because there is not enough values in the seep or the sargassum, and also the suspicion of not right

information about the scene. The classi�ed images can be seen in �gure 7.17 and 7.18. In the classi�ed images

based on the mean radar backscatter feature vector in �gure 7.17 almost every part of the dark patches in the

scenes is classi�ed as oil. Only in image #1 there are small areas in the slicks that are classi�ed as plant oil or

look-alike. For the classi�cation based on the entropy in �gure 7.18 most of the slicks are classi�ed as oil here

too. But in this case more areas in image #1 and also in image #2 and #3 are classi�ed as plant-oil. Image

#5 is almost only classi�ed as oil or water. A lot of water pixel in these two classi�cations has been classi�ed

as oil instead. But as seen from the histograms in �gure 7.11 (f) and 7.12 (f) the oil and water are overlapping,

which will make some of the water pixels mistaken as oil pixels and opposite.

The result of some parts classi�ed as plant oil is not surprising because oil slicks have thinner areas, usually

around the edges between oil and sea. So the areas classi�ed as plant oil can be places where the slicks are

thinner than the rest of the slick. The surprising thing by these areas is where they are located. As seen from

�gure 7.17 (a) and 7.18 (a)-(c) the areas are not only around the edges, but also spread inside the slicks. So it

looks like there must be variations inside the slicks.

7.6 Discussion of the scenes

From the results given in section 7.1 - 7.4, there are di�erent things that have to be pointed out. First of all

the GoM-scenes have to be considered. From the results in section 7.1-7.3 the dark patches show similar, but

not the same, results as the crude and emulsion-oil from the OPV-scene. Also the classi�cation stated that the

slicks are most similar to emulsion and crude-oil. Another thing to be pointed out is the location of the slicks

with no sign of vessels or rigs. So, either the ships are gone or the source of the slicks in image #1, #2 and #3

must come from beneath the surface, either a seep or a leaking pipeline.

Even though there are similarities, in most of the cases there are di�erences between the slick values in

the polarimetric features. In some of the features, like H, rco, ρco and A, the Gulf-scenes seem to have similar

values to each other but di�erent from the OPV-scene. The GoM-scenes have higher entropy values and lower

anisotropy values which can be explained by the signal-to-noise observation from section 7.4. Compared to

Skrunes et al. [21], the slicks from the GoM-scenes are closer to the noise �oor than the OPV-scene which can

cause greater entropy values and lower anisotropy values. Di�erences in the rco indicate that the scattering

processes in the di�erent scenes are not totally the same. ρco also show such di�erences which can indicate

some variety in the scattering mechanism. This can be explained by di�erent sea-states and incidence angles

between the scenes since the water values are di�erent too.

Another thing to point out is that for the γco feature, the oil have approximately the same values for all
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the scenes, but the water have di�erent values. So, the slicks from the GoM-scenes may have similar dielectric

properties as the crude-oil, emulsion and plant-oil from the North Sea. For the µ feature vector, the values of

the slicks and sea seem to vary a lot more between the scenes. Since this is a brightness measure, µ is a�ected

by parameters like wind speed which varies between the scenes, see table 1 in Chapter 5.



CHAPTER 7. RESULTS AND DISCUSSION 50

(a) Entropy, log(H) (b) Mean scattering angle, α

(c) Anisotropy, A (d) Mean radar backscatter, log(µ)

(e) Co-polarization ratio log(γco) (f) Standard deviation of the CPD, σφ

(g) Correlation magnitude ρco (h) Real part of the co polarization correlation log(rco)

Figure 7.1: Multi-polarization features calculated from the OPV-scene
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(a) Entropy, log(H) (b) Mean scattering angle, α

(c) Anisotropy, A (d) Mean radar backscatter, log(µ)

(e) Co-polarization ratio log(γco) (f) Standard deviation of the CPD, σφ

(g) Correlation magnitude ρco (h) Real part of the co polarization correlation log(rco)

Figure 7.2: Multi-polarization features calculated from image #1
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(a) Entropy, log(H) (b) Mean scattering angle, α

(c) Anisotropy, A (d) Mean radar backscatter, log(µ)

(e) Co-polarization ratio log(γco) (f) Standard deviation of the CPD, σφ

(g) Correlation magnitude ρco (h) Real part of the co polarization correlation log(rco)

Figure 7.3: Multi-polarization features calculated from image #2
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(a) Entropy, log(H) (b) Mean scattering angle, α

(c) Anisotropy, A (d) Mean radar backscatter, log(µ)

(e) Co-polarization ratio log(γco) (f) Standard deviation of the CPD, σφ

(g) Correlation magnitude ρco (h) Real part of the co polarization correlation log(rco)

Figure 7.4: Multi-polarization features calculated from image #3



CHAPTER 7. RESULTS AND DISCUSSION 54

(a) Entropy, log(H) (b) Mean scattering angle, α

(c) Anisotropy, A (d) Mean radar backscatter, log(µ)

(e) Co-polarization ratio log(γco) (f) Standard deviation of the CPD, σφ

(g) Correlation magnitude ρco (h) Real part of the co polarization correlation log(rco)

Figure 7.5: Multi-polarization features calculated from image #4
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(a) Entropy, log(H) (b) Mean scattering angle, α

(c) Anisotropy, A (d) Mean radar backscatter, log(µ)

(e) Co-polarization ratio log(γco) (f) Standard deviation of the CPD, σφ

(g) Correlation magnitude ρco (h) Real part of the co polarization correlation log(rco)

Figure 7.6: Multi-polarization features calculated from image #5
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(a) Scatterplot from the OPV image (b) Scatterplot from image #1

(c) Scatterplot from image#2 (d) Scatterplot from image #3

(e) Scatterplot from image #4 (f) Scatterplot from image #5

Figure 7.7: Scatter plots of the entropy vs. mean radar backscatter
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(a) Scatterplot from the OPV image (b) Scatterplot from the #1 image

(c) Scatterplot from image #2 image (d) Scatterplot from image #3 image

(e) Scatterplot from image #4 image (f) Scatterplot from image #5 image

Figure 7.8: Scatter plots of the anisotropy vs. mean radar backscatter
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(a) Scatterplot from the OPV image (b) Scatterplot from image #1

(c) Scatterplot from image #2 (d) Scatterplot from image #3

(e) Scatterplot from image #4 (f) Scatterplot from image#5

Figure 7.9: Scatter plots of the real part of the co-polarization ratio vs. mean radar backscatter



CHAPTER 7. RESULTS AND DISCUSSION 59

(a) Scatterplot from the OPV image (b) Scatterplot from image #1

(c) Scatterplot from image #2 (d) Scatterplot from image #3

(e) Scatterplot from image #4 (f) Scatterplot from image #5

Figure 7.10: Scatter plots of the real part of the co-polarization ratio vs. correlation magnitude
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(a) Entropy of the OPV image (b) Entropy of image #1

(c) Entropy of image #2 (d) Entropy of image #3

(e) Entropy of image #4 (f) Entropy of image #5

Figure 7.11: Histograms of the entropy from all the images
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(a) Mean radar backscatter of the OPV image (b) Mean radar backscatter of image #1

(c) Mean radar backscatter of image #2 (d) Mean radar backscatter of image #3

(e) Mean radar backscatter of image #4 (f) Mean radar backscatter of image #5

Figure 7.12: Histograms of the mean radar backscatter from all the images
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(a) Real part of the co-polarization ratio of the OPV image (b) Real part of the co-polarization ratio of image #1

(c) Real part of the co-polarization ratio of image #2 (d) Real part of the co-polarization ratio of image #3

(e) Real part of the co-polarization ratio of image #4 (f) Real part of the co-polarization ratio of image #5

Figure 7.13: Histograms of the real part of the co-polarization ratio from all the images
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(a) Correlation magnitude of the OPV image (b) Correlation magnitude #1 image

(c) Correlation magnitude of the #2 image (d) Correlation magnitude of the #3 image

(e) Correlation magnitude of the #4 image (f) Correlation magnitude of the #5 image

Figure 7.14: Histograms of the correlation magnitude from all the images
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(a) Co-polarization ratio of the OPV image (b) Co-polarization ratio of image #1

(c) Co-polarization ratio of image #2 (d) Co-polarization ratio of image #3

(e) Co-polarization ratio of image #4 (f) Co-polarization ratio of image #5

Figure 7.15: Histograms of the co-polarization ratio from all the images
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(a) Noise �oor of image #1 (b) Noise �oor of image #2

(c) Noise �oor of image #3 (d) Noise �oor of image #4

Figure 7.16: The noise �oor plotted as a function of the incidence angle. Also the mean and standard deviation
of the di�erent patches from �gure 6.1 are plotted with one deviation up, and one deviation down

(a) Classi�cation of image #1 (b) Classi�cation of image #2

(c) Classi�cation of image #3 (d) Classi�cation of image #5

Figure 7.17: The Radarsat-2 scenes from the Gulf classi�ed based on the mean radar backscatter feature vector
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(a) Classi�cation of image #1 (b) Classi�cation of image #2

(c) Classi�cation of image #3 (d) Classi�cation of image #5

Figure 7.18: The Radarsat-2 scenes from the Gulf classi�ed based the entropy feature vector



Chapter 8

Conclusion

In this thesis, di�erent oil types in SAR-images have been studied. The intension was to investigate the ability

of multi-polarization SAR to explore di�erences between natural seeps, biogenic slicks and crude-oil. Five quad-

pol Radarsat-2 C-band images and one X-band dual-pol TerraSAR-X scene were used. Four of the Radarsat-2

images were from the Gulf of Mexico (#1, #2, #3 and #4), three with unknown dark patches and one that

contained a seep and sargassum. The last Radarsat-2 image included both crude-oil, emulsion and plant oil

(OPV-scene). The TerraSAR-X image (#5) contained the famous Cantarell seep. Most of the study have been

about the OPV-scene and image #1, #2 and #3, while image #4 and #5 were used for comparison. A visual

and statistical investigation of polarimetrc features have been presented. A supervised classi�cation was also

executed to see if the dark patches would be stated as crude oil or plant oil.

First of all, eight di�erent multi-polarimetric features were derived, studied and compared for all the scenes.

Visually the features distinguish between the slicks and sea. The reason for this is the di�erent scattering

processes from di�erent surface roughness and change in dielectric constant. The contrast between oil and sea

varies, depending on the feature. In most of the features, the slicks from the Gulf showed similar properties as

crude-oil. In summary, the entropy and the mean radar backscatter gives the best contrast between oil and water.

Secondly, histograms and scatterplots were made. They showed that slick covered areas made their own pdfs

and clusters, separated from the water. The separability showed to be better in C-band than in X-band. Values

from some of the �gures showed that the seep-slicks have di�erent values than the oil-values in the OPV-scene.

A small problem though is that the di�erences between the seeps and the oil may be a�ected by the di�erence

of incidence angle, wind speed and noise level between the scenes.

The classi�cation used in this thesis showed that the dark patches from image #1, #2, #3 and #5 most

probably are emulsion and crude-oil, rather than plant oil. Variations inside the slicks were observed from the

classi�cation too. The ML-algorithm show potential to classify seeps, but with only one image as training data

the classi�cation is not trustworthy enough.

Hence, for the dark patches in image #1, #2 and #3, they are assumed likely to be natural oil seeps because

of the results and no sign of vessels or rigs. The seeps and crude-oil express some di�erences in most the

multipolarimetric features, but to get more knowledge about these di�erences, a further investigation is needed

where sea state, incidence angle and noise are more corrected for. Larger di�erences were observed between the

seeps and plant-oil which can open the possibility that the features are able to discriminate between seeps and

look-alikes.

8.1 Future work

Suggestions for future work:

67
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� A problem for characterization of natural seeps is the lack of data and ground truth. More multi-

polarization SAR-mages with observed seeps could help to study their polarimetric radar signature and the

potential of inferring information about their physical and chemical properties. Images containing both

seeps and biogenic slick could make a basis to compare seeps with look-alikes under the same weather

conditions.

� Really interesting would be to study the same seeps with di�erent bands (X, C and L). A comparison of

seeps and how they behave in the di�erent bands would give a good overview of which band is good for

di�erent purposes.

� A more advanced algorithm for segmentation and classi�cation which is better trained with more data.

Classi�cation based on more than one feature would also be interesting.
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