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Abstract. The plasma dispersion function and the
reduced velocity distribution function are calculated
numerically for any arbitrary velocity distribution
function with cylindrical symmetry along the magnetic
®eld. The electron velocity distribution is separated into
two distributions representing the distribution of the
ambient electrons and the suprathermal electrons. The
velocity distribution function of the ambient electrons is
modelled by a near-Maxwellian distribution function in
presence of a temperature gradient and a potential
electric ®eld. The velocity distribution function of the
suprathermal electrons is derived from a numerical
model of the angular energy ¯ux spectrum obtained by
solving the transport equation of electrons. The numer-
ical method used to calculate the plasma dispersion
function and the reduced velocity distribution is de-
scribed. The numerical code is used with simulated data
to evaluate the Doppler frequency asymmetry between
the up- and downshifted plasma lines of the incoherent-
scatter plasma lines at di�erent wave vectors. It is shown
that the observed Doppler asymmetry is more depen-
dent on deviation from the Maxwellian through the
thermal part for high-frequency radars, while for low-
frequency radars the Doppler asymmetry depends more
on the presence of a suprathermal population. It is also
seen that the full evaluation of the plasma dispersion
function gives larger Doppler asymmetry than the heat
¯ow approximation for Langmuir waves with phase
velocity about three to six times the mean thermal
velocity. For such waves the moment expansion of the
dispersion function is not fully valid and the full
calculation of the dispersion function is needed.

Key words. Non-Maxwellian electron velocity
distribution � Incoherent scatter plasma lines � EISCAT �
Dielectric response function

1 Introduction

We want to estimate the ®eld-aligned electron mean drift
velocity Ve from incoherent scatter Doppler measure-
ment of the plasma lines (Vidal-Madjar et al., 1975;
Bauer et al., 1976; Showen, 1979). In order to do this we
need to solve accurately the plasma dispersion relation
for electrostatic waves at high frequencies and thus to
have an accurate model of the electron velocity distri-
bution function.

A common way of representing the whole electron
velocity distribution function is to separate it into two
populations: the ambient or bulk population fa�v� and
the suprathermal or tail population fs�v�, and special
care needs to be taken for the treatment of the transition
region between the suprathermal and ambient electrons.
At ionospheric heights about the F 2 region, the bulk
population of the electrons is collision-dominated and
thus the velocity-space distribution is expected to be
very close to a Maxwellian. In this case, the parameters
describing the state of the thermal population are: the
electron density ne, the electron temperature Te and the
potential source of inhomogeneity such as the spatial
gradients of electron temperature $Te and pressure $pe,
as well as possibly an electric ®eld E. These parameters
are provided by the analysis of the measurement of the
ion line incoherent scattering. On the other hand, the
suprathermal component fs�v� is taken from a complete
kinetic electron transport code which takes into account
the ionization and heating resulting from both solar
insolation and particle precipitations.

In the ®rst part, we describe and review the original
theory developed to calculate the velocity distribution
function of the ambient electrons in the presence of a
temperature gradient and/or an electric ®eld (Spitzer
and H�arm, 1953). Thereafter we present and discuss
the calculations we use to represent the suprathermal
part of the distribution function. We then describe a
numerical method to calculate the full two-dimensionalCorrespondence to: P. Guio
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dispersion relation. We test our numerical code and
discuss the results on simulated Doppler asymmetry
data for radars with di�erent wave vector and compare
the results given by the heat ¯ow approximation of
Kofman et al. (1993).

2 The ambient velocity distribution

For low energy and for a fully ionized plasma consisting
of electrons and one ion species, the distribution
function of the electrons in a highly collisional regime,
i.e. in a regime where the velocity-space distribution of
the electrons is close to a Maxwellian (Gombosi and
Rasmussen, 1991), can be approximated by the Spitzer-
HaÈ rm distribution function of Cohen et al. (1950) and
Spitzer and H�arm (1953).

This time-independent distribution function is the
result of the presence of a weak electric ®eld and a
temperature gradient. The distribution function is
expanded as a power series in the Knudsen number �
which represents the ratio of the microscopic length
scale to the macroscopic length scale. In this theory only
the ®rst order in � is kept, which is known as the
principle of local action (Woods, 1993). This restriction
to small values of � implies that the electron mean free
path ke is much smaller than the di�erent scale lengths
considered r log Te, r log pe and eE=KbTe (Ljepojevic
and MacNeice, 1989). The two Knudsen numbers
associated are respectively �E and �T de®ned as

�E � ke
eE

KbTe
ÿrpe

pe

� �
�1�

and

�T � 2ke
rTe

Te
; �2�

where E is the electric ®eld, Te the electron temperature,
pe the electron pressure and r represents the derivative
along the line of sight. For small Knudsen numbers, i.e.
�E�1 and �T�1, perturbation methods apply and the
ambient electron velocity distribution function fa is
expanded about a local Maxwellian f0�v��ne=
�2p�3=2=v3e exp�ÿ�v=ve�2=2� with thermal velocity ve�
�KbTe=me�1=2 and takes the following form

fa�xve; l� � f0�xve��
1� Zl

ÿ
�EXE

ÿ
x=

���
2
p �� �T XT

ÿ
x=

���
2
p ���

; �3�
where l is the cosine of the pitch angle measured from
an axis parallel to the direction of the temperature
gradient and electric ®eld, Z is the charge number of the
ion species and x is the ratio v=ve. The functions XE and
XT are the solutions of two second-order di�erential
equations [Eq. (40) of Spitzer and H�arm (1953) and Eqs.
(6)±(13) of Cohen et al. (1950)] derived from the
Boltzmann's equation where only the long-range elec-
tron-electron and the electron-ion interactions have
been taken into account through two Fokker-Planck
collision operators. This approximation is valid for low
energy only, so that the upper boundary of integration

of these functions should not be too large compared to
the mean thermal velocity ve. We have recalculated the
solutions to these equations for di�erent values of the
upper boundary. Figure 1 shows the two functions XE
and XT for those di�erent values of the upper boundary
of integration xmax.

By taking the ®rst- and third-order velocity moments
of the perturbation functions XE and XT one de®nes four
transport coe�cients cE, dE, cT and dT . These are the
normalized transport coe�cients relative to a Lorentz-
ian gas (Spitzer and H�arm, 1953; Shkarofsky, 1961).
Equations 4±7 show the relations between these coe�-
cients, the velocity moments of the distribution function
and the transport coe�cients re, se, le and je.

cE �
1

3
I3�XE� �

���
p
p

meve

4
���
2
p

Ze2neke
re; �4�

dE � 1

12
I5�XE� �

���
p
p

meve

6
���
2
p

ZeneKbke
se; �5�

Fig. 1. The perturbation functions XE and XT integrated to di�erent
upper boundary xmax � v=

���
2
p

ve � 2:8; 3:2; 3:6 and 4:0, and for an
ion charge number Z�1. Note that XE�0��XT �0��0 and that the
XE's are shifted by ÿ10 with each other, the XT 's are shifted by �5
with each other, the reference curves (i.e. not shifted) are for
xmax � 2:8
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cT � ÿ
4

9
I3�XT � � 3

���
p
p

ve

16
���
2
p

Zeneke
le; �6�

dT � ÿ 1

15
I5�XT � �

���
p
p

ve

40
���
2
p

ZneKbke
je; �7�

with

In�f � �
Z xmax

0

ynf �y� exp�ÿy2�dy; �8�

where re is the electrical conductivity, se is the current
¯ow conductivity due to a temperature gradient at
constant electron density, le is the heat ¯ow conductiv-
ity due to an electric ®eld at constant electron temper-
ature and je is the thermal conductivity.

Table 1 presents the values of the normalized
transport coe�cients we have recalculated and the
original values of Spitzer and HaÈ rm (1953). With the
exception of the values for xmax�2:8, the values of the
transport coe�cients are in good agreement (under 1%)
with the values calculated by Spitzer and HaÈ rm
(xmax�3:2).

In the work of Spitzer and HaÈ rm, the electron mean
free path ke is taken to be the mean free path due to
electron-electron collisions and electron-ion collisions.
We shall correct the electron mean free path to take into
account the electron-neutral collision term (Banks,
1966). We de®ne the electron mean free path as

1

ke
� 1

kee
� 1

kei
� 1

ken
; �9�

or as a function of the electron-charged particle free
path kec:

ke � kec

1� kec=ken
: �10�

The electron-neutral collisions tend to reduce the
electron mean free path, and in the limit of low neutral
particle densities we recover the electron mean free path
value of a fully ionized plasma (Banks, 1966). It is
important to note that the di�erential equations for the
perturbation functions XE and XT have not been
modi®ed, thus the departure of the velocity distribution
function from the Maxwellian state is still caused by
Coulomb interactions through the two Fokker-Planck
collision operators for distant interactions.

In the ionosphere, a so-called polarization electric
®eld E builds up such that the ions and electrons are
constrained to drift as a single gas, which maintains bulk
charge neutrality. E is determined by the current J and it

exists whenever there is a gradient in the electron density
or in the temperature (Min et al., 1993). It is given by

E � J

re
� $pe

ene
ÿ se

re
$Te: �11�

If the ®eld-aligned current is attributed to the ¯ow of the
suprathermal electrons only then the J=re term is small
compared with the gradient terms and we get the
following relation between the electric ®eld E and the
gradient of temperature $Te

E � $pe

ene
ÿ 3cT Kb

2cEe
$Te: �12�

Using Eqs. (1) to (7), this leads to the following
relationship between the twoKnudsen numbers �E and �T

4�EcE � 3�T cT � 0: �13�
In the rest of this paper we always consider the presence
of such a polarization electric ®eld. The two Knudsen
numbers for the Spitzer-HaÈ rm distribution then always
satisfy Eq. (13).

3 The suprathermal velocity distribution

The suprathermal velocity distribution fs we use is
derived from the angular energy ¯ux / calculated by the
electron transport model code along the Earth magnetic
®eld described in Lilensten et al. (1989) and Lummerz-
heim and Lilensten (1994).

In the ionosphere, primary photoelectrons or precip-
itating electrons move along the magnetic ®eld, produce
heat and provoke processes such as excitation and
ionization. In an ionization process, the incident elec-
tron mostly scattered forward is called the primary
electron, while the extracted electron may be scattered in
any direction and is called the secondary electron. This
code calculates the energy ¯ux of the electrons by
solving the vertical kinetic transport equation. This
equation simply expresses the fact that the variation of
the steady-state electron ¯ux with the scattering depth
for a given altitude, energy and pitch angle, is the
di�erence between whatever leaves that energy, altitude
or angle slab and whatever enters it. The variations in
energy or angle due to collisions are described through
di�erential cross-sections. An additional energy loss
arises from the heating of the ambient thermal electron
gas due to hot electrons to thermal electrons interac-
tions. This loss process is assumed to be a continuous
energy loss of the hot electrons to the thermal electrons,
without any de¯ection during the process.

We are using the angular energy ¯ux calculated by
this code as our input to calculate the velocity distribu-
tion. The electron velocity distribution is simply related
to the angular energy ¯ux by

/�r;E;X; t� � v2

me
fs�r;E;X; t� eVÿ1 cmÿ2 sÿ1 �14�

where E� 1
2 mev2 and X is the solid angle. With the

assumption that the angular energy ¯ux is symmetric

Table 1. The normalized transport coe�cients as de®ned in Eqs.
(4) to (7) calculated for di�erent values of xmax and compared with
the ones given by Spitzer and HaÈ rm (xmax = 3.2)

xmax 2.8 3.2 Spitzer-HaÈ rm 3.6 4.0

cE 0.5740 0.5811 0.5816 0.5826 0.5832
cT 0.2507 0.2677 0.2727 0.2715 0.2718
dE 0.4436 0.4622 0.4652 0.4672 0.4698
dT 0.1877 0.2149 0.2252 0.2228 0.2237
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around the magnetic ®eld, fs is a two-dimensional
function of the energy E or the velocity v and of the
pitch angle h or the cosine of the pitch angle l � cos h to
the magnetic ®eld at a given altitude.

The angular energy ¯ux / is calculated over an energy
grid of 215 points ranging from Emin�0:3 eV to
Emax�350 eV and over a l-grid corresponding to the
points of the double-Gauss quadrature integration rule
(Stamnes et al., 1988). The number of points in the l-grid
is often referred to as the number of streams. The double-
Gauss quadrature refers to two Gauss quadratures
applied separately on the upper and lower hemispheres.
The main advantage of this double-Gauss scheme is that
the quadrature points (in even orders) are distributed
symmetrically around jlj�0:5 and clustered both to-
wards jlj � 1 and l�0, whereas in the single Gauss
scheme they are clustered towards jlj�1. This clustering
towards l�0 will give superior results near the bound-
aries where the functions to integrate vary rapidly or can
even be discontinuous, i.e. around l�0.

The angular ¯ux calculations we are using were
obtained by running the code for 25 June 1994 at
14:00 UT over Tromsù assuming an Ap index of 3 and
a F10.7 index of 75. The ionospheric parameters used as
input to the code have been computed by the IRI 90
model (Bilitza, 1990).

Figures 2 and 3 show two examples of calculation of
the distribution function for an eight-point angular
quadrature. Figure 2 shows only the ¯ux for one angle,
the ¯ux at this height is nearly isotropic and one could
not separate the ¯ux. From a height of about 200km and
above, the velocity distribution starts to develop an
anisotropy mostly in the direction of the magnetic ®eld,
i.e. for jlj'1. This feature is clearly seen in Fig. 3: the
two angular distributions in the lowest plate are for
nearly parallel and anti-parallel directions to the mag-
netic ®eld and they clearly present di�erences in inten-
sity, while in the highest plate (angular distributions for
the directions nearly perpendicular to the magnetic
®eld), the two curves cannot be separated.

An interesting function which illustrates the regions
in phase space where the heat ¯ux is predominantly
carried is the ratio of the integrated heat ¯ux up to
velocity v � xve and normalized to the total net heat ¯ux
qs (Gray and Kilkenny, 1980). We de®ne in this way the
function a�v=ve�

a�x� � me

2qs

Z v

0

Z 1

ÿ1
juÿusj2�ulÿus�fs�u; l�2pu2dl du; �15�

where us is the mean drift velocity of the suprathermal
velocity distribution. Note that with the symmetry
around the magnetic ®eld both the mean drift velocity
us and qs are vectors parallel to the magnetic ®eld of
component us and qs, respectively.

Figure 4 shows the values of the parameter a at
di�erent altitudes for a standard set of suprathermal
distribution function calculated by the transport code
for an eight-stream run. At high altitudes (see Fig. 4 at
246 km for example), the local skewness is more than the
net skewness for velocity v � 30ve, which means that

locally the distribution can have skewness of opposite
sign compared to the total skewness of the distribution.

We now have a representation for the ambient and the
suprathermal distributions, the next operation consists in
the treatment of the transition region between the
suprathermal and the ambient electrons. Sophisticated
methods such as the numerical resolution of the non-
linear Boltzmann equation (Ashihara and Takayanagi,
1974; Jasperse, 1976), as well as full analytical treatment
such as the one proposed by Krinberg (1973) have been
studied to solve this problem.However, it has been shown
later that a good approximation for the complete
distribution function can be obtained by joining the two
distribution functions at the energy for which the two
distributions have equal intensities (Krinberg and Aka-
tova, 1978; Stamnes and Rees, 1983). For simplicity we
choose this method and in the rest of this paper the
terminology truncated distribution refers to a distribu-
tion cut at the velocity where the ambient population
equals the suprathermal population.

4 Numerical two-dimensional plasma dispersion

In linear theory the di�erential scattering cross-section
d2r=dX dx per angular frequency and per solid angle for
a multi-component, uniform, stationary, along the
magnetic ®eld and non-relativistic plasma with the
collisions e�ects included through a BGK model is
given by (She�eld, 1975; BjùrnaÊ and Trulsen, 1986;
Ichimaru, 1992)

d2r
dXdx

� 1���
p
p ner20jn� �n� p�j2S�k;x�; �16�

Fig. 2. The suprathermal angular velocity distribution function
calculated by the transport code for an eight-stream calculation at
151 km and for a pitch angle of 86� (i.e. l�0:0694). The distribution
is nearly isotropic, and the data at the other pitch angles would not be
distinguishable on the same plate
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where the spectral density function S is de®ned as

S�k;x� � 1� Ce�k;x�
D�k;x�

���� ����2Im Pe�k;x� ÿ mejPe�k;x�j2���
p
p jXe�k;x�j2

�
X

j

nj

ne
z2j

Ce�k;x�
D�k;x�
���� ����2

Im Pj�k;x� ÿ mjjPj�k;x�j2���
p
p jXj�k;x�j2

; �17�

with

D�k;x� � 1ÿ
X

a

Ca�k;x�; �18�

Ca�k;x� � Za�k;x�=Xa�k;x�; �19�
Xa�k;x� � 1� imaPa�k;x�; �20�

Za�k;x� �
X

k

Za;k�k;x�; �21�

Za;k�k;x� �
x2

a;k

k2

Z
L

k � $vfa;k�v�
k � vÿ xÿ ima

d3v

Pa�k;x� � 1

na

X
k

na;k

Z
L

fa;k�v�
k � vÿ xÿ ima

d3v: �23�

fa;k � fa;k=na;k denotes the velocity probability distribu-
tion function for the kth component of the particle species
a (e for the electrons and j for the ions). ma is the collision
frequency of the particle species a; r20 � e2=�4p�0mec2� is
the electron radius, n is the unit vector pointing from the
scattering volume towards the receiver and p is the unit
polarization vector of the incident radiation; x is the
frequency shift between the transmitted radio wave x0

and the received frequency xr, k is the wave vector shift
de®ned as the di�erence between the returned wave
vector and the transmitted radio-wave vector k0.

x � xr ÿ x0; �24�
k � xr

c
nÿ k0: �25�

D and Za are respectively the dielectric function and the
opposite of the susceptibility function for the particle
species a.

In order to calculate the dispersion relation, we need
to calculate integrals of the P and Z types de®ned by

Z�k;x� � x2
e

k2

Z
L

k � $vf �v�
k � vÿ xÿ im

d3v �26�
and

P �k;x� �
Z
L

f �v�
k � vÿ xÿ im

d3v; �27�

for velocity probability distribution f de®ned in a
cylindrical coordinate system along the magnetic ®eld
(which is the same direction as the temperature gradi-
ent), and when the scattered wave vector k is aligned to
the local magnetic ®eld line.

When m � 0, one can note by applying the Plemelj
formula that the imaginary part of P is proportional to

Fig. 3. The suprathermal angular velocity distribution function for the
same eight-stream calculation at 249 km. Each plate contains two
curves corresponding to two angles symmetric around the direction
perpendicular to the magnetic ®eld, i.e the upward angular ¯ux (thin
solid line) and the downward one (thick solid line). The upper
horizontal scale on each plate is energy expressed in eV

Fig. 4. The coe�cient of location of the heat ¯ux a of Eq. (15) for ®ve
di�erent altitudes for the eight-stream calculation of the transport
code of the 25 June 1994
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the reduced velocity distribution function Fk along the
direction of k.

Fk
x
k

� �
� k

p
Im P �k;x� �

Z
f �v�d�k � vÿ x� d

3v

p
: �28�

When the collision frequencies are very small, we found
that P can be expressed in the form

P �k;x� ' 1

kve
Pn

x
kve

� �
; �29�

with

Pn�y� � 2p

" Xn=2
i�ÿn=2

i6�0

wi

Z x2

x1

x2

li

v3ef �xve; li�
xÿ y=li

dx

� ip
Xn=2
i�1

wi
jyj
y

y2

l3i
v3ef

yve

li
; li

� �#
; �30�

where wi and li are respectively the weights and points
of a n-points double-Gauss quadrature. In the same
way, Z can be formulated

Z�k;x� ' ÿ ks

k

� �2

Zn
x

kve

� �
; �31�

with

Zn�y� � ÿ2p
" Xn=2

i�ÿn=2

i 6�0

wi

Z x2

x1

x2

li
v3e
n � $vf �xve; li�

xÿ y=li
dx

Fig. 5. On the left, the real and imaginary parts
of the Pn function given by Eq. (35) for complex
argument such that the imaginary part g � 0:1.
On the right, their relative error with the real
and imaginary parts of Z�z= ���

2
p �= ���

2
p

, where Z is
the plasma dispersion function (Fried and
Conte, 1961). The normalized Doppler shift of
the Maxwellian distribution is xd � 0:5
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� ip
Xn=2
i�1

wi
jyj
y

y2

l3i
v3en � $vf

� yve

li
; li

�#
; �32�

where n=k/k and

n � $vf �v; l� � l
@f �v; l�
@v

� 1ÿ l2

v
@f �v; l�
@l

: �33�

When collisions are not negligible, the Pn and Zn
functions are modi®ed to the following expressions

Pn�y � ig� � 2p
Xn=2

i�ÿn=2

wi

�
Z x2

x1

x2

li
v3e

f �xve; li��xÿ y=li � ig�
�xÿ y=li�2 � g2

dx; �34�

and

Zn�y � ig� � 2p
Xn=2

i�ÿn=2

wi

�
Z x2

x1

x2

li
v3e
n � $vf �xve; li��xÿ y=li � ig�

�xÿ y=li�2 � g2
dx;

�35�
The integral over the normalized velocity is either of

Cauchy principal values type or integral of rational
functions. Two di�erent quadratures are used to calcu-
late these integrals.

4.1 Test of Pn and Zn on a Maxwellian

We performed tests on the numerical evaluation of the
Pn and Zn functions for a Doppler-shifted two-dimen-
sional Maxwellian distribution. The result for the Zn

Fig. 6. On the left, the real and imaginary parts
of the Zn function for same complex argument as
in Fig. 5. On the right, their relative error with
the real and imaginary parts of the W function
(Ichimaru, 1992). The normalized Doppler shift
of the Maxwellian distribution is xd � 0:5
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function is compared with the W function of a reduced
Doppler-shifted Maxwellian (Ichimaru, 1992). The re-
sult for the Pn function is compared with Z�x= ���

2
p �= ���

2
p

where Z is the plasma dispersion function de®ned by
Fried and Conte (1961).

The input for the code consists of a two-dimensional
array ®lled with sampled data in both pitch angle and
velocity. The velocity points are normalized to the
mean drift velocity ve. The parameters used for our test
(Figs. 5 and 6) are, for the velocity space: 250 points
ranging from 0 to 20ve. It is muchmore than required and
it is seen that the accuracy is not improved by increasing
the sampling rate, nor by taking more points in the tail of
the distribution function. On the other hand, the test
shows that the precision is highly dependent on the
number of points in the pitch angle quadrature for the
calculation in the near thermal region, i.e. for jvj � 4ve,
but not too much for velocities jvj > 4ve.

In the thermal region, the accuracy is drastically
improved by going from an eight-point double-Gauss
quadrature (the relative error is about 10ÿ1), to a 32-
point quadrature where the relative error is better than
10ÿ4. For larger velocities the accuracy is quite stable
and is better than 10ÿ7.

4.2 Test of Pn and Zn on the Spitzer-H�arm distribution

We also performed tests on the Spitzer-H�arm distribu-
tion function. We looked at the in¯uence of the upper
boundary of integration xmax of the XE and XT functions
when evaluating Pn and Zn. The values of xmax we used
are the ones listed in Table 1.

For our test we used �T � 5 � 10ÿ2, although the
linear theory of heat conduction breaks down for such
large values of �T , that is these values give negative

Fig. 7. On the left, the real and imaginary parts
of Pn for real argument (g � 0) and for Knudsen
number �T � 5 � 10ÿ2 and �E � ÿ3�T cT =4cE. On
the right the di�erence between Pn and
Z�x= ���

2
p �= ���

2
p

for the four di�erent values of
xmax of Table 1
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values of the velocity distribution function (Forslund,
1970). We used the same velocity grid as for the
Maxwellian distribution while we increased the number
of points in the pitch angle grid to 256 points. The results
are shown in Figs. 7 and 8. One can see in the real part of
the di�erence between Zn and W in Fig.8, the artifact of
the discontinuity of the distribution function at xmax.
This e�ect is larger for the lowest value xmax � 2:8 of the
boundary i.e. x=kve � �2:8

���
2
p

. For larger values of
xmax the discontinuity of the thermal distribution is
pushed down at higher velocities and is attenuated due
to the Maxwellian behaviour at large velocities.

4.3 Test of Pn and Zn on the suprathermal distribution

We used a 32-stream suprathermal calculation at an
altitude of 202 km as input. The transport code

calculation of the distribution function was then inter-
polated over a 1024 double-Gauss points. The Pn and Zn
functions were then computed using the distribution
function evaluated on this denser l-grid. The supra-
thermal velocity distribution used are very much
identical to the one presented in Fig. 3. When comparing
with the Pn and Zn functions of a Maxwellian or a
Spitzer-H�arm distribution, it is interesting to see how
the characteristics of the distribution function are
mapped on the Pn and Zn shape. In order to integrate
correctly the irregularities or `spikes' corresponding to
the discrete solar emission lines, we have to increase the
order of the pitch angle quadrature up to 512 or even
1024 points. Increasing further the number of points in
the l-grid space does not improve the results for large
values of x=kve, i.e. above jx=kvej > 5. On the other
hand, for jx=kvej < 5 the code is probably not so robust

Fig. 8. On the left, the real and imaginary parts
of Zn for real argument and for �T � 5 � 10ÿ2 and
�E � ÿ3�T cT =4cE. On the right the di�erence
between Zn and W for the four di�erent values of
xmax of Table 1
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to the spikes, as can be seen in the upper left plate in
Fig. 9, and further developments need to be made.

There are several remarks to be made about the Pn
and Zn functions. First about the imaginary part of the
Pn function (lower left plate in Fig. 9) which is
proportional to the reduced distribution function as is
seen in Eq. (28). If the distribution were isotropic the ¯at
part around zero should be equal on both sides of zero
up to the value corresponding to the minimum energy of
the suprathermal distribution. The e�ect of the aniso-
tropy on the reduced velocity distribution function is to
create a discontinuity at zero velocity and thus introduce
a zero-order skewness. Secondly, on both the real and
imaginary parts of the Zn functions (right plates in Fig.
9.), one can observe the signature of the distribution
function itself. In particular, the typical N2 dip above 2
eV which corresponds to excitation of the vibrational

levels in N2 (see Fig. 2) can clearly be identi®ed around
jx=kvej � 6:5.

5 Results

We have used the two-dimensional code of the Pn and Zn
functions to calculate the frequency of the up- and
downshifted Langmuir waves which are the high-
frequency solutions of the plasma dispersion equation
with the function D�k;x� given in Eq. (18). We have
performed these calculations for two di�erent distribu-
tions, one that takes into account the deviation from the
Maxwellian on the ambient part with the Spitzer-Harm
distribution and the other one on the suprathermal part
with the distribution calculated from the electron
transport code.

Fig. 9. On the left, the real and imaginary parts
of Zn for real argument and on the right, the
real and imaginary parts of Pn for real argument
of a suprathermal distribution at the altitude of
202 km. These calculations were performed
using a 32-stream calculation of the transport
code and the distribution function was then
recalculated over 1024 double-Gauss points in
order to perform the calculations of Pn and Zn
over this l-grid
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We used the simulated data for 25 June 1994 at 14:00
UT over Tromsù assuming again an Ap index of 3 and an
F10.7 index of 75. The ionospheric parameters of the
thermalpartare showninFig.10andthevelocitymoments
of the suprathermaldistribution, aswell as themomentsof
the Spitzer-HaÈ rm distribution, are shown in Fig. 11.

The lowest right plate in Fig. 10 shows the Knudsen
number �T and �E. The largest value is about 4:5 10

ÿ3.
Such values are reasonable and allow the use of the
linear theory of Spitzer-H�arm. The corresponding po-
larization electric ®eld E of �E is also of the order of the
expected value i.e. under 10ÿ2 lV mÿ1 .

Figure 11 shows the calculated suprathermal centred
velocity moments up to the third order, i.e the heat ¯ow,
for both the raw distribution as calculated by the
transport code and the truncated distribution we use in

our calculations and which have been processed accord-
ing to the strategy described at the end of Sect. 3. The
lower right plate in Fig. 11 also shows the heat ¯ow qa of
the ambient Spitzer-H�arm distribution function calcu-
lated numerically and the heat ¯ow used by Kofman et
al. (1993) which was originally given by Banks (1966)

qB � ÿ7:7105T
5
2
erTe eV cmÿ2 sÿ1; �36�

assuming a Coulomb logarithm logK � 15 and dT
calculated by Spitzer and H�arm (see Table 1). We note
that the heat ¯ow given by Eq. (36) has larger values by a
factor up to 1.5 than the heat ¯ow qa we calculated. The
reason for this is that the approximation given by Eq. (36)
is valid for a fully ionized gas only. We have taken into
account the electron-neutron collisions in the mean free

Fig. 10. The parameters for the ambient part
of the distribution function, i.e. the electron
density ne, the electron and ion temperatures
Te and Ti (solid line and dashed line,
respectively), the gradient of temperature
rTe and the two Knudsen numbers �T (solid
line) and �E (dashed line)
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path (Eq. 10) and the e�ect is to decrease the twoKnudsen
numbers and thus the net heat ¯ow (Banks, 1966).

Figures 12 and 13 show the frequencies of the
upshifted Langmuir waves of the plasma lines and the
frequency di�erence for the three EISCAT radars: VHF
(224MHz), ESR (500 MHz) and UHF (931 MHz).
Figure 12 shows the calculation for a deviation on the
ambient part, i.e. the Spitzer-H�arm distribution. The
frequency asymmetry calculated is compared with the
heat ¯ow approximation of Eq. (9) of Kofman et al.
(1993), Figure 13 shows the calculation in the presence
of a suprathermal part and assuming that the ambient
part is Maxwellian. The frequency asymmetry calculated
is also compared with the results given by the heat ¯ow
approximation, assuming that the total distribution does
not deviate dramatically from Maxwellian.

The best agreement between the full dispersion
estimation and the heat ¯ow approximation for the
Spitzer-HaÈ rm distribution is for low-frequency radars
like VHF radars. For these radars the phase veloci-
ty v/ is between 12ve and 25ve as shown in Fig. 14. At
such high velocities the moment approximation can
be safely used, i.e. the classic expansion �1ÿx�ÿ1�
1�x�x2�� � ��xn is to be valid at the third order. For
the UHF radar the phase velocity v/ is between 3ve and
6ve (see Fig. 14) and the approximation breaks and we
note a large deviation between the two calculations.
This deviation can be observed on the real part of
the di�erence between Zn and W (upper right plate
in Fig. 8) and has to be compared with the asymptot-
ic behaviour in �x=kve�ÿ5 that we would get by subtr-
acting W to the heat ¯ow approximation of Eq. (9) in

Fig. 11. The parameters of the suprathermal
part of the distribution function and the two
odd moments of the ambient (Spitzer-HaÈ rm)
distribution. In all four plates, the moments
of the raw suprathermal distribution function
are represented by circles while the moments
of the distribution we use for further calcu-
lations are represented by solid lines. In the
upper right plate (mean drift velocity), the
calculated mean Doppler velocity of the
ambient distribution va is represented by the
dash-dot line and as expected is equal to zero
(see Eqs. 11±13). On the lower right plate
(heat ¯ow), the calculated heat ¯ow of the
ambient distribution qa is represented by the
dash-dot line and the dashed line corresponds
to the heat ¯ow qB given by Eq. (36)
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Kofman et al. (1993), especially for values of x=kve
smaller than 5.

Another remark is about the very large asymmetry
observed around 250 km, which is over 10 kHz for the
full dispersion calculation. We can see that due to the
behaviour of the dispersion function at 4 < x=kve < 5,
we do not need large heat ¯ow values to observe large
asymmetry between the up- and downshifted plasma line
frequencies. This is very satisfying in that we do not
need to invoke larger heat ¯ow values through processes
such as the electron thermal runaway (Mishin and
Hagfors, 1994; Nilsson et al., 1996) to explain the large
deviation which were reported by Kofman et al. (1993),
especially during 12 May 1992. On the contrary, our
smaller heat ¯ow values corrected for partially ionized
plasma are in good agreement with the theory of Schunk
and Walker (1970) and Banks (1966) and are able to
create frequency asymmetry of the order of that
observed by Kofman et al. (1993).

In the presence of a suprathermal distribution we can
make the following remarks. For UHF radars, i.e. at
phase velocity v/ between 3ve and 6ve, we note that the
full dispersion calculation gives similar results as the
Maxwellian approximation while the heat ¯ow approx-
imation gives larger deviation. In order to understand the
small e�ect of the suprathermal distribution for high-
frequency radars, we note that the real part of Zn of the
thermal distribution (Fig. 6) has much larger amplitude

than the one of the suprathermal distribution (Fig. 9) at
the considered phase velocity. At large phase velocities
v/, i.e. for VHF radars, the thermal Zn is very small,
whereas the one of the suprathermal is still not negligible.
This is seen clearlywhen comparing themeanwidth of the
real part of Zn in Fig. 6 and the real part of Zn in Fig. 9.
Thus the e�ect of the suprathermal is important and
should be taken into account. Another remark to bemade
is that if all the ®ne structures observed on the supra-
thermal Zn in Fig. 9 in the region jx=kj<6ve are real and
not artifacts of our calculations, they should map on the
frequency asymmetry as it appears in Fig. 13.

6 Conclusion

We developed and tested a computer code to calculate
the plasma dispersion function and the reduced distri-
bution function for any arbitrary distribution function
given in two dimensions: velocity and pitch angle. This
code has been applied for two types of electron velocity
distribution deviating from the Maxwellian distribution,
one in the ambient part through a temperature gradient
and the other one assuming the presence of a supra-
thermal electron population.

We used the code to estimate the frequency asym-
metry between the up- and downshifted plasma lines
which can be observed by incoherent-scatter radar
technique. For high-frequency radars such as UHF
radars we showed that the frequency asymmetry be-
tween the plasma lines is mostly due to a deviation from
the Maxwellian in the ambient part of the electron

Fig. 12. The upper plate presents the calculated upshifted plasma
frequency for the Spitzer-HaÈ rm distribution for the three di�erent
EISCAT radars. In the lower plate we present the frequency di�erence
between up- and downshifted lines for the three radars. The
Maxwellian approximation is shown with circles, the full two-
dimensional dispersion estimation is the solid line and the heat ¯ow
approximation (Kofman et al., 1993) is shown with the dashed line

Fig. 13. Same plates as in Fig. 12. The compared distribution
functions are a Maxwellian and a Maxwellian superposed with a
suprathermal. The line codes are identical to the codes used in Fig. 12
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distribution. On the other hand, for low-frequency
radars such as VHF radars the Doppler frequency of
the plasma lines is more in¯uenced by the presence of a
suprathermal electron population.

We also pointed out a discrepancy between the full
estimation of the plasma dispersion function and the heat
¯ow approximation for waves with phase velocity such
that the moment expansion is not valid. The discrepancy
is in the right direction and allows to explain large
Doppler asymmetry of the plasma lines without need to
increase the value of the heat ¯ow. An analytic model of a
distribution deviating from the Maxwellian distribution
would be a very useful tool to study the di�erence
between the exact calculation and the moment approx-
imation of the plasma dispersion function.
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