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ABSTRACT

This work extends upon our simple feature-based multi-
channel SAR segmentation method to incorporate highly
desirable statistical properties into a computationally simple
approach. The desirable properties include Markov ran-
dom field contextual smoothing and goodness-of-fit testing
to automatically obtain the significant number of classes. To
achieve this we need to find an explicit class model to fit these
non-Gaussian, non-symmetric or skewed feature space clus-
ters. We take the skewed scale mixture of Gaussian scheme
to model our classes and approximate it by a number of con-
strained Gaussians, thereby retaining much of the speed and
simplicity of the original feature space method. The algo-
rithm will be demonstrated on a real data and compared to an
automatic Gaussian model.

1. INTRODUCTION

Understanding and implementing the best knowledge about
PolSAR signal processing and speckle variation has led to
highly complex and computationally slow clustering algo-
rithms such as the U-distribution for multi-look complex
(MLC) data segmentation [3]. These models are very flexi-
ble, and hence, good fits to the non-Gaussian class properties
(radar texture) found in real radar imagery, and the statistical
rigour has allowed some extremely useful additional informa-
tion to be determined. Of main importance is the statistically
significant number of classes, that may be determined through
goodness-of-fit hypothesis testing [1, 2].

A computationally much faster approach is to extract
simple features across the whole image (in a sliding-window
method) and then apply a fast and simple segmentation
method to the new features. The chosen features are ex-
tracted within the non-Gaussian product model framework
and therefore include the concept of radar texture [3, 4].
Since the features were found to display simple compact
clusters, we have obtained quite satisfactory results by using
a simple mixture of Gaussian clustering in this feature space.
That is, the results gave smooth segmented regions and cap-
tured the main categories observed in the images. However,
some limitations were readily observed with this approach
and their solution is addressed in this study.

Firstly, the observed features are not exactly Gaussian in
distribution, even after smart transformations, and therefore
the clustering often converged to having several Gaussian
classes centred on approximately the same non-Gaussian
data cluster. This produced onion-ring type effects in the seg-
mented images and rather complicated results with very many
classes. Secondly, too many statistically significant classes
are found, because the Gaussian based goodness-of-fit testing
is not appropriate for these non-Gaussian classes. Thirdly, the
Markov random field (MRF) contextual smoothing had com-
plications due to the the split-and-merge operations chang-
ing the number of classes and causing the optimised MRF
smoothing parameter to be inappropriate and too dominant
for the new number of classes.

The poor fitting of the Gaussian model to the clusters
could be partially avoided by using a high sub-sampling factor
and only finding the coarse-level, or most significant, classes
on the reduced data-set before expanding to the whole image.
Satisfactory results were often only obtained after an exten-
sive, and time consuming, study at many different number of
classes and often still found too many clusters for the non-
Gaussian classes, before separating certain desirable classes.

By introducing non-Gaussian mixture models we expect
to obtain better fitting and fewer total clusters. We have
chosen the family of scale mixture of Gaussian models, also
known as normal variance-mean mixture models [5], because
they offer a simple mechanism for both non-Gaussianity and
skewness. In addition, they are readily approximated by a
discrete mixture of Gaussians, constrained to the equivalent
scale variable properties, and thus retain much of the speed
and simplicity that were the key advantages of the original
feature space method.

We observed that in addition to having non-Gaussian peak
shapes, the feature space domain retained some curvature and
the resulting compact clusters were slightly skewed. We have
had to introduce a skewed model to achieve sufficiently good
fits for the hypothesis testing. The scale mixture of Gaussian
scheme easily allows this through the “beta-z” term and easily
translates into the finite Gaussian approximation. The over-
all assumption is that the feature parameters vary smoothly
and continuously in a constrained manner around their mean
value and, therefore, any modes and significant lumps in the
distribution are due to additional classes or sub-classes.



The complications due to the Markov random field pa-
rameter and the changing number of classes is also addressed
with a new, simpler strategy. We now consider it best to
incorporate the MRF smoothing only after a non-contextual,
adaptive, finite mixture modelling stage is complete and the
classes are set. The local prior MRF stage subsequently
evolves smoothly from the global prior classification stage.
In addition, we now propose a sequential converge and split
strategy, instead of an adaptive split and merge, because the
merging approach requires an excessive amount of computa-
tion. This new strategy is simpler, often faster, repeatable, and
will avoid the dominating effect of the MRF as the number of
classes adjusts.

This paper briefly recaps the feature space method in Sec.
2, the non-Gaussian approximation technique in Sec. 3, and
the strategy of the new approach in Sec. 4. We show initial
results for a real PolSAR image, in Sec. 5, to demonstrate the
method and discuss the results, and finish with our conclu-
sions in Sec. 6.

2. EXTENDED POLARIMETRIC FEATURE SPACE
METHOD

The approach of this paper is to extract a set of real valued fea-
tures by the sliding window technique. We have previously
found good results from a basic set of six features, but it is
possible to use any other features if they are suitably trans-
formed following the guidelines in the extended polarimetric
feature space approach [4].

Given a fully polarimetric quad-pol data-set, in single-
look complex vector form

s = [Shh, Shv, Svh, Svv]
T ,

then, for each sliding local neighbourhood, determine the
multi-look covariance matrix

C =
1

L

L∑
i=1

sis
H
i ,

and the basic set of six features

1. A non-Gaussianity measure: relative kurtosis RK

RK =
1

Nd(d+ 1)

N∑
i=1

[sHi C−1si]
2

2. An absolute backscatter value: multi-variate radar cross
section

MRCS = d
√
det(C)

3. A cross-polarisation fraction or ratio:

Rcr = Chvhv/MRCS

Co-pol ratio vs. MRCS Correlation real part vs. MRCS

Fig. 1. Feature space examples from Radarsat-2 quad-pol
scenes, San Francisco (left), Sea ice (right), showing distinct
globular clusters, with potential skew.

4. A co-polarisation ratio: Rco = Cvvvv/Chhhh

5. The co-polarisation correlation magnitude: |ρ|

ρ = Chhvv/
√

(|Chhhh| |Cvvvv|)

6. The co-polarisation correlation angle:

∠ρ =< φhh − φvv >

We have found several simple transforms, empirically,
that reduce the non-linear spread, or curvature, in the feature
domains. We take the inverse relative kurtosis, the logarithm
for each of the multi-variate radar cross section, cross-pol
fraction, and co-pol ratio, and take the real and imaginary
parts of the co-polarisation correlation coefficient instead of
magnitude and phase. This produces a reasonably indepen-
dent set of features, that often show clear globular clusters
in the feature space. These features are then (approximately)
suitable for a simple distance-based clustering algorithm,
such as the mixture of Gaussian model with the expectation
maximisation (EM) algorithm [6]. Two examples in feature
space are shown in Fig. 1.

3. SKEWED SCALE MIXTURE OF GAUSSIAN
MODEL

The skewed scale mixture of Gaussian scheme, also called
normal variance-mean mixtures [5], can be described by

y = µ+ zβ +
√
zΣ

1
2 x

where µ is a vector centre, β is a skew vector, Σ is the class
covariance matrix, x is a normalised multivariate Gaussian
variable, i.e., x ∼ Nd(0, I), and z is a scalar scale random
variable with some continuous, positive only distribution. To
cover a very flexible range of scale distributions, and there-
fore very flexible range of non-Gaussian scale mixture dis-
tributions, we have chosen to use the F-distribution for the



scale parameter, because of its flexibility. Parameter estima-
tion for the F-distribution is currently performed with a mix
of moment expressions and a simple annealing type search al-
gorithm for the vector beta and the two shape parameters of
the F-distribution. This is a slow iterative process and would
ideally be substituted with a faster fully moment or cumulant
based method. However, we have not had time to solve this
problem for the skewed-case and it currently runs fast enough
to test the results.

We propose to approximate the continuous scale mixture
of Gaussian scheme with a finite number of scales to retain the
speed and simplicity of the clustering stage, and to avoid the
need for numerically difficult and slow hypergeometric func-
tions. The required level of the approximation depends on the
degree of non-Gaussianity of the clusters and the sample size
used in the estimation. The more samples involved, the more
accurate the approximation needs to be to avoid unnecessarily
failing the goodness-of-fit tests. A coarse level approximation
might use 5 scale mixture Gaussians per class, and a more de-
tailed on could use 9 or more. The speed of the finite mixture
of Gaussian clustering is approximately linear with the num-
ber of clusters and is not unreasonable when using several
Gaussians per class, since it is already quite fast. The sequen-
tial splitting of one cluster at a time means that most cluster
centres already start each stage very close to their final values,
which also benefits the overall speed.

We choose the set number of scales at the equal probable
partition of the F-distribution domain, and thus can constrain
their individual prior probabilities to be equal. per sub-cluster.
This makes the mixture modelling simple, with fewer degrees
of freedom, and leads to a simple visualisation of the non-
Gaussianity.

A simulated test sample with skew and the fitted mixture
is plotted in Fig. 2. The left plots show the data histograms for
each dimension with the individual sub-cluster fitted curves
in red, with the overall mixture density in dashed black, and
demonstrates how the sum of the sub-cluster Gaussian mod-
els can sum up to the skew-non-Gaussian peak-shape. The
other plot shows the 2-D data scatter in grey with the 3-sigma
confidence ellipses corresponding to each scaled sub-cluster
Gaussian. The skew and non-Gaussian scaling can be clearly
interpreted by the scaling and off-set of each ellipse. These in-
dicate that the model fitting appears to be working correctly.
This flexible non-Gaussian and potentially skewed model
should hopefully capture the main cluster density centres and
domain curvature and lead to robust clustering results.

4. AUTOMATIC SEGMENTATION

We now propose a new simpler strategy for the automatic
adaptive number of clusters. The previous strategy would
both split poor fitting clusters and merge pair-wise similar
clusters. The pair-wise merge testing very quickly involves
a large number of combinations, each requiring estimation of
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Fig. 2. Simulated data. (Left) Fitted sub-cluster models
(red) and total density (dashed black) over the data histogram
(grey) for each dimension. The Gaussian sub-clusters sum up
to the non-Gaussian peak shape. (Right) 2-D scatter plot of
data (grey) with 3-sigma ellipses (red) for each scaled Gaus-
sian sub-cluster models. The skewness and non-Gaussianity
can be interpreted from the scaling and off-set of each ellipse.

the merged parameters, and was simply impractical. In addi-
tion, the adaptive number of clusters interfered with the MRF
model parameter estimation and often caused the contextual
information to dominate the pixel-wise information and re-
duced the effectiveness of the merge testing.

The new strategy is to completely separate the adaptive
number of clusters from the MRF contextual smoothing.
The first adaptive number of clusters stage finds the num-
ber and parameters that satisfactorily fit the entire data-set,
constrained to the given model. This includes global prior
probabilities for each class.. The second stage with the MRF
smoothing will take into account the local information to
enhance the local prior probabilities and produce smooth re-
sults. It is easy to transition smoothly between the two stages
by starting the MRF with the global prior probabilities for the
contextual weights.

The new adaptive strategy is to run the EM-algorithm for
each number of clusters to full convergence before testing the
goodness-of-fit of each cluster, and then only splitting the sin-
gle worst fitting cluster if over the statistical confidence level.
We still propose to start with a single cluster for the entire
image, as this solves the initialisation influence problem and
seems to repeatedly produce the same end result. This new se-
quential strategy seems to adapt robustly and avoids the need
to re-merge any overly split classes.

5. RESULTS

Preliminary results for the San Francisco, Radarsat-2 sample
scene from 2008 are shown in Fig. 3. The three images are
the Pauli RGB image, on the left, the result from an auto-
matic number of classes clustering with the standard Gaus-
sian model, in the middle, and the result from the new skew-
non-Gaussian model on the right. The Gaussian model found
6 classes and the skew-non-Gaussian model found 7 classes.



Fig. 3. Results for San Francisco, Radarsat-2. (Left) Pauli RGB; (middle) auto Gaussian, 6 classes; and (right) auto skew-non-
Gaussian model, 7 classes.

We argue that the latter has a better visual separation of the
main classes and smoother solid areas than the former. So
although the non-Gaussian model can better absorb the varia-
tion of the non-Gaussian peak shapes into one cluster, it then
displays more polarimetric distinguishing power for the re-
maining classes and resulted in one extra class. A more de-
tailed version (less sub-sampling, not shown) resulted in 20
classes for the Gaussian model and 22 classes for the non-
Gaussian model, which again seemed to have a better visual
distinction.

6. CONCLUSIONS

We have developed a simple approximation model that in-
cludes non-Gaussianity and skewness and is suitable for the
automatic number of classes technique. The skewed scale
mixture of Gaussians model is chosen for each cluster, be-
cause it easily incorporates both non-Gaussianity and skew-
ness, and can be approximated by a discrete number of scaled
Gaussians in order to retain some clustering simplicity and
speed. Initial tests still use a slow parameter estimation rou-
tine that would need to be improved for practical use.

The full effect of this non-Gaussian skewed modelling,
and whether it achieves any significant benefits has not yet
been fully explored. There are several factors that complicate
the interpretation. The number of sub-clusters for each class
limits the level of non-Gaussianity that can be achieved and
the goodness-of-fit false alarms due to the approximation. We
needed 7, or more, sub-classes to clearly obtain smoother re-
sults for some real data-sets. The sub-sampling factor, and
hence the sample size used in the testing, also affects the fi-
nal outcome - fewer samples can support fewer distinct clus-
ters. The non-Gaussian clustering does appear to have better
regional smoothing in some classes, has sharper boundaries

in others, and also obtained more overall classes due to im-
proved polarimetric distinction. A detailed investigation is
still on-going.
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