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A Multitexture Model for Multilook Polarimetric
Synthetic Aperture Radar Data
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Abstract—A statistical model for multilook polarimetric radar
data is presented where the polarimetric channels are associated
with individual texture variables having potentially different sta-
tistical properties. The feasibility of producing closed form prob-
ability density functions under certain restrictions is outlined.
Mellin kind statistics are derived under various assumptions on
the texture variables, and the potential for model fit assessment
and hypothesis testing in the Mellin domain is demonstrated.
Application to real data proves the usefulness of the analytic
approach.

Index Terms—Radar polarimetry, synthetic aperture radar,
probability density functions, texture modeling

I. INTRODUCTION

KNOWLEDGE of the exact statistical properties of po-
larimetric synthetic aperture radar (SAR) data forms the

basis for many image analysis techniques such as segmentation
and land cover classification (e.g. [1], [2]) or speckle filtering
[3]. In the literature, Gaussian signal statistics is often taken
as the default hypothesis [4]. Analysis of real SAR images
reveals that non-Gaussian models give better representation of
the data (e.g. [5]), especially at high resolution. For a single
channel, successful models have been constructed by treating
the distributed targets as a collection of random scatterers
with fluctuations in the number of scatterers within each
cell, leading to e.g. the well-established K-distribution [5].
The K-distribution models can alternatively be constructed in
the framework of the so-called product model, in which the
backscattered signals are modeled as a product between a posi-
tive scalar texture component and a complex Gaussian speckle
variable (e.g. [6], [7]). This recipe produces non-Gaussian
probability density functions (pdfs), in which the characteristic
properties like moments and cumulants are determined by the
actual distribution selected for texture.

The product model can easily be extended to the mul-
tivariate case in order to provide non-Gaussian statistical
representation of fully polarimetric SAR data. In the simplest
and most common case, the backscattered signal is modeled as
the product between a random scalar texture component and
a Gaussian vector component, representing speckle. Hence,
the assumption is that the texture equally effects all polari-
metric channels. This model has been widely used in non-
Gaussian modeling, processing, and analysis of polarimetric
SAR images, applying a number of different distributions for
the texture, including the gamma distribution [2], [8], the
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inverse gamma distribution [9], and the Fisher distribution
[10], to name a few.

The assumption of an equal texture component in all polari-
metric channels has to some extent been disputed by experts
in the remote sensing community (e.g. [3], [11]). A study
performed by Joughin et al. in [12] concluded that for multi-
look polarimetric data, the scalar product model appears to
be exact or at least, to be a satisfactory approximation. Sheen
and Johnson [13], on the other hand, showed experimentally
that texture might not be independent on polarimetric chan-
nel. One reason why the scalar texture model may not be
valid is that different scattering mechanisms will contribute
differently to the polarimetric channels. For example, volume
scattering will produce a strong cross-polarization component,
whereas surface and double bounce scattering will contribute
stronger to the co-polarized channels. The volume and surface
scattering mechanisms would be expected to have different
texture properties because of their physically distinct origins.
Hence, in forested areas, where the returned signal will have
contributions from surface, double bounce, and volume scat-
tering, the scalar texture model may not be suitable. In [14]
the validity of the above model was extensively studied for
many vegetation types, using low resolution polarimetric data
at C, L and P bands, gathered by the AirSAR system over the
Feltwell U.K. agricultural test site. This study verified that C,
L and P band observations over a range of vegetation types are
consistent with the scalar texture model, but that there were
some evidence of the modeling breaking down.

A more general multivariate product model would naturally
associate an individual texture variable with each polarimetric
channel. This model will henceforth be referred to as a
multitexture product model. This type of model has only
received limited attention in the literature, possibly due to the
added technical complexity involved with this extension of
the texture. In [15], a generalized polarimetric K-distribution
based on a trivariate joint gamma distribution for the texture
was theoretically discussed, but without any experimental val-
idation. In [16], the authors propose to apply a similar model
in a maximum likelihood speckle reduction filter, reporting
promising results.

In this paper, we introduce and examine a polarimetric
multitexture product model, which allows each polarimetric
channel to be characterized by an individual random texture
variable. We derive a closed form expression for the pdf of
the multilooked covariance matrix under the assumption of
reciprocity and reflection symmetry. Taking advantage of the
recently introduced Mellin kind statistics [17]–[19], we also
derive general expressions for the associated log-cumulants,
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and discuss how the model parameters can be estimated from
data. The validity of the model is then analyzed using sample
data sets from a diversity of distributed target surfaces.

The paper is organized as follows: Section II presents the
theoretical foundations of the statistical modeling and derives
the pdf of the multilooked sample covariance matrix in the case
of reflection symmetry and reciprocity; Section III outlines
the framework of Mellin kind statistics with respect to certain
cases of the proposed multitexture model; Section IV covers
log-cumulant parameter estimation and a multitexture hypoth-
esis test; and Section V describes and performs extensive
validation tests using real data. Finally, section VI gives some
conclusions.

This paper is an extended version of [20].

II. FUNDAMENTAL THEORY

A. Multitexture product model

Let the scattering vector be given as

s = [Shh Shv Svh Svv]
T , (1)

where the subscripted indices refer to the transmit and receive
polarization, in that order, and (·)T denotes matrix transposi-
tion. In the multitexture statistical model we have

s = T1/2x (2)

where T = diag{Thh, Thv, Tvh, Tvv} is a diagonal matrix
containing positive, scalar texture variables associated with
the respective polarimetric channels, (·)1/2 is the matrix square
root operator, and x is a zero mean, circular complex Gaussian
vector variable, representing speckle [15]. Hence, the covari-
ance of s conditioned on the texture matrix T is

Σs|T = T1/2ΣxT1/2 (3)

with Σx being the covariance of x. It is well-known that the
probability density function (pdf) of the sample covariance ma-
trix for x follows the scaled complex Wishart distribution [21],
which is a slightly modified version of the standard complex
Wishart introduced in [22]. Let this sample covariance matrix
be given by

W =
1

L

L∑
i=1

xix
H
i (4)

where (·)H denotes the Hermitian transpose, and W ∈ Ω+,
which is the space of positive definite Hermitian matrices. Its
pdf becomes

fW(W;L,Σx) =
LLd

Γd(L)

|W|L−d

|Σx|L
etr(−LΣ−1

x W) (5)

where the vector dimension d = dim(x) = 4 for full-
polarimetric SAR data, | · | is the determinant, etr(·) =
exp(tr(·)) is the exponential trace operator, and Γd(·) is
the multivariate gamma function of the complex kind [19].
Furthermore, if texture can be assumed constant on the scale
of the multilook window, the sample covariance matrix of s
becomes

C =
1

L

L∑
i=1

sis
H
i = T1/2WT1/2 . (6)

Hence, the pdf of C ∈ Ω+, given T, is readily obtained from
(5) as

fC|T(C|T;L,Σx)

= fW(T−1/2CT−1/2;L,Σx) · |JW→C|

=
LLd

Γd(L)

|C|L−d

|T|L|Σx|L
etr(−LΣ−1

x T−1/2CT−1/2)

(7)

where JW→C = LLd is the Jacobian of the transformation
from W to C. The marginal distribution for C is obtained by
integrating over the pdf of T, i.e.,

fC(C;L,Σx) =

∫
fC|T(C|T;L,Σx)fT(T)dT . (8)

B. Reflection Symmetry

The four-by-four covariance matrix obtained when d = 4
gives a complete description of the polarimetric backscattering
properties of a target. With s as in (1), we have

Σs = E{ssH} =


σhhhh σhhhv σhhvh σhhvv
σ∗hhhv σhvhv σhvvh σhvvv
σ∗hhvh σ∗hvvh σvhvh σvhvv
σ∗hhvv σ∗hvvv σ∗vhvv σvvvv

 . (9)

If we assume reflection symmetry [23], [24], then (9) simpli-
fies to

Σs =


σhhhh 0 0 σhhvv

0 σhvhv σhvvh 0
0 σ∗hvvh σvhvh 0

σ∗hhvv 0 0 σvvvv

 . (10)

It is noted that Σs = ET{T
1
2 ΣxT

1
2 }, where ET{·} denotes

expectation with regard to the texture matrix variable T,
and Σx has the same structure as Σs with regard to zero
elements. It is easily shown that the inverse matrix Σ−1

x will
also have the same zero elements as Σx. Let qi,j and ci,j
denote entry (i, j) of Σ−1

x and the sample covariance matrix
C, respectively. Eq. (7) then takes the form

fC|T(C|T;L,Σx) =
L4L

Γ4(L)

|C|L−4

|Σx|L
1

ThhThvTvhTvv

× exp

{
−L

(
q11c11

Thh
+
q14c41 + q41c14√

ThhTvv
+
q44c44

Thv
.

+
q22c22

Thv
+
q23c32 + q32c23√

ThvTvh
+
q33c33

Tvh

)}
(11)

We further make the assumption that the texture components
Thh and Tvv are fully correlated and can be represented by a
single random variable, which we shall call Tco. Likewise, Thv
and Tvh are assumed to be fully correlated, and can thus be
represented by Tx. The distribution of the sample covariance
matrix C under the assumption of monostatic radar geometry
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and reflection symmetry then becomes

fC(C;L,Σx,θ) =
L4L

Γ4(L)

|C|L−4

|Σx|L

×
∫

exp

{
−L
(
q11c11 + q14c41 + q41c14 + q44c44

Tco

)}
×
fTco(Tco;θco)

T 2L
co

dTco

×
∫

exp

{
−L
(
q22c22 + q23c32 + q32c23 + q33c33

Tx

)}
×
fTx(Tx;θx)

T 2L
x

dTx

(12)

where fTco(Tco;θco) and fTx(Tx;θx) denote the pdfs of Tco
and Tx, with respective texture parameter vectors, θco and θx,
gathered in θ = [θTco;θ

T
x ]T . The model proposed in Eq. (12)

gives the freedom to assume different texture distributions for
the co- and cross-polarimetric channels. The integrals can be
evaluated in closed form for all recently introduced texture
models such as the gamma, inverse gamma, inverse Gaussian,
and Fisher distributions.

C. Reciprocity

For reciprocal media, the relation Shv = Svh reduces
the scattering vector to s =

[
Shh
√

2Shv Svv
]T

and the
covariance matrix to a three-by-three matrix of the form

Σs =

 σhhhh
√

2σhhhv σhhvv√
2σ∗hhhv 2σhvhv

√
2σhvvv

σ∗hhvv
√

2σ∗hvvv σvvvv

 (13)

where the factor
√

2 ensures matrix span invariance. Hence,
the multitexture is represented by a three-by-three diagonal
matrix, with T = diag{Thh, Tx, Tvv}. If we also assume
reflection symmetry, then (13) simplifies to

Σs =

σhhhh 0 σhhvv
0 2σhvhv 0

σ∗hhvv 0 σvvvv

 (14)

where again, it is noted that Σx and Σ−1
x have the same zero

elements as Σs. Let qi,j and ci,j still denote entry (i, j) of
Σ−1

x and C, respectively, now defined under reciprocity such
that d = 3. Eq. (7) then takes the form

fC|T(C|T;L,Σx) =
L3L

Γ3(L)

|C|L−3

|Σx|L
1

ThhTxTvv

× exp

{
−L

(
q11c11

Thh
+

q13c31√
ThhTvv

+
q22c22

Tx

+
q31c13√
ThhTvv

+
q33c33

Tvv

)} (15)

When we assume that Thh and Tvv are fully correlated and
can be represented by Tco, the distribution of C under the
assumption of monostatic radar geometry, reciprocity and

reflection symmetry becomes

fC(C;L,Σx,θ) =
L3L

Γ3(L)

|C|L−3

|Σx|L

×
∫

exp

{
−L
(
q11c11 + q13c31 + q31c13 + q33c33

Tco

)}
×
fTco(Tco;θco)

T 2L
co

dTco

×
∫

exp

{
−L
(
q22c22

Tx

)}
fTx(Tx;θx)

TLx
dTx

(16)

which produces a closed form expression for specific texture
distributions.

It is noted that both integrals in each of (12) and (16) are of
the form I =

∫∞
0

exp (−Lη/t)/tβfT (t;θ)dt, where fT (t;θ)
denotes the respective parametric texture distribution, and η
and β are appropriately defined constants. Table I summarizes
analytic expressions for this integral corresponding to com-
monly used texture models in SAR polarimetry. In Table I the
symbols K,B, and U refer to the modified Bessel function
of the second kind, the Beta function, and the Kummer-U
functions, receptively. The complete pdf is therefore obtained
by putting the tabulated expressions for the integral terms,
representing the co-polarized and the cross-polarized channels,
into equations (12) or (16). Note that any combination is
allowed, giving rise to in total 6 possible solutions for the
pdf.

III. MELLIN KIND STATISTICS

The Mellin kind statistics (MKS) of the multitexture product
model are derived in this section. MKS is founded on the
Mellin transform (see e.g. [25]), and was proposed as a
theoretical framework for statistical analysis of single polariza-
tion amplitude and intensity radar data by Nicolas [17], and
extended to multilook polarimetric radar data in [18], [19],
[21].

In the context of this paper MKS theory is used to illustrate
how multitexture affects the matrix log-cumulants (MLCs),
which are efficient measures for parameter estimation and
model evaluation.

The definition of the complex matrix-variate Mellin Trans-
form of the pdf fC(C;L,Σx,θ) [21] is

M{fC(C;L,Σx,θ)}(s)

=

∫
Ω+

|C|s−d fC(C;L,Σx,θ)dC,
(17)

where s ∈ C. The resulting complex function is known as the
Mellin kind characteristic function (cf),

φC(s) = M{fC(C)}(s) = E{|C|s−d} , (18)

and its logarithm is the Mellin kind cumulant generating
function,

ϕC(s) = lnφC(s) . (19)

Matrix log-moments (MLM), µν{C}, and matrix log-
cumulants, κν{C}, are generated by taking the derivatives of
φ(s) and ϕ(s), respectively, evaluated at s = d. For example,

κν{C} =
dν

dsν
ϕC(s)

∣∣∣∣
s=d

, (20)
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TABLE I
ANALYTIC EXPRESSIONS FOR THE INTEGRALS IN (12) AND (16) CORRESPONDING TO THE COMMON TEXTURE MODELS.

Model Texture pdf, fT (t;θ) Integral I =
∫∞

0

exp (−Lη/t)
tβ

fT (t;θ)dt

Gamma fT (t;α) = αα

Γ(α)
tα−1 exp(−αt) I = 2αα

Γ(α)

(
Lη
α

)(α−β
2 )Kα−β(2

√
αLη)

Inverse Gamma fT (t;λ) = (λ−1)λ

Γ(λ)
t−(λ+1) exp(−λ−1

t
) I = (λ−1)λ

Γ(λ)
Γ(λ+β)

(λ+Lη−1)λ+β

Fisher fT (t;α, λ) = B(α, λ) α
λ−1

( ατ
λ−1 )α−1

( ατ
λ−1

+1)α+λ I = B(α, λ)Γ(β + λ)
(

α
(λ−1)

)β
U(β + λ, β − α+ 1, αLη

λ−1
)

can be used to retrieve the population MLCs, for your chosen
model.

By definition, the matrix log-moment of order ν is defined
as the logarithmic moment of the matrix determinant, i.e.,

µν{C} = E{(log |C|)ν} . (21)

Therefore, the sample MLMs of order ν are computed from
data as

〈µν{C}〉 =
1

n

n∑
i=1

(log |C|i)ν , (22)

and can be combined into the sample MLCs, denoted
〈κν{C}〉, using the well-known relations between moments
and cumulants [26, ch.3], e.g.,

κ1 = µ1 (23a)
κ2 = µ2 − µ2

1 (23b)
κ3 = µ3 − 3µ2µ1 + 2µ3

1 (23c)
κ4 = µ4 − 4µ3µ1 − 3µ2

2 + 12µ2µ
2
1 − 6µ4

1 . (23d)

The reference to the matrix C is dropped in the above
equations since the relations are general and valid for moments
and cumulants of all sorts of random variates. Alternatively,
the sample MLCs may be calculated from the data power sums
using the unique symmetric unbiased estimators known as k-
statistics by relations given in [26, ch.12].

A. Mulittexture matrix log-cumulants

Recall that the sample covariance matrix of the multitexture
model from (6) is C = T

1
2 WT

1
2 . For the matrix product

above, it is known that the Mellin kind cf becomes [21]

φC(s) = φT(s) · φW(s), (24)

which shows that the Mellin kind cf decomposes into a product
of the texture and the speckle contributions. The log-cumulants
then separate, additively, into

κν{C} = κν{W}+ κν{T} . (25)

The contribution of the scaled Wishart matrix, W, was
derived in [21] as

φW(s) =
Γd(L+ s− d)

Γd(L)

(
|Σ|
Ld

)s−d
. (26)

The νth-order MLC expressions for the scaled Wishart distri-
bution are therefore given by

κν{W} =

{
ψ

(0)
d (L) + ln |Σ| − d ln(L) , ν = 1

ψ
(ν−1)
d (L) , ν > 1

(27)

where ψ(ν)
d (·) is the multivariate polygamma function, defined

in [21], L is the effective number of looks, and d is the matrix
dimension. The number of looks is estimated for the data set
in advance using MLCs as proposed in [27].

B. General Multitexture

By definition, the Mellin kind cf of T is

φT(s) = E{|T|s−d}, (28)

and since T is diagonal it follows that

φT(s) = E

{
d∏
i=1

T s−di

}
. (29)

This is the general case, before any assumptions have been
made about the correlation between the texture variables.

In this case, the MLMs can be written as

µν{T} = E

{(
log

d∏
i=1

Ti

)ν}
= E

{(
d∑
i=1

log Ti

)ν}
. (30)

For ν = 1 these texture components are separable, but
for higher orders of moments there will potentially exist
cross-coupled terms of the form log{Ti}a log{Ti}b for all
combinations of a, b < ν, whose expectations would need to
be evaluated.

C. Special Cases

In the following, let Tx ⊥ Ty denote that texture variables
Tx and Ty are statistically independent, and let Tx ‖ Ty
denote that they are identical. The hh and vv channels are
referred to as the co-polarization (co-pol) channels and the hv
and vh channels as the cross-polarization (cross-pol) channels.
Further, let the complete set of polarimetric channels available
be denoted by P , the subset of co-pol channels by Pco, and
the subset of cross-pol channels by Px. The respective sizes
of these sets are denoted d, dco, and dx. Now consider the
Mellin kind cf under particular sets of assumptions.
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Case (i): scalar-texture model
Relations: Thh ‖ Thv ‖ Tvh ‖ Tvv .
This case corresponds to the familiar scalar product model,
where the texture variables are identical for all polarizations,
denoted as T . The Mellin kind cf then becomes [21]

φT(s) = E
{
T d(s−d)

}
= φT

(
d(s− d) + 1

) (31)

where the transformation from φT (s) to φT (s−d+1) in (31)
follows from the definition of the univariate Mellin kind cf as
φT (s) = E{T s−1} [17], [21], [28]. The MLCs become

κν{C} = κν{W}+ dνκν{T} . (32)

Case (ii): dual-texture model
Relations: Thh ‖ Tvv , Thv ‖ Tvh, Thh ⊥ Thv , Tvv ⊥ Tvh.
In this case, the co-pol texture variables are identical, the
cross-pol texture variables are identical, and the co-pol texture
variables are totally decoupled from the cross-pol texture
variables due to statistical independence. Therefore, the co-
pol and cross-pol contributions to φT(s) can be separated as
a product.

φT(s) = E

{
dco∏
i∈Pco

T s−di

}
E

{
dx∏
i∈Px

T s−di

}
= E

{
T dco(s−d)
co

}
E
{
T dx(s−d)
x

}
= φTco(dco(s− d) + 1) · φTx(dx(s− d) + 1),

(33)

where the common co-pol texture variable and the common
cross-pol texture variable are denoted Tco and Tx, respectively.
This property translates to an additive decomposition of their
MLCs.

κν{C} = κν{W}+ dνco κν{Tco}+ dνxκν{Tx}. (34)

Case (iii): quad-texture model
Relations: Thh ⊥ Thv ⊥ Tvh ⊥ Tvv .
All texture variables are in this case mutually independent.
When the texture variables for all polarizations are statistically
independent, (29) simplifies to

φT(s) =
∏
i∈P

E
{
T s−di

}
=
∏
i∈P

φTi(s− d+ 1) (35)

where P = {hh, hv, vh, vv} and d = 4 when full-polarimetric
data are recorded. The MLCs in this case evaluate to

κν{C} = κν{W}+
∑
i∈P

κν{Ti} . (36)

The alternative multitexture models can be summarized as

κν{T} =


dνκν{T} : case (i)
dνco κν{Tco}+ dνxκν{Tx} : case (ii)
d∑
i=1

κν{Ti} : case (iii)
(37)

In order to compare the results obtained in the special
cases treated so far, it is useful to isolate κν{T}. The texture
variables are not directly observable, but their contribution

to the MLCs can be measured by removing the theoretical
speckle contribution through

〈κν{T}〉 = 〈κν{C}〉 − κν{W} . (38)

IV. MLC PARAMETER ESTIMATION AND HYPOTHESIS
TESTING

From section II it follows that the distribution of the sample
covariance matrix C is determined by the model chosen
for the texture variables. In the following, we shall assume
unit-mean Fisher distributed texture variables with the two
shape parameters α and λ. This corresponds to the matrix-
variate U distribution model [10] for C, and submatrices of
C. The U model is chosen because it is one of the most
flexible models available, and includes other common models,
such the scaled complex Wishart distribution, the K-Wishart
distribution [2], [29] and the matrix-variate G0 distribution [9],
as special cases. In the two-dimensional log-cumulant diagram
constructed from κ3 and κ2 (see Figs. 2-5), the U distribution
spans the area bordered by the mentioned models, the K-
Wishart distribution to the left, the G0 distribution to the right,
and the Wishart at their intersection. These are limiting models
as one or both of α and λ tend to infinity [18].

A. MLC parameter estimation

The MLCs form a general basis for efficient parameter esti-
mation in the product models. The νth-order MLC expressions
for normalized Fisher distributed texture are given by

κν{T} =

{
ψ(0)(α)− ψ(0)(λ) + ln(λ−1

α ) , ν = 1

ψ(ν−1)(α) + (−1)νψ(ν−1)(λ) , ν > 1
(39)

where ψ(ν)(·) is the ordinary polygamma function and α, λ are
the two texture parameters. The total multitexture model log-
cumulants can be computed by using the appropriate scaling
factors, dν from (37), and adding the Wishart log-cumulant
component, from (27), or, alternatively, the texture part can
be isolated by using (38).

Sample log-cumulants are estimated for the data by (22)
and (23), and represent the sample’s location in log-cumulant
space. Model parameter estimation is then posed as a mini-
mum distance problem in log-cumulant space [21] between the
measured sample log-cumulants and the model log-cumulants
as nonlinear functions of the texture parameters (α, λ). We use
the first three log-cumulant orders, since we need at least as
many expressions as the number of parameters to be solved.

It is noted that the above described procedure also applies
to multitexture models, in which case the appropriate subma-
trices of the sample covariance matrices must be used in the
parameter estimation process.

B. Hypothesis testing

The MLCs are also suitable for model assessment.
Goodness-of-fit testing can be presented as a distance measure
in the log-cumulant space, since the sampling distribution
of MLCs can be assumed to be asymptotically multivariate
Gaussian with a known covariance matrix [30]. The dis-
tance measured between the sample and the model derived
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case (i)

case (ii)

case (iii)

T

Tco

Thh Tvv

Tx

Thv Tvh

Fig. 1. Hypothesis test scheme to distinguish between scalar, dual, and
quad-texture models

log-cumulants in log-cumulant space, hence becomes a chi-
squared test statistic in hypothesis tests with the number of
log-cumulants as the degrees of freedom. That is, three degrees
of freedom, since we use the first three log-cumulant orders,
κ1, κ2, κ3, in our examples. For more details on the goodness-
of-fit testing the reader is referred to [30].

The MKS framework provides tools suitable for selection
of the appropriate texture model for a particular image data
set, for model parameter estimation and for measuring how
well the model fits the data. In particular, the goodness-of-
fit (GoF) testing described in [30] can be used to develop
as series of multitexture hypothesis tests to determine which
multitexture case is most appropriate for a given data set, or
for an individual data class.

Three tests are sufficient to distinguish the three cases
described in Section III-C and Fig. 1 illustrates how the testing
proceeds. First test all four channels combined for a common
scalar texture variable, referred to as the scalar-test. If the test
passes, we have case (i), the traditional scalar-texture model.
Otherwise, test both the co-pol channels for a common texture
variable and the cross-pol channels for a common texture
variable. If these tests pass, we have case (ii), the dual-texture
model. Otherwise, we have case (iii), with independent texture
variables for all channels, the quad-texture model.

V. RESULTS

The goodness-of-fit tests can be applied on pixel samples
from a chosen area, in a sliding window, or on segmented
areas or clusters extracted by an algorithm. Our examples
are chosen manually and use 529 pixels in a square window.
The sample log-cumulants are determined for each of the
four channels individually. The hypothesis tests for the scalar
and dual-texture cases require the log-cumulants and model
parameters of the appropriate common models, and a chosen
confidence level, e.g. 95%. We simply take the mean of the
sample texture log-cumulant values for the individual channels
to be tested and estimate the Kummer-U model parameters by
the minimum distance method explained in Section IV-A. The
common scalar-test uses the mean of all four channels, the two
dual-texture tests average the two co-pol values and the two
cross-pol values, separately. Note that we use the first three
log-cumulant orders and set d = 1 because we have estimated
each channel cumulant individually.

Since we use log-cumulants so strongly in these tests, we
will first demonstrate their accuracy for parameter estimation.
For this we include two simulation experiments: firstly, a
visualisation of log-cumulant sensitivity for detecting a distri-
bution’s textural variation over several multilook levels; and,

TABLE II
GENERATED AND ESTIMATED MODEL PARAMETERS.

Note that values > 50 approach the special limiting cases,
and, therefore, these Fisher parameters are good estimates.

Generated Estimated

Class 1

Co-pol
Gamma α = 10

Cross-pol
Inverse Gamma λ = 30

Fisher distribution
α = 10.4, λ = 217

α = 4220, λ = 28.8

secondly, a numerical example of parameter estimation for a
specific dual-texture model.

A. Parameter Estimation and Multilook Levels

To demonstrate that log-cumulants are sensitive to texture
even after a high degree of multilook averaging, we include
the two plots in Fig. 2. The top plot is for highly textured
data such as from an urban land class and is represented
by G0 distributed data (texture is inverse gamma distributed)
with λ = 1.15. It shows the measured log-cumulant loca-
tions and the estimator’s 95% confidence ellipse for each
multilook level. The lower plot shows the same multilook
degrees but with Gaussian/Wishart generated data to represent
homogeneous classes. We used the same 529 pixel window
size and one dimension for the estimation to match the results
shown for the other experiments. Both figures demonstrate
that the measured sample log-cumulants behave exactly as
predicted by the theory and that multilook averaging reduces
(though not removes) the non-Gaussianity and, hence, degree
of texture, as well as the variance of the estimated values.
Note that increasing the sample size for the estimation would
also directly decrease the variance.

The second demonstration is for parameter estimation under
the proposed dual-texture model. For this we have simulated a
dual-texture data-set with different texture models for the co-
pol and cross-pol channels. The co-pol is gamma distributed
with α = 10 and the cross-pol is inverse gamma distributed
with λ = 30. The dimension is four and the number of
looks is eight. The estimation was performed with a Fisher
texture distribution that includes both parameters, α and λ. The
numerical values are given in Table II. At this number of looks,
the asymptotic distributions are approached for values of α
and λ over about 50. Therefore, the estimated parameters are
clearly in excellent agreement with the simulated parameters.
The dual-texture data histograms and log-cumulant diagram is
shown in Fig. 3. Each of the co-pol channels are similar and
each of the cross-pol channels are similar, yet the co-pol and
cross-pol groupings are different and clearly distinguish the
gamma (left curve) and inverse gamma (right curve) models.
This example was performed as a whole class clustering
scenario and achieves a high accuracy and sensitivity because
the sample size is 6400 pixels.

B. Hypothesis Tests

We can visualize the hypothesis testing results in the
κ3, κ2 log-cumulant diagram [21] by plotting the sample log-
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Fig. 2. Multilook level experiment results. The top plot shows the measured
sample log-cumulant locations for 8, 16, 32, and 64-look averaging, and
the expected 95% ellipse for the estimator, given highly textured G0 data
representing an urban land class. The lower plot shows a similar result
for Gaussian/Wishart data expected for homogeneous classes. Both results
indicate that the method of log-cumulants is sensitive to detecting texture
even after extensive multilooking.

cumulants and the common texture model confidence limit
ellipses for each test. In essence, if the appropriate sample
points lie within the ellipse, then they pass the test. It is not
strictly this simple if more cumulants are used in the testing
than these two being displayed, because the true confidence
region will be an ellipsoid in all the dimensions. In Figs. 4 to
6, the symbols HH, HV, VH and VV show the (κ3, κ2) points
for each individual polarimetric channel. The 95% confidence
ellipses of the common co-pol, cross-pol, and scalar test are
shown with dashed, dot-dashed, and solid lines, respectively.
The (red) curved line on the left, the (blue) curved line
on the right, and the (green) origin where they converge
represent population log-cumulants of the K distribution, the
G0 distribution, and the scaled complex Wishart distribution,
respectively.

Fig. 4 presents results for a rain forest sample, from an
8-look L-band PALSAR image of Brasil, where all channels

Fig. 3. Dual-texture parameter estimation. The top plot shows the histogram
and fitted model to the co-pol and cross-pol data channels. The lower plot
shows the estimated log-cumulant locations for the four channels individually,
and the expected dual-texture 95% ellipses. Clearly the model fitting and
texture estimation is accurate and the proposed hypothesis testing easily
determined that this is a dual-texture model.

fall within the confidence region of the scalar-test (solid line),
indicating case (i). This scalar-texture result was by far the
most common result for many different thematic regions from
many different PolSAR scenes and sensors.

Fig. 5 presents results for a sample of sea ice, from a 32-
look L-band PALSAR image near Spitsbergen. The scalar-test
for the combination of all channels fails, but the co-pol and
the cross-pol channels pass the pairwise tests, thereby selecting
the multitexture model of case (ii), i.e. dual-texture. Note that
this was for a very dark area, possibly grease ice, with very
low cross-pol channel intensity.

Fig. 6 presents results for two urban samples from a 25-look
C-band Radarsat-2 image of San Francisco. Both show the
dual-texture case, but the relative degree of texture is different
for the co-pol versus cross-pol channels in both images. Urban
samples aligned with the radar have most of the double-bounce
scattering mechanism power in the co-pol channels, whereas
buildings aligned at 45◦ will have high power in the cross-pol
channels. The double-bounce mechanism seems to possess the
main textural variation, and, hence, the reversed order of the
two texture components.

C. Multitexture mixtures

While investigating multitexture in different scenes, we
observed the significant influence that class mixtures have
on texture estimates and the appearance of multitexture. This
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Fig. 4. Pauli RGB image with sample location (top) and Log-cumulant
diagram (bottom) with evidence of scalar-texture for a forest segment in a
PALSAR image from the Amazon.

is understandable because class mixtures often measure as
extreme texture, but it is actually due to mixtures of different
brightnesses. One can easily visualize that mixtures with
different polarimetry could cause the appearance of multi-
texture.

Consider two mixture classes with markedly different po-
larimetry, such that the contrast (relative brightness) between
classes is different for the co-pol and cross-pol channels.
Fig. 7 shows a two-class mixture example (80:20% mix) for
separate co-pol and cross-pol channels. The dashed (blue) lines
represent the two mixture components, the grey histogram is
the total mixture distribution and the solid (red) curves are the
fitted U distribution models. The solid (red) texture models
measured for the co-pol mixture has a different shape than
the cross-pol mixture - and thus give the appearance of multi-
texture. We clearly observed such “mixture multitexture” when
we chose a window across a clear class boundary.

It is important to note that such mixtures may be detectable
by observing the goodness-of-fit of the histogram to the
estimated model, as can be seen by the poorly fitted red
curve in the cross-pol channel of fig. 7. However, this may
require a very large number of samples to achieve high
enough sensitivity. The proposed multitexture model, with
channel texture from different origins, would always appear
as a continuous texture histogram for each channel, but with
different shapes for each channel. The 529 samples used in our
examples, Figs. 4 to 6, were not large enough to distinguish
such mixed histograms.

Another case for multitexture is for very low intensity
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Fig. 5. Pauli RGB image with sample location (top) and Log-cumulant
diagram (bottom) with evidence of dual-texture for a sea ice segment in a
PALSAR image from Spitsbergen.

channels, such as our sea ice example in Fig. 5. For example
over water, the cross-pol channels may be near the noise
floor, but the co-pol channels may have a stronger signal. The
co-pol characteristics will therefore reflect the multiplicative
noise model for speckle, with a particular number of looks
and potentially textural variation, but the cross-pol channel
could be markedly different. Pure noise in the cross-pol would
appear as a narrow Gaussian distribution (appearing as a very
high number of looks), while a weak signal near the noise-
floor may appear as some sort of mixture and exhibit a high
texture. Either case may be measured as a multitexture model.

VI. CONCLUSIONS

A multitexture model for PolSAR data has been developed,
including model density functions, log-cumulant expressions
and hypothesis test validation. Preliminary results on several
distinctly different PolSAR scenes indicate that the scalar
product model is often valid, even for rainforest classes that
were suggested to be multitextural due to scattering mecha-
nism arguments. Otherwise, the dual-texture (co-pol/cross-pol
paired) case is common.

Care must be taken to avoid class boundaries when sampling
images, as the theoretical framework is based upon pure
classes and mixtures always result in exaggerated and often
multiple textures. This includes the situation of mixtures with
the system noise signal if one channel is near the noise-floor.
Goodness-of-fit tests may detect such mixed cases, but may
require a large sample size to be detectable. This is, perhaps,
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Fig. 6. Pauli RGB image (top) with sample locations for an urban scene of
San Francisco in a 25-look C-band Radarsat-2 image. Log-cumulant diagrams
for the two boxes depicting buildings aligned with the radar (upper box and
plot) and at 45 degrees to radar (lower plot). Both show evidence of dual-
texture, but the degree of texture is reversed for the co-pol and cross-pol
channels in the two areas.

most suitable to applying tests to entire classes rather than in
windows.

In general, it is anticipated that the more representative
a statistical model is of the data, the better results will be
produced by its application. Hence, if the application method
produces any form of measurable textural differences, then a
multi-texture approach may achieve better results than scalar
texture modeling.
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