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 “The more clearly we can focus our attention on the wonders and realities of the universe about us, 

the less taste we shall have for destruction” Rachel Carson, 27 May 1907 – 14 April 1964. 
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Preface 

Jimmy Cliff once sang “You can get it if you really want, but you must try, try and try”. I wonder if he 

thought about doing a PhD while he wrote the song…  

Four years ago, I really looked forward to do this PhD, within the ArcRisk (EU FP7, Grant Agreement 

no 226534) project. I am very grateful for the funding from ArcRisk and for all the good and fruitful 

discussions with the involved colleagues. Especially Janet Pawlak, Lars-Otto Reiersen and Simon 

Wilson from AMAP have been very supporting during these four years. Thank you all! 

This thesis would not have been doable without the continuous support from my main supervisors 

Roland Kallenborn (UMB/UNIS) and Dorte Herzke (NILU). Roland (Store Vennlige Kjempe; SVK) 

has been a great support whenever there has been a storm during this PhD. He is an endless source of 

optimism and always manages to make writing and labwork look quick and easy to do! 

Dorte have had an almost infinite patience when it comes to explaining the mysteries of analytical 

chemistry. She is more or less always right about things as well, whether it is chemistry or what I 

should focus my time and writing on… Thanks to her and the lab at NILU/Tromsø, this thesis was 

realised in its present form. If it would not have been for NILU, and especially Dorte, Eldbjørg 

Heimstad, Nick Warner and Mikael Harju, I would not have been able to do any analyses. I always felt 

very welcome at NILU and have appreciated to be in a working environment where I had very nice 

chemistry colleagues and -discussions! 

The work with chiral pesticides would not have been doable without the never-ending support from 

Nick. What he cannot explain about chirality and analytical chemistry is probably not worth knowing. 

I would also like to thank Einar Jensen, my supervisor at University of Tromsø for support, good 

discussions and ideas.  

There are not only supervisors or people at NILU who deserves to be appreciated and mentioned here. 

Gerard Cornelissen (NGI) made paper I with the passive POM samplers come true. Thank you for 

your enthusiasm and all the emails!  

I stayed at Greenland Institute of Natural Resources in Nuuk for some of my fieldwork. It was really 

nice with all the cool people there, you made my visits memorable. I have had a couple of expeditions 

with R/V Lance for sampling and teaching. It was always a pleasure to be onboard! 

Ingeborg Hallanger (UiT) is a living dictionary when it comes to zooplankton and statistics. It all 

makes sense when you explain it! 
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I would also like to thank Geir Wing Gabrielsen (Norwegian Polar Institute) for your support during 

those years and the COPOL project, where I got the zooplankton samples from. Thanks to the 

ARCTOS network, I got to know several interesting people with different backgrounds. Svalbard 

Environmental Fund supported the “POPjakt i skolen”-project, which was closely related to my PhD 

work. 

I spent quite some time in Tromsø to do this thesis. Without all the super-nice people with sofas, extra 

rooms and nice houses there (especially Yngve, Elena, Anna, Mikko, Sanja, Philipp, Ingrid and 

Magnus), I would not have been able to spend as much time at NILU as I did. I make sure I always 

have a spare room/sofa for you, wherever in the world I’ll be! 

During my years at UNIS in Longyearbyen, fellow already-PhDs, PhDs-to-become, colleges and 

students made life in the office easier and nicer. Thank you Lorna, Malu, Monika x2, Daniel, Eike x2, 

Karoline, Rico, Archana, Anatoly, Miriam, David, Renat, Kine, Ingjerd, Laura, Silje, Aleksey, Louis, 

Teena, Emma, Tatyana, Øyunn, Ida Helene, Peter, Kristin, our fantastic librarian Berit and Courtney 

for correcting the language and grammar. A big thank you to Lucie Strub-Klein. She was always ready 

with a cup of tea when life and PhD did not go as I wanted and planned. I appreciated my colleagues 

at Arctic Technology and other nice people at UNIS as well for help, support and coffee/cake-breaks. I 

would also like to thank two-legged and four-legged friends in Team Qanik and Team Pelstryner for 

all nice trips! Longyearbyen is a nice place to live, especially if you like skiing, dog-sledging, hiking, 

diving and being outdoors. Thanks to all trip-partners during the years, fresh air and exercise kept me 

sane while doing this PhD! 

And to my parents and Markus in Sweden, thanks for understanding why I choose to move North! 

You have always been very supportive, no matter what ideas I have had (almost…). Tack! 

For those of you who are in the middle of your PhD:  

You can get it if you really want  

But you must try, try and try 

Try and try, you'll succeed at last 

Well, it seems like Jimmy Cliff did sing about the road towards a PhD degree! 

 

 

 

Pernilla Carlsson, 

Rijpfjorden, Svalbard, August 2013 
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Summary 

The overall aim of the present study was to elucidate selective environmental up-take processes in 

Arctic food webs that lead to the enrichment of persistent organic pollutants (POP) in food items 

consumed by Arctic indigenous people. In addition, this study aimed to increase the scientific 

understanding of the principles behind climate change related influences on transport processes of 

contaminants. POPs bioaccumulate in the food web to animals at high trophic levels in the Arctic, as 

well as into humans. Processes concerning contaminant transfer in abiota and at low trophic levels as 

well as in Arctic local food are therefore of high importance. 

 

This thesis is based on a series of field campaigns and the thereby generated, empirical data. Legacy 

pesticides were analysed in water samples from a Greenlandic fjord (paper I). Four chiral 

contaminants were chosen for enantiomer selective analyses; α-hexachlorocyclohexane (α-HCH), 

trans-, cis- and oxychlordane in zooplankton from Svalbard and Greenlandic traditional food items 

(paper II, III). In addition, polychlorinated biphenyls (PCB), polybrominated diphenyl ethers (PBDE) 

and perfluorinated alkylated substances (PFAS) were also analysed in the food items (paper IV). 

Svalbard and Nuuk, Greenland were chosen as study areas since these regions are representative for 

Arctic conditions, such as glaciers, changing periods with sunlight, low temperatures, different marine 

water masses, known long-range transport of POPs and few local sources for POP contamination. In 

addition, Greenland has a large population of indigenous people consuming traditional food on a daily 

basis, enabling the assessment of human exposure in further studies. 

 

The pesticide distribution in meltwater in a Greenlandic fjord (Godthåbsfjord, Nuuk), indicated that 

glaciers and snow caps within the catchment area of the fjord are secondary sources of contaminants 

for the coastal marine environment. Chlordanes were identified as potential indicator compounds for 

meltwater runoff. The more volatile α-HCH and hexachlorobenzene (HCB) were associated with 

oceanic influence and therefore considered as less potential indicators of secondary sources (paper I). 

Enantiomer selective analyses of chiral pesticides (α-HCH), trans- and cis-chlordane) and one 

metabolite (oxychlordane) were performed to elucidate contaminant exposure for zooplankton from 

different Svalbard fjords, characterised by different water masses. Among the compounds, trans- and 

oxychlordane were found to be most impacted by biodegradation. The enantiomeric fraction (EF) 

pattern of α-HCH was associated to ice cover/break-up. Cis-chlordane was found to be less degraded 

compared to trans-chlordane, and changes of EF of cis-chlordane were reflected in the deviation from 

racemic EF among oxychlordane. Chiral pesticides and enantiomer selective analyses are 

recommended for further studies regarding its potential as marker for changes of the physical 

environment (paper II). 



   

 

VII 
 

Enantiomer selective analyses of chiral contaminants in Greenlandic traditional food items showed 

non-racemic EFs for almost all samples and compounds. The fish samples (salmon and halibut) 

showed a preferred degradation of (+)-α-HCH, while the marine mammals (seal and whale beef and 

narwhal mattak; blubber and skin) showed a preferred degradation of (-)-α-HCH. Cis-chlordane was 

racemic, and oxychlordane close to racemic in seal meat, while both whale beef and the local delicacy 

narwhal mattak showed non-racemic EFs for these compounds. Hence, species specific distribution 

exists, and can be an important factor in future dietary advices, if/when more knowledge about the 

toxic effects of each enantiomer is present. The food items analysed were below tolerable daily intake 

(TDI) threshold levels for all compounds analysed, including PCB, PBDE and PFAS (paper III, IV). 

There are few studies available regarding levels of PBDEs and PFAS in Greenlandic traditional food. 

The levels in the present study were generally slightly lower or comparable with other (when 

available) studies from Greenland. Only few congeners of PBDE were detected, and BDE-47 was the 

dominating, and sometimes the only detected congener. PFAS was detected in the marine mammals, 

but not in the fish samples. All fishes have been processed by the fish industry (i.e. washed, smoked, 

packed), which could be the reason for PFAS below limits of detection (paper IV). 
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Introduction 

Persistent organic pollutants 

Persistent organic pollutants (POP) are substances with physical-chemical properties that make them 

toxic, persistent enough to undergo long-range transport and bioaccumulate in lipid rich tissues in 

organisms (Stockholm Convention, 2013). Substances which fulfil the criteria of persistence, 

bioaccumulation and toxicity (the PBT criteria) are cause for concern and undergo risk assessment to 

determine whether they are harmful or not (Council of the European Union, 2006; Stockholm 

Convention, 2013). The definitions (in brief) of these terms, according to the Stockholm Convention, 

are as follows:  

 Persistence: the substance should have a half-life in water >2 months or >6 months in marine 

sediment. 

 Potential for long-range transport: Data from air, water or migratory species in remote areas 

showing long-range transport, or physical-chemical properties of the substance/results from 

models that indicate a potential for long-range transport. 

 Bioaccumulation: The bioconcentration or bioaccumulation factor should be >5000, i.e. the 

log of the partitioning coefficient octanol-water (Kow) >5, or if monitoring of species should 

indicate bioaccumulation. 

 Toxicity (adverse effects): Toxicity data or evidence for (potential) impact on human and/or 

environmental health. 

 

POPs can be transported over long distances from their original sources and have therefore been of 

concern for both humans and Arctic wildlife due to the impact of POPs on hormone systems and 

carcinogenic features. The contaminants reach the Arctic after cycles of deposition and revolatilisation 

from southern latitudes, also known as global fractionation when some semivolatile organic 

contaminants undergo repeated steps of revolatilisation and condensation before they finally reach the 

Arctic (grasshopper effect). Contaminants detected in the Arctic are known to undergo long-range 

transport. The Arctic has therefore been of high interest regarding environmental pollution research 

and monitoring (Wania and Mackay, 1993; AMAP, 2003; Macdonald et al., 2005; Semeena and 

Lammel, 2005; AMAP, 2009b, a; Guglielmo et al., 2009; Hung et al., 2010; Stockholm Convention, 

2013). 

 

To reduce the environmental impact of POPs, the usage of the legacy POPs such as polychlorinated 

biphenyls (PCB), chlordanes, hexachlorocyclohexanes (HCH) and hexachlorobenzene (HCB) are 

prohibited, although some of them are allowed with restricted usage, within the Stockholm 

Convention. By-products, such as HCB are also regulated within this convention. The usage of 
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dichlorodiphenyltrichloroethane (p,p´-/o,p´-DDT) is prohibited, but allowed in some areas and also 

indoor to fight insects that cause diseases such as malaria (WHO, 2009). However, DDT and its 

metabolites are toxic to wildlife, and the most well-known effect is egg shell thinning among birds. It 

has recently become of concern again regarding the egg shell thickness among birds, e.g. ivory gulls 

(Pagophila eburnea) (Miljeteig et al., 2012).  

 

Newly identified, POPs of emerging concern are constantly being reviewed and monitored by the 

Stockholm Convention, and tetra-hepta-brominated diphenyl ethers (BDE), perfluorooctane sulfonic 

acid (PFOS; international regulations with exemptions), α-, β-, and γ-HCH were added to the 

convention in 2009, while endosulfan (with exemptions) was added in 2011 (Stockholm Convention, 

2013).  Recommended candidate chemicals are constantly reviewed by the Persistent Organic 

Pollutants Review Committee (POPRC) to assess whether the substances fulfil the PBT criteria. The 

process consist of several steps; proposal by some of the Stockholm Convention parties, screening 

regarding evidence for fulfilment of PBT criteria, risk profile, risk management evaluation and, 

finally, decision of listing substance into the Stockholm Convention, including possible exemptions. 

 

Structures of the contaminants analysed in this thesis are presented in figure 1a. Compound groups are 

presented with one of the common congeners/substances as example. The chiral compounds and their 

structures are showed in figure 1b. 

 

Polychlorinated biphenyls  

The first report of PCBs in wildlife was made in 1966 when samples were analysed for DDT and its 

metabolites (Jensen, 1972). The development of the electron capture detector (ECD) for quantitative 

gas chromatographic analysis during the late 1950’s facilitated the detection of low levels of 

halogenated/chlorinated compounds, i.e. pesticides and PCBs. PCBs have been used extensively in 

electrical equipment, in house paint and as heat exchange fluids. The phasing out of PCBs began 

during the 1970’s, when production was banned in some countries, but the usage of PCB was still 

allowed. Local sources of PCB in Svalbard (e.g. old capacitors, transformers and other electrical 

equipment) have been removed recently to prevent leakage of PCB into the Arctic environment 

(Pedersen et al., 2011). PCBs can affect immune and hormone systems, reproduction, behaviour, 

foetal development and are carcinogenic (AMAP, 2009a, b). 

 

Hexachlorocyclohexanes 

The production and usage of γ-HCH (>99% purity =Lindane®) have been phased out, and have been 

listed in the Stockholm Convention together with the by-products α- and β-HCH since 2009 

(Stockholm Convention, 2013). Technical HCH was used extensively during the 1970-80’s and 
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consist mainly of α-HCH (60-70%), γ-HCH (10-15%) and β-HCH (5-12%), but other isomers of HCH 

are also present (Iwata et al., 1993; Goss et al., 2008). α-HCH is the only chiral isomer of HCH. The 

levels in the atmosphere have decreased and are today mainly controlled by secondary sources, such as 

soil and oceans (Wöhrnschimmel et al., 2012a; Wöhrnschimmel et al., 2012b). β-HCH is more 

persistent and lipophilic than α-HCH and atmospheric levels decrease more slowly, even though α-

HCH often evaporates from ocean to the air in the Arctic. All chlorine atoms in -HCH are equatorial 

bound to the cyclohexane skeleton. Hence, this chemical expresses high persistency and lipophilic 

properties in environmental systems. Since α-HCH is more volatile than β-HCH, it is more easily 

transported to remote areas, e.g. the Arctic (Jantunen and Bidleman, 1996; Wöhrnschimmel et al., 

2012a; Wöhrnschimmel et al., 2012b). γ-HCH is considered to be immunotoxic and to cause effects 

related to reproduction and development. α- and β-HCH are potentially cancerogenic (Stockholm 

Convention, 2013).  

 

Hexachlorobenzene 

HCB has previously been used as a fungicide. Today, HCB is released primarily as a by-product of the 

(pesticide and chemical) industry. It is a volatile substance and undergoes long-range transport to the 

Arctic (AMAP, 2003). During the early-mid 2000s, atmospheric levels of HCB seem to decrease in 

the Arctic, but not at the Zeppelin Mountain station (78o55’ N, 11o56’ E; Ny-Ålesund, Svalbard). This 

is probably caused by the evaporation of HCB from ice free waters to the atmosphere (Hung et al., 

2010; Ma et al., 2011). HCB can affect reproduction in both human and other animals (Stockholm 

Convention, 2013). HCB may additionally possess dioxin-like properties (e.g. binds to the aryl-

hydrocarbon receptor), but there are not sufficient studies where the HCB used was not contaminated 

with polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) and/or dioxin-like PCBs (Pohl et al., 

2001; Van den Berg et al., 2006). 

 

Chlordanes 

The technical chlordane mixture consists mainly of trans- (TC) and cis-chlordane (CC), followed by 

trans-nonachlor and heptachlor. Several other chlordane and related compounds are also present 

(Dearth and Hites, 1991). Chlordane has been used as crop pesticide and as termiticide in houses and 

foundations, and indoor air has therefore been an important exposure route for humans (Stockholm 

Convention, 2013). Chlordanes are transported to remote areas and bioaccumulate in the food web, 

and hence, food is the major exposure route for people outside areas where chlordane have been used 

indoors (Deutch et al., 2004; AMAP, 2009a). Chlordanes affect the reproduction and immune systems 

(AMAP, 2009b). Trans-, cis- and oxychlordane (OXY) and some of the minor components of 

technical chlordane are chiral. 
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Polybrominated biphenyl ethers 

Polybrominated diphenyl ethers (PBDE) have been used as flame retardants in various materials, such 

as electric equipment, textiles and plastics. The technical mixtures penta- and octaBDE have been 

banned since 2004 in the EU and Norway, and the production in USA was voluntarily ceased in 2005. 

In 2001, the worldwide market of penta- and octaBDE was 7500 and 3790 metric tonnes, respectively 

(ACAP/AMAP, 2007). The bioaccumulation potential for decaBDE is still under debate, but it has 

been banned within EU since 2008 (BSEF, 2013). PBDE congeners have lower long-range transport 

potential than PCB congeners with similar molar mass, most likely due to a higher reactivity with 

hydroxyl radicals in the atmosphere, which shortens the lifetime of PBDEs in the atmosphere (Wania 

and Dugani, 2003; BSEF, 2013). PBDEs, and especially hydroxylated PBDEs have been reported to 

interfere with oestrogen and thyroid receptors (Darnerud et al., 2001; Meerts, 2001; de Wit, 2002). 

 

Perfluorinated alkylated substances 

Perfluorinated alkylated substances (PFAS) are a group of surface active compounds, where different 

perfluorinated sulfonates and carboxylic acids and fluorotelomer alcohols are the most common 

constituents. Due to their surface active properties, they have been used in e.g. GoreTex®, Teflon®, fire 

fighting foam and as emulsifiers. The production of PFOS (3500 metric tonnes in 2000) decreased 

when the major producer (3M) voluntarily ceased their production in 2002. In 2003, 3M produced 175 

metric tonnes PFOS, although worldwide production of PFOA increased (Lau et al., 2007). Norway 

and EU have regulated the amount of PFOS allowed in different materials, such as firefighting foams 

and textiles (European Union, 2010). PFAS can affect intracellular organelles, the liver, immune and 

hormone systems (Lau et al., 2007; White et al., 2011). They bind / sorb to large surfaces (i.e. to 

proteins), while the legacy POPs accumulate and dissolve in lipid rich tissues (Lau et al., 2007; 

AMAP, 2009b). Among the PFAS, only PFOS, its salts and perfluorooctane sulfonyl fluoride (PFOS-

F) are listed within the Stockholm Convention, but exemptions allow usage and production for several 

purposes (Stockholm Convention, 2013).  
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Caldwell, 1995). Some pesticides (e.g. mecoprop and dichlorprop) have been manufactured and sold 

as single enantiomer products, when only one of the enantiomers is active as pesticide. In this case, the 

costs for agricultural production can be lowered and, thus, less amount of the pesticide is applied 

compared to racemic mixtures. However, this is only possible if a (cost effective) chiral synthesis or 

separation form the racemate exists (Williams, 1996). 

 

The enantiomers of a chiral compound differ in their three-dimensional (stereochemical) structures. 

However, they are characterised by the same physical-chemical properties such as Kow, boiling point, 

solubility and electronic affinity. A major and simple chiral feature is one or more asymmetric centres 

in a molecule. However, there are several other types of chirality described in the literature. The 

asymmetric centre is usually described as a tetraedal carbon atom, which binds to four different atoms 

or substituents. However, a free electron pair can replace an atom/substituent at a stereogenic centre, 

e.g. when sulphur is the asymmetric centre. Another form of chirality is axial chirality (atropisomers), 

where free rotation around a bond is hindered due to their specific substitution patterns on the basic 

molecular structure (steric hindrance). This is the case for atropisomeric PCBs that lack a plane of 

symmetry. PCBs with chlorine substituents in minimum two of the ortho positions and one in a meta 

position have a steric hindrance for rotation. Hence, these atropisomers are chiral because they are 

non-planar and lack both an axis of symmetry and a centre of inversion. There are 78 of the 209 PCB 

congeners that fulfil these requirements, but only 19 of them that are stable atropisomers at room 

temperature, depending on their rotational energy barriers (Harju and Haglund, 1999). Even if a 

compound lacks a plane of symmetry, it might have a centre of symmetry and hence, be considered 

chiral. This is the case for α-truxillic acid. α-HCH is chiral because it does not contain a plane, centre 

or an alternating axis and hence, fulfils the requirement of absence of an improper axis (Kallenborn 

and Hühnerfuss, 2001). Enantiomers can have (+)- or (-)- prefix, which indicates which way they 

rotate plane polarised light. A (+)-enantiomer rotates the plane polarised light to the right 

(dextrorotatory), while a (-)-enantiomer rotates it to the left (levorotatory). Some chiral compounds are 

assigned R- and S- for their enantiomers. The R- and S- prefixes indicate the 3D-configuration of the 

substituents around the chiral centre. When the order of atom numbers at the substituents decreases 

clockwise, the substance is designated with “R-“ as prefix. The “S-“ prefix indicates that the decrease 

is counter clockwise. This rule is part of the Kahn-Ingold-Prelog rules for naming of stereoisomers 

(Cahn et al., 1966; Prelog and Helmchen, 1982; IUPAC, 1997). 

 

Almost all biological processes and especially processes regarding hormones, amino acids, peptides, 

protein and lipids are enantiomer selective (McMurry, 2007). As a consequence of this, chirality and 

enantioselectivity are important features during target specific development of e.g. insecticides and 

pharmaceutical drugs. Appropriate knowledge regarding differences in toxicity and metabolism of the 



8 
 

enantiomers of a molecule has helped to optimise the manufacturing of chemicals and reduce the 

environmental impact in modern chemical production processes. One example is 2-(2,4-

dichlorophenoxy)propionic acid (dichlorprop; DCPP), where (R)-DCPP is the active herbicide of the 

DCPP-enantiomers. A selective microbial degradation of the (R)-enantiomer has been reported, which 

means that the (S)-enantiomer is released and enriched in the nature as a “by-product” (Ludwig et al., 

1992a). 

 

Transport of contaminants to the Arctic 

POPs reach the marine Arctic environment mainly via long-range atmospheric transport and 

volatilisation from the ocean (AMAP, 2003; Macdonald et al., 2005; Hung et al., 2010). Other sources 

can be secondary sources, or local sources, such as previous usage of PCBs and incineration (Pedersen 

et al., 2011). The impact on the environment of the local sources is, of course, strongly dependant on 

the location, amount and distance. Secondary sources of POPs in the Arctic can be previous sinks of 

POPs, e.g. soils, snow and ice caps and sediments, which can become bioavailable again due to 

climate changes. Regarding PCBs, the transport of PCBs into the Arctic might be more efficient than 

earlier estimations, and for some PCBs, large sinks can be found in remote areas due to atmospheric 

transport, biotic transport (e.g. guano from birds (Evenset, 2006; Evenset et al., 2007)), and deposition, 

followed by storage in soil (Moeckel et al., 2008). The secondary sources have highest impact on 

levels of penta-hexa-chlorinated PCBs. Those congeners have higher vapour pressure compared to the 

high-chlorinated PCBs, and longer residence time in air than the low-chlorinated PCBs (Kallenborn et 

al., 2012a; Lammel and Stemmler, 2012; Stemmler and Lammel, 2012). 

 

The study presented here was an integrated part of the project ”Arctic Health Risks: Impacts on health 

in the Arctic and Europe owing to climate-induced changes in contaminant cycling” (ArcRisk). 

Increased precipitation, reduced ice cover and affected weather systems are effects of a changing 

climate, causing the transport pathways of contaminants to vary more strongly and contribute to the 

release of contaminants from old sinks (Macdonald et al., 2005; AMAP, 2011a, b; Kallenborn et al., 

2012a; Grannas et al., 2013). There are several river outflows into the Arctic, and the catchment area 

has been estimated to cover almost entire Russia and large parts of Canada (AMAP, 2003). Increased 

meltwater runoff, soil erosion and precipitation in these areas could increase the fluvial transport of 

both legacy and emerging POPs into the Arctic (Kallenborn et al., 2012a). Monitoring of POPs in 

Arctic air has proven to be a versatile tool to discover changes in concentrations of legacy POPs over 

time and to discover emerging contaminants and investigate their long-range transport potential. The 

contaminants that undergo long-range transport in air/water to the Arctic can thereafter be 

incorporated into the Arctic (marine) food web (AMAP, 2003; Hung et al., 2010; Kallenborn et al., 

2012b; Krogseth et al., 2013).  
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Biotic transport and uptake and of contaminants in the Arctic 

Dissolved POPs in the free water masses of the oceans might eventually accumulate in the marine 

food webs. The first biotic step in this food chain is plankton, which are the link between the delivery 

of POPs into the water via abiotic (transport) processes (e.g. meltwater, precipitation and soil 

drainage) and bioaccumulation further up in the pelagic food chain (Borgå et al., 2001; AMAP, 2003, 

2009b, 2011a; Hallanger et al., 2011a; Stockholm Convention, 2013). Sinking particles in the oceans 

can carry contaminants to the bottom sediments, but these contaminants can become bioavailable for 

scavenging and filtrating organisms, inter alia annelids, molluscs, benthic fishes and crustaceans after 

remediation and disturbance of the sediment in shallow seas (Ilyina et al., 2006; Ilyina et al., 2008; 

O'Driscoll et al., 2013). 

 

A rising sea temperature will facilitate the migration of fishes from temperate areas into the Arctic. 

The migration of such species (e.g. Atlantic cod; Gadus morhua and haddock; Melanogrammus 

aeglefinus) is considered as a potential transport route for contaminants into the Arctic food web and 

hence, affect the contaminant levels in local Arctic food (AMAP, 2011b; Kallenborn et al., 2012a; 

Renaud et al., 2012). Whether species originating from non-Arctic water masses carry more 

contaminants than Arctic species or have a similar level is not clearly understood yet, neither is the 

total impact of changes in the food web upon the contaminant exposure for Arctic species (Borgå et 

al., 2010; Hallanger, 2010; Kallenborn et al., 2012a). A change of zooplankton species (i.e. from 

Arctic to Atlantic species) might not lead to a different contaminant load within the zooplankton 

themselves. Nevertheless, the Atlantic species Calanus finmarchicus contain less energy compared to 

its Arctic relative; the Calanus glacialis. In order to gain the similar energy resources, the predators 

would have to rely more on C. finmarchicus than C. glacialis as food source (Scott et al., 2000). 

 

The effects of remobilisation and remediation of soils and sediments due to a changing climate in the 

Arctic regarding the POP distribution and bioavailability is not well-known. Especially the knowledge 

of low trophic levels as the link between abiotic environmental processes and biotic uptake with 

regards to changing environment and climate is scarce (Kallenborn et al., 2012a). However, there are 

several studies regarding bioaccumulation of POPs in zooplankton (Borgå et al., 2001; Hallanger, 

2010; Hallanger et al., 2011a; Hallanger et al., 2011b; Hallanger et al., 2011c) 

 

Ice caps and contaminants as tracers of physical processes 
Two of the key findings within the recently published “Snow, water, ice and permafrost in the Arctic” 

(SWIPA) report were: 1). “There is evidence that two components of the Arctic cryosphere – snow 

and sea ice –are interacting with the climate system to accelerate warming”, and 2). “The past six 
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years (2005–2010) have been the warmest period ever recorded in the Arctic. Higher surface air 

temperatures are driving changes in the cryosphere” (AMAP, 2011b). The anticipated increase of 

melting ice and snow caps in the Arctic can release pollutants that have, until now, been stored in the 

snowpack. These contaminants will then be bioavailable again, which could cause a temporarily 

increase of the old legacy POPs, even though some of them have been banned since the 1970s (Blais 

et al., 2001a; Blais et al., 2001b; Bogdal et al., 2009a; AMAP, 2011b; Bogdal et al., 2011; Kallenborn 

et al., 2012a). 

 

There are indications for melting Alpine glaciers as secondary sources of pollutants. However, there 

are only a few studies and they have often used only one replicate of sediment cores from lakes 

receiving glacial meltwater (Bogdal et al., 2009a; Bogdal et al., 2009b; Bogdal et al., 2011; Schmid et 

al., 2011). In addition to the low sample numbers, the reported recovery rates varied too much for 

drawing extensive conclusions from these available data. Based upon the available data, it is therefore 

questionable whether this theory could be applied for the Greenlandic ice cap. There are measurements 

of pesticides in ice caps at Svalbard, but these studies were also based on only one sample per location 

and far away from the coast (Hermanson et al., 2005; Ruggirello et al., 2010). Therefore, the current 

scientific information does not allow satisfactory conclusions regarding the impact of POP 

contamination in the ice caps as secondary sources of POPs to the receiving Arctic Ocean.  

 

A large ice cap, such as the Greenlandic ice cap is considered as an important reservoir of POPs. 

Therefore the following criteria must be fulfilled:  

¤ Significant accumulation of snow since the usage of POPs began (i.e. during the 20th 

century). 

¤ The ice calving into the oceans has to be a sink of POPs, e.g. received and accumulated 

POPs via precipitation or from meltwater that contains POPs.  

POPs reach Arctic ice caps via long-range atmospheric transport and precipitation (AMAP, 2003; 

Macdonald et al., 2005; Hung et al., 2010). Even if the snow melts during the summer, the POPs could 

accumulate in the ice cap, or they could be flushed out in the annual meltwater. There are very few 

studies regarding POPs and melting ice caps, although there are a few studies reporting PCBs, 

pesticides, polycyclic aromatic hydrocarbons (PAHs), PBDEs and other brominated flame retardants 

(BFR) in ice caps from Svalbard (Hermanson et al., 2005; Ruggirello et al., 2010) and northeast 

Canada (Gregor et al., 1995; Peters et al., 1995). Regarding the second criteria, the calving ice from a 

large ice cap is the oldest ice and is mostly of preindustrial origin; hence it should not contain POPs. 

Nevertheless, an increase in meltwater from glaciers could imply an increase in POP delivery to the 

receiving Arctic ocean if the POPs delivered by long-range transport during the 20th century have 

precipitated and accumulated on the glacier surface and have thereafter been stored in the old ice, 

which is now subject for melting. Surface melt of the glacier can penetrate deeper layers of the snow 
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and firn. The meltwater in the Greenlandic ice cap moves horizontally at altitudes lower than ~1350 m 

above sea level. Snow present at this altitude and lower is subject for run-off, while the snow melt in 

the zone between 1500-2000 m is retained within the firn column (Humphrey et al., 2012).  

 

With an increase in meltwater runoff, more contaminants could become bioavailable if the snow and 

meltwater originates from the industrial period. The Greenlandic ice cap was chosen as a study object 

in the present project to assess possible routes of transportation and cycling of contaminants in the 

Arctic. This is the second largest ice cap in the world, is relatively easy accessible compared to other 

Arctic ice caps, and the remobilisation of contaminants from the Greenlandic ice cap and its 

surroundings would have an impact on the traditional food for the indigenous people of Greenland 

(AMAP, 2011b; Grannas et al., 2013).  

 

 

Use of manmade contaminants as tracers of biological processes 

Even though POPs per definition bioaccumulate (Kow >5) and can undergo long-range transport, some 

are more volatile than others (e.g. α-HCH compared to β-HCH). Hence, substances with a high air-

water partitioning coefficient (Kaw) will evaporate from the ocean more easily than substances with a 

low Kaw. In the water though, small and slightly lipophilic molecules among the POPs (e.g. HCHs), 

will partition to the water phase to a higher extent compared to larger and more hydrophobic 

molecules (Wania and Dugani, 2003). While ratios between different contaminants can be influenced 

by their different physical-chemical properties such as resistance to photodegradation, volatility, 

bioaccumulation and metabolism, enantiomeric fractions (EF) are not affected since the (+)- and (-)-

enantiomer have the same physical-chemical properties. In other words, a non-racemic EF indicates 

that enantiomer selective uptake/transformation processes takes place and that those processes most 

likely are caused by biological factors, e.g. crossing of membranes in animals or other stereoselective 

(enzymatic) processes or microbial enantiomer selective degradation (Kallenborn et al., 1991; Ludwig 

et al., 1992b; Möller et al., 1994; Jantunen and Bidleman, 1996; Wöhrnschimmel et al., 2012a; 

Wöhrnschimmel et al., 2012b).  

	

Changes of contaminants ratios in the environment compared to technical mixtures 

Changes of ratios between certain contaminants and/or their metabolites compared to a technical, 

“fresh” mixture have been used at several occasions to elucidate whether the contaminants come from 

a new source or if they are “old sins”. E.g. the ratio between DDT and its metabolites 

dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) and between 

trans- and cis-chlordane (TC:CC) found in the environment can be compared to the ratios in their 

respective technical mixtures. These ratios can provide information regarding the “age” and 
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weathering status of the mixture, where a decrease of the TC:CC and the DDT:DDE ratio can be used 

to indicate weathered and old sources of the respective insecticides (Bossi et al., 2008; Becker et al., 

2012). Trans-chlordane degrades faster than cis-chlordane in the atmosphere and hence, TC:CC <1 

indicates old sources, while ratios >1 is considered as fresh chlordane (Jantunen et al., 2000). 

However, the heptachlor mixture also contains trans-chlordane, which can add an uncertainty around 

the TC:CC ratio. Since both trans- and cis-chlordane are chiral, their EFs are a better indication of 

primary versus secondary sources. Air from areas where chlordanes have been used contains fresh, 

racemic (50:50 of each enantiomer) trans- and cis-chlordane, while air from remote areas often 

contains non-racemic chlordanes (Jantunen et al., 2000; Bidleman et al., 2012). Non-racemic trans- 

and cis-chlordanes in air is often the result of microbial enantiomer selective degradation in soil, 

which can be considered as a secondary source of chlordanes (Bidleman et al., 2013). An increase of 

erosion due to less permafrost in Arctic areas could lead to an increased air-soil exchange of 

contaminants, where a deviation from the racemic EF for chiral pesticides would indicate that they 

come from a secondary source (Bidleman et al., 2012; Kallenborn et al., 2012a).  

 

An increase of the ratio o,p’-DDT : p,p’-DDT can indicate that dicofol has replaced technical DDT as 

primary source, since o,p’-DDT is, in general, a larger impurity in dicofol than p,p’-DDT (Becker et 

al., 2012). p,p’-DDT is the main DDT compound in technical DDT mixtures, followed by o,p’-DDT. 

The exact composition of the technical mixture varies from manufacturer to manufacturer (WHO, 

2009). This, especially in combination with the usage of dicofol and differences in volatility between 

the DDT compounds can make it difficult to use the DDT:DDE ratio to assess if it is an old or new 

source (Kurt-Karakus et al., 2006). DDT is degraded in the environment to DDE, although compounds 

in the dicofol mixture can also degrade to DDE. Hence, the usage of DDT:DDE ratio has its 

limitations (Becker et al., 2012). 

 

PCBs have been produced in several mixtures and countries, e.g. Arochlor (USA), Canechlor (Japan), 

Clophen (Germany), Sovol (Russia) and Chlorofen (Poland). Each mixture has its own fingerprint of 

congeners, but there are several mixtures and variations of these with different degrees of chlorination 

(Ivanov and Sandell, 1992; Kannan et al., 2005; Takasuga et al., 2006). These fingerprints can be used 

relatively close to a primary source to assess the source, but since volatility and the potential for 

biodegradation availability differ between the congeners, the further away from the source (both 

regarding distance and time of release), the less information regarding the source can be gained from 

the congener profiles. However, although PCB production is prohibited, PCB in paint (PCB-11) and 

unintentional production during combustion have recently been reported (Hu et al., 2008; Hu and 

Hornbuckle, 2009; Rodenburg et al., 2009; Pedersen et al., 2011).  
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Technical HCH is a mixture of several isomers in different proportions, where α-, β- and γ-HCH are 

the most common. Changes of these proportions in nature could be a useful indication of new/old 

sources. Since the HCH in use today is only lindane (γ-HCH), relatively high levels of γ-HCH 

compared to α-HCH would indicate a fresh source. Due to changes in the formulation of the 

commercial product, there are some uncertainties in this method to assess new/old sources.  

 

Changes of chiral EF ratios in the environment compared to technical mixtures  
Chiral pesticides are, with a few exceptions, produced and applied as racemic mixtures, and the 

enantiomers have the same physical-chemical properties. However, enantioselective degradation in the 

environment can change their EF, and enantioselective analyses of e.g.α-HCH, trans-, cis- and 

oxychlordane can be a versatile tool to differentiate between old and new sources of these 

contaminants. As an additional tool to assess new/weathered sources of DDT, enantiomer selective 

analyses of the chiral o,p’-DDT and o,p’-DDD can be performed, although analyses of DDT was 

outside the scope of this thesis. 

 

Evaporating α-HCH from the sea when the ice cover melts shows a non-racemic ratio and hence, had 

been subject for biological processes. Meanwhile, α-HCH in air above ice covered ocean shows nearly 

racemic EF (Jantunen, 2009; Pućko et al., 2010; Wong et al., 2011). EFs for chiral pesticides have 

recently been used as tracers for the origin of air masses and as a tool to elucidate exchange processes 

between water and air masses (Genualdi et al., 2009; Jantunen, 2009). They can also be used to 

differentiate between primary, fresh sources and old and weathered secondary sources (Bidleman et 

al., 1998; Bidleman and Falconer, 1999). Several factors such as Kow, and exchange rates between air 

and water could influence ratios between different contaminants, since they have slightly different 

physical-chemical properties and are compared with each other. Hence, EFs of a chiral contaminant 

can be more useful compared to ratios between different contaminants to assess different sources 

(Bidleman and Falconer, 1999). 

 

There are also studies indicating that enantiomeric selective uptake is tissue specific, at least for some 

species, and that high levels of the chiral pollutants can induce metabolic enantiomer selective 

processes, which changes the EF (Kallenborn et al., 1991; Hühnerfuss et al., 1993; Möller et al., 1994; 

Kallenborn and Hühnerfuss, 2001; Hoekstra et al., 2003; Warner and Wong, 2006; Warner et al., 

2009; Wong et al., 2011). This needs to be taken into account when EFs are used to differentiate 

between sources. Organisms at low trophic levels are less susceptible to such processes, and thus, 

reflect the signature of the surrounding physical environment. 
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Dietary uptake of persistent organic pollutants for Arctic indigenous people as 
tracers for physiological processes 
The projected temperature increase in the Arctic (due to currently observed climate change) will have 

effects on ice cover and levels of meltwater runoff. It will also affect POPs and their related transport 

and biotransformation processes, raising concerns about the possible impact on human health in the 

Arctic. 

 

There are several recent studies and reviews addressing contaminants in blood, plasma and serum 

among people living in the Arctic and  exposure from Arctic food items for PCBs, pesticides  and 

PFAS (Deutch et al., 2004; Johansen et al., 2004; Deutch et al., 2006; Deutch et al., 2007a; Deutch et 

al., 2007b; Del Gobbo et al., 2008; AMAP, 2009a; Dallaire et al., 2009; Chateau-Degat et al., 2010; 

Donaldson et al., 2010; Polder, 2010; Rylander et al., 2010; Sturm and Ahrens, 2010; Donaldson et al., 

2012; Lindh et al., 2012; Long et al., 2012; Rylander et al., 2012; Specht et al., 2012; Hanssen et al., 

2013), but little information is available regarding PBDEs (Dallaire et al., 2009). Information about 

PBDE exposure from Arctic food items is scarce. Most articles discussing PBDE levels in biota have 

focused on liver or blubber tissues and not muscles, which, in general, is the most common food item 

(Christensen et al., 2002; Vorkamp et al., 2008; Vorkamp et al., 2011). Nevertheless, some papers 

present information about PBDE levels in fish muscle (filet) as well (Vives et al., 2004; Kelly et al., 

2008). None of the studies mentioned here have considered enantiomer selective processes for the 

assessment of selective uptake and exposure of target pollutants. 

 

There is a lack of data regarding contaminants of emerging concern. Some data regarding PFAS in 

Inuits from Greenland have been published (Long et al., 2012). However, that study is based on data 

from several different years and areas, which could affect comparisons among different settlements. 

The exposure to contaminants from local food depends on the intake of the food items. There are few 

studies about this, especially studies over several years and recent food habits. To compare the 

contaminant exposure for all indigenous people in the Arctic is beyond the scope of this thesis. I have 

chosen to use Western Greenland as a study area due to the representativeness of the region as well as 

population structure and density. Greenland is the only Arctic region with one large ice cap as well as 

indigenous people living along the coastline. Danish authorities have good knowledge about the 

consumption of traditional and modern food items, enabling uptake assessments for human exposure 

via the food (Johansen et al., 2004; Deutch et al., 2007a). With regards to Arctic climate change, 

which affects melting processes and travelling routes such as ice covered fjords, the processes 

happening in Greenland are of major scientific interest for the estimation of potential impacts on 

human societies. The people of Greenland also have a relatively close connection and input from 

Denmark regarding western food items, and especially in the larger settlements (Nuuk), where western 
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food items are available in the local shops. The choice of diet has changed over the years in Greenland 

towards a more western diet, and traditional food items are today contributing 25-30% of the total 

daily energy intake (Deutch et al., 2004; Deutch et al., 2006; Deutch et al., 2007a). 

Objectives 

The research work described in this thesis has been conducted as a part of the European Union FP7 

project ArcRisk (Arctic Health Risks: Impacts on health in the Arctic and Europe owing to climate-

induced changes in contaminant cycling), where one of the aims was: “Explore the transfer of 

pollutants from the abiotic Arctic environment, introduced into the Arctic food webs and transferred to 

higher trophic level organisms (e.g., fish, marine mammals, reindeer)”. The ultimate consumption by 

indigenous arctic people and the possible role of climate variability and global climate change on these 

processes has also been considered within the project. This includes bioaccumulation and 

biomagnification factors of selected ‘emerging’ contaminant groups in specific food webs and 

organisms relevant to human diet. The here presented research work was also linked thematically into 

the International Polar Year project Contaminants in Polar Areas (COPOL, Norway). 

 

The presented study evaluates the altered distribution and bioaccumulation pathways of contaminants 

in the Arctic. This includes assessments of the exposure risk for Arctic indigenous people in a 

changing environment. Water and organisms representing low trophic levels (e.g. zooplankton) were 

chosen to illustrate the transfer from abiotic into biotic environments. Marine mammals and predating 

fish (Skjoldal, 2004), belonging to the traditional diet of indigenous people where selected as 

representatives for higher trophic levels. Empiric data from quantitative analyses of selected POP were 

produced in order to assess processes for uptake of POPs within the marine Arctic food web. For the 

elucidation of biochemical transformation and selective bioaccumulation, enantiomer selective 

analytical methods have been applied. Thus, in addition to the quantification of legacy POPs and POPs 

of emerging concern, four chiral contaminants were chosen for enantiomer selective analyses (α-HCH, 

trans-, cis- and oxychlordane). Samples were collected in Svalbard and Greenland.  
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The primary processes investigated within this PhD work were:  

¤ Secondary mobilisation: Glacier and meltwater runoff and transport of POPs into the ocean 

¤ Changing oceanographic conditions: Reflections of contaminants in different water masses 

and associated zooplankton 

¤ Enantiomeric selective uptake of pesticides residues in local arctic food: Fate of chiral 

pesticides in local Arctic human food 

¤ Accumulation processes for POPs of emerging concern into human food: Insight in levels and 

patterns of emerging contaminants in local Arctic food 

 

As working hypothesis, the following questions were initially asked: 

¤ Can pesticide distribution patterns be used as an oceanographic tool for characterisation of local 

hydrology in coastal Arctic water systems?  

(paper I) 

¤Can Arctic zooplankton be used as indicators for the contaminant signature of the water mass they 

are representing? 

(paper I, II) 

¤ Can enantiomer distribution of chiral pesticides in Arctic zooplankton communities be used as a tool 

to discriminate populations in different water masses?  

(paper II) 

¤ Can pesticides levels in water and zooplankton be used as sentinels for regional climate changes 

effects? 

(paper I, II) 

¤ Can enantiomeric signatures of chiral pesticides in Arctic zooplankton, fishes and mammals be used 

as tracers for selective uptake and/or transformation processes? 

(paper II, III) 

¤ Are the current POP levels in Greenlandic traditional food of health related concern via dietary 

exposure? 

(paper III, IV) 

 

  



 

 

17 
 

Metho

Fieldw

Water sa

using pa

salmon, 

Nuuk du

Gammar

Tromsø,

collected

2a and 3

samples 

analysis.

 

 

Table 1. O
sampling c
the table. 

Sample
Kongsfj

Liefdefj

Rijpfjor
Pack ice

 

 

 
Figure 2a
Assessmen
Figure 2b
Nuuk is sit
Natural Re

  Nuuk 

ods 

work and st

amples were 

assive polyox

smoked hali

uring the sam

rus wilkitzkii

 Norway) no

d during seve

). All Green

onboard the

. Examples o

Overview of zoo
campaign in Ma

e area 200
fjorden (Ha

201
fjorden  

rden  
e  

a. (left picture): 
nt Program (AM

b. (right picture)
tuated at 64o11
esources. 

Svalbard 

tudy area 

collected in 

xymethylene 

ibut, seal and

me field camp

i) were collec

orth of Svalb

eral expeditio

land samples

 research ves

of sample ma

oplankton samp
ay 2011. Some 

07 
allanger et al.,
11a) 

Map with the s
MAP). 
): Map over Go
’ N, 51o43’ W. 

Godthåbsfjo

(POM) samp

d whale beef 

paign (paper

cted by diver

ard in 2010. 

ons (2007-20

s were kept f

ssel and fina

atrices (water

ple locations an
concentration l

2008 
, (Hallange

2011b) 
(Hallange
2011b) 
 
 

sample areas (N

odthåbsfjord and
The distance b

ord, Nuuk, G

mplers (paper

f and narwhal

r III). Sympa

rs during an 

Pelagic zoop

011) in fjord

frozen (-20o)

ally shipped t

r, zooplankto

nd years. All sam
levels in the zo

2
er et al., P

er et al., P

P

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nuuk, Greenland

d POM stations
between Nuuk a

Greenland (fig

r I). The food

l mattak) we

agic amphipo

expedition (N

plankton (ma

ds around Sva

) in Nuuk, Gr

to Longyearb

on and seal) 

mpling campaig
oplankton have

2009 
Paper II 

Paper II 

Paper II 

d and Svalbard)

s (P). The triang
and P7 is 60 km

gure 2a, 2b) d

d items (fresh

re bought at 

ods (Apherus

Norwegian P

ainly Calanu

albard (pape

reenland and

byen, Svalbar

are shown in

gns were in July
e been published

2010 
 

 

 
Paper II 

). Map from Ar

gles represent o
m. Map from Gre

during summ

h and smoke

the local ma

sa glacialis, 

Polar Institut

us spp.) were

er II, table 1,

d the Svalbar

ard for furthe

n figure 4.  

y except for one
d earlier, see re

2011 
Paper

 

Paper
Paper

rctic Monitoring

oceanographic s
reenland Institut

 

mer 2010 

ed 

arket in 

te, 

e 

, figure 

rd 

er 

e ice 
eferences in 

r II 

r II 
r II 

g and 

stations. 
te of 



 

Figure 3. 
sympagic 
was situate
the Norwe
 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Map from the N
fauna in 2010 w
ed west of Sval
egian Polar Inst

Figure 4. E

Norwegian Pola
was sampled be
lbard, at 80o9’N
itute. 

Examples of sam

ar Institute over
elow the sea ice
N, 4o19’E and N

mples analysed

r Svalbard and 
e, northeast of N
North of Svalbar

d. Seawater, wat

the fjords wher
Nordaustlandet 
rd (80o35’N 13

ter close to glac

re the zooplankt
at 81oN, 30oE. T
o42’E and 81o3

ciers, zooplankt

 

ton were sampl
The ice station 

3’N, 15o50’E). M

ton and seal. 

18 

led. The 
from 2011 

Map from 



   

 

19 
 

Chemicals and materials 

All solvents used were of pesticide grade (Merck, Darmstadt, Germany) except for the methanol used 

for PFAS analyses (Lichrosolv, Merck, Darmstadt, Germany). All equipment was pre-cleaned with 

either methanol (POMs) or acetone and n-hexane (stainless steel and glass utensils used in field) 

before sampling. Acetone and/or methanol were used to rinse equipment in field to avoid cross 

contamination between samples. All glassware exposed to samples was burned at 450 oC for 6h. The 
13C labelled internal standards (IS) used were purchased from Cambridge Isotope Laboratory (CIL), 

Andover, USA (pesticides and PBDEs), Wellington laboratories, Ontario, Canada (PCB and PFAS). 

Octachloronaphtalene (OCN; Supelco, Bellefonte, USA) was used as recovery standard (RSTD) for 

the pesticides, PCB and PBDEs. The 3,7-dimethyl-branched perfluorodecanoic acid (bPFDcA; 97% 

purity, ABCR Karlsruhe, Germany) was used as RSTD for the PFAS. The (+)-enantiomer of the 

analysed enantiomeric compounds (α-HCH, trans-, cis- and oxychlordane) were purchased from Dr 

Ehrenstorfer GmbH (Augsburg, Germany). Silica (Merck, Darmstadt, Germany), sodium sulphate 

(Merck, Darmstadt, Germany) and Florisil (Sigma-Aldrich Steinheim, Germany) were heated at 450 
oC for 8 h prior to usage to avoid contamination. 5 vol-% deionised water (Millipore Billerica, MA, 

USA) was added for deactivation of the silica. All silica used had the mesh size 70-230. ENVI-Carb 

for the PFAS analyses was purchased from Sigma-Aldrich (Taufkirchen, Germany). The nitrogen (5.5 

quality) used for evaporation came from AGA, Oslo, Norway, the helium (6.0 quality) and methane 

(5.5) from Hydrogas, Porsgrunn, Norway. Pesticides, PCB and PBDE analyses were conducted with a 

30 m DB5-MS column (0.25 mm id and 0.10 µm film thickness; J&W, Folsom, USA). For enantiomer 

selective analyses, a 15m BGB-172 (chiral separator: 20% tert-butyldimethylsilyl-β -cyclodextrin 

dissolved in 15% phenyl-, 85% methylpolysiloxane) from BGB Analytik AG, Böckten, Switzerland 

was used. The columns used for separation of PFAS was a Waters Acquity UPLC HSS 3T column 

(2.1 × 100 mm, 1,8 µm) equipped with a Waters Van guard HSS T3 guard column (2.1 × 5mm, 1.8 

µm). A Waters XBridge C18 column (2.1 x 50mm, 5 µm) was installed as a precolumn after the pump 

and before the injector. Quantification standards of the analysed compounds were obtained from Ultra 

Scientific, Kingstown, USA (PCBs and pesticides), Wellington laboratories, Ontario, Canada (PFAS) 

and CIL, Andover, USA (PBDEs). Standard reference material (SRM) was obtained for the biological 

samples (NIST 1945; whale blubber was used for POPs and PFAS ILS 2011, fish tissue A, from the 

Perfood project, KBBE; grant agreement no. 227525 was used for PFAS). 
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Analyses of pesticides in water	

A passive sampling method was used for water samples in paper I. Stripes of polyoxymethylene 

(POM; -CH2-O-CH2-) samplers (55 µm thick) were moored in the tidal zone (0-5 m) at eight different 

locations in the Godthåbsfjord area during the melting season 2010 (figure 5). They were deployed 

during four months (June-September) to allow enough time to reach equilibrium with the water. The 

equilibrium partitioning coefficient POM-water (KPOM; Lwater/kgPOM) does not change with temperature 

(tested for 8-20 oC) and have been used for calculations of contaminants in the Baltic Sea at 6-10 oC, 

which are the expected summer temperatures in the surface water of Godthåbsfjord (Cornelissen et al., 

2008b). Due to the long exposure time, the POMs were assumed to reach equilibrium in the 

Godthåbsfjord. Temperature and salinity data for each station was recorded during oceanographic 

studies and with moored instruments throughout the season. 

 

 

 
Figure 5. POM together with floating and marking devices, ready  

to be deployed for three months in the inner parts of Godthåbsfjord. 
 
 

 

Concentration-independent compound-specific equilibrium partitioning constants (KPOM) for 55 and 17 

µm thick POM, KPOM-55 and KPOM-17, respectively, were established in paper I for the following 

compounds: HCB, cis-chlordane, trans-chlordane, cis-nonachlor, trans-nonachlor and oxychlordane. 

KPOM for the other pesticides of interest were available in the literature (Endo et al., 2011). The POMs 

were allowed to reach equilibrium (30 days of shaking with saline water containing the pesticides). 

Thereafter, the POMs were extracted with the same method as the POMs from the field (Cornelissen 
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and Gustafsson, 2004; Cornelissen et al., 2008a). In brief, IS was added to the samples that were cold-

extracted with n-hexane and thereafter cleaned-up on silica columns (5% deactivated) with n-

hexane:dichloromethane (3:1, v/v) as eluent. The volume was reduced to 100 µL under a gentle N2 

stream before analysis. 

 

Analyses of polychlorinated biphenyls, polybrominated diphenyl ethers and 

pesticides in biota 

Local food items were collected at the local market in Nuuk, Greenland. Fresh salmon, smoked 

salmon and halibut, seal and whale beef and narwhal mattak (skin and blubber) were analysed for 

pesticides, PCB, PBDE and PFAS (paper III, IV). Pelagic zooplankton (Calanus spp. (C. 

hyperboreus, C. glacialis, C. finmarchicus), Themisto libellula, and krill (Euphasiids, mostly 

Thysanoessa inermis) samples were analysed for a suite of legacy POPs within the COPOL project. 

Pesticide levels in zooplankton from 2007 and -08 have been published earlier (Hallanger, 2010; 

Hallanger et al., 2011a; Hallanger et al., 2011b). All zooplankton samples and food items were 

analysed for EFs of α-HCH, trans-, cis-, and oxychlordane (paper II III). The sympagic fauna was 

collected during this project and analysed for levels of PCBs and pesticides using the same method as 

in Hallanger (2010), before the enantiomeric analyses were conducted. Only the extraction part in the 

methods differed for zooplankton and other biota (fish and mammals). While the zooplankton were 

homogenised and extracted with cyclohexane/acetone (3:1 v/v) using ultrasonic and centrifugation, the 

fish and mammals were homogenised and dried with sodium sulphate (1:20 w/w). The samples were 

thereafter cold-extracted with cyclohexane/acetone (50:50 v/v). Internal standards were added before 

the extraction step. After extraction, both zooplankton and fish/mammals were cleaned-up with a gel 

permeation chromatography (GPC) system and FlorisilTM columns. Before analyses, OCN was added 

to all samples as RSTD.  The results were not corrected for recovery. The clean-up procedure for fish 

and mammals has been described in Herzke et al. (2005). The amount of extractable organic material 

was determined gravimetrically.  

 

Analyses of perfluoroalkylated substances in biota 

The food items in paper IV were analysed for PFAS with the following method: One gram of the 

tissue was spiked with 13C labelled IS and samples were extracted with methanol in ultrasonic bath 

and concentrated to 1 mL. Thereafter, ENVI-Carb and acetic acid were added to the extract. After 

additional centrifugation, 0.5 mL of each sample was transferred to vials. Prior to quantification, 

bPFDcA was added as recovery standard. An aliquot of 100 µL of each sample were transferred to 

LC-vials and 100 µL of a 2 mM aqueous ammonium acetate solution was added to all samples 

(Herzke et al., 2009).  
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Chromatographic separation and quantification 

All analyses were performed at the same laboratory (NILU/Tromsø). α-, β-, γ-HCH; trans- and cis-

chlordane, trans- and cis-nonachlor, oxychlordane and HCB were analysed in paper I, II and III. In 

addition, 26 PCB congeners, 14 PBDE congeners and 16 PFAS compounds were analysed in the 

Greenlandic food items (paper IV). The specific compounds are listed in the appendix (table A1).  

 

Chlorinated and brominated compounds 

The temperature program used for PCB, PBDEs and pesticides are shown in table 2. Further details 

are described in an earlier study (Bustnes et al., 2008). PCBs and PBDEs were analysed by injecting 1 

µL with a split/splitless injector, operated in splitless mode at 250 C (Agilent Technologies, 7683B) 

into an Agilent 7890A gas chromatograph (GC), that was equipped with a 30 m DB5-MS column 

(flow rate of the carrier gas helium was 1 mL/min). The GC was connected to a Quattro microTM 

mass spectrometer (MS) from Micromass MS technologies; Manchester, UK), which was equipped 

with an electron ionisation (EI) ion source (ionisation energy: 70 eV) and operated in multiple reaction 

monitoring (MRM) mode. The transfer line temperature was held at 280 C and the source 

temperature was set to 220 C. Pesticides and HCB were analysed by injecting 1 µL with a 

split/splitless injector at 250 C (Agilent Technologies) into the GC (Agilent 7890), which was 

connected to an MS (Agilent 5973 single quadrupole) operated in single ion monitoring (SIM) and 

electron chemical negative ionisation (ECNI) mode with methane as reagent gas. The transfer line 

temperature was held at 280 C and the source temperature was set to 220 C.  

 

 

Table 2. GC temperature programs. 

Ramp 
oC/min T (oC) 

isothermal 
(min) 

Ramp 
oC/min T (oC) 

isothermal
(min) 

PCB Pesticides   

  70 3   70 3

15 180 15 180   

5 280 6 5 280 5

PBDE   Enantiomeric analyses   

  70 3   90 1

25 180   20 160   

6 280 6 1 280 16

5 320 10 20 240 13
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Fluorinated compounds 

PFASs were analysed by ultrahigh performance liquid chromatography tandem mass-spectrometry 

(UHPLC-MS/MS). Analysis was performed on a Thermo Scientific quaternary Accela 1250 pump 

with a PAL Sample Manager coupled to a Thermo Scientific Vantage MS/MS (Vantage TSQ). An 

injection volume of 10 µL was used for sample separation on the column system mentioned in the 

section “chemicals and materials”. Separation was achieved using 2 mM ammonium acetate 

(NH4OAc) in 90:10 methanol/water (A) and 2 mM methanolic NH4OAc (B) as the mobile phases. The 

instrument was operated in negative electrospray ionisation mode (ESI-). Details regarding analytical 

LC and MS conditions, collision energies and S-lens settings are provided in Hanssen et al. (2013). 

Parent ions and monitored transitions are presented in appendix (table A2).  

 

Enantiomeric analyses of pesticides in biota 

Enantiomeric analyses were conducted with the same GC-MS setup as for the pesticide analyses, but 

with an enantiomer selective column (BGB-172). The temperature program is presented in table 2. All 

samples were analysed for the enantiomers of α-HCH, trans-, cis- and oxychlordane and the EF was 

calculated using the areas of the enantiomers in the chromatograms (equation 1). The average EF + 2 

standard deviations as confidence interval was considered racemic and was calculated from the 

quantification standards. The elution order was confirmed by literature (Genualdi et al., 2009) and 

enantiomeric pure standards. The elution order was: (-)-α-HCH < (+)-α-HCH < (+)-OXY <(-)-OXY < 

(+)-TC <(+)-CC <(-)-CC < (-)-TC and the separation of the enantiomers are showed in figure 6. The 

average of the EFs +2 standard deviations in the standard chromatograms was set as the range for 

racemic values; α-HCH (0.51 +0.02), trans-chlordane (0.49-0.50 +0.02), cis-chlordane (0.50-0.51 

+0.04) and oxychlordane (0.51 +0.06). The variation of the average of trans- and cis-chlordane is due 

to a slight difference in the average between the zooplankton analyses and the food item analyses. 

However, the variation is low and within the standard deviation. 

 

 

EF ൌ
ሾሺ൅ሻሿ

ሾሺ൅ሻ ൅ ሺെሻሿ
Eq. 1. 
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Main results 

Paper I 

The paper summarises a pilot study where passive water samplers made of polyoxymethylene (POM) 

were applied to sample pesticide residues in a sub-Arctic fjord system (Godthåbsfjord, western 

Greenland). The major goal was to evaluate pesticides residues as potential tracers for the contribution 

of different (fresh-) water masses to the fjords hydrology. 

 

The levels of pesticides were low compared to studies from the Canadian Arctic, but comparable with 

studies from Svalbard. These findings are supported by the ocean current system, which transports 

ocean water from Svalbard towards the southern tip of Greenland and up along the western coast. 

α-HCH and HCB dominated the samples and the average concentrations were 11 pg/L and 50 pg/L, 

respectively. The levels, patterns and concentrations indicate that they were not suitable as markers for 

fresh water masses since they represent atmospheric long-range transport. On the other hand, the 

chlordanes analysed in this study (trans-, cis- and oxychlordane and trans-nonachlor) are potential 

candidates as tracers for different freshwater sources since they were present at localities in the inner 

parts of the fjord, closer to the freshwater sources. Air samplers were also deployed to assess the 

atmospheric contribution and long-range transport versus local sources. No local sources were 

identified. 

 

The present study shows the potential scientific value of linking levels and distribution patterns of 

selected pesticide with freshwater masses and oceanic water. It was the first study to assess pesticide 

distribution pattern in a Greenlandic fjord. 
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Paper II 

Paper II describes a study which utilised one of the most comprehensive data sets available today for 

chiral pesticides in zooplankton samples collected over several years (2007-2011) in Arctic fjords 

around Svalbard. The fjords investigated were: the Atlantic water influenced Kongsfjorden, the 

Atlantic and Arctic influenced Liefdefjorden and the Arctic water fjord Rijpfjorden. The winter ice 

cover varied from almost none (Kongsfjorden) to the ice covered Liefdefjorden (ice break-up in June-

July) and Rijpfjorden (ice break-up in late July). Additional sampling was conducted in the pack ice 

(ice station). The zooplankton samples (Calanus spp., Themisto libellula, Thysanoessa inermis (krill), 

Apherusa glacialis and Gammarus wilkitzkii were analysed for EFs for α-HCH, trans-, cis- and 

oxychlordane. EFs can be used as a tool to investigate whether zooplankton POP contamination 

patterns reflects biological and/or physical processes in the water masses. 

EF varied annually and between locations and species. No degradation trends for certain enantiomers 

were observed, except for an enrichment of (+)-oxychlordane at all stations (median EF 0.53-0.86). 

Median EFs for α-HCH varied between 0.38-0.59, trans-chlordane varied between 0.29-0.55 and cis-

chlordane was close to racemic (0.46-0.55). The average EF ± 2 times standard deviations in the 

standards were: α-HCH: 0.51 +0.02, trans-chlordane: 0.50 +0.02, cis-chlordane: 0.51 +0.04 and 

oxychlordane: 0.51 +0.06. The deviations from racemic EF in the samples were most likely caused by 

enantiomer selective microbial degradation in the water masses and the variation in ice cover and ice 

breakup between the fjords. Ice cover hinders evaporation and also affects the start date of the spring 

phytoplankton bloom. Most of the enantiomer selective degradation of chiral pesticides is likely to 

happen during the spring phytoplankton bloom when microbial activity has its peak. This is also 

reflected by the EF pattern in the zooplankton. Due to the time lag between these fjords, the 

zooplankton were sampled in July, but during different seasons in the respective fjords (i.e. after 

spring bloom, just after ice breakup and in the middle of the ice breakup). Very little data regarding 

chiral pesticides in Arctic zooplankton exists. Paper II contributes to the knowledge about the EF 

signals in zooplankton in the marine Arctic food web, as a consequence of changes in their physical 

environment. Even though the data set is very large, the many factors present (i.e. years, species, 

locations, contaminants, ice cover, water masses) would have required an even larger data set in order 

to provide a sufficient statistical basis for a full elucidation of all processes. 
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Paper III 

In this study, we used EFs as a tool to elucidate selective uptake processes of chiral pesticides in 

traditional human marine food items from Greenland. The food items chosen were raw and smoked 

fish (salmon and halibut), whale and seal meat and narwhal mattak. The EFs were non-racemic (≠0.5) 

for all samples except for α-HCH in narwhal, trans-chlordane in whale meat and smoked salmon and 

cis- and oxychlordane in seal meat. The EFs for α-HCH were <0.5 for all fish samples, but >0.5 for the 

mammalian samples. The differences indicate that even among different fish species, the 

uptake/degradation mechanisms can vary. Some of the differences in EFs could be explained by 

uptake/degradation at lower trophic levels, but the selective uptake is more likely to happen at higher 

trophic levels, due to higher amount of complex, chiral molecules and enantioselective processes 

present in those animals. However, most pesticides were racemic in the seal meat, but that does not 

exclude selective biotransformation in seals, since the EFs are known to vary between organs.  

 

Three of the target pesticides (cis-, trans- and oxychlordane) belong to the chlordane group 

(cyclodiene pesticides), while the fourth target pesticide was α-HCH. However, there were no similar 

trends for the chlordanes, which imply that the specific stereochemical structure is an important 

criterion for the metabolism of the chiral compounds in biota.  

 

Based on earlier food basket studies, we estimated the daily exposure from the present food sources. 

For the chiral pesticides, this was done for each enantiomer, something that can be important in the 

future if there will be more information available regarding the relative toxicity of each enantiomer. 

The levels of pesticides in the samples analysed did not exceed the tolerable daily intake (TDI). Earlier 

reported intake of these food items were used for calculations of intake levels. However, seal and 

whale blubber and liver were not analysed. There are more literature data present on contaminant 

levels in blubber and liver tissue compared to muscle (filet/beef). Literature has shown that even if 

little amount of those items are consumed, they represent a quite high pollutant load. 

 

We conclude that enantiomeric analyses can provide additional information regarding 

uptake/degradation processes that cannot be explained by achiral analyses. The combination of chiral 

analyses and more knowledge regarding the toxicity of each enantiomer could be an important tool for 

providing more nuanced food advices regarding traditional food. 
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Paper IV 

PCBs, PBDEs, PFAS and achiral pesticides were analysed in the same food items as in paper III to 

present an overview of the contaminant levels and distribution in these food items. The daily intake of 

the investigated pollutants was below the recommended TDI for human consumption in all cases. 

∑PCBs varied from 41 ng/g lw in halibut to 1147 ng/g lw in narwhal mattak. Among the analysed 

PBDE congeners, BDE-47 was the only congener detected in almost all food items, ranging from 

<LOD in smoked halibut up to 21 ng/g lw in whale beef.  

 

PFAS were present in the analysed marine mammal samples, but not in the analysed fish items. 

Mostly long-chained PFAS were detected, and at low levels. PFOS were the dominating PFAS 

compound, with median concentrations between 1.2-8.0 ng/g ww in the marine mammals. The total 

PFAS concentration ranged between 2.9 ng/g ww in whale beef to 13.5 ng/g ww in seal beef. On a wet 

weight basis comparison, ∑PCB contributed to 23% of the total amount of PCB and PFAS in seal 

beef, compared to 63% in whale beef and 94% in narwhal mattak. 

 

This study showed that the exclusion of blubber and organs, such as liver from the diet have a strong 

positive effect on the intake of POPs. These food items contribute only to a small part of the total diet. 

Hence, exclusion/lowered intake of them do not contribute to a large reduction of traditional food in 

the diet. There are only few recent studies regarding emerging contaminants in Greenlandic human 

food items and it is therefore difficult and not in the scope of this work to make diet recommendations. 

  



   

 

29 
 

Discussion 

Pesticides as tracers for water masses in a sub-Arctic fjord system 

The results of paper I indicated a trend regarding pesticide distribution pattern within the 

Godthåbsfjord, with fewer pesticides closer to the mouth compared to the inner parts of the fjord. Two 

air samplers were deployed to assess the atmospheric contribution and whether it differed between the 

inner (station P6) and the outer (station P2) part of the fjord (figure 2b). The pesticide composition in 

the air was rather similar between the stations. HCB was present at both stations while α-HCH was 

present at low levels in the outer part of the fjord. Hence, it was assumed that the atmospheric 

contribution and any ocean-air exchange processes of the analysed pesticides to the fjord would be 

rather similar for the whole fjord. Differences in the composition of pesticides in the water would then 

be caused by marine geochemical and biological processes representative for the respective water 

masses. 

The Godthåbsfjord receives meltwater from the Greenlandic ice cap and from other, smaller snow 

caps. Paper I indicates that the number of legacy pesticides available in the water mass increases 

towards the meltwater origin. There are very few studies regarding the actual input of contaminants 

from ice caps to the ocean, even though there are studies available regarding contaminants stored in 

Arctic ice caps (Gregor et al., 1995; Peters et al., 1995; Masclet et al., 2000; Hermanson et al., 2005; 

Ruggirello et al., 2010; Meyer et al., 2011). The samples in those studies often originate from 

locations far from the location where the ice cap meets the ocean, which makes it difficult to assess the 

identity and amount of pesticides which are delivered to the ocean from the ice caps. The complexity 

of transport of POPs within a snowpack makes it difficult to assess how much of the deposited POPs 

reach the ocean. POPs migrates downwards from the snow surface, but some POPs will also evaporate 

back to the atmosphere. The transport and movements of POPs become even more complex when 

meltwater and –channels are taken into consideration (Herbert et al., 2005; Herbert et al., 2006). 

Paper I was among the first studies to investigate pesticides linked to meltwater runoff in a sub-Arctic 

fjord. The decrease of individual pesticides present in the water towards the mouth of the fjord could 

be due to biological, physical and geochemical processes, such as adsorption to sinking particles, 

bioaccumulation in marine biota, degradation and evaporation. The dilution effect of pesticides in a 

melting snow pack compared to pesticides transported with ocean currents should not be 

underestimated either. Melting ice caps in the Arctic could increase the amount of available legacy 

pesticides. Due to their size, large ice caps (e.g. Greenland ice cap) contain larger volumes of 

contaminants compared to small (e.g. Agassiz ice cap), where the stored amount of pesticides are 

relatively low (Macdonald et al., 2005). However, the melting snow is younger, and for small glaciers 

and ice caps, the meltwater runoff can originate from industrial time (Blais et al., 2001a; Schmid et al., 

2010). The local impact of contaminants from meltwater runoff needs to be investigated further. 



30 
 

The POM samplers proved to be easy to handle in the field and provide the requested data. They were 

deployed during four months to allow enough time to reach equilibrium. The disadvantage compared 

to active water samplers is the time aspect; these passive samplers need to be retrieved four months 

after deployment and provide an average picture instead of the immediate (daily) situation. Active 

samplers can be collected after ~hours-day of sampling and they represent a daily situation at the 

location. Nevertheless, to assess contaminants in the meltwater, it was beneficial to use passive 

samplers in paper I, because they represent the situation in the fjord over time (i.e. covered most of 

the melting season). Breakthrough problems with HCB have been reported for active samplers 

equipped with double polyurethane foam (PUF) plugs. Hence, HCB concentrations could then be 

underestimated (Oehme et al., 1995; Jantunen et al., 2000; Hung et al., 2005; Bossi et al., 2008). Such 

problems have not been reported for passive POM samplers. 

 

Zooplankton as tracers of contaminants in water masses 

A non-racemic EF in a watermass can be caused by microbiological degradation or emissions from 

secondary sources to the air, followed by deposition into the ocean. Water and air samples from 

different regions can therefore show different EFs due to differences in the selective 

uptake/degradation processes at the source origin (Ludwig et al., 1992b; Jantunen and Bidleman, 

1996; Bidleman et al., 1998; Covaci et al., 2010). In paper II, zooplankton species from different 

fjords around Svalbard were chosen to elucidate changes of the physical environment. According to 

earlier studies of enantiomer selective uptake of pesticides in zooplankton and other species at low 

trophic levels, zooplankton are assumed to reflect the EF of the pesticides in the water mass and not 

any enantiomeric selective uptake processes. Hence, a non-racemic EF in the zooplankton would 

indicate enantiomer selective processes in the water mass (e.g. microbial degradation), sediment or in 

the prey of zooplankton (Bidleman and Falconer, 1999; Moisey et al., 2001; Bidleman et al., 2003; 

Hoekstra et al., 2003; Borgå and Bidleman, 2005; Warner et al., 2005). There are fewer metabolic 

processes going on in zooplankton compared to animals occupying higher trophic levels, e.g. whales 

(Moisey et al., 2001; Hoekstra et al., 2003).  

 

An EF >0.5 of oxychlordane was observed for all zooplankton samples in paper II. This quality has 

earlier been suggested as enantiomeric selective bioformation of (+)-oxychlordane in zooplankton and 

amphipod species, caused by enantiomer selective degradation of parent chlordane compounds, such 

as trans- and cis-chlordane (Hoekstra et al., 2003; Warner and Wong, 2006; Bidleman et al., 2013). 

Hence, it is difficult to distinguish whether non-racemic EFs of oxychlordane are a result of 

biodegradation within the zooplankton themselves, or a reflection of enantioselective microbial 

degradation processes within the water mass. As seen in paper II, EFs for trans-chlordane vary to a 
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higher extent than cis-chlordane and are considered to biomagnify to a lesser extent compared to cis-

chlordane (Hoekstra et al., 2003). Based on few samples and assumed non-normality distribution, the 

data needs to be treated carefully regarding the statistic evaluation. Results from paper II showed low 

EFs for trans-chlordane in Calanus spp. from the ice station and Kongsfjorden. Both stations were 

dominated by Atlantic water during the sampling campaign, but Kongsfjorden was ice free. On the 

other hand, (+)-trans-chlordane was degraded in Rijpfjorden during 2011 as well, but to a lesser 

extent. Rijpfjorden is dominated by Arctic water. Hence, the EF of trans-chlordane in zooplankton 

might not only reflect different water masses, but also, to some extent, biodegradation processes in the 

water mass and/or in the benthos (paper II). EFs of α-HCH is associated with ice cover, which is 

showed in paper II and recent studies that have reported changes of EF of α-HCH in the air above the 

sea as a result of ice break-up (Jantunen et al., 2008; Wong et al., 2011). 

 

There are only a few active research groups working with enantiomeric pesticides in Arctic biota, and 

especially regarding processes at lower trophic levels. Hence, few studies of EF of chiral pesticides in 

zooplankton are available, also from other locations around the world. Even though the data set in 

paper II was the largest (temporally and spatially) dataset available for chiral pesticides in Arctic 

zooplankton, the complexity of the factors affecting EFs were high. Nevertheless, paper II contributes 

to increased knowledge about the behaviour of chiral pesticides in biota at low trophic levels.  

 

Changes of EFs can be caused by e.g. microbial degradation (Kallenborn and Hühnerfuss, 2001). 

Microbial activity increases with temperature (Madigan and Martinko, 2006). With decreased 

permafrost and increased meltwater runoff from/via soil, enantiomer selective analyses will be a 

powerful tool to assess secondary sources. Potentially increased microbial degradation of pollutants 

can also be elucidated with enantiomer selective analyses. 

 

Chiral pesticides and biological transformation processes in marine animals 

Enantiomer selective analyses of α-HCH, trans-, cis- and oxychlordane were performed on a wide 

range of sample types; zooplankton, fishes, whale and seal meat. As demonstrated in paper III, EFs 

can be used as tracers for enantiomer selective uptake/degradation processes in fish and mammals, 

while the non-racemic EFs in zooplankton (paper II) reflect the surrounding physical environment 

rather than selective uptake in the zooplankton.{Bidleman, 2012 #325} 

 

As demonstrated in paper II and III together with recent research, selective uptake/degradation 

processes of chiral pesticides vary and there is not always degradation of only one of the enantiomers 
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(Bidleman et al., 2012). EFs in biota are influenced by diet, the local surrounding environment, 

metabolism capacity, selective uptake mechanisms such as membrane transports and microbial 

degradation in the ocean surface and sediments. Enantiomer selective degradation in animals can be 

facilitated by cytochrome P450 and similar enzymes, which has been demonstrated for chiral PCBs 

(Warner et al., 2009; Kania-Korwel et al., 2011) and the chiral metabolites of methoxychlor (Hu and 

Kupfer, 2002). 

 

The high metabolism capacity observed in narwhal mattak (paper III) could be cause for concern 

regarding degradation of other xenobiotics, such as pharmaceuticals. Metabolites and degradation of 

xenobiotics can lead to more persistent, toxic or more bioavailable compounds. For example, PCBs 

can undergo hydroxylation in polar bears (Letcher et al., 2009), and BDE-209 can degrade to less 

brominated PBDEs in fish (Kierkegaard et al., 1999; Stapleton et al., 2004). There is information 

available about the degradation pathways of PFAS, although they are not yet fully understood (Buck et 

al., 2011). Pharmaceuticals and their metabolites reach the environment via waste water, where they 

can be further degraded by microorganisms (Pérez and Barceló, 2007). Biotransformation of chiral 

pesticides in combination with other examples of degradation in marine mammals show that known 

metabolites of xenobiotics should be monitored and new/unknown xenobiotics and their metabolites 

have to be screened in food items, especially in animals feeding at high trophic levels. New 

techniques, such as metabolomics and proteomics could provide insight into the processes responsible 

for selective uptake and degradation (Wong, 2006). 

 

Contaminants in Greenlandic traditional Arctic food items and human exposure 

The POP levels in the Arctic are currently decreasing, but high levels of POPs and heavy metals in 

local food, especially in intestines and blubber from animals that occupy high trophic levels in the 

marine food web still exist (AMAP, 2009a, 2011a). However, the daily intake of local food has 

decreased. As a positive side effect of this, contaminant exposure has decreased in some areas. An 

exclusion of the food items with highest levels of POPs, such as intestines and blubber, can reduce the 

intake of contaminants to tolerable levels, even though the total intake of local food can remain almost 

the same (paper III, IV, Johansen et al., 2004; Deutch et al., 2006). The social, cultural, economic and 

nutritional benefits of traditional Arctic diets have been emphasised in recent reports and studies 

during the last years (Van Oostdam et al., 2005; AMAP, 2009a). Nevertheless, marine food items, and 

especially marine mammals, have been identified as a circumpolar indicator for high levels of legacy 

POPs, such as pesticides and PCBs in human blood, milk and plasma, and hence, this is reflected in 

blood and plasma analyses of indigenous Arctic people (Deutch et al., 2004; Van Oostdam et al., 

2005; Deutch et al., 2006; Deutch et al., 2007a; Gobas et al., 2009; Chateau-Degat et al., 2010). 

Environmental processes that are enhanced by warmer temperatures (e.g. increased melting of glaciers 
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and snow caps) can eventually increase the amount of POPs available in the marine systems and 

hence, levels in Arctic marine food (paper I, Kallenborn et al., 2012a). The size and impact of 

contaminants from glaciers are not well understood, especially not for the Greenlandic icecap. The 

amount of contaminants buried in Agassiz icecap has been estimated to be small, although the 

estimation was based on few data (Macdonald et al., 2005). However, primary production is believed 

to increase in a warmer Arctic, which can lead to a dilution effect of contaminants in the 

phytoplankton, and hence, less bioavailable POPs (ACIA, 2005; Borgå et al., 2010). Monitoring of 

EFs of pesticides in water and through the food chain can indicate whether a decrease of contaminants, 

caused by microbial degradation and phytoplankton “dilution” would be a more important process 

than the potential increase of contaminants, released from large snow/ice caps and soil (paper I, II). 

For human health, the decreased in intake of local foods is anticipated to be more significant than 

effects caused by climate change in humans (Undeman et al., 2010; Armitage et al., 2011; Quinn et al., 

2012). 

 

Levels of POPs in local food from Greenlandic compared to the Russian and Canadian Arctic 

There are few, if any, studies regarding PBDEs, PFAS and chiral pesticides in food baskets and food 

items from Greenland. Paper IV showed low levels of PBDEs (BDE-47 and -99) and PFAS in 

traditional Greenlandic food, while paper III showed selective uptake/degradation processes of chiral 

pesticides in almost all food items analysed. Enantiomers can have different toxic effects on 

organisms, which have been showed for DDT (McBlain, 1987; Hoekstra et al., 2001). However, there 

is very little research about different toxic potential of the enantiomers among -HCH, trans-, cis- and 

oxychlordane. When and if such research will be available, paper III contributes with more 

understanding of exposure and fate of the different enantiomers in local Arctic food. 

 

The overall temporal trends in Arctic air are decreasing levels of α- and γ-HCH, ΣDDTs, Σchlordanes 

and ΣPCBs (Hung et al., 2010; Riget et al., 2010). This is, to some extent reflected in time trends in 

Arctic biota. ΣPCB has decreased in e.g. seabirds and marine mammals from Canada and northern 

Norway/Svalbard and α- and γ-HCH has decreased in marine mammals from Canada and Greenland. 

Chlordanes and HCB have also decreased, but with a less pronounced trend (Riget et al., 2010). This 

is reflected in Greenlandic food items, where levels of PCBs had decreased in 2004 compared to food 

items collected in 1976, while levels of chlordanes were similar in samples from those years (Deutch 

et al., 2006). Levels of legacy POPs in paper III and IV were lower, or in line with recent studies 

from Greenland (Riget et al., 2004; Vorkamp et al., 2004). PBDE and PFAS in the Greenlandic food 

items were difficult to compare due to few analyses of muscle tissues and the same species from 

especially Greenland, but also scarce data from other parts of the Arctic. A time trend in seal blubber 

indicates decreasing levels of PBDEs (Vorkamp et al., 2011). The levels of PBDE in fish and 
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mammals in paper IV are in accordance with this trend, with few congeners detected and generally 

lower, or similar levels compared to other studies from nearby areas. 

 

PFAS was not detected in the fish samples in paper IV, which is in accordance with fish from Faroe 

Islands (Eriksson et al., 2013) and Arctic char from Nunavut, Canada (Ostertag et al., 2009). 

Industrially processed (e.g. washing, packing) can be the cause for the non-detected PFAS in fish. The 

seal meat contained higher levels of PFOS as well as ∑PFAS compared to seal from Nunavut, Canada 

(PFOS: 0.2 ng/g ww, ∑PFAS: 1.1 ng/g ww; Ostertag et al., 2009). The whale beef and narwhal mattak 

in paper IV also showed levels comparable to Nunavut regarding PFOS (1.5 ng/g ww in beluga 

blubber), but lower compared to the beluga meat. Paper IV and Ostertag et al. (2009) showed 

similarities in the preferred accumulation of PFAS compounds in whale meat (i.e. PFOS, followed by 

long-chained PFAS; PFNA, PFUnA, PFDcA), which indicates comparable sources and exposure 

routes in western Greenland and northeast Canada. 

 

Levels of contaminants in blood from human inhabitants of the Arctic depend to a large extent upon 

their dietary habits, and high dietary intake of marine mammals is associated with high levels in 

human blood (AMAP, 2009a; Quinn et al., 2012). In general, people from Scandinavia had lower 

levels of POPs in their blood compared to people in Arctic communities, where food items such as 

marine mammals were much more frequently consumed (AMAP, 2009a). This illustrates the 

importance of monitoring legacy and emerging contaminants in Arctic food items, including their 

pathways, remediation and degradation processes (paper I- IV, Kiviranta et al., 2004; AMAP, 2009a; 

Chateau-Degat et al., 2010; Rylander et al., 2011b; Törnkvist et al., 2011).  

 

The contribution of traditional food to the energy intake has also decreased during the last decades and 

are today highest in northern Canada (10-36%), followed by southern Greenland (11-22%) and 

northwestern Alaska (Van Oostdam et al., 2004; AMAP, 2009a; Sheikh et al., 2012). Nevertheless, 

some populations are still exceeding the TDI for certain POPs, which is related to a relatively high 

intake of animal tissues (especially blubber and intestines) at high trophic levels from the marine food 

web, such as pilot whale in Faroe Islands and polar bears in East Greenland (AMAP, 2009a) . Local 

food items from the Russian Arctic were found to be contaminated during processing, storing and 

cooking from indoor sources, mainly by PCBs and DDTs (Dudarev, 2012). The levels of contaminants 

in the animals before processing were low compared to in other areas of the Arctic, but levels in 

human plasma and blood were comparable with indigenous people from Greenland and Canada 

(AMAP, 2009a). People consuming high amounts of marine mammals and fish had higher blood POP 

levels than inland people (AMAP, 2009a). This is the circumpolar trend, but a reduction of the intake 

of blubber and intestines from marine mammals can cause a major reduction of the exposure (paper 

III, IV). Recent studies regarding POP in Russian food items showed levels similar to other European 
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countries in most food items, except for higher levels of PCBs in eggs compared to Scandinavia 

(Polder, 2010). Fish, together with dairy products and eggs were the main sources of POPs in Russia 

(Polder, 2010; Polder et al., 2010). All POP levels were lower in the Russian fish samples (Polder et 

al., 2010), compared to the Greenlandic fish samples in paper III and IV. 

 

Ecological and toxicological articles about the bioaccumulation of POPs in Arctic animals often report 

levels of contaminants in eggs, blubber and liver, but seldom in muscle tissue (Riget et al., 2010). 

However, contaminants in muscle tissues have been reported in food basket studies and biota surveys 

around the Arctic (Deutch et al., 2007a; Polder et al., 2010; Dudarev, 2012), but there are some 

differences in species composition, if species were reported at all. Muscle tissues, i.e. beef and fish 

filets were chosen in paper III and IV since they are more common food compared to blubber and 

intestines, especially from a circumpolar perspective.  

 

A changed transport pattern of POPs into the Arctic can change sources of exposure for humans in the 

Arctic. In a warmer climate, POPs will evaporate from secondary sources such as soil, undergo long-

range transport and eventually scavenge from the air via increased precipitation (Noyes et al., 2009; 

Kallenborn et al., 2012a; Grannas et al., 2013). The combination of weathered, long-range transported 

POPs and the already present secondary sources in the Arctic (e.g. glaciers, snow caps) can increase 

levels of banned contaminants in the Arctic (paper I, Blais et al., 2001a; Grannas et al., 2013). 

However, monitoring of chiral contaminants in the air and water will be a versatile tool to discover 

and differentiate between those secondary sources (paper I, II, Bidleman et al., 2012). Once the chiral 

pesticides accumulate in fish and mammals, the changes in EFs are affected by metabolism and 

internal transport processes to a higher extent compared to the situation at lower trophic levels (paper 

II, III, Hühnerfuss et al., 1992; Möller et al., 1994; Wiberg et al., 2000). Hence, enantiomer selective 

analyses are more powerful at low trophic levels (e.g. zooplankton; paper II) and in abiotic matrices 

for interpretation of sources origin and for indications of changed source exposure and transport 

patterns (Bidleman et al., 1998). However, the effect of the release of these sources will eventually 

affect local Arctic food and the related human health. Even though these contaminants are banned, 

levels in the Arctic food web and hence, human food items, could increase due to evaporation from 

secondary sources. This needs to be taken into account in health assessments, in addition to decreased 

intake of local food (Deutch et al., 2006; Undeman et al., 2010; Armitage et al., 2011; Quinn et al., 

2012). POP is one of many factors that impact human health among indigenous people. Economic 

status, public health, education, social and cultural status also need to be taken into account (Rylander 

et al., 2011a). 
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New versus old sources of persistent organic pollutants 

The Arctic Ocean has earlier been considered as a sink for α-HCH, but could today be referred to as a 

secondary source (Jantunen and Bidleman, 1995; Wöhrnschimmel et al., 2012b). Declining 

concentrations in the atmosphere will enhance degassing from the ocean due to an increase of the 

fugacity ratio (fwater/fair). This will favour partitioning of α-HCH into air over partitioning into water 

(Ludwig et al., 1992b; Jantunen and Bidleman, 1996). The phenomena is illustrated by changes of EFs 

for α-HCH in surrounding air during sea ice melting, when non-racemic α-HCH evaporates from the 

ocean (Jantunen et al., 2008; Jantunen, 2009; Pućko et al., 2010). Ice cover hinders exchange 

processes. This is in accordance with larger deviation from racemic α-HCH in zooplankton collected 

from below the ice compared to zooplankton from Kongsfjorden, which is considered as almost ice 

free during the whole year and is dominated by Atlantic water masses (paper II). 

 

The contribution from local sources (e.g. previous usage of PCBs) can be discovered by comparison of 

e.g. PCB congener profiles in abiotic samples and stationary animals (Hop et al., 2001; Sagerup et al., 

2009; Kristoffersen et al., 2012). This approach is difficult for non-stationary fishes and mammals, 

such as the analysed samples in paper III. The differences of degradation and metabolism rates for 

PCB congeners within a food chain can also add some uncertainty to such profile analyses. 

Enantiomer selective analyses of chiral contaminants are a more powerful tool than congener 

comparisons for assessments of primary versus secondary sources. EFs can be used to differentiate 

between water masses, to elucidate exchange processes between air and water and fate of secondary 

sources (paper II, Bidleman et al., 1998; Bidleman and Falconer, 1999; Jantunen, 2009; Wong et al., 

2011; Bidleman et al., 2012). The large data set in paper II contributes to the understanding and 

elucidation of non-racemic EFs in zooplankton. Among the contaminants analysed, EFs of α-HCH 

was related to ice cover. EFs of trans- and oxychlordane seemed to be most susceptible for 

biotransformation processes, and changes of EFs in cis-chlordane was reflected by deviations from 

racemic in oxychlordane. 

 

Impacts of climate change upon contaminant uptake and transfer processes 

A less ice covered Arctic (both in mass and in time) facilitates the evaporation of contaminants stored 

in the ocean to the air (Macdonald et al., 2005; Jantunen et al., 2008; AMAP, 2011b; Ma et al., 2011). 

An increased delivery from melting ice and snow caps to the ocean could theoretically increase the 

amount of POPs reaching oceans and lakes (Blais et al., 2001a; Blais et al., 2001b; Bogdal et al., 

2009a; Schmid et al., 2011). Paper I was a first step towards investigating this in large ice cap 

systems such as the Greenlandic ice cap. The observed difference between water samples strongly 

influenced by meltwater and water masses with a large contribution from the ocean supports the idea 



   

 

37 
 

of glaciers as secondary sources of contaminants. However, the environmental conditions differ 

between the Alpine/Canadian small glaciers and the Greenlandic ice cap. The melting ice in the Alps’ 

glaciers was estimated to originate from 1950-70s, and hence contain POPs (Bogdal et al., 2009a; 

Schmid et al., 2011). The melting ice at the glacier fronts in Greenland is several thousands years old. 

Nevertheless, it contains large amounts of annual snow cover and can be influenced by complex 

processes such as meltwater/-channels, draining of POPs from snow into ice and thawing/refreezing 

(Humphrey et al., 2012; Grannas et al., 2013). Changed precipitation patterns can also affect transport 

and deposition of POPs in the Arctic. Eventually, these factors can lead to transport of POPs into the 

ocean and the receiving marine ecosystem via the melting and calving ice at the ice cap fronts (paper 

I, Herbert et al., 2005; Kallenborn et al., 2012a; Grannas et al., 2013). Non-racemic EFs of chiral 

contaminants in zooplankton can be an indication of secondary sources present in the environment 

(paper II). 

 

Not only changes in temperature and the associated meltwater runoff can affect the transport and fate 

of POPs. Changes in microbial activity, ice cover and sea surface temperature caused by climate 

change can also affect degradation processes and the exchange of semivolatile organic compounds 

between ocean and air, which, in a longer perspective, can affect contaminant patterns in marine 

animals, especially at low trophic levels (paper II), (Bidleman et al., 2003; Bidleman et al., 2012). 

 

Air levels of HCB have increased at Zeppelin (Ny-Ålesund, Svalbard), probably as a result of ice free 

fjords during the last years (Hung et al., 2010; Ma et al., 2011; Kallenborn et al., 2012a). The amount 

and fate is not yet well understood. Results from paper I and II contributes to an increased 

knowledge of the fate and behaviour of pesticides in the environment. Ice cover, in addition to 

phytoplankton bloom, water masses and biotransformation affect the contaminant load and -pattern at 

low trophic levels. Eventually, this will affect the contaminant load in food items. Since contaminant 

exposure via food depends on amount of intake as well as on type of food (i.e. vegetables, offal from 

marine mammals), it is a complex task to elucidate exposure risks for the future. More information 

regarding trends and levels of contaminants (paper III, IV) and dietary intake are needed to assess 

human exposure in the future. The combined effect of anticipated changed contaminant sources 

(primary versus secondary), changed food web structure and the decrease of local food intake needs to 

be investigated (Noyes et al., 2009; Armitage et al., 2011; Quinn et al., 2012). Less sea ice will 

facilitate boat travels to terrestrial areas available by boat as well as fishing. Hence, terrestrial animals 

might become more important food items compared to seal, since seal hunting depends on sea ice 

cover (ACIA, 2005; AMAP, 2011b). Fish can also become more important, and warmer water could 

facilitate migration of new species. Whether fish species such as Atlantic cod and haddock will 

survive and reproduce further north is currently under research (Varpe Ø. and Fiksen Ø., 2010; 
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Renaud et al., 2012). How and whether this will be reflected in the diet of indigenous people is 

difficult to say. In addition, the contribution of local food items in the diet has decreased among 

indigenous people during the last years in Greenland (Deutch et al., 2007a), Alaska (Ballew et al., 

2006) and Canada (Receveur et al., 1997; Nakano et al., 2005), while there are indications for 

increased contribution of local food in the Chukotka peninsula (Kozlov, 2004).  

 

Limitations and restrictions 

Fieldwork in the Arctic is not only demanding and challenging, but also very costly. These factors 

limit the possibility to obtain large sample sets, replicates and samples from certain areas. Via several 

good contacts and collaborations, I have collected samples from both Greenland and Svalbard. 

However, it could be preferable to have samples from only one region, e.g. to assess selective 

uptake/degradation from water to zooplankton to fish at the same place. On the other hand, the 

hypothesis for the present thesis was that the processes themselves are similar in a circumpolar 

perspective, and hence, it was more appropriate to collect samples from different locations in the 

Arctic. Svalbard does not have indigenous people or a strong culture regarding the consumption of 

local food, and Greenland was therefore the most suitable location to collect food items. These 

samples represent common food items of the Western Arctic Regions. The collaboration with the 

COPOL project provided zooplankton material from several years and locations with different 

environmental conditions, which would not have been possible to access from other Arctic locations.  

 

The aim of the ArcRisk project was, amongst others, to contribute to an understanding of the effects of 

a changing climate upon contaminant exposure for humans in the Arctic. The project targeted a large 

geographical area, where there are socio-economical differences between populations as well as 

different transportation routes for contaminants reaching the Arctic. However, the present thesis aims 

to contribute to the understanding of processes that happens on a circumpolar scale. The studied 

processes were chosen because they are important in a circumpolar perspective, little or only scarce 

information was available and they should be relevant for contaminant exposure for humans. 

Hence, processes related to transfer of contaminants from an ice cap to the ocean (paper I) are likely 

to be similar whether it is the Greenlandic ice cap or an ice cap at Svalbard, although the POPs present 

and their levels can differ.  

 

Enantiomer selective biotransformation processes such as microbial degradation and enzyme 

facilitated degradation are circumpolar. However, there are variations between areas regarding which 

enantiomer that undergoes selective uptake/degradation. Biotransformation of a certain enantiomer 

should therefore not be extrapolated from one area to the whole Arctic, but the occurring degradation 

process as such can be expected to be valid for other areas and similar species as well (paper II, III). 



   

 

39 
 

Further research regarding biodegradation processes should focus on the connection between transfer 

of contaminants from benthic to pelagic food webs. 

Finally, indigenous food items vary with locations and seasons. It was beyond the scope of the present 

thesis and ArcRisk to assess contaminant levels in food baskets from the whole Arctic. In the 

perspective of trends towards more contribution from western type of food items, fish and meat from 

marine mammals were chosen because they are more similar to urban food than intestines and blubber 

from marine mammals (paper III, IV).  

 

Regarding pesticide analyses in water, biota and food items from Russia, and especially from the 

former Soviet Union, it can be difficult to access information. Many of the old analyses can be 

associated with large errors and lack of proper quality control (Zhulidov et al., 2000). Sample 

collection in remote parts of Russia has often been associated with greater logistical challenges 

compared to sampling in the central parts of Greenland (i.e. Nuuk).  

 

Finger prints of e.g. PCB congeners can be useful in air and abiotic environments, but uptake and 

degradation of the congeners in biota differs, which can affect the finger print. However, the congener 

pattern or presence of specific congeners in biota could give an indication of the origin of the PCB 

mixture and whether local sources contributions of POPs can be detected in animals (Sagerup et al., 

2009). Challenges such as different affinity for sampling medium can also affect the ratio between 

compounds. In such cases, EF would still be usable since the EF itself would not be affected by loss of 

the target compound. Analyses of chiral pesticides require additional chromatographic analyses 

compared to regular quantitative pesticide analyses. However, no extra clean-up procedures are 

needed, and the costs connected to enantiomer selective analyses are therefore not much higher than 

regular analyses. Enantiomer selective analyses is a useful tool and especially together with ratios for 

different compounds and finger prints for mixtures. Hence, enantiomeric distribution was chosen 

instead of congener profiles to elucidate processes in the present thesis. It would have been beneficial 

to analyse EFs in the water samples from Greenland and additional water samples from the Svalbard 

fjords. Due to low levels of the pesticides in water, and additional matrix problems during enantiomer 

selective analyses, this was not possible within this thesis. In general, low detection frequency for 

some compounds and limited number of sample replicates available is a challenge with regards to 

obtaining a good statistical power. 
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Future perspectives 

The combination of monitoring and research has proven to be a valuable tool to assess trends and 

changes of behaviour pattern among POPs, such as increasing levels of HCB in air at Zeppelin station 

(Hung et al., 2010; Becker et al., 2012). There are several programs and organisations responsible for 

the long-term monitoring of contaminants globally (e.g. European Monitoring and Evaluation 

Programme; EMEP) as well as in the Arctic (Arctic Monitoring and Assessment Program; AMAP, 

Northern Contaminants Program (Canada), and Task Force on Hemispheric Transport of Air 

Pollution; TF HTAP). Implementation of the monitoring of chiral pesticides in water/animals at low 

trophic levels could provide valuable data regarding old/new sinks. Not only changes of levels can be 

determined, but processes other than solely atmospheric transport can be elucidated. Paper I showed 

how water samples can give an indication of local meltwater sources of pesticides. A combination of 

passive water samplers and analyses of POPs in animals from low trophic levels could give good 

indications for changes of the physical environment and uptake of contaminants from the water mass 

(paper I, II). Monitoring will contribute to more samples over time and hence, higher statistical power 

within the dataset. Appropriate analytical methods are important for inter-laboratory comparisons.  

 

Paper II contributes to an increased understanding of pesticide fate with regards to a changing 

climate. The environmental processes, which are linked to climate changes and affect EF pattern and 

pesticide accumulation in zooplankton are circumpolar. Increased meltwater runoff will make 

secondary sources of contaminants, such as soil and snow caps available to the marine Arctic 

ecosystem, which has already been reported from glaciers in the Alps and in Canada (Blais et al., 

2001a; Blais et al., 2001b; Bogdal et al., 2009a; Bogdal et al., 2009b; Bogdal et al., 2011; Schmid et 

al., 2011). Changes of the physical environment, such as warmer water temperatures and/or inflows of 

new water masses will have an impact on the ice cover in the Arctic (Cottier et al., 2007; Pavlov et al., 

2013; Rudels et al., 2013) and the linked behaviour and environmental fate of contaminants in the 

Arctic (Wong et al., 2011; Kallenborn et al., 2012a; Grannas et al., 2013).  

 

Meltwater runoff from secondary sources will deliver contaminants into the local marine food web. 

Paper I showed a linkage between meltwater runoff and pesticide patterns. The implications of this 

process need to be investigated further. Oceanographic conditions, such as currents, mixing rates, 

particle content and –scavenging can affect this process and should be taken into account. Once 

bioavailable in the marine food web, the POPs will bioaccumulate via the food web into edible fishes 

and mammals (paper III, IV). According to models, the total concentration of PCBs are assumed to 

decrease in the Arctic due to the reduction of primary sources, However, an increased volatilisation, 

mobility and runoff from secondary sources due to a warmer climate will increase the levels in the 
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Arctic environment (Lamon et al., 2009). Abiotic media and animals at low trophic levels are suitable 

for monitoring of the contribution from secondary sources. Changes of levels and contaminant patterns 

at high trophic levels can indicate altered food web structures caused by climate changes (Kallenborn 

et al., 2012a). Diet is the most important exposure route of POPs. Therefore, fish and marine mammals 

were analysed in paper III and IV. Recent findings assess changes of diet as a more important factor 

compared to direct effects of climate changes regarding contaminant exposure for humans (Undeman 

et al., 2010; Armitage et al., 2011; Quinn et al., 2012). However, the effects in the Arctic marine food 

web related to climate changes and contaminants are more difficult to assess, although recent models 

suggest decreased bioaccumulation as a result of increased phytoplankton mass and hence, a dilution 

effect of contaminants (Borgå et al., 2010). Levels, uptake/degradation processes and the effects of 

legacy POPs as well as screening for new contaminants should therefore be monitored in the Arctic 

food web to verify models. The focus should be towards top predators, since they might be more 

susceptible to indirect climate changes (e.g. changed food web structure and habitat) compared to 

indigenous people, since the intake of traditional food is decreasing and hence, the dietary exposure 

reduced (Receveur et al., 1997; Macdonald et al., 2005; Van Oostdam et al., 2005; Deutch et al., 2006; 

Kallenborn et al., 2012a). Exposure to heavy metals was beyond the scope of the present thesis, but 

should be taken into account for a more holistic health perspective. 

 

Empirical data of contaminants in water are needed to improve Arctic food web models, since the 

available data sets of POPs in the Arctic Ocean include very few measurements. Ocean monitoring 

stations with deployed passive samplers could provide time series of contaminants and oceanographic 

conditions, which could contribute to an estimation of the amount of contaminants stored in glaciers 

and snow caps. Food web models would benefit from such data to improve the predictions of the 

amount of contaminants that can reach the marine Arctic environment.  
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Main conclusions 

The present thesis is a continuation of recent work on contaminants in Arctic food webs. It contributes 

to the understanding of enantiomer selective degradation in Arctic marine food webs and contains one 

of the first studies of EFs in zooplankton as a tool to elucidate changes in the physical environment. 

The zooplankton dataset covers not only different species, but also temporal and geographical 

variations. The first study of pesticides linked to meltwater in a Greenlandic fjord is also part of the 

present thesis. 

 

Paper I indicated that more types of pesticides were present close to the ice cap (especially 

chlordanes), while ocean water influenced stations mainly contained α-HCH and HCB. To better 

understand the role of meltwater, glaciers and snow caps regarding their role as secondary sources of 

POPs, it is recommended to follow up these results with more extensive sampling of water, sediment, 

snow and ice samples as close as logistically possible to the glacier fronts. Enantiomer selective 

analyses of contaminants in glacier, water, sediment and zooplankton samples from the same area 

would give valuable knowledge and insight in transport and transformation of contaminants from 

secondary sources. Especially since paper II indicates the chlordanes as potential tracers for changes 

of the physical environment, and paper I indicates chlordanes as potential tracers for freshwater 

runoff (i.e. secondary sources).  

 

The present thesis contributes to the understanding of levels of pesticides, including EFs when 

applicable, PCBs, PBDEs and PFASs in traditional Greenland food items, such as raw and smoked 

fish (salmon and halibut), whale and seal meat and narwhal mattak. ΣHCH and Σchlordanes were 

lowest in smoked salmon (5 and 38 ng/g lw, respectively) and highest in narwhal mattak (98 and 1027 

ng/g lw, respectively). EFs were non-racemic in all samples, although with a few exceptions (α-HCH 

in narwhal, trans-chlordane in whale beef and cis- and oxychlordane in the seal meat). There were 

indications for different biotransformation processes of α-HCH in fish, where (+)-α-HCH was 

preferentially degraded, compared to (-)-α-HCH in mammals. ΣPCBs ranged from 37 ng/g lw in 

smoked halibut to 1146 ng/g lw in narwhal mattak in the food items analysed, while BDE-47 ranged 

from <LOD in smoked halibut, to 21 ng/g lw in whale beef. ΣPFAS was detected in whale beef (2.9 

ng/g ww), narwhal mattak (3.7 ng/g ww) and seal (13.5 ng/g ww).  

Food is the main contaminants exposure route for humans, and the results from paper III and IV 

shows levels below the TDI threshold. This was mainly due to exclusion from the diet of local food 

items such as intestines and blubber, which will have a positive effect on the POP exposure. 

Nevertheless, such reduction will not impact the health benefits of traditional food considerably. 
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Appendix 
Table A1. IUPAC names and CAS numbers for the compounds analysed. 

PCB     PBDE     

IUPAC Name Congener 
CAS-
number IUPAC Name Congener  

CAS 
number 

2,2',5-Trichlorobiphenyl 18 37680-65-2 2,4,4'-Tribromodiphenyl ether 28 41318-75-6 

2,4,4'-Trichlorobiphenyl 28 7012-37-5 2,2',4,4'-Tetrabromodiphenyl ether 47 5436-43-1 

2,4',5-Trichlorobiphenyl 31 16606-02-3 2,2',4,5'-Tetrabromodiphenyl ether 49 243982-82-3 

2,2',4,4'-Tetrachlorobiphenyl 47 2437-79-8 2,3',4,4'-Tetrabromodiphenyl ether 66 189084-61-5 

2,2',4,5'-Tetrachlorobiphenyl 49 41464-40-8 2,3',4',6-Tetrabromodiphenyl ether 71 189084-62-6 

2,2',5,5'-Tetrachlorobiphenyl 52 35693-99-3 2,2',3,4,4'-Tetrabromodiphenyl ether 77 93703-48-1 

2,3',4,4'-Tetrachlorobiphenyl 66 32598-10-0 3,3',4,4'-Tetrabromodiphenyl ether 85 182346-21-0 

2,4,4',5-Tetrachlorobiphenyl 74 32690-93-0 2,2',4,4',5-Pentabromodiphenyl ether 99 60348-60-9 

2,2',4,4',5-Pentachlorobiphenyl 99 38380-01-7 2,2',4,4',6-Pentabromodiphenyl ether 100 189084-64-8 

2,2',4,4',6-Pentachlorobiphenyl 100 39485-83-1 2,3',4,4',6-Pentabromodiphenyl ether 119 189084-66-0 

2,2',4,5,5'-Pentachlorobiphenyl 101 37680-73-2 2,2',3,4,4',5'-Hexabromodiphenyl ether 138 182677-30-1 

2,3,3',4,4'-Pentachlorobiphenyl 105 32598-14-4 2,2',4,4',5,5'-Hexabromodiphenyl ether 153 68631-49-2 

2,3',4,4',5-Pentachlorobiphenyl 118 31508-00-6 2,2',4,4',5,6'-Hexabromodiphenyl ether 154 207122-15-4 

2,3',4,4',5'-Pentachlorobiphenyl 123 65510-44-3 2,2',3,4,4',5',6-Heptabromodiphenyl ether 183 207122-16-5 

2,2',3,3',4,4'-Hexachlorobiphenyl 128 38380-07-3   

2,2',3,4,4',5'-Hexachlorobiphenyl 138 35065-28-2 PFAS Acronym 
CAS 
number 

2,2',3,4,5,5'-Hexachlorobiphenyl 141 52712-04-6 Perfluorocarboxylates   

2,2',3,4',5',6-Hexachlorobiphenyl 149 38380-04-0  Perfluorohexanoic acid PFHxA 307-24-4 

2,2',4,4',5,5'-Hexachlorobiphenyl 153 35065-27-1  Perfluoroheptanoic acid PFHpA 375-85-9 

2,3,3',4,4',5-Hexachlorobiphenyl 156 38380-08-4  Perfluorooctanoic acid PFOA 335-67-1 

2,3,3',4,4',5'-Hexachlorobiphenyl 157 69782-90-7  Perfluorononanoic acid PFNA 375-95-1 

2,3',4,4',5,5'-Hexachlorobiphenyl 167 52663-72-6  Perfluorodecanoic acid PFDA 335-76-2 

2,2',3,3',4,4',5-Heptachlorobiphenyl 170 35065-30-6  Perfluoroundecanoic acid PFUnA 2058-94-8 

2,2',3,4,4',5,5'-Heptachlorobiphenyl 180 35065-29-3  Perfluorododecanoic acid PFDoA 307-55-1 

2,2',3,4,4',5',6-Heptachlorobiphenyl 183 52663-69-1  Perfluorotridecanoic acid PFTrA 72629-94-8 

2,2',3,4',5,5',6-Heptachlorobiphenyl 187 52663-68-0 Perfluorotetradecanoic acid PFTeA 376-06-7 

  Perfluorosulfonates   

   Perfluorobutane sulfonate PFBS 29420-49-3 

   Perfluorohexane sulfonate PFHxS 432-50-7 

   Perfluoroheptane sulfonate PFHpS 375-92-8 

   Perfluorooctane sulfonate PFOS 45298-90-6 

   Perfluorodecane sulfonate PFDS 335-77-3 

   Perfluorododecane sulfonate PFDoS 79780-39-5 

  Perfluorosulfonamides   

   Perfluorooctane sulfonamide PFOSA 754-91-6 

 

  



   

 

55 
 

Table A2. Mass transitions and quantifier/qualifier ions for all analysed compounds. 

Pesticides, ECNI, SIM  Quantifier ion  Qualifier ion PFAS, ESI, MS/MS Parent ion Product ion
13C trans-chlordane 417.8 419.8 13C PFHxS 402 99/80

OCN (RSTD) 404  13C PFOS 503 99/80

α-HCH 254.8 252.8 13C PFOSA 506 78

β-HCH 254.8 252.8 13C PFBA 217 172

γ-HCH 254.8 252.8 13C PFDcA 519 474/269

HCB  284.0  282.0 13C PFDoA 615 570/169

trans-chlordane  407.8  409.8 13C PFNA 468 423/219

cis-chlordane  407.8  409.8 13C PFOA 417 372/169

oxychlordane  353.8  351.8 13C PFPA 268 223

trans-nonachlor  333.8  335.8 13C PFUnA 570 525/269

cis-nonachlor  333.8  335.8 3,7dimeo-bPFDA (RSTD) 469 269

   PFBS 299 99/80

PCBs, PBDEs, EI, MRM Parent ion Product ion PFHxS 399 99/80
13C pentaPCB 338 268 PFOSlin 499 99/80
13C hexaPCB 372 302 PFOSbr 499 99/80
13C heptaPCB 406 336 PFOSA 498 78

OCN (RSTD) 404 334 PFDcS 599 99/80

triPCB 256 186 PFBA 213 169

tetraPCB 290 220 PFPA 263 219

pentaPCB 326 256 PFHxA 313 269/119

hexaPCB 360 290 PFHpA  363 319/169

heptaPCB 394 324 PFOA 413 369/169
13C triBDE 417.8 258 PFNA 463 419/219
13C tetraBDE 497.8 337.9 PFDcA 513 469/269
13C pentaBDE 575.7 415.8 PFUnA 563 519/269
13C hexaBDE 655.6 495.7 PFDoA 613 569/169 
13C heptaBDE 733.5 573.6 PFTrA 663 619/169

triBDE 408 248 PFTeA 713 669/169

tetraBDE 485.7 325.9     

pentaBDE 565.6 405.8     

hexaBDE 643.5 483.7     

heptaBDE 723.4 563.6       
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